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Model Predictive Robot-Environment Interaction Control for Mobile
Manipulation Tasks

Maria Vittoria Minniti, Ruben Grandia, Kevin F̈ah, Farbod Farshidian, Marco Hutter

Abstract— Modern, torque-controlled service robots can reg-
ulate contact forces when interacting with their environment.
Model Predictive Control (MPC) is a powerful method to solve
the underlying control problem, allowing to plan for whole-
body motions while including different constraints imposed by
the robot dynamics or its environment. However, an accurate
model of the robot-environment is needed to achieve a satisfying
closed-loop performance. Currently, this necessity undermines
the performance and generality of MPC in manipulation tasks.
In this work, we combine an MPC-based whole-body controller
with two adaptive schemes, derived from online system identi-
�cation and adaptive control. As a result, we enable a general
mobile manipulator to interact with unknown environments,
without any need for re-tuning parameters or pre-modeling the
interacting objects. In combination with the MPC controller, the
two adaptive approaches are validated and benchmarked with
a ball-balancing manipulator in door opening and object lifting
tasks.

I. INTRODUCTION

Mobile service robots deployed in human habitats will
face a wide variety of manipulation tasks. Assisted lifting of
objects, cleaning of windows, or opening of doors, all require
deliberate interaction between the robot and its surroundings.
Solving such robot-environment interaction control tasks in
a stable and repeatable manner is still an open problem.
For �xed-base robots, state-of-the-art control schemes [1],
[2], [3] can de�ne and limit the interaction forces in a
reactive manner. However, if the manipulator is mounted on a
mobile base, control action is additionally demanded for the
stabilization of the robotic platform itself. This is especially
the case for underactuated mobile bases, such as humanoids,
quadrupeds or wheeled balancing systems, that require a
planning strategy to maintain their balance [4]–[6]. For
known environments [7] or simple interactions [8], planning
for the robot motion and interaction has been addressed
by a Model Predictive Controller (MPC), which deals with
the constraints and dynamics by solving an optimal control
problem in a receding horizon fashion.

While robust to certain model mismatches, the lack of
a precise system model can profoundly affect the MPC's
performance. For interaction tasks, this includes a model of
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agreement No 780883.)
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Fig. 1: A ball-balancing manipulator opening a hinged door.
The robot is required to maintain its balance and, at the
same time, follow a desired end-effector trajectory while
interacting with an unknown, external environment.

the environment that the robot should interact with, which, in
general, is not available and needs to be extracted in advance.
To tackle this issue, we extend an SLQ-MPC framework
introduced in [9] by two adaptive control strategies, that are
based on model identi�cation adaptive control (MIAC) [10]
and model reference adaptive control (MRAC) [11], [1]. The
design of the proposed methods relies on the assumption
that the environment behaves as a linear mechanical system
along the interaction trajectory direction. We benchmark
the performance of these two adaptive approaches and the
baseline non-adaptive MPC for opening a door and lifting
a weight. Such applications are typically used to evaluate
robotic manipulation skills [12]. We then conclude that while
both techniques improve the MPC's performance during the
interaction, the MRAC method demonstrates a more reliable
and robust performance across the two different tasks.

For the experiments, aballbot with an arm has been
employed, as shown in Fig. 1. Due to its underactuation,
a ballbot requires a whole-body control strategy that coordi-
nates the movement and balance of the manipulator. Thus,
controlling such a platform is an intriguing problem, that
has received growing attention in the recent years [13], [14],
[15].

A. Related Work

Classical methods in robot-environment interaction control
are based on direct and indirect force control. In direct force
control [1], the manipulation task is performed by tracking a



desired force. This method is effective in all those scenarios
where speci�c force pro�les have to be applied. However,
the generation of suitable force trajectories is not trivial
without prior knowledge about the environment and the task.
Indirect force control allows for tracking a desired force
by exploiting its relation with deviations in position and
can be formulated as an impedance or admittance controller
[16], [17]. Impedance control allows tuning the controller's
stiffness and damping based on the desired task, but its
performance degrades when the environment's model is un-
known or time-varying. Recent approaches propose to learn
an error force term to compensate for the uncertainties in the
robot and the environment model [18]. Another possibility
is to change the controller gains based on the force tracking
error [19], or an online estimate of the environment model
[20], [21]. The MIAC method presented in this letter �ts
in this category, with the novelty of using the environment
estimates to improve the internal model of the MPC planner
in real-time.

