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Summary 

In our ageing society, bone fractures are becoming increasingly common and have become a 

major socioeconomic burden. The fracture of the radius is one of the most common bone 

fractures and indicative of overall poor bone quality in a patient. As there is limited consensus 

on the optimal treatment of bone fractures among physicians, a better understanding of the bone 

fracture healing process is vital, to develop new treatment protocols and improve functional 

outcome. Bone is a remarkable material that constantly adapts and maintains itself and which 

can also repair itself without scar tissue. The key driver of these processes is mechanical loading 

of bone and the tissue surrounding it called mechanoregulation. Failure of bone tissue to react 

to applied loading can be indicative of disruptions of the underlying biological signalling 

pathways. With the introduction of high-resolution peripheral quantitative computed 

tomography (HR-pQCT), it is now for the first time possible, to image the bone microstructure 

in patients longitudinally. However, many of the technical challenges involved in quantifying 

bone tissue response to mechanical loading in HR-pQCT fracture images have not been solved. 

Furthermore, while bone adaptation simulations are currently being developed for animal 

studies to link observed changes in mechanoregulation to changes in biological signalling 

pathways, it is unclear if and how such approaches work with HR-pQCT images. 

Therefore, in this thesis, we tackled these computational challenges via the following three 

aims: (i) develop an approach to run in silico bone adaptation simulations on HR-pQCT patient 

data, (ii) develop HR-pQCT fracture image pre-processing approaches necessary for large 

patient cohorts, (iii) assess mechanoregulation of fracture healing in a patient cohort. To achieve 

these aims, we showed how upscaling and regularisation can be used to run realistic bone 

adaptation simulations on HR-pQCT images. We developed an automatic contouring approach 

for HR-pQCT images of distal radius fractures and we compared the quantified 

mechanoregulation in fractured and intact distal radii that were scanned six times over the 

course of one year. 

To address the first aim, we developed a computational framework to handle HR-pQCT and 

other CT data. The established method of mechanostat based bone adaptation simulation was 

implemented within this framework. A new regularisation approach for input data was 

developed which compared to traditional threshold-based methods created a more accurate 



Summary 
 

iii 

 

digital representation of the scanned bone structure in silico. Since these simulations have 

already been shown to yield realistic results using micro computed tomography (micro-CT) 

images, five micro-CT cadaver samples were used to generate reference simulations. Using 

downscaling, different lower resolution scanner resolutions (including HR-pQCT resolution) 

were obtained. Finally, simulations run on these lower resolutions, as well as on upscaled 

versions of these images were compared to the reference simulation. It was observed, that the 

new regularized inputs removed initialisations shocks that were previously visible in the global 

apparent stiffness of the simulated bone structure. Furthermore, we showed that upscaling 

increased the accuracy in morphometric parameters and mechanical properties at the same time 

compared to the micro-CT data, whereas without upscaling, only one of these features could be 

matched using a single in silico representation. Finally, we demonstrated that upscaling was 

also required to achieve accurate simulation results compared to the reference micro-CT 

simulations. Ultimately, our results indicate that HR-pQCT images appear to capture enough 

detail of the bone microstructure to enable bone adaptation simulations based on morphometry 

and mechanics in general. 

For the second aim, we observed that while for image filtering, registration and finite element 

analysis, existing tools could be integrated into the computational framework; no existing tool 

was able to generate accurate contours of HR-pQCT images of fractured distal radii, a key step 

in determining volumes of interest. A new algorithm was developed that at its core uses 3 

dimensional geodesic active contours (3D-GAC). Key parts of the algorithm are the reliable 

detection and removal of the ulna, and the identification of the optimal conversion function 

from a density (mg HA / cm³) image to an energy landscape for (3D-GAC). HR-pQCT images 

of fractured distal radii were hand contoured by trained operators to compare to the output of 

dure for intact radii and the newly 

developed algorithm were also run on HR-pQCT images of intact radii. For images of fractured 

distal radii, the algorithm yielded accurate contours within the inter-operator variability. For 

images of the contralateral side, no significant difference was found in terms of morphometric 

i

in vivo reproducibility of these parameters, suggesting that the novel approach could also be a 

viable alternative for the assessment of intact distal radii. 

For the investigation of mechanoregulation in fracture patients, we first employed the 

mechanostat based bone remodelling simulation to obtain a dataset of fully mechanoregulated 
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bone adaptation. Using virtual experiments, in which the dataset was downscaled to various 

resolutions and noise levels (including those of HR-pQCT), we showed that the image quality 

of HR-pQCT is sufficient to utilize existing established methods of mechanoregulation 

quantification on HR-pQCT data. Selecting patients with only minimal amounts of movement 

artefacts, little fracture fragment movement, mechanoregulation was quantified for both, the 

fractured and the contralateral side. Mechanoregulation was found to govern the bone 

maintenance on the contralateral as well as the fracture repair on the fractured side. 

Mechanoregulation levels of the fractured side were similar to those found in animal studies. 

Furthermore, the late reparative phase showed similar levels of mechanoregulation to the bone 

maintenance observed in the contralateral side, indicating potentially shared mechanoregulation 

pathways between these two processes. Future studies should optimize their study protocol to 

achieve higher number of patients with images suitable for mechanoregulation analysis. 

In summary, the developed computational framework allowed us to study fracture healing in 

longitudinal HR-pQCT images of fracture patients. This demonstrated, for the first time, the 

mechanoregulation of microstructural bone fracture healing in humans in vivo. Since the same 

methods for quantification was used as is typically used in animal studies, this opens up new 

possibilities to inform lab studies from knowledge gained clinically and vice versa. To 

efficiently quantify mechanoregulation in HR-pQCT images, we leveraged our newly 

developed contouring algorithm, which replaced the time-intensive task of manually contouring 

images of fractures, avoiding operator bias. Future studies could benefit from this, enabling 

larger sample numbers. Our simulation study indicated that HR-pQCT images are a viable 

source for in silico investigations using morphometry and mechanics based bone adaptation 

simulations. In the future, studies could employ the developed framework to address the study 

of bone fracture healing using clinical HR-pQCT data complemented with animal study data 

and investigate both data sources using in silico bone simulation approaches. 
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Zusammenfassung 

In unserer alternden Gesellschaft sind Knochenbrüche ein immer häufiger auftretendes 

Problem, dass zu einer großen sozioökonomischen Belastung geworden ist. Die Fraktur des 

Radius ist eine der am häufigsten auftretenden Knochenfrakturen und ein Anzeichen für eine 

insgesamt schlechte Knochenqualität bei Patienten. Da unter Ärzten zurzeit kein Konsens über 

die optimale Behandlung von Knochenbrüchen besteht, ist ein besseres Verständnis des 

Heilungsprozesses von Knochenbrüchen unerlässlich, um neue Behandlungsprotokolle zu 

entwickeln und funktionelle Ergebnisse zu verbessern. Knochen ist ein bemerkenswertes 

Material, das sich ständig anpasst und selbst erhält und das sich auch ohne Narbengewebe selbst 

reparieren kann. Die wichtigste Triebfeder dieser Prozesse ist die mechanische Belastung des 

Knochens und des ihn umgebenden Gewebes. Dieser Prozess wird auch als Mechanoregulation 

bezeichnet wird. Das Versagen des Knochengewebes, auf eine angewandte Belastung zu 

reagieren, kann ein Hinweis auf Störungen der zugrundeliegenden biologischen Signalwege 

sein. Mit der Einführung der hochauflösenden peripheren quantitativen Computertomographie 

(HR-pQCT) ist es nun zum ersten Mal möglich, die Knochenmikrostruktur bei Patienten 

longitudinal abzubilden. Viele der technischen Herausforderungen, die mit der Quantifizierung 

der Reaktion des Knochengewebes auf mechanische Belastung in HR-pQCT-Frakturbildern 

verbunden sind, sind jedoch noch immer ungelöst. Darüber hinaus werden zwar derzeit 

Knochenadaptationssimulationen für Tierstudien entwickelt, um beobachtete Veränderungen 

der Mechanoregulation mit Veränderungen der biologischen Signalwege in Verbindung zu 

bringen, doch ist noch unklar, ob und wie solche Ansätze mit HR-pQCT-Bildern funktionieren 

könnten. 

Daher haben wir uns in dieser Arbeit diesen technischen Herausforderungen mit den folgenden 

drei Zielen gestellt: (i) Entwicklung eines Frameworks zur Durchführung von In-silico-

Knochenadaptationssimulationen auf HR-pQCT-Patientendaten, (ii) Entwicklung von HR-

pQCT-Frakturbildvorverarbeitungsprozessen, die für große Patientenkohorten notwendig sind, 

(iii) Beurteilung der Mechanoregulation der Frakturheilung in einer Patientenkohorte. Um diese 

Ziele zu erreichen, haben wir gezeigt, wie Hochskalieren und Regularisieren genutzt werden 

können, um realistische Knochenadaptationssimulationen auf HR-pQCT-Bildern 

durchzuführen. Wir entwickelten einen automatischen Konturierungsprozess für HR-pQCT-
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Bilder von distalen Radiusfrakturen und verglichen die quantifizierte Mechanoregulation in 

frakturierten und intakten distalen Radien, die im Laufe eines Jahres sechsmal gescannt wurden. 

Um das erste Ziel zu erreichen, entwickelten wir ein Framework für die Verarbeitung von HR-

pQCT- und anderen CT-Daten. Als Teil dieses Frameworks, wurde die etablierte Methode der 

Mechanostat-basierten Simulation der Knochenanpassung implementiert. Es wurde ein neuer 

Regularisierungsprozess für die Eingabedaten entwickelt, der im Vergleich zu herkömmlichen 

schwellenwertbasierten Methoden eine genauere digitale Darstellung der gescannten 

Knochenstruktur in silico ermöglicht. Da sich bereits gezeigt hat, dass diese Simulationen mit 

Hilfe von Mikro-Computertomographie (Mikro-CT)-Bildern realistische Ergebnisse liefern, 

wurden fünf Mikro-CT-Kadaverproben zur Erstellung von Referenzsimulationen verwendet. 

Durch Herunterskalieren wurden verschiedene Scannerauflösungen mit niedrigerer Auflösung 

(einschließlich HR-pQCT-Auflösung) generiert. Schließlich wurden die Simulationen, die mit 

diesen niedrigeren Auflösungen sowie mit hochskalierten Versionen dieser Bilder durchgeführt 

wurden, mit der Referenzsimulation verglichen. Es wurde beobachtet, dass die neuen 

regularisierten Eingaben Initialisierungsschocks entfernten, die zuvor in der globalen 

scheinbaren Steifigkeit der simulierten Knochenstruktur sichtbar waren. Darüber hinaus zeigten 

wir, dass das Hochskalieren im Vergleich zu den Mikro-CT-Daten gleichzeitig die Genauigkeit 

der morphometrischen Parameter und mechanischen Eigenschaften erhöhte, während ohne 

Hochskalieren nur eines dieser Merkmale mit einer einzigen in-silico-Darstellung erfasst 

werden konnte. Schließlich haben wir gezeigt, dass Hochskalieren auch erforderlich ist, um 

genaue Simulationsergebnisse im Vergleich zu den Referenz-Mikro-CT-Simulationen zu 

erzielen. Letztendlich deuten unsere Ergebnisse darauf hin, dass HR-pQCT-Bilder im 

Allgemeinen ausreichend Details der Knochenmikrostruktur zu erfassen scheinen, um 

Knochenanpassungs-Simulationen auf der Grundlage von Morphometrie und Mechanik zu 

ermöglichen. 

Für das zweite Ziel stellten wir fest, dass für die Bildfilterung, Registrierung und Finite-

Elemente-Analyse zwar vorhandene Werkzeuge in das Framework integriert werden konnten; 

kein vorhandenes Werkzeug jedoch in der Lage war, genaue Konturen von HR-pQCT-Bildern 

von frakturierten distalen Radien zu erzeugen, was ein wichtiger Schritt bei der Bestimmung 

der interessierenden Volumina ist. Es wurde ein neuer Algorithmus entwickelt, der auf 

dreidimensionale geodätisch aktive Konturen (3D-GAC) basiert. Weitere Schlüsselelemente 

des Algorithmus sind die zuverlässige Erkennung und Entfernung der Elle und die 
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Identifizierung der optimalen Umwandlungsfunktion von einem Dichtebild (mg HA / cm³) in 

eine Energielandschaft für (3D-GAC). HR-pQCT-Bilder von frakturierten distalen Radien 

wurden von geschulten Operatoren von Hand konturiert, um sie mit der Ausgabe des 

Algorithmus zu vergleichen. Das automatische Verfahren des Scanner-Herstellers für intakte 

Radien und der neu entwickelte Algorithmus wurden auch auf HR-pQCT-Bildern von intakten 

Radien angewendet. Bei Bildern von frakturierten distalen Radien lieferte der Algorithmus 

genaue Konturen innerhalb der Interoperator-Variabilität. Bei Bildern der kontralateralen Seite 

wurde kein signifikanter Unterschied in Bezug auf die morphometrischen Indizes zwischen 

dem Programm des Herstellers und dem neuartigen Algorithmus gefunden, der größer war als 

die in vivo-Reproduzierbarkeit dieser Parameter. Dies deutet darauf hin, dass der neuartige 

Algorithmus auch eine brauchbare Alternative für die Beurteilung intakter distaler Radien sein 

könnte. 

Für die Untersuchung der Mechanoregulation bei Frakturpatienten verwendeten wir zunächst 

die Mechanostat-basierte Simulation der Knochenstrukturanpassung, um einen Datensatz zu 

erhalten, der vollständig mechanoregulierte Knochenanpassung enthält. Anhand virtueller 

Experimente, in denen der Datensatz auf verschiedene Auflösungen und Rauschpegel 

(einschliesslich derer von HR-pQCT) herunterskaliert wurde, zeigten wir, dass die Bildqualität 

von HR-pQCT ausreicht, um die bestehenden etablierten Methoden zur Quantifizierung der 

Mechanoregulation an HR-pQCT-Daten zu nutzen. Bei der Auswahl von Patienten mit nur 

minimalen Bewegungsartefakten und wenig Bewegung der Frakturfragmente wurde die 

Mechanoregulation sowohl für die frakturierte als auch für die kontralaterale Seite quantifiziert. 

Es zeigte sich, dass die Mechanoregulation sowohl den Knochenerhalt auf der kontralateralen 

als auch die Frakturreparatur auf der frakturierten Seite steuert. Der Grad der 

Mechanoregulation auf der frakturierten Seite war ähnlich hoch wie in Tierstudien. Darüber 

hinaus zeigte die späte Reparationsphase ein ähnliches Niveau der Mechanoregulation wie der 

Knochenerhalt auf der kontralateralen Seite, was auf möglicherweise gemeinsame 

Mechanoregulationswege zwischen diesen beiden Prozessen hinweist. Zukünftige Studien 

sollten ihr Studienprotokoll optimieren, um eine höhere Anzahl von Patienten mit Bildern zu 

erreichen, die für die Analyse der Mechanoregulation geeignet sind. 

Zusammenfassend lässt sich sagen, dass das entwickelte Framework es uns ermöglichte, die 

Frakturheilung in longitudinalen HR-pQCT-Bildern von Frakturpatienten zu untersuchen. 

Damit konnte zum ersten Mal die Mechanoregulation der mikrostrukturellen 
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Knochenbruchheilung beim Menschen in vivo nachgewiesen werden. Da die gleichen 

Methoden zur Quantifizierung verwendet wurden, wie sie typischerweise in Tierversuchen 

eingesetzt werden, eröffnet dies neue Möglichkeiten, Laborstudien basierend auf klinisch 

gewonnenen Erkenntnissen zu planen und umgekehrt. Um die Mechanoregulation in HR-

pQCT-Bildern effizient zu quantifizieren, setzten wir unseren neu entwickelten 

Konturierungsalgorithmus ein, der die zeitintensive Aufgabe der manuellen Konturierung von 

Frakturbildern ohne Präzisionsverlust ersetzte, wodurch eine Verzerrung durch manuelle Arbeit 

vermieden wurde. Zukünftige Studien könnten von diesem Algorithmus profitieren und größere 

Probenzahlen ermöglichen. Unsere Simulationsstudie zeigte, dass HR-pQCT-Bilder eine 

brauchbare Quelle für In-silico-Untersuchungen mit morphometrischen und mechanikbasierten 

Knochenanpassungssimulationen sind. In Zukunft könnten Studien das entwickelte Framework 

nutzen, um die Forschung der Knochenbruchheilung unter Verwendung klinischer HR-pQCT-

Daten, ergänzt durch Daten aus Tierstudien voran zu treiben. Zudem könnten dann beide 

Datenquellen mit in silico-Knochensimulationen untersucht werden.  
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Chapter 1 
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1.1 Thesis motivation 

With the massive growth of biomedical big data (Dimitrov, 2016; Murdoch and Detsky, 2013; 

Stratton et al., 2009), new opportunities to study and understand complex diseases and improve 

diagnoses arise (Kessel and Combs, 2016). Especially using medical images there is an 

enormous potential for data science applications (Luo et al., 2016). These applications could 

potentially improve our understanding and thereby the diagnosis and prognosis of complex 

diseases or conditions. Many diseases and complications are complex, characterised and 

influenced by multiply factors thus potentially benefitting from a more data-rich analysis (Ohs 

et al., 2016). However, making use of all the generated data presents huge challenges due to, 

e.g., the diversity of the data (different data types) which require different analysis approaches 

(Gietzelt et al., 2016) and the lack of data normalization as for example two different bone 

fracture patients will never have identical fracture patterns down to the micro-scale. 

Having a look at biomedical data currently available, we notice that there is a broad range of 

different types available. Structural information can be obtained for example by high-resolution 

quantitative peripheral computed tomography (HR-pQCT) scanners, which even allow 

longitudinal data to be collected in vivo in patients (Boutroy et al., 2008, 2005; Kirmani et al., 

2009; Nicks et al., 2012; Nishiyama et al., 2013; Nishiyama and Shane, 2013; Sornay-Rendu et 

al., 2017, 2007; Yu et al., 2014; Zhu et al., 2014). Blood, urine, salvia and other non-invasive 

tests have been a clinical standard for years now, allowing collection of information on all kinds 

of molecular and cellular factors. Current technological advancements pave the way to do blood 

tests with just a single drop of blood (Qin et al., 2015). Of course, the developments of gene 

sequencing technologies add to the data one can obtain from blood. Mobile monitoring is 

already happe

% 

IoT-related (Internet of Things) technology will be health-  

However, the current clinical reality is different, with many clinical protocols not yet making 

use of the available data. One such example are fracture treatment protocols, which have been 

developed before much of the current technology such as for example HR-pQCT has been 

available. The case of fracture treatment is of particular interest, as in our ageing society (United 

Nations, 2020), bone fracture are increasingly common and are becoming a major 

socioeconomic burden (Johnell and Kanis, 2006). The most common fracture type is the distal 
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radius fracture which is also indicative of reduce bone quality (Court-Brown and Caesar, 2006). 

However, despite the critical role of radius fracture in our society, there is currently a limited 

consensus on the optimal treatment protocol for such fractures (Ng and McQueen, 2011), 

warranting further research of fracture healing to improve protocols and ultimately functional 

outcome for patients. 

We already know, that bone is a multiscale (Gardner et al., 2006; Isaksson et al., 2009; Moustafa 

et al., 2012; Robling and Turner, 2009; Röntgen et al., 2010; Webster et al., 2015, 2008) and 

hierarchical tissue that provides structural support to the human body (Rho et al., 1998). Bone 

has the remarkable ability to constantly adapt and renew itself in a process referred to as bone 

remodelling (Hill, 1998), based on a complex interaction of multiple tissues, cell types and 

various signalling molecules across all scales. However, within all this complexity mechanical 

loading has been identified as a key signal to understand structural changes in bone 

longitudinally, as healthy bone tries to optimize itself to be able to withstand mechanical 

loading (Huiskes et al., 2000). Our key access point to understanding mechanoregulation is the 

bone microstructure which can be oberserved using high resolution CT. Observing this 

microstructure in healthy humans using HR-pQCT, it has been found out that mechanical 

loading alone can already explain the majority of structural changes occurring (Christen et al., 

2014). To identify changes in mechanoregulation which could indicate the presence of a disease 

d colleagues have established a method 

to assess mechanoregulation in animals (Schulte et al., 2011), with which they could already 

demonstrate that up to 80% of all remodelling events can be linked to mechanics in mice 

(Schulte et al., 2013a). This process of mechanoregulation and adaptation was also found to be 

the key driver of fracture healing (Augat et al., 2005, 1996; Boerckel et al., 2012; Carter, 1987; 

Carter et al., 1998; Claes et al., 1998; Giannoudis et al., 2007; Klein et al., 2003), posing the 

question how this knowledge can be translated into clinically relevant insights to inform doctors 

and shape future treatment protocols. 

One issue with the analysis of mechanoregulation is that while it identifies differences between 

groups, it does not answer the question what the underlying causes are and what the 

consequences of these found differences are. To bridge this gap between observed differences 

in bone structure over time and our knowledge of bone adaptation, different in silico models 

have been proposed. The model by Schulte and colleagues (Schulte et al., 2013b) uses an 

abstract mechanostat concept (Frost, 1987) which only requires a few tuneable parameters, 



Chapter 1 Introduction 
 

4 

 

providing a prediction of structural changes over several years. Using ex vivo data, realistic 

osteoporotic structures have already been simulated (Badilatti et al., 2016). The model by 

Tourolle né Betts (Tourolle né Betts, 2019) on the other hand employs a first-principles many-

parameter model that, once tuned, allows to trace back observed structural changes to e.g. 

differences in hormonal levels. Using this model, they could already simulate realistic fracture 

healing in mice (Tourolle né Betts, 2019). These models could profoundly impact our way of 

studying bone as their computational nature allows for rapid hypothesis testing, e.g. testing the 

effect of increased levels of certain hormones such as oestrogen, which is known to affect bone 

remodelling (Wehrle et al., 2019, 2015). 

With all this success in in silico and animal models, one should not forget that differences 

between e.g. mice and human (Lambers et al., 2015) always require studies using patient data 

to verify our hypotheses from animal studies. While it may seem surprising that there are no 

studies so far using human data, a closer look reveals many challenges that hinder a trivial 

application of previously mentioned methods in a clinical setting. For one, the difference in 

imaging resolution between micro computed-tomography (micro-CT) devices used for animal 

and ex vivo studies is a known stumbling block in the translation of computational methods 

(Christen et al., 2016; Manske et al., 2015; Tjong et al., 2012). On the other hand, the lack of 

homogeneity among patients increases the need for larger sample numbers, thus increasing the 

need for automated imaging pipelines while at the same time increasing the difficulty of 

developing such pipelines.  

To unify the way we work with human and animal data, we propose to develop a computational 

framework that is designed to study fracture healing in patients and thus verify the results 

already obtained in animal studies. For this, we will investigate implementations to accurately 

run in silico simulations on human HR-pQCT data. Furthermore, developing the necessary 

image processing pipelines will then enable the investigation of fracture healing using patient 

HR-pQCT fracture images.  
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1.2 Specific aims 
The goal of this thesis was to develop a computation framework to unify the longitudinal 

assessment of mechanoregulation during fracture healing using micro-CT and HR-pQCT. 

Specifically, the following three aims were defined for this framework: 

Aim 1: Development of an approach to run in silico bone adaptation simulations on HR-pQCT 

patient data. 

Aim 2: Development of HR-pQCT fracture image pre-processing approaches necessary for 

large cohort studies of fracture healing. 

Aim 3: Longitudinal assessment of mechanoregulation of fracture healing in a patient cohort.

1.3 Thesis outline  
The thesis consists of five chapters. The current chapter outlines the motivation and specific 

aims of this thesis. The following four chapters have the following content: 

Chapter 2 discusses existing efforts to validate existing computational models to analyse 

mouse micro-CT data to work on HR-pQCT patient data. Furthermore, it discusses limitations 

of current validation techniques for the validation of methods such as the analysis of 

mechanoregulation. 

Chapter 3 describes the developed computational framework. In the first part, the structure of 

the computational framework and techniques used to ensure scalability and cross-platform 

compatibility are explained. The second part shows a proof-of-concept of in silico simulations 

on HR-pQCT can include various clinical biomarkers. In a third part, it is shown that by using 

upscaling, the established in silico bone adaptation approach by Schulte and colleagues can be 

adapted to yield accurate results when run on HR-pQCT patient data. The final part discusses 

a novel approach used to contour HR-pQCT images of fractured distal radii to enable scalability 

of HR-pQCT fracture studies.  

