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Abstract
Graph neural networks are able to solve certain
drug discovery tasks such as molecular prop-
erty prediction and de novo molecule gener-
ation. However, these models are considered
‘black-box’ and ‘hard-to-debug’. This study
aimed to improve modeling transparency for
rational molecular design by applying the in-
tegrated gradients explainable artificial intel-
ligence (XAI) approach for graph neural net-
work models. Models were trained for predict-
ing plasma protein binding, hERG channel in-
hibition, passive permeability, and cytochrome
P450 inhibition. The proposed methodol-
ogy highlighted molecular features and struc-
tural elements that are in agreement with
known pharmacophore motifs, correctly iden-
tified property cliffs, and provided insights into
unspecific ligand-target interactions. The de-
veloped XAI approach is fully open-sourced and
can be used by practitioners to train new mod-
els on other clinically-relevant endpoints.

Introduction
Medicinal chemists have to solve multidimen-
sional optimization problems, that is, the si-
multaneous optimization of several different
compound parameters.1 Successful drug candi-

dates should not only possess sufficient activity
towards a certain target protein or pathway
but also suitable overall absorption, distri-
bution, metabolism, and excretion (ADME)
properties while holding an acceptable safety
profile. Quantitative structure-property rela-
tionship (QSPR) approaches2 have been ex-
tensively used to close the gap between in
silico experiments and more cost- and time-
intensive in vitro data.3,4 Currently, deep-
learning approaches are among the most popu-
lar machine-learning QSPR methodologies, as
these have proven useful for improved ligand-
5,6 and structure-based property prediction,7
target identification,8,9 de novo molecule gen-
eration,10,11 and chemical synthesis planning,12
to name some of its most prominent applica-
tions.

Among these learning algorithms, message-
passing neural networks, commonly referred to
as graph neural networks,13 have shown good
capabilities in ligand-based molecular property
prediction14 despite their increased computa-
tional cost.15 Since one of the advantages of
deep-learning approaches against more clas-
sical machine-learning methods, is their abil-
ity to approximate highly non-linear functions
from representations that are closer to the data
source,16 graph neural networks have the po-
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tential of replacing decades-old hand-crafted
molecular fingerprint representations.17 Despite
their promise, the practical utility and accep-
tance of graph neural network models in drug
discovery is limited owing to their lack of inter-
pretability regarding the established chemical
language.18 While previous efforts have been
made to mitigate these issues,19,20 this limi-
tation is further exacerbated by the fact that
deep neural networks are notorious for pro-
ducing correct answers for the wrong reasons
(i.e., the Clever Hans effect),21 and for mak-
ing overly confident erroneous predictions.22
‘Explainable’ artificial intelligence (XAI) aims
to overcome some of these limitations by ren-
dering the decision-making process of machine
learning methods more transparent for the hu-
man mind.23,24

In the context of drug discovery-related ap-
plications, in particular for property predic-
tion tasks, XAI methods can potentially help
rationalize deep, as well as classical machine-
learning models by highlighting molecular sub-
structures that are critical for a given predic-
tion.25–31 An alternative paradigm is to develop
models which are inherently interpretable, al-
though it is debatable whether there is a trade-
off with predictive performance.32,33 Analysis of
the physicochemical properties of compounds
can provide a complementary perspective. Sev-
eral studies have examined the influence of such
‘global’ properties on drug-likeness estimations
and other aspects of chemical compounds.34–36
Herein, an established structure- and property-
based XAI approach, the integrated gradi-
ents feature attribution technique,19 was used
to examine its practical utility for a number
of ADME and safety-related endpoints. To-
wards that goal, and building upon previous
related work,20,25 we propose several comple-
mentary assessments of model interpretations
that leverage known structure-property rela-
tionships, property cliffs, as well as unspecific
molecular interactions. Additionally, to the
best of our knowledge, we provide the first
open-source implementation of this XAI ap-
proach in combination with message-passing
neural networks in the context of chemical prop-

Table 1: Data sets used for each pharmacolog-
ical endpoint considered.

