
Diss. ETH No. 27097 

 

Individualised multiscale 

mechanoregulation of fracture 

healing in mice 

Graeme R. Paul 

 

 

2020 



 



 

 

Diss. ETH No. 27097 

 

Individualised multiscale 

mechanoregulation of fracture 

healing in mice 

 

A thesis submitted to attain the degree of 

DOCTOR OF SCIENCES of ETH ZURICH 

(Dr. sc. ETH Zurich) 

presented by 

Graeme R. Paul 

M.Sc. Mechanical Engineering, University of Cape Town 

born on 07.11.1989 

citizen of Great Britain and South Africa 

 

accepted on the recommendation of 

Prof. Dr. Ralph Müller, examiner 

Prof. Dr. Anita Ignatius, co-examiner 

2020 



 

 

  



 

 

It is difficult to say what is impossible, for the dream of yesterday is the 

hope of today and the reality of tomorrow. 

- Robert H. Goddard 



i 

 

Table of Contents 

Table of Contents ................................................................................................................................................... i 

Acknowledgements ................................................................................................................................................ ii 

Summary ............................................................................................................................................................... iii 

Zusammenfassung ................................................................................................................................................ vi 

Notes on text ......................................................................................................................................................... ix 

Chapter 1 : Introduction ...................................................................................................................................... 1 

Chapter 2 : Background ..................................................................................................................................... 11 

Mechanical Stimuli in the Local In Vivo Environment in Bone: Computational Approaches Linking Organ-

Scale Loads to Cellular Signals ....................................................................................................................... 12 

Chapter 3 : Approaches to determine organ-scale individualised physiological and extra-physiological 

loading in mice ..................................................................................................................................................... 35 

Determination of organ-scale boundary conditions in bones of individual mice in a fracture-healing model 36 

Development of an approach to control and homogenize tissue scale strains in a mouse fracture healing 

model ................................................................................................................................................................ 60 

Chapter 4 : Investigation of multiscale mechanoregulation in fracture healing in mice .............................. 83 

Mechanoregulation of bone healing and remodelling at tissue and cell scale in a femur defect healing model 

in mice .............................................................................................................................................................. 84 

Tissue level regeneration and remodelling dynamics are driven by local mechanical stimuli in a post-bridging 

loaded femur defect healing model in mice .................................................................................................... 115 

Chapter 5 : Synthesis ........................................................................................................................................ 137 

Curriculum Vitae .............................................................................................................................................. 149 

 

  



   

ii 

 

Acknowledgements 

This work would not have been possible without the support of several individuals, whose help 

I would like to acknowledge.  

Firstly, I would like to thank Prof. Dr. Ralph Müller for providing the environment at the 

Laboratory for Bone Biomechanics for me to follow my interests and pursue my curiosity. In 

particular, I am grateful for his scientific vision, ideas and guidance, which were always 

available when I needed them. 

I would like to thank Prof. Dr. Anita Ignatius for co-examining this thesis. 

Over the last five years I have shared many memorable experiences with my colleagues at the 

Laboratory for Bone Mechanics, and I would like to mention some of them in particular. I 

would like to thank Dr Duncan Tourolle not only for his friendship, but also for his willingness 

and enthusiasm to provide insight and ideas whenever they were needed. I am thankful to Dr 

Angad Malhotra for showing me how to write a scientific paper. I would like to thank Dr Ariane 

Scheuren for years’ worth of collaboration and enthusiasm to engage in projects that should 

have failed (but didn’t). I would like to thank Nicholas Ohs for his readiness to provide technical 

help and decadent culinary adventures throughout this journey that we started, and will finish, 

at the same time. I would like to thank Elliot Goff, who shared an office with me for almost 

four years, for being an excellent sounding board, and for tolerating old sports clothes, climbing 

shoes and mountain bikes lying around the office. 

I have had the privilege of working with excellent students over the last four years, in particular 

Paul, Nicole, Michelle and Basil. Your work allowed this thesis to be more than it could have 

been by my efforts alone. 

I would like to thank Birte Toussaint for triggering the start of my PhD journey, and supporting 

me every moment along the way. This thesis simply would not have happened without her. I 

would also like to thank my parents, Brian and Belinda, who encouraged and supported my 

curiosity from a young age. 

Finally, I would like to thank the European Union (ERC Advanced MechAGE ERC-2016-

ADG-741883) for providing funding, which enabled almost all of this work to be achieved. 



   

iii 

 

Summary 
As bone diseases, such as osteoporosis, and trauma events, such as hip fractures, significantly 

impact the health and well-being of aging populations, our understanding of their causes and 

progressions is essential for the development of new treatments and prophylactics. Bone is a 

dynamic material that constantly adapts and renews itself in a process known as bone 

remodeling, and is able to repair itself completely upon injury. Bone remodelling and healing 

are driven by mechanical loading of bone and its surrounding tissue. However, bone is a 

multiscale, hierarchical material and its response and transmission of mechanical loading is 

complex. Physiological or extra-physiological organ-scale loading is transmitted 

heterogeneously to the tissue scale. The strains at tissue scale stimulate sensing cells known as 

osteocytes, which reside within the bone tissue. This stimulation leads to the release of proteins, 

which instruct osteoblasts to lay down bone or osteoclasts to remove bone. Parts of this 

mechanical signal transmission throughout bone, and the resultant biological changes within 

fracture healing, are well understood. However, the linking of organ-scale mechanical loading 

to osteocyte-specific protein expression and formation, quiescence or resorption has not yet 

been achieved. 

Therefore, in this thesis, we attempted to reconcile these aspects via three aims: (i) to determine 

organ-scale boundary conditions in bones of individual mice, ii) to determine tissue-scale 

mechanoregulation in physiologically and extra-physiologically loaded mice, and iii) to apply 

a combined computational and experimental framework for multiscale investigation of 

mechanoregulation in a model of fracture healing in mice. To achieve these aims, we employed 

a mouse model of fracture healing with a surgically induced femoral defect. We investigated 

the effects of organ-scale loading during the inflammation and early reparative phases, tissue-

scale mechanoregulation during the late reparative and remodelling phases, and cell-scale 

mechanoregulation in the remodelling phase.  

To address the first aim, we modified the external fixation system for a femur model of fracture 

healing. An instrumented side bar for the external fixation system, with which deformations 

could be captured during mouse locomotion, was created and applied in a study assessing the 

fracture healing progression in twelve mice. Habitual loading measurements were taken weekly 

and coupled with weekly micro-computed tomography (micro-CT) imaging. Using the micro-

CT data, micro-finite element (micro-FE) simulations were run to determine the fracture 
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stiffness at each time point. This fracture stiffness was used as a proxy for healing progression. 

It was observed that organ-scale loading in the inflammation phase (i.e. before the fracture 

started displaying signs of healing) was predictive of the outcome of the fracture. Mice with 

lower levels of habitual loading displayed poor healing progressions, or did not heal at all. To 

address the first aim completely, we developed an approach termed real time finite element 

(rtFE) analysis. This method allowed the specification of organ-scale loading parameters to 

target a particular “mechanical dose” of strain within the bone tissue post bridging in our 

fracture-healing model. We demonstrated, via the use of rtFE to control loading parameters, 

that variance could be reduced in loaded models of fracture healing. We further demonstrated 

that the model could be expanded to an extra-physiologically loaded model.  

In the second part, we aimed to reconcile the effects of and changes within the multiple scales 

of bone. A combination of measured boundary conditions, micro-CT imaging, micro-FE 

simulation and immunohistochemistry was used. This allowed tissue-scale and cell-scale 

mechanical environments to be simulated from organ-scale loading parameters.  

At the tissue scale, mechanoregulatory patterns of both physiologically loaded mice and extra-

physiologically loaded mice were analysed over the late reparative and remodelling phases of 

fracture healing. rtFE was used to specify the organ-scale loads of extra-physiologically loaded 

mice, allowing a specific strain distribution to be targeted. Mechanical signal was found to be 

predictive of changes in bone at tissue scale. Regions of high strain displayed an increased 

probability of bone formation while regions of low strain displayed an increased probability of 

bone resorption. The results suggest that the late reparative and remodelling phases in fracture 

healing share similar mechanoregulatory relationships to those in bone adaptation, further 

supporting the theory that these processes are governed by similar mechanisms. 

For cell-scale investigations, the locations of osteocytes within the bone tissue were identified 

via stained sections. The simulated mechanical environments were then linked to each 

osteocyte’s local in vivo environment (LivE) via the registration of 2D sections within the 

appropriate 3D micro-CT image. From this information, it was determined that highly strained 

cells were more likely to be associated with sites of formation, while lowly strained cells were 

more likely to be associated with sites of resorption. The osteocytic expression of two proteins 

relevant to bone formation and resorption and the mechanical signal in each osteocyte’s LivE 

were assessed. Sclerostin, a bone formation inhibitor, was found to be significantly 

downregulated in osteocytes under high levels of mechanical stimulation. RANKL, an 
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osteoclast progenitor associated with bone resorption, did not display a clear relationship 

between mechanical strain and expression by osteocytes. Future studies should aim to increase 

the sample size of this investigation to clarify the relationship between RANKL, bone 

adaptation, healing and mechanics. 

In summary, measurement and design of organ-scale physiological and extra-physiological 

loading of mice allowed us to simulate and couple the mechanical environment at tissue scale 

and cell scale with tissue-scale changes and protein expression. This demonstrated, for the first 

time, mechanoregulatory relationships during fracture healing at organ, tissue, cell and 

molecular scales within the same mice. The combination of strain gauge measurement, micro-

CT imaging, micro-FE simulation and immunohistochemistry allows the comprehensive 

investigation of mechanoregulation within bone. The biologically relevant results presented in 

this thesis indicate that these technologies enable investigation into many open questions 

regarding the multiscale mechanoregulation of bone during fracture healing. In the future, 

expansion of such studies to include cell-scale observations during the pre-bridging period 

would allow a full unravelling of the fracture healing process. 
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Zusammenfassung 
Knochenerkrankungen, wie Osteoporose, und Traumaereignisse, wie Hüftbrüche, 

beeinträchtigen die Gesundheit und das Wohlbefinden alternder Bevölkerungen erheblich. 

Daher ist die Erforschung ihrer Ursachen und Verläufe zur Entwicklung neuer Therapien und 

Prophylaktika unerlässlich. Knochen ist ein dynamisches Material, das sich in einem Prozess, 

der als Knochenumbau bezeichnet wird, ständig anpasst und erneuert und sich bei Verletzungen 

selbstständig regenerieren kann. Knochenumbau und –heilung werden durch die mechanische 

Belastung des Knochens und des umgebenden Gewebes angetrieben. Da Knochen aus mehreren 

hierarchischen Schichten besteht, ist die Übertragung mechanischer Belastungen komplex. 

Physiologische oder extraphysiologische Belastungen auf Organebene werden heterogen auf 

das Knochengewebe übertragen. Auf Gewebeebene stimulieren diese Belastungen Zellen im 

Knochengewebe, die Osteozyten genannt werden. Durch diese Stimulation werden Proteine 

freigesetzt, die Osteoblasten und Osteoklasten instruieren, Knochen niederzulegen, 

beziehungsweise zu abzubauen. Gewisse Aspekte der mechanischen Signalübertragung in 

Knochen und die daraus resultierenden biologischen Veränderungen während der 

Knochenheilung sind gut verstanden. Die Beziehung zwischen organspezifischer mechanischer 

Belastung und zellspezifischer Proteinexpression ist jedoch noch nicht bekannt.  

Daher war das Ziel dieser Arbeit, diese Beziehung zu untersuchen. Dazu wurden drei 

Zwischenziele definiert: (i) die Bestimmung der Randbedingungen in den Knochen einzelner 

Mäuse auf Organebene, (ii) die Bestimmung der Mechanoregulation in physiologisch und 

extraphysiologisch belasteten Mäusen auf Gewebeebene und (iii) die Kombination 

rechnerischer und experimenteller Ansätze zur Untersuchung der Mechanoregulation auf 

mehreren Ebenen. Dazu verwendeten wir ein Mäusemodell der Knochenheilung mit einem 

chirurgisch induzierten Femurdefekt. Wir beobachteten die Auswirkungen einer Belastung auf 

Organebene während der Entzündungs- und der frühen Reparaturphase. Auf Gewebeebene 

untersuchten wir die Mechanoregulation während der späten Reparatur- und der Umbauphase 

und auf der Zellebene die Mechanoregulation in der Umbauphase.  

Zum Erreichen des ersten Zwischenziels wurde das externe Fixationssystem für ein 

Femurmodell zur Knochenheilung modifiziert. Dazu wurde ein instrumentierter Seitensteg für 

das externe Fixationssystem angefertigt, mit dem die Deformation während Bewegung der 

Maus gemessen werden konnte. Dieses System wurde in einer Studie zum 
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Knochenheilungsverlauf an zwölf Mäusen angewandt. Messungen der gewöhnlichen Belastung 

wurden wöchentlich durchgeführt und mit einer wöchentlichen Mikro-Computertomographie-

Bildgebung (Mikro-CT) gekoppelt. Die Mikro-CT-Daten wurden in Mikro-Finite-Elemente-

Simulationen (Mikro-FE) verwendet, um die Bruchsteifigkeit zu jedem Messpunkt zu 

bestimmen. Diese Bruchsteifigkeit wurde als Proxy für den Heilungsverlauf verwendet. Wir 

beobachteten, dass eine Belastung auf Organebene in der Entzündungsphase (d.h. bevor die 

Fraktur Anzeichen einer Heilung aufwies), den Ausgang der Fraktur vorhersagte. Mäuse mit 

geringeren Belastungen zeigten einen schlechten bis gar keinen Heilungsverlauf. Ferner 

entwickelten wir im Rahmen dieses Zwischenziels einen Ansatz, den wir als Echtzeit--Finite-

Elemente-Analyse (englisch: real time finite element analysis, rtFE) bezeichnen. Dieser Ansatz 

ermöglichte es uns, Belastungsparameter auf Organebene so zu definieren, dass das 

Knochengewebe in unserem Mäusemodell nach der Überbrückung mit einer gezielten 

"mechanischen Dosis" belastet werden konnte. Wir konnten zeigen, dass die Verwendung von 

rtFE zur Steuerung von Belastungsparametern die Varianz im Ausgang der Frakturheilung 

reduzierte. 

Zum Erreichen des zweiten Zwischenziels entwickelten wir einen Ansatz, in dem wir 

gemessene Randbedingungen, Mikro-CT, Mikro-FE-Simulation und Immunhistochemie 

kombinierten. Dies ermöglichte die Simulation der mechanischen Umgebung auf Gewebe- und 

Zellebene anhand von Belastungsparametern auf Organebene.  

Auf Gewebeebene analysierten wir mechanoregulatorische Muster sowohl von physiologisch 

belasteten Mäusen, als auch von extraphysiologisch belasteten Mäusen, in der späten 

Reparatur- und Umbauphase der Frakturheilung. Mittels rtFE bestimmten wir die Belastungen 

von extraphysiologisch belasteten Mäusen auf Organebene, sodass eine spezifische 

Belastungsverteilung angestrebt werden konnte. Wir zeigten, dass das mechanische Signal 

Veränderungen im Knochen auf Gewebeebene vorhersagt. Regionen mit hoher Belastung 

wiesen eine erhöhte Wahrscheinlichkeit für Knochenbildung auf, während Regionen mit 

geringer Belastung eine erhöhte Wahrscheinlichkeit für Knochenresorption zeigten. Unsere 

Ergebnisse deuten darauf hin, dass die späte Reparaturphase und die Umbauphase in der 

Frakturheilung ähnliche mechanoregulatorische Beziehungen wie in der Knochenanpassung 

aufweisen. Diese Ergebnisse stehen im Einklang mit der Theorie, dass diese Prozesse von 

ähnlichen Mechanismen gesteuert werden. 
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Zur Analyse auf Zellebene identifizierten wir die Positionen der Osteozyten innerhalb des 

Knochengewebes anhand von gefärbten Schnitten. Die simulierten mechanischen Umgebungen 

wurden dann über die Registrierung von 2D-Schnitten innerhalb des 3D-Mikro-CT-Bildes mit 

der lokalen in vivo Umgebung (englisch: local in vivo environment, LivE) jedes Osteozyten 

verknüpft. Anhand davon stellten wir fest, dass hoch belastete Zellen mit Orten der 

Knochenneubildung assoziiert waren, während weniger belastete Zellen mit Resorptionsstellen 

assoziiert waren. Wir analysierten die osteozytäre Expression von zwei Proteinen, die für die 

Knochenbildung und -resorption relevant sind, und das mechanische Signal in der LivE jedes 

Osteozyten. Sclerostin, ein Knochenbildungshemmer, wird in Osteozyten unter hoher 

mechanischer Stimulation signifikant herunterreguliert. RANKL, ein Osteoklastenvorläufer, 

der mit der Knochenresorption assoziiert ist, wies keine klare Beziehung zwischen 

mechanischer Belastung und Expression durch Osteozyten auf. Weitere Studien mit höheren 

Stichprobengrößen sind notwendig, um die Beziehung zwischen RANKL, Knochenanpassung, 

Heilung und Mechanik genauer zu verstehen. 

Zusammenfassend lässt sich sagen, dass die Messung und gezielte Bestimmung der 

physiologischen und extra-physiologischen Belastung von Mäusen auf Organebene es uns 

ermöglichte, die mechanische Umgebung auf Gewebe- und Zellebene zu simulieren und mit 

Veränderungen auf Gewebeebene und Proteinexpression zu koppeln. Auf diese Weise konnten 

mechanoregulatorische Beziehungen auf Organ-, Gewebe-, Zell- und molekularer Ebene 

während der Frakturheilung zum ersten Mal in denselben Mäusen nachgewiesen werden. Die 

Kombination von Dehnungsmessstreifen-Messungen, Mikro-CT, Mikro-FE-Simulation und 

Immunhistochemie ermöglicht die umfassende Untersuchung der Mechanoregulation im 

Knochen. Die biologisch relevanten Erkenntnisse in dieser Arbeit deuten darauf hin, dass diese 

Technologien die Untersuchung vieler offener Fragen bezüglich der Multiskalen-

Mechanoregulation in Knochen während der Frakturheilung ermöglichen. In Zukunft sollten 

Studien auf Beobachtungen im Zellmaßstab während der Vorbrückungszeit eine vollständige 

Aufklärung des Frakturheilungsprozesses ermöglichen. Zukünftige Erweiterungen dieser 

Studien, insbesondere mit Bezug auf Beobachtungen auf der Zellebene vor der 

Überbrückungsphase, werden eine vollständige Aufklärung über den Frakturheilungsprozess 

ermöglichen. 
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Notes on text 
In this thesis, Nature-style referencing has been used. However, in Chapter 2: Background, the 

referencing style of the journal Current Osteoporosis Reports has been used. This is due to pre-

publication. 

Throughout this text the terms formation, resorption and quiescence are used. For those not 

familiar with the last term, it refers to regions of bone which have not changed over the time 

interval. 
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Chapter 1 : 

Introduction 
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Thesis motivation 

To the uninitiated eye, bone appears to be an inert tissue. On the contrary, it is a complex, 

hierarchical material, in which new bone tissue is constantly laid down and old tissue resorbed 

in a process known as bone remodelling1. This state of flux is driven primarily by mechanical 

loads experienced by the tissue. A state of higher than normal mechanical loading leads to bone 

formation, while a state of lower than normal mechanical loading leads to resorption2. 

Mechanical loads are a critical component in the process of healing within bone tissue, with the 

amount of deformation experienced by the bone defect influencing tissue type and rate of 

formation during the healing process3,4. As diseases, such as osteoporosis, and trauma events, 

such as hip fractures, significantly impact the health and well-being of aging populations, 

understanding these remodelling and healing processes is essential5. The development of new 

treatments presupposes an understanding of the physiological pathways and molecular 

mechanisms governing these processes.  

A key aspect of bone is its multiscale, hierarchical nature. At cell scale, it has been established 

that osteocytes reside in lacunae, structures roughly 10 microns in diameter6, and act as 

molecular sensors. As such, they inhibit or promote molecular pathways that regulate the 

formation of new bone via the stimulation of osteoblasts, and the resorption of bone via the 

stimulation of osteoclasts7,8. This process happens on scales less than 10-6 m, yet the dimensions 

of mechanical forces exerted on the cortical or trabecular bone are three to four orders of 

magnitude greater6. Loads placed at organ scale distribute themselves heterogeneously 

throughout the bone9-11. This leads to points of higher strain and lower strain, which activate 

the aforementioned pathways as the bone attempts to minimise the distribution of strains higher 

or lower than particular thresholds12. 

 Identifying the exact strain sensed by osteocytes is challenging, but key for the accurate 

quantification of genetic and molecular responses to mechanical loads placed on the greater 

organ. In this regard, experimental and computational techniques developed at the Laboratory 

of Bone Biomechanics in recent years have led to predictive capacity of bone tissue formation 

and resorption. These techniques are based on the Strain Energy Density (SED) calculated 

through micro-Finite Element (micro-FE) analysis9,13,14 and focus on the mouse as a model 

system. Loading models, in which a known cyclical load is applied to the caudal vertebrae of 

mice, were developed and coupled with a longitudinal imaging approach using in vivo micro-

computed tomography (micro-CT) to track the formation and resorption of bone tissue9. This 
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experimental approach informs micro-FE-based analyses to correlate areas of bone formation 

and resorption with areas of high and low SED, respectively. Further developments have 

combined these models with protein expression and single cell mechanomic profiling15. This 

has fostered the development of increasingly detailed models of the bone remodelling process. 

These models, however, have yet been expanded to bone healing. 

At organ scale, numerous approaches have been used to assess the strain in bone. These have 

ranged from invasive in vivo methods such as strain gauging16-18, to ex vivo techniques such as 

optical measurement17,19,20. Additionally, computational techniques based on bone structure 

have been used to back-calculate the load history experienced by the bone tissue4,21. Stepping 

down from organ scale to tissue scale, several techniques have been applied to assess 

microstructural strain in bone. These include the use of machine vision photogrammetry to 

measure strain gradients22 and Synchrotron micro-CT imaging to measure propagation of 

microcracks23. However, these techniques are only suitable for ex vivo measurements. In vivo, 

spatial resolution often comes at a cost of temporal resolution, while techniques with good 

spatial and temporal resolution are limited to 2D imaging6. As dimensions shrink, the impact 

of micro-features on the distribution of strain within the microstructure increases23. Micro-FE 

has proved a reliable technique24 for calculating tissue-scale strains, and provides an excellent 

bases for simulating mechanical signals within bone healing or remodelling studies13,14,25,26. 

When comparing ex vivo and in vivo data on the effect of strain on osteocytes, contrasting results 

are seen. Areas of bone expressing significant remodelling activity often experience 

substantially less strain than in vitro experiments outline as is necessary for cellular response27-

29. Using FE analysis to calculate stains within the lacunae-canaliculi structures in which 

osteocytes reside, several authors have shown stain amplification to occur30-32, resulting in 

strains far greater than those displayed at tissue scale. However, whether or not these 

observation limit the ability of tissue-scale simulation, such as micro-FE, to estimate the 

mechanical signal experience by cells has not been established. 