Chapter 4 shows the application of the developed framework from the previous chapter to 

verify for the first time the local microstructural mechanoregulation of bone fracture healing in 

patients. For this, the adapted simulation by Schulte and colleagues from the previous chapter 
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is first used to generate ground truth for the validation of the ability of the mechanoregulation 

analysis to recover mechanoregulation in HR-pQCT images. The developed contour approach 

is used to automatically process longitudinal in vivo HR-pQCT fracture images of patients. 

Lastly, mechanoregulation is assessed for the different stages of fracture healing and compared 

to the intact contralateral site of each patient.  

Chapter 5 is the synthesis of this thesis. It summarized the major findings, the limitations of 

the presented work, and provides an outlook for future research. 
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Abstract 

High-resolution peripheral quantitative computed-tomography (HR-pQCT) has the potential to 

become a powerful clinical assessment and diagnostic tool. Given the recent improvements in 

image resolution, from 82 to 61 µm, this technology may be used to accurately quantify in vivo 

bone microarchitecture, a key biomarker of degenerative bone diseases. However, 

computational methods to assess bone microarchitecture were developed for micro computed 

tomography (micro-CT), a higher-resolution technology only available for ex vivo studies, and 

validation of these computational analysis techniques against the gold-standard micro-CT has 

been inconsistent and incomplete. Herein, we review methods for segmentation of bone 

compartments and microstructure, quantification of bone morphology, and estimation of 

mechanical strength using finite-element analysis, highlighting the need throughout for 

improved standardization across the field.  

Studies have relied on homogenous datasets for validation, which does not allow for robust 

comparisons between methods. Consequently, the adaptation and validation of novel 

segmentation approaches has been slow to non-existent, with most studies still using the 

c analysis despite the existence of better 

performing alternative approaches. The promising accuracy of HR-pQCT for capturing 

morphometric indices is overshadowed by considerable variability in outcomes between 

studies. For finite element analysis (FEA) methods, the use of disparate material models and 
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FEA tools has led to a fragmented ability to assess mechanical bone strength with HR-pQCT. 

Further, the scarcity of studies comparing 62 µm HR-pQCT to the gold standard micro-CT 

leaves the validation of this imaging modality incomplete. 

This review revealed that without standardization, the capabilities of HR-pQCT cannot be 

adequately assessed. The need for a public, extendable, heterogeneous dataset of HR-pQCT 

and corresponding gold-standard micro-CT images, which would allow HR-pQCT users to 

benchmark existing and novel methods and select optimal methods depending on the scientific 

question and data at hand, is now evident. With more recent advancements in HR-pQCT, the 

community must learn from its past and provide properly validated technologies to ensure that 

HR-pQCT can truly provide value in patient diagnosis and care.  

Keywords:  

HR-pQCT; micro-CT; patient evaluation; bone morphometrics; finite element analysis; 

segmentation 



Chapter 2 Background  
 

18 

 

2.1.1 Introduction 

Micro computed tomography (micro-CT) was first used to analyse the trabecular structure of 

bone in three dimensions in 1989 (Feldkamp et al., 1989). Shortly thereafter, the first 

commercial micro-CT device was made available (Rüegsegger et al., 1996); this quickly led to 

widespread adoption of micro-CT as a standard research tool for bone tissue analysis at the 

micrometre (µm) scale. In contrast to two-dimensional (2D) methods, the three-dimensional 

(3D) acquisition capabilities and high resolution (up to 1 µm) allowed for direct assessment of 

3D structures. By 2008, the plethora of commonly used micro-CT technologies and bone 

morphology analysis techniques with translational applications warranted a comprehensive 

book chapter (Stauber and Müller, 2008). More recently, micro-CT-based finite element 

analysis (FEA) has provided an experimentally validated method to assess bone mechanical 

strength and failure non-invasively (Chen et al., 2017; Hambli, 2013). 

In parallel with the laboratory development of micro-CT, peripheral quantitative computed 

tomography (pQCT) emerged as a potential method for identifying risk factors of disease, such 

as osteoporosis (Müller et al., 1989). Given that existing clinical tools, such as dual energy x-

ray absorptiometry (DXA), were unable to adequately identify patient at risk of fracture, pQCT 

provided an enhanced method to evaluate bone clinically (Bolotin and Sievänen, 2001; Järvinen 

et al., 2008; Nelson et al., 2002). While the resolution of pQCT is lower than micro-CT (170 

µm voxels), it enabled patient imaging and non-invasive, time-lapse patient studies. 

Comparisons with micro-CT measurements were, however, limited due to the order of 

magnitude difference in image resolution. Moreover, the resolution of pQCT prohibited 

accurate assessment of bone microarchitecture for patients with degenerative bone diseases, 

such as osteoporosis, where the average thickness of individual trabeculae is 200 µm (Borah et 

al., 2006, 2004). To combat this, high-resolution pQCT (HR-pQCT) devices were introduced 

as improved successors to pQCT devices. These devices (XtremeCT I and II, Scanco Medical) 

have isotropic voxel sizes of 82 and 61 µm, respectively, which has allowed for direct 

comparison to micro-CT (Figure 2.1.1). Unfortunately, the conclusions of these studies have 

been inconsistent, potentially due to the varied methods of calculation for the parameters used 

for comparison of HR-pQCT images to micro-CT images. 

Since HR-pQCT devices are now available and in use in many clinical centres, the 

establishment of image processing and analysis standards are crucial for comparisons between 



2.1 Validation of HR-pQCT against micro-CT for morphometric and biomechanical analyses 
 

19 

 

studies and research groups. Therefore, we aim to provide a comprehensive review of existing 

computational processing and analysis tools which have been validated against the micro-CT 

gold standard for HR-pQCT and highlight the need for improved standardization across the 

field.  

2.1.2 Data 

For this purpose, the keywords HR-pQCT and micro-CT were searched on PubMed. Due to 

automatic term mapping, this included an extensive list of closely related terms. Of the 68 

papers identified, 31 provided data comparing HR-pQCT and micro-CT (Table 2.1.1). The most 

common exclusion criterion was the lack of micro-CT data, despite the use of the keyword in 

the paper. Of the selected studies, 25 evaluated only 82 µm (first generation) HR-pQCT, and 

one study evaluated both 82 µm and 61 µm HR-pQCT (Figure 2.1.1). The remaining five 

 

Table 2.1.1 HR-pQCT image modalities, anatomical sites, and reported disease status or other 
classification of samples used in validation studies. 

Study 82 µm 61 µm 
Anatomical 

Site(s) 

Sample 
Classification (as 

applicable) 

(Buie et al., 2007) Yes No Radius/ Tibia - 

(Burghardt et al., 2007) Yes No Femoral Head 
Degenerative 
Joint Disease 

(MacNeil and Boyd, 
2007) 

Yes No Radius - 

(Varga and Zysset, 
2009) 

Yes No Radius - 

(Cohen et al., 2010) Yes No 
Radius/ Tibia/ 
Iliac Cresta 

Idiopathic 
Osteoporosis/ 
Hypoparathyroidi
sm 

(Liu et al., 2010) Yes No Tibia - 

(Nishiyama et al., 2010) Yes No Radius Osteopenia 

(Liu et al., 2011) Yes Emulatedb Tibia - 

(Pahr et al., 2012) Yes No Vertebrae Fracture 
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(Tjong et al., 2012) Yes Emulatedc Radius - 

(Liu et al., 2013) Yes No Tibia Fracture 

(Zebaze et al., 2013) Yes No Radius/ Tibia - 

(Krause et al., 2014) Yes No Radius/ Tibia Osteoporosis 

(Ostertag et al., 2014) Yes No Tibia - 

(Jorgenson et al., 2015) Yes No Tibia - 

(Manske et al., 2015) 
Yes/ 
Emulatedd 

Yes Radius - 

(Christen et al., 2016) Emulatedb Emulatedb Radius - 

(Klintström et al., 2016) Yes No Radius - 

(Ostertag et al., 2016) Yes No Tibia/ Femur - 

(Scharmga et al., 2016) Yes No Finger - 

(Zhou et al., 2016) Yes No Radius/ Tibia - 

(Hosseini et al., 2017) Emulatede Yes Radius - 

(Peters et al., 2017) Yes No 
Joints of Index 
Finger  

- 

(Werner et al., 2017) Yes No Finger  
Rheumatoid 
Arthritis 

(Alsayednoor et al., 
2018) 

Yes No Calcaneus - 

(Chiang et al., 2018) Yes No Radius Menopause 

(Metcalf et al., 2018) Yes No Calcaneus - 

(Ang et al., 2020) Yes/ No No/ Yes Radius/ Tibia - 

(Mys et al., 2019) Yes Yes Trapezium Severe Arthritis 

(Soltan et al., 2019) Yes No Radius - 

(Wang et al., 
2019) 

Yes No 
Radius/ 
Tibia 

- 

aScanned with micro-CT only 
bDownscaled micro-CT images 
cScanned at 41 µm using a 82 µm HR-pQCT device in non-patient mode 
dComparison to micro-CT only with emulated data 
eScanned using a 61 µm HR-pQCT device 

 

studies looked at both HR-pQCT device resolutions, but emulated one or both resolutions by 

acquiring lower-resolution images on a higher-resolution device or by scaling down higher-
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resolution images in post-processing (Table 2.1.1). Studies that utilized 82 µm images, either 

emulated or from XtremeCT I, are referred to as 82 µm HR-pQCT studies, while studies that 

utilized 61 µm images, either emulated or from XtremeCT II, are referred to as 61 µm HR-

pQCT studies. 

 

 

Fig. 2.1.1 With increasing voxel size, pores and edges of smaller features become difficult to 
capture using computed tomography techniques. In the reconstructed (A) micro-CT, (B) 61 µm 
HR-pQCT, and (C) 82 µm HR-pQCT images of an ex vivo trapezium, extracted from the wrist 
of a patient with severe arthritis, pores near the cortex become hard to distinguish with 
decreasing image resolution. Adapted from (Mys et al., 2019).  

 

All selected studies utilized human bone samples. While many studies evaluated a single 

anatomical site, eight studies analysed more than one anatomical site. In total, the radius was 

evaluated in 17 studies, the tibia in 11, the femur in two, various locations in the hand 

(trapezium or finger joints) in four, the calcaneus in two, the vertebrae in one, and the iliac crest 

in one (Table 2.1.1). Studies included data from healthy patients, as well as patients with 

idiopathic osteoporosis, idiopathic hypoparathyroidism, osteopenia, osteoporosis, previous 

fracture, severe arthritis, and degenerative joint diseases. 
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2.1.3 Segmentation 

Most micro-CT image analysis requires segmentation, which is the identification and 

partitioning of objects and boundaries of interest, as a pre-processing step. Only seven studies 

used a common segmentation procedure, while the remaining studies used different procedures 

for each imaging modality. Seventeen studies used segmentation to separate the cortical shell 

and the trabecular compartment (Figure 2.1.2A) and 20 studies separated the individual 

trabeculae from the background (Figure 2.1.2B). Despite the lack of an industry standard for 

micro-CT segmentation and the increased noise and blurring of lower resolution images (Figure 

2.1.1C), micro-CT segmentation methods were commonly used to develop and validate 

approaches for HR-pQCT.  

2.1.3.1 Segmenting Bone Compartments 

HR-pQCT, the gold-standard approach micro-CT, and alternative approaches to segment both 

types of images. 

 

 

Fig. 2.1.2 Micro-CT and HR-pQCT image segmentation algorithms predominantly target 
separation of the cortex and trabecular compartment. (A) The standard manufacturer approach 
for segmentation of HR-pQCT data was developed to identify the periosteal and endosteal 
margins of the distal radius (pictured) or tibia and separate the bone into two compartments: 
cortical (purple) and trabecular (green); (B) Quantification of bone microstructure in these 
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compartments, for example the morphological assessment of individual trabeculae (highlighted 
in green) or cortical pores (black spots within the purple, cortical segmentation), can then be 
performed. Adapted from (Burghardt et al., 2010). (C) One alternative segmentation approach 
identifies an additional compartment, the transitional zone (orange), which is representative of 
the junction between cortical and trabecular compartments; here, intracortical remodelling can 
blur the line between cortical and trabecular compartments. Images in A and B were captured 
with 82 µm HR-pQCT, while the image in C was captured with 2.5 µm scanning electron 
microscopy. Adapted from (Zebaze et al., 2013). 

 

2.1.3.1.1 HR-pQCT  Manuf  

The manufacturer segmentation procedures for HR-pQCT are widely used in HR-pQCT studies 

(Whittier et al., 2020). The approach for 82 µm HR-pQCT begins with a semi-automated hand-

From here, the trabecular bone compartment is separated from the cortical bone compartment. 

Herein, the voxel-based intensity data is converted to a physical density of hydroxyapatite (HA) 

(mg HA/cm3) and blurred into compartments of low- and high-density, generating a Gaussian-

weighted mean image. A threshold of one-third of the apparent cortical bone density is then 

used to isolate the cortical and trabecular compartments. This segmentation procedure was 

implemented in a majority of the studies without modification. 

The 61 µm HR-pQCT manufacturer segmentation procedure is based on a dual threshold 

technique and a cortical pore analysis to separate the cortex from the trabecular compartment 

(Figure 2.1.2A) and was developed to avoid the introduction of operator error associated with 

hand-drawn contours. The dual threshold technique reduces the inclusion of noise by applying 

a higher value threshold to segment the higher-density cortex. Closing and connectivity 

operations are applied to generate the bone outer segmentation. This method works well 

provided there are no large gaps in the c  

connectivity operations. Large-radius blurring provides a smooth transition from the cortex into 

the trabecular compartment and a lower value threshold isolates the trabecular compartment. 

Before imple thm was applied to 82 µm 

HR-pQCT and micro-CT images and validated against the respective hand-drawn contours 

(Buie et al., 2007). The cortical pore analysis adds voids that are not connected to the 

background to the cortical compartment, as pores. The approach was validated against hand-

drawn contours (Burghardt et al., 2010). 



Chapter 2 Background  
 

24 

 

2.1.3.1.2 Gold-Standard Micro-CT Segmentation Method

For micro-CT data, the cortical and trabecular compartments are separated using hand-drawn 

contours. However, semi-automatic procedures, including interpolating between two hand-

drawn contours or snapping periosteal hand-drawn contours to nearby edges in an image, have 

been included in segmentation software packages to speed up the process of segmentation. 

2.1.3.1.3 Common Segmentation Using the Software Fiji 

Soltan and colleagues used Fiji (Schindelin et al., 2012) to generate a periosteal surface 

segmentation for cadaveric radii scanned with both 82 µm HR-pQCT and synchrotron radiation 

micro- (Soltan et al., 2019). For both image modalities, the segmentation 

was generated using a threshold of 400 mg HA/cm3 and an optimized number of erosion 

iterations, such that the automatically generated HR-pQCT cortical masks most closely 

resembled the hand-drawn micro-CT contours. 

2.1.3.1.4 Common Segmentation of the Transitional Zone 

Zebaze and colleagues proposed a three-compartment segmentation method which produced 

cortical and trabecular compartments, as well as a transitional zone (Figure 2.1.2C) (Zebaze et 

al., 2013). Through comparison to expert-generated hand-drawn contours of scanning electron 

microscopy images, their implementation produced accurate and reproducible cross-sectional 

areas of the three compartments for 82 µm HR-pQCT and micro-CT images. However, cortical 

interruptions greater than a few voxels, as would be expected for porous bone samples, resulted 

in method failure. For this reason, their analysis was limited to only 40 diaphyseal image slices, 

due to the reduced frequency of cortical interruptions in this region. Further, this segmentation 

method was implemented on 2D images, not on a 3D image volume, thus the application to 

consecutive slices would likely not result in a consistent and smooth surface, longitudinally. 

Importantly, Zebaze and colleagues both performed the validation study and co-wrote the patent 

behind the commercial software of this proposed method, StrAx1.0. 

2.1.3.1.5 Common Segmentation with Thickness-Based Separation 

Due to the lack of clarity in the transition between the cortical and trabecular compartments in 

the epiphysis, Ang and colleagues modified the dual-threshold segmentation algorithm (Buie 

et al., 2007) to consistently segment images of both the diaphysis and the epiphyses (Ang et al., 

2020). Here, a blurred distance measure of all slice-based pixels touching the outer surface 

segmentation was cropped at the outer surface to generate the cortical compartment 

segmentation. This algorithm was applied to relatively low-resolution micro-CT (50 µm) and 
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HR-pQCT (both 61 and 82 µm) images and compared against the respective hand-drawn 

contours generated for each image. 

2.1.3.2 Segmenting Bone Microstructure 

For assessment of bone microstructure, the trabecular compartment is further segmented into 

bone and background. Since individual trabeculae can be only a few voxels thick for HR-pQCT 

images (Figure 2.1.1), obtaining an accurate representation of the scanned bone structure can 

be challenging. 

2.1.3.2.1 HR-pQCT   

Laib and colleagues introduced a two-step procedure on pQCT image (165 µm), which has 

since been implemented in the manufac (Laib et al., 1998; Laib and Rüegsegger, 

1999a). The image is first filtered and then a threshold is applied to isolate the trabecular 

structure. For 82 µm HR-pQCT image, an edge-enhancing Laplace-Hamming filter is used in 

combination with a threshold of 400 after normalization of the image to 1000 Hounsfield units. 

For 61 µm HR-pQCT image, a noise-reducing and structure enhancing Gaussian filter is used 

(sigma 0.8, filter 3x3x3) in combination with a 320 mg HA/cm3 threshold (Hosseini et al., 2017; 

Manske et al., 2017, 2015; Mys et al., 2019). 

2.1.3.2.2 Micro-CT Segmentation Methods 

Micro-CT data is processed similarly to the 61 µm HR-pQCT images, however Gaussian 

settings and threshold values are varied. Gaussian sigma values ranged from 0.5 to 1.2 and filter 

sizes ranged from 3x3x3 to 5x5x5 (Table 2.1.2). With regards to threshold, some studies used 

specimen-specific thresholds given in percent of the maximum intensity value, while other 

studies used fixed thresholds given in mg HA/cm3 for all specimens. In more recent studies, 

starting in 2015, a fixed threshold in terms of mg HA/cm3 was more commonly used (Christen 

et al., 2016; Hosseini et al., 2017; Jorgenson et al., 2015; Manske et al., 2015; Soltan et al., 

2019). Interestingly, none of the studies selected for this review used the same threshold, even 

when identical micro-CT devices were used (Table 2.1.2). When provided, the reason for 

choosing a particular threshold was either visual assessment (Burghardt et al., 2007; Manske et 

al., 2015; Metcalf et al., 2018), matching of morphometric parameters to the HR-pQCT scans 

(Peters et al., 2017), or being consistent with previous studies conducted using that dataset 

(Christen et al., 2016). 
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Table 2.1.2 Gaussian filter and threshold values used on gold standard micro-CT images. 

Study 
Morphometric 

Analysis CT Device 

Gaussian 
Settings 

Voxel 
Size 
[µm] Threshold 

Sigma Support 
(Cohen et al., 
2010) 

Trabecular, 
Cortical 

µCT 40  1.2 3x3x3 18 34% max 

(MacNeil 
and Boyd, 
2007) 

Trabecular, 
Cortical 

vivaCT 40 1.2 5x5x5 38 
11.2% 
max 

(Metcalf et 
al., 2018) 

Trabecular 
SkyScan 
1172 

1.2 5x5x5 17 33 % maxa 

(Hosseini et 
al., 2017) 

Trabecular µCT 100  0.8 3x3x3 16 
320 mg 
HA/cm3 

(Burghardt et 
al., 2007) 

Trabecular µCT 40  - - 16 25% max 

(Manske et 
al., 2015) 

Trabecular XtremeCT II 0.8 3x3x3 30.3 
390 mg 
HA/cm3 

(Ostertag et 
al., 2014) 

Cortical SR Grenoble - - 7.5 
53.9% 
max 

(Ostertag et 
al., 2016) 

Cortical Skyscan 1172 - - 7.5 
15.6% 
max 

(Chiang et 
al., 2018) 

Cortical vivaCT 40 - - 19 
960 mg 
HA/cm3 

(Soltan et al., 
2019) 

Cortical 
SR Canadian 
Light Source 

- - 17.7 
400 mg 
HA/cm3 

(Nishiyama 
et al., 2010) 

Cortical vivaCT 40 1.2 5x5x5 19 
18.4% 
max 

(Peters et al., 
2017) 

Cortical µCT 80  0.8 3x3x3 18 
24.7% 
max 

(Alsayednoor 
et al., 2018) 

Trabecular 
SkyScan 
1172 

0.5 5x5x5 17.4 90b 

(Christen et 
al., 2016)  

Trabecular vivaCT 80 1.2 3x3x3 25 
450 mg 
HA/cm3 

(Jorgenson et 
al., 2015) 

Cortical µCT 100  - - 9 
750 mg 
HA/cm3 

aFor select cases, the threshold was visually determined to be 35% of the maximum 
bUnknown units 
Other terms: HA, hydroxyapatite; SR, synchrotron radiation. 
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2.1.3.2.3 Common Segmentation Methods for HR-pQCT and Micro-CT 

A histogram approach (Ridler and Calvard, 1978) was used on both micro-CT and 82 µm HR-

pQCT images to separate bone from background using an image-specific, histogram-based 

threshold (Varga and Zysset, 2009). Alternatively, Hosseini and colleagues used the 

manufacturer based filtering for each image modality followed by a fixed global threshold of 

320 mg HA/cm3 for all images (Hosseini et al., 2017).  

2.1.3.2.4 Alternative Segmentation Methods for HR-pQCT 

Several additional segmentation methods have been developed specifically for either HR-pQCT 

or micro-CT images. One such strategy is that of local adaptive thresholds, which uses gradient 

edge detection to separate trabeculae from background in 82 µm HR-pQCT images (Burghardt 

et al., 2007). The algorithm analyses voxels at the edges of a scanned bone structure to preserve 

all trabeculae without filling small pores. 

Another approach is to use an automated 3D region growing algorithm (ARG) (Revol-Muller 

et al., 2002) ult segmentation for 82 µm 

HR-pQCT images (Klintström et al., 2016). The region of interest is isolated using a very high 

threshold and then grown over multiple iterations using decreasing thresholds. The iteration 

that performed best with regards to an unspecified assessment function is chosen as the final 

segmentation. Importantly, this study used an alternative, Otsu histogram-based segmentation 

approach for their gold standard micro-CT images (Otsu, 1979), thus it is difficult to conclude 

whether the approach is accurate. Alsayednoor and colleagues (Alsayednoor et al., 2018) 

developed a method to segment 82 µm HR-pQCT images that preserved the underlying 

geometry of the bone structure according to fractal theory (Alberich-Bayarri et al., 2010). 

Therein, a geometry-preserving threshold that best matched the fractal dimension curves 

generated for each HR-pQCT and corresponding micro-CT image was chosen for each 

specimen, which is important for mechanical analysis (Alsayednoor et al., 2018). Notably, for 

morphometric analysis a threshold preserving the ratio of bone volume to compartment volume 

can be used instead. 

2.1.3.3 Discussion 

A variety of approaches have been shown to successfully segment aspects of the trabecular 

structure, the cortex, and the transitional zone. However, only one study compared the results 

of their proposed segmentation method on 61 µm HR-pQCT images directly to those of micro-
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CT (Ang et al., 2020). Importantly, the quality of segmentation was nearly always validated 

relative to morphometric measurements or finite element analysis results, instead of directly, 

which may not provide adequate validation. Furthermore, none of the studies included in this 

analysis attempted to validate their segmentation techniques on fractured bone or degenerative 

disease cases, such as osteoporosis or osteoarthritis.  

Since none of the reviewed segmentation approaches were capable of segmenting cortices with 

larger gaps, an alternative approach, such as 3D active contours which can be tuned 

parametrically (Caselles et al., 1997; Hafri et al., 2016a, 2016b; Kass et al., 1988; Marquez-

Neila et al., 2014), might be necessary to provide accurate automatic segmentation for bones 

with reduced cortical connectivity. Due to the scope of this review, methods not yet validated 

against gold standard micro-CT, e.g. (Treece et al., 2012, 2010), have not been mentioned but 

might prove useful for the analysis of HR-pQCT images after validation. 

Due to the limited validation of most approaches, a single method cannot be recommended 

without reservation. One of the greatest problems in identifying an optimal segmentation 

approach is the lack of available datasets for comparison. Currently, each study relies on a 

single, often homogenous, dataset for evaluation, while the availability of an extendable, 

publicly available, and diverse dataset of micro-CT and corresponding HR-pQCT images of 

various anatomical sites and disease states would allow for the direct comparison of the 

performance of different approaches. This would, in turn, allow for a clear recommendation as 

to which segmentation approach should be used for each type of data. 