Endpoint No. compounds Task References

Plasma protein
binding

4,119 Regression 41–46

Caco-2 passive
permeability

239 Regression 47,48

hERG inhibition 6,993 Regression 49
P450 inhibition 9,120 Binary classification 50,51

erty prediction. We furthermore make avail-
able all trained models and evaluation code,
so that other researchers reproduce the results
shown, test on novel examples, and adapt the
proposed XAI approach to their own message-
passing models.

Data sets
Four pharmacologically relevant parameters
– plasma protein binding (PPB),37 human
ether-a-go-go-related gene (hERG) potassium
channel inhibition,38 passive drug permeability
(Caco-2 assay),39 and cytochrome P450 inhi-
bition (CYP3A4 isoform) – were evaluated.40
To ensure that prospective users could explore
the applicability of the proposed XAI approach
and make use of the trained models, a liter-
ature survey was conducted to collect publicly
available data on these four endpoints (Table 1,
Figure 1).

Plasma protein binding

The capacity of a compound to bind to serum
proteins, such as albumin and alpha-1-acid gly-
coprotein, critically affects its pharmacokinetic
and pharmacodynamic profile and the disposi-
tion of the drug (e.g., bioavailability, distribu-
tion, and clearance).52 High-affinity compounds
for these targets may, in practice, require higher
dosing to achieve effective concentrations in pa-
tients.53 In the present study, data from six
different studies,41–46 comprising 4,119 drugs,
were combined in order to construct a train-
ing set for predicting the fraction bound (fb) in
plasma.
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Figure 1: Box-whiskers plots concerning the distributions of molecular weight, calculated logP
(aLogP) values, and the number of hydrogen donors. Caco-2, passive permeability; CYP3A4,
cytochrome P450 inhibition; hERG, human ether-a-go-go cardiac potassium channel inhibition;
PPB, plasma protein binding.

Caco-2 cell passive permeability

Drugs administered orally must cross cell mem-
branes to perform their function.54 Such per-
formance can be determined in vivo with radio-
labeled compounds,55 whereas the Caco-2 cell
line is considered the in vitro gold standard
proxy for studying pharmaceutical drug trans-
port across cellular barriers.56 For this end-
point, passive permeability data from 239 com-
pounds was collected from two independent
studies.47,48 Passive permeability values (Papp)
were collected (in cm s−1) and converted to the
log10 scale for numerical stability during model
training.

hERG potassium channel inhibi-
tion

hERG inhibition is associated with the pro-
longation of the cardiac QT interval, which
may lead to cardiac conditions such as arrhyth-
mia.57,58 For this endpoint, data compiled by
Sato et al. was used,49 among which 6,993 com-
pounds with reported activity (IC50 values) in
the nanomolar range were selected. IC50 val-
ues were transformed into the pIC50 scale for
numerical stability during model training.

Cytochrome P450 inhibition

The family of metabolic cytochrome P450 en-
zymes are relevant for drug clearance and the
oxidation of xenobiotics, steroids, fatty acids,
as well as for hormone synthesis.59 For this
endpoint, data compiled by Nembri et al.
was used,50 encompassing 9,120 CYP3A4 in-
hibitors and substrates with binary activity
information (active/inactive), as determined
by Veith et al.51 via high-throughput screening
with a bioluminescent assay. Substrate data –
while known to potentially pose several model-
ing problems from a pharmacological point of
view60 – was not explicitly labeled and hence
could not be removed.

Molecules from different sources were con-
verted to InChI strings and sanitized using RD-
Kit.61 For all previous endpoints, if several mea-
surements were available for the same com-
pound, we considered their arithmetic average
as the target value to predict for simplicity.
Since the use of experimental data from var-
ious sources can lead to an increase in noise
when modeling,62–64 we provide the overlap per-
centage of compounds between data sources, as
well as the mean and median standard devia-
tion between different measurements in Table
S1. While there is a high degree of compounds
present in different sources, the overall agree-
ment between reported measurements also ap-
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pears to be high (e.g. 0.27 or 0.1 median stan-
dard deviations for the Caco-2 and the hERG
endpoints, respectively, in log units).