Given the complex relationship between organ-scale loads and cell-scale strains, a well-

structured framework is required to reconcile the mechanical signal with the biological changes 

at each scale. At cell scale, the immediate mechanical environment, which has been termed the 

Local in vivo Environment (LivE), represents the most important region of understanding in the 

development of a multiscale framework. Structural changes occur over the course of many 

weeks as a defect heals or the bone tissue itself remodels9,11,26,33. This remodelling influences 
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the strain experienced by the cells, which in turn causes further structural changes. Hence, a 

simple snapshot of protein expression in the LivE at a study endpoint paints an incomplete 

picture of the mechanoregulated behaviour. A combination of tools and techniques is therefore 

required to reconcile the temporal and spatial changes within the bone healing and remodelling 

environment. 

We propose to develop a technology to facilitate the capture of organ-scale boundary 

conditions, and apply these to simulate the mechanical environment at the various scales of 

bone within a mouse femur defect model. Using these simulations, we aim to improve 

knowledge of the strain and strain history experienced by individual cells, and the resultant 

tissue-scale changes and cell-scale protein expression. This combined computational and 

experimental approach will enable the investigation of mechanobiology at organ, tissue and cell 

scales within a femur defect mouse model. 
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Specific aims 

The goal of this thesis was to develop a framework to link organ-scale boundary conditions to 

cell-scale stimuli within a femur defect model in mice. To this end, the following three aims 

were developed: 

Aim 1: Determination of organ-scale boundary conditions in bones of individual mice. 

Aim 2: Determination of tissue-scale mechanoregulation in physiologically and extra-

physiologically loaded mice. 

Aim 3: Application of a combined computational and experimental framework for multiscale 

investigation of mechanoregulation in a model of fracture healing in mice. 

Thesis outline  

This thesis consists of five chapters. The first and current chapter outlines the motivation for 

the following four chapters. 

Chapter 2 discusses techniques used to determine the cell environment in mouse models.  

In Chapter 3 we apply deformation measurement techniques to longitudinally track the organ-

scale boundary conditions in an externally fixated femur defect model. We then demonstrate 

the importance of these measurements in the outcome of the fracture healing process. Further, 

we propose a solution to specify the level of mechanical strain within the defect healing model. 

We also discuss an optimisation approach to design the mechanical stimulus at tissue scale in a 

defect model. This approach allows the knowledge displayed in the first part of this chapter to 

be utilised to design a “mechanical dose” for interventions. 

In Part 1 of Chapter 4 we apply the methods we developed in Chapter 3 to investigate 1) the 

mechanoregulation at the tissue and cell scales in the habitually loaded study (described in 

Chapter 3.1) and 2) the organ-to-tissue-scale healing and remodelling dynamics under extra-

physiological loading. Combining organ-to-tissue and tissue-to-cell approaches in our model, 

we investigate the relationship between measured boundary conditions and the expression of 

two key mechanoregulated bone remodelling cytokines, Sclerostin and RANKL, to create a link 

from organ-scale mechanical loading to cell-scale responses. This is achieved by combining 

micro-CT imaging, registered histologies and micro-FE simulations to calculate the mechanical 
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environment of cells. In Part 2, a range of analytical methods is applied to a femur defect model 

under both loading and sham loading to demonstrate mechanical regulation at the tissue scale. 

Finally, Chapter 5 synthesises the major developments and findings of this thesis. Limitations 

of the work are outlined and directions for future research are suggested. 
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Abstract 

Purpose of Review 

Connecting organ-scale loads to cellular signals in their local in vivo environment is a current 

challenge in the field of bone (re)modelling. Understanding this critical missing link would 

greatly improve our ability to anticipate mechanotransduction during different modes of stimuli 

and the resultant cellular responses. This review characterises computational approaches that 

could enable coupling links across the multiple scales of bone. 

Recent Findings 

Current approaches using strain and fluid shear stress concepts have begun to link organ-scale 

loads to cellular signals; however, these approaches fail to capture localised micro-structural 

heterogeneities. Furthermore, models that incorporate downstream communication from 

osteocytes to osteoclasts, bone-lining cells and osteoblasts, will help improve the understanding 

of (re)modelling activities. Incorporating this potentially key information in the local in vivo 

environment will aid in developing multiscale models of mechanotransduction that can predict 

or help describe resultant biological events related to bone (re)modelling. 
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Summary 

Progress towards multiscale determination of the cell mechanical environment from organ-

scale loads remains elusive. Construction of organ-, tissue- and cell-scale computational models 

that include localised environmental variation, strain amplification and intercellular 

communication mechanisms will ultimately help couple the hierarchal levels of bone. 

Keywords: 

Mechanical stimulation, Osteocytes, Computational systems biomechanics, Local in vivo 

environment, Bone (re)modelling  



  Introduction 

14 

 

Introduction 

Within the last few decades, significant advances in imaging and computational technologies 

have allowed new insights into biomedical phenomena. However, our ability to utilise these 

tools has struggled to keep pace with their rapidly expanding capabilities. In the field of bone 

biomechanics, this is evident in our lack of understanding how organ-scale loads translate to 

biochemical responses via cellular mechanotransduction. Such information would help to gain 

deeper insight into how cells respond to loading modalities, leading to computationally driven 

understanding of, and therapies for, skeletal diseases such as osteoporosis [1]. This review 

discusses how the transmission of in vivo mechanical stimuli across multiple scales can be 

greatly improved by using computational methods, often in conjunction with other well-

established approaches. The aim is to define a computationally driven framework for translating 

organ-scale loads into relevant cell-scale responses, which would ultimately increase our 

understanding of the in vivo mechanosensitive aspects and mechanisms of bone (re)modelling, 

and its importance in the pathophysiology of bone. 

Existing Tools, Techniques and Concepts 

The knowledge of bone systems biomechanics is not new, though translating this into 

substantial improvements in bone health is yet to be realised. The theory of load driven bone 

(re)modelling was first postulated over a century ago [2, 3]; however, only with the 

development of powerful in vivo imaging techniques, such as micro-computed tomography 

(micro-CT), has detailed time-lapsed micro-scale observation of bone (re)modelling for both 

formation and resorption been possible [4, 5••]. Concurrently, advances in computational power 

have driven the development of predictive models of mechanical loading within bone tissue 

[6••, 7, 8]. Coupling these technologies has revealed great insights into dynamic bone 

(re)modelling via comparisons between mechanical loading and structural changes in bone 

tissue [6••, 9,10,11]. As these imaging and computational modelling methods have matured, 

they have become accurate enough to inform techniques such as laser capture micro-dissection 

to investigate individual cells within the bone tissue and to perform “mechanomic” analysis, 

reconciling genetic responses to mechanical stimuli [12, 13] of the acquired cells [14, 15]. The 

extraction of small populations of cells [16] and the assessment of their molecular and genetic 

profiles [17] has been combined with computational predictions of mechanical loads within the 

local in vivo environment (LivE) of these cells [17], advancing our understanding of how organ-
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scale loads influence individual cells and the resultant (re)modelling behaviour. Understanding 

the mechanical environment in which these cell populations reside is a key link in the chain 

towards understanding the governing mechanisms between mechanical loads and (re)modelling 

of bone. 

Within bone, the organ, tissue and cell scales are linked via complex macro- and micro-

structural geometries. The hierarchical structure of bone can be subdivided into four scales: the 

organ scale, comprising the whole bone; the tissue scale, consisting of cortical and trabecular 

structures; the cell scale, which also includes micro-structural features such as osteons, lamellae 

plates, lacunae and canaliculi [18]; and the molecular scale, consisting of ions [19] and proteins 

such as signalling molecules, receptor and ligands [20]. At the larger scales, mechanical 

supporting roles are evident from the flaring of proximal condyles in bone, to the changing 

density and thickness of trabecular struts. However, at the cell scale and beyond, the 

functionality is less obvious. These scales and their respective computational approaches can 

be seen in Fig. 1. This environment extends into the bone marrow, where many of the 

mechanosensitive cells reside, such as osteoblasts, osteoclasts, bone-lining cells and 

mesenchymal and hemapoetic stem cells. Accurately imaging and modelling the multiscale 

structures of bone is fundamental to predicting multiscale mechanotransduction. Capturing 

these features using in vivo imaging and converting the organ- and tissue-scale geometries into 

a computational model is well established [4, 5••]. However, in vivo imaging beyond the cell-

scale poses a significant challenge. Technologies such as confocal microscopy [27], 

synchrotron radiation computed tomography [28] and ultra-high-resolution computed 

tomography [29] have been applied ex vivo to attempt to capture the micro-structural geometry. 

With these methods, several authors [28, 30] have performed comprehensive analyses of 

osteocyte networks and individual lacunae, assessing typical densities and distributions [28, 

29], as well as studies on strain amplification on individual lacunae-canaliculi structures [27]. 

Even with the multitude of tools and techniques available to gather information, they are often 

single scale focused and seem to struggle coupling the hierarchies of bone. 
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Figure 2.1: Capturing the mechanical environment over different scales has been performed 

using many approaches. (a) Organ scale, (b) tissue scale, (c) cell scale, and (d) molecular scale 

[21] have been captured by (a1–c2). Micro-FE models such as (a1) Schulte et al. [10] and (b1) 

Lambers et al. [22] have been applied at organ level to calculate the tissue level mechanical 

environment. Within the tissue level, localised tissue boundary conditions can be used to 

calculate a reduced tissue-scale bone marrow environment, such as (b2) investigated by 

Metzger et al. [23]. The RVE (c1) concept can be applied to link organ-scale loads to a BMU 

type environment such as that by Lerebours et al. [24•]. Boundary conditions from the lower 

end of the tissue scale can be applied to determine fluid flow stresses on the cell, as seen by 

Verbruggen et al. [25••] in (c2). In the molecular scale, stretch, primary cilia deformation and 

signalling between osteocytes and other mechanosensitive cells can be simulated; an example 

of this is the model by Jahani et al. [26] studying the osteocyte—bone-lining cell signalling 

pathways (d1). a1 reproduced in adherence with the CC BY licence applied by PLOS One, b1, 

b2, d1 reproduced with permission from Elsevier and c1,c2, d reproduced with permission from 

Springer 

Organ- and Tissue-Scale Load Determination 

Micro-finite element analysis (micro-FE) has become a standard for organ- and tissue-scale 

load calculations in bone. It has been extensively used for in vivo studies to compare and 

correlate strain with bone resorption, formation and quiescence [10, 22, 31, 32, 33, 34]. Such 

models are created with a mesh generated by direct conversion of micro-CT voxels into 

hexahedral elements, and solved using well-established micro-FE principles [35]. In contrast to 

traditional FE approaches, this micro-FE approach provides simple meshing, and a unified 

approach to solving large-scale problems. The resolution of these models is governed by the 

resolution of the scanner settings, which typically ranges from 10 to 80 μm in vivo [4], where 

the very high-resolution images provide voxels in the same size range as osteocytes and 

osteoblasts, but substantially less than osteoclasts. Primarily, these models are elastic, isotropic 

and homogenous, omitting ultrastructural details. Further simplification includes modelling of 

cyclic and dynamic organ-scale boundary conditions as static loads [10, 34], shown still capable 

of capturing (re)modelling behaviour [36]. Schulte et al. [10] and Lambers et al. [22] applied 

the micro-CT to micro-FE approach to determine the mechanical environment and its effect on 

bone (re)modelling in mouse tail vertebrae under normal [10, 22], ovarectomised [10] and 

ageing conditions [22]. For both studies, strain energy density (SED) was calculated for each 
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voxel in the vertebrae, with this SED-voxel value representing the mechanical stimuli present 

at the bone surface. This allowed for correlation of SED values to in vivo formation or 

resorption at that same voxel. Cresswell et al. [29, 34] applied a similar approach to calculate 

the mechanical in vivo environment during (re)modelling in rat vertebrae. Micro-CT images of 

rat vertebrae were converted to micro-FE appropriate hexahedral element using custom 

software and solved using ABAQUS [34] or a custom solver [29]. Similarly, the SED, 

maximum principle strain and von Mises stress for each element represented the local 

mechanical in vivo environment. Using florescent markers of bone formation, they correlated 

high bone formation with high SED values. In a study in which young and adult mouse tibia 

were subjected to extra-physiological loads, Willie et al. [9] converted micro-CT images to 

tetrahedral elements which were then solved using ABAQUS via conventional finite element 

analysis (FEA). Age-related and location-related material properties were implemented, and 

maximum and minimum strains were used to assess the local mechanical in vivo environment. 

Here, both groups had increased anabolic response, though they observed a delayed and reduced 

response to stimuli in the aged mice versus the young mice. Such studies demonstrate that these 

computational models can provide a mechanical context for complimentary experimental data. 

Another common approach is the use of poroelastic models, instead of linear elastic models, to 

calculate the mechanical environment. Kameo et al. [6••, 37] applied a voxel-based micro-FE 

poroelastic model for a fluid shear stress based approach to predict (re)modelling of trabeculae 

under both bending and uniaxial loads. A uniform and isotropic poroelastic model was used on 

a cube of randomly arranged trabeculae with a bone volume ratio of 0.4. Over a simulation 

period of 30 days, an increasing load was used to induce fluid shear stress, which was used as 

a measure of the local mechanical environment. The initially randomly arranged trabeculae 

rearranged in the loading direction, with an increase in mean equivalent stress and SED 

observed from the initial state to the end state of the (re)modelling simulation. However, a 

significant reduction in the standard deviation of the SED and mean equivalent stress was also 

observed, confirming their hypothesis that (re)modelling leads to homogenisation of tissue 

strains. Conventional FEA has also been used to provide a mechanical environment for 

(re)modelling. Pereira et al. [38] also applied a poroelastic model to simulate (re)modelling in 

a loaded mouse tibia, in which micro-CT images were acquired from mouse tibia and then 

converted to a tetrahedral volume mesh, and solved dynamically using a commercial solver. 

The bone was modelled as a poroelastic material, with isotropic elastic parameters and an 

anisotropic permeability, where the highest permeability was assumed to lie in line with the 
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primary direction of the lacuna-canalicular structures. The combination of both fluid and solid 

phases into a single non-poroelastic model was investigated by Tiwari et al. [39], where a 

(re)modelling simulation was driven by a combination of both strain based measures 

(compressive and tensile strain and tensile shear) as well as fluid shear stresses. The mechanical 

environment was calculated via FEA, and this prediction accuracy of (re)modelling was 

assessed based on six variations of mechanical parameters in a mouse tibia. Strains were 

calculated with FEA and the tibia was idealised as a homogeneous, isotropic cantilevered beam. 

Their model showed that the highest prediction accuracy occurred upon a combination of all 

types of strain and fluid shear stress. 

When approaching the mechanical environment outside the mineralised bone tissue, the bone 

marrow and the fluid-structure interface pose a challenge in determining the mechanical 

environment surrounding non-osteocyte cells. Webster et al. [40] applied voxel-based micro-

FE to determine SED within the bone marrow of a murine vertebrae, illustrating the importance 

of the mechanical environment of bone marrow on osteoblast and osteoclast activity. In this 

study, bone marrow was modelled as a linear elastic solid, and they reported that newly formed 

bone correlated best with the SED gradient of the marrow. Metzger et al. [41, 42•] investigated 

the mechanical environment of bone marrow using conventional FEA and fluid-structure 

interaction. Within a region of 3 × 3 × 3 mm cubic regions of human trabecular bone, they 

investigated the effect of constitutive model choice on the mechanical environment within the 

bone marrow, comparing linear elastic solid, neo-hookean solid, viscoelastic solid and a power 

law fluid constitutive models. They observed differences of up to 25% in mean shear stress 

between the constitutive models, indicating the importance of constitutive model selection. 

Additionally, significant heterogeneities in spatial shear stress distributions were noted. 

Approaches other than FEA have also been applied to determine the mechanical environment 

on a tissue scale. In studies working towards coupling (re)modelling biology with mechanics, 

Lerebours et al. [24•] and Scheiner et al. [11, 43] applied representative volume element (RVE) 

concepts, beam theory and continuum micro-mechanics theory, under assumptions of pure 

normal and bending force, to a femur mid-shaft. Both studies argue that this analytical 

approach, adopted from Hellmich et al. [44], provides a preferable alternative to the 

conventional micro-FE approach. With this approach, Lerebours et al. [24•] investigated site-

specific bone loss due to mechanical disuse in a multiscale model combining organ, tissue and 

cell-scale simulation. This approach allowed the combination of tissue and vascular phases into 
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a single model with an analytical solution and predicted SED for a given RVE, which was 

coupled with a bone-(re)modelling algorithm. Within the beam theory assumptions lies a 

challenge for this type of approach. It is assumed that no shear forces or torsional loads are 

present, and the material cross-section needs to remain plane and un-deflected relative to the 

bone’s neutral axis. Lerebours et al. [24•] claim these assumptions hold true primarily at the 

femur mid-shaft under small deformations; however, expanding this model to other sections, 

geometries or anatomical locations would require validation that these assumptions hold true 

for each location. 

Due to the scale and availability of techniques to gather information at the organ and tissue 

scale, bridging of these levels using fundamental concepts has been demonstrated. Expanding 

and integrating this with smaller scales becomes the next challenge. 

Tissue to Cell 

One aspect that would help linking these hierarchical scales is differentiating between the 

modes of cellular mechanotransduction. Strain experienced by a cell arises primarily from 

matrix deformation strain and fluid flow strain [20]. However, at least with osteocytes, these 

mechanisms are coupled to some degree [40]; volumetric tissue deformation surrounding an 

osteocyte causes interstitial fluid flow, inducing a pressure gradient within the lacunar-

canalicular network [45]. Correctly capturing the mechanical environment at a cellular level 

requires incorporating ultrastructural features and their relation to the mechanisms of cell 

mechanotransduction. In the immediate cell environment, the effect of the extracellular matrix 

(ECM), the pericellular matrix (PCM) and micro-structural features such as Volkmann canals 

and lamellar layers influences strain transmission from tissue level to the cell. This was first 

shown by Anderson and Tate [46], who modelled fluid flow on osteocytes processes. Using 

computational fluid dynamics, localised stress spikes of up to 5× were found on geometries 

constructed from transmitted electron micrographs (TEM), compared with idealised 

geometries. Investigating localised structural deformation, Verbruggen et al. [27] constructed 

geometries of osteocytes and their ECM and PCM from confocal microscopic images, 

comparing this to FE-based strain results based on idealised geometries. For simulations of 

physiological tissues strains of 500 to 3000 microstrain, they reported that both the ECM and 

PCM increased strain transfer to the osteocyte. Specifically, the PCM decreased peak strain 

transferred but increased the overall transmission of strain to the osteocyte. This suggests that 

real geometries, consisting of an osteocyte surrounded by ECM and PCM, amplify average 
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strain by 3–4 times that of idealised geometries without an ECM or PCM network, reaching 

maximum strains of more than 10,000 microstrain. In a further extension of this work using 

fluid-structure interaction modelling, Verbruggen et al. [25••] introduced fluid in the PCM, 

between the ECM and the cell. This fluid-structural coupling was analysed using ANSYS CFX 

and structural finite element solver, and solved using a staggered iteration approach. All solid 

structures were linear, elastic and isotropic, while the interstitial fluid was modelled as a laminar 

flow, with fluid properties of salt water. They reported that the highest stress levels occurred 

not in the cell body itself, but within the surrounding canaliculi. As such, compared with 

idealised canaliculi, real canaliculi caused an amplification of stimuli by 2–3 times. Vaughan 

et al. [7] also showed similar strain amplification when modelling inhomogeneities in the micro-

structure around osteocytes, by incorporating Volkmann and Haversian canals into an osteon. 

Osteocytes around the Volkmann canals experienced strain up to 9 times the generalised applied 

strain, while osteocytes in the region of lamella rings around the osteon experienced greater 

strain amplification as their primary axis angle relative to the rings increased. This amplification 

aligns well with several in vitro studies, which report that osteocytes require a stimulation of 

5,000 to 10,000 microstrain to elicit a biological response [21], as well as similar results from 

computational approaches performed by Bonivtch et al. [47], Wang et al. [48] and Kamioka et 

al. [49]. Estimating the mechanical loads transferred from the tissue scale to the cell scale is 

achievable with such computational approaches, albeit without in vivo reference, and becomes 

even more challenging beyond this scale. 

Cell and Beyond 

While intracellular mechanics models exist, it is questionable whether multiscale models 

incorporating intracellular complexity would increase accuracy, or only increase computational 

burden. Hence, at this stage, it may be more beneficial to incorporate these mechanisms outside 

of the models. Indeed, several mechanisms transduce mechanical stimuli that ultimately lead to 

the production of molecules orchestrating the (re)modelling behaviour between all involved 

cells. Actin filaments within cells are anchored to the ECM via integrins and linker proteins, 

essentially connecting the ECM and the cell’s cytoskeleton [50, 51]. Since cells must be 

anchored to sense shear stress [52], the adhesion to the ECM is a requirement; as such, there is 

a dependence on integrin function in transducing strain and fluid shear stresses to cell 

deformations [53], even if integrins do not sense the strain themselves. Proteins, including 

myosin II motors, actin filaments and actin crosslinkers, link the cell’s membrane via anchoring 
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proteins such as α-actinin or filamin, that sense dilation versus shear cell deformations, 

respectively [54]. Fluid flow is also sensed by primary cilium that extend from the cell surface, 

whose deformation leads to the opening of ion channels resulting in the internalisation or release 

of ions [55], though its exact role is debated [56]. Other mechanisms include glycocalyx, and 

membrane-bound proteins such as connexions, or stretch-activated channels [57]. It is yet to be 

ascertained whether detailed modelling of the cellular mechanisms that transduce the cell 

mechanical environment to the cell signals is even necessary; simply treating the region as a 

‘black box’ while experimentally quantifying the inputs and outputs may be sufficient for tissue 

(re)modelling research, at least at this relatively early stage of computational prowess. Such 

computational biophysical simulations that explore and understand molecular dynamics are 

under development [58]; however, incorporating such simulations into multiscale approaches 

in bone biomechanics would pose a challenge. 

For now, one accessible building block could be the lacuna-canalicular system, which acts as a 

communication pathway, chemically, as shown by osteocyte calcium signalling correlations to 

dynamic loading magnitude [59] and frequency [60], and physically, via gap junctions. Ridha 

et al. [61] captured elements of these features by applying FEA to simulate rupturing of 

osteocyte cell connections, showing how the loss of connection leads to bone resorption, while 

Jahani et al. [26] used network simulations to model osteocyte apoptosis and its effect on bone-

lining cells, showing that only a 3% decrease in osteocytes was needed to have a significant 

reduction in peak signal to the bone-lining cells. These types of studies begin to shed light on 

the interlinked, mechanosensitive biochemical relationship between osteocytes, osteoclasts and 

osteoblasts which collectively governs bone (re)modelling. The vast majority of these inter- 

and intracellular pathways, molecules and signals have been discovered in vitro, where creation 

of an artificial mechanical environment is relatively simple. Contrastingly, it is only in vivo, 

where the mechanical environment is inhomogeneous and substantially harder to measure, that 

such cell-specific information can be validated in the context of bone (re)modelling. Here, 

quantitative computational tools may be key to estimate and appreciate in vivo cell-scale loads 

and responses. 