2.1.4 Morphometrics 

Degenerative bone diseases not only alter the overall bone mass, but also the underlying 

microstructure of the bone (Brandi, 2009; Zhang et al., 2010). Hence, methods to quantitatively 

characterize bone microstructure (static parameters) and microstructural change over time 

(dynamic parameters) were developed for micro-CT (Goulet et al., 1994; Hildebrand et al., 

1999; Hildebrand and Rüegsegger, 1997; Odgaard and Gundersen, 1993; Rüegsegger et al., 

1996; Schulte et al., 2011; Wachter et al., 2001; Whitehouse, 1974). With the advent of HR-

pQCT, these existing methods have been applied to HR-pQCT images and working alternatives 

have been investigated. In total, 25 of the selected studies evaluated the accuracy of 

morphometric parameters derived from HR-pQCT images relative to those derived from micro-
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software, increasing their frequency within the literature.  

Anatomical sites used for these morphometric comparisons included the radius (15 studies), 

tibia (10 studies), femoral head (one study), calcaneus (one study), and trapezium (one study). 

Generally, the median prediction accuracy was in the R2 range of 0.50 to 0.91 across all 

morphometric parameters. However, one study comparing 82 µm HR-pQCT images of the 

radius and tibia to micro-CT images of iliac crest biopsies reported lower morphometric 

prediction accuracy than all other evaluated studies (R2 of 0.02 to 0.27) (Cohen et al., 2010). 

The noticeable drop in prediction accuracy demonstrates the importance of anatomical site 

matching when performing such comparisons. Due to the difficulty in interpreting these results, 

the study by Cohen and colleagues has not been included in this Section. For studies including 

several anatomical sites, R2 values have been reported separately for each anatomical site. 

2.1.4.1 Analysis Methods  

The compartmental segmentation gave rise to two separate classes of morphometric parameters: 

trabecular and cortical parameters. Parameters have been abbreviated based on standardized 

nomenclature (Parfitt et al., 2009). 

2.1.4.1.1 Regression Analysis 

Data are presented in the format of (median R2 value for 82 µm results, median R2 value for 61 

µm results), unless otherwise noted. R2 values are described as good (R2  0.80), moderate 

(0.60  R2 < 0.80), slight (0.40  R2 < 0.60), or poor (R2 < 0.4). When available, regression 

analysis values (slope and intercept) were extracted and converted to the form slope * valueHR-

pQCT + intercept = valuemicro-CT, as necessary. Linear regressions were only reported when data 

from at least five studies was provided. The ideal regression parameters (slope=1, intercept=0) 

indicate perfect agreement between HR-pQCT and micro-CT results. Regression parameters 

deviating from this optimum indicate that the HR-pQCT results have to be calibrated to match 

those of micro-CT. Greater regression parameters (slope>1, intercept>0) indicate an 

underestimation of morphometric values by HR-pQCT, whereas lesser parameters (slope<1, 

intercept<0) indicate overestimation. For mixed parameters, over- and underestimation depend 

on the morphometric value.  
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2.1.4.1.2 Indirect and Direct Methods

The analysis of morphometrics has been split into direct and indirect comparisons. Direct refers 

to the direct application of micro-CT algorithms, while indirect refers to morphometrics 

cal

for 82 µm HR-pQCT, only direct methods were used for 61 µm HR-pQCT. Similar to 

 based on 

studies performed using pQCT devices. Since any modifications to these original methods by 

the manufacturer have not been published and can be made at any time without notice, a 

comprehensive overview of these methods can only be provided by the manufacturer. 

2.1.4.2 Trabecular Parameters 

Since HR-pQCT images have increased noise and only resolve single trabeculae with a few 

voxels (Figure 2.1.1B, 2.1.1C), a thorough validation of analysis methods against a high quality 

gold standard such as micro-CT is necessary. 

 

 

Fig. 2.1.3 Coefficient of determination for the most commonly reported morphometric 
parameters, which were reported in more than ten studies: bone volume fraction (BV/TV), 
trabecular number (Tb.N), trabecular separation (Tb.Sp), trabecular thickness (Tb.Th), and 
cortical thickness (Ct.Th). Emulated image data, such as 82 µm HR-pQCT data obtained from 
downsampled micro-CT or 61 µm HR-pQCT devices, is included both in the box plot and 
additionally highlighted by circles to identify any differences to parameters derived from 61 
µm or 82 µm HR-pQCT images using the default manufacturer settings. In general, we observe 
that BV/TV can be captured well with both HR-pQCT resolutions while results for other 
parameters, such as Tb.Th, vary drastically across studies for 82 µm images and should be 
interpreted with caution. 
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2.1.4.2.1 Bone Volume Fraction 

Bone volume fraction (BV/TV), the most commonly reported trabecular parameter, was 

captured well by both 82 µm and 61 µm HR-pQCT devices when compared to micro-CT 

(R2=0.91, 0.99) (Figure 2.1.3). The lowest agreement with micro-CT was found for 82 µm HR-

pQCT scans of the trapezium (Mys et al., 2019) (R2=0.68) (Figure 2.1.3). Two approaches have 

been used to compute BV/TV for 82 µm HR-pQCT images; to date, the indirect density 

approach (Laib et al., 1998) has performed slightly better (R2=0.92, N=12) than the direct 

segmentation-based approach (R2=0.88, N=14) when comparing to BV/TV measured from the 

gold standard micro-CT. While both approaches agree well, neither is unassailable. The 

density-based approach suffers from inaccurate grey-values due to beam hardening effects, 

which disproportionately affect voxel intensities near the centre of the image. The 

segmentation-based approach suffers from partial volume effects, thus it is very sensitive to the 

chosen threshold (Varga and Zysset, 2009). The use of different threshold approaches on 

BV/TV yielded a range of R2 values from 0.88 to 0.95 when images of the same samples were 

compared with micro-CT (Varga and Zysset, 2009). The highest agreement was found for 

microstructural segmentation using a Laplace-Hamming filter followed by a fixed threshold of 

40% of the maximum grey value. These settings resulted in the most visually similar bone 

architecture and connectivity relative to gold standard micro-CT. The local adaptive and the 

fixed threshold segmentation approaches showed equal agreement when comparing 82 µm HR-

pQCT with gold standard micro-CT (R2=0.97) (Burghardt et al., 2007). Conversely, compared 

to gold standard micro-CT segmentation, the ARG segmentation method had a lower agreement 
2=0.86 vs R2=0.94) (Klintström et al., 

2016).  

Regression analysis between HR-pQCT and micro-CT BV/TV varied widely, with slopes 

ranging from 0.40 to 1.71 and intercepts ranging from -0.08 to 0.05 (Figure 2.1.4A). There was 

a trend for underestimation of BV/TV for studies using the indirect method, while studies using 

the direct method showed a trend for overestimation (Figure 2.1.4A, 2.1.4B). The two 61 µm 

HR-pQCT studies had a narrower range in slope and intercept than the 82 µm studies without 

clear over- or underestimation of BV/TV (Figure 2.1.4A). Overall, due to the even spread of 

slope and intercept values, no standardized calibration for BV/TV could be identified. 
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2.1.4.2.2 Trabecular Number

Trabecular number (Tb.N) agreed well with the values generated from micro-CT for 82 µm and 

61 µm HR-pQCT (R2=0.83, 0.94) (Figure 2.1.3). The strength of this agreement for 82 µm 

devices was affected by disease state and anatomical location. Lower agreement (R2=0.67 to 

0.81, depending on the computational method used) was observed for osteoporotic bone 

samples, which was attributed to an increased number of thin trabeculae that could not be 

assessed accurately with 82 µm HR-pQCT (Krause et al., 2014). An even lower agreement 

between HR- pQCT and micro-CT derived Tb.N (R2=0.61) was observed in the calcaneus 

(Metcalf et al., 2018). The local adaptive threshold strategy improved direct agreements with 

gold standard micro-CT Tb.N for 82 µm HR-

approach (R2=0.85 vs R2=0.70) for femoral head samples (Burghardt et al., 2007). While the 

assumed compact tissue 

density (Laib and Rüegsegger, 1999b), which might be patient specific and disease dependent, 

approach (R2=0.82) (MacNeil and Boyd, 2007). Relative to gold standard micro-CT, the ARG 

approach for the radius (R2=0.66 vs R2=0.81) (Klintström et al., 2016). In total, these studies 

suggest that the selection of an appropriate segmentation approach may be heavily dependent 

on the studied anatomical site.  

Regression analysis performed by several studies showed a range of slopes of 0.35 to 1.61 with 

intercepts ranging from -0.56 to 0.81 mm-1 (Figure 2.1.4C). Most studies showed a value-

dependent over- and underestimation with the turning point being slightly above 1 mm-1 (Figure 

2.1.4D). No clear agreement was observed for slope and intercept between the different studies, 

however, reduced variability was observed for the 61 µm compared to 82 µm studies (Figure 

2.1.4C). 

2.1.4.2.3 Trabecular Separation 

Agreements similar to those reported for Tb.N were found for trabecular separation (Tb.Sp) 

(R2=0.87, 0.94) (Figure 2.1.3). The range of agreement in Tb.Sp was also similar to that of Tb.N 

(Figure 2.1.3), as is expected since they are reciprocals. Interestingly, the trapezium study found 

Tb.Sp values from 82 µm images agreed better with micro-CT than Tb.Sp values from 61 µm 

images (R2=0.93 vs R2=0.88) (Mys et al., 2019). Some studies found better agreement for the 

indirect, manufacturer recommended method (Krause et al., 2014; MacNeil and Boyd, 2007), 
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which is based on grey-scale BV/TV and indirect Tb.N (Laib et al., 1998). Others found no 

difference between Tb.Sp measured using the indirect and direct segmentation based methods 

(Liu et al., 2010; Zhou et al., 2016). The direct local adaptive threshold method resulted in 

higher agreement than the indirect method (R2=0.93 vs R2=0.85) (Burghardt et al., 2007). One 

of the studies reporting higher agreement for indirect methods evaluated osteoporotic samples 

(Krause et al., 2014), however no osteoporotic samples were analysed by Burghardt and 

colleagues. Therefore, it is unclear whether the observed differences between direct and indirect 

methods are due to the segmentation method or the bone quality of the samples. The direct 

ARG segmentation method resulted in lower agreement than the indirect method (R2=0.52 vs 

R2=0.64) (Klintström et al., 2016) and is not recommended for computing Tb.Sp. Overall, the 

accuracy with which Tb.Sp can be assessed and the preferred method of calculation seems 

dependent on the size of the trabeculae relative to the voxel size. 

The regression results from all studies resulted in slopes in the range of 0.28 to 3.64 with 

intercepts from -1.90 to 0.80 mm (Figure 2.1.4E). As with Tb.N, a turning point was observed 

for Tb.Sp slightly below 1 mm, which is roughly the inverse of the turning point for Tb.N 

(Figure 2.1.4F). Overall, no clear agreement was observable for the regression parameters, 

while reduced ranges for the regression parameters were observed for 61 µm images compared 

to 82 µm images (Figure 2.1.4E). 

Interestingly, Tb.Sp was inconsistently defined as either trabecular spacing or trabecular 

separation. By definition, trabecular spacing refers to the distance between midlines of 

trabeculae, while trabecular separation describes the distance between edges of trabeculae. The 

source data for Tb.Sp, whether defined as separation or spacing, has not been modified herein. 

2.1.4.2.4 Trabecular Thickness 

For the commonly reported trabecular metrics, trabecular thickness (Tb.Th) performed the 

poorest (R2=0.59, 0.82) (Figure 2.1.3). The direct measure of Tb.Th for 82 µm HR-pQCT 

images, either using fixed or local adaptive threshold segmentation, agreed better than or 

equally as well as the indirect method of the manufacturer (R2=0.80 vs R2=0.55), which is based 

on grey-scale BV/TV and indirect Tb.N (Laib et al., 1998). As an exception, one study reported 

better perfo (MacNeil and Boyd, 2007). While 

they argued that the poor agreement found for the direct method from 82 µm HR-pQCT 
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Fig. 2.1.4 Linear regression analysis shows large variation across studies in the most commonly 
reported morphometric parameters, which were reported in more than ten studies. (A, C, E, G, 
I) Scatter plots of slope vs intercept for 61 µm HR-pQCT and 82 µm HR-pQCT validated 
against micro-CT show variability between parameters. Results from 82 µm HR-pQCT studies 
are further divided into direct and indirect approaches for all parameters. Grey-levels indicate 
the corresponding coefficient of determination (R2), while marker size indicates the voxel size 
of the micro-CT data used for comparison. (B, D, F, H, J) Linear regression lines from the same 
regression analyses are shown. The red, ideal line, indicates a perfect match between HR-pQCT 
and micro-CT and has slope of one and intercept of zero. In general, we observe that the 
parameters that have higher average coefficient of determination (e.g. BV/TV, Ct.Th) exhibit 
either under- or overestimation throughout the entire parameter space. In contrast, the parameter 
with the lowest coefficient of determination (e.g. Tb.Th) does not show a clear trend across 
studies. Furthermore, Tb.N and Tb.Sp have a consistent turning point between over- and 
underestimation across all studies. 

 

(R2=0.08) could be a result of the inherent low resolution of the images, this did not seem to 

hinder the other studies assessed herein. This apparent contradiction may be a result of variation 

across studies in pre-processing of the image data for the direct method. Hence, future studies 

looking at Tb.Th should also look at the sensitivity to different pre-processing protocols. 

Slopes ranged from 0.39 to 2.17 and intercepts ranged from -0.28 to 0.12 mm (Figure 2.1.4G). 

Since the indirect Tb.Th is a derived parameter, often represented as Tb.Th* or Tb.Thd, 

dependent on grey-scale BV/TV and indirect Tb.N, which showed no clear trend in terms of 

over- or underestimation, the linear regressions found for indirect Tb.Th also did not show a 

clear over- or underestimation trend (Figure 2.1.4H). As with other parameters, 61 µm images 

showed reduced variability compared to the 82 µm images (Figure 2.1.4H). 

2.1.4.2.5 Bone Surface to Bone Volume Ratio 

Bone surface to bone volume ratio (BS/BV) was only included in three studies (Liu et al., 2010; 

MacNeil and Boyd, 2007; Zhou et al., 2016), all of which used 82 µm HR-pQCT and scans of 

radii or tibiae. Even though, all studies used the same method to compute BS/BV (Müller et al., 

1994), two studies found good agreement (R2=0.83) (Liu et al., 2010; Zhou et al., 2016) and 

one study found poor agreement (R2=0.18) with BS/BV measured using micro-CT (MacNeil 

and Boyd, 2007). No alternative segmentation method was tested nor were any distinct patient 

populations included in these studies. 
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2.1.4.2.6 Structural Model Index

Structural model index (SMI) provides a metric for how plate- or rod-like a trabecular 

architecture is. However, one study cautioned against this interpretation of SMI, as a loss in 

BV/TV has been shown to shift SMI to indicate a more rod-like bone structure (Salmon et al., 

2015). All five studies reporting SMI utilized 82 µm HR-pQCT images. The same study that 

found poor agreement for BS/BV found poor agreement for SMI (R2=0.08) (MacNeil and Boyd, 

2007). However, the other studies found moderate agreement (R2=0.78) (Burghardt et al., 2007; 

Krause et al., 2014; Liu et al., 2010; Zhou et al., 2016) with the highest agreement found for 

the local adaptive threshold (R2=0.92) (Burghardt et al., 2007). Since the study with 

osteoporotic bone samples found lower agreement between SMI from micro-CT and 82 µm 

HR-pQCT data (Krause et al., 2014), the accuracy for SMI may depend on the disease status or 

bone quality of the scanned patient. Although the local adaptive threshold procedure produced 

results most similar to micro-CT SMI, this pre-processing method was only tested on non-

osteoporotic bone samples. Further validation should be performed before this method can be 

recommended unconditionally as a pre-processing step for the computation of SMI.  

2.1.4.2.7 Connectivity Density and the Degree of Anisotropy 

Connectivity density (Conn.D) is a computational measure of the inter-connectivity among 

trabeculae and can be an indicator of the mechanical strength of the trabecular architecture 

(Odgaard and Gundersen, 1993). Degree of anisotropy (DA) is a measure that describes the 

degree to which trabeculae are oriented along a common axis (Harrigan and Mann, 1985). For 

Conn.D and DA only slight and moderate agreement was found for 82 µm HR-pQCT, 

respectively (R2=0.50 for Conn.D, R2=0.62 for DA) (Burghardt et al., 2007; Krause et al., 2014; 

Liu et al., 2010; MacNeil and Boyd, 2007; Zhou et al., 2016). No comparisons between 61 µm 

HR-pQCT and micro-CT have been performed for Conn.D and DA. 

2.1.4.2.8 Less Common Parameters 

Trabecular nodes (Tb.Nd) is the count of trabecular intersections. Trabecular termini (Tb.Tm) 

is the number of free ends in the trabecular structure. Only one study evaluated Tb.Nd and 

Tb.Tm and found slight to moderate agreement (R2=0.49 to 0.74) using the ARG segmentation 

algorithm for 82 µm HR-pQCT (Klintström et al., 2016)

segmentation resulted in poor agreement for these parameters (R2=0.07). 

Mean intercept length (MIL), a measure of micro-architectural anisotropy (fabric), agreed well 

between 82 µm HR-pQCT and micro-CT, even when different filtering techniques for pre-
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processing were applied (R2=0.97 vs R2=0.99 for Laplace Hamming and Gaussian filtering, 

respectively) (Varga and Zysset, 2009). Using 82 µm HR-pQCT, Hosseini and colleagues 

showed that the manufa (Laib et al., 2000)) and their own 

open source implementation, mean surface length (MSL), both agreed well with MIL computed 

on micro-CT (R2>0.98 for all) (Hosseini et al., 2017). Here, the same threshold (320 mg 

HA/cm3) was used for micro-CT and HR-pQCT, demonstrating that fabric allows for more 

direct comparison between the two imaging modalities. However, while other studies looking 

at DA assessed the entire trabecular compartment, Hosseini and colleagues used three hand-

selected cubic regions of interest (ROIs) (edge length 6mm) per sample. This ROI-dependent 

precision (R2=0.99 vs R2=0.62) shows the importance of standardizing ROI selection to ensure 

cross-study comparability. 

Individual trabecula segmentation (ITS) is another approach, implemented in commercial 

software, to extract morphometric information from a CT image that differentiates between 

plate- and rod-like structures (Liu et al., 2011). Agreement between plate parameters was 

generally higher than for rod parameters. The declared conflict of interest for ITS by Liu and 

colleagues calls for independent research groups to substantiate these results. 

2.1.4.2.9 Effects of Segmentation on Trabecular Parameters 

The effect of custom segmentation methods on trabecular parameters remains unclear. The local 

adaptive threshold segmentation method performed equivalently or better for the analysis of 

morphological parameters of trabecular bone, e.g. Tb.N, Tb.Sp, etc., when compared to the 

global threshold segmentation method (Burghardt et al., 2007). Similarly, MSL was extracted 

accurately with a fixed threshold segmentation (Hosseini et al., 2017). However, others 

-scale 

method yielded better estimates of BV/TV and most morphometric indices, respectively, 

compared to micro-CT based or their proposed segmentation approaches (Klintström et al., 

2016; Varga and Zysset, 2009). Simultaneously, their alternative segmentation approaches 

outperformed 

Tb.Tm or MIL. 

2.1.4.3 Cortical Parameters 

Due to the low resolution of HR-pQCT images and their increased noise, segmenting the cortex 

accurately, especially identifying pores and the correct endosteal surface, can be challenging. 
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Consequently, parameters derived from these segmentations require a thorough validation 

against a high-quality gold standard such as micro-CT. 

2.1.4.3.1 Cortical Thickness 

Agreement between micro-CT and HR-pQCT measured cortical thickness (Ct.Th), the most 

commonly reported cortical parameter, was higher than most other cortical parameters for both 

device resolutions (R2=0.92, 0.94) (Liu et al., 2010; MacNeil and Boyd, 2007; Nishiyama et 

al., 2010; Ostertag et al., 2016; Tjong et al., 2012; Zhou et al., 2016) (Figure 2.1.3). The dual 

threshold segmentation algorithm improved agreement in Ct.Th for 82 µm images in two 

studies compared to Ct.Th derived from images using the indirect method in the scanner 

manuf 2=0.98 vs R2=0.90) 

(Nishiyama et al., 2010), while in the other study, good agreement was observed in directly 

computed Ct.Th derived from dual threshold segmented images and only moderate agreement 

in Ct.Th derived f

(R2=0.85 vs R2=0.79) (Ostertag et al., 2016)

uses an assumed relation of cortical volume over outer bone surface (MacNeil and Boyd, 2007), 

which could explain the lower agreement observed for the indirect compared to the direct 

method. 

Regression analyses found that Ct.Th computed from HR-pQCT matched Ct.Th from gold 

standard micro-CT much better if the direct segmentation-based method was used (Figure 

2.1.4I, 2.1.4J). Slopes ranged from 0.41 to 1.54 and intercepts ranged from -0.07 to 0.45 mm 

(Figure 2.1.4I). Only one 61 µm study assessed Ct.Th (Tjong et al., 2012) and reported a good 

match with micro-CT (Figure 2.1.4I), but it should be noted that Tjong and colleagues used an 

82 µm HR-pQCT device in non-patient mode with a resolution of 41 µm. Since this resolution 

is higher than the resolution of 61 µm HR-pQCT devices, further studies should clarify the 

effect this difference in resolution has on the accuracy of Ct.Th measured using 61 µm HR-

pQCT. 

2.1.4.3.2 Cortical Bone Mineral Density 

One study reported slight agreement (R2=0.59) with cortical bone mineral density (Ct.BMD) 

for an 82 µm HR-pQCT device running in non-patient mode (41 µm resolution) and a weaker 

agreement for the normal 82 µm HR-pQCT resolution (R2=0.44) (Tjong et al., 2012). No direct 

comparison between a 61 µm HR-pQCT device and micro-CT has been performed thus far. 
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Given that only one 82 µm HR-pQCT study has evaluated Ct.BMD relative to micro-CT, the 

accuracy with which HR-pQCT can measure this parameter remains unclear. 

2.1.4.3.3 Cortical Porosity 

Cortical porosity (Ct.Po) agreed well for both HR-pQCT resolutions (R2=0.85, 0.84) (Jorgenson 

et al., 2015; Nishiyama et al., 2010; Ostertag et al., 2016, 2014; Soltan et al., 2019; Tjong et al., 

2012). For 82 µm HR-pQCT, the direct 3D evaluation yielded better agreement than the indirect 

density derived evaluation (R2=0.85 vs R2=0.75). Using StrAx1.0, Ct.Po measurements agreed 

well (R2=0.87 to 0.98) (Zebaze et al., 2013), while with the direct approach, the number of 

detected pores agreed poorly (R2=0.27) (Nishiyama et al., 2010). This discrepancy could be due 

to the inability of HR-pQCT to detect the smallest pores, thus reducing the pore count while 

not greatly affecting the measured porosity. 

2.1.4.3.4 Less Common Parameters 

StrAx1.0 assesses cortical area using three parameters, total cross-sectional area, the compact-

appearing cortex area, and the transitional zone area (Figure 2.1.1C). These parameters, 

measured using 82 µm HR-pQCT data, agreed well with their micro-CT measured equivalents 

(R2

software was poor (R2=0.32) (Zebaze et al., 2013). 

The parameter of matrix mineral density (MMD) was introduced to address that Ct.BMD does 

not differentiate between a reduced mineralized bone matrix volume and reduced mineralisation 

of the matrix. Moderate agreement was found between MMD computed with StrAx1.0 and with 

re for micro-CT data (R2=0.76) (Chiang et al., 2018). 