Methods

Message-passing neural networks

Message-passing neural networks (MPNNs) be-
long to the family of graph convolutional neural
networks (GCNs). In this context, a molecule
is considered a graph G with a set of vertices
and edges G = (V,E), representing the atoms
v ∈ V and bonds e ∈ E of a two-dimensional
molecular graph. The general MPNN frame-
work assumes that both the vertices and edges
are characterized by feature vectors xv ∈ Rd1

and we ∈ Rd2 , respectively. Message passing
is performed iteratively across each pair of ver-
tices u, v according to the following equations:

m(t+1)
e = φ

(
x(t)
v , x

(t)
u , w

(t)
e

)
, (1)

x(t+1)
v = ψ

(
x(t)
v , ρ

)
, (2)

for (u, v, e) ∈ G. Here, φ is a message func-
tion that is defined on each edge and combines
its features with those of its neighboring nodes.
ψ is an update function, which updates the
node features by aggregating the information of
the neighboring messages me using a reduction
function ρ. The outcome of performing these
iterative message passing steps, until a pre-
specified maximum number of iterations, is to
generate a vector representing the entire molec-
ular graph, that may subsequently be passed
through additional fully-connected layers of the
network to generate predictions. The different
combinations of message, update, and reduc-
tion functions result in different MPNN archi-
tectures. The message and update functions
contain weights that are learnable by backprop-
agation. In the present study, the MPNN ar-
chitecture proposed by Gilmer et al..13 was ap-
plied, which combines a graph convolutional
network and a Set2Set submodel65 to embed
molecules and compute a prediction. This
model and other MPNN variations were shown
to perform well on several ligand-based tasks.14

Table 2: Vertex, bond, and ‘global’ molecular
graph features computed with RDKit61

Description level Features

Atom atom type, chirality, valence, formal
charge, hybridization, bond degree,
presence in ring, aromaticity, number
of hydrogens, number of radical elec-
trons, atomic mass, van der Waals ra-
dius

Bond bond type, bond stereo, conjugation,
presence in ring

Global molecular weight, calculated octanol-
water partition coefficient (aLogP),
topological polar surface area (TPSA),
number of hydrogen-bond donors

Furthermore, to account for unspecific molec-
ular interactions, a fully-connected neural net-
work sub-architecture was also included for the
consideration of computed physicochemical fea-
tures x ∈ Rd3 . A visual representation of how
the different kinds of information were used to
generate the predictions, including latent graph
vectors generated via message passing and the
vector of calculated global molecular properties,
can be found in Figure 2. Additional details
presented in this figure are explained in further
sections. Selected vertex, bond, and global fea-
tures were computed with the RDKit software
(Table 2).61 Details on the network architecture
and hyperparameter selection are fully disclosed
in the associated code repository.

Model training

A k = 10 cross-validation scheme was used
to estimate the model performance. The com-
pounds were randomly shuffled and each model
was trained on k − 1 non-overlapping subsets,
and evaluated on the remaining one, for a to-
tal of k repetitions. While a random cross-
validation scheme is known to produce overly-
optimistic results, when compared to scaffold or
time-based splits, here we only sanity-check the
satisfactory training of the underlying models,
as our goal here is to explore whether modern
message-passing neural networks can provide
meaningful explanations, rather than evaluat-
ing their predictive performance under more ex-
haustive scenarios. We trained models on each
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Figure 2: Schematic of the XAI methodology and neural network architecture. A message-
passing graph neural network (GNN) and a forward fully-connected neural network (FNN) were
combined to process an input presented as a molecular graph with atom, bond, and computed
global properties (e.g., octanol-water partition coefficient and topological polar surface area). The
integrated gradients method19 was then applied to compute atom, bond, and global importance
scores.

data split for 250 epochs, with a batch size of 32
samples, and employed the Adam stochastic op-
timizer66 with default momentum parameters
(β1 = 0.9, β2 = 0.999) and a starting learning
rate of 10−4. Regression and binary classifica-
tion tasks were optimized using a mean-squared
and binary cross-entropy criterion, respectively.