Towards Multiscale Approaches 

Several approaches have attempted to aggregate the influence of mechanics over the range of 

scales required to investigate biological processes such as bone remodelling. Frost [62] 

proposed the concept of the bone multicellular unit (BMU), a unit in which the relevant cell 
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populations establish a localised mechanically driven homeostasis via (re)modelling. This 

concept allows the behaviour of this unit to be modelled without taking into account 

individualised cell behaviour, addressing the behaviour of cell populations within this BMU 

instead. Several authors [11, 24•, 63] have adopted this approach and made use of an RVE of 

cortical bone to attempt to aggregate mechanics and capture the combined behaviour of the 

bone (re)modelling cells. The RVE approach claims to be large enough to account for all the 

micro-structural heterogeneities, yet small enough to allow averaging of material behaviour 

over the region [64], hence predicting a relevant mechanical stimuli [11], especially if RVE 

convergence is considered [65]. Further, the interconnectedness of the lacunar-canalicular 

network integrates extracellular matrix strain as well as fluid shear stress and provides adequate 

connection between individual osteocytes that can sense mechanical stimuli on a larger scale, 

rather solely in the immediate dimensions surrounding a single cell [30]. This results in the 

averaging of tissue level strain over a particular volume, and the conversion of these stimuli 

into a set of biochemical responses [24•]. Such approaches could argue that cellular stimuli can 

be captured by a volume substantially larger than an individual cell. Conversely, it can be 

argued that to sufficiently capture the intricate details that could affect the translation of 

mechanical loads to cells, such as strain amplification behaviour [7] or fluid-structure 

interaction within the lacunae [25••], the RVE, in principle, would need to be smaller than the 

cell-scale; hence the appropriateness of the use of an RVE in both trabecular and cortical bone 

is debated [66]. However, it is important to note that it is unknown what scale of detail is 

required to quantify the mechanotransduction from tissue to cell and determine a complete 

mechanical environment. As such, depending on the model, the RVE approach may be 

sufficient. 

In contrast to the RVE approach, in vitro investigations have shown that osteocytes require 

substantially greater levels of strain to display a biological response than that measured in the 

tissue-scale mechanical environment, established and termed as strain amplification [47]. As 

known, complex interactions between solid and fluid states [25••] and the micro-structural 

geometries of the tissue [7, 27] lead to significant amplification factors. These can occur 

between the average tissue strain and the deformation of osteocytes, or the fluid shear stress 

either on the cell itself or on its processes [67]. Currently, representative systems have begun 

to approach multiscale bridging. Whether full multiscale approaches, comprising of the organ 

to molecular scale, will provide insights that are more relevant over representative systems, is 

yet unclear. 
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Validation of Computational Approaches 

While the use of computational bone-based biomechanical models consistently increases, 

validation of the mechanical signals used is in general very much lacking. Ascertaining whether 

mechanical signal inputs into (re)modelling models are truly representative of the in vivo 

mechanical signals is very difficult, with increasing ambiguity at smaller scales. At larger 

scales, the validation of models is somewhat achievable [65]; historically, strain gauges have 

helped validate surface strains of finite element simulations [33]. Other approaches, such as 

digital image correlation, have also been implemented as validation tools with varying degrees 

of success [68]. A limitation of these techniques is that they are only appropriate for surface 

strains, they stiffen the bone surface, or only capture in plane movement of 2D sections [69]. 

Beyond the organ-scale, experimental in vivo validation of mechanical signals poses the 

greatest challenges. Cell amplification concepts, as discussed by Vaughan et al. [7] and 

Verbruggen et al. [25••, 27], begin to address this with models that converge on results observed 

in experimental studies, generating results that align well with in vitro experimentation. Such 

indirect validation, with experimental observation within the mechanical local in vivo 

environment, has been performed with varying degrees of success. Several decades ago, 

Weinans et al. [70] proposed a feedback driven mechanical loading approach to bone 

remodelling, in which FEA calculated the mechanical environment, which was used as a 

remodelling stimulus in the simulation, leading to bone architecture changes. Over the years, 

more detailed and modern approaches have built on this. Recently, Schulte et al. [8] extended 

their own prior model [10], applying SED as a (re)modelling stimulus to predict local spatial 

patterns of formation and resorption. Here, an osteocyte density distribution of 1/10.5 μm3 was 

combined with (re)modelling stimuli approximated by Gaussian smoothing of the mechanical 

environment. Using the same micro-FE methods [10], measured by SED value in the region, 

they could predict changes in bone volume fraction (BV/TV) with a maximum prediction error 

of 2.4%. However, this approach did not predict dynamics rates of bone formation/resorption 

effectively, with significant differences between the simulated data and experimental data. This 

approach was implemented by Levchuk et al. [71•] in a large scale validation study of feedback 

controlled bone remodelling. The in silico model was used to predict bone (re)modelling 

behaviour in osteopenic mice under mechanical loading with treatments of bisphosphonates or 

parathyroid hormone. SED was once again used to describe the local mechanical environment 

and BV/TV was used as the assessment variable for simulation to experimental comparison. 
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Similarly to Schulte et al. [8], overall errors for BV/TV prediction were low, ranging from 0.1% 

(combined mechanical loading and bisphosphonate treatment) to 4.5%, (control group), though 

again, they could not predict dynamic parameters well. Both these studies indicate the 

effectiveness of SED as a predictor of mechanical environment, primarily for static parameters. 

This “soft validation” approach of mechanical signals has provided an acceptable approach for 

assessing the local mechanical environment. Similar validation approaches have been used in 

other in silico models [6••], such as model behaviour aligning to fundamental (re)modelling 

theories of bone. Despite the progress, what remains sorely lacking, is the in vivo validation by 

direct comparison of predicted (re)modelling patterns to in vivo outcomes. As computational 

methods gain complexity and incorporate multiple scales, the fundamental challenge of 

aligning and validating these models becomes even more demanding. 

At the organ scale, material models are usually isotropic and purely elastic; inclusion of the 

viscous effects [72, 73] and anisotropic effects [74] found in bone could improve such models. 

This can be extended to bone marrow, where comparisons between highly viscous fluid, 

viscoelastic solid and soft elastic solid constitutive models display different results [41]. 

Therefore, the correct choice of model is essential, and parameters require a comprehensive and 

application specific database. Of further benefit would be an ability to quantify the differences 

between mechanical environments determined under varying model parameters and solving 

approaches, i.e. linear versus non-linear solvers. 

While tissue-averaged strain approaches have shown success in predicting (re)modelling, it is 

clear that strain and fluid stresses are amplified within the canaliculi-lacunae network, causing 

cells to receive stimulation in the range found to cause a biological response in in vitro 

experiments. Hence, multiscale models incorporating strains and fluid stresses on the cells 

themselves, based on tissues strains, could help explain the role of single cells on the 

(re)modelling process. These models would provide cell-specific mechanical stimuli boundary 

conditions to inform experimental techniques heading towards single cell analysis. However, 

many challenges remain. Firstly, accurate mapping of the osteocyte lacunae system, or the 

location of osteoblasts or osteoclasts on the bone surface, is needed for (re)modelling 

experiments. Secondly, coupling detailed imaging techniques with in vivo experiments 

represents a significant challenge due to destructive doses of radiation, or long imaging times 

[28], and a lack of techniques linking the two realms. Regardless, validation of input signals, 

and the model themselves, appear the biggest hurdle towards accuracy and confidence. 
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Conclusion 

Over the last few decades in bone systems biomechanics, substantial progress has begun to 

elucidate the mechanosensitive mechanisms of bone (re)modelling. Complete multiscale 

modelling of the mechanical environment has significant application towards understanding 

cellular mechanotransduction, and the resultant processes in bone. In particular, the knowledge 

of the exact forces and strain experienced by an individual cell, or small populations of cells 

can be leveraged by rapidly maturing experimental techniques. Techniques, such as laser 

capture micro-dissection, or imaging mass spectroscopy, that can gather molecular information 

from small populations of cells, can be coupled with inter- and intracellular downstream 

simulations converting the mechanical local in vivo environment to direct mechanical 

transduction within the cell. Combining multiscale models, from organ level to protein and 

molecular responses, with experimental data, will allow the establishment of a continuum of 

knowledge from organ-scale to protein expression. This will foster progress towards 

understanding of the effects mechanics has on bone tissue, allowing accurate characterisation 

of the molecular pathways and processes involved in (re)modelling, repair and growth. 
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Abstract 

Mechanical loading has been shown to play a significant role in the healing of fractures. 

However, measuring the exact mechanical loading within a defect is challenging, and has not 

yet been achieved in mice. We developed an instrumented fixator capable of measuring 

deformation within the external fixation in a mouse model of defect healing. The measurements 

obtained with this device allowed us to determine the habitual loading applied by the mouse 

itself to the defect prior to bridging. Using these measurements, we show that habitual loading 

in percentage bodyweight is strongly and significantly correlated with the outcome of the 

fracture healing process, assessed via micro-finite element analysis, in the five weeks post 

measurement. We further demonstrate that habitual loading alone accounts for 64% of the 

variate in bone stiffness at week 3, where defects in all but two mice were bridged. These two 

mice formed non-union fractures and displayed substantially lower and higher mechanical 

loading than the rest of the group, aligning with current literature on the mechanical causes of 

non-union fractures.  

Keywords: 

Bone, fracture healing, habitual loading, prediction, defect healing  
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Introduction 

Fracture healing is driven by biological and mechanical factors1-10. Mechanical factors arise 

from several sources, such as habitual loading in combination with fixation stiffness. As a 

result, many authors have investigated the effects of inter-fragmentary movement within a 

fracture11-14, musculoskeletal loading of a fracture15,16 and fracture fixation on fracture 

healing1,13,16. These studies have concluded that either too little or too much strain impairs 

healing, either lengthening the process or leading to the formation of non-unions. Hence, it is 

clear that a specific “mechanical dose” of strain exists within the defect during the fracture 

healing process. This mechanical dose allows for optimal fracture healing, leading to reduced 

healing time and the best outcome in terms of strength and structure17.  

The fracture healing process can be broken down into three overlapping phases: the 

inflammation phase begins immediately after fracture with the formation of a haematoma and 

the laying down of soft granulation tissue. This phase attracts and recruits cells and resources, 

and gives way to the development of soft bone in the reparative phase. Soft bone eventually 

forms a bridge across the fracture gap, providing structural support and transferring the 

mechanical load from highly deformed soft tissue to stiffer bone. The soft, lowly mineralised 

bony tissue, which has bridged the fracture gap, usually occupies a far greater volume than what 

is mechanically required of the bone once healing is complete. As the tissue mineralises, excess 

bone tissue is resorbed in the final remodelling phase. This process has been extensively 

assessed using micro-computed tomography (micro-CT) in mice18,19 or rats20,21. Micro-CT 

imaging allows for longitudinal in vivo scanning of the fracture region and can hence be used 

to assess the full fracture healing process. Many attempts have been made to control the level 

of strain within the tissue throughout all phases of healing. These methods range from direct, 

such as direct actuation via implants (see chapter 3.2 and 4.2), to indirect loading, such as 

vibration22,23 or changing the fixation stiffness4,12,13,16. Understanding the habitual mechanical 

stimulation during the fracture healing process has the potential to guide such approaches and 

lead to the development of mechanical dosing protocols for optimal healing. Of particular 

clinical interest is the effect of mechanical stimulation on non-union fractures, which are 

characterised by maladaptive healing and insufficient structural integrity of the bone. 

Comprising roughly 5% of cases24, these fractures largely result from too much inter-

fragmentary movement within the defect25 and pose a substantial clinical challenge. Timely 
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interventions to correct insufficient or excessive mechanical stimulation in non-unions may lead 

to their prevention and treatment. 

Numerous attempts have been made to infer habitual loading in mice or rats in vivo. Force 

plates26-30, instrumented fixation15,16,31 and musculoskeletal modelling32,33 have been used to 

calculate loading in the hind limb during locomotion. In particular, Wehner et al.16 and 

Klosterhoff et al.15 both applied deformation measurement technologies, in the form of strain 

gauges on external fixators, to measure the habitually induced loading on the femur during 

locomotion in rats. By observing changes in fixator loading, Wehner et al.16 tracked the healing 

progression of the fracture and quantified the changes in healing time and reparative phase 

duration. Klosterhoff et al.15 observed that strain amplitude was predictive of bone volume both 

three and seven weeks after measurement. Additionally, strain amplitudes measured at week 1 

were predictive of failure torques at the end of the of the eight-week study. While the 

conclusions of these studies focused on two different outcomes, both indicate that habitual 

loading is an important component in understanding the fracture healing progression. 

In this study, we implemented an instrumented external fixation in a femoral defect mouse 

model and tracked habitual loading throughout the study duration. By combining this 

information with longitudinal micro-CT tracking of the fracture healing progression, we linked 

habitual loading behaviour prior to bone formation with healing outcome. Additionally, we 

investigated whether the mechanical environment explains the variance within the fracture 

healing progression. Specifically, we hypothesised that pre-bridging loading would predict the 

healing outcome. 
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Materials and Methods 

Study Design 

To investigate the effect of self-induced mechanical loading on fracture healing, twelve mice 

were osteotomised. The osteotomy was fixated using an external fixator. To measure strains 

within the external fixator, the side bars were swapped out with custom-made strain-gauged 

side bars. Force and displacement values in the defect region of the femur could be inferred via 

calibration. These values were correlated with fracture progression, assessed by the stiffness of 

a micro-finite element (micro-FE) simulation derived from weekly micro-CT measurements. 

Using these displacement values as boundary conditions, the mechanical environment within 

the soft tissue of the osteotomy was inferred. 

 

Figure 3.1: Example and locations of a strain-gauged instrumented fixator. a) The right femur 

of the mouse was stabilised with an external fixator with removable side bars. Upon 

deformation, the stains within the external fixator were recorded. b) The removable PEEK side 

bars were replaced with aluminium side bars, one of which was strain-gauged and tethered to 

the data acquisition system.  

Animals 

All animal procedures were approved by the local authorities (licence number: 181/2015 

Kantonales Veterinäramt Zürich, Zurich, Switzerland) and all methods were carried out in 

accordance with the relevant regulations and guidelines (ARRIVE guidelines and Swiss Animal 
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Welfare Act and Ordinance (TSchG, TSchV)). The study group consisted of twelve female 

C57BL/6L (JANVIER, Saint Berthevin Cedex, France) mice, which were acquired at 12 weeks 

of age and underwent surgery at 20 weeks. The mice were housed in the ETH Phenomics Centre 

(EPIC; 12h:12h light-dark cycle, maintenance feed (3437, KLIBA NAFAG, Kaiseraugst, 

Switzerland), 5 animals/cage prior to surgery, 2-3 animals/cage after surgery) for 8 weeks prior 

to surgery. Perioperative analgesia (25 mg/L, Tramal®, Gruenenthal GmbH, Aachen, 

Germany) was provided via the drinking water from two days before surgery until the third day 

after surgery. All surgery and scanning occurred under anaesthesia (initiation 5%, continuous 

2% isoflurane/oxygen). All animals were osteotomised on the right femur with a 0.66mm Gigli 

wire and were fixated using an external fixator (Mouse ExFix, RISystem, Davos, Switzerland; 

stiffness 13.7±2.4 N/mm) by the same veterinarian. A detailed description of the surgery 

process is provided elsewhere18.  

To measure strain in the defect during locomotion, a mouse was anaesthetised (initiation 5%, 

continuous 2% isoflurane/oxygen), the lateral fixator side bar was replaced with the 

instrumented side bar, and the medial side bar was replaced with a blank aluminium bar. The 

mouse was taken to the CatWalk (Noldus, Wageningen, the Netherlands) and, once awake, 

placed on the walkway. Mice were allowed to move freely along the length of the CatWalk (~1 

m) until three good runs were recorded. This was performed under direct supervision, with 

researchers ensuring that the tether did not affect the mouse gait or obstruct the mouse’s 

movement. Once sufficient data was acquired, the mouse was anaesthetised and the PEEK side 

bars were replaced on the fixator. The mouse was then micro-CT scanned. 

Measurement of strain in the defect 

Strain gauges (L2A-13-015LW-120, Vishay-Micromeasurements, Wendell, USA) were 

attached to aluminium side bars with epoxy (M-BOND AE-10, Vishay-Micromeasurements, 

Wendell, USA). Strains within the tethered aluminium side bar were captured during mouse 

locomotion along a CatWalk. A National Instruments cDAQ (NI-9235, 8 ch, 120 ohm quarter-

bridge, 24-bit, 10 kS/s/ch C Series Bridge/Strain Input Module and cDAQ-9171 chassis, 

National Instruments, Austin, Texas, USA) was used to power the strain gauge in a Wheatstone 

bridge configuration with dummy resistors. Custom LabVIEW software was used to run the NI 

cDAQ instrumentation, capture the resultant signal from the strain gauge, and read out files. 

Further signal processing was performed in Python34. Each run was manually assessed (aided 

by time-stamped video recordings) and the most consistent run (i.e. the run in which the mouse 
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paused the least and ran continuously from one side of the CatWalk to the other) was selected 

and extracted. Signal peaks and troughs were identified automatically. Peaks with a prominence 

of less than half the maximum signal height were discarded to ensure capture of a full foot strike 

movement. The relative strain amplitude was calculated from the difference between each peak-

trough pair and the median of the set was used in further analysis. The strain-gauged aluminium 

bars were calibrated for both force in an empty defect region and displacement in the defect 

region. Calibration was performed by uniaxial tests on a Zwick compression tester (ZwickRoell, 

Ulm, Germany) from 0 N to 1 N using a 10 N load cell. The force-calibrated foot strike 

amplitude was normalised by mouse body weight to obtain a percentage body weight 

measurement. Measurement began at week 1 and continued weekly until week 7 on the same 

day as the micro-CT scanning. 

 

Figure 3.2: Signal processing. a) The raw signal, which contained many non-locomotion 

specific artefacts, was time-stamped to a video feed to ensure that locomotion across the 

CatWalk was correctly identified. b) The most consistent burst was chosen for analysis. Peak- 
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trough pairs were identified algorithmically and required peak prominence of at least half the 

maximum height of the largest peak-trough difference. c) The peak-to-peak amplitude of each 

foot strike was analysed. 

Imaging, pre-processing and multi-density finite element analysis 

Imaging was performed on a vivaCT 40 micro-CT scanner (Scanco Medical, Brüttisellen, 

Switzerland) with a nominal resolution of 10.5 µm. The scanned region required two stacks of 

211 voxels each, and had an imaging time of 15 minutes (55 kVp, 145 µA, 350 ms integration 

time, 500 projections per 180°, 21 mm field of view (FOV), aluminium filter to prevent beam 

hardening). All animals were scanned weekly from day 0 (post operation) until week 7. Pre-

processing entailed the extraction of the relevant subvolume (to a dimension of 180 voxels), 

Gaussian filtering (σ = 1.2, support = 1) and binning grey values using a multi-density 

approach35. The binned greyscale values were converted from density (mg HA/cm3) to Young’s 

moduli (GPa), on a per voxel basis, from 395 mg HA/cm3 to 720 mg HA/cm3 in steps of 25 mg 

HA/cm3, corresponding to 4.045 GPa to 12.170 GPa with steps of 0.626 GPa, respectively. 

Regions of soft tissue were set to a Young’s modulus of 0.003 GPa6 and the marrow cavity of 

the femur was capped with a plate of 20 GPa, preventing edge effects due to the soft tissue 

found lying on the top slice of the finite element mesh. To ensure that boundary conditions were 

consistently applied, longitudinal images were registered to one another prior to the multi-

density conversion process. A linear micro-FE solver, ParOSol36, was used to simulate the 

stiffness of the volume of interest by applying 1% uniaxial compression to the top slice of the 

volume while fixing the bottom slice. The stiffness of the fracture callus was determined by 

dividing the sum of the vertical resultant force from each node of the uppermost plane of the 

mesh with the displacement boundary condition distance, giving a stiffness value for the region 

of interest (in N/mm). Mouse 4 was excluded from correlations and statistical models due to 

substantial bone fragments within the defect, leading to abnormal stiffness results. To determine 

the mechanical environment, similar simulation were run using the displacement values of 

measured boundary conditions (see supplementary material, table 3) on the top slice instead of 

a 1% uniaxial compression . The strains within the soft tissue of the osteotomy gap were then 

extracted using the masking approach outlined by Tourolle et al.35 and all zero strains were 

removed. 
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Statistics 

A Schapiro-Wilk test indicated that both the stiffness progression data and the mechanical 

loading data were not normally distributed. Therefore, we computed the relationship between 

these two variables using Spearman’s correlation. We performed a linear regression of habitual 

loading at week 1 against fracture stiffness at week 2 to week 7. All tests were performed using 

SciPy Stats34.   
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Results 

We combined weekly habitual loading measurements using an instrumented fixator (Figure 

3.1a and b, Figure 3.2) with weekly micro-CT measurements (Figure 3.3) to track the 

relationship between habitual loading and fracture progression in twelve mice in a femoral 

defect model. Micro-FE analysis was performed based on micro-CT images to calculate the 

stiffness of the volume of interest throughout the duration of the study (seven weeks). We 

assessed correlations and predictive relationships between pre-bone formation loading and the 

longitudinal progression of the fracture healing process. Additionally, we used the measured 

displacements as boundary conditions to simulate the soft tissue strains within the osteotomy at 

week 1. 

 

Figure 3.3: Examples of union and non-union healing progression up to seven weeks post 

surgery. Bridging occurred at week 3 for all but the two non-union mice.  

Fracture healing and habitual loading progression 

The results of the micro-FE simulation displayed a stiffness progression (Figure 3.4) typical of 

fracture healing for ten of the twelve mice. Specifically, callous stiffness rose quickly between 

weeks 2 (group mean 395±481 N/mm) and 3 (group mean 4213±976 N/mm) to a peak stiffness 

at week 4 (group mean 4842±631 N/mm), indicating that new bone tissue was laid down and 

the fracture had bridged. After week 4, a slight decrease was observed until the end of the 

experiment at week 7 (group mean 4463±458 N/mm); this corresponds to the removal of 

structurally unnecessary bone tissue, converging on an optimised structure. In turn, the habitual 

loading followed an inverted pattern, with measurements decreasing from weeks 1 to 21 (group 

mean 387±91% to 137±93%), corresponding to bone formation observed in the micro-CT 
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images (as demonstrated in Figure 3.3). The lowest level of habitual loading was observed at 

week 4, corresponding to the highest stiffness. 

 

Figure 3.4: Group habitual loading and fracture stiffness over seven weeks. Fracture stiffness 

followed a sigmoidal shape, with maximum stiffness reached at week 4. Habitual loading, in 

%bodyweight, followed an inverse pattern. As fracture stiffness increased, more force was 

transferred through the stiff bone and less through the fixator. Post week 4, the mice applied 

greater loading to the system as a whole and fracture stiffness decreased, with more force being 

transferred through the fixator. 