On the other hand, adaptive controllers have proven to
be very effective when dealing with the uncertainty of
the inertial parameters in the dynamic model of robotic
manipulators [1], [22]. In such methods, the adaptive pa-
rameters do not necessarily converge to the real values, but
are updated to achieve convergence of the tracking error.
Analysis on adaptive control has also been conducted in
the context of force/position control in unknown interactions
[23], [24], and it has mainly considered �xed-base, fully-
actuated manipulators. The MRAC controller presented in
this work focuses on obtaining an adaption law for the
environment model, to be set as a constraint in an MPC
module that can plan for motion and interaction force for
a general mobile manipulator system. There are previous
works that have used an adaptive law to update a parametric
MPC model [25], [26]. However, so far this combination
has not been addressed in a mobile manipulation scenario,
especially when dealing with underactuated platforms.

B. Contributions

The main contribution of this work is to enable an MPC
strategy to plan and control mobile-manipulation tasks that
involve interaction with an unknown environment, without
the need for re-tuning the control parameters for different
tasks or of�ine modeling. To this end, we propose to
combine a whole-body MPC scheme with two adaptive
control techniques, based on system identi�cation and model
reference adaptive control. We benchmark the performance
of the two described methods in two different representative
manipulation tasks. We experimentally demonstrate that the
combination of MPC and the model reference adaptive
controller enables the robot to complete the desired tasks,
while the performance of the baseline controller degrades,
and the MPC scheme relying on online system identi�cation
fails to generalize across different tasks.

II. MPC PROBLEM

In our proposed method, an MPC solver manages the on-
line switching between subsystems (e.g., the change between
cost functions and constraints) and the system model update
at the start of every MPC iteration. We employ an SLQ-MPC
method [27], which solves the underlying optimal control
problem using the Sequential Linear Quadratic (SLQ) algo-
rithm [28], while allowing to switch between subsystems.

Let q; _q 2 Rn be the generalized positions and velocities
of the robot, and let� 2 Rm be the actuation torques. In
addition, the end-effector pose is de�ned as� ee 2 SE(3).
The employed non-linear optimal control formulation aims
at minimizing the cost function

J � (x ss (0)) = min
u ( �)

Z T

0
jj x d

ss � x ss jj2
Q ss

+ jju d � u jj2
R

+ jj � d
ee � � eejj2

Q ee
dt; (1)

where the state and input at timet are de�ned asx ss :=
(q; _q) 2 R2n ; u := � 2 Rm , and we use the symbol� to
denote the task-space pose error, as de�ned in [1] for the
quaternion rotation part. The optimization is subject to a set
of constraints:

x ss (0) = x ss0 (2)

_x ss = f (x ss ; u ) (3)

h(x ss ; u ; t) � 0: (4)

The initial condition of the MPC problem (2) coincides with
the robot measured state. The system in (3) consists of the
robot's dynamical model and the interaction model, which
are discussed in the following section. Inequality constraints
(4) include joint angle and torque limits, and are treated as
soft constraints according to a relaxed log-barrier function
method [29].

III. INTERACTION CONTROL

A. Control Task

The control task considered in this work is to follow a tra-
jectory with the robot end-effector while having contact with
an unknown environment. For trajectory generation, we use
the time-optimal algorithm described in [30], which allows
for generating position and velocity trajectories for the end-
effector with bounded acceleration and velocity magnitudes.
Its simple implementation also allows fast recomputation.
This is important for the door opening task, where the door
hinge position and current angle are estimated online and
thus the trajectory needs to be continuously updated.

B. Assumptions and Notation

Let � ee 2 R3 be the interaction force between the
robot end-effector and the environment, and letv(t) 2 R3

be the unit vector tangent to the manipulation trajectory.
Without loss of generality, we suppose� ee = � v, with
� 2 R; possible normal components could be compensated
using force feedback, without modi�cations to the following
derivation.



