
ETH Library

Analyzing Cookies Compliance
with the GDPR

Master Thesis

Author(s):
Bollinger, Dino

Publication date:
2021

Permanent link:
https://doi.org/10.3929/ethz-b-000477333

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000477333
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Analyzing Cookies Compliance with
the GDPR

Master Thesis

Dino Bollinger

March 16, 2021

Advisors: Karel Kubicek, Dr. Carlos Cotrini, Prof. Dr. David Basin

Institute of Information Security, ETH Zürich

Abstract

With the introduction of the General Data Protection Regulation (GDPR),
cookie consent notices have become a widespread phenomenon across
the web. They come in the form of popups and banners that ask the
visitor whether they consent to the collection of personal data, track-
ing, and the setting of cookies in the visitor’s browser, separated by
individual usage purposes. While consent notices give the user the
impression that they have control over their privacy and personal data
rights, many websites use dark patterns to nudge and deceive users,
and others outright ignore the user’s privacy preferences.

We try to address this problem by developing a browser extension that
can locally enforce a user’s cookie consent choices regardless of how
the website behaves. First, we perform a study to analyze how a se-
lect number of Consent Management Platforms (CMPs) store cookie
consent labels. Then, we use this information to design a web crawler
that can determine if a website uses a specific CMP, and can retrieve a
dataset of consent category labels, each of which assigns a cookie to a
personal data collection purpose.

We define an extensive set of feature engineering steps to extract infor-
mation from cookies, taking into account attributes such as the expira-
tion date and the structure of the cookie’s content. These features, as
well as the collected labels, are used to train a series of tree-ensemble
classifiers, using efficient algorithms such as XGBoost. The result-
ing model automatically assigns browser cookies to four distinct usage
purposes. Our best-performing approach achieves an overall accuracy
of 87.21%, and outperforms the manually-classified cookie repository
“Cookiepedia” in both precision and recall.

We then integrate the resulting predictor as part of a browser extension
that we title CookieBlock. Using this extension, the user can specify
their cookie consent choices once, upon which CookieBlock will au-
tomatically remove all cookies that the user did not consent to. This
removes the need to trust third-parties, providing a fully client-side
approach to enforcing cookie consent.

Finally, using the information gathered from the CMPs during the web
crawl, we define six novel analyses that provide evidence for potential
GDPR violations in the wild. These analyses are intended to assist
authorities, researchers, and web-admins alike in determining whether
a website is compliant with the GDPR.

i

Contents

Contents ii

1 Introduction 1

2 Background 6
2.1 Browser Cookies . 6

2.1.1 Cookie Purposes . 7
2.2 Data Privacy Law . 7
2.3 Consent Management Platforms 9

2.3.1 Dark Patterns . 10

3 Cookie Consent Crawler 11
3.1 Choice of Crawling Targets . 12
3.2 Selecting Cookie Categories . 14
3.3 Web Crawler Implementations 16

3.3.1 CMP Presence Crawler 16
3.3.2 Consent Label Crawler 18

3.4 Training Dataset Construction 20

4 Cookie Consent Classifier 22
4.1 Cookie Properties . 22

4.1.1 Third-Party Status . 24
4.1.2 Content of a Cookie . 24

4.2 Feature Engineering . 25
4.3 Classifier Description . 28

4.3.1 Machine Learning Background 28
4.3.2 Tree Ensemble Classifiers 29

4.4 Additional Considerations . 30
4.4.1 Class Imbalance . 31
4.4.2 Impact of Misclassifications 31

ii

Contents

5 Browser Extension Design 34
5.1 Overview . 34
5.2 Extension Interface . 35
5.3 Background Process . 37

5.3.1 Online Feature Extraction 38
5.3.2 CookieBlock Predictor 40

6 Evaluation 41
6.1 Crawler Performance and Analysis 41

6.1.1 Domain Sources . 41
6.1.2 CMP Presence Crawler Results 42
6.1.3 Consent Crawler Results 44
6.1.4 Lower Bound Estimate for Label Noise 49

6.2 Feature Evaluation . 50
6.2.1 Feature Importance by Gain 50
6.2.2 Feature Importance by Weight 51
6.2.3 Auxiliary Feature Analysis 51

6.3 Classifier Evaluation . 52
6.3.1 Terminology . 52
6.3.2 Cookiepedia Baseline 53
6.3.3 Classifier Performance 55

6.4 Extension Evaluation . 58
6.4.1 CookieBlock Predictor Accuracy 59

7 Automatic Violation Detection 60
7.1 Method 1: Wrong Label for Known Cookie 61
7.2 Method 2: Identifying Outlier Labels 62
7.3 Method 3: Incorrect Retention Period 62
7.4 Method 4: Unclassified Cookies 63
7.5 Method 5: Undeclared Cookies 64
7.6 Method 6: Contradictory Labels 65
7.7 Additional Analyses . 65

7.7.1 Detecting Implicit Consent 66
7.7.2 Ignored User Consent Choices 67

8 Related Work 68
8.1 User Privacy Enforcement . 68

8.1.1 Blocking of Third-Party Cookies 68
8.1.2 “Do Not Track” Header 69
8.1.3 P3P . 69
8.1.4 Automatic Interaction with Consent Notices 70

8.2 Detection of Potential GDPR Violations 71

9 Conclusion 73

iii

Contents

Bibliography 74

A Consent Crawler Details 80
A.1 Cookiebot Consent Crawler . 80
A.2 OneTrust Consent Crawler . 81
A.3 Termly Crawler . 84
A.4 Other Target CMPs . 85

B Feature Engineering Details 86
B.1 Name and Domain Features . 86

B.1.1 Name Patterns . 87
B.1.2 Name and Content Tokens 87

B.2 IAB Vendor Feature . 87
B.3 Expiration Time Features . 88
B.4 Unique Identifier Features . 88

B.4.1 Randomly Generated Strings 89
B.4.2 Universal Unique Identifiers (UUID) 89
B.4.3 Timestamp and Dates 89

B.5 Locale Content Strings . 90
B.6 Content Encoding Features . 90
B.7 String Similarity Metrics . 90

C Repositories and Dataset 91
C.1 Web Crawler Implementations 91
C.2 Classifier and Feature Extraction 91
C.3 CookieBlock . 92
C.4 Violation Detection and Other Scripts 92
C.5 Collected Datasets . 92

iv

Chapter 1

Introduction

Ensuring that the privacy of users is protected continues to be a challenging
issue on the World Wide Web. While many people are concerned about the
security of their personal data, most do not invest the time to read privacy
policies thoroughly or determine which parties use which data for what
purpose [29, 33]. Tracking and personal data collection are ubiquitous [19],
and the collected information is considered a valuable asset in the advertis-
ing industry. In some cases, it is even sold for profit to other interested third
parties [31]. The collection of such data without the user’s explicit consent
is a big privacy concern, as it may contain sensitive information, including
the identity, geographical location, and political orientation of the user. As
history has shown, this can be used for more nefarious purposes than just
the personalization of advertisements, such as the manipulation of entire
demographics in a targeted manner [5].

Historically, privacy laws such as the ePrivacy Directive [21] and the Direc-
tive 95/46/EC [20] have attempted to improve this state of affairs by defining
guidelines and requirements that businesses and website hosts should fol-
low when collecting user’s personal data. However, such legislation has
often fallen short of its goal, as it was frequently hampered by inconsistent
implementation across EU member states [46]. This prevented them from
taking widespread effect on the behavior of third parties [52].

More recently however, the General Data Protection Regulation (GDPR) of the
European Union (EU) [22] has caused waves across the internet. Having gone
into effect in May 2018, it repealed and replaced the Directive 95/46/EC
and became immediately enforceable in all member states across the EU. By
defining strict and enforceable legal requirements on personal data collec-
tion and tracking, it forced service providers and third parties to adapt to
its rules within a 2 year grace period [2].

1

The GDPR applies not just to businesses and websites operating from within
the EU, but also to all providers offering their services to EU citizens. In ad-
dition, a refusal to comply with the rules set up by the GDPR can lead to
significant fines of up to 20 million Euros or 4% of a company’s annual
turnover [12]. Therefore, the effects of the regulation were observed glob-
ally [46]. Among its requirements it is stated that personal data collection
requires a valid legal basis, such as consent (Article 6.1a). In Article 7 and
Recital 32 of the GDPR, it is described that such consent must be freely given,
specific, informed and unambiguous in order to be considered valid. Article
5(3) of the ePrivacy Directive states that this applies to all browser track-
ing technologies, including those involving browser cookies. And indeed,
as cookies are one of the most ubiquitous tools used on the web, the most
observable response to the GDPR can be seen in the increased popularity of
so-called cookie consent notices and the services that offer them [16].

A consent notice serves to inform the user about the website’s privacy pol-
icy, the tracking technologies used, and what data is collected. It displays
the involved third-parties, and what purposes the cookies serve. Most im-
portantly, a consent notice allows the visitor to consent to individual usage
purposes. The presence of a consent notice, if set up in a satisfactory man-
ner, can allow a website to comply with the GDPR and similar legislation.

Many website hosts however lack the detailed know-how necessary to im-
plement a fully compliant approach, both from a legal and technical per-
spective. As a result, many websites instead take advantage of fully-fledged
solutions offered by so-called Consent Management Platforms (CMPs), which
offer consent notice plugins that handle the entire process automatically, and
offer a multitude of configuration options [25, 56].

Prior work by Degeling et al. [16] has shown that the GDPR has lead to an
increase of 16% in the number of cookie banners shown to users immedi-
ately after it went into effect. Libert et al. [35] have found a drop of 22% in
the number of cookies set without user consent, and Urban et al. [54] find
a 40% reduction of third-party tracking and sharing connections after the
GDPR. It is hence apparent that the GDPR had a noticeable effect on the
state of web privacy, allowing the user much greater control than before.

On the other hand, prior research has also observed that the issue of user
privacy is still far from solved. The worldwide adoption of consent notices
is still very low, with even leading CMPs only reaching a market share of
around 1% worldwide [8, 16, 25]. Reading privacy policy statements can be
incredibly time-consuming [39], and many users have become fatigued by
the high frequency at which consent notices appear across the more popular
websites [9]. This fatigue causes users to seek out the nearest button avail-
able to remove the consent notice, without considering what privacy impact
clicking said button might have [1, 4, 24].

2

Dark patterns [6] are a widespread practice that seeks to exploit this be-
havior. A study by Utz et al. [55] has shown that 57.4% of 1000 examined
websites utilize nudging, a form of influencing the visitor to give affirma-
tive consent by highlighting the “Accept All” button, or hiding the option
to reject consent for individual usage purposes. Machuletz et al. [37] find
that most users which have been nudged towards accepting all cookies of-
ten cannot recall their decision, and express regret upon being informed of
their choice. This raises the question of whether the consent that is being
collected by consent notices can really be considered “informed”.

Furthermore, while CMPs purport to fulfill the legal requirements set forth
by the GDPR, in practice many implementations still violate even the most
basic rules. Nouwens et al. [44] have shown that 88.2% out of 680 examined
websites fail at least one of three simple conditions, including the require-
ments of opt-in choices and explicit consent. Matte et al. [38] have found that
out of a sample of 1426 selected websites, 9.89% register affirmative con-
sent before the user even makes a choice, 2.66% do not provide the means
to reject any cookies, and 1.89% register positive consent even if the visitor
explicitly rejected the cookie purpose.

These practices make the supposed control over a user’s personal data ap-
pear rather illusory. While high-profile actors do face fines for their misbe-
havior [30, 43], authorities currently lack efficient means to verify whether
a website complies with existing laws. Many of the rules, specifically in re-
gards to cookie consent, require at least some degree of manual inspection,
or may even be impossible to verify without extensive user studies [47]. This
renders the detection of potential violations at scale difficult.

Our Contributions

The concerns formulated in the previous section motivate the idea of a con-
sent enforcement mechanism that is located entirely at the client. Rather
than needing to trust the individual service providers to respect the user’s
privacy, it would be preferable for the client to be able to specify his pri-
vacy preferences once, after which they are enforced on any website they
subsequently visit.

Within the scope of this master thesis we developed CookieBlock, a browser
extension that uses a novel approach to automatically assign cookies to con-
sent categories. It rejects cookies that do not align with the user’s chosen
consent preferences, thus preventing personal data collection or user track-
ing if this purpose is not agreed to.

The basic idea of the approach is to apply techniques of supervised machine-
learning to the domain of browser cookies. Rather than manually labelling
each cookie, we instead analyze the implementations of various CMPs in

3

order to design a webcrawler that can automatically scrape websites for
cookie purpose labels. Our webcrawler supports gathering data from the
CookieBot, OneTrust and Termly CMPs, and we collected a dataset consisting
of over 300 000 labeled cookie samples originating from over 26 000 websites.

Using this dataset, we then analyzed the properties and common contents
of cookies, devising a selection of 54 different feature engineering steps to
transform a cookie into a vector of numerical data. These features vectors
are intended to adequately represent the complexity and patterns found in
cookie data, and are used as the input to a series of existing classifiers.

We apply three different tree ensemble classifiers to the dataset, namely the
XGBoost [10], LightGBM [32] and CatBoost [17] algorithms. Our best
predictor achieves an overall average accuracy of 87.2%, and high precision
and recall for the majority of categories. Notably, we achieve an average
precision of roughly 94.97%, and an average recall of 90.25% on cookies
used for advertising purposes.

To the best of our knowledge, we are the first to apply machine learning
techniques to the domain of cookie data. As such, the only baseline we can
compare our results to is the public cookie repository Cookiepedia [45]. It has
been established in 2010 by CookiePro, and contains over 30 million recorded
cookies with corresponding purpose labels, which were manually assigned
by human operators. We query the repository for labels, compare these to
the ground truth in our dataset, and thus construct a baseline performance
that our classifier is set to beat. We find that the applied classifiers can
outperform Cookiepedia in several categories of cookies, both in precision
and recall, and achieve comparable performance in others.

We integrate the resulting predictor as the core component of a browser
extension, which we title CookieBlock. A one-time setup asks the user to
specify his preferred privacy policy. Then, whenever the browser receives a
cookie, the extension automatically classifies it, and if the resulting category
label is rejected by the policy, the cookie is removed from the browser. The
user is also given the flexibility to set exceptions for individual domains that
they trust personally. This provides fine-grained consent choices and does
not require any third-party support to be implemented.

Because it is difficult for researchers and authorities to automatically assess
whether a website host or CMP is fully compliant with the GDPR, we addi-
tionally demonstrate six novel analyses that produce evidence of potential
GDPR violations. We find that out of 26 403 analysed domains:

• 15.46% list wrong purpose labels for Google Analytics cookies.

• 27.75% contain potentially wrong outlier labels, based on the majority
opinion of other domains that declared the same cookie,

4

• 5.30% contain cookies with expiration times that are at least 50% longer
than what was originally declared in the consent notice,

• 19.21% contain cookie declarations that are uncategorized,

• 86.08% contain cookies that were never declared,

• and 3.51% contain cookies with multiple, contradictory purposes.

Particularly surprising is the number of sites with undeclared cookies. A
staggering 86.08% of all analyzed websites used at least one cookie that was
never mentioned in the consent notice. This suggests that most hosts are
not fully aware of all cookies that are present on their websites, or that these
hosts fail to properly declare the correct name and domain for their cookies.

In total, 91.87% of all websites in our dataset show at least one of the above
issues – or 49.30% if we exclude undeclared cookies from the analysis.

In summary, the major contributions of this thesis are:

1. Two webcrawlers that can efficiently collect cookie labels from websites
using selected Consent Management Platforms, and a feature extrac-
tion process that extracts numerical data from collected cookies.

2. The training and evaluation of a series of tree ensemble classifiers to
predict consent category labels for cookies found in the wild.

3. A browser extension that makes use of the resulting predictor, which
can reject cookies based on their assigned labels and the user policy.

4. Six novel, semi-automated approaches that collect evidence for poten-
tial GDPR violations from a select number of CMP implementations.

Report Structure

The rest of the report is organized as follows: In Chapter 2, we provide
some background information on cookies, the requirements of the GDPR
and the emergence of CMPs. In Chapter 3, we describe the design of the
web crawlers. In Chapter 4, we detail the feature engineering steps and
how we implemented the classifier. In Chapter 5 we present the design
of CookieBlock, our browser extension for enforcing cookie consent. In
Chapter 6, we present the results of the crawl, the importance of the ex-
tracted features and the classifier performance. In Chapter 7, we present
our methods to collect evidence for potential GDPR violations, and apply
them to our own dataset. In Chapter 8, we discuss related work in the area
of privacy policy enforcement and violation detection. Finally, in Chapter 9,
we conclude the report.

5

Chapter 2

Background

2.1 Browser Cookies

Browser cookies are key-value storage pairs that can store text data of up to
4 kilobytes in size. They are uniquely identified by name, domain and path,
and can normally only be accessed by the same host that is responsible
for creating the cookie (same-origin policy). The main purpose of browser
cookies is to keep track of website state, which would otherwise be lost
when leaving the domain. Some cookie last only for the current session,
while others are kept across sessions until an expiration date passes [41].
Some legitimate uses for cookies include:

• Remembering logins between browser sessions.

• Restoring shopping cart contents while browsing through a store.

• Keeping track of user-specific website style changes, e.g., dark mode.

Cookies can be constructed in one of two ways. Either they are sent to the
client as part of an HTTP GET response when accessing a resource on the
web, or they are created by JavaScript code running in the client browser.
Cookies are always sent with every request to the domain that set them.
As such, they can be used to recognize users on repeat visits if the cookie
contained a unique identifier, or to collect personal data from the user.

Note that the amount of data stored in cookies is generally small to keep
the bandwidth impact on the network request low, which makes the page
load faster. As a result, cookies are not well-suited for general purpose
data storage. A better fit for this purpose are the HTML5 local or session
storage APIs. While these may also be used for storing personal data and
for tracking purposes, in this work we will only consider browser cookies.

6

2.2. Data Privacy Law

2.1.1 Cookie Purposes

Cookies are often used to implement service-critical functionality, including
logins and shopping carts, or features that improve the user experience.
However, they may also be used to track visitor actions. We distinguish
between two types of tracking:

The first form we summarize under the umbrella term “Web Analytics”.
Cookies of this type are used to track users only for the domain they are
currently browsing. Examples of what is tracked includes user dwell time,
the browser used to access the site, how many visitors arrive and from which
regions. This is done to improve the website, but also to collect website per-
formance measurements for marketing purposes. Tracking for this purpose
can be anonymous, and does not require sensitive information. However,
as we will see in the next section, the GDPR nevertheless considers these
cookies to contain personal information, and they hence require consent.

The second form of tracking is performed across multiple websites, usually
for the purpose of advertising and the sale of user data. Such cookies collect
information on the browsing behavior and personal interests of the user
in order to build a profile. This profile is most commonly used to have
advertisements better match the interests of the tracked user. This can entail
sensitive information, including habits, interests and political orientation of
the person behind the computer, and therefore constitute the main privacy
concern with cookies. Cookies that are used for this purpose are commonly
hosted by third-parties that track users across multiple sites. However, not
all third-party cookies necessary serve tracking purposes.

2.2 Data Privacy Law

The General Data Privacy Regulation (GDPR) is a data privacy law signed
by the EU in 2016, which officially came into effect on May 25, 2018. It is
an expansive document that covers many cases of personal data collection,
even outside the World Wide Web. To keep this section succinct, we will
only cover legal requirements that specifically apply to cookies.

In order for a website to collect personal data and track users, the host is
required to establish a legal basis for doing so. Among the recognized valid
legal bases specified in Article 6(a-f) of the GDPR are (a) consent of the visitor,
(b) contractual obligation, (c) legal obligation, (d) vital interests, (e) public interests
and (f) legitimate interests of the controller or third-party. Of these, consent
and legitimate interest are currently the most common justification used for
data collection [25]. As the name implies, consent notices are specifically
focused on gathering explicit statements of consent from website visitors.

7

2.2. Data Privacy Law

Article 7 and Recital 32 of the GDPR define the conditions for valid consent.
Namely, consent must be freely given, specific, informed and unambiguous:

“Consent should be given by a clear and affirmative act establishing a
freely given, specific, informed and unambiguous indication of the data
subject’s agreement to the processing of personal data relating to him or
her, such as by a written statement, including by electronic means, or
an oral statement.”

In addition, it clarifies:

“Pre-ticked boxes or inactivity should not therefore constitute consent.”

The consent request must also be posed prior to cookies being set. Its de-
scription must be intelligible, use clear language, and the consent controls
must be easily accessible. Furthermore, the data controller must be able to
prove that consent was given.

The gathered consent is invalid if any of the specified requirements are vi-
olated. If this occurs, the offending party may be liable for fines. Article 83
specifies that fines may be up to 20 million Euros or 4% of a company’s an-
nual turnover. Moreover, as per Article 3(1), the GDPR has extra-territorial
scope. Not only does it affect websites and businesses that are located within
the European Union, it also extends to all websites that offer their services
to, and collect personal data from EU residents. This means that even web-
sites that are hosted for example in the United States could be liable when
violating the requirements set up by the GDPR.

Interestingly, the GDPR applies to all cookies that store some form of unique
identifier, and not just those that collect sensitive data. This is described as
follows in Recital 30 of the GDPR:

“[. . .] natural persons may be associated with online identifiers pro-
vided by their devices, applications, tools and protocols, such as internet
protocol addresses, cookie identifiers or other identifiers [. . .]. This may
leave traces which, in particular when combined with unique identifiers
and other information received by the servers, may be used to create pro-
files of the natural persons and identify them”

Some jurisdictions require consent for all cookies [11], with the exception
of those that are strictly necessary for the provided service to operate. This
exception is given by the ePrivacy Directive [21], which came into effect in
2009. It refers to Directive 95/46/EC [20], which has been repealed and
replaced by the GDPR. Article 5(3) of the ePD states the following:

“Member States shall ensure that the storing of information, or the
gaining of access to information already stored, in the terminal equip-
ment of a subscriber or user is only allowed on condition that the sub-
scriber or user concerned has given his or her consent, having been

8

2.3. Consent Management Platforms

Figure 2.1: Example of a simple cookie banner. With the introduction of the GDPR, this type
of consent notice has become insufficient and does not comply with the law’s requirements.

provided with clear and comprehensive information, in accordance with
Directive 95/46/EC, inter alia, about the purposes of the processing.
This shall not prevent any technical storage or access for the sole pur-
pose of carrying out the transmission of a communication over an elec-
tronic communications network, or as strictly necessary in order for
the provider of an information society service explicitly requested by
the subscriber or user to provide the service.”

