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Abstract 

This paper presents a three-dimensional finite element (FE) modeling approach for predicting the response of 

rocking columns. The model is validated against experimental results, which involved testing three different 

cylindrical columns with different slenderness ratios under a set of 100 bidirectional ground motions. Each column 

was free-standing and allowed to slide and rock in all directions. Since the developed stresses in the columns were 

low, all columns were modeled as rigid. 

The contact surface was simulated using Coulomb friction for the tangential behavior and stiff contact for the 

normal direction. Two energy dissipation mechanisms were modeled; friction and radiation damping. Inherent 

numerical damping, as well as Rayleigh damping, were set to zero, with this approach complying to the physical 

problem. 

Rocking is characterized as a chaotic and unpredictable problem, with tests being non-repeatable. Therefore, this 

study employs a statistical approach to validate the numerical results, using the cumulative distribution function 

(CDF) for the main response quantity (i.e., maximum top displacement of the column). It was proved that the 

model performs poorly in the deterministic validation but demonstrates satisfying agreement with the 

experimental results when validated statistically. 

The influence of the main modeling parameters, meaning the friction coefficient and the radiation damping 

properties, was assessed through an extensive sensitivity analysis using non-linear time-history analyses. A small 

change of the value of these parameters leads to a different individual rocking oscillation but only smoothly 

influences the statistical response. 

Keywords: rocking columns; finite element modeling; statistical validation; sensitivity analysis; free-standing 

equipment 

1. Introduction 

Rocking structures are the ones that are allowed to uplift when subjected to dynamic excitation. 

Uplifting occurs when the ratio of the acceleration of the excitation (üg) divided by the gravity 

acceleration (g) is larger than the slenderness of the block (α) and the sliding surface is sufficiently 

rough. This uplifting effect acts as a fuse, limiting the inertial forces transmitted to the superstructure. 

After uplift, a rocking oscillator demonstrates negative stiffness, making the description of such systems 

significantly different than the conventional ones. 

The first analytical study of this phenomenon is dated back to 1885 [1,2]. However, rocking structures 

have been systematically studied after 1963, when Housner published his seminal paper entitled “The 

behavior of inverted pendulum structures during earthquakes” where two main properties of the rocking 

structures were elucidated: i) out of two geometrically similar rocking blocks (same α) the larger one 

(larger R) can survive an excitation which will topple the smaller one ii) longer period ground motions 

have a higher overturning potential [3].  

The rocking oscillator has been used to describe the dynamic behavior of free-standing equipment [4-

7], masonry structures [8-14] and ancient temples [15-19]. Rocking is also a promising seismic response 

modification technique, both for bridges and buildings, with limited practical applications in the former 

USSR and New Zealand [20,21]. Applications in buildings may comprise a soft-rocking-story 

mechanism [22-24], or a rocking wall [25, 26], whereas in bridges, rocking piers [27-35]. Several 

analytical studies investigated the response of rocking structures combined with external dampers or 
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restraining tendons [36-38]. The influence of the flexibility of the rocking body was also studied, both 

analytically and experimentally [39-42]. 

The analytical model proposed by Housner describes the planar rocking response of a rigid body when 

subjected to one-directional excitation. However, real rocking structures are subjected to bidirectional 

(or three-directional when the vertical acceleration is considered) excitation [43-46]. Under these 

conditions, an unanchored body may rock, uplift, translate with the ground, and/or wobble. When it is 

not restrained, it may also slide out of its initial position [47].  

This study aims at developing a practical three-dimensional finite element model to predict the response 

of free-standing cylindrical rocking columns. The validity of the proposed model is assessed by 

statistically comparing numerical and experimental results. The experimental results comprise 100 

shake table tests, using three cylindrical steel columns with varying slenderness. The number of tests 

performed is large enough to allow such a statistical comparison. The specimens were subjected to two-

dimensional excitation, and they were free to slide, rock and wobble in all directions. As the columns 

are free to slide and wobble out of their original position, they serve for validation of numerical models 

used for the description of the seismic behavior of equipment, rather than of structures that use rocking 

as a seismic isolation strategy. 