While cortical interruptions can be used as a predictor of progressing rheumatoid arthritis 

(Scott, 2003), only moderate inter-rater reliability was found for the visual detection of cortical 

interruptions with diameters of less than 0.5 mm using 82 µm HR-pQCT and micro-CT, despite 

the extensive training and prior experience of the operators (Scharmga et al., 2016). To avoid 

inter-rater variability, an algorithm was proposed for detecting cortical interruptions (Peters et 

al., 2017), which modified the default segmentation of the manufacturer. This algorithm 

identified similar cortical interruptions for both HR-pQCT and micro-CT images and performed 

best for interruptions with a diameter of at least 0.16 mm for 82 µm HR-pQCT (inter-class 

correlation coefficient=0.91). 
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2.1.4.3.5 Effects of Segmentation on Cortical Parameters

Only a few studies have looked at the effects of segmentation on cortical parameters. The 

thickness-based separation segmentation approach achieved sub-voxel precision on some of the 

cortical morphometric parameters (Ang et al., 2020), while the use of manually-corrected 

segmentations resulted in inter-observer reproducibility errors of 3.7% for Ct.Th, 5.3% for 

Ct.BMD, and 6.2% for cortical porosity (Ostertag et al., 2014). Further studies should 

investigate the replacement of manual hand-drawn contours and manually-corrected 

segmentations with automatic approaches to eliminate such uncertainties and enable more 

direct cross-study and cross-centre comparisons. 

2.1.4.4 Discussion 

Few 61 µm HR-pQCT studies have validated morphometrics against micro-CT and the 

accuracy of 61 µm HR-pQCT cannot be assessed from comparisons of 82 µm and 61 µm HR-

pQCT without a proper gold standard (Agarwal et al., 2016; Manske et al., 2017, 2015), 

especially for parameters which do not agree well between 82 µm HR-pQCT and micro-CT. 

Importantly, a clear difference in morphological parameter agreement relative to analysis type 

was found between 82 and 41 µm HR-pQCT (Tjong et al., 2012); here, indirect methods 

resulted in a better agreement with the parameters derived from micro-CT for 82 µm HR-pQCT, 

while direct methods resulted in better agreement for 41 µm HR-pQCT. Given that 61 µm HR-

pQCT is between these two resolutions, it is not obvious which method best analyses 61 µm 

HR-pQCT images. 

There are a number of issues which may hinder the development of a generalized validation of 

HR-pQCT relative to micro-CT. Perhaps the largest issue with the comparison is the lack of a 

standardized approach for pre-processing micro-CT data. The plethora of pre-processing steps 

described for micro-CT might explain the systematic deviations between studies, which are 

clearly visible in the regression results for all morphometric parameters (Figure 2.1.4). 

Micro-CT resolution was also not standardized across studies, which is especially relevant for 

trabecular indices, such as Tb.Th, which have a strong dependence on image resolution (Kim 

et al., 2004; Kothari et al., 1998; Müller et al., 1996; Sode et al., 2008). Müller reported that 

resolutions of less than 10 µm should be used to obtain accurate results (Müller, 2003). Yet, we 

observed a wide variety of micro-CT resolutions, with some exceeding 30 µm (Table 2.1.2). 

Since the accuracy of HR-pQCT is not expected to match that of micro-CT, the improved 
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accuracy of using < 10 µm micro-CT for comparison is unlikely to affect the validation of HR-

pQCT. Importantly, we did not observe dependence on scanner resolution for morphologic 

parameters (Figure 2.1.3). However, studies looking at very thin, i.e. osteoporotic, micro-

architectures used resolutions below 20 µm for validation. The low resolutions of HR-pQCT 

devices may require the use of various segmentation methods to yield accurate results for all 

morphological parameters (Varga and Zysset, 2009). 

The accuracy for trabecular parameters varied by anatomical site, with the calcaneus having 

less accurate results with HR-pQCT compared to the radius or the tibia. This discrepancy may 

be a result of the morphometric analysis methods being fine-tuned for the distal radius and tibia, 

necessitating the development of a more universal or site-specific evaluation function. 

Different implementations have been introduced to compute the various morphometric indices; 

unfortunately, only the groups that proposed these implementations have reported on their 

accuracy. The lack of validation by independent research groups limits the amount of data, 

relative to anatomical site, disease status, etc., that is available for cross-comparison. This lack 

of comparative data, especially when existing datasets are overly homogenous, can lead to 

conflicts of interest when only internally-produced data is used for the validation of proprietary 

algorithms or derived commercial products. The introduction and use of a publicly available 

database of diverse validation data could help to avoid such issues in the future. 

Finally, only static cortical and trabecular parameters have been evaluated; dynamic measures 

for HR-pQCT, such as bone formation and resorption parameters, have yet to be investigated 

(Schulte et al., 2011). Since longitudinal micro-CT data cannot be generated for patients, other 

validation methods are required to assess these dynamic parameters. In silico models can now 

provide both realistic bone structures and simulated time-lapse data. By coupling these models 

with simulated image artefacts, such as noise, a wide variety of input data could be generated 

to evaluate dynamic parameters that extend what is possible with a single micro-CT or HR-

pQCT scan. 

2.1.5 Finite Element Analysis (FEA) 

Shortly after the introduction of micro-CT, researchers began investigating the use of imaging 

to not only quantify bone structure but also evaluate bone strength through FEA (Rüegsegger 
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et al., 1996; van Rietbergen et al., 1995). Importantly, non-destructive micro-CT FEA methods 

have since been validated against experimentally derived measures of strength and failure 

(Chen et al., 2017; Hambli, 2013). With the introduction of HR-pQCT for patient imaging in 

the clinic, it became evident that measures of strength and failure prediction from HR-pQCT 

FEA may aid in patient diagnosis and treatment. However, the application of FEA methods to 

lower resolution images requires thorough validation before these benefits can be realized. 

To date, 11 studies have utilized FEA in their analysis of 82 µm HR-pQCT relative to micro-

CT; 61 µm HR-pQCT FEA has yet to be evaluated relative to micro-CT FEA. Of these 11 

studies, eight included a comparison of mechanical measures between HR-pQCT FEA and 

micro-CT FEA, three of which also included comparisons of mechanical measures to 

experimentally derived measures, three utilized micro-CT FEA to evaluate the ability of HR-

pQCT image morphometrics to predict mechanical parameters, and one varied the voxel size 

of the input micro-CT data to isolate its effect on the FEA (Table 2.1.3). Seven studies used 

hexahedral elements and an isotropic linear-elastic material model, three used hexahedral 

elements and an elastic-plastic model with 5% or 50% reduction in elastic modulus after 0.33% 

tensile strain or 0.81% compressive strain, and one study also used quadratic pentahedral and 

tetrahedral elements in a homogenised FEA with an orthotropic elasticity tensor (Table 2.1.3). 

Similar to the Section 4, data from previous studies is presented as slope * valueHR-pQCT + 

intercept = valuemicro-CT. Due to the lack of consistent reporting, all R2 values are specific to a 

single study. 

2.1.5.1 Bulk Mechanical Properties 

In studies comparing the mechanical response of FEA models from HR-pQCT to those from 

micro-CT, increased bone strength and stiffness estimations were observed with increasing 

voxel size (Alsayednoor et al., 2018; Cohen et al., 2010; Liu et al., 2013, 2011, 2010; MacNeil 

and Boyd, 2007; Wang et al., 2019; Zhou et al., 2019). Specifically, one study found reaction 

force was overestimated by HR-pQCT (y=-5+0.42x N; R2=0.73) (MacNeil and Boyd, 2007). 

However, another study found that both reaction force and failure load estimates depend on the 

chosen threshold, such that a BV/TV-matched threshold led to significant underestimations, 

while a geometry-preserving threshold led to general overestimations (Alsayednoor et al., 

2018). Due to the small sample size (N=5), no regressions were performed, and the variability 

between specimens was notably large (Alsayednoor et al., 2018). Regarding analysis type, 
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strength was underestimated using linear HR-pQCT FEA for the radius (y=-0.92+1.7x kN; 

R2=0.92) and for the tibia (y=-0.39+1.5x kN; R2=0.96) and overestimated using nonlinear HR-

pQCT FEA for the radius (y=-0.31+0.84x kN; R2=0.91) and for the tibia (y=0.77+0.76x kN; 

R2=0.95) (Zhou et al., 2016). 

Stiffness was also overestimated through HR-pQCT FEA. This was observed in the evaluation 

of trabecular bone stiffness (y=-16.6+0.69x kN/mm; R2=0.90 (Liu et al., 2010)) and whole bone 

stiffness (y=-24.6+0.87x kN/mm; R2=0.96 (Liu et al., 2010) and y=4.3+0.86x kN/mm; R2=0.94 

(Zhou et al., 2016)) for the tibia. Similar results were found for stiffness of the radius (Zhou et 

al., 2016), but are not reported herein. While the slopes for whole bone stiffness of the tibia 

were similar between the two studies, the intercept 

 

Table 2.1.3 Parameters of HR-pQCT and micro-CT finite element analyses used to validate 
the use of HR-pQCT. 

Study Material Model 
Element Type 
(Voxel Size) 

Micro-CT 
Geometrya 

HR-pQCT 
Geometrya 

(MacNeil and 
Boyd, 2007) 

Isotropic, Linear 
Elastic (E=10 GPa, 
=0.3) 

Hexahedral (19 
m/ 82 m) 

164x164x164 
(Radius, 
3.12mm) 

38x38x38 
(Radius, 3.12 
mm) 

(Liu et al., 
2010) 

Isotropic, Linear 
Elastic (E=15 GPa, 
=0.3) 

Hexahedral (40 
m/ 82 m) 

143x143x143 
(Tibia, 5.72 
mm) 
10 mm CS 
(Tibia) 

70x70x70 
(Tibia, 5.74 
mm) 
9.02 mm CS 
(Tibia) 

(Alsayednoor 
et al., 2018) 

Isotropic, Linear 
Elasticb (E=10 GPa, 
=0.33) 

Hexahedral 
(17.41 m/ 82 

m) 

301x301x301 
(Calcaneus, 
5.24 mm) 

65x65x65c 
(Calcaneus, 
5.33mm) 

(Cohen et al., 
2010) 

Isotropic, Linear 
Elastic (E=15 GPa, 
=0.3) 

Hexahedral (8 
m/ 82 m) 

640x640x300 
(Iliac Crest, 
2.40mm) 

70x70x70 
(Radius, 5.74 
mm) 
110x110x110 
(Tibia, 9.02 
mm) 
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Study Material Model 
Element Type 
(Voxel Size) 

Micro-CT 
Geometrya 

HR-pQCT 
Geometrya 

(Liu et al., 
2013) 

Isotropic, Elastic-
Plastic (EHR-

pQCT=16.59 (5%) GPa, 
E CT=10.43 (5%) GPa, 
=0.3) 

Hexahedral (25 
m/ 82 m) 

230x230x230 
(Radius/ 
Tibia, 5.75 
mm) 

70x70x70 
(Radius, 5.74 
mm) 
110x110x110 
(Tibia, 9.02 
mm) 

(E=39.62 (5%) GPa, 
=0.3) 

PR (--/ 82 m) -- 
9.02 mm CS 
(Radius/ 
Tibia) 

(Zhou et al., 
2016) 

Isotropic, Elastic-
Plastic (E=15 (50%) 
GPa, =0.3) 

Hexahedral (37 
m/ 82 m) 

Approx. 9 mm 
CS (Radius/ 
Tibia) 

9.02 mm CS 
(Radius/ 
Tibia) 

(Wang et al., 
2019) 

Isotropic, Elastic-
Plastic (E=15 (50%) 
GPa, G=7 GPae, =0.3) 

Hexahedral (37 
m/ 82 m) 

9.02 mm CS 
(Radius/ 
Tibia) 

9.02 mm CS 
(Radius/ 
Tibia) 

PR with 
Hexahedral 
Cortex (--/ 82 

m) 

-- 
9.02 mm CS 
(Radius/ 
Tibia) 

(Pahr et al., 
2012) 

Isotropic, Linear 
Elasticb 
(EBMD=21.96(BV/TV)
1.7 GPa or ESEG=8.78 
GPa, =0.3b) 

Hexahedral 
(--/ 82 m) 

-- 
19.33± 2.15 
mm CS 
(Vertebra)b 

(Pahr et al., 
2012) 

Homogenized, 
Orthotropic Elastic 
(E=12 GPa, G=3.913 
GPa, =0.249) 

Pentahedral 
Cortex/ 
Tetrahedral 
Trabecular 
with Fabric (--/ 
82 m) 

-- 
19.33± 2.15 
mm CS 
(Vertebra)b 

(Christen et 
al., 2016) 

Isotropic, Linear 
Elasticb (E=6.8 GPa, 
=0.3) 

Hexahedral (25 
m/ --)d 

9.02 mm CS 
(Radius) 

-- 

(Liu et al., 
2011) 

Isotropic, Linear 
Elasticb (E=15 GPa, 
=0.3) 

Hexahedral (40 
m/ --) 

143x143x143 
(Tibia, 5.72 
mm) 

-- 
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Study Material Model 
Element Type 
(Voxel Size) 

Micro-CT 
Geometrya 

HR-pQCT 
Geometrya 

(Klintström et 
al., 2016) 

Isotropic, Linear 
Elasticb (E=12 GPa, 
=0.3) 

Hexahedral 
(20 m/ --) 

260x260x260 
(Radius, 
5.20mm) 

-- 

 

 

 

Study 
Loading 

Conditions FE Solver 
Study 

Measures Purpose 

(MacNeil and 
Boyd, 2007) 

1.0% Comp 
Custom (Su et 
al., 2007) 

Reaction Force, 
Stress, SED 

Validation 
(Micro-CT) 

(Liu et al., 
2010) 

SV: Combi;  
CS: 1.0% Comp 
(van Rietbergen, 
1996)  

Olympus 
(Adams, 2002; 
Adams et al., 
2004; Laib, 
1997) 

SV: Elastic and 
Shear Moduli; 
CS: Trabecular 
and Total 
Stiffness 

Validation 
(Micro-CT) 

(Alsayednoor 
et al., 2018) 

0.13% Comp Abaqus 

Reaction Force, 
von Mises 
Stress, Failure 
Load 

Validation 
(Micro-CT) 

(Cohen et al., 
2010) 

Combi (Hollister et 
al., 1994; van 
Rietbergen, 1996) 

Custom 
(Arbenz et al., 
2008) 

Elastic Moduli 
Comparison 
(Micro-CT) 

(Liu et al., 
2013) 

1.0% Compa 
Olympus 
(Adams et al., 
2004) Elastic Moduli, 

Yield Strength 

Validation 
(Micro-CT), 
Fracture Risk 
Prediction 1.0% Compa Abaqus 
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Study 
Loading 

Conditions FE Solver 
Study 

Measures Purpose 

(Zhou et al., 
2016) 

1.2% Comp 
FEAP (Adams 
et al., 2004) 

Total Stiffness, 
Yield Strength, 
Morph 

Validation 
(Exp, Micro-
CT) 

(Wang et al., 
2019) 

1.2% Comp 
FEAP (Adams 
et al., 2004) Total Stiffness, 

Total Yield 
Strength 

Validation 
(Exp, Micro-
CT), Fracture 
Risk Prediction 1.2% Comp Abaqus 

(Pahr et al., 
2012) 

Exp, Comp 

2010) 

ParFE (Arbenz 
et al., 2008) 

Elastic Modulus 
Validation 
(Exp) 

(Pahr et al., 
2012) 

1.2% Comp Abaqus 
Orthotropic 
Stiffness 

Validation 
(Exp) 

(Christen et 
al., 2016) 

Unit Comp (3 
uniaxial directions) 

ParOSol (Flaig, 
2012) 

Load Estimate 
Error 

Voxel Size 
Dependency 

(Liu et al., 
2011) 

Combi (van 
Rietbergen, 1996) 

FEAP (Adams 
et al., 2004) 

Elastic 
Modulus, 
Morph 

Micro-FEA 
Evaluation of 
Morph 

(Klintström et 
al., 2016) 

Combi (Chevalier 
et al., 2008) 

Abaqus 
Stiffness, Shear 
Moduli, Morph 

Micro-FEA 
Evaluation of 
Morph 

aSubvolume sample geometry is presented as voxel dimensions (bone source, subvolume 
height) and bone cross-section sample geometry is presented as cross-section height (bone 
source) 
bAssumed value, not available in text 
cData was evaluated using three methods: resampling to micro-CT resolution, thresholded 
to match BV/TV of micro-CT images, and thresholded to match fractal structure of micro-
CT images 
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dData was resampled to 50, 61, 75, 82, 100, 125, and 150 m for analysis at multiple voxel 
sizes 
eShear modulus, G, only used in PR model 
Other terms: SV, sub-volume of bone isolated from the trabecular compartment; PR, plate-
rod geometry consisting of 2-node rods and 3-node shell plates; CS, bone cross-section; 
Combi, a combination of six micro-FEA analyses including three uniaxial compressions 
and three uniaxial shear; Comp, uniaxial compression along the long axis of the bone; Exp, 
experimental; FEAP, Finite Element Analysis Program; SED, strain energy density; Morph, 
morphometrics derived from HR-pQCT images. 

 

varied in both sign and magnitude, possibly due to the use of different material models (linear 

elastic vs elastic-plastic, respectively). 

With respect to tissue-level properties, strain energy density was overestimated by HR-pQCT 

(y=0.004+0.42x J/mm3; R2=0.50) (MacNeil and Boyd, 2007). Two studies presented 

conflicting results in their comparison of average von Mises stress between micro-CT and HR-

pQCT FEA. In one study, von Mises stress was overestimated by HR-pQCT (y=2.5+0.46x 

MPa; R2=0.51) (MacNeil and Boyd, 2007), while another study found von Mises stress from 

HR-pQCT-based models was either equivalent or underestimated depending on the threshold 

used; however, no regression or quantification was performed in this second study 

(Alsayednoor et al., 2018). 

The study which explicitly evaluated voxel size using micro-CT images found increased error 

in estimated loading with increased voxel size (Christen et al., 2016). Similarly, the use of a 

BV/TV-matched threshold on downsampled micro-CT images resulted in slight 

underestimations of failure load and significant underestimations of apparent stiffness and von 

Mises stresses in comparison to native resolution (Alsayednoor et al., 2018). In contrast, a third 

study noted that continuum parameters, e.g. reaction force and von Mises stress, correlated 

better with results from micro-CT FEA than tissue-level parameters, e.g. strain energy density 

(MacNeil and Boyd, 2007). The inconsistencies indicate that further research is warranted to 

elucidate the true effect of both voxel size and imaging modality on FEA-derived mechanical 

properties. 

2.1.5.2 Tissue Mechanical Properties 

Several studies utilized both HR-pQCT and micro-CT FEA to assess isotropic or orthotropic 

elastic moduli of a cubic trabecular bone section; herein, elastic moduli were overestimated 
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when HR-pQCT images were utilized (Cohen et al., 2010; Liu et al., 2013, 2010). This 

evaluation method was first used to compare images acquired from different anatomical 

locations and found HR-pQCT-

(R2<0.19) of micro-CT values (Cohen et al., 2010). Specifically, when compared to micro-CT 

direction was 

overestimated by HR-pQCT by an average of 46% (305 MPa) and 54% (358 MPa) for the tibia 

and radius, respectively. Due to the use of varied anatomical sites, including both weight-

bearing and non-weight-bearing samples, it was difficult to draw conclusions about the specific 

effect of using micro-CT vs HR-pQCT (Cohen et al., 2010). The second study to evaluate the 

apparent elastic moduli from HR-pQCT and micro-CT FEA found an overestimation of elastic 

moduli (longitudinal, y=-403+0.83x MPa; R2=0.92), but also measured average BV/TV to be 

0.25 for HR-pQCT and 0.14 for micro-CT which may help to explain these differences (Liu et 

al., 2010). 

The use of varied material models and properties for micro-CT and HR-pQCT FEA models 

eliminated significant differences in apparent elastic moduli (relationship not quantified) (Liu 

et al., 2013; Pahr et al., 2012). For one such study, material properties derived on a separate 

cadaveric cohort were applied to a cohort of 60 patients, enabling the differentiation between 

patients with and without previous vertebral fractures (Liu et al., 2013). Interestingly, 

experimentally derived apparent stiffness was relatively well predicted using both the voxel-

based BMD (y=-0.02+1.03x GPa, R2=0.86) and binarised (y=0.07+0.88x GPa, R2=0.84) FEA 

models (Pahr et al., 2012). 

2.1.5.3 Non-voxel-based FEA 

In an effort to reduce the computational time associated with micro-FEA, two alternative 

methods were introduced for HR-pQCT FEA and validated against micro-CT FEA and 

experimental findings (Liu et al., 2013; Pahr et al., 2012; Wang et al., 2019). The first of these 

methods included a fabric-based homogenization method which was applied to vertebral 

samples, calibrated using micro-CT FEA, and evaluated against experimental measures (Pahr 

et al., 2012). This method was more computationally efficient and was able to predict apparent 

stiffness relatively well in comparison to experimental measures using BMD-based 

(y=0.06+1.01x GPa, R2=0.75) and binarised (y=-0.04+1.07x GPa, R2=0.86) model inputs (Pahr 

et al., 2012). The second method was a result of a geometry simplification process, i.e. ITS, 
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which resulted in a plate-rod (PR) geometry consisting of 2-node rods and 3-node shell plates 

(Liu et al., 2011). PR FEA resulted in similar predictions of elastic modulus (y=2.42+0.79x 

MPa; R2=0.91) and yield strength after initial adjustment of material properties (y=2.36+0.72x 

MPa; R2=0.86) relative to voxel-based micro-CT FEA (Liu et al., 2013). A follow-on study 

utilized this method in the evaluation of stiffness and yield strength predictions against those 

from both micro-CT FEA and mechanical testing (Wang et al., 2019). Here, stiffness from HR-

pQCT PR FEA was a good estimate for voxel-based micro-CT FEA (y=-6.63+1.04x kN/mm; 

R2=0.94) and values from mechanical testing (y=-26.5+1.06x kN/mm; R2=0.88) in a pooled 

dataset from the radius and tibia. Yield strength from HR-pQCT PR FEA was also a good 

estimate of voxel-based micro-CT FEA (y=-1.38+1.16x kN; R2=0.95), but overestimated yield 

strength (y=-1.17+1.30x kN; R2=0.94) for the same pooled dataset. 

2.1.5.4 Morphological Assessments 

BV/TV was found to be an independent predictor of whole bone stiffness and apparent elastic 

moduli (R2=0.49 to 0.74 for HR-pQCT and R2=0.65 to 0.82 for micro-CT) (Liu et al., 2010). 

Interestingly, studies evaluating HR-pQCT morphometrics relative to micro-CT FEA also 

found strong agreement of micro-CT FEA mechanical parameters with both BV/TV and Tb.Tm 

(Klintström et al., 2016); with total bone area (Tt.Ar), BMD, Ct.Th, and Tb.Th (Zhou et al., 

2016); and with ITS-based metrics of trabecular plates, orientation, and structure (Liu et al., 

2011). Therefore, while BV/TV has an inherent influence on the mechanical results from FEA 

due to its characterization of the anatomy, several other morphologic parameters appear to also 

be relevant to the prediction of mechanical properties for HR-pQCT imaged anatomy. 

2.1.5.5 Discussion 

Generally, the use of material models and material properties has been inconsistent across HR-

pQCT FEA investigations. This holds true even for the gold standard of micro-CT FEA. 

Additionally, the mechanical properties and metrics measured by various study groups is 

inconsistent. Combined, these factors resulted in difficulty in categorizing and comparing 

results between studies and investigating trends in observed differences. Specifically, the most 

commonly reported parameter across studies was orthotropic elastic moduli, however these 

values have only been reported in three studies by the same research group, including one study 

which compared different anatomical sites. 
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HR-pQCT FEA models clearly tend to overestimate bone strength and elastic modulus when 

applied without additional calibration or material property adjustments. While the results from 

61 m HR-pQCT FEA have yet to be compared to micro-CT FEA, the overestimation of 

reaction force and failure load observed with 82 m HR-pQCT FEA seems to be reduced when 

directly comparing 61 m to 82 m HR-pQCT FEA (Whittier et al., 2018). This difference in 

mechanical properties may be resultant of inherent differences in BV/TV and trabecular 

structure preservation between the two imaging modalities (Liu et al., 2010). However, one 

study investigated the effect of using either BV/TV-matched or geometry-preserving thresholds 

and found that neither method resulted in similar values to those obtained from micro-CT FEA 

for any of the mechanical measures evaluated (Alsayednoor et al., 2018). Despite this, 

mechanical properties from HR-pQCT FEA are still highly correlated with those from both 

micro-CT FEA and experimental findings, indicating that a correction may be possible. 

Given the current state of the literature, HR-pQCT FEA may not be a feasible solution for 

accurately quantifying mechanical properties, but instead an excellent option for use in 

comparative studies. Accordingly, two studies have shown that HR-pQCT FEA models were 

able to distinguish between patients with and without previous radius fractures, indicating a 

potential clinical application of these models in the future (Liu et al., 2013; Wang et al., 2019). 