The exception hence are cookies that are strictly necessary to enable services
which the user asked for. These are specifically services that the visitor
expects the service to provide. As such, a website host cannot simply declare
any arbitrary cookie as being strictly necessary, and doing so could leave the
host liable [30].

2.3 Consent Management Platforms

Consent notices are not a new phenomenon on the web. Design recommen-
dations for them go back as far as 2001 [40], became widespread after the
ePrivacy Directive came into effect in 2009. Consent notices come in many
forms, including banners, prompts, overlays or pop-ups. The simplest ex-
amples, such as the one presented in Figure 2.1, only inform the visitor
about the use of cookies, assuming the continued use of the site to be equiv-
alent to consent, and offering no further options than to acknowledge the
banner with a OK button [33].

However, when the GDPR was signed, it soon became apparent that existing
consent notice implementations were no longer adequate. The requirement
for “specific consent” demands cookies to be separated by individual usage
categories. “Informed consent” means that each category had to be associated
with a detailed description, and “explicit consent” required that agreement to
data collection could no longer be implicitly assumed. In addition, consent
needs to be communicated with potentially many separate third-parties, fur-
ther complicating the process. As a result, the effort and cost to implement
compliant solutions became substantially higher [25].

The result of this situation is what was aptly called “the commodification of
consent” by Woods et al. [56], where so-called Consent Management Plat-
forms (henceforth denoted as CMPs) offer fully-fledged consent manage-
ment solutions to website hosts and businesses. By handling the legal terms

9

2.3. Consent Management Platforms

and conditions for privacy policies, and implementing complex consent di-
alogues, they allow the website to comply with regulations in exchange for
a service fee. And indeed, CMP adoption has flourished in the years after
the GDPR. In a work by Hils et al., the authors found that CMP adoption
quadrupled between the years 2018 and 2020 [25].

A major player in the area of consent management is the Interactive Advertis-
ing Bureau Europe, which defined a advertising industry standard called the
Transparency and Consent Framework (TCF). It is a specification through which
websites can exchange the consent gathered from users with third-party
vendors [38]. The CMP hereby acts as the intermediary, and implements the
infrastructure necessary to perform this exchange. Many of today’s leading
CMPs are registered as part of this framework [26].

2.3.1 Dark Patterns

Despite the claims of offering fully GDPR compliant solutions, in many
cases misbehavior can still be observed on websites that make use of CMPs.
Utz et al. [55] analyse a random sample of 1000 CMPs, and find that 95.8%
provide either no consent choice, or acceptance only, violating the require-
ment for specific consent. Nouwens et al. [44] show that 32.5% out of 2035
examined sites used implicit consent, and 56.2% of all sites used pre-selected
options.

Nudging, while not explicitly forbidden, is a dark pattern [6] that is common
practice in consent notice designs offered by CMPs. Utz et al. furthermore
found that 57.2% of the examined websites attempted to guide users towards
accepting the least privacy-friendly option, a strategy intended to benefit the
hosts and advertisers, but not the visitor [55].

Finally, Matte et al. [38] find that some websites do not even respect the
user’s consent choices. They found that out of 560 examined websites which
make use of CMPs that are part of the TCF, 54% of them contained at least
one violation in where the user’s choices were not reflected in the consent
sent to third parties. This ranges from cases where consent was sent before
the user made any choice, to instances where the user’s choice was replaced
by different preferences entirely.

10

Chapter 3

Cookie Consent Crawler

While retrieving a large number of cookies from the Web may be a simple
task to perform, gathering labels for the purpose of classifying cookies is
a topic that has so far largely been unexplored in scientific literature. One
option would be to crawl arbitrary websites for cookies, and to then query
the Cookiepedia repository [45] for associated purpose labels. Cookiepedia
is a publicly accessible database of cookies, where each cookie is assigned
to a specific purpose label and detailed description. The website has been
established in 2010 by CookiePro, which is now part of OneTrust. They claim
to store information for over 30 million cookies, which have been manually
analyzed and classified by a group of human operators.

While using Cookiepedia as a basis would be a valid approach for gathering
a set of labels, we instead tackle this task differently, by making use of the la-
bels assigned to cookies by various Consent Management Platforms (CMPs).
The advantage of this approach is that we can gather cookie labels directly
from the hosts that created them, which provides data for unique cookies
that the operators of Cookiepedia do not store in their database. Moreover,
many CMPs keep track of a cookie’s category and purpose in their own
repositories, which are usually not publicly accessible. These repositories
are used to suggest purposes and descriptions for third-party cookies that
even the website owner which uses the CMP may not be aware of [13, 50].
In this fashion, we can gather a diverse set of data which furthermore allows
us to run a number of analyses for potential GDPR violations, which will be
examined in Chapter 7.

We acknowledge that the labels retrieved in this fashion may not always
be entirely accurate. Because they are selected by a multitude of different
human operators with varying levels of competency, human error or even
intentional misbehavior may introduce noise into the collected dataset. As
such, the collected dataset will have potentially unreliable labels, making
this approach to classifying cookies an example of distant-supervision.

11

3.1. Choice of Crawling Targets

Figure 3.1: Example of a consent notice that offers an incredibly complex set of choices.

Note that it is difficult to determine a correct ground truth in the domain
of cookies, as due to limited information, the actual purpose can often not
be determined from the perspective of an outside observer. However, by
comparing label assignments for equivalent third-party cookies, we are able
to determine a lower bound of the degree of noise in the dataset. This will
be explored in Section 6.1.4.

In the following, we will present our approach to gathering cookie category
labels from CMP consent notices in the wild, detailing our selection process
for CMPs and the web crawlers we designed.

3.1 Choice of Crawling Targets

Not every Consent Management Platform is a viable target for the purpose
of retrieving cookie labels. The GDPR, for instance, does not specify strict
rules on the structure of a cookie banner. Thus, website hosts are free to
construct their consent notices in any fashion that is compliant with the
requirements [2].

The direct result of this situation is that the space of consent notice design
is large and greatly heterogeneous [37]. Even for websites that use the same
CMP, the design of the consent notice can vary greatly, as customizability is
often used as a selling point for such services. Those CMPs which offer only
a rigid and fixed design, for example Cookiebot, even appear to be losing
customers to their competitors [25].

12

3.1. Choice of Crawling Targets

Designs may range from simple banners appearing at the bottom of the
page, to multi-layered popups covering the entire website [16]. Some (non-
compliant) examples offer no purpose categories to choose from (such as
Figure 2.1), while others provide an unreasonably large number of cate-
gories (see Figure 3.1). In section 3.2 we will select a balanced set of purpose
categories which is not too sparse, but also does not overwhelm the user.

The heterogeneity of consent notice designs complicates the implementation
of an efficient crawler. Since the structure of a cookie banner can vary greatly
between websites, basing the extraction of label data on the specific CSS or
HTML structure does not generalize well to other websites, even those that
make use of the same CMP. Furthermore, as some CMPs do not outwardly
present category labels or cookie information at all, data extraction may
altogether be impossible.

Therefore, in order to efficiently gather a large dataset of cookie labels, we
specify the following criteria a CMP must fulfill in order to be a suitable
target for our consent label crawler:

1. The CMP must reliably use purpose categories. – Most consent notices
prior to the introduction of the GDPR took on the form of a simple
banner or popup that only inform the visitor that cookies are used,
but display no further information. Unfortunately, such notices are
still common, even after the introduction of the GDPR [55]. These are
generally not useful for crawling, as there is no data to extract.

2. The CMP must list cookies by category. – Particularly for CMPs that im-
plement the TCF, it is common for the popup to only list vendors, i.e.,
third party hosts that set cookies on the visitor’s browser [26, 38]. Even
if a CMP provides many different purposes, these may be of no use to
the crawl if the popup or internal CMP implementation itself does not
declare which cookies are mapped to which category.

3. The CMP should ideally be hosted remotely. – Due to a wide range of cus-
tomization options, consent notice designs may vary greatly between
websites. Some CMPs however host the required consent data on a
remote domain, rather than the website directly. By directly accessing
this location, we can bypass the website HTML and reliably retrieve
cookie labels, regardless of the outward presentation of the consent
notice.

Another consideration to make when selecting CMPs is that we require a
method through which the crawler can provide full consent to the consent
notice automatically. Otherwise, the notice itself will prevent the creation
of cookies, as they have not been consented to yet. For this, we used the
browser extension Consent-O-Matic [28], which automatically interacts with
specific CMP dialogues in order to enforce the user’s consent preferences.

13

3.2. Selecting Cookie Categories

Using these criteria, we analyzed 22 of the market-leading CMPs as reported
by the technology trend database BuiltWith [8]. These were sorted by the
number of occurrences in the top 1 million websites by traffic worldwide.
Examining the market leaders in the area of consent management allows
us to gather many potential domains to scrape data from. BuiltWith also
provides a helpful set of example domains that is likely to make use of the
CMP, which helped us analyse which CMPs were viable for our crawler.

However, we acknowledge that this is not an exhaustive analysis, and may
potentially be biased towards domains popular in the USA. For future work,
additional potential crawl targets may be retrieved and analysed from re-
sources such as the TCF’s official CMP listing [26].

To perform the analysis, we selected a sample of 5 websites that we confirm
host the selected CMP, and then determined how suitable the CMP is ac-
cording to our criteria. The results can be viewed in Table 3.1. Entries where
checkmarks are put into brackets indicate that the criteria is only fulfilled
for some occurrences, or that the CMP is generally capable of fulfilling the
criteria, but that the instances found did not satisfy it in practice. Specifically
in the case of Osano, there exists both a paid hosted service as well as a free
plugin version of the consent notice, thus complicating a potential crawl.

In summary, we find that 13 of the 22 CMPs are hosted remotely, 10 out of
22 CMPs display purpose categories, and 9 of the 21 CMPs associate cookies
with categories. Out of the 22 CMPs we analyzed, only 7 satisfy all three
criteria that we need to perform an efficient web crawl.

We implemented a practical consent crawler that targets Cookiebot, OneTrust,
and Termly. Note that CookiePro and OptAnon are included, as they have
been acquired by OneTrust and use the same design.

3.2 Selecting Cookie Categories

Having selected a set of CMPs to crawl, we next need to define a practical
set of categories that are unambiguous, can represent a user’s consent pref-
erences well, and can furthermore be understood easily by the average user
of a browser extension. We decided to use the following categories, as orig-
inally proposed by the International Chamber of Commerce of the UK [27]:

1. Strictly Necessary Cookies

2. Functionality Cookies

3. Performance/Analytics Cookies

4. Advertising/Tracking Cookies

There are several reasons why we decided on these categories. The first is
that they match our personal assessment of cookie purposes, as described

14

3.2. Selecting Cookie Categories

Table 3.1: Listing of Privacy Compliance Tools in the top 1 million sites by traffic worldwide,
taken from BuiltWith [8]. Coverage is ratio of websites in the top 1 million where the CMP is
used, as reported by BuiltWith. Entries that are not CMPs of some form have been removed.

Potential CMP Coverage Hosted? Choices? Has Labels?

Cookie Consent by Osano 2.25% (3) (3) 7

Cookie Notice 1.29% 7 (3) 7

OneTrust 1.17% 3 3 3

OptAnon 1.08% 3 3 3

Cookie Law Info 0.95% 7 (3) 7

Cookiebot 0.77% 3 3 3

Quantcast CMP 0.68% 3 (3) 7

UK Cookie Consent 0.33% 7 7 7

TrustArc Cookie Consent 0.26% 3 (3) 7

WP GDPR Compliance 0.20% 7 (3) 7

Moove GDPR Compliance 0.18% 7 (3) 7

tarteaucitron.js 0.16% 7 3 7

Usercentrics 0.16% 3 3 7

CookiePro 0.15% 3 3 3

Borlabs Cookie 0.12% 7 3 3

EU Cookie Law 0.12% 7 (3) (3)
PrimeBox CookieBar 0.09% 7 7 7

Cookie Script 0.07% 3 3 3

Cookie Information 0.06% 3 3 3

Termly 0.05% 3 3 3

Cookie Info Script 0.05% 3 7 7

Easy GDPR 0.04% 3 (3) 7

15

3.3. Web Crawler Implementations

in Section 2.1.1. The second is that these categories represent a stepwise in-
crease in the potential privacy threat, in the order listed above. Functionality
cookies do not track the user, but unlike Strictly Necessary cookies, they are
not required for the website to operate. Analytics cookies serve to measure
a website’s performance with anonymous, single-website tracking, while
Advertising/Tracking cookies are the most privacy-concerning, as they track
visitors and collect personal data across multiple websites across the inter-
net. Additionally, the category of Strictly Necessary is officially recognized
by the ePrivacy Directive [21], and does not require consent.

The third major reason is that the CMPs we selected use a very similar
selection of categories to suggest default purposes for cookies to their cus-
tomers [13, 50]. In addition, Cookiepedia also makes use of the same ICC
categories to sort cookies into purpose categories. In Chapter 6, we will use
this repository as the baseline to compare the performance of our classifiers
to. Using the same categories simplifies this comparison significantly.

3.3 Web Crawler Implementations

As shown in the appendix of the work by Hils et al. [25], as of January
2020 the cumulative market share of Cookiebot and OneTrust among the
top 1 million websites was roughly 1%. BuiltWith [8] reports a market share
of roughly 3.17% in the top 1 million websites by traffic as of February 2021.

These values indicate that a CMP crawl performed on a similar selection
of domains will not find any useful data on the overwhelming majority of
all websites. Therefore, to gather the desired cookie labels in a reasonable
amount of time, we split the task up into two separate crawlers.

The first implements a fast, parallel approach that determines the presence
of a CMP on a website using simple GET requests. This filters out the large
majority of domains that do not use the selected CMP types.

The second crawler implements a slower process that retrieves the cookie
and consent category information using actual browser instances. A browser
instance can execute scripts, retrieve images and perform other actions which
may trigger the setting of cookies, but is much slower and more memory-
intensive than sending simple GET requests. Therefore, it uses the output
of the former to reduce the time spent with unsuccessful crawl attempts.

We will describe these crawlers in the following subsections.

3.3.1 CMP Presence Crawler

As the name implies, the CMP presence crawler serves to detect whether a
script or URL corresponding to a Consent Management Platform is present

16

3.3. Web Crawler Implementations

Cookiebot Domains:

> https://consent.cookiebot.com/

OneTrust Domains:

> https://cdn-apac.onetrust.com

> https://cdn-ukwest.onetrust.com

> https://cdn.cookielaw.org

> https://optanon.blob.core.windows.net

> https://cookie-cdn.cookiepro.com

> https://cookiepro.blob.core.windows.net

Termly Domains:

> https://app.termly.io/

Figure 3.2: Domains associated with the one of the supported Consent Management Platforms.
These are used for detecting CMP presence, as well as to retrieve consent label data.

on a large set of websites. It is implemented in Python 3.8, primarily us-
ing the requests library from the Python Standard Library to perform GET
requests, and the pebble library to support multiple concurrent processes
running at the same time.

The crawler first attempts to determine whether the given domain is reach-
able at all. For this, it will sequentially try both the HTTP and the HTTPS

protocols, with or without the “www.” prefix prepended to the domain. If a
connection was successful, it retrieves the HTML source of the website and
performs a text search to determine if any of the domains listed in Figure 3.2
are present. Since the selected CMPs are implemented through scripts re-
trieved from a remote domain, this serves as a reasonably accurate indicator
of whether a website utilizes one of the supported CMPs. If the connection
failed or no CMP is present, the domain will be filtered out.

The crawler separates the given input domains into the following lists:

• Websites with a Cookiebot, OneTrust or Termly CMP respectively.

• Websites without any recognizable CMP.

• Websites where the connection failed.

• Crawler timeouts while parsing the site.

These can be used in a second step to retrieve the cookies with associated
purpose.

To speed up the process, we run the crawl with several hundred parallel
processes. Having a large number of concurrent threads works well even on
consumer-grade CPUs in this setting, as most of the used time is spent wait-
ing for responses to arrive from different hosts, thus allowing a significant
performance increase beyond the number of available processors. To prevent

17

3.3. Web Crawler Implementations

bot detection from denying access to websites, we use a user-agent string in
the GET request header that imitates a Chromium browser instance, which
are the most common types of browsers used today.

Note that we are aware of some drawbacks with this approach, which may
introduce bias into the collected dataset:

• For one, the crawl may fail to accurately detect CMP presence in cases
where AJAX is used, which involves loading parts of the website only
after certain sections of JavaScript code has been executed. As this
crawler only sends GET requests, no JavaScript code is run, and thus
any CMP domains that are loaded in late will be missed. Some web-
sites may also have landing pages that need to be passed first in order
to see the consent notice, which this crawler cannot do.

• On the flipside, some websites may not actually implement the de-
tected CMP, for example if there are leftover comments involving the
domain in the HTML code. Others may have made errors in setting
up the consent notice, leaving it nonfunctional.

Therefore the result will not include an exhaustive set of domains that use
CMPs, and also contain some cases where no data can be extracted. We
expect these occurrences to be relatively rare however.

3.3.2 Consent Label Crawler

The consent label crawler uses the output of the presence crawler to maximize
the number of category labels and the associated cookies found, while keep-
ing the total time required to perform the crawl low. We implemented the
crawler on top of the OpenWPM framework, version 0.12.0 [19, 42].

OpenWPM is hereby an open-source web-privacy measurement tool suited
for large-scale crawls., which compared to the web testing tool Selenium1

allowed us to save a significant amount of development time, and provided
the following advantages:

• Error handling – According to Englehardt et al., Selenium has not been
designed to support large-scale crawls, and the browser may frequently
run into internal errors that need to be recovered from [19]. Open-
WPM has built-in crash handlers that can restore the browser profile
whenever an instance of the browser fails.

• Built-in parallelism – OpenWPM supports running multiple Selenium
browser instances to crawl different websites simultaneously. This
combined with the built-in database aggregator allows us to greatly
improve the performance of the crawl.

1https://www.selenium.dev/

18

https://www.selenium.dev/

3.3. Web Crawler Implementations

• Full browser instrumentation – Nearly every aspect of the browser is
instrumented in OpenWPM, including cookies. By using OpenWPM
we can collect cookie data and consent labels at the same time.

• Database aggregator – OpenWPM uses an SQLite database with an ag-
gregator that serializes concurrent storage commands. We use this
database to store the collected labels for each cookie, and to perform
additional analyses on the collected data.

In addition to using the OpenWPM framework, we have made several addi-
tional considerations in the setup of the consent crawler. These are:

• Geolocation difference – Prior work by Dabrowski et al. [15] has indicated
that many websites, particularly those among the Alexa top 1000, en-
gage in some form of geographic discrimination. The GDPR stipulates
that its rules apply to all hosts that offer their services to EU visi-
tors [47]. Therefore many websites distinguish between EU and non-
EU users [18] by selectively displaying their consent notices depend-
ing on what geographic location the visitor is connecting from. As
this work was conducted from within Switzerland, it was necessary to
perform the crawl while connected to a VPN located in a EU member
state. This ensured that consent notices were properly displayed and
accessible during all stages of the crawl.

• Providing consent – While we need the consent notice to gather pur-
pose labels, it also prevents the crawler from retrieving all the cookie
data until consent is given. To solve this problem, we installed the
Consent-O-Matic extension [28] into the browser profile, configured to
automatically provide consent to all purpose categories.

• Browser settings – To ensure that no cookies are inadvertently blocked,
we disable all browser-integrated tracking protection, including the
Do Not Track header [48], all browser-internal cookie-blocking mecha-
nisms, and ensure that image loading is enabled.

The crawling process then works as follows: URLs from the input sample
are sent to the browser instances in a first-come, first-serve manner. Each
instance first connects to the website’s landing page, and if successful, tries
to determine which CMP is present on the website. Once a CMP type is
found, the cookie label extraction process for that type is then performed.
If no CMP is detected, or the extraction of labels has failed, the process is
aborted and the next URL is crawled.

The next step after a successful label extraction is to browse the website by
detecting subpage links present on the landing page, and then accessing a
prespecified number of them. For each subpage, the crawler scrolls down to
the bottom of the page and performs random cursor movements to trigger

19

3.4. Training Dataset Construction

SELECT DISTINCT *

FROM consent_data c

JOIN javascript_cookies j ON c.visit_id == j.visit_id

and c.name == j.name

WHERE j.record_type <> "deleted"

ORDER BY j.visit_id, j.name, c.time_stamp ASC;

Figure 3.3: SQL statement used to join the cookies and consent tables.

the setting of cookies. Previous work by Urban et al. [53] has shown that ac-
cessing subpaths of the crawled website can increase the amount of cookies
gathered by up to 36%. In the interest of crawl performance, we however
only access 5 randomly chosen links to subpages for each crawled domain.

In Appendix A, we provide detailed descriptions on how the consent labels,
as well as other related information, are retrieved for each supported CMP.
This includes Cookiebot, OneTrust and Termly.

3.4 Training Dataset Construction

The output of the consent crawl is an SQLite database containing the col-
lected cookies, the retrieved consent labels and descriptions, as well as de-
bug information on the success and failure states of the crawl. The main
content is split into two database tables:

• javascript cookies – SQL table that contains all actual browser cook-
ies encountered during the browsing phase of the crawl.

• consent data – SQL table that contains the information retrieved from
the CMP, including cookie name, host, purpose description and label.

With these tables, we need just one more step in order to retrieve a valid
training dataset. Namely, we need to match each actual observed cookie
with its corresponding declaration from the consent notice. To do so, several
steps of preprocessing are required.

First, the tables need to be joined, like shown in the SQL statement listed
in Figure 3.3. This matches all actual cookie names with the names found
in cookie declarations, if and only if the declaration was found on the same
website as the actual cookie. The latter condition is needed because the same
third-party cookie may be found on different websites, and may furthermore
be assigned different labels depending on the domain it was encountered on.
To deal with such contradictions, we identify each cookie with the domain
that the web crawler visited at the time of collection. Thus, each third-party
cookie becomes unique, and is treated as a separate training sample.