On an individualised basis (Figure 3.5) a large range of values was observed at week 1. 

However, amongst the mice that bridged, the range of habitual loading values was small once 

bridging occurred. As the remodelling of the callus was underway, the habitual loading levels 

diverged, such that at week 7 several mice applied a load of roughly half their habitual load at 

week 1. 
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Figure 3.5: Individualised fracture stiffness and habitual loading progressions. a) Most mice 

display a sigmoidal healing progression. Mouse 04 and mouse 07 display better healing results 

than the rest of the group, while mouse 01 and mouse 02 did not bridge and displayed the 

stiffness progression typical of non-union fractures. b) These results are mimicked (but 

inverted) in habitual loading. Note the great range of habitual loading values displayed by 

mouse 01 and mouse 02, which differs from that in the union mice.  
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Correlation and prediction of healing progression from habitual loading 

 

Figure 3.6: Correlations between habitual loading at week 1 and fracture stiffness at week 0 

to week 7. 

Habitual loading at week one displayed a significant correlation with stiffness from week 2 

until week 6 (week 2: corr = 0.91, p = 0.00013; week 3: corr = 0.85, p = 0.00081; week 4: corr 

= 0.68, p = 0.021; week 5: corr = 0.76, p = 0.006; week 6: corr = 0.72, p = 0.013) (Figure 3.6). 

A non-significant relationship was observed between habitual loading at week 1 and stiffness 

at week 7 (corr = 0.56, p = 0.071). Habitual loading at week 1 was neither correlated with 

stiffness at week 1 (corr = -0.073, p = 0.83), nor with stiffness at week 0 (corr = -0.218, p = 

0.52). 
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Figure 3.7: Habitual loading as a predictive factor in a linear regression model. Habitual 

loading most strongly predicted fracture stiffness at week 2, with the effect size decreasing as 

time progressed. 

In addition to the significant correlations between fracture stiffness progression and habitual 

loading, habitual loading at week 1 was a strong predictor of the outcome of the fracture 

stiffness progression (Figure 3.7). Habitual loading at week 1 was a better predictor of the 

stiffness at week 2 (R2 = 0.65) and week 3 (R2 = 0.64) than at the following time points (weeks 

4 and 6: R2 = 0.45; week 5: R2 = 0.44; week 7: R2 = 0.39). 

Fracture stiffness progression was not significantly correlated with external fixator stiffness, 

osteotomy gap volume, lowly mineralised bone volume (threshold of 395 mg HA/cm3) or 

highly mineralised bone volume (threshold of 720 mg HA/cm3) at any time points. Additional 
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variables, such as fixator stiffness or osteotomy volume, did not increase the adjusted R2 value 

when used as predictors in a multivariate regression model.  

Mechanical Environments 

 

Figure 3.8: Mechanical environment inside the osteotomy gap, sorted by fracture stiffness at 

week 3 from lowest (left) to highest (right). Mouse 01 and mouse 02 displayed the lowest 

medians and the smallest ranges of effective strain values. Mouse 07 displayed the highest 

median effective strain and a large range of effective strain values within the osteotomy gap. 

The mechanical environment within the osteotomy gap showed similar trends to the organ scale 

loading. Mice with high median strains displayed a better fracture stiffness progression than 

those with low median strains (Figure 3.8).  

Mice displaying non-union  

Two mice displayed non-union fracture throughout the duration of the experiment, with a 

fracture stiffness ranging between 20 and 30 N/mm. These non-unions were clearly visible in 

the habitual loading measurements, as there was no decrease due to strain shielding from newly 

formed bone. The loading progression can be seen in Figure 3.5b, with a range of values (from 

226% to 651% bodyweight loading) greatly exceeding that in the union group.  
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Discussion 

The purpose of this study was to investigate the relationship between habitual loading in a 

femoral defect model in mice and healing progression on an organ scale. Our results 

demonstrate that habitual loading is a significant factor in the progression of fracture healing 

on an individualised basis. When habitual loading is analysed before any signs of bone healing 

are observed, a strong correlation with the healing progression (measured by weekly stiffness) 

is seen for the following five weeks. Importantly, the absence of a correlation between habitual 

loading at week 1 and fracture stiffness at week 1 indicates that measuring habitual loading via 

an indirect means (such as an external fixator) prior to bone formation is not merely a reflection 

of fracture stiffness. Our results show many similarities to those of both Wehner et al.16 and 

Klosterhoff et al.15, with a clear decrease in signal at the start of bone formation, and an increase 

towards the end of the healing period during the remodelling phase. This is likely a result of the 

primary load-bearing structure shifting from the external fixator to the newly bridged bone. 

Similar to Klosterhoff et al15, we observed a predictive relationship between pre-bone formation 

habitual loading and the outcome of the healing process. However, we observed this pattern 

using fracture stiffness as a measure of healing progression, and were unable to replicate the 

relationship when using bone volume like Klosterhoff et al.15. We hypothesise that this may be 

a function of defect size. In a smaller defect, formation of bone alone is more likely to be a good 

predictor of healing, as it improves defect stability regardless of its location within the defect. 

Contrastingly, in our relatively larger defect the location of the newly laid down bone is 

paramount, and hence stiffness proved a better measurement of defect healing than bone 

formation. We also observed that mice with a higher median effective strain tended towards 

improved fracture stiffness at bridging, indicating the need for further investigation into the 

relationship between soft tissue strains and local formation of bone tissue. 

Validation of our measurement poses a challenge, as there is no existing habitual loading data 

for this particular model. However, comparisons with musculoskeletal modelling of mouse hind 

limb kinematics during locomotion32,33 and force plates26,27,29,37 show similar patterns to our 

measured loading signal. Equivalent peaks and rises are observed in both ground reaction 

forces26,27 and our measurement. However, one key difference is the final peak (Figure 3.2), 

which is not seen in force plate measurements. We hypothesise that this loading occurs from 

lifting of the foot, a process not captured by force plates. Our %bodyweight loading level also 

differs substantially from force plate studies. Clarke et al.26,27, Fowler et al29,30, and Roach et 
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al28,  reported a %bodyweight loading in the range of 50% to 70%, while we observe a mean of 

387% in our group. This difference can arise from amplification occurring due to muscle 

loading of the femur, an effect noted in humans38. With regard to musculoskeletal modelling, 

the amplitude of our measurement is similar to those shown by Charles et al. in hind limb 

loading32 (~0.5-1 N versus 0.2 N, see Table 1, Supplementary Material) and muscle forces 

surrounding the femur33. An additional approach to validate our results is the use of the bone 

microstructure to back-calculate the loading that would have resulted in such a structure39. 

However, the results of this approach  differ from our measurement by an order of magnitude35.  

Two of the twelve mice in this study demonstrated a non-union fracture. Each non-union mouse 

displayed a habitual loading level of substantially less than one standard deviation of that in the 

union group. The two non-union mice displayed habitual loading of 226% and 252% 

bodyweight, compared to the main group with a mean of 387±91% bodyweight. Furthermore, 

there were two mice within the union group who displayed similar loading levels to the non-

union group. Even though these mice bridged, they displayed poor healing progression, 

providing support for the concept that non-unions are a potential result of several possible 

causes and not just insufficient mechanical stimulation9,40,41. Additionally, one of these mice 

showed loss of bone during the study, displaying atrophic patterns observed in certain models 

of non-union fractures40. 

In this work, several limitations are present. Primarily, our results are a small snapshot of the 

general habitual loading present throughout the healing process. However, certain technological 

challenges limit full continuous monitoring of loading within the fracture. Firstly, most 

commercial device for mice are inappropriately sized for such a measurement. Incorporating 

wireless communication with appropriate amplification and power sources at such a size is 

difficult. Secondly, the tether produces signal artefacts, which manifest as a slow (> 5s) linear 

increase or decrease of the signal. However, since the additional strain induced on the fixator 

by the attached wire occurred over a duration far greater than a mouse foot strike, this artefact 

could be removed via linear detrending. Finally, as the measured amplitude of loading was 

taken as the difference between peak-trough combinations, the recorded deformation was 

relative and did not account for any pre-loading or pre-conditioning during the loading pattern. 

An additional limitation is that we only focused on consistent movement bursts on the CatWalk. 

Often, when the mouse reached the end of the CatWalk and turned around before engaging in 

another run, there was a substantially high peak force exerted on the fixator. Similar high peaks 
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were observed during non-walking movements (such as the mouse bobbing slightly up and 

down) or pre-walking movements (the initiation of the movement sequence). Future studies 

may benefit from incorporating such low frequency high amplitude loading events into their 

analyses. Finally, the use of strain gauges on an external fixator provides an indirect 

measurement. Even with calibration, measured loading is not a completely accurate reflection 

of the forces and deformations within the defect. Due to this, our method is limited by the 

compliance of the fixator. If the fixator pins and parts are loose, either within the bone or on 

the external fixator itself, a certain degree of deformation could occur without the strain gauge 

deforming. This limitation results in the measured force being a lower bound of loading.  

In conclusion, this work experimentally determines individualised loading in a femur defect 

model in mice. We observed that habitual loading pre bone formation is a key metric in the 

healing progression of a defect. From this data, we can begin quantifying a mechanical dose, 

which can be delivered to the defect in the pre-bridging situation. With this knowledge, 

improved mechanical intervention approaches and studies can be designed. Based on the two 

mice that formed non-union fractures, more research and an increased sample size are needed 

to expand upon the observations of insufficient mechanical stimulation and to elucidate the 

mechanoregulation of non-union cases.  
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Supplementary Material 

Table 1: Median peak loading amplitude (in N) 

 
Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 

Mouse 01 0.49 0.55 1.43 1.01 0.78 0.6 0.62 

Mouse 02 0.47 0.74 0.97 0.88 0.96 0.83 1.06 

Mouse 03 0.96 0.1 0.08 0.06 0.17 0.05 0.5 

Mouse 04 0.73 0.07 0.1 0.06 0.19 0.58 0.48 

Mouse 05 0.85 0.1 0.06 0.1 0.29 0.14 0.52 

Mouse 06 0.89 0.1 0.08 0.04 0.12 0.46 0.47 

Mouse 07 1.15 0.14 0.09 0.07 0.16 0.55 0.47 

Mouse 08 0.81 0.49 0.09 0.09 0.18 0.27 0.36 

Mouse 09 1.03 0.34 0.11 0.09 0.29 0.66 0.67 

Mouse 10 0.77 0.63 0.1 0.08 0.29 0.49 0.35 

Mouse 11 0.58 0.48 0.07 0.11 0.42 0.59 0.41 

Mouse 12 0.52 0.58 0.13 0.1 0.24 0.43 0.35 

 

Table 2: Bodyweight prior to CatWalk measurement (in g) 

 
Week 0 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 

Mouse 01 22.4 22.1 22 22.4 23 22.1 22.6 22.4 

Mouse 02 19.4 18.9 19.3 19.4 20 19.5 19.3 19.7 

Mouse 03 22.4 22.7 22.4 22.4 22.5 21.8 22 21.9 

Mouse 04 19.8 20 20.2 20.4 20.6 20.4 20.5 20.3 

Mouse 05 23 22.7 22.1 22.4 21.9 22.1 22.1 22.2 

Mouse 06 21.3 21.5 20 20.4 20 20.1 20 21.2 

Mouse 07 23.6 22.2 23.2 23.3 23.7 22.7 23.1 23.5 

Mouse 08 22.7 21.5 21.4 21.4 22.3 21.4 22 22 

Mouse 09 21.5 20.3 21.3 21.8 21.3 21.4 21.6 21.8 

Mouse 10 25.5 23.4 24.9 22.8 24.2 23 24.1 24.1 

Mouse 11 24.5 23.6 23.6 23.6 24 23.8 24.5 24.4 

Mouse 12 22.4 21.8 22.4 22.2 22.3 22.4 22.6 23.2 
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Table 3: Peak deformation during CatWalk measurements (in mm) 

 
Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 

Mouse 01 0.0029 0.0034 0.0085 0.0061 0.0050 0.0036 0.0037 

Mouse 02 0.0027 0.0045 0.0056 0.0057 0.0057 0.0049 0.0064 

Mouse 03 0.0059 0.0006 0.0005 0.0004 0.0010 0.0003 0.0031 

Mouse 04 0.0043 0.0005 0.0006 0.0004 0.0012 0.0035 0.0030 

Mouse 05 0.0051 0.0006 0.0004 0.0007 0.0018 0.0009 0.0032 

Mouse 06 0.0052 0.0006 0.0005 0.0003 0.0008 0.0029 0.0029 

Mouse 07 0.0069 0.0009 0.0005 0.0004 0.0009 0.0032 0.0028 

Mouse 08 0.0047 0.0030 0.0005 0.0005 0.0011 0.0016 0.0023 

Mouse 09 0.0066 0.0020 0.0007 0.0005 0.0017 0.0039 0.0045 

Mouse 10 0.0047 0.0036 0.0006 0.0005 0.0017 0.0029 0.0022 

Mouse 11 0.0035 0.0029 0.0004 0.0007 0.0024 0.0039 0.0025 

Mouse 12 0.0031 0.0037 0.0008 0.0006 0.0014 0.0026 0.0022 
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Abstract 

Mechanical loading allows both investigation into the mechanoregulation of fracture healing as 

well as interventions to improve fracture-healing outcomes. However, loading is seldom 

individualised or even targeted to an effective mechanical stimulus level within the bone tissue. 

In this study, we use micro-finite element analysis to demonstrate the result of using a constant 

loading assumption for all mice in a given group. We then contrast this with the application of 

an adaptive loading approach, denoted Real Time Finite Element adaptation, in which micro-

computer tomography images provide the basis for micro-FE based simulations and the 

resulting strains are manipulated and targeted to a reference distribution. Using this approach, 

we demonstrate that individualised loading will lead to a better-specified strain distribution and 

lower variance across all mice, both longitudinally and cross-sectionally.  

Keywords: 

Bone, bone regeneration, fracture healing, bone adaptation, mechanical strain, real time, finite 

element analysis, individualised 
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Introduction 

Bone requires mechanical stimulation for fractures to heal. Improved understanding of the 

mechanical stimulation – fracture-healing relationship will provide substantial benefit in both 

basic scientific investigation of cell fate and behaviour as well as clinical application. However, 

the exact mechanical stimulation required to initiate bone formation is still up to debate, with 

in vivo, in vitro and in silico models showing differing levels of activation strains at different 

anatomical scales1-4. For example, at tissue level, strains of up to 3’000 microstrain occur due 

to strenuous physiological loading in humans 5, while at cell level, in silico models have shown 

that micro-architectural variations lead to strain amplifications and strain peaks exceeding 

10’000 microstrain in and around osteocytes 6,7. These levels of strain approach the activation 

levels seen in single cell in vitro investigations on the response of osteocytes to mechanical 

loading 8. However, even though mechanical stimulation at each scale differs greatly, our ability 

to control the mechanical stimuli is most easily performed at organ scale, manipulating the bone 

via some sort of actuation resulting in a specific strain distribution at each scale. Controlling 

this “mechanical dose” in the mechanical environment is essential for experimental methods to 

either optimise or map mechanical stimulation to understand the formation processes 

underlying bone healing and develop improved interventions. In turn, with the growth of 

personalised medicine approaches, treatments adjusted towards a patient’s individual anatomy 

would require mechanical interventions with a specific “mechanical dose” for each patient.  

The mechanical environment is greatly dependant on the geometry of bone 9. Strains propagate 

differently through each individual bone, providing a variety of mechanical stimuli throughout 

the tissue 10. This geometric variance is seen from traumatic fractures in humans 11 to well 

controlled osteotomies in sheep 12 or murine models 13. While inbred mouse or rat strains should 

provide the lowest variance out of all appropriate model animals for fracture healing, often the 

variance is not as low as expected. For example, even within studies, defect size variance can 

be large, often displaying a standard deviation of over 10% of the nominal size in osteotomy 

based experiments 12-14. In addition, even though it is known that the resulting strain from the 

initial size of the fracture gap 12,15-18 is influential in the outcome of the healing process, this 

geometric information is regularly left either unreported, with no size or geometric description 

of the defect presented 19-21, or underreported with only the nominal size being presented 22-24. 

While such basic geometric conditions are critical for outcome, additional affecters such as 

activity of the animal 25, disruption of the periosteum 26,27 and inter-fragmentary movement 28 
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provide further biological and mechanical cues. These cues influence the longitudinal 

progression of bone formation and resorption and hence lead to geometric changes, which in 

turn further influence the mechanical environment within the tissue and the resultant healing 

outcome divergence across a group. Additionally, effects attributed to interventions such as 

pharmacological agents could be obscured due to inconsistent mechanical environments within 

and between groups. As loading models are often used to study the effects of mechanical 

stimulation on physiological processes in bone such as remodelling and healing, controlling the 

local and global stimuli acting on the tissue would improve the validity of such investigations 
16. 

Non-individualised loading has been applied during all phases of the fracture healing process. 

Vibration loading has often been attempted during the inflammation phase with mixed results 
20,23,24,29, while results that are more consistent have been seen with direct mechanical 

stimulation during the end stages of the reparative phase and the remodelling phase 30,31. 

However, while these studies aim at providing some degree of mechanical stimulation to the 

bone structure, limitations lie in the lack of either targeted mechanical stimulation (i.e. 

attempting to achieve a certain mechanical strain within the tissue), or application of load 

regardless of the individual structural and geometric state of the bone 32-34. Often attempts at 

targeting strains and the resultant mechanical loads are derived from past studies using bone-

surface strain gauge measurements, amalgamating loading-strain relationships throughout the 

animal group 35,36. However, strain gauged based mechanical loading values show substantial 

in-group variance, with values differing by up to 30% in such studies 35,36.  

In this study, we analyse the inter-individual and temporal variance of the mechanical 

environment using image-based finite element analysis 16 during the bridging and post-bridging 

phase under a 10 N load and, due to individual differences seen within groups, propose and 

apply a novel methodology of adapting loading conditions to the individual bone geometry 

within an in vivo mouse femur osteotomy model. We term this method real time Finite Element 

(rtFE) adaptive loading. Via the incorporation of finite element simulations into the 

experimental pipeline in real time, we are able to homogenise tissue level strains between each 

mouse, adapting the experimental load based on these simulations in one imaging and loading 

session. Additionally, we are able to assess whether a bone has a risk of refracture when under 

loading, allowing loading on the healing mouse femur to start as soon as it is safe to do so. This 
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allows complete intervention control throughout the repair and remodelling phases of fracture 

healing. 

Materials and Methods 

Study Design 

All animal procedures were approved by the authorities (licence number: 36/2014; Kantonales 

Veterinäramt Zürich, Zurich, Switzerland). We confirm that all methods were carried out and 

reported in accordance with relevant guidelines and regulations (Swiss Animal Welfare Act and 

Ordinance (TSchG, TSchV) and ARRIVE guidelines). In this study, we used 30 sets of micro-

CT images (30 animals, 5 time points per set) taken during a defect healing study in an 

externally fixated mouse osteotomy model (described in Chapter 4.2). Each mouse was scanned 

weekly over a period of 49 days after surgery. 10 of the mice received mechanical loading 

starting at week 3 post surgery and the rest were sham loaded at 0 N, (details can be found in 

Chapter 4.2). We applied micro-FE analysis to simulate the mechanical environment under 

constant boundary conditions for all mice, and analysed the longitudinal changes in the 

mechanical environment of bones. We then applied an adaptive loading approach, targeting the 

loading to an idealised reference strain distribution, and then analysed and compared the 

longitudinal changes of the mechanical environment between the constant load dataset and the 

adaptive load dataset. 

Imaging and pre-processing 

All images were acquired by a vivaCT 40 (Scanco Medical, Brüttisellen, Switzerland) with the 

following scanner settings: 55 kVp, 145 µA, 350 ms integration time, 500 projections per 180°, 

21 mm field of view (FOV), aluminium filter. Images were of 10.5 µm resolution. All images 

were assessed to ensure they were free of artefacts and were of sufficient quality. All original 

images were cropped to a dimension 300x300x210 voxels and were of the same femoral region 

between the internal screws of the external fixator for each mouse. The longitudinal images 

were then registered to the week 0 time-point, to ensure boundary conditions were consistently 

applied. For post registration, each image was cropped to 180 voxels length via the removal of 

15 slices on the top and bottom of the volume. This was done to remove empty slices caused 

by rotation and translation during image registration. This volume was then Gaussian filtered 

(σ=1.2, support=1) and we applied the multi-density approach proposed by Tourolle et al 16. 

All greyscale values were binned and then converted from density (mg HA/cm3) to Young’s 

moduli (GPa), on a per voxel basis, from 395 mg HA/cm3 to 720 mg HA/cm3 in steps of 25 mg 
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HA/cm3, corresponding to 4.045 GPa to 12.170 GPa respectively with steps of 0.626 GPa. 

Regions of soft tissue were set to a Young’s modulus of 0.003 GPa 15 and the marrow cavity 

of the femur was capped with a plate of 20 GPa, preventing edge effects due to the soft tissue 

found lying on the top slice of the finite element mesh. 

Finite element analysis and scaling of the mechanical environment 

From this mesh, the mechanical environment was determined using a linear micro-finite 

element (micro-FE) solver, Parasol 42. A compressive displacement of 1% was applied to the 

top slice in the axial direction while the bottom slice was fixed. The Swiss National 

Supercomputing Centre (CSCS) was used to solve each finite element simulation, requiring 

roughly 2 min per image. Effective strain43 results of the simulation were taken as the 

mechanical environment of the bone. Two sets of mechanical environments were created from 

the sets of images (in total 60 mechanical environments per time points (2 per mouse), one at a 

load of 𝐹  = 10 N as per Tourolle et al.16 and then one at an adaptive load, which was 

determined by minimising (via a Nedler-Mead optimiser37) the Kolmogorov-Smirnov test result 

to a reference distribution, determined to be representative of a well-healed mouse with a 

median strain of 700 microstrain. To align the force on the bone to the constant or calculated 

values across all mice, the results of the simulations were appropriately scaled based on the 

assumed loading parameters using the following ratio: 

𝜀 =  
𝐹

𝐹
𝜀  

Where 𝜀  is the effective strain result of the simulation (based on the 1% displacement), 

𝐹 is the sum of reaction forces of all the nodes of the uppermost surface, 𝐹  is the 

selected force (i.e. a force provided by a mechanical stimulation machine) and 𝜀  is the 

strains under the applied force. All analysis was performed on strains in the bone tissue only, 

ignoring both the soft tissue and the marrow cap. This was done by masking out regions of soft 

tissue and marrow caps and then performing all relevant analysis on the remaining voxels. 