While comparative studies are sufficient for many clinical applications, the availability of 

diverse datasets, which include experimentally derived mechanical properties and both micro-

CT and HR-pQCT images, would provide the necessary basis for future validation of the 

quantification of mechanical properties using HR-pQCT, leading to patient-specific 

applications of HR-pQCT FEA. 

2.1.6 Discussion 

The aim of this review was to provide an overview of the current status of computational 

method validation for HR-pQCT with respect to gold standard micro-CT and of the limited 

standardization across the field. We found that there is good agreement between HR-pQCT and 

micro-CT for a variety of morphometric or mechanical parameters. Notably, of the most 

commonly used morphometric parameters, BV/TV and Ct.Th had the highest agreement. While 

most segmentation methods are calibrated to yield accurate BV/TV values, Ct.Th is insensitive 

to partial volume effects, noise, and other imaging artefacts, such as movement artefacts, since 
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it has a lower ratio of surface voxels to cortex thickness. On the contrary, trabecular parameters, 

such as Tb.Th, showed weaker agreement with micro-CT, likely since trabeculae are only a few 

voxels thick in HR-pQCT images. We also observed moderate to good agreement for samples 

representing diseased, e.g. osteoporotic, bone. 

However, no segmentation method performed equally well for all computational applications. 

While BV/TV was most precisely measured without microstructural segmentation (i.e. grey-

scale BV/TV) for 82 µm HR-pQCT, trabecular parameters, such as Tb.N and Tb.Sp, showed 

higher precision when using a fixed or local adaptive threshold approach. This was especially 

true for anatomical sites other than the radius and tibia. In contrast, using a threshold which 

matched morphological parameters resulted in incorrect predictions of mechanical measures 

such as stress, apparent stiffness, and failure load criteria (Alsayednoor et al., 2018). Despite 

the evidence for a more careful selection of segmentation method, most studies used the 

computation. The lack of standardization across studies is likely a major factor as to why newly 

developed tools are rarely adopted by other research groups. We identified four major issues of 

standardization that affect our ability to validate new and existing methods and limit their use 

across research groups. 

2.1.6.1 Inconsistent Pre-Processing 

While micro-CT was consistently used as the gold standard, the pre-processing methods of 

these images were not standardized. This lack of consistency resulted in noticeable systematic 

deviations in the regression of morphological parameters, making it impossible to conclude 

whether these parameters are under- or overestimated by HR-pQCT. Hence, future studies 

should aim to define standards for pre-processing of both micro-CT and HR-pQCT images. 

2.1.6.2 Limited Comparisons to Similar Methods 

Studies that proposed new analysis methods did not always directly compare the results of their 

approach to those from already existing methods. This was particularly noticeable for FEA 

studies, where every group used different material models, material properties, geometries, and 

boundary conditions. The use of independent datasets further complicated the differentiation 

between method- and dataset-based biases in the results. 
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2.1.6.3 Limited Validation on Heterogeneous Datasets 

Due to the observed dependency of analysis methods on anatomical site and patient cohort, the 

results from single studies with homogenous datasets cannot directly be compared to one 

another and the lack of dataset diversity prohibits sufficient assessment of method robustness. 

Importantly, if these proposed methods are incorporated into proprietary commercial software, 

opportunities for external validation are then severely limited. Future method development and 

validation must therefore be based on more diverse datasets to allow for the differentiation 

between dataset- and pre-processing effects, as this is currently unclear. 

2.1.6.4 Lack of 61 µm HR-pQCT Validation 

Based on the limited number of 61 µm HR-pQCT validation studies, morphological agreement 

with micro-CT was improved compared to 82 µm HR-pQCT. While this improved accuracy in 

morphometric parameters shows promise for mechanical analysis using HR-pQCT FEA, these 

analyses have yet to be validated against micro-CT FEA. Unfortunately, the validation of 

morphological parameters is also incomplete, as several morphological parameters have not yet 

been validated for 61 µm HR-pQCT. As 61 µm HR-pQCT is expected to outperform other 

clinical imaging modalities, additional validation studies are urgently needed to ensure 

widespread clinical use of this advanced imaging technology. 

2.1.6.5 Conclusion 

HR-pQCT is a promising technology with a variety of potential clinical applications. The 

improved resolution of 61 m HR-pQCT provides superior quantification of bone 

morphometrics when compared to 82 µm HR-pQCT. However, the clear lack of standardization 

is prohibitive for widespread clinical use. Despite the number of studies using HR-pQCT, there 

is little standardization or agreement as to how to calculate many morphometric indices or 

perform FEA. Results of HR-pQCT studies are difficult to compare due to varied pre-

-processing, 

studies have already shown that there are more accurate methods for some morphometric 

parameters (e.g. Tb.N). However, due to the lack of a publicly available, heterogeneous, and 

comprehensive dataset for methods validation, studies proposing new analysis methods often 

draw an incomplete picture of their method -

validation of new methods by other groups is slow and often non-existent. With the availability 
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of 61 µm HR-pQCT, the community must learn from its mistakes with the introduction of 82 

µm HR-pQCT and establish an open access software and data repository, instead of referencing 

the conclusions of studies using older generation devices with completely different physical 

properties. Using this data repository, new methods can be benchmarked against the same 

comprehensive dataset to allow for straightforward comparison. Optimal analysis methods can 

be selected for each specific application, and updates to methods and their effects on parameters 

can be immediately accessed through the online repository. With the ability to properly validate 

new technologies, we can ensure that the clinical use of HR-pQCT can truly provide value in 

patient diagnosis and care. 
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Abstract 

Computational tools have shaped science in the 21st century. With the ever increasing power of 

modern computer hardware, new ways to explore data, new ways to make predictions based on 

data and new ways to study the world using simulations have emerged. In the bone field 

specifically, the use of micro-computed tomography images quickly led to high demand of 

computational resources and software capable of handling large 3D images. Over the last 

decades, many research groups have tried to develop software to aid them in their research. 

Though, due to several reasons such as closed-source black box software or limited interest in 

sharing software in the community, the current computational state of the bone field is 

fragmented. This is particularly visible between research groups focusing on animal studies on 

the one and human studies on the other hand. This limits comparability between animal and 

human studies for example when studying bone fractures, thus breaking the critical feedback 

cycle between clinical and laboratory research. 

To tackle this issue, we propose a new computational framework to provide the basis for bone 

research of both, clinical and laboratory work. It is based on Python, easily one of the most 

popular open source programming languages available today, with thousands of freely 

accessible libraries. Common functionality such as finite element analysis, morphological 

analysis and image processing routines are provided. The choice of finite element solver 

guarantees decent scalability from laptop to supercomputer with the Python programming 

language ensuring cross-platform compatibility. By providing both, tools for human and for 

animal studies within one framework, researchers can easily switch between them to compare 

and/or decide which approach to use. 
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3.1.1 Introduction 

Computers have come a long way with current super-computers reaching up to 514,000 TFlop/s 

(that is 514 thousand trillion floating point operations per second) (https://top500.org/). 

Nowadays, even regular laptops are faster than super-computers only a few decades ago. In the 

bone field, scientists have used computers for various applications to gain deeper insight into 

how bone remodels, especially since the availability of micro-computed tomography (micro-

CT) which provides high resolution (up to 1 µm) of the bone microstructure. This allowed first 

of all, to quantify the morphology of biopsy data without the need for approximating 2D 

histology approaches (Müller et al., 1998) and also allowed for longitudinal in vivo mouse 

studies, which wasn echniques (Schulte et al., 2011) and which has also 

been applied to study bone fractures (Tourolle né Betts et al., 2020). Since there was a clear 

connection between observed morphology and mechanical loading, methods were developed 

to compute mechanical properties such as stiffness, instead of invasive measurements (Flaig, 

2012; Mennel and Sala, 2006). 

However, the morphological analysis software, called IPL, was only available to customers of 

the micro-CT scanners, leading to e.g. parallel developments of morphological analysis 

software based on the popular imaging software ImageJ called BoneJ (Doube et al., 2010). 

While BoneJ was free and open-access, results were not always identical to previously used 

software. Furthermore, version incompatibilities between BoneJ and ImageJ lead to a slow 

adaptation of the software. Furthermore, IPL lacks many of the features one might expect from 

a modern programming language. For finite element analysis, the fragmentation of the 

community was even stronger with most groups developing their own approaches and only 

limited efforts to share (Ohs et al., 2020). To make matters worse, with the introduction of high-

resolution peripheral computed tomography (HR-pQCT) and the resulting availability of 3D 

microstructural bone in

morphological analyses methods without proper validation (Ohs et al., 2020). To not fall into 

the same trap, when studying bone fractures care should be taken to stay compatible with what 

has already been developed in the lab. 

Moving forward, the initial step must be to bring researchers together on a common 

computational platform. This will enable easy exchange of ideas and pave the way for a unified 

set of tools to analyse bone. In the following, we propose a solution that does not exclude 
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existing standards, while clearly pointing the way forward to the next generation of 

computational bone tools.   

3.1.2 Python 

Python is an open-source high-level programming language developed by Guide van Rossum 

(Python Software Foundation, 2020). It is listed as the most popular programming language 

today by the PYPL PopularitY index (https://pypl.github.io). The language combines several 

programming paradigms like object-oriented and functional programming which combined 

with its simple white-space based syntax makes it easy to learn for most. While Python itself is 

slower than languages like C and C++ due to it being an interpreted language, Python can easily 

be extended by modules written in C and C++ making it as fast as these languages, while 

providing an easier to read and clearer code compared to those languages. 

One major benefit of Python is that it runs on various platforms. It ships by default with Linux, 

can be installed on Mac OSX with the popular homebrew package manager and is bundled with 

a large amount of datascience and numerics packages for Windows in what is called the 

Anaconda distribution (Anaconda, 2020). The available packages combined with the Python 

package manager pip are another benefit of the Python programming language. From the 

numerics library numpy (Van Der Walt et al., 2011) and scipy (Virtanen et al., 2019) to the 

plotting library matplotlib (Hunter, 2007) and machine learning packages such as Scikit-Learn 

(Pedregosa et al.

many default utilities. However, the package repository of Python actually contains over 

260.000 projects that are freely available. The ease of use, the cross-platform compatibility, the 

maturity Python has nowadays and the available packages make it an ideal basis for science 

today. 

3.1.2 Basics of the framework 

comprehend fully. When code suddenly fails, reverting changes can become challenging, as 

basic file information like date of change do not really link back to a valid version of the 

software necessarily. When working with several developers on the same code base, another 
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question that quickly arises is how to combine changes made by different developers. For all 

these issues, version control software has been developed. The framework we propose is based 

on the most popular open-source version control software called git. In short, git is a 

decentralised version control/tracking software that provides features such as bundling several 

 and more. 

Next to being able to have a clear history of ones code, it is also essential to test it. To automate 

this, GitLab, a devops lifecycle tool based on git was setup. It provides a web-interface to report 

code issues, request features. It also provides a visual interface for merging branches. Most 

importantly, we setup GitLab with what is known as GitLab runners. These runners run a 

separate software that waits for new commits being detected by the GitLab server. Once the 

GitLab server reports new commits, the runners will then automatically start to run all written 

tests for the code repository. 

As was mentioned previously, performance sensitive code can be written in C++ and easily 

linked into Python. For this, we use the publicly available library pybind11 (Jakob et al., 2017). 

We also use the library Sphinx to autogenerate documentation from Python source code files 

and Doxygen for C++ files. 

To address the issue of making the developed software accessible for non-programmers, a 

JupyterHub server was configured to provide Jupyterlab interfaces. Jupyterlab is a webinterface 

serving interactive Python Jupyter Notebooks to user via a WebBrowser. Complex pipelines 

can then be provided as notebooks with users mainly having to use their mouse to interact with 

them. 

3.1.4 Modules 

Certain core modules were developed to provide users with expected features when working in 

the bone field. 

3.1.4.1 File formats 

The Any Image (AIM) format is used on the micro-

was provided to load these images into Python. The imaging data is provided as numpy arrays 
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(the default for multidimensional arrays in Python) with physical quantities attached with the 

package pint (Grecco, 2020). The array itself is provided in a class that also provides further 

information such as the voxel size, the position relative to the total scanned region and the 

processing log (Figure 3.1.1). By default, the returned array is in calibrated units, though this 

feature is optional and can be disabled. 

 

  

Fig. 3.1.1 Code listing showing how to interact with an AIM file in Python. 

 

While the AIM format is 

noticeable limitations. Metadata is hardcoded into the file format making changes to it difficult 

except for additions to the processing log which would require all meta data to be converted to 

strings. Multiple datasets that should be grouped logically can only be stored in separate AIM 

files. No parallel read and write for high performance applications is supported by the format. 

On the other hand, the hierarchical dataset format (HDF5) (The HDF Group, 2020) provides all 

these features and more. It is also the standard file format used for the micro-FE solver parOsol 

(Flaig, 2012) that is often used in the bone field. 

Since the HDF5 format does not by default respect physical units attached to numpy arrays, we 

developed a light wrapper that provides this extra functionality (Figure 3.1.2). The files are 

stored as *.h5i, but they are fully compatible with the default HDF5 Python modules. 
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Fig. 3.1.2 Code listing showing how to interact with an h5i-File. 

 

3.1.4.2 Image Processing 

Many image processing tools such as Gaussian filters, erosion and dilation filters, and many 

more are already provided by Scikit-Image. Rigid image registration was based on the work by 

Thévenaz and colleagues (Thévenaz et al., 1998) was implemented in Python and its accuracy 

was tested against existing implementations. Furthermore, the machanoregulation analysis by 

Schulte and colleagues (Schulte et al., 2011) has been implemented. 

 

 

Fig. 3.1.3 While the Python user calls a simple morphometry function, the framework 
r black box 

code. 

 

To have access to image processing pipelines programmed in IPL, and interface was developed 

that allows to wrap calls to IPL functions in Python. To realize this, an FTP connection is 

 transferred. Via an 
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SSH connection, IPL scripts and then sent to a queue of choice and the program waits for the 

3.1.3). The interfaces are designed as if one would call a Python function (such as expecting a 

numy array as an argument etc.). This allows to easily swap out the existing wrapper with 

implementations in Python, once the community agrees upon an open source implementation 

of these IPL functions. 

3.1.4.3 External Job & Finite Element Solver 

ParOsol is a high performance parallel octree solver that was wrapped to be callable from the 

framework. One of the key aspects when developing the wrapper for parOsol was to ensure that  

 

 

Fig. 3.1.4 on 
 

 

running a Python script on a desktop PC would look identical to a script running on a large 

cluster or super-computer. This was achieved by abstracting away calls to external programs 

such as parOsol via the external job module. The module differentiates three different scenarios: 
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1. Being run on a Windows or Linux machine without a queueing system 

a child process. 

2. Being run on a cluster without allocated resources 

In this case, an appropriate job queue script will be generated. The script will be submitted into 

the queuing system and the Python script waits automatically until the job is done and the results 

can be read. 

3. Being run on a cluster with allocated resource 

In this case, the allocated resources of the system are determined and the program in question 

is run with these system resources as a child process.  

 

 

Fig. 3.1.5 Code listing showing how a call parasol irrespective of the platform you are working 
on. The code fixed all nodes touching the bottom plane of the image in z direction (defined by 
x,y,z=0, w=1) in z direction while applying a 1% compression on the top plane. 
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In the specific case of parOsol, care was taken to make it easy for non-programmers to be able 

to run basic finite element tasks without assistance. For this, the simple boundary condition 

language was developed, implemented in C++ and linked into Python. A typical parOsol call 

can be seen in figure 3.1.5. Instead of writing code to generate a list of nodes for which to then 

apply certain boundary conditions, the user can use the simple boundary condition language 

(SBL) to define typical finite element computations. 

For more complex loading scenarios, the parOsol calls can be combined with a load estimation 

algorithm (Christen et al., 2013) that was implemented in Python, to get more accurate local 

mechanical environments. 

3.1.4.4 Mechanically Driven Bone Adaptation algorithm 

The mechanostat based load adaptation algorithm (Schulte et al., 2013) was implemented using 

a combination of C++ and Python. For the finite element analysis, the parOsol wrapper was 

used. For the convolution of the adaptation solver, a C++ parallel convolution was 

implemented. The rest of the simulation was implemented in Python. 

3.1.5 Limitations 

However, this project is not without limitations. For once, the software has not been developed 

with a clear focus on open-sourcing it. Therefore, some extra effort has to be put into the 

software to make it ready for a public repository. However, this is also a chance to revise some 

design decisions with the experience gained during development. Another limitation is the lack 

of a complementing database such as the AiiDA Python project (Pizzi et al., 2016). The 

integration of such a database would have been beyond the scope of this project. Nevertheless, 

it is an important tool to promote reproducibility and data sharing. 

3.1.6 Conclusion 

The goal of this project was to develop a computational framework that unifies the way the 

bone community can collaborate. We have demonstrated, how our approach framework 

provides easy access to common existing bone analysis and simulation tools while offering all 

the power of Python to develop future tools. 
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Abstract 

Clinical diagnosis and prognosis usually rely on few or even single measurements despite 

clinical big data being available. This limits the exploration of complex diseases such as 

adolescent idiopathic scoliosis (AIS) where the associated low bone mass remains unexplained. 

Observed low physical activity and increased RANKL/OPG, however, both indicate a 

mechanobiological cause. To deepen disease understanding, we propose an in silico prognosis 

approach using clinical big data, i.e. medical images, serum markers, questionnaires and live 

style data from mobile monitoring devices and explore the role of inadequate physical activity 

in a first AIS prototype. It employs a cellular automaton (CA) to represent the medical image, 

micro-finite element analysis to calculate loading, and a Boolean network to integrate the other 

biomarkers. Medical images of the distal tibia, physical activity scores, and vitamin D and PTH 

levels were integrated as measured clinically while the time development of bone density and 

RANKL/OPG was observed. Simulation of an AIS patient with normal physical activity and 

patient-specific vitamin D and PTH levels showed minor changes in bone density whereas the 

simulation of the same AIS patient but with reduced physical activity led to low density. Both 

showed unchanged RANKL/OPG and considerable cortical resorption. We conclude that our 
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integrative in silico approach allows to account for a variety of clinical big data to study 

complex diseases.  

Keywords:  

Clinical big data; cellular automaton; Boolean network; micro-finite element analysis; 

adolescent idiopathic scoliosis 
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3.2.1 Introduction 

Understanding the physiology of the human body is a tremendous challenge, understanding 

and finally treating diseases is arguably an even more difficult task. Many diseases exhibit 

alterations in complex signalling pathways that lead to distinct phenotypes used in diagnosis 

and prognosis. However, both usually rely on few or even single clinical measurements 

despite clinical big data, i.e. medical images, serum markers, questionnaires and live style 

data from mobile monitoring devices being available. Exploiting these clinical big data would 

potentially enable one explore and thus further understand complex diseases such as 

adolescent idiopathic scoliosis (AIS) where many alterations in the signalling cascade and 

other factors such as a patient's lifestyle play an essential role. 

AIS is a prevalent spinal deformity associated with systemic low bone mass (Z-score  -1 

with the reference to local matched population), which can persist into adulthood predisposing 

to osteoporosis in later life. If not treated properly, the curve will deteriorate leading to 

cardiopulmonary compromise, back pain, degenerative spine disease, and psychosocial 

disorder (Cheng et al., 2015). Low bone mass has been identified as a risk factor for curve 

progression. The underlying mechanism of low bone mass in AIS, however, remains unknown 

although it would potentially provide a basis for counteracting the associated complications 

(Yu et al., 2014). It has been suggested that low bone mass is related to inadequate physical 

activity (Lee et al., 2005) and an increase in RANKL/OPG (Cheng et al., 2015), which might 

lead to increased bone resorption. Most recently, low vitamin D levels were observed in AIS 

patients (Batista et al., 2014) indicating that multiple factors play a role in AIS. 

Therefore, we propose a novel prognosis approach using clinical big data for the in silico 

simulation of complex diseases with the ultimate goal to improve clinical diagnosis and 

prognosis of these diseases as well as the evaluation of treatment options. Medical images 

containing bone tissue density are integrated into a cellular automaton (CA) model where the 

tissue densities define local states. These states are updated according to a local rule that takes 

into account the biological cells present in each CA cell. The cell number or activity is 

normalised representing a normal healthy value by default but with the possibility to either 

initialise patient-specific or experimental values. It allows to integrate serum markers of 

specific cells if they are available and at the same time does not require the definition of a 

value if it is not known. The cells itself are updated through mechanical tissue loading as 



Chapter 3 Development of a computational framework for the assessment of bone fracture 

84 

 

calculated with micro-finite element (micro-FE) analyses and a molecular factor determined 

in a Boolean network, which models the interaction of cells, molecules, and mechanical 

loading. The entire procedure is applied to obtain cell and tissue densities as well as molecular 

states at different time points that describe the time evolution of the system. Here, we describe 

and formulate the theoretical basis of this integrative in silico prognosis approach and present 

a first prototype demonstrating the integration of medical image, serum marker, and lifestyle 

data for AIS. 

The purpose of this study is to formulate a theory for integrating varying clinical big data, and 

implement and employ it to simulate low bone mass typical of AIS.   

3.2.2 Materials and Methods  

We performed in silico simulations over a period of 6 months integrating high-resolution 

peripheral quantitative computed tomography (HR-pQCT) images of the distal tibia, physical 

activity scores, and vitamin D and PTH levels of an AIS patient. Two simulations were run 

including an AIS control case with normal physical activity score, and vitamin D and PTH 

levels as measured in the patient's serum, and an AIS case with reduced physical activity as 

observed in other studies but again with the same patient-specific measurements as in the 

control simulation. 

3.2.2.1 Clinical patient assessment 

To validate the proposed in silico prognosis, a 17-year-old AIS girl (patient number 666; major 

Cobb angle 37°) was randomly selected from the database of a prospective randomised 

controlled trial who received observation alone. Anthropometry, curve severity, pubertal 

assessment and bone parameters were assessed at baseline and at the 12-month time-point. Bone 

parameters were measured with dual-energy X-ray absorptiometry (DXA, XR-36; Norland 

Medical Systems, Fort Atkinson, WI, USA) and HR-pQCT (XtremeCT, Scanco Medical AG, 

Switzerland). 

Blood was collected on the same date of clinical visit for the measurement of serum bone 

metabolic markers with standard protocols conducted by the University Pathology Unit. 

Physical activity was assessed by a standardised quantitative questionnaire adapted from 
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Slemenda et al. (1991). The amount of weight bearing activity is expressed as number of hours 

per day. The sum of hours spent on various types of weight bearing activity was used to 

summarise daily activities for each subject. Ethical approval was obtained from the University 

Clinical Research Ethics Committee (Ref. NO.; CRE-2008.054-T) (Lam et al., 2013). 

3.2.2.2 Cellular automaton 

The medical image of a bone, e.g. a HR-pQCT scan, is a 3D representation of the bone density 

in a cubic domain at a certain voxel resolution. It can be regarded as the regular grid, , of cells 

of a CA. For each CA cell and a given time point, , a density value, a strain energy density 

(SED) value, the number or activity of the different biological cells and the presence or absence 

of several molecules usually found in bone are defined: 

 

with  being the tissue density value,  being the SED value,  the number of cell types 

considered,  the number or activity of biological cells of type  inside each voxel,  the 

number of molecule types considered and  indicating whether the molecule of type  is 

present or absent. This tuple makes up the state of this CA cell at time . Our first prototype 

uses three cell types: osteoblasts ( ) forming new bone tissue and osteoclasts ( ) 

removing old bone tissue resulting in a continuous remodelling of the tissue, and osteocytes 

( ) considered to respond to mechanical tissue loading and orchestrate the action of 

osteoblasts and osteoclasts accordingly. 

In order to update the CA, rules are defined that are applied to each CA cell simultaneously and 

considering a certain neighbourhood. For each ,  describes the set of all considered 

neighbours of . In the presented prototype, a 3D von Neumann neighbourhood is defined. 

Finally, an update rule  that generates the new bone cells and tissue densities in the CA is 

given by 

 

In our prototype AIS CA, the update rule is the same for every CA cell. Our prototype employs 

the following update rule: The new SED values for each voxel computed with the micro-FE 

method is an input. In a first update step, the cell numbers based on a function that transforms 

SED values to an increase or decrease of OBL/OCL are modified according to the SED-bone 
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remodelling relationship found earlier (Christen et al., 2016). To avoid infinite 

increase/decrease of cells, they are saturated at a minimum and maximum level for both, OBL 

and OCL. In a second step, the Boolean network for each voxel is evaluated, which will again 

result in modifications to the OBL/OCL counts. Finally, the tissue density is updated based on 

the OBL/OCL counts. If the density values are higher than bone, they are distributed to the 

neighbouring voxels. The initial bone cell count and distribution are determined in a preceding 

iteration where more OBLs are placed in regions of high SED and more OCLs in regions of 

low SED. The CA is only updated a few layers away from the top and bottom where the 

boundary conditions of the micro-FE analysis are applied to exclude boundary artefacts. 