20

3.4. Training Dataset Construction

The “record type” column in the database indicates whether a cookie was
created, updated or deleted. We are only interested in newly created cookies
and updates to existing cookies, as the deletion of a cookie normally only
occurs upon being replaced by an update. Correspondingly, a cookie update
occurs whenever the browser attempts to create a cookie that already exists.
In this case, its content, expiry date as well as all associated metadata may
change. Cookies may be updated multiple times over the course of a crawl,
and all the changed data can be considered as features for training.

After executing the SQL statement, we utilize a separate Python script to
perform additional steps of pre-processing on the result of the query:

• First, we aggregate all updates for a unique cookie in an array, such
that each cookie identifier represents a single training data entry.

• Second, we need to filter out records where the origin of the cookie
is not listed in the declaration. Because the format of the cookie’s ac-
tual domain may slightly differ from the one found in the declaration,
we first need to transform both strings into a uniform representation
before a comparison can be made.

• Third, all cookies that are unclassified, and furthermore all cookies
where the category could not be recognized, have to be filtered out
from the dataset, as they are not useful for training.

• Finally, we also remove specific “consent cookies” from the dataset. This
includes the “CookieConsent” cookie from Cookiebot, as well as the
“OptAnonConsent” cookie from OneTrust. Both store the user’s choices
after a consent notice has been interacted with. This is done to prevent
the classifier from becoming biased. Due to the way domains are se-
lected for crawling, these cookies appear on almost all of the targeted
domains. Conversely, they never appear on domains that are not part
of the target dataset. Combined with the fact that they always have the
same internal structure and label, such cookies represent a clear form
of training bias that must be removed.

After the data is processed, the Python script outputs a JSON document
that contains the training data samples. We decided to use JSON format
so that the content can easily be transferred and reused across different
codebases. This was necessary as we ultimately needed to implement the
feature engineering process not just in Python, but in JavaScript through
NodeJS as well. This is a decision we will elaborate on in Chapter 5.

Our final dataset contains 309 472 cookies, collected from a selection of
26 403 unique domains. An exact breakdown of the crawler performance,
including the selection of domains and statistics on the success and failure
rate, as well as a detailed analysis on the collected cookies and consent labels
will be provided in the evaluation in Chapter 6.

21

Chapter 4

Cookie Consent Classifier

Machine learning on the domain of cookies has so far not been explored
in scientific literature. To train a classifier, we first need to determine what
patterns and properties exist in cookies, and then define a feature extraction
process to transform these contents into a numerical representation. We
give an overview of cookie data next, and then show how to transform it into
numerical embeddings. Finally, we present the applied classifier approaches
with some background information.

4.1 Cookie Properties

In Section 2.1, we provided a high-level description of browser cookies and
what they are used for in practice. Here, we will provide a more detailed
look on the individual components for the purpose of feature engineering.
Most of this information is sourced from Mozilla’s online documentation on
browser cookies [41]. A cookie consists of the following data:

• Name, Domain and Path – These three components serve as the key of
the cookie, which uniquely identifies it across the web.

– The name can only consist of US-ASCII characters. Whitespaces,
control characters and separators such as “()<>;,” can also not
be used in the name of a cookie.

– The domain identifies the origin that originally set the cookie, and
may begin with a leading period character, for instance like in
“.example.com”. If present, this period indicates that the cookie
may be used by all subdomains as well.

– The path determines which subdirectories of the domain can ac-
cess the cookie. The default if unspecified is "/", which indicates
that all subdirectories are granted access.

22

4.1. Cookie Properties

• Value – Represents the payload of the cookie. A cookie can only contain
up to 4 kilobyte of ASCII text data. If Unicode characters are used,
the contained text will be URL encoded.1 Like the name field, it also
cannot contain whitespaces, control characters, semicolons or commas.

• Expiry – Specifies the maximum lifetime of a cookie, in the form of a
fixed date or in seconds. We distinguish between two cases:

– If the expiry is specified, the cookie is referred to as persistent. The
cookie is removed after the local date has passed the expiry.

– If the value is not specified, then the cookie is referred to as a
session cookie. It lasts until the current browser session ends.

• Host-Only flag – If true, the browser does not allow any subdomains to
read or write to the cookie. Equivalent to leading period in domain.

• HTTP-only flag – If true, the cookie may not be read or written to by
JavaScript code. Note that browser extensions still have access to the
cookie through a specialized API.

• Secure flag – Indicates that the cookie may only be sent over secure
connections, i.e., HTTPS. They are however not stored encrypted.

• SameSite flag – Defines the policy for when the browser makes a cross-
origin request, i.e., a request for a domain that is not a subdomain of
the current. This is a categorical feature with 3 possible values:

– “None” – The cookie is always sent with a request to the domain,
no matter the origin.

– “Lax” – The cookie may not be sent with implicit cross-origin re-
quests, for example when third-party images or frames are loaded
when browsing a domain. They are only transmitted if the user
explicitly clicks a link to browse to a remote domain.

– “Strict” – Like “Lax”, but the cookie is also not sent when the
client explicitly browses to a cross-origin domain. Only once a
subdomain is requested is the cookie finally transmitted.

Also note that a cookie’s expiry, content and flags are not constant, and can
be altered by JavaScript or HTTP requests. Each event that could potentially
change the contents of a cookie will be henceforth referred to as an update,
even if no actual data was altered. A concrete example for this are cookies
that used to store the consent preferences of the user. At first, the cookie
will be empty. After selecting the consent preferences however, the cookie’s
contents will be updated to reflect those settings.

1Encoded by the character % followed by two hexadecimal digits.

23

4.1. Cookie Properties

4.1.1 Third-Party Status

Cookies are commonly distinguished as “first-party” and “third-party”. The
former are cookies that have been created by the same domain that the user
is directly browsing. The latter are cookies where the origin does not match
the domain in the browser address bar at the time of creation.

Third-party cookies are created through implicit requests to external re-
sources, such as images, or through scripts running on an embedded frame,
such as a widget stemming from a social media website. They are commonly
used to track the user, but may also serve to enable essential website func-
tionality. An example for this is Single Sign-On (SSO) authentication, where
a single third-party cookie ensures that a user is logged in on multiple differ-
ent domains. Hence a simplistic approach that simply blocks all third-party
cookies may potentially break website functionality. In addition, both first-
and third-party cookies may be used to collect personal information.

Note that in early 2020, Google has announced their intent to remove sup-
port for third-party cookies from Chrome. They claim that they intend to
replace the use of third-party cookies with privacy-preserving alternatives.
An example for this is the recent “Federated Learning of Cohorts (FLoC)” API
which is supposed to replace traditional tracking approaches for the pur-
pose of personalized advertising [51].

Historically, due to the high market share of Chromium-based browsers [49],
decisions made by Google usually lead to other browser vendors following
suit. As such, this may soon lead to significant, observable changes in how
cookies are used on the Web.

4.1.2 Content of a Cookie

In addition to a cookie’s innate values and properties, it is also important
to determine what kinds of data is usually stored in a cookie’s content.
To determine what features could be extracted, we manually analyzed the
cookie dataset to determine common patterns.

We focused primarily on features that are generic and can be found in any
cookie regardless of origin. In this manner, the classifier can better general-
ize to instances found in the wild. Furthermore, such features are unlikely to
change or disappear over time. Some example features found in the cookie
content are:

• Hexadecimal numbers

• Dates and timestamps

• Separator characters

24

4.2. Feature Engineering

While it would be possible to condition the classifier on vendor-specific con-
tent patterns, this would likely be redundant, as the cookie domain already
allows the classifier to distinguish cookie category based on the origin.

One property specific to tracking cookies is that the same identifier can be
seen across multiple sites, if and only if the browser state is retained be-
tween visiting different domains. This cannot be recognized in the current
classifier model, as capturing cross-website relations is not possible when
classifying each cookie in isolation. Moreover, such identifiers are unique to
the user, and thus cannot help in the conditioning of a classifier. Instead, we
use different measurements, such as the entropy, to help distinguish which
cookies are likely to store unique identifiers used to track visitors. See also
Appendix B.4 for more information on how this is done.

4.2 Feature Engineering

The contents of a cookie include ASCII text, categorical data, numerical val-
ues, dates, and boolean flags. As the types of its content are greatly varied,
we transform these contents into uniformly-sized vector representations of
numerical data. This can then be used as input to a large range of classifiers.

To allow the classifier to be applicable to any cookie, we can only perform
the training on data that is directly available inside a browser. As a result,
information such as purpose description obtained through a Consent Man-
agement Platform cannot be used in the following feature extraction.

In total, we determined a total of 52 feature engineering steps which repre-
sent the properties of a cookie as a real-valued vector. These steps are split
into three separate groups:

1. The first consists of what we denote as “per-cookie features”, which are
extracted exactly once per unique training sample. This includes all
attributes of a cookie that remain constant and are never changed in
any update, including name, domain and path, as well as averages and
standard deviations over all cookie updates. The full list is shown in
Table 4.1. Note that a one-hot vector is a sparse vector in which exactly
one entry is set to 1, while all others are 0. These vectors are used to
represent categorical features.

2. The second group consists of per-update features, which are extracted
exactly once per update for each cookie, up to a predefined limit. Up-
dates are hereby considered in the order they have been encountered,
sorted by timestamp. The features are derived from values which may
change in an update, including the flags, the expiry and the cookie’s
content. The complete list of per-update features is shown in Table 4.2.

25

4.2. Feature Engineering

Table 4.1: Per-Cookie Features Overview: All features that are extracted once per unique cookie.
Entries marked with a * could cause issues when used within the context of a browser extension.

Feature Name Size Description

Top Names 100 One-hot vector of the most common exact names.
Top Domains 100 One-hot vector of the most common domains.
Pattern Names 50 One-hot vector of the most common name patterns.
Name Tokens 100 Binary indicator of English tokens in the name.
IAB Vendor 1 Binary Indicator, true if domain is an IAB Vendor.
Domain Period 1 Indicates whether the domain starts with a period.
Third-Party * 1 Whether the cookie originates from a third-party.
Non-Root Path 1 Whether the cookie path is not the root path (6= ”/”).
Update Count * 1 Total number of updates encountered for this cookie.
Host-Only Flag 1 Whether the “host-only” flag is set.
HTTP-Only Changed 1 Whether the “HTTP-only” flag changed in any update.
“Secure” Changed 1 Whether the “secure” flag changed in any update.
“Same-Site” Changed 1 Whether the “same-site” entry changed in any update.
“Expiry” Changed 1 Whether the expiry changed by > 1 day between updates.
Content Changed 1 Whether the cookie content changed between updates.
Levenshtein Total 2 Mean and Std.Dev. of Levenshtein dist. between updates.
Difflib Total 2 Mean and Std.Dev. of Difflib similarity between updates.
Length Total 2 Mean and Std.Dev. of the cookie value length in bytes.
Compressed Total 2 Mean and Std.Dev. of the compressed cookie value length.
Entropy Total 2 Mean and Std.Dev. of the Shannon Entropy of values.

To keep the resulting feature vector at a fixed size, the number of up-
dates is constrained to a constant factor, with any additional updates
being truncated from the front. If there exists less updates than re-
quired, the remaining values will be padded by zeros. To distinguish
boolean flags from missing entries, “true” is represented by 1, while
“false” is represented by −1.

3. The third group consists of the per-diff features, which consider the
changes that may occur between two updates of a cookie. Each update
is sorted by timestamp, such that the feature extraction may represent
changes that occurred over time. Like with per-update features, the
number of updates considered for this is constrained to a constant
factor, with missing entries being padded through zeros. The feature
set for this group is presented in Table 4.3

Note that some of the features are not fully supported in the context of a
browser extension. This will be explained further in Section 5.3.1. Moreover,
a detailed description of the more elaborate features shown in the tables,
along with some additional arguments as to why the chosen features are
useful, can be found in Appendix B.

26

4.2. Feature Engineering

Table 4.2: Per-Update Feature Overview: All features that are extracted once per cookie update.
Number of updates used for extraction can be specified separately.

Feature Name Size Description

“HTTP-Only” Flag 1 Binary indicator of whether the “http-only” flag is set.
“Secure” Flag 1 Binary indicator of whether the “secure” flag is set.
“Session” Flag 1 Whether the cookie is a session cookie or not.
“Same-Site” Flag 3 One-hot vector, whether “None”, “Lax” or “Strict” is set.
Expiration Time 1 Ordinal feature, contains the expiration time in seconds.
Expiration Intervals 8 Interval checks on expiration time, e.g., > 1 day, < 1 week.
Content Length 1 Total size of the cookie’s value in bytes.
Compressed Length 2 Size and reduction of cookie value after zlib compression.
Shannon Entropy 1 Shannon entropy of the cookie update’s value.
URL Encoding 1 Indicates whether the cookie content is URL encoded.
Base64 Encoding 1 Indicates that the content is potentially Base64 encoded.
Delimiter Separated 1 Number of delimiter separations (i.e. CSV data entries).
Period Separated 1 Number of separations of the content by periods.
Dash Separated 1 Number of separations of the content by dashes.
Contains JSON 1 Whether the content contains a JSON object.
Content Terms 50 Binary indicator of English tokens in the content.
CSV Contents 5 Try to split as CSV and detect content types within.
JS Contents 11 Try to split as JSON and detect content types within.
Numerical Content 1 Whether the content consists entirely of numbers from 0-9.
Hexadecimal Content 1 Whether the content represents a hexadecimal number.
Alphabetical Content 1 Whether the content is entirely alphabetical.
Identifier Content 1 Whether the content is a valid code identifier.
All Uppercase 1 Whether the cookie content has all uppercase letters.
All Lowercase 1 Whether the cookie content has all lowercase letters.
Empty Content 1 Whether the content of the cookie is empty.
Boolean Content 1 Whether the cookie content is a boolean of some form.
Locale Content 1 Check if content includes a country or currency identifier.
Timestamp Content 1 Check for a UNIX timestamp in the cookie content.
Date Content 1 Check if content contains a date term or identifier.
UUID Content 6 Check if content contains a valid UUID, and which variant.
URL Content 1 Check if the content contains a URL of some form.

Table 4.3: Per-Difference Features Overview: All features that are extracted as comparisons
between two contiguous updates, sorted by timestamp.

Feature Name Size Description

Expiry Difference 1 Expiration time difference in seconds between two updates.
“Difflib” Similarity 1 Similarity ratio between cookies, as measured by “difflib”.
Levenshtein Distance 1 Levenshtein distance between two cookie updates.

27

4.3. Classifier Description

4.3 Classifier Description

In this work, we try to apply existing classifier approaches to the domain of
browser cookies. Our goal is to utilize hidden patterns in the data to distin-
guish what purpose a cookie is used for. As this will serve the enforcement
of cookie consent preferences on the web, the number of inaccurate predic-
tions should ideally be very low.

To achieve high performance, we decided to use ensemble tree methods to
perform the classification. We primarily focused on applying the XGBoost

algorithm [10], as it is among the most powerful classification technologies
in use today. In particular, it is suited for training on sparse feature matrices
with missing data, which our dataset includes because of the fixed number
of cookie updates per training sample.

XGBoost is a well-established algorithm for training regressors and clas-
sifiers, which has been used widely to achieve top-performing results in
machine-learning challenges. Both training the model and prediction of new
labels is very fast, and scales well with thousands of features, even without
the use of high-performance hardware. This made it an ideal first choice to
tackle our goal.

In addition to XGBoost, we also apply two other ensemble tree algorithms
to the task, those being LightGBM [32] and CatBoost [17], which have spe-
cific advantages. In the following, we will provide a high-level explanation
of the necessary machine learning topics, as well as a short description of
the individual algorithms we applied.

4.3.1 Machine Learning Background

In this section we recall the necessary background information on the ma-
chine learning concepts used in creating the cookie consent classifier.

Tree ensemble classifiers, such as XGBoost, are trained through supervised
learning. Given a set of training samples X = (x1, . . . , xN) with associated
labels Y = (y1, . . . , yN), the classifier is tasked with learning a representation
of the data such that the predicted labels Ŷ match the ground truth Y as
closely as possible. A single prediction ŷi is hereby derived from some
representation of the corresponding training sample xi. An example for this
is a linear model, where the prediction for a single sample xi is computed
as ŷi = ∑j θjxij, where θj are the model parameters.

For training the model, we need a cost function L(X, Y; θ) that quantifies
how well the parameters θ fit the training dataset X, Y. In all the classifiers
we apply, we use the multi-class cross-entropy loss for L. Using the class
probabilities pik, which are the predicted probabilities for a sample xi to

28

4.3. Classifier Description

belong to class k, and a binary indicator zik, we define the multi-class cross-
entropy as follows:

L(X, Y; θ) = −∑
i

∑
k

zik log(pik(θ))

Note that zik = 1 if k is the ground truth label for sample xi, and 0 otherwise.
The class probabilities pik are computed through the application of a soft-
max transformation to the scores output by the model when run on a given
sample xi. In simple terms, the relative ratio of the score for class k compared
to the total score over all classes produces pik.

Classifiers may be prone to overfitting, which occurs when the classifier is
excessively fit to the training set and fails to generalize well to newly ob-
served examples. To prevent overfitting, many models add to L(X, Y; θ) one
or more regularization functions Ω(θ). In the case of tree ensemble models,
this regularizer aims to reduce the complexity of the forest of trees.

The combined objective of the classifier for training is thus to minimize the
cost function L(X, Y; θ) as well as the regularizers Ωj(θ):

min(∑
i

L(xi, yik; θ) + ∑
j

Ωj(θ))

4.3.2 Tree Ensemble Classifiers

The model used in Gradient Tree Boosting is an ensemble (or forest) of clas-
sification and regression trees (CART). These trees are constructed similarly
to ordinary decision trees in that each inner node represents a boolean deci-
sion operating on a single feature of the input sample.

Unlike a decision tree, the leaves in a CART do not represent a fixed deci-
sion, but rather a positive or negative score guiding the decision. A single
tree is usually not strong enough to reach a decision, hence the training
constructs multiple trees. Each tree operates on a different set of features,
and the final decision is based on the total sum of scores obtained from all
trees after an input sample is applied. In the case of multi-class classifica-
tion, each class receives a forest of trees, and the class with the best score is
typically chosen, depending on the decision rule.

It is too computationally expensive to enumerate all possible combinations
of trees in a single step. Therefore, trees are created in an additive manner,
extending the tree with additional nodes until no improvement is found.
Then the tree is finalized, and a new one is added to the forest. Trees are
extended by splitting a leaf node into a new binary decision rule with addi-
tional leaf nodes.

Only trees that further optimize the objective are added, and only those
nodes are split where the gain in score outweighs the gain in complexity, as

29

4.4. Additional Considerations

restricted by the regularization functions. The structure of the ensemble, the
features used for the decisions, as well as the resulting leaf weights are all
parameters of the model that are learned during training.

The resulting model of the tree ensemble is thus the forest of trees itself.
This model can easily be extracted, stored in a text format, and then reimple-
mented in another setting without requiring any complex numerical com-
putations. We use this to implement the predictor in the browser extension
setting using only plain JavaScript.

For our task, we apply three different classifier approaches, each being a
tree-ensemble model with different properties. These are:

• XGBoost:2 A sparsity-aware gradient tree boosting algorithm devel-
oped by Chen and Guestrin [10]. It uses a pre-sorted and histogram-
based algorithm for computing the best split in each node. Its main
advantage compared to tree boosting techniques that came before it
is its scalability and performance. As such it became one of the most
recognized classifier approaches in use today.

• LightGBM:3 A gradient-boosting decision tree algorithm designed by
Ke et al. [32]. It makes use of two techniques called Gradient-based One-
Side Sampling (GOSS) and Exclusive Feature Bounding (EFB) to train the
classifier. GOSS hereby allows the training process to focus only on
data samples with steep gradients, using the remainder for informa-
tion gain. This massively speeds up the training process, which is its
main draw over XGBoost.

• CatBoost:4 This algorithm, created by Prokhorenkova et al. [17],
introduces a technique called “ordered boosting” which counters a sta-
tistical shortcoming of XGBoost and LightGBM, namely in regards
to target leakage. The name itself stands for “categorical boosting”,
owing to the novel method in which categorical features are handled
by the algorithm. The authors report that their approach outperforms
both XGBoost and LightGBM in classification performance.

4.4 Additional Considerations

In addition to the choice of classifier approach, we also needed to consider
some properties specific to the task that we train the predictor for. These
will be discussed below.

2XGBoost source: https://github.com/dmlc/xgboost
3LightGBM source: https://github.com/Microsoft/LightGBM
4CatBoost source: https://github.com/catboost

30

https://github.com/dmlc/xgboost
https://github.com/Microsoft/LightGBM
https://github.com/catboost

4.4. Additional Considerations

4.4.1 Class Imbalance

In our dataset, there exists a significant imbalance in the number of cook-
ies in each class. Such imbalance may be inherent to the setting of cookie
categories. In Section 6.1.3, we will see that cookies belonging to the class
of “Advertising” cookies are significantly over-represented, and make up
55.94% of all declarations. Conversely, cookies that belong to the “Function-
ality” class are only represented by 9.90% of declarations.

Such class imbalance causes problems not only for achieving a high-quality
prediction, but also for properly assessing the quality of the classifier as
a whole. With “Advertising/Tracking” being this over-represented, the re-
sulting classifier will likely be biased towards achieving a higher accuracy
in correctly identifying those types of cookies, and have reduced accuracy
for all other instances. The same problem is then observable in the eval-
uation, as the total dataset accuracy may not properly represent the real
performance of the classifier.

To reduce the effect of class imbalance in training, we multiply the loss for
each sample with the inverse class weight, corresponding to the class label.
The inverse class weight for a class j is computed as:

wj =
total number of samples

number of samples in class j

This approach is supposed to counteract the effect of imbalance, and give
under-represented classes a higher priority. It is however not perfect, and
the effects of the imbalance will still be visible in the evaluation.