2. Statistical validation 

Rocking is often characterized as “chaotic”, in the sense that the response of rocking objects is sensitive 

to the initial conditions, often making tests non-repeatable. Therefore, validating numerical models in 

a deterministic way does not even make sense. 

Bachmann et al. [48] and Del Guidice et al. [49, 50] claimed that validating a numerical model using a 

single ground motion is a sufficient but not necessary validation procedure. The seismic response is 

inherently stochastic since the excitation is stochastic. Therefore, a statistical (and not a deterministic) 

validation of the numerical model is proposed. During this statistical validation, the statistical 

distributions of the main response quantities of the model and the experiments are compared. This 

procedure requires an experimental benchmark dataset, where the same (or identical specimens) are 

excited by an ensemble of ground motions. Afterwards, a numerical model is used to create another 

dataset, using the same ensemble of excitations. The validity of the numerical model is assessed by 

comparing the Cumulative Distribution Function (CDF) of these two datasets for the same response 

quantity (i.e., maximum top displacement). This validation test is weaker (and easier to pass), yet 

sufficient for earthquake engineering applications. 

It is worth mentioning that this concept was first proposed by Yim, Chopra and Penzien who used it to 

compare different types of analyses (e.g., a simplified compared to a more refined) [51]. 

3. Numerical studies of rocking structures 

During the last decade, both FEM and DEM numerical models were developed to predict the rocking 

problem [52-55]. A recent blind prediction contest organized by ETH Zurich, the University of Bristol 

and the Pacific Earthquake Engineering Research (PEER) Center, shed light on the efficiency of 

numerical models used to describe the statistical response of a rocking podium structure [56]. Unlike 

the tests discussed in this paper, the tests of [56] concerned a rocking podium structure that was 

restrained not to slide or wobble out of its original position. Thirteen contestants participated, using 

FEM, DEM, and analytical rigid-body models [57-58]. One of the important outcomes of this contest 

is that there is no basis for recommending FEM or DEM to model the response of wobbling structures; 

the accuracy of these models depends on the modeling assumptions. Moreover, it was proven that even 

though the winning models accurately captured the Cumulative Distribution Function of the maxima of 

the responses to each set of excitations, they were unable to accurately predict the response to each 

individual ground motion separately. 
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4. Experimental procedure 

This section briefly presents an experimental investigation designed at ETH Zurich and carried out at 

EQUALS Lab, University of Bristol [59]. This investigation includes 115 shake table tests of cylindrical 

free-standing rocking bodies, which were free to slide and rock in all directions. More details about the 

tests can be found in [59]. The results of these experiments were used as a benchmark database to assess 

the efficiency of the numerical model proposed in the present study. 

The rocking specimens were not chosen to represent specific free-standing rocking equipment but a 

class of free-standing rocking bodies. They were designed to remain elastic after each test, so they could 

be excited with a large number of earthquake excitations to create a database suitable for a statistical 

validation. The specimens were made of round steel pipes, with different dimensions and slenderness 

(Figure 1). 

The rocking response was induced by a di-directional dynamic excitation using a shake table. The 

applied ground motions were synthesized using a spectral version of the Rezaeian and Der Kiureghian 

stochastic ground motion model [60-61]. The 1989 Loma Prieta UCSC Lick Observatory ground 

motion record was used as a seed ground motion to generate an ensemble of 100 ground motions. The 

ground motions were scaled, with the frequency of ground motions increased by 2 without changing 

the amplitude. Therefore, in the prototype scale, the columns are 4 times larger. 

5. Numerical model 

The general-purpose finite element software ABAQUS [62] was utilized to create and solve the model. 

The model comprised the cylindrical rocking bodies, the moving flat base (which simulates the shake 

table), and a spring-dashpot system below the flat base to simulate the vertical stiffness of the shake 

table and the radiation/impact damping mechanism [63] (Figure 1, Left). All rotations of the base were 

fixed. The base moved parallel to x and y axis applying the ground motion. On the vertical axis (z axis), 

the base was supported by the spring-dashpot system. 