3.2.2.3 Boolean network 

The interaction of the local molecules with the local biological cells under the influence of 

mechanical loading in each CA cell is modelled with a Boolean network. Each molecule is 

either present in a CA cell or not. The number of CA cells in which a specific molecule is 

present, is governed by the measurement of the appropriate serum marker. In the present AIS 

network, RANKL, OPG, vitamin D, PTH, OCL, OBL and mechanical tissue loading (Mech) 

are integrated. The corresponding Boolean functions are as follows: 

 

All molecules are either present or not. They are represented by a Boolean value. Mech is a 

thresholded Boolean value of . The cell numbers/activities of OBL/OCL are also thresholded. 

The molecule states are initialised randomly with a spatially uniform distribution and an 

average cover rate of 50%. Molecules that are never updated in the network are redistributed 

before every time iteration to avoid bias due to the specific configuration that was generated for 

the first iteration. OBL is then increased if PTH is true whereas OCL is increased if RANKL is 

true. 

3.2.2.4 Computational implementation 

The presented modelling approach is well suited for parallel implementation since each CA cell 

only depends on its nearest neighbourhood but is propagated independently with each time step. 

We therefore implemented the prototype for the execution on a graphics processing unit (GPU) 
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using OpenCL. This allows to exploit the large amount of computing units available on a GPU 

compared to only a few cores of a CPU on a normal computer workstation. 

The analysis is performed with the dedicated micro-FE solver ParOSol (Flaig et al., 2011) on 

the CPU. Boundary conditions are defined according to a bone loading estimation algorithm 

(Christen et al., 2016), providing physiological in vivo loading for this particular patient. They 

include compression (zz-direction) and shear strains (zx- and zy-direction).  For the CA, 

biological cell and tissue density, molecular states as well as the mechanical tissue loading are 

stored for the full CA domain and thus a so called full-space approach is followed. Tissue 

density and loading are stored as floating point numbers. Since GPU memory is very limited, 

the biological cell count/activity per voxel is restricted to 8-bit characters, which still provides 

256 quantification levels. For each molecule, only 1 bit is needed in the Boolean network, thus, 

for each voxel all molecular information can be encoded in a single byte. 

3.2.3 Results 

In the control simulation, bone density stayed constant with only a minor change of 0.03% 

between start and end point, representing normal healthy bone remodelling with 1.40% 

formation and 1.43% resorption. Reducing physical activity led to a decrease of 20.65% in bone 

density with 1.40% and 22.05% bone formation and resorption, respectively (Figure 3.2.1). In 

both cases, RANKL/OPG did not change during the simulated time. 

Calculating tissue loading with micro-FE analysis required 494 seconds on a supercomputer 

(96 CPU cores, CSCS Cray XC40) while the CA computation including the Boolean network 

required 45 seconds on a workstation GPU (AMD Radeon HD 6750M 1024 MB, MacBook Pro 

2011). 

3.2.4 Discussion 

We here propose an in silico prognosis approach to combine varying clinical measurements and 

thus clinical big data to explore complex diseases. The theoretical basis is outlined as well as a 

first prototype simulating AIS related bone loss due to inadequate physical activity is presented. 

We successfully demonstrate this effect by feeding clinical big data including medical images, 
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serum markers, and physical activity levels into the in silico prognosis. Mobile monitoring data 

could potentially be included, too.  

 

Fig. 3.2.1 Differences in bone density between the first and last iteration for a control and a low 
physical activity simulation of an AIS patient. Bone resorption is depicted in red, formation in 
green, and no change in white transparent.  

 

Our results are in agreement with bone's capability to adapt to mechanical loading since bone 

density decreased with decreasing physical activity. The in silico method furthermore allows a 
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more local analysis of bone loss, showing that resorption occurred predominantly in cortical 

bone and the centre of trabecular bone indicating alterations in spatial bone remodelling activity 

that might be linked to the local mechanical loading conditions. Bone formation, in contrast, 

occurred more evenly distributed throughout the trabecular bone. 

The current implementation is very fast with only a few seconds execution time. However, 

micro-FE calculations were performed on a supercomputer and are currently coupled through 

a shared results file with the CA requiring additional file reading/writing. Computation time 

could thus be reduced by including the micro-FE solver in the CA. Although the Boolean 

networks are modelled for each image voxel, they do not add much to the total computation 

time and thus, they might be extended to include several quantification levels similar to how 

the biological cell counts are implemented. 

In conclusion, the present in silico prognosis method allows to account for a variety of clinical 

measurements to study complex diseases using the concept of big data. 
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Abstract 

In silico trials of treatments in a virtual physiological human (VPH) would revolutionize 

research in the biomedical field. Hallmarks of bone disease and treatments can already be 

simulated in pre-clinical models and in ex vivo data of humans using microstructural bone 

adaptation simulations. The increasing availability of in vivo high resolution peripheral 

quantitative computed tomography (HR-pQCT) images provides novel opportunities to validate 

and ultimately utilize microstructural bone adaptation simulations to improve our 

understanding of bone diseases and move towards in silico VPH decision support systems for 

clinicians.  
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In the present study, we investigated if microstructural bone adaptation simulations of in vivo 

human HR-pQCT images yielded accurate results. Since high-resolution ground truth images 

cannot be obtained in vivo, we applied an ex vivo approach to study resolution dependence and 

the effect of upscaling on morphometric accuracy. To address simulation initialisation issues, 

we developed an input regularisation approach to reduce initialisation shocks observed in 

microstructural bone adaptation simulations and evaluated upscaling as a way to improve the 

accuracy of model inputs. Finally, we compared our ex vivo results to simulations run on in vivo 

images to investigate whether in vivo image artefacts further affect simulation outcomes.  

Keywords:  

Upscaling; HR-pQCT; Simulation; Mechanoregulation; Microstructure; Bone Adaptation 
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3.3.1 Introduction 

Simulations are considered the third pillar of modern science next to models and experiments. 

In the biomedical field the creation of a virtual physiological human (VPH) is seen as one of 

the most important goals (Fenner et al. 2008). The vision of the VPH is to provide researchers 

with a model that allows rapid hypothesis testing via in silico trials and provides doctors with 

a virtual patient as a decision-support system for their daily work (Viceconti and Hunter 

2016). The role of bone, both structurally and physiologically, indicates that a validated model 

for microstructural bone adaptation and (re)modelling is a significant component to any VPH 

model. Previous studies have shown that various aspects of bone diseases and their treatments 

can be simulated in pre-clinical models (Müller 2005; Ruimerman et al. 2005; Schulte et al. 

2013; Levchuk et al. 2014). Importantly, the advection based model by Adachi et al. (2001) 

can produce results comparable to population data when ex vivo images are used as an input 

(Badilatti et al. 2016). However, the translation of microstructural simulations to clinical 

image data has largely been constrained by the availability of high quality images and 

validation data. 

With the introduction and increased use of HR-pQCT, large amounts of clinically relevant 

data have been gathered which provide the basis to validate and parameterise in silico models 

of bone (Boutroy et al. 2005, 2008; Sornay-Rendu et al. 2007, 2017; Kirmani et al. 2009; 

Nicks et al. 2012; Nishiyama et al. 2013; Nishiyama and Shane 2013; Yu et al. 2014; Zhu et 

al. 2014). However, combining current microstructural bone adaptation simulations with HR-

pQCT is non-trivial. Existing simulations either utilize synthetic images (Ruimerman et al. 

2005) or high-resolution micro-CT images which cannot be obtained clinically (Müller 2005; 

Schulte et al. 2013; Levchuk et al. 2014; Badilatti et al. 2016). Furthermore, HR-pQCT images 

tend to have more noise (Rajapakse et al. 2009) and other potential imaging artefacts, such as 

those due to movement (Pialat et al. 2012).  

The reduction in resolution is a known obstacle for the translation of computational techniques 

from the lab into the clinical setting (Tjong et al. 2012; Manske et al. 2015; Christen et al. 

2016). Alsayednoor et al. (2018), for example, showed that applying a single threshold to HR-

pQCT images cannot yield both correct morphometric indices and mechanical properties on 

HR-pQCT images. However, in silico microstructural bone adaptations rely on having correct 

digital representations of morphometrics and mechanics as the simulation couples these two 
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properties. To study the effects of image resolution in detail, convergence studies have been 

performed which showed a clear dependence on image resolution for various mechanical and 

morphometric parameters (Müller et al. 1996; Christen et al. 2016). In order to counteract this 

algorithmic dependence on image resolution, upscaling low-resolution images to desktop 

micro-CT images on which the algorithms have been validated can help to produce accurate 

results (Rajapakse et al. 2009; Schulte et al. 2019). For example, upscaling of magnetic 

resonance imaging (MRI) data has been shown to produce micro-FE results in good 

agreement with those from micro-CT images of a higher resolution (Rajapakse et al. 2009). 

While it is clear that upscaling does not yield the same effects as scanning at a higher 

resolution (Cooper et al. 2007), as upscaling cannot compensate for information missing in 

the image, techniques, like mesh refinement, are widely used in numerical applications to 

improve simulation accuracy by providing a better digital representation of the information 

contained in the images.  

In previous studies using the algorithm by Adachi et al. (2001), initial iterations, which 

showed aberrant results, were regarded as part of the model initialization and excluded from 

analysis (Schulte et al. 2013; Badilatti et al. 2016). However, the exclusion of the initial 

iterations would lead to an inherent divergence between the clinical in vivo and in silico 

baseline models, which thus precludes direct comparison of simulation outcomes against 

clinically observed changes in bone microstructure, and hinders validation of the in silico 

model. The aberrant results of the initial iterations are caused by an initialisation shock, which 

is common when modelling coupled systems, like that of advection and finite-element 

methods by Adachi et al. (2001), and are related to mismatches between experimental input 

data and simulation parameters (Balmaseda and Anderson 2009; Mulholland et al. 2015). In 

the context of microstructural bone adaptation simulations, the results of these mismatches 

can be observed in the large sudden changes in parameters, such as the total bone volume or 

the overall structural stiffness. Reducing this shock behaviour allows for the inclusion of all 

simulation iterations, such that identical baseline models can be used for the clinical and in 

silico models and results can be directly compared. 

The goal of the present study was to determine if microstructural simulations of in vivo human 

HR-pQCT images based on the approach by Adachi et al. (2001) yield accurate results, such 

that they could be used as part of a VPH. Since high-resolution ground truth micro-CT images 

cannot be obtained in vivo, we applied an ex vivo approach to study the resolution dependence 
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and the effects of upscaling on morphometric accuracy over the course of a microstructural 

bone adaptation simulation. However, we first had to address two initialisation issues: 

initialisation shocks and disagreement of mechanics and morphometrics in model inputs at 

HR-pQCT resolution. Thus, we developed an input regularisation approach to reduce 

initialisation shocks observed in microstructural bone adaptation simulations and studied 

upscaling as a method to improve the accuracy of model inputs with respect to both mechanics 

and morphometry. Finally, we compared our in silico results to simulations run on in vivo 

images to investigate whether additional in vivo image artefacts affect simulation outcomes. 

3.3.2 Materials 

3.3.2.1 High resolution ex vivo micro-CT images 

Five distal radii were obtained from female cadavers at the Amsterdam Medical Center as part 

the bone volume fraction (BV/TV) of the samples varied from 7 to 20% where BV/TV was 

inversely related with age. The medical history of the cadaveric specimens was unknown. High 

resolution CT images were obtained at an isotropic voxel-size of 25 µm with a vivaCT 80 (70 

kV, 114 µA, 300 ms integration time), a micro-CT device by Scanco Medical AG 

(Switzerland).  Images were Gauss-filtered (sigma = 1.2, support = 1) and the trabecular region 

was hand-contoured by a trained operator for each scan using the software of the scanner 

manufacturer. 

3.3.2.2 In vivo HR-pQCT images 

Five patients (four female, one male) were recruited at Innsbruck Medical University as part of 

a radius fracture study. Patients provided informed consent and participated in a study approved 

by the ethics committee of the Medical University of Innsbruck. The age of the patients ranged 

from 26 to 80 years and their BV/TV from 21 to 7%. In this study, images of the unfractured, 

contralateral radius were used. Scans were performed with an isotropic voxel-size of 61 µm 

using an XtremeCT II (68 kV, 1470 µA, 43 ms integration time), a clinical HR-pQCT device 

by Scanco Medical AG (Switzerland). Images were Gauss-filtered (sigma = 1.2, support = 1) 

and the trabecular region was hand-contoured by a trained operator using the software of the 

scanner manufacturer. 
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3.3.2.3 Generation of low-resolution images 

The high-resolution ex vivo micro-CT grey-scale images were downscaled to resolutions of 

40, 61, and 82 µm. These three resolutions will be referred to as low-resolutions in this paper. 

Currently, 61 and 82 µm are the highest resolutions available for clinical CT scanners 

(XtremeCT I and II, Scanco Medical AG, Switzerland), these resolutions will be referred to 

as the clinically relevant resolutions. Resizing was performed using the scikit-image (Van Der 

Walt et al. 2014) rescale function in Python (Python Software Foundation 2020) with third-

order interpolation and anti-aliasing enabled. The binary hand-contoured masks for the high-

resolution images were converted to a floating-point data-type and resized like the micro-CT 

images. Finally, a threshold of 50% of the maximum image value was applied to obtain binary 

masks for the low-resolution images. 

3.3.2.4 Generation of upscaled images 

Upscaled images were created from the low-resolution images by applying the scikit-image 

resize Python function, again with third-order interpolation and anti-aliasing enabled, to a 

resolution of 25 µm. When creating the upscaled images, the conversion of image dimensions 

between the different resolutions was not unique (i.e. due to rounding of the integer image 

dimensions after scaling with a floating point number, differences in size of one voxel could 

occur). To ensure that the upscaled images have the exact same dimensions as the original 

images, the scikit image resize function was used. The resize function is identical to the rescale 

function with the exception that it resizes images to a target image dimension instead of resizing 

using a target scaling factor. For the upscaled images, the same hand-contoured masks for the 

trabecular region were used as for the high-resolution ex vivo micro-CT grey-scale images to 

avoid influences of differences in masks on our results. Herein, the images upscaled from 40, 

61, and 82 µm to 25 µm are referred to as u40 µm, u61 µm, and u82 µm, respectively. 

The 61 µm clinical in vivo HR-pQCT images were re-sampled using the scikit-image rescale 

function, as was used for the ex vivo micro-CT images, to generate datasets at resolutions of 25, 

40, and 82 µm. The masks of the HR-pQCT images were similarly rescaled. 
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3.3.3 Methods 

3.3.3.1 Remodelling simulations 

3.3.3.1.1 Micro-FE analysis 

For the micro-FE analysis, we used the parallel octree solver parOsol (Flaig 2012) on the 

supercomputer Piz Daint at the Swiss National Supercomputing Centre (CSCS, Lugano, 

Switzerland). Output parameters of strain energy density (SED) and the apparent compressive 

stiffness along the longitudinal axis were evaluated. Boundary conditions were determined 

using a load estimation algorithm developed by Christen et al. (2013). This algorithm tries to 

linearly combine three different load cases to achieve the most homogeneous SED distribution 

possible across the given bone structure. The target mean SED value was 0.02 MPa, as has been 

used previously (Christen et al. 2016). Furthermore, soft pads were added to the distal and 

proximal ends of the images with a pad-

MPa, which has previously been found to improve the load estimation (Christen et al. 2013). 

For all experiments, we computed the load-estimation using the high-resolution files and 

applied the same loading conditions to the low-resolution and upscaled files. This method of 

load-estimation removes the voxel-size dependency of the algorithm as a confounding factor. 

The micro-FE simulations for images with resolutions higher than 50 µm were run on a 50 µm 

hexahedral mesh since the mechanical signalling implemented in the microstructural bone 

adaptation simulation is roughly equivalent to a blurring with a sigma of 100 µm. Therefore, 

the additional resolution in the SED would not yield differing results. The use of the 50 µm 

hexahedral mesh also reduced the computational resources required to run simulations (i.e. for 

the 25 µm images, this reduction was an order of magnitude). 

3.3.3.1.2 Remodelling algorithm 

The strain-adaptive in silico microstructural bone adaptation simulation by Adachi et al. (2001) 

was re-implemented in Python using NumPy (Van Der Walt et al. 2011) and pybind11 (Jakob 

et al. 2017). In short, this algorithm is iterative; for each step, SED (a result of the micro-FE 

simulation) is translated, via a mechanostat, into the velocity field of an adapted advection 

equation. Within this advection equation, the mass transfer is constrained within a proximity of 

the bone surfaces, which results in changes to the bone microstructure. Due to the 

implementation, all changes are limited to the trabecular region of the simulated structure. 
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3.3.3.1.3 Binary model generation from micro-CT data 

The high-resolution images were segmented using a threshold of 450 mg HA/cm³, which has 

also been chosen in previous studies on this dataset (Müller et al. 1996; Christen et al. 2016), 

and the bone volume over total volume (BV/TV) for the trabecular regions was computed for 

reference. Finally, voxels identified as bone were set to 750 mg HA / cm³ and background 

voxels were set to 0 mg HA / cm³. 

3.3.3.1.4 Regularized model generation 

To ensure that the remodelling simulation operates only on the bone surface, the input to the 

algorithm is required to be binary except for surface voxels that can be represented with 

intermediate values. To compare the effects of using a conventional binary input or using an 

input allowing partially filled voxels at the surface layer, we implemented a regularization 

method that preserves information of the grey-scale image at the surface of bone structures 

(Figure 3.3.1, left). First, a regularization threshold was applied to each high-resolution grey-

scale image. Then, surface voxels (empty voxels in direct face-to-face contact with full voxels) 

of the intermediate binary structure were identified using a Von Neumann neighbourhood. For 

each surface voxel, grey-scale values from the original grey scale image were converted to a 

value in the range of zero to one relative to the regularization threshold. The regularization 

threshold was chosen such that the grey-scale BV/TV of the resulting structure was identical to 

the one computed for the respective conventional binary structure. Finally, the entire structure 

was multiplied by the same density value as the conventional binary input (750 mg HA / cm³). 

3.3.3.1.5 Parameters for microstructural bone adaptation simulation 

Simulation parameters were chosen such that both formation and resorption were observed in 

the simulations and were used for all samples and resolutions. For this reason, a narrow lazy 

zone (0.0196 MPa to 0.0204 MPa) was chosen. The maximum velocity of the mechanostat was 

set to an arbitrary value of 12 µm/month. The slopes of the mechanostat were set to 8000 

µm/year/MPa. The chosen value for slope resulted in generally high velocities and greater 

changes per time unit, due to the very narrow linear regime of the mechanostat. The choice of 

simulation parameters allowed for large differences between the different resolutions.  

To ensure that the choice of time step between consecutive micro-FE calls did not alter the 

results, a time step of approximately 1.9 months was chosen. The simulated time period was set 

to 5 years, resulting in a shorter final iteration step. 
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Fig. 3.3.1 Experiment A (Effect of regularized input models oniInitialisation shock) evaluated 
the reduction of initialisation shock behaviour in bone volume fraction and compressive 
stiffness due to a novel input regularization approach compared to the conventional input 
approach. Left: Illustration of the conventional threshold approach used to convert a CT image 
into a valid input for the load adaptation simulation. Right: Regularization approach.  
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3.3.3.2 Study design 

The validity of using in vivo HR-pQCT data as an input for advection based microstructural 

bone adaptation simulations was investigated using four virtual experiments. Experiment A 

addresses the issue of initialisation shocks and compares the current approach of generating 

simulation input models with a novel regularization method. The regularized approach retains 

grey-scale information, allowing the simulation to initialise with a structure closer to the 

original one. The goal was to compare the behaviour of the two approaches during the initial 

iteration steps to identify the approach that exhibits the least amount of initialization shock. 

Experiment B compared the mechanical and morphological properties of regularized input 

models generated from high-resolution images, which had been downscaled or down- and then 

upscaled, that were bone volume fraction matched to the original high-resolution image. The 

aim of this experiment was to quantify differences between regularized input models with 

respect to mechanics and morphometrics that may confound simulations. In experiment C, 

microstructural bone adaptation simulations were run on models of all three ex vivo image sets 

(high-resolution, downscaled, and down- then upscaled) to assess if observed differences in the 

simulations were due to a lack of fidelity in the input data or the numerical grid. Finally, in 

experiment D, the in vivo images were rescaled to the same resolutions used in experiment C 

and the convergence was quantified with respect to resolution. The results were compared to 

those from experiment C to assess what effect differences in image quality and factors other 

than resolution have on the outcome of the simulation. 

3.3.3.2.1 Experiment A: Effect of regularized input models on initialisation shock 

Two simulation input model generation approaches were compared (Figure 3.3.1), the current 

state of the art through binary representation and a regularized model with partially filled voxels 

at the surface. Both models were generated from the high resolution ex vivo micro-CT image 

data set. The partially filled voxels approximate a bone surface with sub-voxel precision. 

Microstructural bone adaptation simulations were run and the discontinuity in BV/TV and 

compressive stiffness for the initial simulation steps were quantified for both methods. 

3.3.3.2.2 Experiment B: Effect of upscaling on mechanical and morphometric accuracy 

For experiments B, regularized input models were produced for all three micro-CT image sets: 

high-resolution, low-resolution, and upscaled low-resolution images. In the following, these are 

called reference, low-resolution, and upscaled regularized input models. For all images, the 
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reference BV/TV was always the one obtained from the respective binary high-resolution 

image. 

 

 

Fig. 3.3.2 Experiment B (Effect of upscaling on mechanical and morphometric accuracy) 
evaluated the mechanical agreement between the different resolutions for matched BV/TV. For 
each micro-CT image, high-, low-resolution, and upscaled images were created (left column). 
Low-resolution: 40 µm, 61 µm, and 82 µm and upscaled images: Same downscaled resolutions 
as the low-resolution image but upscaled back to 25 µm. Micro-finite-element (micro-FE) 
models were generated using the regularization model generation approach of experiment A 
(Figure 3.3.1) and matching bone volume fraction (BV/TV) for each image to the reference (25 
µm). A micro-FE analysis was run and strain energy density (SED) (shown in the jet colour-
map) and static parameters were computed for each model. SED distributions between low and 
upscaled resolution images were compared using the Kolmogorov-Smirnov statistic to see 
which one more closely matches the reference high-resolution regularized input model 
mechanically. Mean static parameters were compared to see which one more closely matches 
the reference model morphologically. 

 

To quantify the agreement in mechanical properties between reference, low-resolution, and 

upscaled regularized input models of the same bone structure, micro-FE analyses were 

performed on the data set at each of these resolutions, respectively (Figure 3.3.2). SED 

distributions, mean SED, mean static parameters (BV/TV, trabecular number (Tb.N), trabecular 

thickness (Tb.Th), trabecular spacing (Tb.Sp), and structural model index (SMI)), and standard 

deviations for all mean values were computed for comparison between the three regularized 
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input model types. Additionally, the Kolmogorov-Smirnov statistic was computed between the 

SED of each sample of the low-resolution and upscaled regularized input models and the 

corresponding reference regularized input model to quantify mechanical agreement. Finally, 

the adequacy of the chosen threshold was assessed through comparison of the SED distribution 

from FE analysis of the low-resolution regularized input models for a range of thresholds (575 

- 775 mg HA/cm³). The magnitudes of the peak SED were compared to the reference SED 

distribution. 

 

 

Fig. 3.3.3 Overview of experiments C (Effect of upscaling on morphometric accuracy 
throughout a microstructural bone adaptation simulation) and D (Effect of in vivo image 
artefacts on convergence of upscaled HR-pQCT simulation). Top: Regularized input models 
from experiment B were taken and microstructural bone adaptation simulations were run for all 
input models. Bottom: A separate HR-pQCT dataset was also converted to regularized input 
models and simulations were run for all input models. For experiment C, static parameters and 
dynamic parameters were computed. The goal of experiment C was to compare how accurate 
low-resolution versus upscaled resolution simulations were relative to the reference 
simulations. For experiment D, static parameters were computed as well. The goal of 
experiment D was to compare the voxel size dependency of down-scaled micro-CT and rescaled 
HR-pQCT images to determine if additional artefacts introduced by the HR-pQCT images had 
a strong influence on the outcome of the bone-adaptation simulation. 
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3.3.3.2.3 Experiment C: Effect of upscaling on morphometric accuracy throughout a 

microstructural bone adaptation simulation 

Microstructural bone adaptation simulations were run on the input models generated for 

experiment B. The simulations run on the reference regularized input models were considered 

the best approximations of the in vivo remodelling process and were used as reference to 

quantify errors. These simulations are referred to as the reference simulations (Figure 3.3.3). 