4.4.2 Impact of Misclassifications

Given an input sample xi, the resulting predictor model produces an array
of probabilities which indicate how likely the given sample is to belong to
one of the four cookie consent purposes described in Section 3.2.

The question is, given these probabilities, how will the predictor produce a
discrete label for the given input cookie? The simplest approach would be to
always use the label with the maximum class probability as the correspond-
ing prediction. Thus, if for example the probability for class “necessary”
for a given input sample is 40%, and the probability for the remaining three
classes is 20%, it will predict “necessary” as the discrete label.

This simple decision may not be enough. We need to also take into account
that in the setting of cookie consent and user privacy, not every type of error
has the same impact. Consider the following cases:

31

4.4. Additional Considerations

• A cookie with ground truth “Advertising” is misclassified as “Strictly
Necessary”. In this case, the privacy of the user is potentially endan-
gered as the cookie will simply pass through and be accepted, even if
the user rejected advertising cookies.

• A cookie with ground truth “Strictly Necessary” is misclassified as
“Advertising”. This will break website functionality if the user in-
tends to block advertising cookies. As a result, the user experience is
negatively affected.

• A “Functionality” cookie is classified as “Necessary”, or vice-versa.
While undesirable, this has a reduced user impact compared to the
other cases, as the categories are more similar and have less privacy
impact. We also expect it is unlikely that users will want to block
functionality cookies.

Generally, the chosen purpose classes can be ordered from least to most
privacy-concerning, and from least to most service-critical. A misclassi-
fication is more severe the greater the distance between the true and the
predicted class is on these scales.

With noisy labels and an imperfect predictor, the goals of ensuring both
website functionality and ensuring full privacy are hard to fulfill at the same
time. We attempt to find an appropriate balance between the two opposing
goals. To achieve this in practice, we can apply the concept of Bayesian
Decision Theory to the predicted class probabilities [3].

To transform the probabilistic classifier c into a discrete classifier ĉ over our
chosen purpose labels, we need to define a loss function L(y, ŷ) which quan-
tifies the cost of misclassifying a potential ground truth y as label ŷ. The
discrete classifier ĉ is then defined as follows:

ĉ(x) = arg min
y

(∑
y

p(y | x)L(y, ŷ))

Where p(y | x) is the predicted probability for label y given input sample x.

The cost function L(y, ŷ) for our set of purpose categories can hereby be
defined as a 4x4 matrix. The columns represent the predicted class, while
the rows represent the ground truth. Furthermore, the classes are ordered
such that index 0 corresponds to “Strictly Necessary”, index 1 corresponds
to “Functionality”, index 2 corresponds to “Analytics” and index 3 corre-
sponds to the “Advertising” class. The entry Lij then represents the cost
factor for the case where ground truth i is predicted as label j. For the
correct prediction i = j, it makes sense to set the cost Lii to zero.

The argmax predictor, where each type of misclassification is given the same
weight, would thus take the form of the following symmetric matrix:

32

4.4. Additional Considerations

Larg max =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

The following symmetric cost matrix L1 applies an increased penalty to
classes that are “further away” in terms of the scale of “privacy-infringing”
and “service-criticality”:

L1 =

0 0.25 0.75 1

0.25 0 0.5 0.75
0.75 0.5 0 0.5

1 0.75 0.5 0

Matrix L2 represents a cost function which places increased focus on user
privacy, in that it assigns twice the cost to misclassifications in the direction
of “privacy infringement” than “service criticality”:

L2 =

0 0.5 0.5 0.5
1 0 0.5 0.5
1 1 0 0.5
1 1 1 0

The inverse can be obtained by simply obtaining the transpose of L2.

The user is free to select which approach suits them best. For the evaluation,
we selected the simple argmax cost function.

33

Chapter 5

Browser Extension Design

In this chapter, we present the design of CookieBlock, an extension for
Chromium-based browsers and Firefox, which can automatically classify
cookies found in the wild and accept or reject them based on the user’s
preferred privacy policy.

It is based on the feature extraction and classifier described in Chapter 4,
which uses training data collected via the crawlers described in Chapter 3.

5.1 Overview

CookieBlock is built using the cross-browser WebExtensions API.1 The
goal we set out to achieve was to create an extension that offers the following
functionality:

1. Automatic classification of cookies into distinct purpose categories.

2. Enforcement of a user’s privacy policy by filtering cookie categories
that have been rejected by the user.

3. Allowing the user to choose which consent categories to block, with
an informative description being provided for each category.

4. Allowing the user to define exceptions for certain websites, such that
all cookies that arrive through that website are accepted.

With the exception of point 4, which could only be partially implemented,
we were able to achieve all the target functionality. Unfortunately, due to
technical limitations, we are only able to allow simple exemption of first-
party cookies, with third-party cookies requiring a separate exception. A
potential approximate solution would be to permit all cookies if the cur-
rently active tab matches an exception, but this is as of yet unimplemented.

1https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions

34

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions

5.2. Extension Interface

Figure 5.1: The CookieBlock popup, accessed through an icon next to the address bar. It
allows the user to add exceptions for the currently active tab.

The extension consists of the following main components:

• A background script which intercepts cookies as they arrive, and en-
forces the user policy. It extracts features on-the-fly, performs the class
prediction and decides whether a cookie should be deleted.

• A first-time setup, through which users can initialize their preferred
consent choices.

• A settings page, which allows the user to alter their preferences, add
website exceptions and view statistics on the collected data.

• A popup, accessible through a browser bar icon, which displays a but-
ton to add the current domain to the global website exceptions, and a
button to access the settings page.

In the following, we present each part of the interface, describe the back-
ground script and elaborate on how the feature extraction and predictor
were ported to JavaScript.

5.2 Extension Interface

The extension interface includes a settings page, a top bar icon with popup
and a first-time setup that is shown when the extension is installed. The
current design of the interface is based on the HTML and CSS stylesheet of
the Consent-O-Matic extension, which is released under the MIT license.
This may be subject to change for future versions.

The extension popup is shown in Figure 5.1. It allows users to open the set-
tings page, and to add the current website as a global exception to the cookie
filter. The intention behind the exception button is to allow the user to dis-
able the policy enforcement for the current site, so that potentially broken

35

5.2. Extension Interface

Figure 5.2: The CookieBlock settings page, accessed through the popup. It allows the user
set their consent choices for all websites, and add individual exceptions. The first-time setup
page is structured in a similar manner to the settings and is hence not shown here.

functionality can be re-enabled without altering the extension’s behavior on
other domains. At present, because the WebExtensions API only allows
viewing cookies in isolation without any surrounding context, only first-
party cookies are permitted. This is done by comparing the host field of the
cookie to the list of exceptions. A potential solution would be to assume
the domain of the currently active tab to be the origin for all cookies that
are received. However, this assumption may be violated if multiple tabs are
opened at the same time, or if a tab is opened in the background.

The design of the settings page is presented in Figure 5.2. Its primary func-
tion is to allow the user to reject cookies that are used for the purposes
of “Functionality”, “Analytics” and “Advertising”, which we previously de-
scribed in Section 3.2. Note that we explicitly exclude “Strictly Necessary”
from this selection as it makes little sense for a user to reject cookies that
enable essential website services.

In addition to global exceptions, the settings page also allows the user to

36

5.3. Background Process

define exceptions for specific classes. For example, it is possible for the user
to allow “example.com” to create cookies of the type “Analytics” without
permitting the website to also set cookies used for advertising.

Finally we also include a first-time setup. This is displayed immediately after
the extension is first installed, and allows the user to define their consent
choices for the first time. Its design is very similar to the settings page
shown in Figure 5.2, hence we will not display it here. Upon accepting
the chosen settings, the extension runs a prediction on all cookies currently
stored in the browser, removing the ones that belong to rejected categories.

5.3 Background Process

When the extension is launched, the background script initializes a lis-
tener object that intercepts cookies as they are created, updated and deleted.
Cookie removals are ignored by the extension, while cookies that are created
or updated automatically trigger the extension’s classification and policy en-
forcement mechanism. It proceeds as follows:

• First, the extension records the data retrieved from the cookie in the
“chrome.local” extension API.2 This storage contains all previously
encountered cookies, indexed by name, domain and path. This is done
so that cookies that have been removed from the browser’s storage can
still be recognized if they are reconstructed by a website. This data is
kept entirely local, and is never sent to any party outside the extension.

• Whenever a cookie is created, the extension initializes a queue of up-
date slots for that cookie. This queue can hold up to 10 cookie updates
in total, in the order in which they have been encountered. If the limit
is exceeded, the oldest update will be evicted. See also Section 4.1 for
an explanation of what a cookie update entails.

• After the cookie has been recorded, the extension checks if the cookie’s
domain is part of any global exceptions. If so, the classification is
skipped entirely, else we continue with the next step.

• Next, the features for the current cookie are extracted. The features
are output in the form of a JavaScript object representing a sparsely
indexed vector of numerical data.

• The predictor is implemented in the form of a recursive function that
traverses each CART tree in each of the four tree ensembles, one corre-
sponding to each class (see Section 4.3.2). This produces the score for
each category, from which the discrete label for that cookie is derived.

2https://developer.chrome.com/docs/extensions/reference/storage/

37

https://developer.chrome.com/docs/extensions/reference/storage/

5.3. Background Process

• Finally, using the predicted label, the extension decides whether the
cookie needs to be filtered. First, if the domain of the cookie has a
user-defined exception for that specific label type, the cookie is kept.
Otherwise, the extension checks the user’s consent policy, and if the
consent category is rejected, the cookie is deleted.

Note that this process technically leaves a very small period of time between
creation and deletion where the cookie can exist inside the browser. We
have not yet evaluated whether this small time interval could be exploited
by websites to still utilize the cookie to track users and collect personal data.
If this were the case, direct browser support would be necessary to prevent
the creation of cookie in the first place.

Currently, we continuously reclassify cookies whenever they appear, in case
the addition of additional updates changes the prediction. This may how-
ever make it possible for websites to slow down the browser by attempting
to continuously refresh cookies. Extensive evaluation will be needed to iden-
tify whether this is a problem in practice.

5.3.1 Online Feature Extraction

In order to support cookie classification in the extension, it was necessary
to port the feature extraction from Python to JavaScript. To do so, we were
required to make a number of changes to the process, and consider certain
aspects that were previously not of importance in the offline setting. We will
discuss these topics in the following subsections.

Speed of the Feature Extraction

In an offline setting, the speed at which a script can extract features from
individual training data entries is not a big concern, as there is no time-
pressure to get the cookie data ready for prediction. This changes in the
transition to the browser extension. As the classification needs to occur on-
the-fly, it is important to ensure that the feature extraction is fast enough so
as not to slow down the browser and have a negative impact on the user
experience.

While most of the transformations we apply to cookies are fast enough not
to disturb the user experience, there are some steps that may become slow
depending on the cookie content. One example for this are measurements
that compute the similarity of two cookies, including the Levenshtein dis-
tance. This algorithm has a computational complexity in the order of O(N2),
where N is the length of the string, thus long cookie strings will lead to a
potentially slow feature extraction. Fortunately, most cookies contain very
small content strings.

38

5.3. Background Process

Update Count

The cookies obtained through the crawler described in Section 3.3.2 have
some artificial properties. The most problematic one, which the classifier
may condition itself on, is the overall number of updates of a cookie.

Because the crawler has a limited time interval during which it can gather
cookies from a website, the average number of updates for a cookie will look
rather stable. In fact, as we will see in Section 6.1.3, the number of updates
obtained through this can differ depending on assigned consent class. As
such, this may be a feature that the classifier can condition itself on.

The problem here arises in the online context of a browser extension. Unlike
the crawler, the user does not have a limited amount of time to browse a
website. Updates may accumulate over time, and quickly exceed the num-
bers seen by the web crawler. Thus while the update count can be used to
predict labels for a fixed dataset, it is not possible to use in an online setting
where the number of updates increases monotonically.

Per-Update Features

A similar problem as for the update count arises when one extracts features
for more than one update per cookie. Specifically, the number of per-update
features that are used in training is fixed, with zero padding if there is
missing data. Here, it is possible that the classifier may condition itself on
said missing data. Like with the update count, since the number of updates
grows monotonically, eventually, all cookies will have enough updates so
that there will be no missing entries. And therefore, the model trained on
the data collected by the crawler cannot be applied to the data seen by the
extension.

There is also another argument to be made. If we intend to ensure privacy,
i.e., prevent hosts from collecting sensitive data, then the classification must
occur immediately on first sight of the cookie. As such, we cannot wait for
updates to arrive first to reach a conclusion, as this would give the host time
to collect the sensitive information. Therefore, for the browser extension
context, we use only a single per-update features for a cookie, which is its
state when it was first created.

Third Party Cookies

Whether a cookie originates from a third-party cannot be determined when
looking at cookies in isolation using the WebExtensions API. Only in special
cases are cookies associated with a so-called "first-party-domain", which
is the domain the browser held in the address bar at the time the cookie was
retrieved. One example is when the first-party isolation is activated in Firefox,

39

5.3. Background Process

which unfortunately has undesirable side-effects and can potentially break
website functionality [41].

A theoretical solution to approximate the third-party status would be to
retrieve the address in the currently active tab when the cookie arrives. This
is not completely sound however. In particular, consider the case where a
user opens multiple tabs, or opens a tab in the background. This would
cause first-party cookies to be wrongly identified as third-party.

Training Data Features

When porting the Python code to JavaScript, several small changes needed
to be made for various steps in the process, which are too numerous to
list here. To prevent such small differences from affecting the quality of
the prediction, we needed to re-run the feature extraction on the training
dataset using the JavaScript implementation, and then run the classifiers on
this newly extracted feature matrix. This way, the resulting model cannot
be conditioned on patterns that are absent for the JavaScript version of the
cookie features. To redo the feature extraction for the training dataset, we
implemented a simple NodeJS command line tool that included identical
code as the browser extension. The resulting feature matrix was then ported
back to the XGBoost Python implementation, using which a new model
was trained.

5.3.2 CookieBlock Predictor

To implement the predictor, we utilize the XGBoost model dump. This is
a JSON-formatted output of the forest of CART trees. The dump consists
of four separate forests, each corresponding to one cookie purpose category.
The nodes in a tree are represented as nested objects, containing the boolean
decision function and feature index, which identifies the feature for which
to perform a decision in each node. To reduce the filesize of the dump, we
process it further to remove redundant information. All four forests together
produce a model that is roughly 10 MB in size.

Predictions are made through a simple recursive function call that takes the
cookie feature vector, as well as the model dump as input. Each recursive
call traverses a node in the tree, until reaching a leaf containing the score
for the input cookie. By summing the scores for each tree, we can com-
pute the probability for the class. Finally, given the class probabilities, we
reach a decision on the discrete label by taking the class with the highest
probability.

40

Chapter 6

Evaluation

In this chapter, we present the performance of the crawler as well as the
classifier approaches, concluding with a discussion of how the performance
of the extension can be evaluated.

6.1 Crawler Performance and Analysis

In this section we present general results on the performance of the crawler,
and analyze certain aspects of the collected training dataset, starting with
an overview of the domains that were scraped for consent labels. Finally, in
Section 6.1.4, we try to estimate the noise in the collected labels.

The Consent Management Platforms we selected for crawling are hereby
Cookiebot, OneTrust and Termly. For more information on our selection pro-
cess, we refer to Section 3.1.

6.1.1 Domain Sources

To train a classifier that can generalize well for any sample encountered
in the wild, it is beneficial to have a large and unbiased training dataset.
Because we are restricted to gathering training samples only from websites
that make use of specific CMPs, this incurs some amount of bias into the
dataset. We attempt to compensate this by selecting a varied set of domains
to gather the cookies from.

Our primary source is Tranco [34], which we used to retrieve a list of the
top 1 million domains by traffic worldwide,1 as well as a list of 566 225 ad-
ditional domains that are hosted in Europe, which are not contained in the
top 1 million.2 Tranco hereby is a domain ranking similar to Alexa, which

1Tranco list, dated 20 Nov. 2020, available at: https://tranco-list.eu/list/P5JJ
2Tranco Europe, dated 21 Nov. 2020, available at: https://tranco-list.eu/list/WNJ9

41

https://tranco-list.eu/list/P5JJ
https://tranco-list.eu/list/WNJ9

6.1. Crawler Performance and Analysis

improves upon the shortcomings of other rankings, and moreover provides
reproducibility, making it ideal for research purposes. We use European do-
mains in addition to the top 1 million because we expect the top domains to
be dominated by USA-based websites. With the GDPR being a EU regula-
tion, we expect a greater degree of compliance, and thus a greater amount
of consent notices among European websites.

Our smaller, secondary sources are Cookiepedia [45] with 44 942 domains,
and BuiltWith [8] with 6956 domains. While these are not rankings like
Tranco, they can be crawled for specific domains that have a high likelihood
to contain one of the selected CMPs.

BuiltWith provides lead lists of web technologies for different geographic
regions, such as rankings for Consent Management Platforms. For each
CMP, they publicly list a small number of domains that they determined
use the given technology. By scraping various region rankings on BuiltWith
for Cookiebot, OneTrust, and Termly, we find a total of 6592 unique websites
to add to the total list of domains.

Cookiepedia is a repository which lists purposes and descriptions for over 30
million cookies. In addition, it lists all domains where a cookie has previ-
ously been observed to exist. Both Cookiebot and OneTrust use a cookie
to remember the user’s consent choices, which is set as soon as the visi-
tor arrives at the website. By querying Cookiepedia for these cookies and
scraping the resulting list of domain, we receive a collection of websites that
are highly likely to use OneTrust or Cookiebot CMPs. In total we scrape
41 932 domains with a OneTrust consent cookie, and 3010 domains with a
Cookiebot consent cookie.

6.1.2 CMP Presence Crawler Results

In this subsection we present the results of the crawler described in Sec-
tion 3.3.1, applied to the list of domains described in the previous section.
To recapitulate, the presence crawler verifies whether a given domain is
reachable, and if so, checks whether the landing page contains one of the
supported CMPs. This reduces the number of domains that need to be
targeted for the subsequent application of the consent label crawler. On a
consumer-grade laptop with a 100 Mbit/s network connection and using a
VPN located in the Netherlands, the crawl took approximately 23 hours to
filter a list of roughly 1.6 million domains.

Table 6.1 lists the results. Note that there is some overlap in the domains
that were gathered from Cookiepedia and Tranco. After removal of all du-
plicates, we receive a total of 9975 domains that potentially use Cookiebot,
20 380 domains that potentially use OneTrust, and only 665 domains that
may use Termly. As the Termly domains are comparatively rare, the cookie

42

6.1. Crawler Performance and Analysis

Table 6.1: Results of the presence crawler on the selected URL sources, with observed CMP
market share among the reachable domains.

Domain List Conn. Error No CMP Cookiebot OneTrust Termly

Tranco Worldwide 356 926 617 652 3929 5854 233
Tranco Europe 87 837 468 955 3849 1876 66
Cookiepedia 9392 15 745 1196 18 598 5
BuiltWith 590 2078 2194 1328 402
Total 454 745 1 104 430 11 168 27 656 706
Duplicates Removed - - 9975 20 380 665

Market Share

Tranco Worldwide - - 0.626% 0.933% 0.037%
Tranco Europe - - 0.811% 0.395% 0.014%

labels collected from this CMP will have a lesser impact on the resulting
training. In total, we thus have 31 020 unique domains to scrape for the
second stage of the crawl.

Observations

We observe a significant number of connection failures, especially in the
Tranco top 1 million worldwide at 36.25%. Connection errors were generally
either due to HTTP errors occurring, or a failure to establish a connection
entirely. One possible explanation for this is bot-detection. Even though
we use a fake user-agent string imitating a Chromium browser, it is still
possible for websites to detect that we are connecting using the Python re-
quests library. This could be solved by crawling the failing domains with
actual browser instances, at the cost of computational time. Other possible
reasons include include high latency, region blocks, or the domain set con-
taining dead websites. These are observed consistently over multiple crawl
attempts with the same list of domains.

As expected, only a small number of the crawled domains contain a CMP.
Out of the reachable domains in the Tranco top 1 million, we observe a
market share of 0.933% for OneTrust, and a share of 0.626% for Cookiebot.
In the European domains, we see a share of 0.395% for OneTrust and a share
of 0.811% for Cookiebot. As such, Cookiebot appears to be more common
than OneTrust among the domains in Europe. Surprisingly, our expectation
with the European domains is not fulfilled. In the Tranco top 1 million
worldwide, roughly 1.60% of all domains use one of the selected consent
notices, while in the European domains, we found only a share of 1.22%.

The market share results for the top 1 million match up remarkably well

43

6.1. Crawler Performance and Analysis

with the observations made by Hils et al. [25] and the market shares found
on BuiltWith [8]. This indicates that our crawler achieves comparable results
to previous attempts to measure CMP presence on the Web.

6.1.3 Consent Crawler Results

In this subsection we present the results of the web crawler described in Sec-
tion 3.3.2. In summary, this crawler uses OpenWPM [42] to retrieve cookies
and their associated consent labels from websites that use specific CMPs.

Like the presence crawl, the consent label crawl was performed locally using
a 100Mb/s DSL connection and a VPN located in the Netherlands. We
crawled a total of 31 020 domains spread over 7 parallel browser instances.
The browser instances were run on a 8-core Intel i7-8550U CPU with a clock
rate of 1.80GHz per core. A full crawl for all filtered domains took roughly
84 hours to perform with this setup.

Domain Statistics

First, we will look at the success rate of the crawler on the target domains:

• For 26 403 out of 31 020 domains (85.1%), the crawl was able to suc-
cessfully extract purpose labels and descriptions from the CMP.

• For 4371 out of 31 020 domains (14.1%), the crawl could successfully
establish a connection, but could not extract any consent data. This is
either because the CMP setup could not be parsed, or because there
was no supported CMP on the website.

• For 246 out of 31 020 domains (0.79%), the crawl ended with a connec-
tion failure or HTTP error, preventing access to any data.

Additionally, for 2105 out of 31 020 domains (6.8%) the crawler eventually
encountered a timeout while browsing the site. These cases are non-fatal, as
some cookie data may still have been retrieved. In further detail, separating
by CMP type, we get the following results:

• On 373 domains (1.2%), the crawler established a connection, but could
not find any supported CMPs in the landing page.