A uniform mesh with a size of 5 mm was utilized in all analyses. This mesh size is considered adequate 

to avoid mesh-related errors. A 4-node 3D rigid quadrilateral finite element was used both for the 

rocking column and the flat base. The motion of the specimens was monitored with a reference point at 

the top of the column. The contact surface was simulated using Coulomb friction for the tangential 

behavior and ABAQUS stiff contact [62] for the normal direction. An explicit scheme with a fixed time 

increment of 10-6 sec was used in all cases. 

The developed numerical model considers two main damping mechanisms; friction and 

radiation/impact damping. Inherent Rayleigh damping is set to zero since this energy dissipation 

mechanism is inconsistent with the physical problem. Energy dissipation through friction is considered 

through the friction coefficient, whereas radiation damping through the utilized dashpot. Neither the 

friction nor the dashpot coefficient was not known a priori; therefore, the influence of these parameters 

was assessed through an extensive parametric analysis employing non-linear time history analysis.  

 

Figure 1. Left) Numerical model in ABAQUS. Right) Dimensions (in mm) of the tested specimens  
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6. Results 

6.1 Deterministic comparison 

Figures 2 and 3 present a comparison between experimental and numerical results for the different 

values of the critical modeling parameters (i.e., friction and dashpot coefficient). The investigated 

response parameter is the maximum displacement (umax) at the top of the rocking column, measured in 

meters. In the following plots (Figures 2,3), “OT” denotes overturning of the specimen. 

It is evident that the numerical results are moderately correlated to the experimental ones. Moreover, 

similarly to previous studies, the numerical model often fails to predict overturning. However, the 

relevant question in earthquake engineering is not whether the model is accurate but whether it is biased 

and whether it induces more uncertainty than the ground motion one.  

 

Figure 2. Deterministic comparison for experimental and numerical results of the columns. Sensitivity Analysis 

for dashpot coefficient Left) Small column, Middle) Medium column, Right) Large column 

 

Figure 3. Deterministic comparison for experimental and numerical results of the columns. Sensitivity analysis 

for friction coefficient Left) Small column, Middle) Medium column, Right) Large column 

6.2 Statistical comparison 

When the numerical results are statistically assessed, clear trends emerge, similarly to what was 

observed for the planar rocking model by Yim et al [50] as early as in 1980 (Figures 4,5). In general, a 

high friction coefficient leads to higher maximum displacements of the rocking column (Figure 5). A 

high friction coefficient means that it is harder for the column to slide. Therefore, the transmitted inertia 

forces are higher, leading to uplift and larger rocking displacements.  

The influence of radiation damping is also important, especially when high values are used. The CDF 

curves show that a high value of radiation damping makes the model conservative (Figure 5). 
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Figure 4. Statistical comparison for experimental and numerical results of the columns. Sensitivity Analysis for 

dashpot coefficient Left) Small column, Middle) Medium column, Right) Large column 

 

Figure 5. Statistical comparison for experimental and numerical results of the columns. Sensitivity Analysis for 

friction coefficient Left) Small column, Middle) Medium column, Right) Large column 

7. Conclusions 

The presented numerical model simulates the response of free-standing cylindrical columns. These 

columns are free to slide and rock in all directions, with their dimensions. It is shown that the model 

performs poorly when it is assessed base on its ability to predict the maximum to an individual ground 

motion. However, it performs well, when it is evaluated based on its ability to predict the CDF of the 

maxima of the responses to a set of ground motions.  

The friction coefficient between the rocking block and the supporting surface and the dashpot used to 

model radiation damping were varied numerically and their influence was assessed with a large number 

of non-linear time-history analyses. These parameters influence moderately the statistical response of 

the rocking bodies. The CDF curves show that an increase of the friction or the dashpot coefficient 

amplifies uplifting and leads to larger maximum rocking displacements, thus making the model more 

conservative. A friction coefficient equal to μ = 0.3 and a critical damping fraction equal to ζ = 1% 

leads to the optimal match between experimental and numerical results. 
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