We state the following assumptions:
� The contact between the end-effector and the environ-

ment is rigid.
� The environment model can be described by a 3D

second-order system:

� ee = �M •x env + �B _x env + �K (x env � x 0) + f s; (5)

where x env 2 R3 is the position of the environment
interaction point, �M ; �B ; �K 2 R3� 3 are positive sym-
metric impedance matrices,f s 2 R3 is a static force,
andx 0 2 R3 is a given spring equilibrium position.

� The manipulation directionv is a principal direction
for �M ; �B ; �K , with m; b; k 2 R as associated eigenval-
ues. These are the mass, damping and stiffness of the
environment object.

The model in Eq. (5) applies to a number of interaction
objects used in service robotics tasks. For instance, doors
and windows usually have a spring and damping behavior.
Carts and payloads can also be described by Eq. (5), setting
�B = 0, �K = 0. The stated assumptions yield:

� = vT � ee = mvT •x ee + bvT _x ee + kvT (x ee � x 0) + vT f s;

where x ee = x env, since the contact is rigid. To derive
a controller for the environment system, this equation is
written as a one-dimensional second-order linear system.
Many state space representations are possible, depending on
the trajectoryv. One possibility that allows to generalize
among many trajectories consists in lettingx := vT x ee,
which yields:

� = m•x + b_x + k(x � x0) + f s + O( _v); (6)

where f s = vT f s is the projected static force. We now
assume the directionv(t) to be constant or slowly varying;
this applies to a number of relevant tasks, which have usually
linear or circular paths on relatively small angles. Thus, we
obtain a robot-environment model as

M (q)•q + n (q; _q) = ST � � J ee(q)T (f ee + � ee); (7a)

m•x + b_x + k(x � x0) + f s = �; (7b)

whereM 2 Rn � n , andn 2 Rn are the robot's mass matrix
and non-linear terms, respectively.ST 2 Rn � m maps the
actuator torques to generalized torques and, in the case of a
ballbot system, is a non-linear function of the joint positions
q. J ee(q) 2 R3� n is the position jacobian of the end-effector
frame. Sincex is a function ofq, (7b) can be written in terms
of q; _q; •q. Substituting� ee = � v from (7b) into (7a) and
converting to state-space form, the system dynamics in (3)
is obtained.

The termf ee 2 R3 is an additional virtual force, used as
a control term. In its simplest implementation it takes the
form of a PD controller:

f ee = K (x d � x ) + D ( _x d � _x ): (8)

Similar to what is done in inverse dynamics-based impedance
controllers, this term is not part of the true robot equations
of motion, but modi�es them so that the planned control

torques produce an additional force in the operational space.
The termsm; b; k; f s; x0; v ; f ee are updated in the system
dynamics at the beginning of each MPC iteration.

C. Model Identi�cation Adaptive Control (MIAC)

The objective of MIAC is to estimate the environment
model parameters by means of an online system identi�ca-
tion method, and to use these estimates to improve control
performance. Since MPC is employed as the main controller
module, the estimated parameters can be used in the system
dynamics to model the environment. The block diagram
of the resulting closed-loop system is indicated in Fig. 2.
A simpler version of this method would be to directly
compensate the external force using measurements from a
force sensor. However, estimating the parameters allows for
a more accurate prediction by the MPC since a model of
the environment is available that can be used during the
prediction and optimization over the time horizon.

Estimating the environment impedance parameters is a
classical problem in robotics [31]. Available methods include
Recursive [31], Least Mean Square [32] estimation, and
algebraic manipulations [33]. Here, we propose the use
of a Kalman �lter as online system identi�cation method
to estimate the environment's massm, dampingb, spring
stiffnessk and static forcef s. Thus, Eq. (7b) is transformed
into a state-space model with the substitutionsx1 := x �
x0; x2 := _x: Converting the resulting model in discrete
time with sampling timeTs, the following measurement
update equation can be extracted:

� [k] =
h

x 2 [k ]� x 2 [k � 1]
Ts

x2 [k] x1 [k] 1
i

2

6
4

m
b
k
f s

3

7
5 + w[k]; (9)

with zero mean Gaussian measurement noisew. Eq. (9) can
be compactly written as:

zk = H k � k + wk ; (10)

with measurementz and estimated parameters� . The pro-
cess model of the �lter is chosen as a random walk of the
parameters� with process noisen � N (0; Q) :