Static parameters (BV/TV, Tb.N, Tb.Th, Tb.Sp, and SMI) and formed and resorbed volume 

over time were computed. 

3.3.3.2.4 Experiment D: Effect of in vivo image artefacts on convergence of upscaled HR-

pQCT simulation 

Microstructural bone adaptation simulations were run on regularized input models of the in vivo 

HR-pQCT images and their rescaled version (Figure 3.3.3) using the same simulation 

parameters and calculating the same static parameters as in experiment C. The reference BV/TV 

for the regularized input model generation for all resolutions was based on the respective 

original HR-pQCT resolution binary structure. 

Evaluation and statistics 

All simulations and evaluations were performed within the trabecular mask. SED was evaluated 

for non-empty voxels. SED distributions were represented using the SciPy Gaussian kernel 

density approximation (Virtanen et al. 2019). NumPy (Van Der Walt et al. 2011) was used to 

compute the Kolmogorov-Smirnov (KS) statistic, mean and standard deviations, as well as 

BV/TV, which was computed through integration of the model density within the trabecular 

mask. All other static parameters (Tb.N, Tb.Th, Tb.Sp, SMI) were computed using the scanner 

essing language (IPL) (Hildebrand et al. 1999). Before calling the 

IPL functions, models were up-scaled to 25 µm to remove the voxel-size dependency of IPL 

functions as a confounding factor. Finally, formed and resorbed volume over time was 

computed by integration of positive and negative density changes using NumPy.  

Comparisons for experiment A were done using a paired Student t-test. For experiments B and 

C, to determine significance, two-way analysis of variance (two-way ANOVA) was performed 

for each measured parameter as an omnibus test with the two categorical groups: resolution and 

upscaling. If heteroscedasticity was detected using a Levene test, heteroscedasticity consistent 
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covariance matrices of type HC3 were used. Post-hoc group comparisons were done using 

paired Student t-tests and p-values were corrected using the Holm-Bonferroni correction for 

multiple comparisons. For experiment D, paired Student t-tests were performed and p-values 

were corrected using the Holm-Bonferroni correction for multiple comparisons. The level of 

significance was set to 0.05. For the Student t-tests and Levene tests, scipy 1.3.1 was used. The 

ANOVA was done using statsmodels (Seabold and Perktold 2010) 0.10.2.  

3.3.4 Results 

3.3.4.1 Experiment A: Effect of regularized input models on initialisation shock 

The usage of regularized input models removed initialization shocks found in simulations run 

on conventional input models. For the conventional binary input models, the change in apparent 

compressive stiffness after the first iteration was a factor of 5.9±0.8 larger than the maximum 

of all other iteration steps (Figure 3.3.4). For BV/TV, a factor of 2.3±1.6 increase was observed 

in the first iteration (Figure 3.3.4). Visually, we observe that for some samples a clear shock in 

BV/TV was present. In contrast, for the first iteration of the regularized input model approach, 

the change in apparent compressive stiffness is indistinguishable from the rest of the simulation 

with a computed factor of 0.5±0.5 increase, which is significantly lower than for the 

conventional method (p<0.001). For BV/TV, we obtained a factor of 2.1±0.6 increase (Figure 

3.3.4) which is not significantly different from the threshold method. Since the regularized input 

model approach removed the initialization shock in apparent stiffness across all samples, we 

performed all other experiments using this approach. 

The average regularization threshold for the high-resolution images was 563.6±6.6 mg HA / 

cm³. For the low-resolution images, the average regularization thresholds were 601.8±10.0, 

605.2±14.7, and 590.6±18.9 mg HA / cm³ for 40, 61, and 82 µm, respectively. 

3.3.4.2 Experiment B: Effect of upscaling on mechanical and morphometric 

accuracy 

For all tested thresholds, the SED distributions for the low-resolution regularized input models 

did not visually match the SED distribution of the reference regularized input models (Figure 

3.3.5a). However, for BV/TV matched thresholds, the peaks of the SED distributions aligned 
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well. Qualitatively, the difference in SED distribution from the reference model increased with 

voxel-size (Figure 3.3.5b and 3.3.5c). The SED distributions for upscaled regularized input 

models were almost an order of magnitude closer to the reference than for the low-resolution 

regularized input models (p<0.05 for all; Table 3.3.1). Specifically, deviations in mean SED for 

upscaled resolutions were less than 5% while deviations were up to 42% for low-resolutions 

and the KS statistic was below 0.03 for all upscaled resolutions compared to up to 0.22 for low-

resolutions (Table 3.3.1). 

 

 

Fig. 3.3.4 Initialisation shocks in bone volume fraction (BV/TV) and relative apparent stiffness 
are reduced for regularized input models in comparison to conventional input models, shown 
for a representative sample of experiment A (Effect of regularized input models on initialisation 
shock). The initialization shock visible in BV/TV and stiffness (left) for the conventional model 
generation was not present when using the regularization approach (right). 
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Fig. 3.3.5 Visual agreement in strain energy density (SED) distributions are improved for 
upscaled bone volume fraction (BV/TV) matched regularized input models for a representative 
sample of experiment B (Effect of upscaling on mechanical and morphometric accuracy). (a) 
The strain energy density (SED) distributions for the reference resolution (25 µm) (blue) was 
flatted compared to the down-scaled 61 µm model (green), which used a threshold chosen to 
match the bone volume fraction (BV/TV) of the reference resolution model. Thresholds 
corresponding to BV/TV values between 7 and 23% are shown in different shades of grey with 
a worse agreement with the reference SED distribution. (b)Comparing across all resolutions, 
the low-resolution models did not capture the SED distribution of the reference model. (c) 
However, upscaled resolutions clearly captured the distribution of the reference model across 
all resolutions, with deviations being an order of magnitude smaller compared to models 
generated without upscaling. 
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Resolution, applied upscaling, and the interaction between resolution and upscaling had a 

significant effect on all measured static morphometric parameters, except for the interaction of 

the effects for SMI and the effect of upscaling on Tb.Th (Table 3.3.1). Without upscaling, 

significant differences in the mechanical and static parameters (except SMI) were observed for 

all lower resolutions (40, 61, and 82 µm) (Table 3.3.1). No differences in BV/TV were 

observed, as BV/TV was matched. With upscaling, deviations in the static parameters were 

significantly lower for each of the lower resolutions (u40, u61, and u82 µm, respectively) (Table 

3.3.1). 

The average regularization threshold for the upscaled images were 561.7±6.8, 530.9±9.6, and 

496.6±13.7 mg HA / cm³ for the three upscaled resolutions (u40, u61, and u82 µm), 

respectively. 

3.3.4.3 Experiment C: Effect of upscaling on morphometric accuracy 

throughout a microstructural bone adaptation simulation 

For the reference simulations, BV/TV was initially reduced in the range of 1.8% to 14.8%, 

followed by an increase in BV/TV in the range of 3.8% to 38.8% (Figure S3.3.1). Tb.N 

decreased in the range of 5.2% to 22.8%. Trabecular thickness increased in the range of 29.1% 

to 42.4%, except for one sample for which it decreased by 8.8%. SMI was dependent on the 

specific sample, with differences in the range of -15.0% to 18.5%; two samples experienced an 

increase and three samples a decrease in SMI.  

Resolution, upscaling, and their interaction had a significant effect (p<0.001) on all measured 

static and dynamic parameters for the maximum deviations observed during the simulation. 

3.3.4.3.1 Low-resolution simulations 

Differences in bone-structure between the reference simulation and the low-resolution 

simulation were visible and increased over the course of the simulation (Figure 3.3.6). 

Deviations in static parameters significantly increased over the course of the simulation 

compared to the initial models (Table 3.3.1, Figure 3.3.7). Compared to the reference 

simulations, BV/TV and Tb.N were underestimated for all low-resolution simulations (p<0.01), 

SMI and Tb.Sp were overestimated (p<0.05), and Tb.Th did not follow a clear trend (Figure 

3.3.7). 
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Table 3.3.1 Comparison of microstructural bone adaptation simulation outcomes for 
regularized model inputs of micro-CT images that were downscaled from low-resolution and 
then upscaled back to high-resolution. Parameters were compared against the high-resolution 
micro-CT image reference simulation and relative deviations in percent are shown. 
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Fig. 3.3.6 Visual difference after 0, 33, 66, and 100% of the simulated time are reduced for 
upscaled regularized input models for a representative sample of experiment C (Effect of 
upscaling on morphometric accuracy zhroughout a microstructural bone adaptation simulation). 
Top: comparison of reference to low-resolution simulation. Bottom: comparison of reference 
to upscaled simulation. For the upscaled simulation, very small structures were still lost, due to 
very thin trabeculae that cannot be captured in a 61 µm image, but the major part of the bone 
structure remodelled identical to the reference simulation for upscaled images. 

 

Bone formation and resorption rates were significantly larger for low-resolution simulations 

compared to the reference simulations (Table 3.3.1). Visually, the formation rate for the low-

resolution simulations peaked at a later time point and had lower peak values compared to the 

reference simulation (Figure 3.3.8). For the resorption rate, peak delay and widening was also 

observed for the low-resolution simulations (Figure 3.3.8). However, the magnitude of the 

resorption rate peaks increased with voxel-size and the initial resorption rate decayed slower 

compared to formation rates, for which the opposite was observed. 

3.3.4.3.2 Upscaled simulations 

Visually, differences in bone structure over the course of the simulation compared to the 

reference simulations were drastically reduced for the upscaled simulations (Figure 3.3.6). 

Accuracy in BV/TV was improved by an order of magnitude for the highest available clinical 
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resolution (s61 µm) compared to the low-resolution simulations. The accuracy of all other static 

 

 

Fig. 3.3.7 Deviations from the reference simulation in static parameters are reduced for 
upscaled regularized input models across all resolutions as found in experiment C (Effect of 
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upscaling on morphometric accuracy throughout a microstructural bone adaptation simulation). 
Deviations in static parameters from the reference simulation (25 µm) over the course of the 
simulation for low-resolution (left) and upscaled regularized input models (right) are shown. 
Computed static parameters are: Bone volume fraction (BV/TV), trabecular number (Tb.N), 
trabecular spacing (Tb.Sp), trabecular thickness (Tb.Th), and structure model index (SMI). 
BV/TV was matched for the initial model, resulting in perfect agreement between the 
resolutions. Generally, for the different samples, upscaling improves the agreement with the 
reference (25 µm) simulations. Deviations were more predictable after upscaling of the image. 

 

parameters was also significantly improved (Table 3.3.1, Figure 3.3.7). The maximum 

deviations in static parameters were not significantly greater than those of the input models for 

all upscaled resolutions. 

For the dynamic parameters, accuracy of bone formation and resorption per time unit was 

significantly increased for the upscaled images (Table 3.3.1). The formation and resorption 

rates peaked at the same time-point across all resolutions, within the temporal resolution of the 

simulation. The peaks of both rates were of similar magnitude across all resolutions. Visually, 

the overall shapes of the formation and resorption curves were similar across all resolutions for 

the duration of the simulation period, with no noticeable widening or shift of peaks (Figure 

3.3.8). 

3.3.4.4 Experiment D: Effect of in vivo image artefacts on convergence of 

upscaled HR-pQCT simulations 

After an initial drop in BV/TV in the range of 7.2% to 24.2%, the simulations on the in vivo 

HR-pQCT data upscaled to 25µm showed varying behaviour. Three samples showed an 

increase in BV/TV, one sample had a close to stable BV/TV over time, and one sample 

experienced a further reduction in BV/TV before BV/TV began increasing after half of the 

simulation time. Tb.N. decreased for all samples over time in the range of 12.0% to 42.9%, 

whereas Tb.Th. increased over time in the range of 13.8% to 65.1%. Tb.Sp also increased in 

the range of 13.6% to 78.0%. SMI decreased for all samples in the range of 7.8% to 21.8%. The 

spread of SMI values across all samples decreased over the course of the simulation by 47.8%. 

Comparing the convergence of the different static parameters with respect to resolution between 

the low-resolution simulations from experiment C and the simulations from experiment D, no 

significant differences could be found except for Tb.Th at 61 and 82 µm resolutions (p<0.001) 
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(Figure 3.3.9). Hence, the effects of noise and other additional imaging artefacts from in vivo 

HR-pQCT were smaller than the effects of model resolution, which dominated the convergence 

errors observed in the static parameters (Figure 3.3.9). 

 

 

Fig. 3.3.8 Deviations from the reference simulation in dynamic parameters are reduced for 
upscaled regularized input models across all resolutions as found in experiment C (Effect of 
Upscaling on Morphometric Accuracy Throughout a Microstructural Bone Adaptation 
Simulation). Dynamic parameter results of simulation run on low-resolution (left) and upscaled 
regularized input models (right) are shown. Bone formation and resorption over time (top), and 
deviations of these parameters from the reference simulation (25 µm) (bottom). Reference 
simulation results were aligned with the use of upscaled regularized input models with respect 
to the amount and time-point of formation and resorption events. Deviations were an order of 
magnitude smaller for the simulations run on upscaled regularized input models 

 

3.3.5 Discussion 

The objectives of this study were to investigate whether microstructural simulations of in vivo 

human HR-pQCT images yielded accurate results and were a viable tool as part of a VPH.  
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Fig. 3.3.9 Agreement in convergence between regularized input models from downscaled 
micro-CT and rescaled HR-pQCT as found in experiment D (Effect of in vivo image artefacts 
on convergence of upscaled HR-pQCT simulation). Convergence behaviour of low-resolution 
simulations from experiment C (Effect of Upscaling on Morphometric Accuracy Throughout a 
Microstructural Bone Adaptation Simulation) and from rescaled HR-pQCT image simulations 
(top left). Maximum mean deviations from the reference (25 µm) simulations and 
corresponding standard deviations are shown for all computed static parameters. Significant 
differences were observed for trabecular thickness (Tb.Th); the mean maximum deviations of 
all other parameters are not significantly different, indicating that voxel-size was the 
dominating factor on the simulation outcomes. 
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3.3.5.1 Experiment A: Effect of regularized input models on initialisation shock 

Since one of the ideas of the VPH is to provide doctors with a decision support system 

(Viceconti and Hunter 2016), the goal of every microstructural bone adaptation simulation must 

be to achieve parity between the simulated structure and the structure observed in vivo. We 

observed that when using conventional model inputs, the apparent compressive stiffness 

showed an initialization shock behaviour (Figure 3.3.4), with a change approximately six times 

larger than any other change in stiffness over the course of the simulation. While initialisation 

shocks have not been studied in the context of microstructural bone adaptation simulations, in 

the context of ocean climate models, Mulholland et al. (Mulholland et al. 2015) identified that 

the removal of certain model components can result in abrupt changes in the dynamics of the 

system. The analogy for microstructural bone adaptation simulations are the mismatch of 

applied boundary conditions and the true, but unknown, in vivo boundary conditions. This 

mismatch can also be interpreted as the removal of certain boundary condition forces at the 

beginning of the in silico adaptation. We tackled this challenge by employing the load 

estimation algorithm by Christen et al. (2013) which tries to estimate the in vivo applied loads 

more closely than the uniaxial compression boundary conditions typically used with HR-pQCT 

radius data (Burghardt et al. 2011). 

Another potential cause for initialisation shocks could be the abrupt change of surface geometry 

from in vivo microstructural bone adaptation to in silico bone adaptation simulations. Using a 

regularized input, we used information in the grey-scale image that is normally cut off, 

improving the input model generation to reduce the initialisation shock and the associated effect 

on the results. For all simulations, the developed regularized input model approach removed 

the shock behaviour in apparent compressive stiffness (Figure 3.3.4). While the magnitude of 

the change in BV/TV for the initial iteration step did not change with the new regularized input 

model, change in BV/TV looks smoother using this approach (Figure 3.3.4). Importantly, larger 

changes in BV/TV are expected for this type of simulation, as the structure adapts to the applied 

boundary conditions over the course of the simulation, yielding less changes as the structure 

reaches a shaped optimized to the applied boundary conditions. We conclude that the first 

iteration step does not have to be excluded if this new approach is used, which allows direct 

comparisons of morphometrics and mechanics to in vivo measurements. Furthermore, the fact 

that the initialisation shock was removed might indicate that the regularized input model is a 
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more accurate mechanical representation of the in vivo bone structure than the conventional 

binary version. 

3.3.5.2 Experiment B: Effect of upscaling on mechanical and morphometric 

accuracy 

Another obstacle to overcome when running microstructural bone adaptation simulations on in 

vivo HR-pQCT images was finding an accurate digital representation of a bone captured in vivo 

with HR-pQCT with respect to mechanics and morphometry (Alsayednoor et al. 2018), which 

is an obvious requirement of bone adaptation simulations. We found that with the use of 

upscaling, the choice of a single threshold provided regularized input models that agreed well 

for BV/TV, mechanical properties, and other tested morphometric parameters (i.e. Tb.N, Tb.Sp, 

and SMI). Furthermore, the linear trend of the thresholds for the different upscaled resolutions 

indicated that even in the absence of a high resolution ground truth, an appropriate threshold 

for accurate morphometrics and mechanics can be chosen. In contrast, our results for images 

that were not upscaled agreed with previous research (Alsayednoor et al. 2018), which showed 

no agreement between mechanics and morphometrics for various thresholds (Figure 3.3.5). 

This lack of agreement also holds true for thresholds optimized to match BV/TV (Figure 3.3.5), 

a method used in a previous study by Christen et al. to investigate the voxel size dependence of 

a micro-FE based load estimation algorithm (Christen et al. 2016). The culmination of these 

results indicates that upscaling may also be useful for other applications using images of HR-

pQCT resolution. 

3.3.5.3 Experiment C: Effect of upscaling on morphometric accuracy 

throughout a microstructural bone adaptation simulation  

To study the accuracy of microstructural bone adaptation simulations for images with HR-

pQCT resolutions, we used high-resolution micro-CT images as ground truth, as this method 

has been previously validated to simulate realistic bone structures over time (Badilatti et al. 

2016). The use of different low-resolution voxel-sizes (40, 61, and 82 µm) resulted in deviations 

in morphometric parameters of more than 30% in comparison to the reference simulations, 

however deviations as small as 15% may indicate disease, such as osteoporosis (Zhang et al. 

2010). Importantly, observed differences in parameters were not consistent, thus could not be 

corrected or recovered via calibration curves, as has been possible in previous studies (Müller 
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et al. 1996). In comparison to static morphologic parameters, dynamic parameters were more 

dependent on image resolution. This can be understood by realizing that static parameters are 

averaged over the bone structure, such that local differences in morphometrics, e.g. trabecular 

number, may be concealed. On the other hand, dynamic parameters are additive and sum all 

changes over the given volume. Thus, even minor differences in structure result in larger 

deviations in dynamic parameters. Importantly, standard deviations of dynamic parameters 

from a previous study (Schulte et al. 2013) were lower by up to an order of magnitude compared 

to the deviations we observed for the highest clinically available resolution (80% vs 38% for 

formation, 187% vs 18% for resorption) (Table 3.3.1). Therefore, the accuracy we observed 

would be insufficient given the magnitude of natural variation previously observed for these 

dynamic parameters. Overall, our results show that microstructural bone adaptation simulations 

run on native clinical scanner resolutions suffer from poor accuracy in the assessment of static 

morphometric and dynamic parameters; thus, limiting future use as a model for human bone 

adaptation. 

Running the same simulations on the upscaled images (u40, u61, and u82 µm) resulted in a 

drastic reduction in static parameter deviations to less than 10%. For BV/TV, these deviations 

were near 1% (Table 3.3.1), which is similar to the reproducibility limit of BV/TV for the 

clinical setting (0.84-1.14%) (MacNeil and Boyd 2008; Mueller et al. 2009). The improved 

accuracy in assessment of static parameters from the upscaled images is likely due to the need 

for higher resolution to correctly represent the reference model in terms of mechanics and 

morphology (Figure 3.3.6, Table 3.3.1). Any deviations of the regularized input model led to 

error accumulation throughout the simulation, such as missing thin individual trabecular 

structures that grow in thickness in the reference simulations (Figure 3.3.6). These errors 

ultimately led to larger morphometric deviations of the final structure (Figure 3.3.7). Only the 

dynamic parameters obtained from the upscaled simulations correctly captured the overall 

curve profile of the high-resolution simulations, matching the position, width, and height of 

peak formation and resorption rates. The large deviations of the downscaled resolutions indicate 

that there may have also been an intrinsic voxel-size dependence of the algorithm, independent 

of the initial model. The observed maximum deviations in dynamic parameters are also at least 

a factor of two smaller than the natural variation observed in inbred mice indicating sufficient 

accuracy of the method for human in vivo applications (Schulte et al. 2013). 
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3.5.5.4 Experiment D: Effect of in vivo image artefacts on convergence of 

upscaled HR-pQCT simulations 

Finally, we investigated the effects of clinically observed image artefacts, e.g. higher noise 

levels, by using in vivo HR-pQCT images. Comparing the simulations run on these images to 

those run on upscaled versions of the same images, no significant difference was observed in 

the convergence of the different static parameters (Figure 3.3.9), except for Tb.Th. Since the ex 

vivo and in vivo dataset are not from the same study participants, it is possible that this 

difference in Tb.Th is due to unknown physiological differences between the in vivo subject 

group and the ex vivo samples. Furthermore, with respect to the overall deviation observed in 

Tb.Th, the observed significant difference is still small, especially given the fact that Tb.Th is 

known to be difficult to capture with HR-pQCT resolution (MacNeil and Boyd 2007; Manske 

et al. 2015) and are therefore likely not clinically relevant.  

3.3.5.5 Limitations 

This study is, however, not without limitations. One limitation of this study was the lack of a 

high resolution ground truth scan of the patient radii used in Experiment D. However, the 

artefacts most commonly associated with in vivo HR-pQCT images, such as motion artefact, 

are difficult to recreate with cadaveric specimen, while micro-CT images cannot be obtained 

from patients due to the radiation dosage and imaging volume. Thus, we utilized both high-

resolution cadaveric images and clinically acquired in vivo HR-pQCT images of patients to 

assess these factors independently. 

An additional limitation of this study is the sample size (n=5 for both ex vivo and in vivo 

experiments). However, the small spread in deviations across subjects observed from the results 

of the upscaled simulations indicates that a larger sample size may not be warranted. 

Importantly, the inclusion of additional samples would have required an excess of 

computational resources due to the high resolution of the simulations. 

3.3.6 Conclusion 

In conclusion, we found model resolution to be the dominating image property which drove 

convergence errors in microstructural bone adaptation simulations. Importantly, upscaling 
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drastically reduced errors in mechanical analyses, static morphological parameters, and 

dynamic parameters, resulting in simulation outcomes that, even for clinically available 

resolutions, were similar to those from high-resolution images. Initialisation errors were 

avoided with the use of upscaling and the proposed regularization method, which generated 

model input that closely represented the true bone structure with respect to both mechanics and 

morphometry. With these results, we conclude that microstructural bone adaptation simulations 

can be run on in vivo HR-pQCT images and yield realistic results, given a validated set of 

parameters. Hence, these simulations provide a powerful tool to study disease related bone 

microstructure changes in patients, as part of the VPH vision. 
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Supplementary material 

 

Fig. S3.3.1 Visual deviations from the reference simulation in static parameters are reduced 
for upscaled regularized input models across all resolutions as found in experiment C (Effect 
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of upscaling on morphometric accuracy throughout a microstructural bone adaptation 
simulation). Static parameters over the course of the simulation for low-resolution (left) and 
upscaled regularized input models (right) are shown. Computed static parameters are: Bone 
volume fraction (BV/TV), trabecular number (Tb.N), trabecular spacing (Tb.Sp), trabecular 
thickness (Tb.Th), and structure model index (SMI). BV/TV was matched for the initial 
model, which is why initially we got perfect agreement between the resolutions. Overall we 
see for the different samples that upscaling improves the agreement with the reference (25 
µm) simulations  
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Abstract 

Radius fractures are among the most common fracture types; however, there is limited 

consensus on the standard of care. A better understanding of the fracture healing process could 

help to shape future treatment protocols and thus improve functional outcomes of patients. 