Feature attribution

The MPNN model can be denoted as a function
that maps tuples of graphs and global features
to arbitrary target values f : (G,X ) → Y .
Given this notation, a feature attribution ap-
proach for graphs can be defined as a function
that, using a trained MPNN model, takes a
graph with featured vertices and edges, as well
as a set of global features, and produces an im-
portance score E : (G,X ) → cv, bu,v, z, for each
u, v ∈ G, and z ∈ X (i.e. assigns importance
scores to atoms and calculated global molecular
properties in the current context.). This pro-
cess can be performed by gradient backpropa-

gation to the input features of the nodes, edges,

and global features:67,68
(
i.e.

∂f

∂xv
,
∂f

∂we

,
∂f

∂x

)
.

In practice, however, this approach has sev-
eral limitations, such as gradient saturation.69
It also ignores two desirable aspects, namely
model sensitivity and implementation invari-
ance. Sensitivity refers to the fact that if two
models had different predictions but differed on
a single feature, then this feature should be as-
signed a non-zero attribution, while invariance
ensures that two functionally identical models
produce the same attributions. As previously
discussed by McCloskey et al.,20 the integrated
gradients method19 was herein employed to ad-
dress these issues. This approach aggregates
the gradient of the output with respect to the
node features that fall on the straight line be-
tween user-defined baselines x′v and the input
xv as follows:
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Figure 3: Model performance. A k = 10 random cross-validation scheme was used. Two-
dimensional density plots (in lieu of scatterplots, due to large dataset sizes and the concentration
of a large number of experimental values in small numeric intervals) portraying experimental vs.
predicted values for the plasma protein binding, passive permeability, and hERG inhibition data
sets. For the CYP 3A4 P450 data set, a receiver operating characteristic (ROC) curve is reported
given its binary activity label (active/inactive).

IG(xv) = (xv − x′v)
∫

Ω

∂f (x′v + α (xv − x′v))
∂xv

dα,

(3)
where α is used to integrate over the continuous
points (in Rd1) in the path between the base-
line and the input, and Ω is the input domain
of integration. Because the integral in Equa-
tion 3 is non-tractable; it was computed with a

Riemann approximation in accordance with:

IG(xv) ≈
(xv − x′v)

m

m∑
r=1

∂f
(
x′v + r

m
(xv − x′v)

)
∂xv

,

(4)
where r is the approximation variable. Equa-
tions 3 and 4 can be subsequently applied in the
same manner to edge features we, and global in-
put features x. Equation 4 was iterated over
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m = 50 steps, and utilized baselines corre-
sponding to zeroed-out vertex, edge, and global
feature tensors. In order to obtain a single
score for atoms and bonds, the gradients as-
sociated with each atomic and bond feature are
mean-pooled. For visualization, computed edge
importance values bu,v were evenly distributed
among the importances cv of their connecting
vertices:

c′v = cv +
∑

i∈N (v)

bi,v/2, (5)

where N (v) is the set of neighboring vertices
at one bond distance from vertex v. Since the
score assigned to each vertex is a monotonic
function of the output gradients, in a regression
setting a positive value marks a vertex that is
contributing towards an increasing output value
and vice versa. As depicted in Figure 2, each
atom position (vertex) was represented with its
assigned color depending on the sign of the re-
spective importance value (green and red colors
indicate a positive and negative contribution,
respectively), and with a radius proportional to
the magnitude of the importance value. This vi-
sualization style contrasts with that of previous
approaches,25 which took score magnitude into
account in the form of color shading. Atomic
importances below a user-defined value of 10−4

were not considered. Bonds (edges) were col-
ored according to whether the color of their
connecting nodes matched.

We note that in the present work we mainly
deal with either regression or binary classifi-
cation tasks, yielding the interpretation of the
resulting atomic contribution score straightfor-
ward (i.e. since the value is a monotonic func-
tion of the gradient, a positive value indicates
regions of increasing target value, either on the
real line or towards the positive class, and vice
versa). However, special care needs to be taken
when modeling multi-class tasks, as the sign of
the score only bears meaning towards a specific
class. Interpretation can be particularly prob-
lematic in datasets where a real-valued target
variable is binned into several non-overlapping
categories.