� k = � k � 1 + n : (11)

As shown in Eq. (9), the �lter measurement is the interaction
force � along the manipulation trajectory. This can be ac-
quired with a force sensor, or with an observer approach [34].
Regarding the measurement update equation (9), depending
on the task, the two termsm and f s may be linearly
dependent on each other. For instance, if the manipulation
is in vertical direction with a free object, thenf s = mg. Or,
if the manipulated object is pushed in horizontal direction,
f s = kmg, where k is a Coulomb friction coef�cient.
However, to avoid loss of generality, in this formulation they
are considered separate from each other. As a result,m is
observable only in the presence of persistent accelerations•x.

By providing the estimateŝm; b̂;k̂; f̂ s to the MPC solver,
at the next iteration, the optimal control planner becomes
aware of the evolution of the robot-environment model.



Fig. 2: Block diagram of the closed-loop system under the
MIAC controller.

D. Model Reference Adaptive Control (MRAC)

As described in [1], [11], the design method for an MRAC
controller consists of �nding a control law that is dependent
on the reference tracking error and includes adaptive param-
eters. Then, a Lyapunov function is formulated to derive both
the parameters adaption law and a certi�cation of the system
stability. Here, this procedure is simpli�ed since the model
(7b) is linear in the environment parameters. Thus, it can be
written as:

m•x + b_x + k(x � x0) + f s = Y (•x; _x; x )� = �; (12)

where � := [ m; b; k; f s]T ; Y (•x; _x; x ) := [•x; _x; x � x0; 1].
The control law is de�ned as

� = m̂•x r + b̂_x r + k̂(x � x0) + f̂ s + ks �;

= Y (•x r ; _x r ; x)�̂ + ks �; (13)

with ks > 0 as a tuning parameter and with the following
de�nitions:

~x = xd � x; _x r = _xd + �~x; � > 0;

•x r = •xd + � _~x; � = _x r � _x = _~x + �~x: (14)

A Lyapunov function for the controlled system can be
de�ned as

V(�; ~x; ~� ) =
1
2

m� 2 + � ks ~x2 +
1
2

~� T K � ~� > 0; (15)

where �̂ 2 R4 is the vector of adaptive parameters,~� :=
�̂ � � , andK � 2 R4� 4 is a positive de�nite matrix. Imposing
_V � 0, the adaption law can be derived:

_̂� = K � 1
� Y T (•x r ; _x r ; x)�: (16)

The control law (13) is the sum of an adaptive term
Y (•x r ; _x r ; x)�̂ and a PD-feedback termks � . The control
force to be tracked by the MPC controller is computed as:

f ee = ( Y (•x r ; _x r ; x)�̂ + ks � ) v : (17)

With respect to the MIAC controller, here the estimates
of the environment parameters are not considered in the
MPC. The system dynamics thus reduces to Eq. (7a) with
� ee = 0. Indeed, the goal of this method is not to exactly
compensate the environment model in Eq. (7b), but rather to
modify the controller with an adaptive law that guarantees
the convergence of the tracking error along the manipulation
trajectory.

IV. EXPERIMENTS

The control structures presented in the previous sections
III-C, III-D are evaluated in two experimental scenarios.
In the �rst scenario, the robot is tasked with opening a
hinged door. In the second one, the robot is tasked with
lifting an object of unknown mass. The experiments are
used to assess how modifying the MPC controller using the
environment estimated/adapted parameters can improve the
closed-loop tracking performance. A video showcasing the
results accompanies this paper1.

A. Experimental Setup

The robot employed for the tests is a ballbot with a 4-
degree of freedom (DOF) arm attached to the base and a
Robotiq-2F85 gripper as end-effector. The system is shown
in Fig. 1. It is modeled with 8 DOFs, resulting in a di-
mensionality of the MPC system of 16 states. The reference
torques sent to the actuators are computed as� ref =
� � + K p(q� � q) + K d( _q� � _q; ), where � � ; q� ; _q� are
the optimal joint torques, positions and velocities. The MPC
solver computes its optimal solution at a frequency of200 Hz
over a time horizon of1:5 s, and is implemented with the
OCS2 toolbox [35]. Rigid-body dynamics and kinematics
equations are generated using the RobCoGen library [36].
State estimation, motion planning and control run on the
onboard PC, which is an Intel Core i7, NUC10i7FNK Mini
PC.