• 9782 domains contained the Cookiebot CMP (31.5%). Out of these,
8272 allowed a successful data extraction.

– The most common cause of failure with Cookiebot is due to an
“unrecognized referrer” error. This occurred in 1159 out of 1510
failure cases. Such errors occur because the host made an error
when setting up Cookiebot on their domain. We verified this by
visiting the websites manually, and in all cases we examined, we
found the same error in the browser log.

44

6.1. Crawler Performance and Analysis

– The second most common cause is that the crawler could not
find the document that stores the consent information, which can
occur if Cookiebot is only referenced in comments on the site, and
not actually active. This happened in 264 cases.

• OneTrust is found on 20 032 domains in total (64.58%). Out of these,
17 823 lead to a successful data extraction.

– The most common cause of error with OneTrust occurred because
the cookie data was only available in an unsupported language,
which makes up 1488 out of 2209 failure cases.

– The second cause is because the crawler could not identify how to
extract the cookie information from the OneTrust CMP, which oc-
curred in 538 cases. This can either be an indication that there
exists a OneTrust implementation which our crawler does not
handle, or that the CMP plugin is not installed properly.

– The third cause occurred due to connection failures when trying
to access the remote OneTrust domain. In 111 cases, this lead to
a HTTP error. This is an indication that OneTrust does not recog-
nize the domain, and the CMP is hence not working correctly on
the crawled website.

• Termly is found on 587 domains in total (1.9%). Only from 308 do-
mains could the CMP data be successfully extracted, further reducing
the number of cookie labels retrieved for this CMP.

In summary, our consent crawler reports a success rate of 85.12%. We find
that the majority of the failed crawls originated from host errors that out of
our control. A minority could be traced to errors in the crawler implemen-
tation, which have since been resolved.

Cookie and CMP Data Statistics

In this subsection we present the overall statistics on our collected consent
label data, as well as the actual cookies that were retrieved from the websites.
During the crawl, we collected a grand total of 622 005 cookies. The average
number of cookie updates was 3.63 updates. Separated by CMP we get:

• Cookiebot: 174 302 cookies (28.02%). Average: 17.82 cookies/site

• OneTrust: 437 846 cookies (70.39%). Average: 21.86 cookies/site

• Termly: 9857 cookies (1.58%) Average: 16.79 cookies/site

In terms of data scraped from the content of CMP documents, we collected
a total of 1 715 700 consent label entries, which consist of a total of 778 909
unique cookie identifiers, of which at least one third is third-party cookies.

45

6.1. Crawler Performance and Analysis

Figure 6.1: Number of collected consent labels, separated by category and origin.

As such, a large number of cookies that are declared in consent notices are
also from third-parties. We find the following label counts:

• Strictly Necessary: 202 802 (11.82%)

• Functionality: 169 901 (9.90%)

• Performance/Analytics: 216 856 (12.64%)

• Tracking/Advertising: 959 722 (55.94%)

• Unclassified/Unknown: 166 419 (9.70%)

Figure 6.1 gives a more detailed breakdown of these results, with each cate-
gory additionally separated by origin CMP. We observe that the overwhelm-
ing majority of unique cookie declarations belong to the advertising class.
Among those, the overwhelming majority stems from the OneTrust CMP,
but also Cookiebot declares a majority of its cookies with this purpose. We
also observe that “Functionality” is the least commonly declared category,
and that it is particularly uncommon in the Cookiebot CMP. For cookies
with an ”unknown” categorization, most of the entries from OneTrust stem
from unrecognized category names, for example due to an unsupported lan-
guage, while for Cookiebot and Termly, this stems from unclassified cookies.
Termly declarations are not only very rare but also unspecific. In fact, more

46

6.1. Crawler Performance and Analysis

than half of all cookie declarations we found for Termly actually do not
assign any purpose, but instead leave it as “unclassified”.

Cookie/Label Count Discrepancy

There exists a large discrepancy in the number of actual cookies found ver-
sus the number of declared cookie labels. In particular, we observe almost
three times as many cookie declarations than actual cookies. Yet at the same
time, as we will see in Sections 6.1.3 and 7.5, only a fraction of the cookie
declarations actually match a real cookie.

Splitting the results up by CMP type, we find that 16.45% of the declara-
tions that do not match an actual cookie originate from Cookiebot, 82.10%
originate from OneTrust, and 1.45% originate from Termly. As such, the
majority of unobserved cookies stem from OneTrust. We observe an average
declarations per site of 44.05 for Cookiebot, 74.54 for OneTrust, and 58.78
for Termly.

We can think of a number of explanations for this phenomenon. The first
is that the number of declarations is over-inflated compared to the cookies
that are actually present on the website. It is possible that the CMP simply
declares all cookies that are offered by third-party vendors, rather than the
ones that are used. Another possibility is that the consent notice not only
includes cookies, but also other types of tracking technologies. This is at
least the case for Cookiebot, which also explicitly declares tracking pixels.

The second explanation is that our crawl does not interact with the website
in a complex manner. For example, no website settings are changed, no spe-
cial buttons or widgets are interacted with and the crawler never registers
or logs into an account on any of the websites visited. This is likely to de-
crease the number of observed cookies, specifically those that are declared
as “functional” or “necessary”. This is also reflected by the comparatively
low number of functional cookies we observe in the training samples, as
described in the following subsection.

Training Sample Statistics

After matching the consent labels with the actual cookies, as explained in
Section 3.4, we receive the dataset of training samples. Similarly to the
previous, this subsection presents statistics on this data.

In total, we have 309 472 samples in the final training dataset. There is an
average number of 4.51 updates per training cookie, and the most updates
we have seen for a single cookie is 2853. It was not possible to pair roughly
half of the collected cookies with a matching declaration, an issue we will
investigate further in Chapter 7. A detailed breakdown of the training data
counts, separated by origin and purpose, is given in Figure 6.2.

47

6.1. Crawler Performance and Analysis

Figure 6.2: Number of training samples, separated by category and origin.

For the classifier, class imbalance can be an important factor to consider
during training. The number of samples for each purpose category are:

• Strictly Necessary: 78 161 (25.26%)

• Functionality: 17 490 (5.65%)

• Performance/Analytics: 75 520 (24.40%)

• Tracking/Advertising: 138 301 (44.69%)

As we can see, the advertising category still has a majority, although it is less
dominant than for the consent labels. What is particularly concerning is the
low number of observations that we have for functionality cookies. At just
5.65%, we lack a significant amount of training data for this category. This
is not easy to compensate, and will likely make the classifier particularly
inaccurate for “Functionality” type cookies.

After extraction of the training data, the number of Termly cookies decreases
even further to almost insignificant levels. With such a low number of use-
able samples, it may not be worth crawling additional CMPs with a similar
market share as Termly.

Another observation we can make is on the mean and standard deviation

48

6.1. Crawler Performance and Analysis

of cookie updates per category label. A cookie update hereby occurs any
time a HTTP request or JavaScript call tries to create a cookie that is already
present in the browser, regardless of whether the contents are altered:

• Strictly Necessary: 5.24± 12.30 updates per cookie

• Functionality: 5.87± 21.55 updates per cookie

• Analytical: 5.37± 6.95 updates per cookie

• Tracking/Advertising: 3.13± 5.15 updates per cookie

Cookies that serve functional purposes appear to be updated more fre-
quently on average than tracking cookies, and moreover can have a highly
variable number of updates. Tracking cookies see less updates than the
other categories, and also hold the lowest standard deviation. These mea-
surements could help a classifier distinguish between the classes.

6.1.4 Lower Bound Estimate for Label Noise

Consent category labels collected from Consent Management Platforms can
be unreliable, as individual hosts may misclassify cookies, either intention-
ally or by mistake. At the same time, it can provide us with a diverse set
of cookies whose labels are retrieved directly from the hosts that created
them. This may include rarely observed cookies for which repositories such
as Cookiepedia do not provide any information.

In this section, we discuss how we can estimate a lower bound for the degree
of noise of the labels in our dataset. To do so, we attempt to determine the
majority class for third-party cookies. If this majority class is correct, then
the outlier labels count towards the total number of errors. If instead the
majority class is wrong, then the number of wrong labels can only be strictly
larger.

Overall, 120 726 of the 309 472 cookie samples occur more than once, and are
therefore third-party cookies. Out of these samples, 8744 have labels that
deviate from their respective majority class. This gives us a lower bound of
7.24% of labels that are noise among the third party cookies, and a lower
bound of 2.83% over all training samples. Overall, there appears to be a
strong agreement across the websites we crawled, which may be a result of
CMPs suggesting default cookie labels to their customers [13, 50]. This gives
us confidence that our ground truth is not strongly perturbed by noise.

Note that this lower bound only measures the noise for third-party cook-
ies. First-party cookies may also be mislabelled. However, this is harder
to measure, as they are often unique and must be evaluated on a case-by-
case basis. We expect the number of wrong labels to be lower for first-party
cookies than for third-party ones however, as with these cookies being rarely
used for tracking, there is less of an incentive to misguide the visitor.

49

6.2. Feature Evaluation

Figure 6.3: Importance of the top 20 features by gain. This measures how high the increase in
“decision power” is with the introduction of one of the listed features.

6.2 Feature Evaluation

In this section we will use the feature importance, as reported by XGBoost,
to analyze which features are most useful in representing the domain of
cookies. We utilize two different importance measurements, namely the
gain and weights metrics.

6.2.1 Feature Importance by Gain

The gain represents the increase in expressiveness and decision power in the
model when splitting on a feature. In other words, this metric represents
how much a specific feature increased the model’s ability to distinguish
between the four cookie purpose classes.

In Figure 6.3 we show the importance of the top 20 features when using the
gain metric. The y-axis displays the names of the features with associated
vector index, while the x-axis is the gain of the feature. The higher the gain,
the better the feature allows the model to distinguish between classes.

We observe that the name and domain one-hot vectors are among the most

50

6.2. Feature Evaluation

important features of the training dataset. These are categorical features
that determine whether the name or domain of the cookie match one of the
most commonly found names and domains, as determined by a separately
constructed ranking.

In particular, the features “top-names-8” and “top-names-13” represent
the cookie names “ cfduid” and “ gads”, respectively. In addition, the
“name-tokens-0” feature represents the “gat” Google Analytics identifier.
These features make sense to be useful to the classifier, as unique identifiers
and Google Analytics tokens are indicative of tracking and analytics cook-
ies respectively. A possible concern with these features is that they may be
too specific, in the sense that they may cause the classifier to overfit to the
specific origins and names commonly found in the training set. To prevent
this, we sourced the top name and top domain features from a separate,
randomly selected set of 10 000 domains that were crawled to gain random
cookie data.

In terms of more generic features, we find that dates, timestamps and the
expiration time appear to be important. Whether a cookie consists of all
uppercase characters also appears to play a significant role in being able to
distinguish between purpose classes.

6.2.2 Feature Importance by Weight

The weight metric is the total number of nodes in all forests that use the spec-
ified feature to perform a decision. It indicates which features the classifier
training relied most on.

In Figure 6.4, we list the importance in the top 20 features using the weight.
Unlike with the gain, here we mostly see generic features being used, in
particular the entropy, the expiration time, and similarity between cookie
contents. This indicates that these features still play an important role in the
training to reach more nuanced conclusions.

6.2.3 Auxiliary Feature Analysis

In the following we verify whether certain flags and contents of a cookie can
actually be observed to be altered when the cookie is updated. If not, then
features that check for such changes would be of little use. Over the 309 472
unique training samples, we have found:

• 2402 instances (0.78%) where the expiry was changed by more than 24
hours.

• 795 instances (0.26%) where a persistent cookie turned into a session
cookie, or vice-versa.

• 327 cases (0.11%) of the secure flag being toggled in an update.

51

6.3. Classifier Evaluation

Figure 6.4: Importance of the top 20 features by weight. This measures the number of times a
feature was used in the forest of trees overall.

• 201 cases (0.06%) of the SameSite flag changing in an update.

• 146 cases (0.05%) of the HTTP-Only flag changing in an update.

This proves that the select flags and the expiry can change in a cookie up-
date. We also observe that the content of a cookie changed in 39 798 out of
309 472 cases (12.86%). While rare, such features could still provide a signif-
icant gain in helping the classifier distinguish between cookie purposes.

6.3 Classifier Evaluation

In this section we present the classifier performance in the offline setting,
using the collected dataset for both training and validation. We will first re-
call some terminology that is useful for the following evaluation. We discuss
how we obtain a baseline comparison, and then present our results.

6.3.1 Terminology

In this subsection we briefly recall the terms of confusion matrix, precision and
recall to support the following evaluation.

52

6.3. Classifier Evaluation

In a multi-class classification problem, the confusion matrix C visualizes the
accurate and inaccurate predictions by each ground truth class. We desig-
nate the ith row of the matrix C as the ground truth, and the jth column as
the predicted label. Then, the entry Cij determines how many instances of
ground truth i were assigned class j. Note that the diagonal in the confusion
matrix represents the accurate predictions for each class.

The precision of a class k represents how many instances that were assigned
the label k actually matched the ground truth. For instance, if we assigned
the label “Strictly Necessary” to 100 cookies, and only 30 of these are actu-
ally used for this purpose, this gives us a precision of 30% for that class.

The recall of a class k represents how many of the total instances that had
the ground truth k were assigned the correct label. For example, if there
exists a total of 100 functional cookies in the dataset, and we assign the
“functionality” category to 60 of these, then we reach a recall of 60%.

6.3.2 Cookiepedia Baseline

To the best of our knowledge, we are the first to apply machine learning
techniques to the task of categorizing cookies into purposes. As such, we
can only compare our approach to manual classification efforts, performed
by human operators.

What we consider the state-of-the-art in this regard is the publicly accessible
database Cookiepedia [45], which reportedly records over 30 million cook-
ies. For each cookie, the repository lists the name, host, path, lifespan, and
whether the cookie is flagged as secure or HTTP-only. In addition, a team of
human operators determines the purpose of individual cookies, manually
classifying them and attaching a description. Since this is a gradual process,
not every cookie in the repository has a purpose label assigned to it.

To utilize Cookiepedia as a quasi-predictor, we send a query for each cookie
name in our dataset and obtain the corresponding label from the repository.
This label is then compared to our ground truth, which are the labels we
collected from the Consent Management Platforms.

As is normally the practice in cross-validation, we evaluate Cookiepedia’s
prediction accuracy, precision and recall by splitting the dataset of 309 472
training cookies into five equally-sized folds, which serve as the test sets.
Using the extracted label and the ground truth, we construct a confusion
matrix and compute the precision and recall for each fold. Finally, we com-
pute the mean and standard deviation of those metrics over all five folds.

It may occur that Cookiepedia does not know a class for the given cookie
name, either because the cookie is not stored in the database, or because
no human operator has assigned a label to it yet. We record the number of

53

6.3. Classifier Evaluation

Table 6.2: Cookiepedia precision and recall per category, evaluated using a 5-fold split. Total
number of cookies with available category: 77.82%

Cookiepedia – Average Accuracy: 85.46%± 0.14%

Necessary Functional Analytics Advertising

Mean Precision 93.18% 36.86% 81.33% 94.40%
Std.Dev. Precision ±0.14% ±0.90% ±0.30% ±0.12%
Mean Recall 87.72% 73.26% 91.57% 81.10%
Std.Dev. Recall ±0.20% ±0.96% ±0.12% ±0.15%

Figure 6.5: Confusion matrix heatmap for a single fold of the Cookiepedia baseline. The rows
represent the ground truth, while the columns represent the labels from Cookiepedia.

missing labels, and report the overall cookie coverage. To keep the compar-
ison with the classifier approaches fair, we do not factor the missing cookie
labels into the precision/recall computation.

Baseline Performance

Table 6.2 presents the results of the Cookiepedia baseline. The average ac-
curacy that Cookiepedia achieves over all classes is 85.46%, with a standard
deviation of 0.14%. It shows a particularly high precision for “Necessary”
and “Advertising” type cookies, and a high recall for “Necessary” and “An-
alytics”. Additionally, Cookiepedia stores categories labels for a total of
77.82% of the cookies in our dataset. We also see that the precision and
recall per class deviates little depending on the fold.

Particularly interesting here is the low precision for “Functionality” type

54

6.3. Classifier Evaluation

cookies. To gain further insight on why the precision is so low, we analyze
the confusion matrix in Figure 6.5. Here, we see that a large number of
cookies with ground truth “Necessary” and “Advertising” were assigned to
“Functionality” instead.

Ultimately, the reason for why precision for functional cookies is low is due
to the class imbalance. There exist significantly more cookies for all other
categories, meaning that if a fraction of these are misclassified as functional,
the effect on the precision of this category will be significant.

6.3.3 Classifier Performance

We now present the performance of each classifier we applied. For each
model, we performed a random search to find a good combination of hyper-
parameters, and we applied 5-fold cross-validation to produce the average
performance metrics.

Each model was trained for a maximum of 2000 boost rounds with early
stopping after 30 rounds of observing no increase in the validation score.
Each boost round constructs a new tree, meaning that the number of rounds
also represent the size of each forest. Validation was performed using the
average error and the multiclass cross-entropy as metrics, with the latter
being used for early-stopping. We set the maximum tree depth to 12 levels,
and used a learning rate of 0.3.

For XGBoost, the training took on average 6.5 minutes per fold, and per
fold, the number of actual boost rounds was in a range of 167 to 322 rounds,
with an average of 244. The average accuracy is 86.90% with a deviation of
0.12%.

With LightGBM, training was much faster than XGBoost, and only took
49 seconds on average per fold. We trained trees in a range of 162 to 209
trees per forest, and achieved an average accuracy of 86.16% with a standard
deviation of 0.10%.

Finally, CatBoost took the longest to train by far, with 26.5 minutes on
average. The long training time is a result of training for the entire 2000
boost rounds in each fold, as the validation score continuously improved
by small margins. The average accuracy for CatBoost was 87.21% with a
standard deviation of 0.19%.

An overview of the precision and recall for all evaluated approaches, includ-
ing the Cookiepedia baseline, is presented in Table 6.3.

Comparison and Summary

First, we see that each of our classifiers outperforms Cookiepedia on the
collected dataset in terms of average accuracy. CatBoost achieves the best

55

6.3. Classifier Evaluation

Table 6.3: All precision and recall for XGBoost, LightGBM, and CatBoost using 5-fold
split. The Cookiepedia baseline results are also listed to simplify direct comparisons.

Necessary Functional Analytics Advertising

Cookiepedia – Average Accuracy: 85.46%± 0.14%

Mean Precision 93.18% 36.86% 81.33% 94.40%
Std.Dev. Precision ±0.14% ±0.90% ±0.30% ±0.12%
Mean Recall 87.72% 73.26% 91.57% 81.10%
Std.Dev. Recall ±0.20% ±0.96% ±0.12% ±0.15%

XGBoost – Average Accuracy: 86.90%± 0.12%

Mean Precision 86.46% 48.54% 87.19% 94.97%
Std.Dev. Precision ±0.50% ±1.27% ±0.24% ±0.28%
Mean Recall 80.52% 76.96% 87.66% 90.25%
Std.Dev. Recall ±0.19% ±1.48% ±0.21% ±0.30%

LightGBM – Average Accuracy: 86.16%± 0.10%

Mean Precision 86.72% 44.66% 87.38% 95.15%
Std.Dev. Precision ±0.48% ±0.79% ±0.19% ±0.16%
Mean Recall 78.77% 79.62% 86.78% 89.57%
Std.Dev. Recall ±0.20% ±0.48% ±0.39% ±0.14%

CatBoost – Average Accuracy: 87.21%± 0.19%

Mean Precision 85.81% 54.20% 86.41% 93.61%
Std.Dev. Precision ±0.55% ±0.79% ±0.44% ±0.14%
Mean Recall 81.67% 68.65% 88.08% 91.25%
Std.Dev. Recall ±0.62% ±1.02% ±0.39% ±0.17%

performance at 87.21%, but is also the classifier that took the longest to train,
with the most trees per forest. LightGBM achieves a worse performance
than XGBoost and CatBoost, but can be trained significantly quicker than
either of the two.

Compared to all of our classifiers, Cookiepedia has an advantage in both
precision and recall with the class of “Strictly Necessary” cookies. A lower
precision for this purpose can indicate less privacy, as this could mean that
more tracking/advertising cookies are wrongly interpreted as being strictly
necessary. Furthermore, a lower recall can indicate that more websites break,
as strictly necessary cookies are wrongly classified and possibly removed
by the extension. Cookiepedia achieves a better precision at 93.18%, and
a better recall at 87.72%, while our classifiers only achieve a maximum of
86.72% and 81.67% respectively.

56

6.3. Classifier Evaluation

Figure 6.6: Confusion matrix heatmap for a single fold of the XGBoost evaluation. The rows
represent the ground truth, while the columns represent the predicted labels.

By viewing the confusion matrix for XGBoost in Figure 6.6, we see that this
issue is less severe than it first appears. Namely, the main difference com-
pared to Cookiepedia is that our classifiers assign more necessary cookies to
the “Functionality” class. 9.52% of the “Necessary” labels were assigned to
“Functional” cookies, 6.04% were assigned to “Analytics”, and 4.04% are as-
signed to “Advertising”. This lies within the expected results, as functional
cookies are often difficult to distinguish from strictly necessary ones.

The applied classifiers are able to achieve increased precision and recall for
“Functionality” type cookies compared to the Cookiepedia baseline. More-
over, we also achieve a higher precision for “Analytics” type cookies, as well
as a higher recall rate for the “Advertising” class. The remaining metrics are
comparable, and the standard deviation is consistently low across all folds.

LightGBM is able to train the model much quicker than either of the other
approaches, at the cost of overall accuracy. This could be useful in case the
number of features is increased, for example by further increasing the size
of the “Top Names” and “Top Domains” categorical feature vectors. It would
also be useful if more cookies are gathered for classifier training, for instance
with an approach that trains on the entire Cookiepedia dataset of cookies.

CatBoost achieves the best overall performance. However, due to the high
increase in training time and the size of the resulting forests, this small
increase does not seem worth the cost. The number of trees in the forest
is a factor that is important to keep in mind for the purpose of a browser
extension, as it directly affects the filesize of the resulting model.