Statistics 

For each mechanical environment, the median effective strain value was calculated. For all 

groups at each time point, means and standard deviations were calculated. All histogram were 

calculated for the range of 0 to 15 000 microstrain with 250 bins over the range. All statistics 

were performed using SciPy 1.037. 
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Results 

In this study, we compared the effect of traditional constant loading (Figure 3.9a) with loading, 

which is adjusted by rtFE adaptive loading, on the mechanical environment in a healing bone 

defect (Figure 3.9b, c). We used longitudinal in vivo micro-CT images (5 per animal) taken 

from 30 mice during healing of a femur osteotomy fixed by an external fixator. Ten of the 

animals received loading of the defect.  Based on the CT images, we calculated the local strain 

distribution within the callus by micro-FE analysis for a simulated 10 N loading. In a second 

step, we adapted the applied loading such that the distribution of strains is minimised with 

reference to a target distribution, derived from a mouse displaying a good healing progression. 

The whole process was optimized to allow incorporation into a single anaesthesia session, hence 

the name real time FE. We successfully ran the rtFE adaptive loading process with an increase 

of less than 5 min, in addition to image reconstruction times, between the end of scanning and 

the start of loading (Figure 3.9c). This is important as it prevents the need to re-anaesthetise 

the animal, which induces stress and could influence study results. 
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Figure 3.9: a) A traditional loading experiment images the animal and uses a loading protocol 

decided on before the experiment has begun. b) The rtFE approach incorporates the simulation 

and adjustment of the loading parameters to ensure a targeted mechanical stimulation at each 

time point for the animal. c) When incorporated within the experimental pipeline, appropriate 

implementation of the rtFE will allow the imaging to loading process to be incorporated in a 

single anaesthetic session. 
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Longitudinal observations of the bone healing process 

Bridging of the fracture defect occurred between week 2 and week 3 post surgery. As seen in 

Figure 3.10 a and d, between week 2 and week 3, a considerable amount of bone was formed. 

The callus structure had many small strut- and truss-like features that transfer the structural 

load. These can be seen at week 3 (Figure 3.11 a and b). These small structural elements 

concentrated mechanical strains into small regions, increasing strain variance, such as seen at 

week 2, 3 and week 4 in Figure 3.10 b, c, e and f, where strain standard deviation exceeds 

future values. Once these small structural elements were absorbed into the new cortical wall, 

(as can be seen in Figure 3.10a and b, week 3 to 5), the strain distributions displayed lower 

standard deviation, as the thicker structure dissipates the load more evenly. 

 

Figure 3.10: As bone volume decreases (a), or increases (d), the mechanical strains increase 

(b) or decrease (e) respectively throughout the duration of the loading period. This causes a 

changing mechanical environment at each point of time. (c) and (f) display the application of 

the rtFE approach to ensure this change in the local mechanical environment does not occur. 

Additionally, comparisons between (b) and (c), and (e) and (f), show the reduction of variance 

caused by rtFE specifying appropriate loading parameters on an individualised basis. Bone 

volume is normalised to the amount of bone volume at week 0 post surgery. 

Constant loading and the mechanical environment 

At week 3 for the control group, with a load of 10 N, the median strain under constant loading 

was 683±81 microstrain. With the observed decreasing bone volume (Figure 3.10a), the 

median strain and standard deviation increased throughout the study duration, 740±60 
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microstrain at week 4, 818±61 at week 5, 873±71 at week 6 and 905±86 at week 7 (Figure 

3.10b). 

Contrastingly, in the loaded group, with an increasing bone volume (Figure 3.10d), the median 

strain decreased throughout the remaining reparative and remodelling phase (727±74 at week 

3, 582±77 at week 4, 471±68 at week 5, 413±61 at week 6 and 383±56 at week 7) (Figure 

3.10e).  For both loading and control group, the standard deviation of strains in the mechanical 

environment remained high, roughly or greater than 10% of the median strain for all simulated 

time points.  

Real Time Finite Element adaptive loading 

Adaptation of loading parameters to ensure minimisation of strain variance was then performed, 

in a means that can be incorporated into an experiment; a process we term Real Time Finite 

Element (rtFE) adaptive loading. In this process, finite element analysis is performed after the 

animal is imaged and the results are used to change the experiments loading parameters, 

ensuring similar strain distributions within or across groups. The rtFE adaptation required two 

stages: a strain distribution matching stage, to minimise variance between longitudinal and 

cross sectional mechanical environments, and a fracture-risk identification stage; where given 

the determined loading parameters, the risk of fracture is identified and the load downscaled if 

required.  

A target distribution was developed from a mouse with good healing progression and scaled to 

be of a median strain of 700 microstrain. This acted as an idealised strain distribution for the 

application of rtFE. We then minimised the Kolmogorov-Smirnov test statistic (Figure 3.11a) 

between the mechanical environment of each mouse from week 3 to week 7 and this target 

distribution using a Nedler-Mead optimiser. This ensured minimal differences between the 

cumulative distribution functions of each distribution. Alternatively, the strain distribution can 

be plotted with a series of incremental possible loading options governed by whatever 

mechanical actuator is in use. The researcher can then select the most appropriate distribution 

(Figure 3.11b), where each possible scenario is plotted with regard to the target distribution.  
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Figure 3.11: Longitudinal and cross-sectional strain progression under constant loading and 

rtFE adaptation simulations results show the progression of strain within the bone tissue. (a) 

demonstrates how poorly healed bones have less consistent strain distributions throughout the 

tissue, with regions of dangerously high strain and regions of lower strains. Well-healed bones 

however show a decrease in the strains throughout the tissue, as is the case in L06. (b) rtFE 

adapts the loading to ensure no peak strain voxels exist (C10) and maintains consistent strain 

fields (L06). For mice with smaller changes in bone geometry (C09 and C14), the adaptation 

is less obvious, but still present. 

However, scaling load and matching strain distribution can lead to certain fragile structures 

within the callus developing dangerously high strain, potentially leading to refracture. After the 

strain distribution matching is complete, a fracture risk analysis is performed. The aim of this 

analysis is to determine if the new loading parameters could lead to failure of the bone, and 

hence such an occurrence can be mitigated. For the selected loading case, the number of voxels 

of 10 000 microstrain or greater are counted. If this exceeds fifty voxels, the load is downscaled 

by 2 N and the number of voxels greater than 10 000 microstrain is counted again. This process 

is repeated until no voxels exceeding 10 000 microstrain remain (as depicted in Figure 3.12a-

f) and the final loading parameter is selected.  
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Figure 3.12: Fracture risk profiling (a) identifies the number of voxels over 1% strain (B) and 

down scales the load (c – f) until there are less than 50 voxels in the identified strain risk region. 
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We successfully ran the rtFE adaptive loading within an appropriate time window to be 

incorporated into a single anaesthetic session during an experiment. As the simulation time for 

an image is roughly 2 min, this process can be easily incorporated into the usual imaging and 

loading pipelines with minimal extra time required (~5 min in addition to image reconstruction 

times, Figure 3.9c).  

Adaptive loading and the mechanical environment 

With application of rtFE adaptive loading (Figure 3.13, Figure 3.14), a set of loading 

parameters was determined. Control mice required a deceasing load throughout the observation 

period, while loaded mice required an increasing load. When looking at the mechanical 

environment, the median strain for the control group remained within narrow bounds (713±33 

at week 3, 792±35 microstrain at week 4, 714±38 at week 5, 726±35 at week 6 and 736±30 at 

week 7) throughout the remaining reparative and remodelling phase. A similar pattern was seen 

in the loaded group  with median strains remaining similar (721±32 at week 3, 712±20 

microstrain at week 4, 700±15 at week 5, 681±14 at week 6 and 698±14 at week 7) from week 

3 to week 7. As with the control group, upon rtFE application, standard deviation decreased 

substantially from week 3 to week 4, and further decreased during the remodelling period, 

remaining 35% and 25% of the constant load case for the control and loaded groups at week 7 

respectively.  
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Figure 3.13: Two approaches can be implemented for the rtFE approach. Optimising via a 

Kolmogorov–Smirnov test (a) allows an automated process, saving time and giving an exact 

value, while plotting and selecting (b) from a list of loading options provides the researcher 

with more understanding of the strain distributions for each loading parameter. 
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Figure 3.14: Loading parameters relative to the 10 N assumption, determined by rtFE. (a) a 

decreasing load is needed to maintain a consistent mechanical environment in a control group. 

(b) an increasing load is needed to maintain a consistent mechanical environment in a loaded 

group. 

Upon application of the fracture prevention step, the control group observed a decrease in 

median strain and an increase in standard deviation (691±158 at week 3, 726±110 microstrain 

at week 4, 714±47 at week 5, 726±44 at week 6 and 736±30 at week 7) (Figure 3.10c) in 

comparison with the mechanical environment prior to this step. Likewise, the loaded group also 

displayed an increase in standard deviation for earlier time points yet a quicker reduction than 

in the unloaded group (721±122 at week 3, 712±20 microstrain at week 4, 700±15 at week 5, 

681±14 at week 6 and 698±14 at week 7). While the fracture prevention step of the rtFE led to 

an increase in variation, it still was lower in comparison to all other time points past week 4. 
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Discussion 

In this study, we demonstrated that the introduction of an adaptive loading approach to 

individualise load would lead to reduced mechanical environment variance in a femur defect 

model in mice. Mechanical environments under the assumption of constant loading remain 

divergent throughout the reparative and remodelling phase of week 3 to week 7. This was more 

pronounced in the event of substantial bone growth seen in the loaded group, where mechanical 

stimulation is constantly decreasing under an assumption of constant load for loaded mice. 

Conversely, a substantial increase in median strain in the control mice is observed with 

declining bone volume. With the constant loading assumption the lowest variation in median 

strain is at week 7, where all bones have sufficiently bridged and fragile structures of the callus 

are being or have been modelled into new cortical bone or have been removed in remodelling 

processes. This indicates how changes in geometry from loading interventions cause large 

changes in the mechanical environment, which by the very nature of the fracture-healing 

environment are present, with or without loading. Contrasting the constant loading assumption, 

when rtFE adaptation is applied, even with fracture prevention screening, we can clearly see 

that we are able to keep the median strains similar, and reduce group variance, for all mice. The 

rtFE adaptation responds with changes in bone volume, with control mice requiring a decrease 

in mechanical load throughout the study, i.e. as excess bone tissue is removed via remodelling, 

a similar mechanical load would produce a greater median strain within the tissue, hence the 

load needs to be reduced to compensate for these changes. Contrastingly, the loaded mice 

display an increasing level of loading required to develop a sufficient strain within the tissue, 

this is due to loading causing greater bone formation and hence more structural regions to 

support a particular load. From the displayed data, it is quite clear that if one wants a consistent 

or targetable degree of mechanical stimulation, one needs to counter the changes in geometry 

during the repair and remodelling phases, and hence adaptation of loading is required to 

minimise strain variance between mice at the tissue level. On the other hand, it is clear that 

using a constant load will lead to varying mechanical environments during the course of fracture 

healing, delivering drastically different mechanical stimulation to each mouse and its bone 

tissue. rtFE adaptation allows the identification of a set of loading parameters (Figure 3.14), 

which would achieve a more consistent mechanical environment both longitudinally, 

throughout the study, as well as cross sectionally within any group, or across groups.  
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Even though we selected a target distribution with a median strain of 700 microstrain, this in 

practice can be any choice of distribution centred on any particular median value. However, it 

would obviously make sense to select a distribution that one hypothesises would give a 

particularly effect, such as bone growth. In the event of pharmaceutical intervention, one that 

could aim to create an environment as close to perfect quiescence as possible, minimising the 

confounding of the pharmaceutical intervention by a longitudinally or cross sectionally varying 

mechanical environment. Additionally, this approach has a primary advantage over approaches 

based on strain gauge measurements on the surface of the bone35,36,38. RtFE allows surfaces, 

which are inaccessible to strain gauges, yet active in formation and resorption events in the 

callus region, to be included in stain targeting. 

While the fracture prevention approach is conservative, it plays a critical role in preventing load 

adaptation reaching dangerously high strains in the potential fragile environment within the 

reparative and remodelling phases. Often once the time point has been reached where the 

experimental design calls for loading to begin, there are several animals with partially or 

incompletely bridged fractures. In Figure 3.12 b & c, we can see the difference from delicate 

truss like structure to a more solidified cortical structure within the same bone via drastic 

changes in median strain. While the majority of mice for this model heal quickly and well, other 

models can include larger defects that require more time to bridge 16, leaving the start date of 

loading in doubt. Even in the presented data, where the fracture gaps are relatively small, several 

mice displayed low bone volume at week 3 and hence had less structure to absorb load. This 

leads to small, fragile structures within the callus being over loaded. This can be clearly seen in 

Figure 3.11a & b, where a very small number of voxels, in comparison to total voxels, exceed 

the 1% strain margin, yet in Figure 3.11c, one can observe that many of these highly strain 

voxels lie next to one another in the thin structural parts of the callus. This increases the risk of 

refracture and hence poses a risk to the animal. From this visualisation, it becomes clear why 

the general strain distribution can be misleading in terms of identifying the appropriate load. 

Without proper visualisation and screening for the upper limit of strains in the tissue, there a 

high chance of excessive loading of fragile, small structures within the callus, impairing 

healing, or at worst threating the welfare of the animal. While the above mentioned fracture risk 

approach is conservative and will not provide the same accuracy of a validated failure 

assessment of the bone tissue, it provides a metric for justification of reducing loading forces 

in the event that animal welfare may be compromised. Hence, a conservative estimate is 

appropriate given the experimental situation.  
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Limitations of the above work are largely related to simulation accuracy and correct description 

of boundary conditions. Micro-FE has been validated as an approach to simulate strains within 

normal bone as well as callus39-42. However, it has proved challenging to validate micro-FE at 

a tissue level and well specified boundary conditions are essential for accurate results42. Since 

the core intent of the rtFE adaptation will be implementation in conjunction with a loading 

machine in an experimental setting, boundary conditions merely need to match such an 

actuators behaviour. Regardless, this would be a requirement for accurate modelling of the 

mechanical environment in post-processing and mechanoregulation analysis. This implies that 

the best use of the concept of adaptive loading is in conjunction with a well-designed and 

accurate mechanical loading device in defect healing experiments. In this dataset’s case, we 

assumed only uniaxial loads. However, the boundary conditions could be expanded to any set 

of uniaxial, shear, bending or torsional boundary conditions with the same principle and 

analysis applied. Additionally, it is important to note that this approach is not limited to mice. 

Targeted mechanical stimulus would have the potential to allow induction of specific strain 

distributions within any bone, fracture or mechanically responsive tissue whether it be in mice, 

rats, sheep or humans. 

Here we analysed mice with the same fixation systems, same sex, operated on by the same 

surgeon in the same environment, ideally leading to a best-case scenario for external factor that 

could drive healing differences, yet variances remained. Even though it is well established that 

tissue level strains are the main driver behind remodelling and healing2,16 the vast majority of 

mechanical interventions do not aim to target particular strains within the tissue directly. 

However, it is possible that an individualised adaptive loading approach, derived from 

longitudinal in vivo imaging, targeting a specific strain distribution could lead to improved 

results, reduced confounds and deliver improved outcomes in studies and approaches that have 

historically produced mixed results. Finally, with the growth in interest and application of 

personalised medicine the individualised approaches in mice could possibly be translated to 

humans. In this case, rtFE adaptation would be applicable for mechanical intervention for 

fractures in patients.  

Mechanical environments differ greatly within defect models, even within a group of mice of 

identical strain, fixation and surgeon. We have shown the need to reduce the inter-animal 

variance in tissue scale mechanical strains loaded models of bone healing. We propose to do 

this via optimising each mechanical environment to achieve as similar tissue level strains as 
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possible between individuals within each group. Mechanical environment optimisation 

provides several benefits within loading models: a) it allows targeting of a strain distribution, 

providing a specific median strain within the bone tissue, b) it reduces in-group mechanical 

environment variance, both longitudinally and cross-sectionally, and c) it reduces the 

probability of refracture in the callus region of the animal. We propose incorporating 

mechanical environment optimisation into the experimental pipeline; a process, which we have 

named Real Time Finite Element (rtFE) adaptation. This would provide a means of reducing 

mechanical environment variation throughout the post-bridging phrases. Such an approach can 

be executed during the conventional imaging-loading pipeline with minimal additional time 

under anaesthetic for each animal. We believe that when coupled with accurate identification 

of mechanical dosages required to optimise defect-healing outcome, rtFE adaptive loading can 

be used to specify and apply these required dosages to homogenise the mechanical environment 

and reduce variance in both impaired and non-impaired healing cases.  
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Abstract 

Bone is a dynamic material, in which mechanical loading drives healing and remodelling. The 

four dominant scales within bone – organ, tissue, cell and molecular – display a complex 

interconnectivity. Mechanical forces at organ scale cause heterogeneous tissue level strains, 

which stimulate osteocytes to produce proteins. These proteins govern the actions of 

osteoblasts, leading to bone formation, and osteoclasts, leading to bone resorption. Several 

aspects of this multiscale process within fracture healing have been extensively researched and 

are well understood. However, a comprehensive approach that links loads at organ scale to 

proteins expressed at molecular scale in fracture healing is currently lacking. In this study, we 

applied individualised organ-scale loads, measured during the fracture healing process, to 

simulate tissue-scale strains within twelve mice. We analysed the ability of these strains to 

predict the formation, resorption or quiescence of the tissue, and showed that fracture healing 

was mechanoregulated at tissue scale. These strains were combined with a local in vivo 

environment (LivE) approach, where immunohistochemistry-stained sections from two mice 

were registered to micro-CT scans. We linked the micro-FE-simulated tissue-scale strains from 

these micro-CT scans to the locations of cells within these two bones, and hence to sites of 

formation, resorption and quiescence. We observed that cells under high levels of mechanical 

stimulation are more likely to be associated with sites of formation, while those under low levels 

of mechanical stimulation are more likely to be associated with regions of resorption. This 

indicates that tissue-scale mechanoregulation occurs at cell scale in addition to tissue scale. In 

addition, we assessed the degree of staining of two relevant proteins, namely Sclerostin, a bone 

formation inhibitor, and RANKL, an osteocyte progenitor. We observed that Sclerostin 
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expression was inversely related to mechanical stimulation, where regions of high mechanical 

stimulation were associated with unstained cells. This study lays the groundwork for full 

integration of micro-CT, micro-FE and immunohistochemistry, and shows promising 

preliminary results, which indicate that mechanoregulation of bone is observable in vivo from 

organ to molecular scale. 

Keywords: 

Bone healing, bone remodelling, multiscale, mechanoregulation, immunohistochemistry, 

micro-CT, micro-FE, Sclerostin, RANKL, osteocytes 
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Introduction 

Bone is a multiscale and hierarchical material1,2, in which mechanical loading regulates 

adaptation and healing3. The multiple scales of bone, which are roughly divided into organ, 

tissue, cell and molecular scales, govern the transmission of mechanical signals, and thereby 

influence how bone tissue remodels and heals. At organ scale, bones are loaded i) 

physiologically, via locomotion of the animal4-10, or ii) extra-physiologically8,11-18, via 

interventions such as vibration plates, machines or actuated implants. Organ-scale mechanical 

loading is transmitted to the bone tissue19, where the local microarchitecture of the bone leads 

to heterogeneous strain fields20,21, which drive localised formation and resorption of bone22,23. 

These formation and resorption processes, common to both bone remodelling and bone healing, 

optimise the bone structure to applied loads24, reinforcing regions of high strain, and removing 

unnecessary tissue, preventing low strains. At the cellular scale, both bone remodelling and 

fracture healing are regulated by proteins that signal cells to lay down new bone or remove 

structurally redundant bone. Three cell types are essential in these processes: osteocytes, which 

are embedded within the bone tissue, and osteoclasts and osteoblasts, which lie on its surface. 

Osteoblasts lay down packets of lowly mineralised bone tissue25,26, which is mineralised over 

time. Opposing this action, osteoclasts remove bone26. The behaviour of these two cell types is 

coordinated by osteocytes25,27, which act as mechanical sensors of tissue deformation3,28-30 and 

fluid flow within the canaliculi-lacuna network3,30-32. At organ and tissue scale, it is well 

established that mechanical loading is a key governing factor in the healing of fractures and 

bone remodelling23,33-41; however, the links between mechanics and biological responses over 

the multiple scales of bone are poorly understood. 

Spatial scales within the bone need to be reconciled with temporal changes occurring in vivo. 

Micro-CT allows accurate imaging at organ and tissue scales, but does not provide sufficient 

spatial resolution to accurately discern small features such as cells in vivo. However, micro-CT 

enables in vivo imaging, combining moderate spatial resolution with the capability to repeat 

measurements over the duration of an experiment. A broad range of microscope technologies 

offers spatial resolutions sufficient to image cells, and to some extent molecules, within bone 

tissue42. However, these techniques often require extensive pre-processing and are hence 

limited to study end points. Attempts to reconcile these issues have resulted in a Local in vivo 

Environment (LivE) immunohistochemistry approach43,44, where 2D histological sections are 

registered into 3D longitudinal micro-CT images. The registered data is linked to micro-FE 
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simulations to locate cells within their mechanical environments. Scheuren et al.45 applied this 

approach to analyse two specific proteins in a frequency-dependent model of bone adaptation: 

Sclerostin, an osteocyte-specific bone formation inhibitor46-49, and receptor activator of nuclear 

factor-kB ligand (RANKL), an osteoclast differentiator that promotes resorption26,47-49. Each 

cell was linked to its mechanical environment and assessed for relationships between 

mechanical stimulation, protein expression, and associations with sites of formation, quiescence 

and resorption. Scheuren et al.45 observed a lower level of Sclerostin and RANKL in cyclically 

loaded mice, compared to sham loaded mice. However, the authors identified limited links 

between the mechanical stimulation of specific cells and the expression of Sclerostin and 

RANKL in the LivE45. 

In this study, we investigated the effects of individualised organ-scale habitual loading on the 

tissue- and cell-scale mechanoregulatory responses in a defect healing model in mice. In 

particular, we assessed the mechanoregulation of sites of formation, resorption and quiescence 

with respect to tissue-scale mechanical strains. We also examined these regions with respect to 

the locations of osteocytes, the mechanical signal in their LivE, and their regulation of 

Sclerostin and RANKL. To achieve this, we applied micro-FE on a longitudinal micro-CT-

imaged dataset of twelve mice and analysed mechanoregulated changes at a tissue scale. Using 

immunohistochemistry, we stained two sectioned femurs from two mice for Sclerostin and 

RANKL from the study endpoint (seven weeks after surgery). These sections were linked to 

the simulated mechanical environment, and relationships between cellular expression of 

Sclerostin and RANKL were investigated. We hypothesised that high tissue-scale strain would 

lead to bone formation and the downregulation of Sclerostin and RANKL, while low strain 

would lead to bone resorption and the upregulation of these proteins. The use of measured 

boundary conditions allowed us to assign specific values of strain to these relationships, and 

hence to group different animals with physiologically relevant mechanical environments. 
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Materials and Methods 

In vivo data 

Details regarding the in vivo experiment, imaging and micro-FE simulations can be found in 

Chapter 3.1. Effective strain50 was used as the mechanical environment, aligning with work 

done by Tourolle et al41. Visual examples of the temporal progression of healing can be seen in 

Chapter 3.1 in Figure 3.3.  