The interaction force used as a measurement for the
Kalman Filter of Sec. III-C is computed by means of a
momentum observer [34], which allows to estimate the
generalized external torques� ext from joint position, velocity,
and torque measurements. Then, an augmented Jacobian
method is employed to retrieve the external force on the
end-effector. This is implemented by de�ning

J aug :=
�
J base

J ee

�
; (18)

whereJ base = [ I n b � n b ; 0n b � (n � n b ) ] is the Jacobian corre-
sponding to thenb degrees of freedom of the base. Then,
� ee is computed from:

�
� base

� ee

�
= J � T

aug � ext: (19)

B. Door Opening

In this experiment, the robot should open a door up to a
desired angle of70°. The desired end-effector path is a cir-
cular trajectory. An extended Kalman Filter (EKF) estimates
the door radius, angle, and hinge position, which are used
for the re-planning of the time-optimal trajectory generator of
Sec. III-A. Based on given velocity and acceleration bounds
and on the current door measurements, the time optimal
trajectory generator determines the door angle references and
the remaining door-opening time. The parameters of the PD
controller (8) are speci�ed in a frame rigidly attached to the
door, in order to achieve a higher compliance in the radial

1Available athttps://youtu.be/A7_e-UWkfXo .



Fig. 3: Door opening experiment with a ball-balancing manipulator. The robot is tasked with opening the door up to a
desired angle of70°, while tracking a circular trajectory.

Fig. 4: Block diagram of the closed-loop system under the
cascade MRAC-MPC controller.

direction and a lower compliance in the tangential direction.
Since the mass of the original door is not heavy enough to
result in a challenging application, it is modi�ed by attaching
two boxes of intermediate weight (1:5 kg) and larger weight
(4:2 kg), respectively, behind the door.

During the heavy-door experiment, both the end-effector
and the ball-trajectory are commanded to track a desired
circular trajectory. The reference for the ball is necessary to
avoid a collision with the door frame when the ballbot leans
forward while pushing. Both of the tests are repeated under
three different controllers, which are: 1) the baseline MPC
controller, with an additional PD force input as in (8). 2) the
MIAC controller presented in section III-C. 3) the MRAC
controller presented in section III-D. To compare the tracking
performance of the different controllers for the opening of
the two doors, we compute the root mean square tracking
error (RMSE), and the �nal error between the desired and
estimated door angle which are visible in Table I.

1) Light door: For this experiment, forces in the range of
10� 15 N need to be applied to open the door. The door angle
tracking performance is shown in Fig. 5. For the baseline
controller, the tracking error is large at all times. On the
contrary, the tracking error is comparably small for all the
other controllers, with a �nal door error of less than4°.

2) Heavy door:In this experiment, forces in the range of
20� 25 N need to be applied to open the door. The door angle
tracking performance for this test is visualized in Fig. 5.
We notice that the desired and measured door angles exhibit
more oscillations than in the previous test. In fact, due to the
higher required pushing force, the controller plans to lean the
base forward at a larger angle. Tilting the base additionally

Fig. 5: From top to bottom: desired and estimated door
angle under the PD, MIAC, MRAC controllers, for the door
opening experiments. The plots are referred to the light and
heavy door experiment on the left and right, respectively.

TABLE I: RMSE [deg] and �nal door errors [deg] of the
three interaction controllers in the two door-opening test
scenarios.

Light Door Heavy Door
Controller RMSE Final Error RMSE Final Error
Impendance (PD) 9.5 8.74 19.5 19.7
MIAC 2.7 -1.64 4.9 -1.7
MRAC 2.6 -3.9 5.8 -3.9

in�uences the ball position, resulting in a trade-off between
this effect and the door frame collision avoidance term.