Table 3: Predictive performance of the k = 10
cross-validation scheme for the endpoints con-
sidered. Pearson’s correlation coefficient R, co-
efficient of determination R2, and RMSE ±1
standard deviation) between experimental and
predicted values are reported for the regression
models; AUC (±1 standard deviation) for the
classifier model.

Endpoint Pearson’s R R2 RMSE AUC

Plasma protein
binding

0.74± 0.03 0.523± 0.05 20.79± 0.9 -

Passive perme-
ability

0.53± 0.1 0.26± 0.23 0.87± 0.09 -

hERG inhibition 0.63± 0.03 0.29± 0.03 0.76± 0.03
P450 inhibition - - - 0.85± 0.01

RMSE, root mean square error; AUC, area under receiver-operator characteristic
curve. RMSE values reported in percentage units for the fraction bound Fb in the
plasma protein binding dataset, in log10 Papp units for the passive permeability
dataset and in pIC50 units for the hERG inhibition dataset.

Assessment of model interpreta-
tions

To enable methodology evaluation, 25 exter-
nal molecular series were extracted and com-
piled from available literature (provided in Sup-
porting Data and colored in the accompany-
ing code repository of this work). These se-
ries represent background knowledge and con-
tain examples that are known to be relevant
for the pharmacological endpoints considered
in this study, most of which were external to
the used training sets. Furthermore, a range of
different approaches were considered in order
to check if the models (i) were able to highlight
relevant pharmacophore motifs, (ii) successfully
detected property cliffs in the considered data
sets (i.e., small structural changes that result
in a marked property or activity change70),
and (iii) were able to identify ‘unspecific’
ligand-protein interactions mediated by molec-
ular properties (e.g., logP, TPSA). In contrast
to previous research, which presented valida-
tions for explainable machine-learning models
either by assessing the additivity of atomic con-
tributions,25 or by quantifying the quality of
the provided molecular colorings by comparing
them with synthetically-generated structure-
activity relationships,20 the presented work
provides complementary information towards
the development of increasingly-objective eval-
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uation frameworks for interpretable artificial-
intelligence in QSAR/QSPR tasks.

Results and discussion

Model performance

While the main goal of the study is not to evalu-
ate the predictive performance of graph neural
networks compared to other machine-learning
models, in order to assess whether the pro-
posed feature attribution approach was able to
extract meaningful relationships between struc-
tural motifs and the respective pharmacological
endpoints, a rigorous evaluation was manda-
tory since explanations generated by a model
with limited predictive capability bear little
trust. Results of a quantitative benchmark are
presented in Figure 3 and Table 3, where the
root mean squared error (RMSE), Pearson’s
correlation, and determination coefficients be-
tween experimental and predicted values, and
the receiver-operator characteristic area under
the curve (AUC) are reported. In the hopes
of avoiding unnecessary model selection bias,71
no explicit hyperparameter optimization was
performed in any of the training folds. These
were chosen mainly taking into account suffi-
cient network capacity and reasonable compu-
tational cost on commodity hardware, and can
be checked on the accompanying code reposi-
tory of this work.
All trained models showed predictive capabil-

ities, with R values ranging between 0.53 and
0.74 for the three regression models, and AUC
= 0.85 for the binary classifier. These values
suggest that the training tasks varied in diffi-
culty. Although none of the models exhibited
perfect predictive capabilities, the results ob-
tained were markedly better than random, sug-
gesting that meaningful molecular graph fea-
tures were identified in the learning process.