Multi-density analysis 

For all morphological and mechanoregulatory data, multiple thresholds were used to observe 

patterns in the range of tissue mineralisation that occur within healing bone. Masks were created 

for thresholds from 395 mg HA/cm3 to 720 mg HA/cm3 in steps of 25 mg HA/cm3. These masks 

were applied to bone volume, bone volume rate, mechanical environment, area under the curve, 

and correct classification rate analyses. This method is described in detail by Tourolle et al.41. 

Analysis of bone volume and formation/quiescence and resorption rates and mechanical 

environment 

Bone volume was calculated by counting the number of voxels above a certain density 

threshold. Regions of formation, quiescence and resorption were calculated by the binary 

difference between an image at a given time point and the image at a preceding time point. 

Voxels present in both images were labelled quiescent. Voxels present only in the most current 

time point were labelled formation, while those present only in the preceding time point were 

labelled resorption. Masks were created to describe these regions. The mechanical stimuli, as 

calculated above, were mapped to each appropriate voxel. The mean strain at each time point 

and density was then calculated for each mouse. The data from each mouse was averaged to 

obtain the group response. 

Analysis of local mechanoregulation 

The scaled results of the micro-FE simulation in terms of effective strain was used as a measure 

of mechanical stimuli. The area under the curve (AUC) of a receiver operating characteristic 

(ROC) curve was used to assess the performance of the particular effective strain value as a 

predictor of formation and mineralisation. A higher AUC means that the identification of a 

randomly selected voxel changing, for a given strain value, to a site of formation being a true 

positive is greater than a negative. Hence, an AUC greater than 0.5 implies that the change in 

voxel (either formation or increase in mineralisation) was associated with mechanical 
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stimulation. An AUC of 0.5 indicates no relationship between the mechanical stimuli and the 

voxel, while an AUC below 0.5 indicates an inverse relationship between mechanical stimuli 

and the voxel’s behaviour. 

As prediction of formation, quiescence and resorption from preceding strain is a multi-class 

classification problem, AUC/ROC approaches could not be used. Hence, the mechanobiology 

of callus remodelling classification approach developed by Tourolle et al.41 was applied. This 

approach uses two thresholds within the effective strain range; a higher one to classify sites of 

formation, and a lower one to classify sites of resorption. Any value between these thresholds 

was classified as quiescence. The ground truth was determined by comparing the sequential 

images. Similar to ROC, the thresholds were then swept through the range of possible effective 

strain values to derive a matrix encoding whether a voxel was correctly classified based on the 

two thresholds. The correct classification rate (CCR) was determined for each mouse at each 

time point and at each tissue density level. As three states are possible (formation, quiescence 

and resorption), the maximum CCR would need to exceed 33% to indicate mechanoregulation 

within the tissue. 

Histologies and Imaging 

Twelve hours after micro-CT scanning, the right femurs were removed from three mice. These 

three femurs were fixed in 4% neutrally buffered formalin for 24 hours, dehydrated in 

increasing levels of alcohol for three days (70%, 80% and 100%), and subsequently stored in 

70% alcohol until they were decalcified in 12.5% EDTA for 10 days. Post decalcification, the 

samples were embedded in paraffin and sectioned into 10 µm thick serial sections. Sections 

were stained with Haematoxylin and Eosin (H&E) for lacunae and osteocyte detection, or 

stained using immunohistochemistry for antibodies against Sclerostin or RANKL. This process 

involved the deparaffinisation of the section with xylene, followed by rehydration with graded 

ethanol. Primary antibodies were incubated over night at 4 ºC, rinsed with TBS-Tween, and 

blocked at room temperature for ten minutes using peroxidase-blocking buffer solution. 

RANKL sections were incubated with Evision+ System HRP Labelled Polymer Anti-Rabbit 

(K4003, DAKO), and Sclerostin sections were stained with anti-goat IgG HRP. Both sections 

were incubated at room temperature for sixty minutes and counterstained with FastGreen 

(F7258, Sigma-Aldrich, St Louis, MO). Diaminobenzidine (K3468, Dako) was used as a 

detection substrate. All sections were imaged with a Panoramic 250 Slide Scanner (3D Histech, 

Budapest, Hungary) at 20x magnification. 
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Linking tissue-scale strain and cell signals 

 

Figure 4.1: Localisation of sections and cells. Sections were found within the micro-CT image 

using custom-built software (a), which allowed overlaying of both images (b). Cells are located 

within the section (c). 

Section registration 

Images of histological sections with no visible artefacts were scaled to a matching resolution of 

the micro-CT images (0.3 µm to 10.5 µm). The images were then binarised and manually 

registered to the reconstructed 3D volume or the appropriate micro-CT image of the mouse 

(Figure 4.1) at week seven. This registration was performed using an in-house software tool. 

Each slice was held stationary while a plane was moved through the 3D volume until a solution 

was found. Due to discrepancies between histological sections and micro-CT images, 

registration was optimised to relevant local features, as opposed to the whole slice. 

Cell identification and region extraction 

Each histology slice was assessed for specific cell locations in each region of interest (Figure 

4.1). This was performed using in-house software and involved manual selection of each cell. 

Each cell was assigned a 2D coordinate within the slice, which was then transformed to a 3D 

coordinate corresponding to a location within the 3D micro-CT image. From the location on 

the slice, a region representing the LivE was extracted. This corresponded to a 50 by 50 pixel 
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region on the slice, or a 15 µm by 15 µm square. A similar extraction was done in three 

dimensions (15 µm by 15 µm by 15 um) from the result of the micro-FE simulation. The 

maximum and mean of the effective strain in the extracted region were calculated. Finally, the 

same three-dimensional region was also extracted from the formation/quiescent/resorption 

masks to locate remodelling changes within the cellular environment. 

Assessment of protein expression 

The extracted regions corresponding to each cell on the histology slice were classified as either 

unstained or stained. This was done via thresholding (thresholdSclerostin = 180, thresholdRANKL = 

75) of the blue channel of the RGB micrograph to separate stained areas from unstained areas. 

The number of stained pixels was counted and converted to a µm2 per osteocyte/cell. A stained 

region above 15 µm2 for Sclerostin and above 75 µm2 for RANKL, was considered stained. 

Regions below these thresholds were considered unstained.  

Assessment of remodelling association of cells 

Cells were linked to formation, quiescent or resorption sites by calculating the Euclidean 

distance to surrounding sites and assigning the category of the site with the smallest distance to 

the cell. If a cell was associated with more than one category, it was excluded from analysis.  

Analysis of temporal and spatial strain gradients 

To gain further insight into spatial and temporal links between cell associations with formation, 

quiescence and resorption and mechanical stimulation, we calculated the spatial and temporal 

gradients of effective strain. The spatial gradient was calculated as the difference between a 

voxel and its neighbouring effective strain in the x, y and z directions. The norm of the 

orthogonal vectors was calculated from these x, y, and z values, and the scalar value of the 

resultant vector was used. The temporal gradient was calculated as the difference between a 

voxel’s effective strain at the time point of analysis, and the effective strain at the voxel in the 

same location at the preceding time point. For our analysis, this always refers to the difference 

between the effective strain at week 7 and week 6. 

Statistical analysis 

Unstained and stained cells and their respective mechanical environments were assessed for 

normality via a Schapiro-Wilks test and compared via either a parametric statistical test (if 

normal), or a non-parametric statistical test (if non-normal). All parametric comparisons 

between groups were performed using a two-tailed independent t-test, while a Mann-Whitney 
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U test was used for non-parametric significance testing. As the dataset was non-normally 

distributed, a Kruskal-Wallis test was used for comparisons of multiple means. All tests were 

performed using SciPy 1.051.  
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Results 

In this study, we analysed the mechanoregulation of the remodelling phase of the fracture 

healing process.  We combined longitudinal micro-CT with micro-FE simulated from measured 

boundary conditions. We applied classifiers to these two modalities to determine if effective 

strain is a predictor of sites of formation, resorption or quiescence. For two of the ten mice, we 

combined micro-CT images and micro-FE simulations with immunohistochemistry. We 

registered the 2D sections with the 3D micro-CT images, localised the cells observed in the 2D 

sections with their 3D locations, and determined the mechanical stimulation in each cell’s LivE. 

Each cell was associated with the nearest site of formation, resorption or quiescence, and the 

area of staining for either Sclerostin or RANKL.  From these associations, cell-scale 

relationships between mechanical stimulation, sites of formation, resorption and quiescence, 

and protein expression were established. 

Tissue-scale longitudinal healing dynamics 

 

Figure 4.2: Individual healing dynamics of mice. a) All mice display a similar healing response. 

Initially a large amount of lowly mineralised bone tissue is formed, which then mineralises and 

remodels towards a state of equilibrium. b) Bone formation peaks at week 3, and resorption 
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peaks at week 4. By week 7, formation and resorption rates are almost equal, indicating that 

healing has given way to balanced remodelling. 

Ten of twelve mice displayed successful healing (Figure 4.2), with bridging occurring between 

week 2 and week 3. Bone volume for all ten mice peaked at about 2.75 mm3 (Figure 4.3), with 

large amounts of lowly mineralised bone. This was then remodelled away and mineralised until 

roughly 2 mm3 remained (Figure 4.3). Peak bone formation occurred at week 3, with a rate of 

roughly 1 mm3 of bone formed per week in all but two mice. Mouse 08 and mouse 12 showed 

higher rates of bone formation (1.5 mm3 per week) (Figure 4.2). Resorption peaked at roughly 

0.75 mm3 per week for all mice, with the exception of mouse 09, which had a far higher rate of 

2 mm3 per week. This counterbalanced the high rate of formation to result in a bone volume of 

roughly 2 mm3 by week 7, close to the average bone volume (Figure 4.3) for the ten mice. This 

indicates that healing was successful by the end of the study. 

 

Figure 4.3: Group healing dynamics of mice. The average formation and resorption patterns 

were representative of each individual mouse. Formation peaked one week before resorption, 

and progressed towards balanced remodelling by week 7. 
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Tissue-scale mechanical environment and mechanoregulation  

 

 

Figure 4.4: Individualised mechanical environment for all union mice. 

From week 1 to week 3, lowly mineralised tissue showed a greater degree of mechanical 

stimulation than at later time points in all mice, with an upper bound of 0.013 strain for the 

lowest density level of bone. For all time points and in all mice, formation voxels experienced 

a higher level of mechanical stimulation than quiescence and resorption voxels. 

 

 

Figure 4.5: Average mechanical environment across all union mice. 

In all mice, post bridging (week 4 onwards the AUC of the ROC was greater than 0.5 (Figure 

4.6). This indicated that formation, as well as the mineralisation of those formed voxels, was 
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under mechanical control. On average, tissue of lower mineralisation displayed a greater degree 

of mechanical control based on AUC analysis for all time points post week 3 (Figure 4.7). 

 

 

Figure 4.6: Area under the curve (AUC) for the receiver operating characteristic (ROC) curve 

of formation and mineralisation for each mouse. 

 

Figure 4.7: Average area under the curve (AUC) results for all mice 

Similar patterns were seen in the CCR analysis, which was greater than 33% for all mice 

(Figure 4.8) and time points. This indicated that formation, resorption and quiescence were 

under mechanical control for the study duration. Mice 08, 11 and 12, all of which displayed a 

poor healing progression (see Chapter 3.1), exhibited a high level of CCR (above 48%) from 

week 3 until week 6. Contrastingly, the CCR of well-healed mice, such as mice 03 and 07, 

peaked at week 4 and then decreased to 45% or less. On average (Figure 4.9), the CCR peek at 
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week 4 was 48.5%. Formation, quiescence and resorption of lowly mineralised tissue were more 

likely to be predicted by effective strain for time points before week 4. After week four these 

differences disappeared, and the CCR was effectively equal for all mineralisation levels. 

 

 

Figure 4.8: Correct Classification Rate (CCR) of individual mice. 

 

 

Figure 4.9: Group Correct Classification Rate (CCR). 

Tissue-scale observations of longitudinal healing dynamics from non-union mice 

Two mice formed non-union fractures during the duration of the study. (Figure 4.10a and b) 

These mice display a lack of either soft bone formation or mineralisation of soft tissue through 

all observations. In particular, mouse 01 displayed a large peak of resorption of all degrees of 
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mineralisation one week earlier than seen in other mice. Early formation and resorption rates 

did not differ greatly from the union mice at week 1 or week 2. However, from week 3 onwards 

formation rates were substantially lower than in union mice. Additionally, mouse 01 displayed 

a loss of over 30% of its bone tissue over the seven weeks. 

 

Figure 4.10: Bone volume and change in bone volume rates in non-union mice. a) Insufficient 

bone volume developed to bridge the fracture in both mouse 01 and mouse 02. b) Bone 

formation rates were substantially less than in union mice. Resorption rates displayed an 

earlier peak (week 3 instead of week 4) in non-union mice instead of union mice. 

Tissue-scale observations of the mechanical environment and mechanoregulation in non-union 

mice 

Low mechanical stimulation was seen in non-union mice (Figure 4.11) in comparison to union 

mice. Both mouse 01 and mouse 02 displayed bone strains within the region of 0.0025 strain, 

while union mice displayed strains roughly double that within the bone tissue prior to bridging. 

The CCR (Figure 4.12) of formation, quiescence and resorption was comparable to union mice, 

and ranged from 45 at week 1 to a peak of 48% at week 4. The CCR showed a greater value for 

tissue of lower mineralisation at earlier time points (weeks 1 through 4) than at later time points.  
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Figure 4.11: The mechanical environment of non-union mice. Based on habitual loading 

parameters, non-union mice displayed less mechanical stimulation than that seen union mice. 

 

Figure 4.12: Correct Classification Rate (CCR) for non-union mice. The CCR for both mouse 

01 and mouse 02 was above 33%, indicating that mechanoregulation even occurs even within 

a non-union fracture.  
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Cell-scale mechanical relationships of cell-scale protein expression 

 

Figure 4.13: Results of Sclerostin staining analysis for mouse 09 (a) and mouse 10 (b). i) 

indicates the Sclerostin expression and maximum effective strain in the LivE of each cell. ii) 

and iii) show the maximum and average effective strain in the LivE for each cell categorised 

via thresholds. iv) and v) show the spatial gradients of maximum and average effective strain 

in the LivE for each categorised cell. vi) groups cells by their nearest region of formation, 

quiescence and resorption to area of Sclerostin expression. vii), viii), ix) and x) group cells by 

their nearest region of formation, quiescence and resorption to maximum, average, temporal 

change in maximum, and temporal change in average effective strain, respectively, within the 

cell’s Live. a) i-x) Mouse 09 displays mechanoregulation of Sclerostin staining without any 

dependence on formation, quiescence and resorption regions. Cells associated with formation, 

quiescence and resorption have high, medium and low maximum effective strains at week 6 in 

their LivE in both mouse 09 (a vii, viii) and mouse 10 (b, vii, viii). 

In mouse 09, Sclerostin expression showed a clear mechanical stimulation dependency. Cells 

expressing Sclerostin were significantly more likely to occur in regions of lower mechanical 
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stimulation than cells not expressing Sclerostin over all three sections (total 334 unstained cells, 

156 stained cells). For all sections, both average and maximum regional effective strain 

displayed a significant positive difference between the mechanical environment of strain and 

unstained cells (p<0.0001). However, effective strain gradient, while often displaying the same 

directional relationship (i.e. unstained cells had a higher mechanical stimulus),  did not display 

significance. Mouse 10 showed similar, yet non-significant, trends in both maximum and 

average effective strain. While unstained cells displayed a greater average and maximum mean 

effective strain, this result was not significant. In addition, neither average nor maximum 

effective strain gradient showed significance or a positive trend between unstained and stained 

cells. When grouped together, a strongly significant (p<0.0001) relationship was observed 

between the maximum effective strain in the LivE of the cells and their staining. That is, 

unstained cells experienced a significantly higher mechanical stimulus in their immediate 

environment. This was also seen for the average effective strain in the environment (p<0.0001), 

but not for the maximum or average effective strain gradient.  
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Figure 4.14: Results of RANKL staining analysis for mouse 09 (a) and mouse 10 (b). i) indicates 

the RANKL expression and maximum effective strain in the LivE of each cell. ii) and iii) show 

the maximum and average effective strain in the LivE of each cell categorised via thresholds. 

iv) and v) show the spatial gradient of maximum and average effective strain in the LivE of 

each categorised cell. vi) groups cells by their nearest region of formation, quiescence and 

resorption to area of RANKL expression. vii), viii), ix) and x) group cells by their nearest region 

of formation, quiescence and resorption to maximum, average, temporal change in maximum, 

and temporal change in average effective strain, respectively, within the cell’s LivE. 

In individual analysis of each bone (Figure 4.14), RANKL expression showed a limited 

relationship between the maximum effective strain in the LivE and the presence of staining. 

Mouse 10 showed a significant relationship (p < 0.05) between maximum effective strain in the 

LivE, as well as the average mechanical environment. However, mouse 09 showed a trend 

without significance (i.e. higher mean for unstained cells than stained cells for both maximum 

and average effective strain in the LivE. No relationship was seen for the gradient of the 

effective strain in either bone. 
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Figure 4.15: Combined results of mouse 09 and 10 for a) Sclerostin expression and b) RANKL 

expression. i) indicates the Sclerostin/RANKL expression and maximum effective strain in the 

LivE of each cell. ii) and iii) show the maximum and average effective strain in the LivE of each 

cell categorised via thresholds. iv) and v) show the spatial gradient of maximum and average 

effective strain in the LivE of each categorised cell. vi) groups cells by their nearest region of 

formation, quiescence and resorption to area of Sclerostin/RANKL expression. vii), viii), ix) 

and x) group cells by their nearest region of formation, quiescence and resorption to maximum, 

average, temporal change in maximum, and temporal change in average effective strain, 

respectively, within the cell’s LivE. 

However, when analysed together, both the maximum and average effective strain in the LivE 

of unstained and stained cells was significantly different (p < 0.001). The mean of unstained 

cells was lower in both maximum and average cases, but due to outliers, unstained cells 
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experienced a greater degree of mechanical stimulation in their mechanical environment than 

stained cells. This relationship was also observed in the effective strain gradient.  

Cell-scale formation, quiescence and resorption associations of cells 

Cells associated with regions of formation showed significantly (p < 0.0001) greater levels of 

maximum effective strain in the LivE at the previous time points (week 6) than regions of 

quiescence or resorption in both mouse 09 and 10. In turn, regions of resorption showed the 

lowest (significance; p < 0.0001) maximum LivE strain at week 6. Similar patterns were seen 

when assessing the average mechanical strain within the LivE, yet for mouse 09 the formation-

quiescence difference was not significant, and for mouse 10 the significance values were lower 

(p < 0.05). When assessing the relation between cells and the decrease in mechanical 

stimulation between weeks 6 and 7, cells associated with formation displayed a significant 

decrease in the maximum strain of the LivE. Cells associated with quiescence and resorption 

showed limited change in their mechanical environments between week 6 and week 7.  

Analysis of Sclerostin expression and association of cells with formation, quiescence or 

resorption showed no significant relationships or obvious trends. Cells associated with 

formation (p < 0.05) and resorption (p < 0.01) expressed significantly less RANKL than cells 

associated with quiescence.  
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Discussion 

In this study we linked organ-scale loading with tissue-scale changes and cell-scale responses 

via the reconciliation of spatial and temporal imaging modalities and mechanical simulations. 

Tissue-scale mechanical strain displayed a greater than random prediction capacity of the 

formation, resorption or quiescence of bone tissue, with high strains predicting bone formation 

and low strains better predicting bone resorption. On a cell scale, cells associated with sites of 

formation displayed higher strains than cells associated with sites of quiescence or resorption. 

Cells associated with resorption displayed the lowest level of effective strain within the LivE. 

Immunohistochemistry staining for Sclerostin showed that cells with high mechanical signal 

within their LivE showed reduced expression of Sclerostin, while cells under low mechanical 

strain expressed more Sclerostin. Similar, yet more complicated, results were seen for RANKL 

expression. On an individualised basis, cells in both mice displayed a trend towards reduced 

RANKL expression under high strains.  

Both mice displayed similar tissue-scale patterns, with the formation of lowly mineralised tissue 

preceding that of highly mineralised tissue. Formation peaked at week 3, followed by an uptick 

in resorption. This echoes results seen by Wehrle et al52 and Tourolle et al41 in a similar model 

of fracture healing. However, our mechanical environment contrasts the results seen by 

Tourolle et al41 at later time points. Tourolle et al41 observed decreasing effective strains in the 

later weeks of their study, while we observed increasing strains towards the end. This 

demonstrates that non-individualised loading leads to underreporting of the mechanical 

environment, particularly in the remodelling period, as mice start loading their legs to a greater 

degree. It is important to note, however, that our boundary conditions and our effective strain 

values are roughly one tenth of those applied by Tourolle et al. It further appears that the 

increase in mechanical environment happens sooner and at a higher rate in mice that display 

the best organ-scale healing progression (see Figure 3.5 in Chapter 3.1), while the inverse is 

also true. This can be clearly seen by the juxtaposition of mouse 07, with the best healing 

outcome, and mouse 12, with the worse healing outcome. Mouse 07 established higher levels 

of strain within the bone tissue before mouse 12.  

In our study, two mice formed non-union fractures. Our analysis showed low rates of bone 

formation, and earlier peaks and high rates of bone resorption. This led to no bridging occurring 

in these two mice, as well as an atrophic non-union developing in one mouse. Upon analysis of 

the mechanical environment, we observed that the strains in the bone tissue were substantially 



  Discussion 

106 

 

lower than in mice which displayed good healing, for all time points. However, the 

mechanoregulatory relationship within the non-union mice were comparable to union mice. The 

CCR was greater than 45% for weeks 1 to 6 in both non-union mice. This indicates that 

formation and resorption are under mechanical control, and demonstrates that the lack of a 

union did not derive from absence of mechanoregulation, but from insufficient levels of 

mechanical stimulation in general, as theorised by several authors53-55. As only two mice formed 

non-union fractures, our ability to generalise these results is limited. However, since both mice 

exhibited patterns which align well with the literature, we believe that our approaches are well-

suited to investigating the mechanoregulatory patterns occurring in non-union mice. Expanding 

our model into a non-union model would enhance understanding of the formation of non-union 

fractures.  

Sclerostin is an osteocyte-specific inhibitor of bone formation, and its expression has been 

linked more often to remodelling than to mechanical stimuli in previous studies47. Contrasting 

this, our work does not explicitly support a greater remodelling dependence than mechanical 

dependence. We notice no significant difference between Sclerostin expression and cells 

associated with formation, quiescence or resorption. Though the means of cells associated with 

formation, quiescence and resorption appear statistically equivalent in Figure 4.15, the range 

of Sclerostin expression for formation-associated cells is smaller than for cells associated with 

resorption. Since both slide numbers and animal numbers are low, expansion to greater sample 

sizes may be necessary to properly establish the in vivo relationship between Sclerostin 

expression and remodelling behaviour. We did, however, observe a strongly significant 

relationship between Sclerostin expression and mechanical stimulation, a result shared by 

Trüssel et al.44 in a remodelling study on mouse vertebrae, but not by other authors47. While 

this relationship has not been consistently observed in remodelling experiments, such as those 

performed by Scheuren et al.45 and Trüssel et al.44, we suspect that this stems from the higher 

rates of deformation due to the presence of less mineralised bone within our healing model. 