57

6.4. Extension Evaluation

In our case, the resulting CatBoost model size was 89 MB, while the XG-
Boost model had a filesize of roughly 10 MB. This makes the latter much
more suitable for integration into the extension.

Finally, one major advantage of our approach over Cookiepedia is that it is
fully automated, and can be applied to any cookie found in the wild. Cook-
iepedia only covers 77.82% of all cookies in our dataset, while we achieve
full coverage. No further human input is required to predict a purpose
for new cookies, thus massively speeding up the process. The downside
compared to Cookiepedia however is that we cannot generate a detailed,
human-readable description of each cookie, which may also be required to
allow the visitor to make informed decisions.

In conclusion, each of the applied tree-ensemble models can outperform the
state-of-the-art in cookie classification, based on the dataset we collected.
The best approach, CatBoost, achieves an increase of 1.75% in overall accu-
racy over Cookiepedia. However, due to the size of the forest produced by
CatBoost, we instead opted to use the smaller XGBoost model for integra-
tion into the browser extension.

6.4 Extension Evaluation

In Chapter 5 we described the implementation of CookieBlock, which is
intended to ensure that a user’s cookie consent preferences are applied to
each website that is visited.

In this regard, there are three criteria that can be evaluated:

• Effectiveness at ensuring user privacy: While our applied classifiers all
outperform the baseline on our collected dataset, this does not guar-
antee that the extension is effective at ensuring user privacy. In order
to verify this, it is required to evaluate the predictor on known tracking
cookies that were gathered from a random sample of websites, and to
then verify that the predicted label is accurate.

• Preservation of website functionality: It should also be verified that the
extension does not inadvertently break essential functionality of web-
sites by removing cookies that are strictly necessary. For this, we need
to perform extensive testing on a variety of websites using a multitude
of different configurations.

• Usability: To ensure that the extension is easy to use, and moreover
does not negatively affect the browsing experience, we need to per-
form a user study with a small group of dedicated testers, and gather
feedback on these aspects. One particular concern for instance is the
speed of the feature extraction and the label prediction, and whether
the extension can slow down the browser in special cases.

58

6.4. Extension Evaluation

Table 6.4: Precision and Accuracy metrics of the predictor implemented in JavaScript, using
the features extracted through NodeJS, see Sections 5.3.1 and 5.3.2. Uses the XGBoost model.

Necessary Functional Analytics Advertising

Precision 88.18% 43.94% 86.31% 94.32%
Recall 76.96% 74.29% 87.96% 89.84%

Unfortunately, we did not have time to perform these evaluations in the
scope of this master thesis. However, they will likely be explored in future
work involving CookieBlock.

In the remainder of this section, we will present the performance of the
JavaScript predictor combined with the reduced feature set, as described in
Sections 5.3.1 and 5.3.2.

6.4.1 CookieBlock Predictor Accuracy

In Chapter 5, we described how we altered the feature extraction for the
training samples, and how we reimplemented the tree predictor for the pur-
pose of classifying cookies within the extension. For this, the code had to be
translated from Python to JavaScript, and a number of features needed to be
altered to accommodate for the new setting. This included the reduction of
the per-update features down to a single update, as well as the removal of
the third-party indicator feature.

In this subsection, we analyse how this change affects the performance of
the XGBoost model. Table 6.4 presents the precision and recall results for
the CookieBlock predictor, evaluated on a single validation set of cookies.

The overall accuracy of the XGBoost predictor dropped from 86.90% to
85.92% after the changes were applied, which still outperforms Cookiepedia.
The overall performance was reduced slightly in precision and recall, but
the results still lie within the standard deviation. Therefore, the changes we
applied to the feature extraction and the predictor for the browser extension
did not reduce the performance to a degree that would make the predictions
significantly worse than in the offline setting.

To summarize, we can confidently say that CookieBlock outperforms the
state-of-the-art in cookie classification accuracy, at least on the cookie labels
we scraped from different CMPs. The offline classifiers written in Python do
give a slightly better performance, which can be useful for predicting labels
for large datasets of cookies, and analysing the results.

59

Chapter 7

Automatic Violation Detection

Using knowledge of specific articles of the GDPR and related court rulings,
we determine six novel methods to help identify inconsistencies inside con-
sent notice designs, and to detect potential violations of current legislation
which expands on existing work in the area. This is intended to help su-
pervisory authorities in ensuring compliance, and to provide ways in which
researchers can determine the extent of non-compliant behavior.

These methods require the extraction of consent labels from the consent no-
tice found on a website. In our case, this is limited to websites that host the
Cookiebot, OneTrust or Termly CMPs, but this can in principle be expanded.
We apply these methods to our own collected dataset, which consists of a
total of 1 715 700 consent label declarations and 552 454 cookies that were
found on 26 403 websites with supported CMPs.

Our methods include the detection of:

1. Wrongly assigned labels for cookies with a known purpose. For Google
Analytics cookies, we observed this on 15.46% of all domains.

2. Outlier labels, which deviate from the majority opinion of other web-
sites that held the same cookie. Observed on 27.75% of all domains.

3. Incorrect retention period, i.e., cookie expiry. This involves cookie ex-
piration dates that are at least 1.5 times greater than the declared ex-
piry time. Observed on 5.30% of all domains.

4. Unclassified cookies. Cookies that are declared, but which have not
been assigned a category. Observed on 19.21% of all domains.

5. Undeclared cookies. Cookies that are found on a website, but which do
not appear in the consent notice. Observed on 86.08% of all domains.

6. Declarations with contradictory labels. Seen on 3.51% of all domains.

60

7.1. Method 1: Wrong Label for Known Cookie

At least one of the above listed pieces of evidence can be observed on 91.87%
of all crawled domains. If we exclude the undeclared cookies, we observe
the remaining evidence on 49.30% of all websites.

Note that the evidence collected in this chapter may not necessarily point
towards malicious intent. In many cases, particularly for undeclared cook-
ies, the host may simply not be aware of the cookies that are present on the
website, or their correct purpose. Still, non-compliance by mistake is ulti-
mately still non-compliance, and what is presented here shows how strictly
the rules of the GDPR are being followed on the web.

The remainder of this chapter will proceed as follows. In each of the fol-
lowing six sections, we will discuss one of the aforementioned methods in
more detail, and present additional results. To conclude, we describe two
as of yet unimplemented approaches to identify potential violations, which
could reaffirm observations made in previous work.

7.1 Method 1: Wrong Label for Known Cookie

Recital 32 of the GDPR [22] states that consent must be specific and in-
formed. Furthermore, in a decision by the EU Court of Justice on the
Planet49 case [30], it was made clear that a website host cannot declare
“Google Analytics” cookies as being strictly necessary for the operation of
the site.

Based on these decisions, if a website wrongly declares a cookie for which
the purpose is well-known, such practice could be considered deceitful, and
thus may be in violation of the requirement of specific and informed consent.
Furthermore, the ePrivacy directive states that strictly necessary cookies do
not require consent [21]. Therefore, if a known cookie is falsely labelled as
“strictly necessary”, then in most consent notice implementations, the user
will be forced to accept that cookie.

“Google Analytics” (GA) cookies are some of the most common first-party
cookies found on the web. As the name implies, they serve the purpose
of Web-Analytics. In our dataset alone, at least 75 454 cookie declarations
(4.40%) belong to GA. These are usually first-party cookies that have names
such as " ga", " gat", " gid", among others. By querying our database for
all websites that mislabel these cookies, we can gather evidence for poten-
tially deceptive consent notices.

We analyze the number of mislabeled GA cookies in our dataset to demon-
strate this approach. We observe that 15.46% of all domains in our dataset
fail to assign at least one GA cookie to the proper purpose. Out of 75 454
GA cookie declarations, 12 849 (17.02%) were assigned the wrong category
by the host of the website. Moreover, at least 2172 (2.88%) GA cookies were

61

7.2. Method 2: Identifying Outlier Labels

declared as “Strictly Necessary”, meaning that they were set in the browser
before any consent could be given.

This approach is of course not just restricted to GA cookies. In principle, it
could be repeated for any well-known cookie of a particular purpose. We
leave this open as potential future work to be pursued.

7.2 Method 2: Identifying Outlier Labels

The second method of gathering evidence for potential GDPR violations is
similar to the first. Again we try to determine potential misclassifications of
cookies, but this time also for those that do not have a definitively known
purpose. Namely, we approximate the ground truth by using the majority
label of that cookie in the dataset, similarly to the lower-bounds noise anal-
ysis described in Section 6.1.4. Because the cookie needs to be seen across
multiple domains, this method is only applicable to third-party cookies.

First, for each unique cookie identifier, we count the number of occurrences
for each label, and then select the majority. To prevent a majority from being
too narrow and undecisive, we restrict the analysis to cookies that occur at
least 10 times across different domains, and where the most common label
has at least a two thirds majority. Then, we simply identify all domains that
assign a label to this cookie that does not match the majority opinion.

In total, 27.75% of the analysed domains contained at least one outlier cookie
label. A total of 26 371 cookie declarations deviate from a majority opinion.
In 5046 cases, a cookie was declared as “Strictly Necessary” when the ma-
jority label for that cookie was “Advertising” or “Analytics”. These are
particularly severe cases of mislabeling, as consent notices will normally not
request consent for strictly necessary cookies.

When used for determining potential violations, the results produced by this
method should be further analysed by a human operator, namely to deter-
mine whether the majority opinion for that cookie is actually correct. In the
case where the majority is incorrect, this may be indicative of a CMP sug-
gesting a wrong default label to its customers. The Cookiebot and OneTrust
CMPs in particular use label repositories to suggest default categories for
common cookie identifiers [13, 50].

7.3 Method 3: Incorrect Retention Period

Article 13 of the GDPR [22] and the Article 29 Working Party (29WP) [2], an
EU body which advises on the interpretation of the EU cookie directive, de-
fine the necessary information that needs to be declared in relation to cook-
ies. This includes the purposes for processing personal data (Article 13 1(c)),

62

7.4. Method 4: Unclassified Cookies

Figure 7.1: The consent choices offered by the Cookiebot plugin. Note that unclassified cookies,
while listed in the drop-down menu, cannot be enabled or disabled here.

the third parties with whom the data is shared (Article 4(9)), as well as the
storage period of the cookie (Article 13(2)(a)). In particular, France’s CNIL [11]
proposes guidelines on the maximum lifetime of cookies, corresponding to
their purpose [47].

A failure to accurately declare the expiration time for cookies may thus also
violate the rules set up by the GDPR. To do so, we record each cookie for
which the actual expiry is more than 1.5 times the declared period, as well
as the website that held the corresponding cookie. Furthermore, any cookie
that is declared as a session cookie, but is actually persistent will also be
flagged, and vice-versa.

We found cookie expiration date inconsistencies in 5.30% of the total do-
mains, indicating that this requirement appears to be relatively strictly ad-
hered to.

Note that for this analysis, we specifically excluded the cookie with the
name “CookieConsent” from these results, as it introduced a strong bias. This
cookie stores the consent preferences of the visitor for Cookiebot, and was
thus found on all of the domains that used the Cookiebot plugin. On all
instances we found, the cookie exhibited an expiration date that deviated
from the declared duration by several years. However, as soon as the user
interacted with the consent notice, the cookie would correct itself. Therefore
we ignored this in the analysis.

7.4 Method 4: Unclassified Cookies

Article 7 as well as Recital 32 of the GDPR state that consent must be specific
and informed in order to be considered valid. In effect, this means that a
consent notice must declare and describe the purpose for which personal
data is collected, and why cookies are stored on the user’s browser.

This is not always the case however. Some websites, despite using a CMP to
achieve compliance with the GDPR, nevertheless neglect to assign some of
their cookies or other browser tracking technologies to any purpose, leaving
them without a description. This is more likely to be a result of neglect

63

7.5. Method 5: Undeclared Cookies

rather than malice. In one support article, the maintainers of the Cookiebot
CMP explain that for cookies for which a purpose cannot be determined,
the purpose will either have to be requested from the third party that sets
them, or the host will need to be classify them manually [50]. This suggests
that unclassified cookies are a result of laziness more than an intentional
attempt at deceiving the user.

Unclassified cookies were found on 19.21% of the examined domains. More-
over, 64 833 (3.78%) of all declarations were unclassified. The majority of
these originate from Cookiebot with 51 239 (79.03%) entries, and Termly
with 13 097 (20.20%) entries. It appears that websites that use the OneTrust
CMP are more diligent with assigning cookies to purpose categories and
describing their purpose.

Note that Cookiebot does not allow accepting or rejecting consent for un-
classified cookies, see Figure 7.1. The resulting behavior is intransparent
and inconsistent – on some websites, the declared unclassified cookies can
never be observed, while on others, they behave just as if they were part of
the other categories, and as if they had been consented towards.

7.5 Method 5: Undeclared Cookies

In this subsection, we denote as undeclared cookies those which can be ob-
served being set inside the browser, but which at the same time are not
listed in a website’s consent notice. Similarly to unclassified cookies, unde-
clared cookies are indicative of the user not being fully informed on the data
that is being stored inside the browser. As such, they may indicate that a
website is in violation of informed consent, especially in cases where some,
but not all cookies are listed.

We observe undeclared cookies on a large majority of 86.08% of all ana-
lyzed websites. Out of the 552 454 cookies that originate from websites with
one of our supported CMPs, 233 179 (42.21%) could not be matched with a
corresponding declaration. We can think of three likely reasons:

1. The first is that some of these cases stem from the declared name or
domain not exactly matching the identifiers found in the actual cookies
themselves. For example, by only matching the declaration and cookie
on the name, and ignoring the domain in the process, this reduces
the number of domains with undeclared cookies to 80.79%, and the
number of undeclared cookies to 188 845 (34.18%).

2. The second reason is that hosts are not fully aware of the cookies that
are hosted on their websites, and that tools that are designed to detect
such cookies do not achieve full coverage.

64

7.6. Method 6: Contradictory Labels

3. The third reason may be that the hosts simply do not care, and do not
list all the cookies as there is a very low chance of facing any fines for
doing so.

In either case, we presume that many of these missing declarations originate
not from malice, but from neglect, and a lack of accuracy in the declaration.

7.6 Method 6: Contradictory Labels

An oddity we encountered during the extraction of the training data in-
volved cookies that were assigned two different labels originating from the
same domain. In some cases, a cookie with multiple purposes can make
sense. For instance, a cookie may be simultaneously used to enable a ser-
vice, but also to track the user. A commonly encountered example for this
are social media frames embedded in other websites.

However, some combinations of purposes are contradictory. The ePrivacy
Directive [21] states that cookies which are strictly necessary for the opera-
tions of the site do not require consent. At the same time, Recital 30 of the
GDPR states that unique identifiers may constitute personally identifying
data, and hence require consent to be set in the visitor’s browser. The con-
tradiction thus occurs when a cookie is declared simultaneously as “Strictly
Necessary”, as well as “Analytics” or “Advertising” by the same website.
Moreover, it is unclear how a consent notice will behave in general if mul-
tiple purposes are declared for the same cookie, and only one purpose is
accepted.

This practice is relatively rare compared to the other observed potential vi-
olations. In our dataset, 926 out of 26 403 websites, i.e., 3.51%, declare mul-
tiple purposes for at least one cookie. Out of these, 269 websites declare a
cookie as both “Strictly Necessary” and at least one additional category. In
total we found 1555 cookies with multiple categories from the same web-
sites, of which 346 were declared as “Strictly Necessary”.

Note that for the training data extraction, all such cookies with multiple
labels from the same website were removed prior to training the classifier.

7.7 Additional Analyses

In this section we will discuss two additional approaches to detect poten-
tial GDPR violations which expand on the ideas originally proposed by
Nouwens [44] and Matte [38]. They require minor alterations to the crawler
described in Chapter 3, namely through changing settings in the included
Consent-O-Matic browser extension.

65

7.7. Additional Analyses

The extension automatically interacts with the Cookiebot, OneTrust and
Termly consent notices in order to accept or reject consent for individual
categories. In the context of the consent webcrawler, it is used to accept all
categories of cookies to retrieve as much data as possible.

For the following analyses, we will change this configuration. For the first,
we disable Consent-O-Matic entirely, such that no interaction occurs. For
the second, we set the configuration so that all purpose categories (except
“Strictly Necessary”) are rejected, rather than accepted. This requires two
additional crawls of the selected domains, which, due to time constraints,
could not yet be performed in practice. However, in the following, we will
provide a description of how the analyses can be performed in theory.

7.7.1 Detecting Implicit Consent

Recital 32 of the GDPR [22] specifies that consent must be given explicitly,
namely as an action that is separate from the activity the user is currently
pursuing. This is supported by the court decision on the Planet49 case [30] as
well as the guidelines set out by the Article 29 Working Party [2]. Therefore,
consent cannot be assumed implicitly, for example through continued use
of the website, and requires the visitor to interact with the consent dialogue
in order to be recognized as valid. Any non-essential cookies that are set
before the notice is interacted with may thus be in violation of the GDPR.

Actors that set cookies without first obtaining consent have historically been
fined for such actions. For instance, in December 2020, the French National
Commission on Informatics and Liberty (CNIL) fined Google for breaching
the French Data Protection Act, as they set advertising cookies on the user’s
browser without first acquiring proper consent, nor informing the user of
their purpose [43]. Such types of violations hence build a strong case for
potential legal action. In previous work by Nouwens et al., the authors
analyzed the code of several consent notices, and identified various actions
that websites recognize as consent. They found that 32.5% out of 680 crawled
domains used some form of implied consent.

Using the consent label crawler, we can verify this observation in a differ-
ent manner. The idea is to apply the consent label crawler as described in
Section 3.3.2, but to change its configuration such that consent notices are
never interacted with. By doing so, we can gather a dataset of cookies with
associated cookie labels that have been set before any explicit consent has
been provided by the visitor. Note that this does not impede the gather-
ing of cookie labels, as this information can be accessed whether or not the
consent notice has been interacted with.

The specific advantage of this approach, as compared to a regular web
crawler that gathers cookies, is that we can distinguish cookies that are

66

7.7. Additional Analyses

strictly necessary for the operations of the website. As per the ePrivacy Di-
rective, these cookies are the only category that does not require explicit
consent, and can thus be set as soon as the visitor reaches the landing page
of the website. Therefore, by filtering cookies with the “Strictly Necessary”
type from the collected dataset, we receive a set of real observed cookies
that per the website’s own privacy policy should not have been set in the
visitor’s browser.

Through this approach, we can in theory gather evidence for implicit con-
sent from the cookies set in the browser, which would be particularly helpful
in determining potential GDPR violations.

7.7.2 Ignored User Consent Choices

Matte et al. [38] find that certain CMPs, particularly ones that are regis-
tered as part of the Transparency and Consent Framework (TCF) [26], may not
actually respect the choices made by users. They find that 27 out of 1426
examined websites (1.89%) register positive consent even if the user has ex-
plicitly opted out. This is done through analyzing the inner workings of the
TCF, which many Consent Management Platforms and advertisers use as a
basis to store and exchange consent collected from visitors.

Through the use of our crawler and the Consent-O-Matic extension, we
define an alternate method to detect whether a website respects the user’s
consent choices. By configuring Consent-O-Matic such that all cookie pur-
poses (except “Strictly Necessary”) are explicitly rejected, we can gather
cookies that ignore the user’s choices. Like in the previous approach, we
again need to filter cookies that are declared as “Strictly Necessary”, because
these cookies do not require consent. All remaining cookies that belong to
different purposes should not have been set, as they were explicitly rejected
by the crawler. They hence represent evidence that the website in question
ignores the user’s choices and is non-compliant with the GDPR.

Note that for this approach to be sound, one needs to verify that the Consent-
O-Matic extension is able to provide negative consent on all variants of the
consent notices encountered in the wild. As the design of cookie banners
and cookie walls can differ greatly between individual domains, and be-
cause they may be updated and changed over time, this can potentially be a
time-intensive task, and must be performed prior to performing the crawl.

67

Chapter 8

Related Work

In this chapter we will describe some related work in the area of enforc-
ing user privacy preferences and in the area of violation detection, some of
which closely relate to the contributions we present in this thesis report.

8.1 User Privacy Enforcement

In this section we give an overview of some related approaches in enforc-
ing user privacy online, including proposed standards such as the “Do Not
Track” header or P3P, and compare them to CookieBlock.

8.1.1 Blocking of Third-Party Cookies

A standard defense mechanism against tracking and the collection of per-
sonal data is to block all third-party cookies. While this approach does not
rely on outside support, it runs the risk of breaking website functionality,
such as social media widgets, Single Sign-On (SSO) authentication, and other
legitimate uses. Also, unlike CookieBlock, this mechanism cannot provide
any protection against personal data collection from first-party cookies, such
as Google Analytics cookies.

More recently, Firefox has introduced enhanced tracking protection, with
more fine-grained controls such as the blocking of social-media tracker cook-
ies, or cookies from unvisited websites.1 However, there are as of yet no
controls or tools that can reject cookies by individual usage purpose, a niche
which CookieBlock can fill.

1See also the following Mozilla article: https://blog.mozilla.org/blog/2019/06/04/
firefox-now-available-with-enhanced-tracking-protection-by-default/(2021.03.16)

68

https://blog.mozilla.org/blog/2019/06/04/firefox-now-available-with-enhanced-tracking-protection-by-default/
https://blog.mozilla.org/blog/2019/06/04/firefox-now-available-with-enhanced-tracking-protection-by-default/

8.1. User Privacy Enforcement

8.1.2 “Do Not Track” Header

The “Do Not Track” header is a proposed W3C standard that defines a
simple HTTP mechanism to allow users to express their desire not to be
tracked [48]. The idea is that the user can enable the “Do Not Track” header
in the browser settings, and the visited websites would then comply with
this request, thus disabling their tracking technologies.

However, while the proposed standard is implemented by all major browser
vendors, there is little incentive for website hosts to honor the request. This
is because ignoring it comes with no potential legal consequences, and hon-
oring it is thus entirely a matter of goodwill. Additionally, by January 2019,
the working group for the proposed standard was closed due to the lack of
support by third party hosts [23].