Pharmacophore motif recognition

Two relevant features were analyzed to assess
plasma protein binding potential, namely fatty
acid character75 and a pharmacophore motif44

O
HO

O

OH

O

OH
I

OH

I

I

OH
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Figure 4: Recognized motifs from the plasma
protein binding data set. (a) Fatty acids; (b) Io-
phexonate and 3-carboxy-4-methyl-5-propyl2-
furanpropionicacid (CMPF). The latter com-
pounds feature two acidic groups separated by a
hydrophobic part of five bond units44 (consider-
ing phenol as a weak acid,72 2,4,6-triiodophenol
moiety pKa = 5.97 as computed with MoKa
3.2.273), which are partially highlighted. Green
and red areas represent structural positive and
negative contributions, respectively, w.r.t. the
ligand fraction bound fb

consisting of two acidic groups separated by a
hydrophobic part of five bond units (Figure 4).
For the hERG endpoint, two cases are shown

in which the XAI was able to reproduce activ-
ity changes that were previously reported in the
literature. Figure 5a highlights the effect of a
negatively ionizable substructure, such as a car-
boxylate group, which abolished the activity of
the compound.76 This effect could be explained
by the fact that the ligand-accommodating cav-
ity of the hERG potassium channel stabilizes
positive charges. In this case, while the exper-
imental activity difference spanned over 2 or-
ders of magnitude, the underlying model was
unable to fully capture this range, illustrat-
ing the potential of the model to debug less-
than-ideal cases. The second example illus-
trates the introduction of an activity cliff by
another replacement77 (Figure 5b). However,
these examples also highlight potential limita-
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Figure 5: Examples of motifs indicating
hERG inhibition. (a) Addition of a negative
charge and (b) other replacements resulting in
activity cliffs. Green and red colors represent
structural positive and negative contributions
towards hERG inhibition, respectively

tions of the proposed methodology. In particu-
lar other highlighted patterns are at odds with
established hERG structure-activity relation-
ships.78,79 For instance, in the first example, the
tertiary amine is suggested to contribute nega-
tively to activity, as well as a carbonyl group
and an arbitrary aliphatic ring. Additionally
the approach does not fully highlight the acidic
moeity negatively. On a similar note, in the sec-
ond example, the tertiary basic amine and the
tertiary amide were assigned colors incorrectly
upon replacement. Further coloring examples
for hERG, such as the effect of other bioisosteric
replacements, changes in amine-nitrogen envi-

Figure 6: Cytochrome (CYP) inhibition motif
replication examples. (a) Structure-based phar-
macophore developed by Kaur et al.74 (b) De-
crease in activity caused by the addition of two
extra methyl groups. Green and red areas rep-
resent structural positive and negative contri-
butions, respectively, towards CYP3A4 inhibi-
tion.

ronments, and topological polar surface area
differences are available in the accompanying
code repository.
For the CYP3A4 endpoint, the respective

model clearly identified motifs of a previously
reported specific pharmacophore,74 highlight-
ing the importance of a flexible backbone,
hydrogen-bond donor/acceptor moieties, and
hydrophobic interactions (Figure 6a). The ad-
dition of two methyl groups was previously re-
ported as a strategy for mitigating the CYP3A4
activity of morpholine-based N-arylsulfonamide
γ-secretase inhibitors.80 Of note, the relative
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importance of the corresponding structural fea-
tures was correctly recognized (Figure 6b).
Interestingly, lowering the overall molecular
weight was also reported as a successful strategy
towards decreasing CYP3A4 activity.80 In con-
trast, for this particular example, the assigned
global molecular weight importance is markedly
positive, a fact that is in line with the empirical
correlation between molecular weight and ac-
tivity for this endpoint (see Global importance
analysis section and Table S2). Additional ex-
amples81–83 are provided in the accompanying
code repository of this work.

Property cliff identification

To further evaluate the capabilities of the mod-
els to recognize property cliffs beyond the se-
lected literature examples, it was evaluated
whether activity cliffs exist in the training sets
via a matched molecular pairs analysis.84 The
cliffs were ranked according to the structure
activity landscape index (SALI).85 This func-
tional balances the structural similarity of a
pair of compounds with their predicted prop-
erty difference:

SALI (moli,molj) =
|pi − pj|

sim (moli,molj)
, (6)

where pi, pj are the properties of interest of
molecules moli and molj, respectively, and sim
is a molecular similarity function. Coloring ex-
amples with their respective SALI ranks for the
endpoints considered in this study, using the
entire sets as training data, as well as out-of-
fold models, are presented in Figures 7 and S1,
respectively. Others can be computed via the
accompanying code repository of this work. It
is noteworthy that the proposed approach cor-
rectly identified several structural elements that
are responsible for these striking property dif-
ferences, either by highlighting a positive con-
tribution for the active molecule in the pair,
when a certain structural feature is removed
upon moving to the inactive molecule in the
pair, or a negative contribution for the inactive
molecule when the feature is added. However,
similar to the discussion in the previous sec-

tion, these analyses illustrate limitations of the
approach: common substructural features be-
tween a similar pair of compounds could appear
differently highlighted. Whether these com-
mon highlighted parts could potentially gen-
erate other property cliffs upon replacement,
however, is difficult to determine in the absence
of additional experimental information.

Global importance analysis

Many ADME and relevant toxicological end-
points, such as passive permeability or plasma
protein binding parameters, are not solely char-
acterized by specific structural motifs. In these
cases, medicinal chemists are focused on in-
vestigating the influence of ‘global’ molecular
properties (e.g. logP, TPSA) on the end-
point of interest to achieve optimal compounds.
Plasma protein binding correlates positively
with lipophilicity,86 increasing circulation half-
life, and reducing glomerular filtration. Our
collected data set revealed a moderate posi-
tive correlation between aLogP and the fraction
bound (R = 0.5, p < 0.01, one-tailed Pearson’s
correlation test), which was confirmed by the
importance assigned to the global aLogP fea-
ture (R = 0.55, p < 0.01) by the XAI model.
Papp, as measured by the Caco-2 assay, is

also known to correlate with global molecular
properties, such as TPSA87 (compounds with a
large polar surface area are unlikely to perme-
ate cell membranes) and lipophilicity88 (com-
pounds with a greater logP permeate more eas-
ily). For the respective training data, we ob-
served a moderate negative correlation between
the computed TPSA and passive permeability
(R = −0.61, p < 0.01), and a weak positive cor-
relation with aLogP (R = 0.31, p < 0.01). The
first relationship was again correctly captured
by the XAI approach, indicating a moderate
negative correlation between the importance as-
signed to the TPSA global feature and the Papp

endpoint (R = −0.59, p < 0.01). All correla-
tions between assigned global importances and
each respective endpoint can be checked on Ta-
ble S2.
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Figure 7: Some examples of the property cliffs identified by the proposed approach, selected via
the SALI index (from top to bottom, ranks 78, 45, 4 and 105 out of all possible n(n− 1)/2 pairs)
for all the endpoints and data sets considered in this study. Green and red values represent positive
and negative contributions, respectively, w.r.t. the considered endpoint.

Comparison to other coloring ap-
proaches

Lastly, the XAI approach herein proposed was
compared to the molecular coloring method
published by Sheridan,26 which is model-
agnostic and can be used for either regression
or classification tasks. In order to highlight
the importance of a particular atom, this ap-
proach iteratively ‘masks’ individual atoms and
computes a molecular fingerprint. These fin-
gerprints are then combined with a machine-
learning model, and the difference between the

model prediction with and without masked
atoms serves as a proxy for atom importance.
Figure 8 shows molecular structures for which
the fingerprint-based model identified motifs
corresponding to known pharmacophores of the
hERG and CYP3A4 endpoints, using a well-
known and robust industry standard, a random
forest model with 1000 trees and ECFP4 finger-
printing featurization. Surprisingly, Figure 8a
displays a bioisosteric ring substitution, involv-
ing the replacement of a pyrimidine with a thi-
azole, which in turn increases overall molecular
weight and solubility, factors linked towards
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Figure 8: Examples using the approach of
Sheridan26 for the (a) hERG endpoint, involv-
ing a bioisosteric ring transformation, and for
the (b) CYP3A4 endpoint, involving a heme-
binding group substitution. Green and red col-
ors represent positive and negative contribu-
tions, respectively, w.r.t. the considered end-
point.