RANKL displayed a less clear relationship than Sclerostin. One mouse displayed a significant 

relationship between high strains and low RANKL expression and low strains and high RANKL 

expression. The other mouse displayed a similar trend with no significance. However, when the 

data from both mice was combined, we observed a significant inverse relationship between 

mechanical stimulation and RANKL expression. In general, the staining of RANKL slices was 

of poor quality (due to the presence of overstaining). This could account for inconsistent 
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identification of stained or unstained osteocytes between sections, as thresholds would be 

inconsistent for the level of staining in each section. In Figure 4.15a i), the vast majority of 

osteocytes occupy the bottom left quadrant, with some outlier cells in the upper left and bottom 

right. From this, it appears that the relationship between RANKL expression and mechanical 

stimulation is regulated as theorised, i.e. high strain led to downregulated expression. However, 

this cannot be conclusively stated from our data. Better quality staining and a greater sample 

size are needed to accurately conclude if mechanoregulation of RANKL expression is 

observable in vivo. 

For all histological slices, a strongly significant relationship was observed between mechanical 

strain and associations of formation, quiescence and resorption. That is, cells associated with 

formation experienced significantly higher levels of mechanical stimulation (both maximum 

effective strain and average effective strain within the LivE) than cells associated with 

quiescence or resorption. This aligns with observations made at the tissue scale by many 

authors11,12,22,23,41,56, but establishes this link at cell scale. In agreement with this observation, 

cells associated with formation experience a greater decrease in maximum effective strain 

within their LivE than cells associated with quiescence and resorption. These observations 

integrate cell-scale associations with tissue-scale changes and the mechanical environment 

displaying that formation is linked to greater mechanical stimulation, while resorption is linked 

to lower mechanical stimulation. 

Two primary limitations of this work are the lack of inclusion of network effects and the lack 

of mapping the cellular network. In our study, we assume that each cell is not connected to any 

other cell. This is not the case, as osteocytes are connected via an extensive lacuna canaliculi 

network and communicate with each other via dendrites and gap junctions. Network effects 

might account for the outlier-dominated behaviour observed in both Sclerostin and RANKL 

expression. If outlier cells, which express large amounts of either Sclerostin or RANKL, are 

able to transport these cytokines to other cells, we should see lower degrees of expression, but 

not necessarily changes in activation levels, in neighbouring cells. A benefit of our measured 

boundary condition approach is that we observe the “background” protein expression within 

the environment. This is in contrast with approaches where extra-physiological mechanical 

loading is applied at certain intervals. If extra-physiological loading was applied, the time of 

sacrifice and post-processing would be important, as currently optimum timelines for protein 

expression analysis are not known. Our analysis of RANKL and its effect on formation, 
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quiescence and resorption is limited, as we did not assess the full RANKL/osteoprotegerin 

(OPG) ratio. Including OPG, and assessing the RANKL/OPG ratio, may explain atypical results 

seen within our RANKL analysis. Additionally, the two mice that were selected for sectioning 

and immunohistochemistry staining were chosen because their formation and resorption rates 

were nearly equal. This indicates that the bone approaches balanced remodelling and that the 

reparative phase is over. The aim of this selection was to allow comparison of results between 

these mice. Future studies should investigate cell formation, quiescence and resorption and the 

mechanical signal-Sclerostin/RANKL relationship in mice that are in the reparative phase and 

do not exhibit balanced remodelling, in order to understand the roles of these cytokines in the 

reparative phase. 

 

In our study, we demonstrate mechanical control of bone (re)modelling from organ to tissue 

scale, and from tissue to cell scale. Mechanical stimulation drove changes at both tissue and 

cell scales. Effective strain was a predictor of formation, quiescence and resorption at tissue 

scale, displaying mechanoregulation of tissue-scale changes. Similar relationships were seen at 

cell scale, where cells under high levels of mechanical strain were more strongly associated 

with regions of formation, while cells under low levels of mechanical strain were more strongly 

associated with regions of resorption. Sclerostin and RANKL, proteins commonly associated 

with formation and resorption, displayed mechanical dependency. In particular, Sclerostin 

expression displayed a clear mechanodependant relationship, with downregulation of 

expression being associated with greater mechanical stimulation within the LivE. RANKL 

displayed a more complicated mechanodependant relationship. In one mouse, cells expressing 

RANKL were significantly more likely to be under lower levels of effective strain than cells 

not expressing RANKL. The other mouse displayed a similar, non-significant, trend. However, 

when the results of both mice were combined, downregulated cells displayed a significantly 

lower mean than stained cells, but a far greater range of maximum strain within the LivE. To 

further unravel this relationship, and to investigate whether outliers drive the RANKL-

osteocyte-osteoclast relationship, more studies and a greater sample size are required. Inclusion 

of network effects and accurate mapping of the relationships between osteocytes would be a 

potential starting point for such an outlier-driven investigation.  
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Abstract 

Bone healing and remodelling are mechanically driven processes. While the tissue-scale 

response to mechanical stimulation is well understood, much less is known about the tissue-

scale regulation of bone formation and resorption during the various phases of fracture healing. 

In this study, we used a loaded femoral defect model in mice to investigate the role of 

mechanical stimulation at the tissue scale with regard to formation, quiescence (no change in 

bone presence between time points) and resorption dynamics in the late reparative and 

remodelling phases (post bridging). This was done by combining longitudinal micro-computed 

tomography to observe temporal changes in bone at different densities, with micro-finite 

element analysis to map the mechanics of the local in vivo environment to those changes. 

Increasing levels of strain led to increasing conditional probability of bone formation, while 

decreasing levels of strain led to increasing probability of bone resorption. Additionally, 

analysis of mineralisation dynamics showed both a temporal and strain level dependent 

behaviour. Our results indicate that the post-bridging phases of fracture healing show very 

similar mechanoregulatory behaviour to bone remodelling. A logarithmic-like response was 

displayed, where the conditional probability of bone formation or resorption rose rapidly and 

plateaued or fell rapidly and plateaued respectively as mechanical strain increased. 

Keywords: 

Bone, defect healing, fracture healing, adaptive loading, rtFE, multi-density analysis 
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Introduction 

The association between bone healing1-7, bone remodelling8-12 and mechanical stimulation is 

well established. Many authors have shown mechanoregulatory behaviour at organ and tissue 

scale in bone remodelling models10,11,13-15. However, in bone healing, the influence of 

mechanical stimulation throughout all three stages of fracture healing lacks a thorough 

understanding at tissue scale1. An improved understanding of the effects of mechanics in the 

local in vivo environment (LivE) on all phases of fracture healing will allow better 

understanding of fixation methods, biomaterial application and pharmacological effects on 

mechanosensitive cells. 

Fracture healing displays three overlapping stages: inflammation, repair and remodelling16. 

During the inflammation and early reparative phase of healing, a haematoma forms, recruiting 

a wide range of cells and resources to initiate healing. Following the development of a 

haematoma, lowly mineralised tissue starts forming. The fracture bridges in the reparative 

phase, and the lowly mineralised tissue begins to mineralise, overshooting the required amount 

of bone needed for the mechanical environment. This excess bone is removed in the 

remodelling stage17. Similar to studies on bone remodelling, micro-computed tomography 

(micro-CT) has allowed the longitudinal quantification of this process18,19. More recently, 

micro-finite element analysis (micro-FE) has also been used to link mechanical stimuli to 

patterns of formation, resorption and quiescence during the fracture healing process1,7indicating 

that soft- and bone-tissue strains allow improved prediction of where bone will form. This 

echoes what is seen in bone remodelling studies, where several authors have coupled micro-

CT, micro-FE and cyclic mechanical loading to show that tissue-scale changes are correlated 

with the mechanical environment10,11,13,20. More specifically, high local strains within the 

mature and mineralised bone tissue have been shown to increase the likelihood of site-specific 

bone formation, whereas sites of resorption correlated with low local strains5,10,11,13,21,22. 

Building on investigations in mature bone, Tourolle et al.1 developed a multi-density approach, 

whereby a range of densities was analysed to investigate the link between mechanics and 

mineralisation dynamics in lowly mineralised woven bone. While the initial periods of the 

inflammation and reparative phases show limited similarities between fracture healing and bone 

remodelling, the late reparative and the remodelling phases that occur after bridging should 

have much in common23.  
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While both micro-CT and micro-FE are well established tools for investigating bone 

adaptation11,13-15,20,24-26, many different approaches have been taken to describe the mechanical 

environment. Currently, the main mechanism driving cell response to mechanical stimuli is 

debated, with direct cellular strain and indirect fluid shear stresses being supported by several 

studies27-29. To combine these mechanisms, SED is often used10-12,14, as it combines volumetric 

and deviatoric strains (which drive fluid movement and direct strain, respectively). However, 

SED scales linearly with material stiffness, and hence, while it is an appropriate metric for 

mature bone, it has limitations for rapidly mineralising tissue found in bone healing1. Hence, 

effective strain has been used by several authors1,30. Since effective strain combines volumetric 

and deviatoric strains, it allows for better comparison of bone remodelling and bone healing1 

than SED.  

In silico models can aid understanding of bone remodelling and bone healing31. In particular, 

they allow rapid parameter investigation32, forming the foundation for more targeted 

experimental investigations. Often these models use simplified or mathematically derived 

relationships33 to describe the mechanoregulation of bone healing. There exists a lack of 

accurate, experimentally derived data to quantify the exact relationship between the LivE and 

tissue-scale changes in the late reparative and remodelling phases of fracture healing34. This 

limits the accuracy of the mechanoregulatory aspect of in silico modelling in fracture healing. 

Quantification of this relationship will allow improved mechanoregulatory descriptions in in 

silico models of bone healing. 

In this paper, we analyse sites of formation, resorption and quiescence determined via 

longitudinal in vivo micro-CT and couple them with micro-FE analysis to investigate the role 

played by local strains in the late reparative and remodelling phases of a loaded femur defect 

healing model. We incorporate a multi-density approach to allow analysis of bone tissue 

formation and mineralisation under mechanical stimulation. We hypothesise that late stages of 

fracture healing display similar mechanoregulatory behaviour to bone remodelling. More 

specifically, we hypothesise that mechanoresponsivity will be greater in the mechanically 

loaded model and that both the physiological (sham-loaded/control) group and the extra-

physiologically loaded group will have greater probability of site-specific formation and 

resorption in regions of higher and lower strain, respectively. Determining these relationships 

will provide a foundation for realistic rules for in silico investigations of bone during the post-



  Materials and Methods 

118 

 

bridging phases of fracture healing, and improve our understanding of mechanoregulation in 

fracture healing. 

Materials and Methods 

In vivo experiments 

All animal procedures were approved by the relevant authorities (license number: 36/2014, 

Kantonales Veterinäramt Zürich, Zurich, Switzerland). All methods were carried out in 

accordance with the ARRIVE guidelines and the Swiss Animal Welfare Act and Ordinance. 

All mice (20, female, C57BL/6J) were acquired from Janvier (Saint Berthevin Cedex, France) 

at an age of 12 weeks and were housed in the ETH Phonemics Centre animal facility under a 

12h:12h light-dark cycle, maintenance feed (3437, KLIBA NAFAG, Kaiseraugst, Switzerland), 

5 animals/cage for 8 weeks until surgery. All animals underwent osteotomies on the right femur 

with a 0.66mm Gigli wire by the same veterinarian at 20 weeks of age. Details can be found 

elsewhere19. Mice were divided into two groups: control/sham loading group (n=10) and a 

loaded group (n=10). Post surgery, they were housed with 2 to3 animals per cage. For all 

surgeries and micro-CT scans, the animals were anaesthetized with 5% isoflurane/oxygen for 

inductance and maintained at 1-2% isoflurane/handling. 

Mechanical loading was performed thrice weekly, (10 Hz loading frequency, 300 s loading 

time, 3000 cycles) from week 3 onwards. Real time finite element analysis (see Chapter 3.2) 

was used to determine the loading parameters, which are contained in Table 1 in the 

supplementary material.  

Further surgical details can be found in Chapter 3.1. 

Imaging, pre-processing, masking and multi-density finite element analysis 

Imaging was performed on a (Scanco Medical, Brüttisellen, Switzerland) reconstructed micro-

CT image at a nominal resolution of 10.5 µm. The scanned region required two stacks of 105 

voxels each (totalling a region 2 mm long) and had an imaging time of 15 minutes. All animals 

were scanned weekly from week 0 (post operation) until week 7 (post operation). All images 

for each time point of each mouse were registered to the baseline image (week 0) of that 

particular mouse. Pre-processing entailed the extraction of the relevant subvolume (reducing 

the image size to 300x300x180 voxels), Gaussian filtering (σ=1.2, support=1) and binning grey 

values using a multi-density approach proposed by Tourolle et al1.  
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Masks were generated with a ray tracer approach, as performed by Tourolle et al.1, from each 

baseline image. The original cortices were extracted by thresholding all tissue above 645 mg 

HA/cm3, while the medullary region (marrow cavity) and the peripheral region (everything 

else) were extracted from the remaining regions.  

For mechanical simulations, the binned greyscale values were converted from density (mg 

HA/cm3) to Young’s moduli (GPa), on a per voxel basis, from 395 mg HA/cm3 to 720 mg 

HA/cm3 in steps of 25 mg HA/cm3, corresponding to 4.045 GPa to 12.170 GPa, respectively, 

with steps of 0.626 GPa.  Regions of soft tissue were set to a Young’s modulus of 0.003 GPa22 

and the marrow cavity of the femur was capped with a plate of 20 GPa, preventing edge effects 

due to the soft tissue found lying on the top slice of the finite element mesh. A linear micro-

finite element (micro-FE) solver, ParOSol35, was then used to solve the finite element mesh. 

For the uniaxial loading case, 1% compressive displacement was applied to the top slice in the 

axial direction and the bottom-most slice was fixed. For the bending case, the centre of bending 

was determined36, and the bending load was centred around the axis of loading from the loading 

machine and deformed by 1% at the furthest edges of the mesh. The Swiss National 

Supercomputing Centre (CSCS) was used to solve each finite element simulation, requiring 

roughly 2 minutes per image. The multi-density ranges (395 mg HA/cm3 to 720 mg HA/cm3) 

in steps of 25 mg HA/cm3) were used as masks to specify the level of mineralisation in all 

further analyses. Further description can be found in Chapter 4.1 and Tourolle et al.1. 

Estimation of mechanical stimulation 

The local in vivo mechanical environment was described using effective strain, calculated as 

described by30. The results of the simulations were appropriately scaled based on the assumed 

loading parameters using the following ratios: 

𝜀 _ =  
𝐹 _

𝐹 _
𝜀 _  

or for a bending moment: 

𝜀 _ =  
𝐹 _

𝐹 _
𝜀 _  

where 𝜀  is the effective strain result of the simulation (based on the 1% displacement), 

𝐹  is the sum of reaction forces of all the nodes of the upper most surface, 𝐹  is 

the selected force (i.e. a force provided by a mechanical stimulation machine) and 𝜀  is the 
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strain under the applied force. Bending moments were determined using length of the implant 

pins as the moment (10 mm) and the loading force from the machine (described in 

supplementary materials, ranging from 8 N to 16 N). Axial forces were taken as the loading 

force, and the bending and axial loads were superimposed upon one another. All control mice 

were assumed to have a uniaxial load of 10 N as described previously1. 

Analysis of bone volume and formation, quiescence and resorption rates  

Bone volume was calculated by counting the number of voxels above the aforementioned 

density thresholds (395 mg HA/cm3 to 720 mg HA/cm3). Regions of formation, quiescence and 

resorption were calculated by the binary difference between an image at a given time point and 

image at a preceding time point to establish their respective rates of change. Voxels present in 

both images were labelled quiescent, those present in the most current time point were labelled 

formation, and those only present in the preceding time point, resorption. Masks were then 

formed to describe these regions. 

Analysis of local mechanoregulation 

The scaled results of the micro-FE simulation in terms of effective strain were used as a measure 

of mechanical stimuli. The mechanical stimuli as calculated above were mapped to each voxel. 

The mean strain at each time point was calculated on a per group basis. Mean effective strain 

for each density band was calculated. The conditional probabilities for formation, quiescence 

and resorption were calculated for a given value of effective strain (as in Schulte et al.11) at a 

given bone tissue density. The surface effective strain values were normalised to the 99th 

percentile effective strain in the whole simulation region to ensure that simulation artefacts did 

not affect the analysis.  

The area under the curve (AUC) of a receiver operating characteristic (ROC) curve was used 

to assess the performance of the particular effective strain value as a predictor of formation or 

resorption. As this is a binary classifier, formation and resorption surfaces were analysed 

separately. An AUC greater than 0.5 implies that the change in voxel (either formation or 

resorption) is associated with mechanical stimulation. An AUC of 0.5 indicates no relationship 

between the mechanical stimuli and the voxel, while an AUC below 0.5 indicates an inverse 

relationship between mechanical stimuli and the voxel’s behaviour.   
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Results 

We combined micro-CT imaging and micro-FE (Figure 4.16a and c) to determine the LivE in 

20 animals (10 loaded, 10 control) in a femoral defect loading study. The control group was 

sham loaded (0 N) for 5 minutes thrice weekly, and the loaded group was loaded according to 

the real time finite element (rtFE) protocol described in Chapter 3.2, resulting in the loads 

indicated in the supplementary material.  

Figure 4.16: a) Femur defect loading was achieved using an electromagnetic actuator, a 

specially designed holder and an external fixator. b) Three mask regions at week 0 of the femur 

defect regions. c) A temporal progression of femur defect healing of both a control and a loaded 

mouse. 

We assessed the changes in bone volume, rates of bone formation and resorption (Figure 4.17) 

and the mechanical environment in four regions: the cortical region, medullary region, 

peripheral region, and the combination of all three regions (termed ‘all’ or ‘global’) (Figure 

4.16b). Mechanoregulation was assessed using two methods. The first entailed a conditional 

probability approach, whereby the conditional probability of a surface voxel forming, resorbing 

or remaining quiescent was calculated as a function of percentage of maximum strain in the 

region. Secondly, the AUC of the ROC was used to indicate the level of mechanoregulation, 

where the correct classification rate of each voxel at the following time point (a formation or a 

resorption voxel) for a given strain was determined.  
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Figure 4.17: Regions of high strains have a greater probability of new bone formation, while 

regions of low strains lead to bone being resorbed in all femur defect regions. 

Longitudinal bone changes during fracture healing 

 

Figure 4.18: a) Bone volume over time in femur defect regions. In both loaded and control 

groups, lowly mineralised tissue starts to form at week 1. After week 3, mineralisation occurs 

and the control group remodels away excess tissue, while the loaded group continues to form 

both lowly mineralised and mineralised tissue. A similar pattern is seen in the medullary and 

peripheral regions, while the cortical region sees substantial bone resorption, a process which 

is arrested by loading. B) Formation and resorption rates over time. In all regions peak 

formation occurs at week 3, while loading increases the amount of mineralised tissue forming 
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at week 4. Similar patterns are seen in the medullary and peripheral regions, while resorption 

dominates the cortical region for the control group. Loading increases the rate of formation 

and decreases the rate of resorption in the loaded group’s cortical region. 

Defect healing was observed to follow a typical pattern (Figure 4.18a) of bone formation, 

consolidation and remodelling. Lowly mineralised bone tissue begins to form at week 1 and 

accelerates until week 3. By week 3 sufficient amounts of bone tissue had formed for both the 

loaded and the control group to bridge the osteotomy gap for all mice but one in the control 

group (which bridged at week 4). At week 3 the control group began to display consolidation, 

whereby lowly mineralised bone tissue was mineralised and the excess callus was remodelled 

away, approaching an equilibrium by week 7. Contrastingly, from the start of loading in week 

3, far greater bone formation was seen in the loaded group. By week 7 twice as much bone 

tissue was present in the loaded group compared to the control group. Lowly mineralised tissue 

kept forming, albeit at a decaying rate, but consolidation occurred, leading to far more bone 

tissue of all levels of mineralisation in comparison to the control group. These patterns were 

mimicked in the bone formation and resorption rates (Figure 4.18b), where high rates of lowly 

mineralised tissue formation (up to ~1 mm2 per week at week 3) preceded rates of highly 

mineralised tissue formation (up to ~0.75 mm2 at week 4). In contrast with the control group, 

the loaded group expressed a higher peak formation rate of mineralised tissue (loaded group: 

~0.8 mm2 versus control group: ~0.5 mm2) at week 4, as well as supressed resorption rates for 

all mineralisation levels. Additionally, the control group’s peak resorption rate occurred one 

week later than that of the loaded group. 

When separated into the three regions, several interesting patterns emerged. The original 

cortical region underwent significant resorption during the first 3 weeks of the healing period 

in both the loaded and control groups. Upon the application of load, bone resorption was 

arrested in the loaded group, despite the original cortical wall not being restored upon 

completion of the study. In both the medullary and peripheral regions similar behaviour to the 

global behaviour was observed. 
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The mechanical environment during fracture healing 

 

Figure 4.19: The longitudinal mechanical environment in femur defect regions. As lowly 

mineralised tissue further mineralised, the mechanical environment became more homogenous 

between bone of differing densities in both the control group and loaded groups. For all 

densities of formation, the average effective strain was higher than for quiescent or resorption 

voxels, while resorption voxels displayed the lowest effective strain on average out of the three 

possible changes. 

As bridging occurred, strains consolidate within the range of mineralised tissues (Figure 4.19), 

which was seen by reduction in the broad initial range of effective strain across the multiple 

densities. This is due to the formation of a complete callus and the mineralisation of lowly 

mineralised tissue. As more tissue forms and mineralises, the organ-scale load is more evenly 

distributed throughout the tissues, such that extreme deformations of the lowly mineralised 

tissue can be avoided. Strains in the control group increased slightly throughout the observation 

period. However, for all time points, strains found in voxels of formation were higher than in 

quiescent voxels, which in turn were higher than strains in resorption voxels. For the loaded 

group, the rtFE method led to strains increasing until all mice had reached the maximum load. 

Hence strains peaked at week 5, and decreased to week 7, as the bone volume approached an 

equilibrium, while the applied load remained constant. Separation of formation, quiescence and 

resorption strains were also observed, with greater degrees of separation particularly in the 

peripheral region. 

In all regions, formation voxels of lower levels of mineralisation were more likely to have 

higher strains than those of greater levels of mineralisation. For the peripheral region, resorbed 

voxels of lower mineralisation displayed lower levels of strain compared to those of greater 

mineralisation. Quiescent voxels displayed no mineralisation dependency of strain.  
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Mechanoregulation during the post-bridging phase 

 

Figure 4.20: Conditional probability of formation/quiescence/resorption based on effective 

strain in femur defect regions. a) Formation and resorption show clear mechanoregulation for 
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all time points. b) The cortical regions show less mechanosensitivity at early time points in the 

loaded group, while the control group shows that very high strains are required before 

formation is most likely to occur. c) Similar to the cortical region, the loaded group shows 

increasing mechanosensitivity towards week 7. d) In the peripheral region in both loaded and 

control groups, it is clear that during the earlier time points lowly mineralised tissue is more 

likely to form for all strains than highly mineralised tissue. 