8.1.3 P3P

The Platform for Privacy Preferences (P3P) was a proposed W3C standard
originally published in April 2002, which specified a computer-readable for-
mat for privacy policies [14]. Its intention was that such policies could be
published by website hosts in a consistent format, which was to be automat-
ically read and interpreted by a browser agent. Thus, the standard would
save users the time required to read complex privacy statements. Previous
studies, such as for example the works by McDonald et al. [39] and Jensen
et al. [29], have shown that privacy policies are usually too time-consuming
for users to read, and in many cases require university-level reading skills
to be understood fully.

Much like the extension outlined in this report, the P3P standard used a
set of user-specified privacy preferences to automatically accept or reject
cookies and other browser tracking technologies. The main issue with the
standard however was that it required both support from browser vendors
as well as cooperation from website owners to implement the standard on
their websites in a honest fashion. While browsers at the time, including
Netscape Navigator 7 and Internet Explorer 6 up to 9 implemented P3P
functionality, it never found wide adoption among website owners. Just
like with the DNT header, the ostensible reason for this is that there was
no incentive for hosts to implement the rather complicated protocol. As the
GDPR did not exist at the time, there was no benefit to implementing it, and
there was no threat of potential fines from regulators for not following the
standard.

In fact, some high profile actors, including Google and Facebook, even by-
passed the P3P controls implemented in Internet Explorer 9, exploiting a
bug that made the browser accept all cookies regardless of the user’s pref-
erences [7]. Thus, with website owners refusing to implement the protocol,

69

8.1. User Privacy Enforcement

browser vendors eventually dropped support for P3P as well. Work on the
specification was discontinued and the document was retired by the W3C in
August 2018.

What sets our approach to enforcing user’s consent choices apart from the
P3P and from the DNT header is that we do not need to trust advertis-
ers or website owners to honor a protocol or correctly specify their usage
purposes. Instead, we rely only on the accuracy of the trained model, and
accept or reject cookies based on its predictions. While the classification will
not have a perfect accuracy in all cases, it will also not run the risk of being
abandoned due to a lack of outside support.

8.1.4 Automatic Interaction with Consent Notices

Legislation such as the ePrivacy Directive and the GDPR have lead to a size-
able increase in the number of cookie banners, walls and popups that a user
encounters while browsing the web [16]. The frequency at which consent
notices appear quickly became a nuisance to users [9]. With the resulting
fatigue, users simply click the most visible button available to get rid of the
consent notice, oftentimes being unaware of the consent they give through
doing so [1, 4]. Cookie consent notices hence have become somewhat of a
privacy concern in and of themselves, as users’ desire to remove the pri-
vacy notice as fast as possible makes dark patterns a very effective way of
retrieving positive consent from users [6].

A solution to this problem is offered by the Consent-O-Matic [28] and
Cliqz Autoconsent [36] browser extensions. The idea is for the user to
specify his consent preferences once at setup, which will then automatically
be applied for all consent notices the user encounters. This automatically
handles interaction with the consent notice, thus removing the hassle of
having to deal with the banner or popup.

On the other hand, these tools also rely on outside support, in the sense that
a consent notice needs to be implemented on the website in order for the
extension to ensure that consent can be given or rejected. Moreover, they
need to trust the website and the CMP to respect their choices, which as
Matte et al. [38] showed is not always the case.

These extensions form a synergy with CookieBlock, where one works com-
plementary to the other. Consent-O-Matic or Cliqz Autoconsent au-
tomatically select the user’s consent choices, thus closing the consent no-
tice and handling the nuisance, which CookieBlock itself is not capable of.
CookieBlock on the other hand can provide an added layer of defense for
websites that do not implement a consent notice, or which do not respect the
user’s choices. Even if a cookie is still set after rejection of a usage purpose,
CookieBlock will then delete it automatically.

70

8.2. Detection of Potential GDPR Violations

8.2 Detection of Potential GDPR Violations

In this section we provide a small overview of related work in the area of
analyzing and verifying cookies compliance with the GDPR.

In a work by Santos et al. [47], the authors perform an extensive analysis of
relevant binding and non-binding legislative documents that directly relate
to the implementation of consent notices, including the GDPR, the ePrivacy
Directive, and decisions from individual jurisdictions. They define 22 legal
requirements for how a cookie banner should be designed, referencing both
legal sources as well as domain expertise of the authors.

In addition to this, they determine how each requirement could be verified
in practice, either through manual, semi-automated or fully automated anal-
ysis, or whether an extensive user study is needed. In summary, they find
that most requirements do not allow for a fully automated analysis.

Nouwens et al. [44] analyse the emergence of dark patterns, and the preva-
lence of non-compliant consent notice designs on the web. They addition-
ally identify how specific cookie banner designs affects the decisions visitors
make. To test for non-compliant designs, they define three conditions for
compliance:

1. Consent must be a clear and affirmative act, i.e., explicit.

2. Accepting all consent purposes must be just as easy as rejecting all
options. The ”reject” option should moreover not be hidden.

3. No pre-selected consent options must exist, i.e., the consent must be
opt-in, and not opt-out.

By scraping the design of five popular CMPs from the top 10k websites
in the UK, they find that only 11.8% of 680 examined websites fulfill all
three conditions. Furthermore, they find that removing the opt-out button
increases positive consent by 22 percent, and that providing more granular
consent controls reduces the affirmative consent by 8 to 22 percent. In our
work, we expand on the analysis of implicit consent by proposing a different
method to gather evidence for this criterion.

Utz et al. [55] set out to determine common properties in the design of
consent notices, and they perform a large user study to identify how the
position of the notice, range of choices and the framing of the content affects
the decisions users make. They find that users are more likely to interact
with notices in the lower left corner of the browser window, and that visitors
are more likely to accept cookies if only a binary choice is given, rather than
multiple opt-in choices of purposes.

Moreover, they find that 57.4% of 1000 examined domains utilize dark pat-
terns to coax users into giving positive consent. This is most commonly

71

8.2. Detection of Potential GDPR Violations

done by highlighting the “Accept All” button, or hiding the option to re-
ject consent for individual usage purposes. Furthermore, they show that
the dark pattern of nudging increases the acceptance rate for mobile and
desktop users by roughly 11% resp. 6%.

Matte et al. [38] study IAB Europe’s Transport and Control Framework (TCF),
and using its specifications, they are able to identify several potential legal
violations in CMP behavior. They analyse the storage of consent of 1426
individual websites, and using two automatic, and one semi-automatic web
crawl, they find that:

• 141 websites send positive consent without the user having made a
choice.

• 236 websites use pre-selected options in their consent notice dialogues.

• 27 websites store positive consent after the user has explicitly opted
out.

Similar to the work presented in this master thesis, they provide a browser
extension called Cookie Glasses, which enables users to verify whether
CMPs that are part of the TCF respect their consent choices.

In our work, we also propose a crawl that can, through the analysis of col-
lected cookies and the rejection of consent, verify whether the user’s choices
are respected.

72

Chapter 9

Conclusion

In this master thesis report, we presented a novel approach to enforcing user
privacy preferences in the domain of cookies, and we implemented this in
the form of a browser extension called CookieBlock.

By detecting selected Consent Management Platform implementations in
a large set of 1.6 million domains, we scraped cookies and corresponding
consent labels from a subset of roughly 26 400 websites. In total we obtained
a dataset of over 300 000 cookie samples, which were labeled by multiple
different sources, including large repositories and individual hosts.

After having collected this dataset, we devised a list of feature extraction
steps to extract numerical data from cookies, which was then be provided
as input to a series of tree ensemble classifiers.

Using popular algorithms such as XGBoost, we received a predictor that
manages to outperform the manually classified Cookiepedia repository with
an overall accuracy of 87.2%, with improved precision and recall in most
categories. To the best of our knowledge, we are the first to apply machine-
learning techniques to the domain of cookies.

This predictor was then integrated as the core component of a browser ex-
tension we titled CookieBlock, which allows the user to specify their cookie
consent preferences. All cookies that serve purposes the user did not agree
to are subsequently deleted by the extension.

With the use of the collected dataset, we were also able to observe evidence
for potential GDPR violations. By drawing from knowledge of specific ar-
ticles of the GDPR and related legislation, we devised six novel methods
which researchers and authorities can use to identify non-compliance on
websites. Only 8.13% of all 26 403 websites we analyzed did not produce
any evidence for potential GDPR violations, suggesting that most hosts still
have trouble fulfilling the requirements of the GDPR.

73

Bibliography

[1] Alessandro Acquisti and Jens Grossklags. Privacy and rationality in
individual decision making. Security & Privacy, IEEE, 3:26 – 33, 02 2005.

[2] Article 29 Working Party, European Union. Guidelines on Consent un-
der Regulation 2016/679 (WP259 rev.01), 2018. https://ec.europa.

eu/newsroom/article29/item-detail.cfm?item_id=623051; Last ac-
cessed on: 2021.02.06.

[3] Christopher M Bishop. Pattern recognition and machine learning. springer,
2006.

[4] Rainer Böhme and Stefan Köpsell. Trained to Accept? A Field Experi-
ment on Consent Dialogs, page 2403–2406. Association for Computing
Machinery, New York, NY, USA, 2010.

[5] Elena Boldyreva. Cambridge analytica: Ethics and online manipulation
with decision-making process. pages 91–102, 12 2018.

[6] C. Bösch, B. Erb, F. Kargl, Henning Kopp, and Stefan Pfattheicher. Tales
from the dark side: Privacy dark strategies and privacy dark patterns.
Proceedings on Privacy Enhancing Technologies, 2016:237 – 254, 2016.

[7] Jon Brodkin. Google tricks Internet Explorer into accepting tracking
cookies, Microsoft claims, February 2012. https://bit.ly/3exMVMp;
Accessed on 13.03.2021.

[8] BuiltWith.com. Privacy compliance usage distribution in the
top 1 million sites, October 2020. https://web.archive.org/

web/20201021075918/https://trends.builtwith.com/widgets/

privacy-compliance/.

74

https://ec.europa.eu/newsroom/article29/item-detail.cfm?item_id=623051
https://ec.europa.eu/newsroom/article29/item-detail.cfm?item_id=623051
https://bit.ly/3exMVMp
https://web.archive.org/web/20201021075918/https://trends.builtwith.com/widgets/privacy-compliance/
https://web.archive.org/web/20201021075918/https://trends.builtwith.com/widgets/privacy-compliance/
https://web.archive.org/web/20201021075918/https://trends.builtwith.com/widgets/privacy-compliance/

Bibliography

[9] Matt Burgess. The tyranny of GDPR popups and the web-
sites failing to adapt. https://www.wired.co.uk/article/

gdpr-cookies-eprivacy-regulation-popups, August 2018. Ac-
cessed on 2021.02.07.

[10] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting
system. CoRR, abs/1603.02754, 2016.

[11] Commission Nationale de l’Informatique et des Libertés (CNIL).
Délibération n 2019-093 du 4 juillet 2019 portant adoption de lignes
directrices relatives à l’application de l’article 82 de la loi du 6 janvier
1978 modifiée aux opérations de lecture ou écriture dans le terminal
d’un utilisateur (notamment aux cookies et autres traceurs), July 2019.

[12] Intersoft Consulting. GDPR Fines/Penalties. https://gdpr-info.eu/

issues/fines-penalties/. Last accessed on: 2021.02.06.

[13] CookiePro. Legacy article - categorizing cookies. https://web.

archive.org/web/20210208155826/https://community.cookiepro.

com/s/article/UUID-6f01b88c-0440-0642-3610-819c6ca0f7c4, Jan
2021. Accessed on: 2021.02.08.

[14] Lorrie Faith Cranor. P3P: Making privacy policies more useful. IEEE
Security and Privacy, 1(6):50–55, November 2003. https://www.w3.org/
TR/P3P11/.

[15] Adrian Dabrowski, Georg Merzdovnik, Johanna Ullrich, Gerald
Sendera, and Edgar Weippl. Measuring Cookies and Web Privacy in a
Post-GDPR World: Methods and Protocols, pages 258–270. 03 2019.

[16] Martin Degeling, Christine Utz, Christopher Lentzsch, Henry Hosseini,
Florian Schaub, and Thorsten Holz. We value your privacy ... now take
some cookies: Measuring the gdpr’s impact on web privacy. CoRR,
abs/1808.05096, 2018.

[17] Anna Veronika Dorogush, Andrey Gulin, Gleb Gusev, Nikita Kazeev,
Liudmila Ostroumova Prokhorenkova, and Aleksandr Vorobev. Fight-
ing biases with dynamic boosting. CoRR, abs/1706.09516, 2017.

[18] R. V. Eijk, H. Asghari, Philipp Winter, and A. Narayanan. The impact
of user location on cookie notices (inside and outside of the european
union). 2019.

[19] Steven Englehardt and Arvind Narayanan. Online tracking: A 1-
million-site measurement and analysis. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’16,

75

https://www.wired.co.uk/article/gdpr-cookies-eprivacy-regulation-popups
https://www.wired.co.uk/article/gdpr-cookies-eprivacy-regulation-popups
https://gdpr-info.eu/issues/fines-penalties/
https://gdpr-info.eu/issues/fines-penalties/
https://web.archive.org/web/20210208155826/https://community.cookiepro.com/s/article/UUID-6f01b88c-0440-0642-3610-819c6ca0f7c4
https://web.archive.org/web/20210208155826/https://community.cookiepro.com/s/article/UUID-6f01b88c-0440-0642-3610-819c6ca0f7c4
https://web.archive.org/web/20210208155826/https://community.cookiepro.com/s/article/UUID-6f01b88c-0440-0642-3610-819c6ca0f7c4
https://www.w3.org/TR/P3P11/
https://www.w3.org/TR/P3P11/

Bibliography

page 1388–1401, New York, NY, USA, 2016. Association for Computing
Machinery.

[20] European Parliament, Council of the European Union. Directive
95/46/ec of the european parliament and of the council)), October
1995. http://data.europa.eu/eli/dir/1995/46/oj; Last accessed on:
2021.03.13.

[21] European Parliament, Council of the European Union. Directive
2002/58/EC of the European Parliament and of the Council of 12 July
2002 concerning the processing of personal data and the protection of
privacy in the electronic communications sector (Directive on privacy
and electronic communications)), July 2002. http://data.europa.eu/
eli/dir/2002/58/oj; Last accessed on: 2021.02.06.

[22] European Parliament, Council of the European Union. Regulation (EU)
2016/679 Of the European Parliament and of the Council of 27 April
2016 on the protection of natural persons with regard to the processing
of personal data and on the free movement of such data, and repeal-
ing Directive 95/46/EC (General Data Protection Regulation), April
2016. http://data.europa.eu/eli/reg/2016/679/2016-05-04; Last
accessed on: 2021.02.06.

[23] Github. ”WG closed · w3c/dnt@5d85d6c”. https://github.com/w3c/
dnt/commit/5d85d6c3; Accessed on 2021.14.03.

[24] Jens Grossklags and Nathan Good. Empirical studies on software no-
tices to inform policy makers and usability designers. In Sven Dietrich
and Rachna Dhamija, editors, Financial Cryptography and Data Security,
pages 341–355, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[25] Maximilian Hils, Daniel W. Woods, and Rainer Böhme. Measuring
the emergence of consent management on the web. In Proceedings of
the ACM Internet Measurement Conference, IMC ’20, page 317–332, New
York, NY, USA, 2020. Association for Computing Machinery.

[26] Interactive Advertising Bureau (IAB) Europe. Transparency and Con-
sent Framework - CMP List. https://iabeurope.eu/cmp-list/,
February 2021. Accessed on 2021.02.08.

[27] International Chamber of Commerce UK. ICC UK Cookie guide,
November 2012. https://www.cookielaw.org/wp-content/uploads/

2019/12/icc_uk_cookiesguide_revnov.pdf; Accessed on 2021.02.08.

[28] Rolf Bagge Janus Bager Kristensen. Consent-O-Matic, 2020. https:

//github.com/cavi-au/Consent-O-Matic.

76

http://data.europa.eu/eli/dir/1995/46/oj
http://data.europa.eu/eli/dir/2002/58/oj
http://data.europa.eu/eli/dir/2002/58/oj
http://data.europa.eu/eli/reg/2016/679/2016-05-04
https://github.com/w3c/dnt/commit/5d85d6c3
https://github.com/w3c/dnt/commit/5d85d6c3
https://iabeurope.eu/cmp-list/
https://www.cookielaw.org/wp-content/uploads/2019/12/icc_uk_cookiesguide_revnov.pdf
https://www.cookielaw.org/wp-content/uploads/2019/12/icc_uk_cookiesguide_revnov.pdf
https://github.com/cavi-au/Consent-O-Matic
https://github.com/cavi-au/Consent-O-Matic

Bibliography

[29] Carlos Jensen and Colin Potts. Privacy policies as decision-making
tools: An evaluation of online privacy notices. pages 471–478, 01 2004.

[30] Judgement of the Court (Grand Chamber. Case C-673/17
Planet49 GmbH v Bundesverband der Verbraucherzentralen und
Verbraucherverbände – Verbraucherzentrale Bundesverband e.V.
ECLI:EU:C:2019:246, 1 October 2019. http://curia.europa.eu/

juris/document/document.jsf?docid=218462&doclang=EN; Last ac-
cessed on: 2021.02.06.

[31] Schawb K., Marcus A., Oyola J., Hoffman W., and Luzi M. Personal
data: The emergence of a new asset class, 2011.

[32] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Wei-
dong Ma, Qiwei Ye, and Tie-Yan Liu. LightGBM: A highly efficient
gradient boosting decision tree. In I. Guyon, U. V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

[33] Oksana Kulyk, Annika Hilt, Nina Gerber, and Melanie Volkamer. ”This
Website Uses Cookies”: Users’ perceptions and reactions to the cookie
disclaimer. 04 2018.

[34] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Ma-
ciej Korczyński, and Wouter Joosen. ”Tranco: A research-oriented top
sites ranking hardened against manipulation”. In Proceedings of the 26th
Annual Network and Distributed System Security Symposium, NDSS 2019,
February 2019.

[35] Timothy Libert, L. Graves, and R. Nielsen. Changes in third-party con-
tent on european news websites after GDPR. 2018.

[36] Sam Macbeth. Cliqz Autoconsent, December 2020. https://github.

com/cliqz-oss/autoconsent.

[37] Dominique Machuletz and Rainer Böhme. Multiple Purposes, Mul-
tiple Problems: A user study of consent dialogs after GDPR. CoRR,
abs/1908.10048, 2019.

[38] C. Matte, N. Bielova, and C. Santos. Do cookie banners respect my
choice? Measuring legal compliance of banners from IAB Europe’s
Transparency and Consent Framework. In 2020 IEEE Symposium on
Security and Privacy (SP), pages 791–809, 2020.

77

http://curia.europa.eu/juris/document/document.jsf?docid=218462&doclang=EN
http://curia.europa.eu/juris/document/document.jsf?docid=218462&doclang=EN
https://github.com/cliqz-oss/autoconsent
https://github.com/cliqz-oss/autoconsent

Bibliography

[39] A. M. McDonald and L. Cranor. The cost of reading privacy policies.
2009.

[40] Lynette I. Millett, Batya Friedman, and Edward Felten. Cookies and
web browser design: Toward realizing informed consent online. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems, CHI ’01, page 46–52, New York, NY, USA, 2001. Association for
Computing Machinery.

[41] Mozilla. MDN Web Docs – using HTTP cookies. https://

developer.mozilla.org/en-US/docs/Web/HTTP/Cookies. Accessed
on: 2021.02.07.

[42] Mozilla. OpenWPM – a web privacy measurement framework. https:
//github.com/mozilla/OpenWPM, 2020. Version used: 0.12.0.

[43] Commission nationale de l’informatique et des libertés (CNIL). Cook-
ies: financial penalties of 60 million euros against the company
GOOGLE LLC and of 40 million euros against the company GOOGLE
IRELAND LIMITED, December 2020. https://bit.ly/3rFIjaF; Ac-
cessed on: 2021.02.07.

[44] Midas Nouwens, Ilaria Liccardi, Michael Veale, David Karger, and
Lalana Kagal. Dark patterns after the GDPR: Scraping consent pop-
ups and demonstrating their influence. CoRR, abs/2001.02479, 2020.

[45] OneTrust. Cookiepedia. https://cookiepedia.co.uk/. Accessed on
2021.02.08.

[46] Iskander Sanchez-Rola, Matteo Dell’Amico, Platon Kotzias, Davide
Balzarotti, Leyla Bilge, Pierre-Antoine Vervier, and Igor Santos. ”Can
I Opt Out Yet?”: GDPR and the global illusion of cookie control. In
Proceedings of the 2019 ACM Asia Conference on Computer and Communi-
cations Security, Asia CCS ’19, page 340–351, New York, NY, USA, 2019.
Association for Computing Machinery.

[47] Cristiana Santos, Nataliia Bielova, and Célestin Matte. Are cookie ban-
ners indeed compliant with the law? Deciphering EU legal require-
ments on consent and technical means to verify compliance of cookie
banners. CoRR, abs/1912.07144, 2019.

[48] D. Singer and R. Fielding. Tracking preference expression (DNT) W3C
working group note. https://www.w3.org/TR/tracking-dnt/, Jan-
uary 2019.

78

https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://github.com/mozilla/OpenWPM
https://github.com/mozilla/OpenWPM
https://bit.ly/3rFIjaF
https://cookiepedia.co.uk/
https://www.w3.org/TR/tracking-dnt/

Bibliography

[49] StatCounter. Desktop browser market share worldwide.
https://web.archive.org/web/20210227093820/https://gs.

statcounter.com/browser-market-share/desktop/worldwide,
February 2021.

[50] CookieBot Support. Unclassified cookies - how do I classify them
manually? https://web.archive.org/web/20201111204915/

https://support.cookiebot.com/hc/en-us/articles/

360003735214-Unclassified-cookies-how-do-I-classify-them-manually-,
May 2018. Accessed on: 2021.02.08.

[51] David Temkin. Charting a course towards a more privacy-first
web. https://web.archive.org/web/20210303152006/https://

blog.google/products/ads-commerce/a-more-privacy-first-web/,
March 2021.

