Predicting emission releases from mine tailings: spatially and temporally resolved life cycle assessment modelling

Other Conference Item

Author(s): Adrianto, Lugas Raka, Pfister, Stephan, Hellweg, Stefanie

Publication date: 2020-05-04

Permanent link: https://doi.org/10.3929/ethz-b-000479636

Rights / license: In Copyright - Non-Commercial Use Permitted

Funding acknowledgement: 812580 - European Training Network for the remediation and reprocessing of sulfidic mining waste sites (EC)
Emissions from mine tailings: spatially- and temporally-resolved life cycle assessment

Lugas Raka Adrianto, Stephan Pfister, Stefanie Hellweg
Group for Ecological Systems Design, Institute of Environmental Engineering, ETH Zurich, Switzerland

SETAC Europe 30th Annual Meeting, May 2020
How do we quantify tailings emissions?

Legacy pollution (Lottermoser, 2010):
- Long-term emissions like ‘landfill’ (i.e., mine drainage)
- Structure stability
New models needed to estimate tailings emissions

- Geochemical model as a tool to assess long term prediction (Dijkstra, 2018)
- Tailings dataset is available in Ecoinvent, differentiated by metal type and country-level
 - Averaged concentrations, no physical & chemical interactions
- Temporal perspectives matter when dealing with long-term heavy metal emissions (Bakas, 2015)

- However, different tailings have different compositions (mineralogy)
 - Deposits origin and technology-dependent
 - Minerals can act as buffers or enhance metal releases

The necessity to consider site-specific factors
Case studies

Input data

Typical site in Europe, copper mining (Ecoinvent 3.5)

Inventory, Geochemistry

- Tailings (homogeneous)
- Metal emissions to groundwater (Cu, Zn,...)

Impact assessment (ecotoxicity)

- USETox 2.1
- ReCiPe 2016

Functional unit: 1 kg of tailings

Temporal choices?
Inventory (release) modelling

- Geochemical approach:
 - Integrating factors (mineralogy, climate conditions) that contribute to heavy-metals release over time
 - Complexation and dissolution/precipitation of minerals
 - Making use of comprehensive geochemical database ‘PHREEQC’ and ‘Wateq4f’ (Parkhurst, 2013; Nordstrom, 2002)
Parameterization and outputs

Site-specificity

Parameters
- Homogeneous tailings composition
- Water composition
- Matrix infiltration rate (PR)

Mineralogy
Buffers:
- Calcite
- Siderite
- Ferrihydrite
- Gibbsite

Simulation
- Leached mass of species over time ($M_{x, total}$)

$$M_{x, total} = \sum_{t=t_0}^{t_1} PR \cdot t_{\text{timestep}} \cdot (C_x(t))$$
Dissolution of minerals and major buffers over time

- Fe(OH)₃
- Al(OH)₃
- FeCO₃
- Pb(OH)₂
- Cu(OH)₂
- ZnO
- CaCO₃

Depletion time > 100,000 years
Concentrations of leachate vs. groundwater limit

In chronological order:
Calcite > Siderite > Ferrihydrite > Gibbsite

CaCO₃ FeCO₃ Fe(OH)₃ Al(OH)₃

Threshold Cu: 10.1
Threshold Cd (EU Groundwater limit): 0.2
Forward-looking LCA (USETox, freshwater ecotoxicity)

<table>
<thead>
<tr>
<th>Ecoinvent Time horizon</th>
<th>100</th>
<th>1,000</th>
<th>10,000 Years</th>
<th>60,000</th>
<th>Infinite</th>
</tr>
</thead>
<tbody>
<tr>
<td>in CTUe</td>
<td>4</td>
<td>638</td>
<td>5001</td>
<td>7570</td>
<td>8312</td>
</tr>
</tbody>
</table>

- Zn
- Cu
- Cd
- As
- Pb
Choice of LCIA methods

FU: 1 kg tailings, after 100 years and 60,000 years

USETox, midpoint
- **Zn**: ~2,000 times, 47%
- **Cu**: ~2,000 times, 48%
- Total: 4

ReCiPe 2016 (H), midpoint
- **Zn**: ~2,800 times, 31%
- **Cu**: ~2,800 times, 67%
- Total: 5E-03
Comparison of transfer coefficients after 100 years

<table>
<thead>
<tr>
<th>Species</th>
<th>Simulated (this study)</th>
<th>Ratio</th>
<th>Ecoinvent (current database)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>3.5×10^{-9}</td>
<td>0.3</td>
<td>1.4×10^{-8}</td>
</tr>
<tr>
<td>Cu</td>
<td>4.5×10^{-6}</td>
<td>15</td>
<td>3.0×10^{-7}</td>
</tr>
<tr>
<td>Zn</td>
<td>2.2×10^{-5}</td>
<td>23</td>
<td>9.7×10^{-7}</td>
</tr>
</tbody>
</table>

- Differences due to consideration of thermodynamics and mineralogy inputs
- For simulated case, Cu and Zn have been completely leached out after 60,000 years
Outlook: Towards global assessment

An opportunity to improve consistency of tailings emissions

LCA of metal production

Data compiled from: USGS Minerals Resources; S&P Market Intelligence; Mudd et al 2018; Companies’ reports)
Conclusion

- The approach parameterizes the model of tailings emissions
- Geochemistry and infiltration rate control releases of heavy metals
- Possibility to include different time horizons in tailings inventory
- Choice of time horizon affects the overall LCA results
Acknowledgment

This project has received funding from the European Union’s EU Framework Programme for Research and Innovation Horizon 2020 under Grant Agreement # 812580

Contact:
lugasa@ethz.ch
Research group on Twitter:
@ETHZ_ESD

Kindly send your questions via live chats ☺ Thanks