Formation and resorption displayed clear mechanoregulatory behaviour in both the loaded and 

control groups. The conditional probabilities of bone formation and resorption display a 

logarithmic-like behaviour. High strains increased the conditional probability of formation, 

which occurred rapidly at first, and then gradually as stain increased further. For resorption, the 

conditional probability decreased quickly at first, and then gradually as strains increased further.  

As seen in Figure 4.20a, both the loaded and (to a lesser extent) the control group showed a 

clear relationship between strain level and tissue mineral density throughout the post-bridging 

period. For formation voxels at week 3, voxels of lower mineralisation were more likely to be 

formed for all effective strain values, while by week 7 higher strain values were more likely to 

lead to the formation of more highly mineralised voxels. Mid-strain values appeared to lead to 

lower probabilities of resorption in lowly mineralised tissue in comparison to tissue of greater 

mineralisation, while for very high strains this pattern was reversed. This general pattern was 

seen in all regions. However in the cortical regions (Figure 4.20b), where the original cortex 

was remodelled away, the mechanosensitivity of the control group decreased substantially over 

time. Initially, the formation probability at maximum strains was 60% and decreased to 40% 

by week 7. A similar, but less drastic, decrease was seen in the loaded group from week 4 to 

week 7, where the probability for formation to occur decreased from 80% to roughly 65%. An 

additional change in mechanosensitivity was seen in the peripheral region for the final time 

point (week 6 to week 7). For voxels of mid to lower strains, a lower conditional probability 

was observed in comparison with earlier time points. The medullary region displayed an 

increase in mechanosensitivity from week 3 until week 6 for both the control and the loaded 

groups. This large degree of mechanosensitivity decreased from week 6 to week 7 in the control 

group, particularly for higher strains. In contrast, the loaded group maintained a high degree of 

mechanosensitivity until week 7. 



  Results 

127 

 

 

Figure 4.21: Area under the curve (AUC) for classification of regions of formation/resorption 

based on effective strain values in femur defect regions. All regions displayed effective strain 

as a better than random predictor of formation and resorption. The loaded group displayed 

effective strain as a better predictor for resorption (in comparison to formation) for all regions 

except the cortical region. 

The AUC results indicate mechanoresponsive behaviour from week 3 onwards (Figure 4.21), 

with an AUC of greater than 0.5 for formation and remodelling in both control and loaded 

groups. For the loaded group, in the medullary and peripheral regions, the AUC value from 

week 3 onwards is higher for all resorption voxels (regardless of density) in comparison to 

formation voxels. This indicates that resorption, in the loaded group, is mechanoregulated to a 

greater degree than formation. 

The conditional probability of quiescence (Figure 4.20a-d) displays independence from strain 

both locally (i.e., for all regions) and globally, demonstrating that quiescence is not 

mechanoregulated. This observation holds true for all mineralisation levels of the tissue.  
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Discussion 

The purpose of this study was to investigate the relationship between strain in the Local in vivo 

Environment (LivE) and the formation and resorption behaviour of a loaded femoral defect 

model in mice. We combined longitudinal micro-CT scanning with micro-FE simulation to 

calculate tissue-scale strains and changes within the bone and determine mechanoregulatory 

relationships of bone remodelling and healing. High strains strongly increased the likelihood of 

bone formation, while low strains increased the likelihood of bone resorption. Our results align 

with results seen within bone adaptation models, providing support for the idea that the late 

reparative phase and remodelling phase exhibit similar behaviour to conventional bone 

remodelling37.  

Similar to Schulte et al.11, in a loaded vertebrae model of bone adaptation in mice, we observed 

an exponential relationship for formation and resorption. However, while this relationship was 

generally observed in all regions, the cortical and medullary regions did not display such a 

clear-cut relationship, appearing somewhat linear at earlier time points. It is worth noting that 

the steepness of the initial exponential response increased as the study progressed. This 

indicates that the exponential response of formation and resorption to mechanical stimuli is a 

dominant function of remodelling behaviour, not reparative behaviour. Given that this 

exponential response developed earlier in the loaded group than in the control group, 

mechanical loading may increase the rate of transition from the reparative phase to the 

remodelling phase. This is also reflected in Figure 4.18b, where the resorption peaks of the 

loaded group occur earlier than in the control group. Furthermore, the rate of mineralisation, as 

well as the formation peaks, are higher in the loaded group than in the control group at week 4.  

Our approach shows that the mineralisation dynamics are tightly interwoven with the formation 

and resorption of new packets of bone. Lowly mineralised bone displays a greater conditional 

probability to precede highly mineralised bone, particularly in the reparative phase. Assessing 

the AUC results (Figure 4.21) indicates that the effect of mechanical strains on resorption is 

greater than that of formation for the loaded group. Extra-physiological loading leads to a 

greater resorption mechanosensitivity. This is contradictory to some studies in mice that 

investigated the effect of loading on bone changes8,11, where formation displayed a greater 

mechanosensitivity to mechanical stimulation. However, in a model of frequency-dependent 

bone remodelling, Scheuren et al.10 showed similar AUC values for both formation and 

resorption, with resorption displaying a greater mechanosensitivity. Formation results mimic 
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those in an equivalent non-loaded femur defect model, as shown by Tourolle et al.1, with higher 

AUC for formation of lower mineralised tissue. Compared to the results of Tourolle et al1, the 

range of AUC values was more consistent in our data, which is most likely a result of better 

control of the mechanical environment due to extra-physiological loading. Mechanical loading 

increased formation and resorption AUC values more for the peripheral region than for the 

cortical region, while the medullary region showed a greater degree of mechanosensitivity in 

comparison to all the other regions. This increase in mechanosensitivity has been noted in 

previous studies. Webster et al.14, using a similar combination of micro-CT and micro-FE, 

demonstrated that strains in the marrow region were an effective predictor of bone formation. 

Additionally, they observed that marrow strains displayed an even greater correlation with 

resorption sites, echoing the different mechanoregulatory patterns we see between resorption 

and formation. However, extra-physiological loading did not increase the AUC values in the 

medullary or cortical regions, indicating that the mere addition of extra load does not 

necessarily lead to increased mechanosensitivity. This ties in to the concept of Frost et al.’s 

mechanostat38, where once a specific strain set point has been exceeded, additional mechanical 

stimulation does not further increase mechanoregulation.  

The mapping of the response between local effective strain and the conditional probability for 

formation, quiescence and resorption has great potential to aid in silico simulations. Many 

authors have built models for the prediction of defect healing34,37,39. However, these models 

most often use theoretical or mathematical descriptions for the likelihood of voxels being 

remodelled under a particular load. These approaches, while built on global experimental 

observations and theories, do not use a locally derived relationship such as those observed in 

our study. Therefore, our results can be used as a “mechanostat” curve to provide 

experimentally supported probabilities to improve real-world legitimacy of healing simulations.  

This work contains several limitations. Partial volume effects affect voxels on the boundary of 

bone and soft tissue, leading to artificially low greyscale values, hence affecting formation and 

resorption values for the lowest level of mineralisation within the multi-density analysis. 

However, this limitation is largely addressed by the multi-density method, where shifts in 

greyscale values are captured within the binning approach. Another limitation is the description 

of the boundary conditions. Here, we made use of a simple superposition of a uniaxial load and 

a bending load derived from geometries and loading parameters of the external fixator. While 

the fixator-bone arrangement is under a dynamic load, and hence the mechanical response is 
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dynamic, the range of mechanical stimuli reflects that within the literature9,40-42. We therefore 

consider this static analysis sufficient for this study. As the bone´s stiffness increases with the 

progression of healing, the PEEK fixator’s stiffness becomes relatively smaller, leading to an 

increase in pin rotation. This compliance of the external fixator could lead to a larger bending 

load than the one we have used here. Capturing such large deformations would require 

extensive modelling and validation but could decrease error in this dataset. 

In summary, we investigated the mechanoregulation of the post-bridging stages in a femoral 

defect mouse model. Results show that increases in strains lead to increased probability of 

formation and decreased probability of resorption. The inverse is also true; low strains increase 

the probability of resorption, while simultaneously decreasing the probability of formation. In 

addition to this, quiescence is not mechanoregulated, displaying independence from the level 

of strains. We were able to confirm our hypothesis that high strains would lead to bone 

formation, while lower strains would lead to resorption. Additionally, we were able to 

demonstrate that the mineralisation process of the lowly mineralised bone is mechanoregulated 

and that this relationship is temporally dependent. This means that the mechanosensitivity of 

different densities of bone changes over time. At certain time points lower levels of mineralised 

bone are more likely to form, while high levels of mineralised bone are more likely to be 

resorbed. This work sets the stage for three future investigations. Firstly, extension of 

mechanical loading protocols and mechanoregulatory analysis into the pre-bridging phase will 

elucidate the early stages of fracture healing, potentially giving rise to improved interventions. 

Secondly, the established conditional probability relationship can act as a key input into in silico 

models, allowing accurate mechanoregulatory relationships within bone healing and 

remodelling simulations. Finally, the translation of this mechanoregulatory behaviour down to 

cell scale, via the incorporation of either high resolution scanning or histological approaches, 

would improve our ability to link organ-scale loading to cell-scale responses, allowing further 

understanding of the osteocyte-osteoblast-osteoclast relationship. 
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Supplementary Material 

Table 4: Loading Parameters for the loaded group (in N) 

Mouse Week 3 Week 4 Week 5 Week 6 Week 7 

1 8 14 16 16 16 

2 8 12 16 16 16 

3 12 16 16 16 16 

4 8 14 16 16 16 

5 12 16 16 16 16 

6 10 12 16 16 16 

7 8 16 16 16 16 

8 10 16 16 16 16 

9 10 16 16 16 16 

10 12 16 16 16 16 
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Figure 4.22: Kolmogorov-Smirnov comparison between loaded mice under rtFE and control 

mice over loading duration 
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Background 

Diseases affecting bone, such as osteoporosis, and traumatic events, such as hip fractures, have a 

significant impact on the health and well-being of aging populations worldwide1,2. Bone is a 

multiscale and hierarchical material providing structural support and a range of essential 

physiological functions within the human body3,4. It is a dynamic material, constantly adapting and 

renewing itself5 in a process known as bone remodeling, and upon injury, is able to repair itself 

completely6. It is well understood that mechanical loading is essential for both remodeling and 

healing in bone7-15.  Therefore, a deeper understanding of the physiological processes behind bone 

has the potential to aid the development of pharmacological or mechanical interventions aimed at 

correcting physiological function, preventing fractures, and optimising healing. 

Over the past several decades, mouse models have become commonly used to investigate bone 

remodeling and healing16. This is due to specific advantages they possess over other models, such 

as the availability of gene targeted animals17 and the ability to use mice to investigate bone healing 

or remodeling at organ18-20, tissue21, cell22,23 or molecular24,25 scales. Micro-CT imaging has proved 

an important tool in the longitudinal monitoring of tissue scale changes in both fracture healing 

and bone remodelling26-30. This has facilitated investigations into mechanoregulatory relationships 

via the use of micro-FE, derived from micro-CT images, to simulate the mechanical environment 

at the tissue scale27,31. However, a limiting factor is the specification of boundary conditions for 

these models when linking organ scale loading to tissue scale strains. Strain gauging of bone has 

been performed with some success32,33, however it is invasive and limited to measuring surface 

strains. Algorithmic methods have also been developed for back calculating the boundary 

conditions theoretically necessary to generate a given bone microstructure27,34. However, these 

methods are not well suited to rapidly changing structures, such as the callus in bone healing. To 

overcome these limitations, two approaches have emerged. The first uses instrumented fixators, 

which are able to measure direct deformation brought about by locomotion35-37 while the second 

uses extra-physiological loading models31. Extra-physiological loading models allow greater loads 

than would be habitually applied by the animal while also allowing better stipulation of boundary 

conditions for mechanical environment simulations.  

Developing quantitative links between the strains at the tissue scale and the cell scale has also 

proved challenging. Micro-CT imaging alone is unable to identify neither cell locations, nor gene 

regulation or protein expression and hence is insufficient to link organ scale loading with cell level 

mechanoregulation. Scheuren et al.38 and Trüssel et al.39 have attempted to overcome these 
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limitations by incorporating immunohistochemistry and by spatially relating cells with their 

mechanical signal in a mouse vertebrae model of bone adaptation. The application of such 

multimodal techniques, combined with an improved assessment of the boundary conditions, 

enables a more complete understanding of in vivo bone mechanobiology by linking mechanical 

loading at organ scale to cell specific regulation, fate, and behaviour. 

Therefore, this thesis aimed to 1) develop approaches to link organ scale loading to both tissue 

scale and cell scale mechanical stimulation and 2) investigate the mechanoregulation of these 

signals at each scale, in both physiological loading and extra-physiological loading in a femur 

defect model. To achieve these aims, measurement techniques for organ scale loading were 

developed to track the longitudinal progression of physiological loading. This employed strain 

gauges to longitudinally measure deformation on the external fixation of the defect. These 

measurements were subsequently analysed to establish relationships between organ scale habitual 

loading and the organ scale outcome of fracture healing. Furthermore, these measurements were 

used as simulation parameters for longitudinal micro-FE simulations derived from time-lapsed 

micro-CT images. From these mechanical simulations, mechanical stimulation was linked to 

protein expression in the immediate region around the cell, i.e. the Local in vivo Environment 

(LivE), by localising cell locations with immunohistochemistry and histology, building on the work 

done by Trüssel et al.39 and Scheuren et al.38. This combination of 3D structural information from 

longitudinal micro-CT, mechanical information from micro-FE simulations, and molecular 

information from immunohistochemistry allowed us to quantify mechanoregulatory relationships 

between organ scale loading, tissue scale bone changes, and cell scale protein expression in a femur 

defect model of bone healing in mice. 

Novel findings 

The studies described in this thesis have established relationships from loading measured at the 

organ scale, to outcomes at organ, tissue, and cell scales on an individualised basis within a defect-

healing model. Firstly, at the organ scale, individualised habitual loading prior to bridging was 

found to predict the outcome of the fracture healing progression. While this result has not been 

observed in mice prior to our study, it aligns with results seen in rats by Klosterhoff et al. 37 and 

confirms general observations that sufficient mechanical loading prior to bridging is essential for 

successful fracture healing7-9,11,15,40-42.  
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The next achievement was the development and application of the real time finite element (rtFE) 

approach. Observation of the effects and risks of non-individualised loading motivated the 

development of an approach to homogenise tissue scale strains and target a particular median tissue 

strain in a group of mice by determining individualised extra-physiological loading parameters. 

This approach enables control of mechanical environments to either develop individualised 

interventions or reduce mechanical environment variation within mouse groups. rtFE thus enabled 

the application of  individualised loading across a group of mice to investigate the effects of extra-

physiological loading on longitudinal changes in bone tissue, post bridging. Using micro-CT 

imaging and micro-FE simulations, with boundary conditions determined from the rtFE derived 

loading parameters, relationships were established between regions of high mechanical stimulation 

and increased probability of bone formation, as well as regions of low mechanical stimulation and 

increased probability of bone resorption. These results are aligned with previous fracture healing 

studies27, as well as bone adaption studies22,23,28,31. These results suggest that the late reparative 

phase and the remodelling phase in fracture healing share similar mechanoregulatory relationships 

to those in bone adaptation, further supporting the theory that these processes are governed by 

similar mechanisms14,19. Regional analysis of cortical, medullary and peripheral regions indicated 

that the medullary region was more mechanosensitive than the other regions in the unloaded mice, 

which initially suggested that the endo-cortical region is more mechanosensitive than the periosteal 

region. However, upon the application of extra-physiological loading, the mechanosensitivity of 

the peripheral region increased to parity with the medullary region. 

Building on work done by Trüssel et al.39 and Scheuren et al.38 on bone adaptation in mouse tail 

vertebrae models, measured deformation boundary conditions were applied to micro-CT-based 

micro-FE models in order to approximate the mechanical stimulation occurring at cell scale. 2D 

immunohistochemistry sections were registered to micro-CT images and protein expression was 

measured at cell locations with respect to the mechanical stimulation in the LivE. This approach 

overcomes both the resolution limits of micro-CT scanning and the temporal limits of 

immunohistochemistry. Relationships were observed between increased mechanical signal in the 

LivE and decreased expression of both Sclerostin and RANKL. Our results align with the 

expression of both these proteins reported in previous in vitro studies43,44, as well as other 

generalised in vivo observations from bones loaded at organ scale45. We were also able to link cells 

associated with regions of formation, quiescence and resorptions with levels of high, moderate and 

low mechanical signal respectively. Contrasting in vitro studies24,43,44 and previous observations45, 

no link was observed between area of Sclerostin expression within the sections, to cells associated 
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with formation, quiescent, or resorption regions. However, RANKL expression was significantly 

different in cells associated with resorption when compared with cells associated with quiescence. 

Even though the resorption-associated cells had a lower mean RANKL expression area than 

quiescent-associated cells, the resorption-associated cells exhibited a greater range, with many 

highly stained outliers. This approach linking organ scale loading to individual cell protein 

expression lays the groundwork for holistic multiscale mechanoregulatory investigation and can 

be expanded to investigate such multiscale relationships in vivo for any other appropriate protein. 

This could potentially enable the understanding of in vivo bone mechanobiology in its entirety, by 

directly linking mechanical stimulation at cell scale to cell regulation, behaviour and fate. In 

particular, our results show that mechanical stimulation in the surrounding region of a cell is a 

driver of downregulation of Sclerostin and RANKL expression, confirming that organ scale 

loading drives cell scale expression of molecules key to bone formation and resorption.  

Limitations and future research 

The primary limitation of the technique used to measure the longitudinal boundary conditions in 

chapter 3.1 is their discontinuous nature. This approach only captured a small section of the 

animal’s movement at limited time-periods. Ideally, this can be improved upon by a wireless and, 

potentially, continuous monitoring approach. However, an advantage of the direct measurement 

approach presented in this thesis involves the high sampling rate, which allowed the measurement 

of habitual loading amplitude in the femur over the full duration of the gait cycle. This is clearly 

an advantage compared to indirect measurement techniques such as force plates46. Furthermore, 

these simulations present new research potential to analyse additional metrics beyond amplitude, 

such as total energy contained within each foot strike or habitual loading frequency. Incorporation 

of such parameters into further analysis or dynamic simulations would provide a more robust 

measurement of habitual loading and its effect on fracture progression. 

A limitation of the rtFE method is the absence of a robust study to compare with conventional 

loading approaches, such as group loading. As seen in the supplementary material of chapter 3.2, 

a brief Kolmogorov–Smirnov analysis indicated that the strain distributions between mice under 

rtFE become similar while the method is being applied, in comparison to group loading. The 

individualised results of the rtFE approach over the first two week of loading were compared with 

the response once the 16 N loading limit was reached, which acts as a non-individualised loading 

regime comparison. However, this is insufficient to justify superiority over conventional 

approaches as it compared different time points. The design of a thorough comparison study poses 
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several challenges. To apply non-adaptive loading as soon as possible, post-bridging, could lead to 

refracture or other injury to the animal. This makes the design of such a study difficult, because 

either the mechanical loading needs to be limited to a low enough magnitude to prevent animal 

harm, which would result in sub-threshold stimulus at the tissue level and thus would not be an 

appropriate loading regime for comparison. Alternatively, confirmation of the ability of rtFE to 

reduce variance and homogenise tissue strains may be easier in a non-defect model. If the rtFE 

approach was used to target specific strain distributions in a vertebrae model of bone adaption, 

such as the one investigated by Lambers et al.47,48 , the risk to animal welfare could be mitigated 

and longitudinal comparisons to non-individualised loading approaches could be made.  

With respect to Chapter 4.1, the linking of organ scale loading to protein scale expression contains 

many time intensive manual steps. During decalcification, embedding, sectioning, and staining the 

sections undergo changes in their morphology, and potentially differ greatly from the micro-CT 

images. Hence, past attempts at non-deformable automatic registration of the 2D micrograph to the 

3D micro-CT image have been unsuccessful and registration is instead performed manually. 

Manual registration is time intensive and induces inter-operator variability that an automatic 

approach could prevent, thus the development and validation of an automatic registration tool using 

deformable registration would reduce error and improve data analysis throughput. Such a tool 

would also help address another limitation of our study, the small sample size. We analysed three 

slices per bone for two bones for both RANKL and Sclerostin expression. Previous studies utilizing 

these methods used similar sample sizes38,39,49 and scaling this study design remains challenging. 

However, to find clear evidence linking organ scale loading patterns, cell scale mechanical 

stimulation, and mechanoregulation of protein expression requires more animals, more bone 

locations, and more bone samples. A multi-staining immunohistochemistry approach would 

improve studies where small sample sizes are unavoidable. Dyment et al.50 have developed 

protocols, which allow single sections to be stained for multiple proteins and cell nuclei location. 

This would allow improved identification of cell location and association of several proteins to a 

particular location, in contrast to the current approach, which allows just a single protein. Future 

research could also apply LivE techniques to link the mechanical environment to genetic regulation 

within a cell, as well as the cells fate. The combination of emerging approaches such as laser micro-

dissection and transcriptomic51,52 or proteomic53 profiling with mechanical simulations would 

provide additional insight into direct gene regulation instead of only measuring the proteins present 

in the surrounding tissue. 
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Conclusion 

In conclusion, the measurement of individualised boundary conditions and their multiscale 

translation from organ to cell in a mouse model of defect healing was successful. We incorporated 

multi-modal techniques of strain gauge measurement, micro-CT, micro-FE and 

immunohistochemistry to reconcile the temporal and spatial differences across the organ, tissue, 

cell, and molecular scales. At the organ scale, habitual loading prior to bridging predicts the 

outcome of the fracture healing process. Post bridging, the loading at organ scale translates to 

heterogeneous strain fields at tissue scale. We demonstrated that within these strain fields regions 

of high strain led to bone formation, while regions of low strain led to bone resorption, both in 

habitually and extra-physiologically loaded mice.  Investigations down to cell and molecular scales 

demonstrated a clear relationship between cells associated with formation and resorption, and the 

occurrence of high and low strains, respectively, in their LivE. We observed that the increased 

mechanical signal within the LivE was linked to the decreased expression of two proteins, namely 

Sclerostin, a bone formation inhibitor, and RANKL, an osteoclast differentiator and resorption 

promotor. 

The combination of strain gauge measurement, micro-CT imaging, micro-FE simulation and 

immunohistochemistry allows the comprehensive investigation of mechanoregulation within bone. 

The biologically relevant results presented in this thesis indicate that these technologies enable 

investigation into many open questions regarding the multiscale mechanoregulation of bone during 

fracture healing. In the future, expansion of such studies to include cell-scale observations during 

the pre-bridging period would allow a full unravelling of the fracture healing process.  
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