increased hERG inhibition. Figure 8b features
a heme-binding group replacement example.
Interestingly, the gradient-based approach pro-
posed in this work failed for these presented
examples, whereas the fingerprint-based ap-
proach was unable to reproduce any of the other
coloring examples presented in this study (Fig-
ures 4-7), suggesting that their appropriateness
may be case-dependent. Further comparative
examples are provided in the supporting code
accompanying this article.
Given the lack of an established quantita-

tive benchmark for atom coloring approaches
in chemoinformatics, the superiority of either

method remains to be determined. In partic-
ular, while the integrated gradients approach
proposed here is well-grounded in theory, and
fulfils several desirable feature attribution ax-
ioms, it requires a fully-differentiable model,
such as the used message passing networks.
On the other hand, the approach proposed by
Sheridan, albeit simpler in nature, is model-
agnostic. Additionally, we have observed lim-
ited agreement between the substructures high-
lighted by the two different methods, advocat-
ing the use of multiple models in parallel. With
the aim of facilitating further evaluation, an
implementation of the approach proposed by
Sheridan, using a random forest model featured
with ECFP4 fingerprints, using a bond radius of
2 units, is provided in the accompanying code
repository of this work, together with trained
models for all of the endpoints considered here.
A similar approach, developed by Riniker and
Landrum31 is also available in the RDKit61 soft-
ware package.

Conclusion
Herein, we described the application of a pop-
ular XAI framework, the integrated gradients
feature attribution technique, to four pharma-
cologically relevant ADME endpoints. The re-
sults show that the proposed approach correctly
replicated motifs corresponding to known phar-
macophore patterns, identified property cliffs,
and detected non-specific ligand-receptor inter-
actions mediated by global molecular proper-
ties. However, there are certain limitations to
its applicability. First, the proposed method-
ology suffers from multi-collinearity, meaning
that it is unable to correctly assign importance
values to a pair of strongly-correlated molecu-
lar features. This issue is not exclusive to this
particular methodology but is a limitation of
many machine learning approaches.89 Second,
while we have shown that the described ap-
proach can successfully identify some structure-
property relationships, either in the form of
known motifs or property cliffs, several exam-
ples also exhibited some degree of attribution
instability between closely-related pair of com-
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pounds, which debatably could be due to in-
sufficient training data, or a direct consequence
of the Clever Hans effect,21 among other rea-
sons. Third, this study would have benefited
from a suitable XAI benchmark. Although sev-
eral chemical series were provided to qualita-
tively evaluate the developed approach, the lack
of suitable quantitative evaluation sets for XAI
in chemistry and cheminformatics renders the
evaluation of newly-developed approaches ar-
duous. The first steps have been made in this
direction in other research fields,90,91 as well
as chemoinformatics.20,25,26 Nonetheless, fur-
ther development of XAI applications in chem-
istry would greatly benefit from meaningful
benchmarking, which will require close collab-
oration between medicinal chemists and com-
puter scientists in order to prove their use-
fulness in prospective settings. Furthermore,
when using the proposed approach, standard
machine-learning and QSAR advice applies, as
underlying models trained with larger and more
chemically-diverse datasets will be more likely
to produce better explanations. This is sup-
ported by the fact that, even with the larger sets
considered in this study, such as those related
to P450 and hERG inhibition, many literature-
extracted motifs were not correctly captured,
suggesting that either the underlying model did
not learn the expected pattern or the feature
attribution technique did not correctly capture
what the model had learned. This also hints
that current XAI approaches cannot yet be used
as a recipe for compound optimization, requir-
ing significant human expertise for correct in-
terpretation. The reasons for these phenomena
remain a topic of further study.

Implementation and code availabil-
ity

The graph neural-network models were trained
with the Deep Graph Library Python (DGL)
package (version 0.4.3)92 and the dgllife ex-
tension (github.com/awslabs/dgl-lifesci) that
run on top of the PyTorch tensor manipula-
tion library (version 1.4.0).93 Molecular struc-
tures were handled using RDKit.61 Users can
retrieve the complete program code for replica-

tion of the experiments, training of new mod-
els, and molecular importance map generation
from an AGPL-3 licensed repository on GitHub
(github.com/josejimenezluna/molgrad). All
models trained with publicly available data
are also available.

All models reported in this work were trained
using the Leonhard computer cluster at ETH
Zurich, Switzerland.
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