[52] Martino Trevisan, Stefano Traverso, Eleonora Bassi, and Marco Mellia.
4 Years of EU Cookie Law: Results and Lessons Learned. Proceedings
on Privacy Enhancing Technologies, 2019:126–145, 04 2019.

[53] Tobias Urban, Martin Degeling, Thorsten Holz, and Norbert Pohlmann.
Beyond the Front Page: Measuring Third Party Dynamics in the Field, page
1275–1286. Association for Computing Machinery, New York, NY, USA,
2020.

[54] Tobias Urban, Dennis Tatang, Martin Degeling, Thorsten Holz, and
Norbert Pohlmann. The Unwanted Sharing Economy: An analy-
sis of cookie syncing and user transparency under GDPR. CoRR,
abs/1811.08660, 2018.

[55] Christine Utz, Martin Degeling, Sascha Fahl, Florian Schaub, and
Thorsten Holz. (Un)informed Consent: Studying GDPR Consent No-
tices in the Field. CoRR, abs/1909.02638, 2019.

[56] Daniel W Woods and Rainer Böhme. The commodification of consent.
05 2020.

79

https://web.archive.org/web/20210227093820/https://gs.statcounter.com/browser-market-share/desktop/worldwide
https://web.archive.org/web/20210227093820/https://gs.statcounter.com/browser-market-share/desktop/worldwide
https://web.archive.org/web/20201111204915/https://support.cookiebot.com/hc/en-us/articles/360003735214-Unclassified-cookies-how-do-I-classify-them-manually-
https://web.archive.org/web/20201111204915/https://support.cookiebot.com/hc/en-us/articles/360003735214-Unclassified-cookies-how-do-I-classify-them-manually-
https://web.archive.org/web/20201111204915/https://support.cookiebot.com/hc/en-us/articles/360003735214-Unclassified-cookies-how-do-I-classify-them-manually-
https://web.archive.org/web/20210303152006/https://blog.google/products/ads-commerce/a-more-privacy-first-web/
https://web.archive.org/web/20210303152006/https://blog.google/products/ads-commerce/a-more-privacy-first-web/

Appendix A

Consent Crawler Details

In this appendix, we describe how consent data is retrieved for the Cookiebot,
OneTrust and partially also the Termly CMPs, although the latter did not
provide many training data results.

A.1 Cookiebot Consent Crawler

The Cookiebot consent notice (see Figure A.1) stores the description and la-
bel for each cookie inside a JavaScript document called cc.js. To access this
document, it is first required to find a website-specific UUID string in the
landing page HTML, using which one can access the file on the remote Cook-
iebot domain. This string can either be found as an attribute called "cbid"

as part of a href HTML tag, or directly contained as part of a complete URL
related to the Cookiebot domain.

Figure A.1: Typical example of the Cookiebot consent notice. Its design is fairly consistent
across the majority of websites that make use of it.

80

A.2. OneTrust Consent Crawler

CookieConsentDialog.cookieTableNecessary = [[..], [..], ...];

CookieConsentDialog.cookieTablePreference = [[..], [..], ...];

CookieConsentDialog.cookieTableStatistics = [[..], [..], ...];

CookieConsentDialog.cookieTableAdvertising = [[..], [..], ...];

CookieConsentDialog.cookieTableUnclassified = [[..], [..], ...];

Figure A.2: The JavaScript arrays in which Cookiebot stores all cookie descriptions. Each array
corresponds to a consent label.

Then, one needs to access the following URL:

https://consent.cookiebot.com/<UUID>/cc.js

And inside cc.js, we find a set of inline arrays as shown in Figure A.2. Each
array lists all cookies with descriptions and expiration date for the category
corresponding to the name of the array. The “Unclassified” array specifically
lists cookies that the website host neglected to assign to a category. These
are ignored for the purpose of training a classifier, while the other categories
can be assigned exactly to our internal representation.

Note that for Cookiebot, it is necessary to specify the domain of the website
that uses the CMP as the referrer in the GET header when accessing cc.js.
Otherwise, the CMP will refuse to display the document. The same occurs
if one tries to connect from a geographical region in which the notice is not
supposed to be displayed. This is another reason why using a VPN from
within a EU member state is required.

Cookiebot records Name, Provider, Purpose, Expiry and Type of the cookie.
The provider is a list of domains, one of which will be assigned to the actual
cookie set in the browser. The purpose is a description of what the cookie
will be used for. The expiry is a coarse indication of the retention period of
the cookie, usually given in months, years or some other time interval. This
field may also contain the text "Session" if it is a session cookie.

The “Type” field indicates what kind of entry is declared. Cookiebot does
not only store cookie declarations, but also other types of browser tracking
technologies. Apart from cookies that are set through HTTP requests or
JavaScript, the most common declared type here are Tracking Pixels, which
are small 1x1 pixel images embedded in a site that are retrieved from an
advertiser domain. For the purpose of training data extraction, and for the
analyses performed in Chapter 7, any non-cookie entries are ignored.

A.2 OneTrust Consent Crawler

The OneTrust consent notice, as shown in Figure A.3, is generally imple-
mented in one of two different fashions, and uses one of the domains listed
in Figure 3.2.

81

A.2. OneTrust Consent Crawler

Figure A.3: One possible appearance of the OneTrust consent notice. Note that the design is
generally very variable. Some instances may also include an OptAnon or CookiePro logo.

1. In the first case, the cookie label data is stored inside a series of JSON
documents, accessed through a collection of region-specific rulesets.
For this variant, the crawler first needs to find a HTML script tag at-
tribute called "data-domain-script", which contains the UUID re-
quired for accessing the rulesets.

The rulesets are located at the path:

<OT_URL>/consent/<DD_UUID>/<DD_UUID>.json

Where <OT URL> is the corresponding OneTrust URL that was detected
on the landing page of the targetted website. This is usually one of the
domains listed in Figure 3.2.

Each ruleset is a JSON document that contains language- and website-
specific identifiers, which in a second step can be used to retrieve the
actual cookie label information from a second JSON document. Due
to language barriers, we only retrieve English and German cookie in-
formation. The exact JSON document path is:

<OT_URL>/consent/<DD_UUID>/<CC_UUID>/<LANG>.json

Where <CC UUID> is the identifier found in the ruleset JSON document,
and <LANG> is any associated language string, for instance “en” or
“de”, depending on which language is supported.

82

A.2. OneTrust Consent Crawler

Figure A.4: Mapping of keywords to category. The left-hand column displays the internal
categories, while the right-hand column contains all keywords that, if found inside a OneTrust
category name, map the cookie to that internal category.

2. The second common implementation of the OneTrust CMP foregoes
the rulesets and instead directly includes the cookie-to-category as-
signments, along with all purpose details, inside a single JavaScript
document. For instance, for the cookielaw domain, it can be found at:

https://cdn.cookielaw.org/consent/<uuid_pattern><name>.js

For both cases, the cookie labels and associated metadata is stored in a
JavaScript sub-object, starting with the string key "Groups". Cookies are
listed under each vendor domain, and each entry stores the assigned consent
category as a string. Unfortunately, no unambiguous category ID value ap-
pears to exist, and websites can define their own arbitrary, language-specific
category names.

For the purpose of classifying cookies, we use a fixed set of four distinct
categories, including “Strictly Necessary”, “Functionality”, “Analytics” and
“Advertising”, as described in Section 3.2. As such, in order to map the
OneTrust group names to the internal categories, we define a set of charac-
teristic keywords. If a keyword is detected in a group name, the cookie is
mapped to the corresponding internal category. The full list of keywords is
presented in Figure A.4.

We also utilize an equivalent mapping for German category names. If mul-
tiple terms are present in the website, the least privacy preserving category
takes precedence.

In terms of content, OneTrust lists the name and host, purpose, expiry, and
whether the cookie is a session cookie or persistent. The expiry is in this case
always listed in days, unless we have a session cookie.

83

A.3. Termly Crawler

Figure A.5: Example design of the Termly consent notice, displaying all available category types.

A.3 Termly Crawler

The Termly CMP is an example of a Consent Management Platform that is
not part of IAB Europe’s TCF [26]. Its interface usually defines the same
four categories that we utilize internally for classification, with the addition
of two categories called ”Social Networking” and ”Unclassifed”.

For the implementation of our classifier, we considered adding the category
of ”Social Media Cookies” as a potential fifth option. One particular reason
for this is that cookies belonging to social media websites are often split
between offering functionality as well as tracking the user [45].

On the one hand, they provide functionality, usually in the form of a em-
bedded widget or frame that allows users to use features of social media,
such as liking a page or sharing it with others. On the other hand, web-
sites such as Facebook are notorious for collecting personal data and tracking
users. Such embedded frames are hence also used for the purpose of track-
ing visitors across different sites. As such, these cookies do not fully align
with either category

Our main reason for ultimately not including the category was a lack of
training samples. Despite the category being observed for both the Termly
and OneTrust CMPs, there was too little data to properly train the classifier.

84

A.4. Other Target CMPs

The “Social Networking” category is hence treated the same as unclassified
cookies, and is excluded for training.

For the Termly CMP, we extract consent data similarly to the OneTrust and
Cookiebot. First, it is required to find a UUID string that is stored inside a
HTML script tag on the websites landing page. This allows us to access a
JSON document at the following address:

"https://app.termly.io/api/v1/snippets/websites/<uuid1>"

This JSON document contains the cookie policy. By parsing its contents, one
finds another UUID pointing to the document storing all cookie purpose
information. This can be found at the following path of the same site:

"/api/v1/snippets/websites/<uuid1>/documents/<uuid2>/cookies"

This is a JSON document that stores all relevant cookie consent data. Termly
stores the name, domain, purpose, expiry, type of tracker and even the cookie’s
value in its consent notice. Unfortunately, due to the low number of train-
ing samples we managed to collect for this CMP, and because most of the
declarations were uncategorized, this implementation is ultimately not very
useful for classifier training or violation detection.

A.4 Other Target CMPs

In this subsection we refer to Table 3.1. Apart from Cookiebot, OneTrust and
Termly, we additionally have the CMPs Cookie Script and Cookie Information
that could serve as future crawl targets. Note that OptAnon and CookiePro
are included as part of the OneTrust crawl, as they were both acquired by
the latter, and use the same internal structure.

Another interesting Consent Management Platform to target is Borlabs Cookie.
Despite not being remotely hosted, Borlabs usually displays a uniformly
structured consent notice with cookie labels. This may be very useful be-
cause, according to BuiltWith, Borlabs enjoys significant popularity particu-
larly in Germany at 10.76% coverage out of roughly 800 000 websites, thus
offering many potential crawl targets [8].

85

Appendix B

Feature Engineering Details

In Section 4.2 we gave an overview of the feature engineering steps that
are applied to cookies to transform them into numerical feature vectors.
Many of the features listed in Tables 4.1, 4.2 and 4.3 are self-explanatory, but
some require more elaboration. As such, this appendix will describe a select
number of features in more detail.

B.1 Name and Domain Features

The “Top Names” and “Top Domains” features are one-hot vectors which in-
dicate whether a cookie has a particular name or domain. As we cannot
represent every single name in a feature, we restrict ourselves to only the
top 100 most common names and domains. More specifically, the kth en-
try of the vector indicates whether the cookie’s name, or respectively the
cookie’s domain exactly matches the kth most common name resp. domain
sourced from an external ranking.

These rankings are hereby constructed from a secondary dataset of cookies
obtained from crawling random websites. We pick random domains so that
the resulting ranking is not biased on the cookies that only appear on sites
that use OneTrust or Cookiebot CMPs. From the collected data, we count the
number of occurrences of each cookie per website, and sort them to receive
the rankings we need. Some of the most common cookie names include
the Google Analytics cookies such as " ga" and " gid", or identifier cookies
such as "uid" or "NID". Among the most common domains are advertisers
such as "doubleclick" and "pubmatic".

These features are hence similar to a bag-of-words approach, and should
allow the classifier to distinguish the types of common first-party cookies,
or third-party cookies originating from a select number of advertisers.

86

B.2. IAB Vendor Feature

B.1.1 Name Patterns

In addition to cookies whose names match exactly between hosts, there also
exist certain types of cookies that include a pseudo-randomly generated
unique identifier within their name. Such cookies follow a pattern in that, if
one were to remove the unique identifier, they would be identical across all
domains. A common example for this is again Google Analytics, which has
a cookie with the following regular expression pattern:

^_gat_gtag_UA_[0-9]+_[0-9]+$

Figure B.1: Example of a pattern cookie, belonging to the Google Analytics family.

To be able to also identify pattern cookies, we performed a semi-automated
analysis of the collected dataset, by first sorting all cookies names that have
been encountered in alphabetical order, and then selecting all names that
occur in a sufficiently long contiguous sequence, where at least 4 characters
match exactly. This filters a candidate list of potential pattern type cookies,
which in a second step need to be analyzed manually by a human operator
in order to construct a regular expression to represent them, as above.

In this fashion, we constructed a ranking of more than 50 pattern cookies,
sorted by occurrence in a randomly collected dataset. This ranking is then
used to construct another one-hot vector feature which identifies common
pattern names found in the wild.

B.1.2 Name and Content Tokens

The name, as well as the content of a cookie may contain human-readable
English tokens. While they are not be separated by whitespaces, it is still
possible to identify frequent tokens by looking up substrings of the name
and the cookie content in a dictionary. Common terms found inside cook-
ies include "consent", "landing", "Id", "timestamp", "version", "site",
"test" and "user", among others.

For those substrings for which we find an entry in the dictionary, we again
construct a ranking of the most common occurrences as before, and use this
to construct an indicator vector feature for both the tokens in cookie names
and cookie contents.

B.2 IAB Vendor Feature

The Transparency and Consent Framework (TCF) is a set of technological spec-
ifications defined by IAB Europe which describes how a CMP can interact
with third-party vendors and website hosts in order to transmit consent and

87

B.3. Expiration Time Features

to revoke it at the proper time. Those vendors that are part of this TCF
are listed on IAB’s website, which could be a valuable indicator as to which
domains are potential advertisers, or which offer web-analytics services [26].

As such, we scraped the TCF website to retrieve a complete set of domains
that are part of the TCF’s vendor list. The feature is then defined as a binary
indicator. For each cookie, we set the indicator to 1 if the listed cookie
domain is in the set of TCF vendors, and 0 otherwise.

B.3 Expiration Time Features

The expiration time can tell us much about how a cookie is used. A session
cookie for instance is likely to not be used for the purpose of tracking, as
they are deleted when the browser is closed. The same applies to persistent
cookies that last only for a few seconds.

To identify such nuances, we apply a range of different features, including
an ordinal feature that tracks the expiration time in seconds, a binary indi-
cator feature that is true when the cookie is a session cookie, as well as a
one-hot vector of certain expiration time intervals.

The idea of the latter is to provide more context to the classifier which a
single ordinal feature could not provide. We include the following time
intervals as separate feature indicators:

• Less than 1 hour

• Between 1 and 12 hours

• Between 12 hours and 1 day

• Between 1 day and 1 week

• Between 1 week and 1 month

• Between 1 and 6 months

• Between 6 and 18 months

• More than 18 months

B.4 Unique Identifier Features

Unique identifiers are commonly used as part of tracking cookies, however,
with a broad range of methods to generate such identifiers, it is not easy to
detect whether a cookie contains such a value in its contents.

88

B.4. Unique Identifier Features

B.4.1 Randomly Generated Strings

One common approach to create unique identifiers is to use pseudo-random
string generation. These strings usually enjoy high entropy, while natu-
ral language terms or repetitive numbers that are not used for identifying
users usually enjoy low entropy. Therefore, one approach to detect potential
unique identifiers is to create features that reflect the entropy of the cookie’s
content.

As a heuristic, we use the zlib library to compress the value of a cookie and
then compare the size of the compressed content to the original size. This
is done because high entropy data usually cannot be compressed very well.
For a more direct approach, we also compute the Shannon entropy for the
same purpose.

B.4.2 Universal Unique Identifiers (UUID)

The canonical universal unique identifier (UUID) is a sequence of hexadec-
imal numbers that follows a fixed format. The way in which it is generated
is determined by the UUID version.1

We extract the version number in the hopes that it can help identify hidden
patterns in cookies. The UUID versions are as follows:

• Version 1: Uses current time and MAC address of machine.

• Version 2: Rarely seen in practice, a DCE Security UUID, see RFC 4122.

• Version 3: Uses predefined identifiers, hashed using MD5.

• Version 4: Pseudo-randomly generated hexadecimal strings.

• Version 5: Uses predefined identifiers, hashed using SHA-1.

B.4.3 Timestamp and Dates

Timestamps and dates are another common method through which a cookie
can uniquely identify users, as the current timestamp at which the user first
accesses a website is likely to be unique. Thus they can facilitate tracking.
At the same time, date strings may also be used in functional cases.

With these features, we identify content in cookies that is formatted like a
human-readable date, e.g., "2021-03-14", or "1st August 2019", or like a
UNIX timestamp , e.g., 1615725910.

1See also: https://www.ietf.org/rfc/rfc4122.txt

89

https://www.ietf.org/rfc/rfc4122.txt

B.5. Locale Content Strings

B.5 Locale Content Strings

We observed numerous cookies which contain strings that specify some type
of locale content, including country, currency, language or even keyboard
layout. We expect this information to serve mostly functional purposes, for
instance to identify the language in which a website needs to be displayed,
the keyboard layout being used, the country the user is connecting from to
display a flag icon, etc.

As such, we added an indicator feature which identfies whether a cookie
contains some form of locale content. A large dictionary of potential iden-
tifiers is obtained using the pyenchant Python package, and we use it to
identify whether the cookie content matches such a locale string. A similar
method is used for the JavaScript variant of the feature extraction.

B.6 Content Encoding Features

The content of a cookie can often be encoded in the form of JSON objects,
or formatted such that several values are split by a certain separator string.
For JSON, we parse the entire content as a JSON object, count the number
of entries in the object as well as the types that are used. The types include
numbers, alphabetical content, timestamps, and subobjects.

For CSV data, we try to find an identifier that best fit to separate individual
values in a cookie. Period and dashes are considered separately, as they
are very common separators that deserve their own feature. We count the
number of separations, as well as the contained types of data.

Finally, we also try to decode the cookie content as Base64. We do not have a
surefire method to determine whether the content of a cookie really is Base64
encoded, hence we simply apply the heuristic to attempt the decoding, and
if it happens to work, we will set the feature entry to 1, and 0 otherwise.

B.7 String Similarity Metrics

In order to determine how much a cookie changed between updates, we ap-
ply both the Levenshtein distance, as well as a string similarity metric based
on Gestalt Pattern Matching, which is offered by the Python difflib library.

These features may be slow to compute, as the complexity of the corre-
sponding algorithms is quadratic, and thus rises quickly for larger cookie
contents. For the JavaScript implementation, we used a module that reim-
plements Python’s difflib functions.

90

Appendix C

Repositories and Dataset

In the following, we provide links to repositories containing the code of
each component presented in this report, and describe their contents. We
also provide the collected cookie data and violation detection statistics.

C.1 Web Crawler Implementations

The code for the CMP Presence Crawler, as well as the Cookie Consent Label
crawler, which we have described in Sections 3.3.1 and 3.3.2 respectively, can
be found at the following GitHub repository:

• https://github.com/dibollinger/CookieBlock-Crawler-Prototype

• https://github.com/dibollinger/CookieBlock-Consent-Crawler

The first repository contains an earlier implementation of the consent label
crawler that did not make use of the OpenWPM framework, but instead
only used the Selenium library. It is a sequential crawl that only retrieves
the cookie labels, but not the cookies themselves. The second contains both
the presence and the consent label crawler as described in this report.

Each repository contains a README file that explains what each folder con-
tains, and how to make use of the crawler scripts.

C.2 Classifier and Feature Extraction

The feature extraction scripts, as well as the classifier implementations writ-
ten in Python, as described in Sections 4.2 and 4.3 respectively, can be found
in the following repository:

• https://github.com/dibollinger/CookieBlock-Consent-Classifier

Instructions on how to extract the features, as well as how to train and
evaluate each classifier model are given in the repository’s README.

91

https://github.com/dibollinger/CookieBlock-Crawler-Prototype
https://github.com/dibollinger/CookieBlock-Consent-Crawler
https://github.com/dibollinger/CookieBlock-Consent-Classifier

C.3. CookieBlock

C.3 CookieBlock

The extension itself, as described in Chapter 5, can be found at the following
repository:

• https://github.com/dibollinger/CookieBlock

Additionally, the repository also includes the reimplementation of the fea-
ture extraction using NodeJS, which was described in Section 5.3.1.

As of the time of writing, CookieBlock has not been released on any browser
platforms yet, and only Firefox support is implemented. Support for differ-
ent Chromium-based browsers, such as Chrome and Edge, will however be
added in the future. To test the extension, we used the web-ext tool1.

C.4 Violation Detection and Other Scripts

The Python scripts used to gather evidence for potential violations (as de-
scribed in Chapter 7) can be found in the following repository:

• https://github.com/dibollinger/CookieBlock-Other-Scripts

This repository also contains all auxiliary scripts used for other sections of
the report. This includes:

• The database processing scripts with corresponding SQL files.

• The scripts used to scrape data from Cookiepedia.

• The scripts used to build resources for the feature extraction.

• And the scripts used to generate statistics on the collected data.

Each folder in the repository contains a README that explains the code and
its usage in greater detail.

C.5 Collected Datasets

The databases containing all the cookie and consent label data we collected
can be found in the following Google Drive folder:

• https://drive.google.com/drive/folders/1P2ikGlnb3Kbb-FhxrGYUPvGpvHeHy5ao

This also includes the domain lists we targeted in our web crawls, the trans-
formed training data samples in JSON format, the corresponding extracted
features, the trained classifier models and performance evaluations, as well
as the violation detection results. Please refer to the included README for
more information.

1See: https://github.com/mozilla/web-ext

92

https://github.com/dibollinger/CookieBlock
https://github.com/dibollinger/CookieBlock-Other-Scripts
https://drive.google.com/drive/folders/1P2ikGlnb3Kbb-FhxrGYUPvGpvHeHy5ao
https://github.com/mozilla/web-ext