Both the MIAC controller and the MRAC-MPC controller
produce a considerable reduction of the tracking error, as
it can be veri�ed in Table I. The MRAC controller can
fast adapt to the unknown environment due to the balance
between the PD and adaptive terms, whose contribution is
shown in Fig. 6. As the time passes, the PD term becomes
less relevant and most of the control action comes from
the adaptive input. Regarding the MIAC estimates, since the
employed door has no spring behaviour, the most signi�cant
parameters are the door damping and static friction, whose



Fig. 6: Contribution of the adaptive and PD terms in the
MRAC control law (13) for the light door opening test (on
the left) and heavy door opening test (on the right).

Fig. 7: Estimation of the damping and static force parameters
for the light door opening experiment (on the left), and heavy
door opening experiment (on the right) using the MIAC
controller.

estimates are plotted in Fig. 7. The non-adaptive baseline
impedance controller performs poorly without re-tuning of
the stiffness and damping gains and is not able to open the
door up to the desired angle.

C. Lifting Unknown Objects

In this experiment, the robot is tasked with lifting an
unmodeled payload of2 kg. One of the assumptions under
which the interaction controllers are derived in section III is
that the robot dynamic model in (7a) is perfectly known. To
evaluate how this assumption may in�uence the controller
performance, the same experiment is executed both in a
Gazebo simulation, where the robot model is perfect, and on
the physical system, where some degree of model mismatch
is present. The Gazebo simulation model is based on [8],
[37]. While in the door opening scenario the robot interacts
with a statically stable object, the equilibrium of the object
being lifted is attained at a non-zero interaction force, which
adds an element of complexity to the task.

1) Simulation:The measured and desired trajectory along
the end-effector vertical direction is depicted in Fig. 8.
Analyzing the plots for the simulation test under the baseline
controller, it can be inferred that, if the MPC is unaware
of the lifted payload, the robot is not able to track the
desired trajectory. Conversely, the end-effector position error
is minimized if the environment online estimates are included
in the optimization, in both an estimated or adaptive manner,
as it can be noticed from the plots referring to the MIAC and
MRAC controllers.

2) Hardware: The same experiment is performed on the
physical system, with corresponding plots shown in Fig. 8.
The baseline MPC controller has an increasing tracking error.

Fig. 8: From top to bottom: measured and desired end-
effector position for the unknown object lifting experiment
under the non-adaptive baseline MPC, MIAC, and MRAC,
respectively. The plots are referred to simulations (on the
left), and hardware tests (on the right).

This gets reduced if the whole-body MPC is combined with
the proposed interaction control formulation. However, the
MIAC controller is strongly in�uenced by imprecise actuator
torque measurements used for the force estimation, and con-
sequent degradation of the environment identi�cation. As a
result, the closed-loop system under the MIAC controller has
a slower convergence than in the simulation. On the contrary,
the MRAC controller manages to consistently reduce the
tracking error in the same amount of time, with the payload
being successfully moved to the desired height. Furthermore,
we point out that the same gains were used for the MRAC in
both the door opening experiment from section IV-B and the
lifting test. However, as shown in �gure Fig. 8, for the MIAC
controller, direct transfer to a different task while maintaining
the same tracking behavior was not possible with the same
parameters used for system identi�cation.

V. CONCLUSIONS AND FUTURE WORK

This paper focuses on making a whole-body MPC con-
troller adaptive to mobile manipulation tasks in unknown
environments. Thus, a system identi�cation and an adaptive
control method are proposed to extend the MPC formulation.
From experimental tests, it can be concluded that both the
MIAC method and the cascade MRAC-MPC outperform the
original MPC controller in mobile manipulation tasks applied
to unknown environments. However, the MRAC method
generalizes better across tasks. In fact, it is independent
of interaction forces estimation or the convergence of the
MIAC system identi�cation method. The employed modeling
strategy was derived under the assumption that the envi-
ronment can be described by a linear mass-spring-damper
system. As a future direction, we intend to generalize the
formulation to general multi-DOF tasks (e.g. a collaborative
task). Furthermore, so far, the objective has been to achieve
the desired closed-loop performance in practice. Providing
theoretical guarantees for stability and feasibility in MPC is
an active research area, which we will further pursue in the
context of robot-environment interaction.
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