High-resolution peripheral quantitative computed tomography (HR-pQCT) allows monitoring 

and evaluation of the radius on the micro-structural level, which is crucial to our understanding 

of fracture healing. However, current radius fracture studies using HR-pQCT are limited by the 

lack of automated contouring routines, hence only including small number of patients due to 

the prohibitively time-consuming task of manually contouring HR-pQCT images.  

In the present study, a new method to automatically contour images of distal radius fractures 

based on 3D morphological geodesic active contours (3D-GAC) is presented. Contours of 60 

HR-pQCT images of fractured and conservatively treated radii spanning the healing process up 

to one year post-fracture are compared to the current gold standard, hand-drawn 2D contours, 

to assess the accuracy of the algorithm. Furthermore, robustness was established by applying 

the algorithm to HR-pQCT images of intact radii of 73 patients and comparing the resulting 

morphometric indices to the gold standard patient evaluation. Reproducibility was evaluated 

using repeat scans of intact radii of 19 patients. 
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The new 3D-GAC approach offers accurate contours within inter-operator variability for 

images of fractured distal radii. The generated contours for images of intact radii yielded 

morphometric indices within in vivo reproducibility limits compared to the current gold 

standard. Additionally, the 3D-GAC approach shows an improved robustness against failure 

when dealing with cortical interruptions, fracture fragments, etc. Using the 3D-GAC approach 

assures consistent results, while reducing the need for time-consuming semi-automatic 

contouring.  

Keywords:  

HR-pQCT; fracture; active contours; automatic radius 
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3.4.1 Introduction 

In our ageing population, bone fractures are increasingly common and have become a major 

socioeconomic burden (Johnell and Kanis, 2006). Specifically, fractures of the distal radius are 

among the most common fracture types and indicative of reduced bone quality (Court-Brown 

and Caesar, 2006). However, there is currently limited consensus on the optimal treatment 

protocol (Ng and McQueen, 2011). The conservative treatment of many radius fractures 

provides the opportunity to study the fracture healing process in humans. A better understanding 

of this process could help to shape future treatment protocols of distal radius fractures, 

ultimately resulting in better functional outcomes for patients.  

With the introduction of high-resolution peripheral quantitative computed tomography (HR-

pQCT), longitudinal changes in the microstructure of the radius can be monitored non-

invasively (Burghardt et al., 2010b; Burt et al., 2017; Ellouz et al., 2014; Nishiyama et al., 2015; 

Shanbhogue et al., 2017). Use of this technology has revealed critical changes in bone 

microstructure as a result of aging as well as pharmaceutical and surgical interventions. For 

example, an increase in cortical porosity, which is highly associated with bone frailty, was 

revealed in a longitudinal study of patients who had undergone kidney transplantation 

(Nishiyama et al., 2015). Preliminary evidence suggests that HR-pQCT might also be a viable 

technique to monitor bone fractures in vivo (De Jong et al., 2014). The microstructure in such 

studies is of fundamental importance, as techniques such as micro-finite-element analysis can 

be utilized to estimate the capability of a bone scanned with HR-pQCT to withstand mechanical 

load, a key parameter to assess successful fracture healing. 

Image-based clinical research, such as that using HR-pQCT, requires accurate, reproducible 

and scalable tools for image processing. For this reason, automatic contouring approaches have 

been developed to reduce the need for hand-drawn contours (Buie et al., 2007; Burghardt et al., 

2010a, 2007; Zebaze et al., 2013) in HR-pQCT studies. The method developed by Buie et al. 

(Buie et al., 2007), specifically, is integrated into the software of the manufacturer of HR-pQCT 

devices (XtremeCT I and II, Scanco Medical AG, Switzerland), making it the de-facto standard. 

All of these automatic contouring approaches segment the target bone (i.e. radius) by first 

finding the outer contour of the bone with the assumption that the largest cortical interruptions 

imaged with HR-pQCT are small (on the sub-mm length scale) and that the cortex forms a well-

defined, high-contrast edge in the HR-pQCT image. However, these assumptions break down 
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when processing images of fractured radii where the cortex is fragmented, and the presence of 

cartilaginous callus may blur the boundary between bone and soft tissue. Furthermore, radius 

fractures often occur in the ultra-distal region, contributing to the complexity of the image 

segmentation, as the cortex is both thinner and less mineralized. To our knowledge, approaches 

to generate automatic outer contours for HR-pQCT images of distal radius fractures have yet to 

be proposed. 

Active contouring (Kass et al., 1988) is a promising technique that has already been shown to 

successfully segment HR-pQCT images of healthy distal radii (Hafri et al., 2016b, 2016a). The 

advantage of the active contouring algorithm is the inherent ability to pass over larger gaps in 

the bone.  This is possible because the requirements for a contour to be both close to the object 

edges and smooth are balanced. Recently, three-dimensional morphological geodesic active 

contours (3D-GAC) have been implemented, allowing for efficient calculation of active 

contours on 3D images (Caselles et al., 1997; Marquez-Neila et al., 2014). Hence, 3D-GAC 

appears to be a promising approach to create outer contours of HR-pQCT images of distal radius 

fractures.  

The goal of present study was to investigate the use of fully automatic 3D-GAC to generate 

outer contours on HR-pQCT images of both intact and fractured radii. We validated the 

accuracy of these contours against hand-drawn contours using HR-pQCT images acquired 

throughout the first year of the healing process from 10 patients with fractured distal radii. We 

further assessed the robustness of the algorithm by comparing computed morphometric indices 

from intact distal radii HR-pQCT images of 73 subjects using contours generated from (i) the 

3D-GAC and (ii) the scanner manufacturer default approach. Lastly, the reproducibility of the 

3D-GAC based algorithm was assessed based on contours of 19 subjects imaged six times using 

HR-pQCT. 

3.4.2 Materials and Methods 

3.4.2.1 Data 

HR-pQCT images (XtremeCT II, 60.7 µm voxels, 68 kV, 1470 µA, 43 ms integration time) 

were obtained from the database of a previous fracture study conducted at Innsbruck Medical 

University. Patients provided informed consent and participated in a study approved by the 
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ethics committee of the Medical University of Innsbruck (UN 0374344/4.31). For each patient, 

six scans of the fractured (up to 504 slices per scan distributed over three stacks) and 

contralateral (up to 168 slices per scan) radius were taken over the course of one year (1, 3, 5, 

13, 26, and 52 weeks post-fracture). 

3.4.2.1.1 Fractured radii 

Images of radius fractures for 10 out of the 75 patients that completed the study were selected 

from the database based on the highest available visual grading scores (VGS) (Pialat et al., 

2012) and well aligned stacks resulting in 60 HR-pQCT fractured radius images. For each 

image, the most distal slice before the appearance of the lunate fossa was identified, and all 

evaluations on these images were performed on slices proximal to that slice. 

3.4.2.1.2 Intact radii 

Seventy-three patients were selected which had at least one HR-pQCT image of the 

contralateral, intact radius with a VGS of three or better resulting in 438 images. Of these 73 

patients, 19 had a VGS of three or better across all time points and were used in the 

reproducibility study. 

3.4.2.2 Image pre-processing 

HR-pQCT images of each patient were registered using rigid image registration (Thévenaz et 

al., 1998) to allow direct comparison of generated contours across all time-points per patient. 

3.4.2.3 Contours: Current gold standards 

For ten randomly selected slices per fractured radius HR-pQCT image, hand-drawn 2D 

contours were generated by three researchers experienced in the processing of medical images 

(DCT, PRA, CJC), respectively, using the software of the scanner manufacturer. For this 

p

computer mouse, the contour is drawn onto the image. The software provides zooming 

functionality and local edge detection to assist the operator in defining the outer contour. These 

hand-drawn 2D contours were used as the gold standard to validate the results of the 3D-GAC 

algorithm for fractured radii and to quantify the inherent inter-observer variability in hand-

drawn contours of fractured radii. 
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For intact radii, the default manufacturer pipeline based on a 3D algorithm by Buie et al. (Buie 

et al., 2007), written in the Image Processing Language (IPL) of the scanner manufacturer 

(Scanco Medical AG, Switzerland), was used as the gold standard. All contours generated using 

2020), a hierarchical data format, for further processing using Python (Python Software 

Foundation, 2020). 

3.4.2.4 Novel contouring algorithm 

The proposed algorithm uses 3D morphological geodesic active contours (3D-GAC) (Caselles 

et al., 1997) implemented in the Python library Scikit-Image (Van Der Walt et al., 2014) using 

morphological operators (Marquez-Neila et al., 2014). The guiding principle for geodesic active 

contours is to minimize an energy term consisting of both internal and image energy. The 

internal energy penalizes non-smooth contours, while the image energy penalizes contours 

away from the voxels of interest. The image energy landscape, in this approach, is generated 

using an inverse Gaussian gradient, where the Gaussian blur removes local minima and the 

gradient is an operation to detect object edges.  

The proposed contouring algorithm can be separated into four distinct steps. First, the image is 

segmented into sections that only contain one bone (here, radius or ulna). In a second step, an 

initial guess of the radius contour is generated. Third, the image is pre-processed and converted 

to an energy landscape. Finally, the 3D-GAC algorithm is applied in an iterative loop to isolate 

the surface of the radius. 

3.4.2.4.1 Segment radius and ulna 

3D-GAC are drawn to all intensity-based edges in an image and do not differentiate between 

objects of interest and other objects. Therefore, it is necessary to remove extraneous objects. 

Here, the ulna must be removed, as it is in close proximity to the radius. The watershed 

algorithm implemented in Scikit-Image (Van Der Walt et al., 2014) is used to separate these 

two bones, based on seed voxels of the different objects. 

Seed voxels of radius and ulna 

Since the radius and ulna are typically only a few voxels apart in ultra-distal scans, segmenting 

using a global threshold has the risk of identifying both bones as a single object. Therefore, the 

radius and ulna are identified in a proximal slice (here, 35-39 slices from proximal to avoid end 
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effects from registration) using a threshold of 250 mg HA / cm³ and component labelling 

implemented in the Python library NumPy (Van Der Walt et al., 2011). The largest component 

identified is the radius and the second largest one the ulna. Finally, a seeds image is generated 

by copying the labels of the radius and ulna in the proximal slice into the entire proximal half 

of a zeroed image. The distal part was left empty to avoid incorrect assignments of seeds in the 

distal region, where radius and ulna are not well separated. 

Watershed algorithm 

The energy landscape for the watershed algorithm is generated from the HR-pQCT image by 

setting all negative values to zero and inverting the sign of all remaining elements. The 

algorithm is applied to the entire image such that every voxel  background or bone  is assigned 

to exactly either the radius or ulna. 

3.4.2.4.2 Initial guess 

To generate the initial guess contour for the 3D-GAC algorithm, the image is first normalized 

to the range of zero to one. Afterwards, the image is equalized in the two orthogonal 

longitudinal planes independently using a contrast limited adaptive histogram equalization 

implemented in Scikit-Image (Van Der Walt et al., 2014) and the resulting two images are 

averaged. A threshold of 0.5 is applied and the ulna portion of the image identified during pre-

processing is removed from the thresholded image. Finally, the greatest connected component 

is extracted via component labelling, the structure is closed using a closing distance of 50 

voxels, the remaining interior holes are filled using an additional component-labelling step and 

the structure is dilated using five iterations to obtain the initial guess. 

3.4.2.4.3 Pre-processing of image 

To prepare the image from the scanner to be used as an input to the 3D-GAC algorithm, the 

image is first cropped to the bounds of the initial guess contour to reduce the image size, which 

reduces computational cost. The image is then normalized to the range of zero to one and 

equalized as is done during the creation of the initial guess. The catchment basins from the pre-

processing watershed algorithm are used to set those voxels not belonging to the radius section 

to zero. Finally, the voxels outside the initial guess are set to the mean value of the initial guess 

surface voxels, which are those voxels that make up the perimeter of the initial guess. 
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3.4.2.4.4 3D geodesic active contours (3D-GAC) 

The 3D-GAC algorithm takes an initial guess, an energy landscape and outputs an optimized 

contour. The energy landscape needs to be generated from the input image. Since the algorithm 

is easily trapped in local minima, an iterative application of 3D-GAC to energy landscapes 

containing increasing levels of details is part of the proposed approach.  

Density to Energy Landscape Conversion 

The pre-processed image is used to create energy landscapes. For this, the image is first padded 

in the longitudinal direction by 20 voxels at each end using the NumPy (Van Der Walt et al., 

2011) edge mirroring setting. The padding is followed by the application of two iterations of a 

Gaussian filter. The sigma of the Gaussian filter is a parameter that is decreased step-wise 

during the iterative application of 3D-GAC. Finally, the padding voxels are removed. 

Iterative application of 3D-GAC 

To avoid finding an unwanted local minima (that is, a contour that does not match the surface 

of the radius), Gaussian blurring is used to smooth the energy landscape. However, finer details 

of the radius can get lost when a Gaussian blurring with a large sigma is used. Therefore, three 

iterations of 3D-GAC are run using decreasing sigmas (14.0, 3.0, 1.5 voxels) for the Gaussian 

blurring to allow for an iterative approximation of the true radius contour. Additionally, for the 

first iteration, image resolutions are halved after blurring to speed up computations. Each 3D-

GAC application is then run using the default parameters of SciPy (Virtanen et al., 2019) with 

the number of iterations set to five. As a final step to the entire algorithm, a component labelling 

followed by a selection of everything not connected to the background is performed to remove 

holes in the contour that can appear at the distal image boundary. 

3.4.2.5 Morphometric indices 

The Scanco system provides the standard patient evaluation script for XtremeCT II devices, 

which is the gold standard approach of generating cortical and trabecular masks (Burghardt et 

al., 2010a) and computing bone morphometric indices. Total volumetric bone mineral density 

(Tt.vBMD), trabecular volumetric bone mineral density (Tb.vBMD), cortical volumetric bone 

mineral density (Ct.vBMD), trabecular area (Tb.Ar), cortical area (Ct.Ar), trabecular bone 

volume fraction (Tb.BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), 

trabecular separation (Tb.Sp), cortical perimeter (Ct.Pm), and cortical thickness (Ct.Th) were 

computed for this study. The default setup uses outer contours generated by the approach of 
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Buie et al. as input (Buie et al., 2007). However, the standard patient evaluation pipeline also 

accepts alternative outer contours as input. Outer contours generated from the proposed novel 

3D-GAC method were used as input to the standard patient evaluations and the resultant 

 

3.4.2.6 Study design 

To assess the quality of the generated contours, we compared them to the respective gold 

standard for two different datasets (fractured and intact distal radii). 

3.4.2.6.1 Fractured radii: Comparison of the 3D-GAC approach to hand-drawn contours 

The 3D-GAC method was run for all fracture images. Contours were visually categorised as 

acceptable, mistakenly including parts of the ulna, having obvious missing parts, or having both 

of these issues. Only images categorised as acceptable were used for following quantitative 

analysis steps. Agreement between hand-drawn contour operators was assessed by computing 

the Dice score between their respective 2D contours for each image. The Dice score is a typical 

measure to compare automatically generated contours against reference contours yielding 

values in the range from zero to one with zero indicating no overlap while one indicates a perfect 

match. The Dice score is close to percent agreement when comparing contours that are similar 

to each other. Additionally, the distance transform of the area between the edges of 2D contours 

between operators was computed. Accuracy of the 3D-GAC approach was determined by 

taking the median Dice score between the automatic and the three hand-drawn 2D contours for 

each of the slices per image for which hand-drawn 2D contours exists. Furthermore, all three 

hand-drawn 2D contours were combined to yield a smallest and largest contour. The voxels 

between these two contours describes an area of uncertainty for the hand-drawn contours. 

Voxels, which were in the smallest hand-drawn 2D contour but not in the automatic one and 

voxels, which were in the 3D-GAC contour but not in the largest hand-drawn 2D contour were 

extracted and a distance transform was applied as a measure for deviations of the 3D-GAC 

contours from the hand-drawn 2D ones. Bland-Altman plots between the 3D-GAC and the 

closest hand-drawn 2D contour in terms of area from all three operators for each slice were 

generated to identify systematic differences between hand-drawn contours and the 3D-GAC 

outer contours. The default manufacturer pipeline was also run on all fracture images and 

categorisation as for the 3D-GAC contours was performed. 
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3.4.2.6.2 Intact radii: Comparison of the 3D-  

The 3D-GAC approach and the default manufacturer pipeline were run on all intact radii. 

Contours of both approaches were visually assessed and categorized as was done for the 

contours of the fractured radii. For each patient, one image for which both approaches were 

categorized as being acceptable was randomly chosen for further analysis. Accuracy of the 3D-

GAC method was assessed by computing the Dice score between each contour of the 3D-GAC 

ly, the distance 

transform of the volume between the surfaces of both approaches was computed as another 

measure of how much the two methods deviated from each other. Bland-Altman plots were 

generated to assess systematic differences between the two methods. Reproducibility was 

determined by computing the Dice score of each follow-up image with the baseline image for 

each patient. Morphometrics were computed to assess how strongly the computation of standard 

morphometric indices is influenced by the choice of outer contour. 

3.4.2.7 Bland-Altman plots & statistics 

Bland-Altman plots were created to assess systematic deviations for morphometric indices. To 

allow visual comparison of the magnitudes of deviations between different parameters, all 

Bland-Altman plots had their y-axis scaled by 13% of the maximum x-value throughout this 

paper, which was the maximum value not leading to clipping of data. Robust linear models 

were fitted for Bland-

package in Python (Seabold and Perktold, 2010). This package also provides two-sided 

-tests for the linear models with zero slope and intercept of each Bland-Altman plot 

being the null-hypotheses, respectively.  

Statistical significance for the comparison of morphometrics was performed using a paired 

-test. Significance level was set to P<0.05. 
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3.4.3 Results 

3.4.3.1 Fractured radii: Comparison of the 3D-GAC approach to hand-drawn 

contours 

From the 60 images, 20 were successfully contoured by both 3D-GAC and the default 

manufacturer pipeline. The latter approach failed 40 times, while the 3D-GAC approach failed 

for four images (Figure 3.4.1a). The default manufacturer pipeline failed due to missing parts 

of the radius as a result of fracture gaps in the cortex (N=33), including parts of the ulna (N=2) 

or both (N=5). The 3D-GAC approach failed due to missing parts of the radius (N=2), including 

parts of the ulna (N=1), or including parts of the background (N=1). Furthermore, the default 

manufacturer pipeline only showed a high success rate for images taken one year post fracture 

(Figure 3.4.1b). It should be noted, that the default manufacturer pipeline has not been designed 

to handle images of fractured radii. Visually, contours matched the given bone structures well 

within the inter-operator variability (Figure 3.4.2). Agreement was found between the 3D-GAC 

approach and hand-drawn contours with a mean Dice score of 0.992 ± 0.004. This is within the 

range of inter-operator agreement: (operator 1 vs operator 2) 0.993 ± 0.005, (operator 1 vs 

operator 3) 0.993 ± 0.006, and (operator 2 vs operator 3) 0.994 ± 0.005. Evaluating the six 

appointments individually, Dice scores were high (>0.985), though some increase in the inter-

quartile range of the Dice scores was observed between three and thirteen weeks post fracture 

(Figure 3.4.1c). This coincided with a decrease in contouring success (Figure 3.4.1b). For 

voxels of the 3D-GAC deviating from the area of uncertainty, 82% of these contour voxels were 

only one voxel away from at least one hand-drawn contour. This was within the inter-observer 

variability, as we observed (operator 1 vs operator 2) 57%, (operator 1 vs operator 3) 60%, and 

(operator 2 vs operator 3) 58% of deviations being less than one voxel away between operators 

(Figure 3.4.1d). Comparing the contour areas between the 3D-GAC method and the three 

operators, agreement was high with errors being: -1.14 ± 0.76%, -0.40 ± 0.62%, and -0.22 ± 

0.73% for each operator, respectively. An underestimation of the total area was observed for 

the 3D-GAC contours (Figure 3.4.3). This underestimation is less than e.g. comparing operator 

1 to operator 3: -0.011*[±0.004] + 0.090[±0.134], i.e.: slope (-0.003 vs 0.011) and intercept (-

0.076 vs 0.090 (both not significant)) (Figure 3.4.3). 
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Fig. 3.4.1 Accuracy of the 3D-GAC approach vs hand-drawn contours for scans of fractured 
radii. a) Histogram of successful and failed contours for the 3D-GAC and the default 
manufacturer pipeline. The final bar shows the images selected for further analysis. Note that 
this pipeline was not designed to handle scans of fractured radii. b) Histogram of successful 
contours for the two approaches per patient time-appointment. Dashed line indicates 100% 
success. c) Dice scores computed for all images between the hand-drawn slices of all operators 
(op) respectively. The corresponding slices of the 3D-GAC contours were also compared 
against the hand-drawn slices, respectively, and the average median Dice score is shown. d) 
Histogram of the distance of all voxels different between the 3D-GAC and the area of 
uncertainty (AOU) for the hand-drawn contours of each operator, respectively. The AOU is 
defined as the area between the contour obtained by only accepting voxels present in all hand-
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drawn contours and the contour obtained by accepting voxels present in at least one hand-drawn 
contour. 

 

 

Fig. 3.4.2 Visual comparison of hand-drawn contours (by three different operators (op)) and 
3D geodesic active contour (3D-GAC) generated contours for a representative challenging slice 
from one week post-fracture. Visual differences between the 3D-GAC and hand-drawn 
contours are similar to those between hand-drawn contours of different operators. Scale bar is 
2 mm. 

 

3.4.3.2 Intact Radii: Comparison of the 3D-  

From the 438 images of intact radii, 341 were successfully contoured by both approaches. The 

default manufacturer pipeline failed for 85 images, the 3D-GAC approach failed 3 times, and 

both approaches failed 9 times (Figure 3.4.4a). The default manufacturer pipeline failed due to 

the inclusion of parts of the ulna (N=42) into the radius contour, omitting large parts of the 

radius (N=37) (Figure 3.4.5), having parts of the background in the contour (N=5), or including 
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Fig. 3.4.3 Bland-Altman plots of the mean contour area per image. a) Comparing operator 1 
(op. 1) to operator 2 (op. 2). b) Comparing operator 1 to operator 3 (op. 3). c) Comparing 
operator 2 to operator 3. d) Comparing the automatic 3D-GAC contours with the median 
(computed per slice) of all three operators. Area computed with the 3D-GAC approach agrees 
within the observable inter-operator variability with the area computed from hand-draw 
contours. 

 

parts of the ulna while omitting large parts of the radius (N=10). The 3D-GAC approach failed 

due inclusion of background (N=8), large parts of the radius missing (N=1), missing parts of 

the radius and inclusion of parts of the ulna (N=2), and all mentioned failure modes combined 
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(N=7 for VGS 1, N=14 for VGS 2, N=16 for VGS 3, N=30 for VGS 4, N=27 for VGS 5). For 

the thirteen contours that only failed for the 3D-GAC approach (N=1 for VGS 2, N=5 for VGS 

4, N=6 for VGS 5). 

 

 

Fig. 3.4.4 Accuracy and reproducibility of the 3D-GAC vs the default manufacturer pipeline 
(DMP). a) Histogram of successful and failed contours for the 3D-GAC and the DMP with 
indicated image quality. The final bar shows the images selected for the reproducibility 
analysis. b) Dice scores of contours of all time points relative to the initial scan for both 
approaches show the reproducibility of each method. c) Histogram of the distance of all voxels 
different between the 3D-GAC and the DMP contour from the respective DMP contour. 
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Of the 341 images, 72 images (one image per patient) with sufficient image quality (VGS of 

three or better) and acceptable contours from both methods were used for further analysis. 

Overall agreement between both approaches was high with a mean Dice score of 0.996 ± 0.001, 

with typical Dice score values for contours with missing parts of the radius being around 0.85. 

Reproducibility is on the same level as the default manufacturer pipeline, with agreement with 

the baseline image for both methods and for all appointments (median Dice score > 0.994 for 

all time-points) (Figure 3.4.4b). For those voxels that were either part of the 3D-GAC contour 

and not part of the contour from the default manufacturer pipeline or vice versa, 91% are at 

3.4.4c). Bland-Atman plots 

reveal agreement in morphometric indices with a slight thickness and density based bias in 

cortical parameters and no bias in trabecular parameters (Figure 3.4.6). Mean deviations were 

below 1% for all parameters except for Ct.Th (1.341%) (Table 3.4.1). 

 

 

Fig. 3.4.5 Examples of failure modes when contouring distal radii. Contours from the 3D-GAC 
and the default manufacturer pipeline are compared for four challenging contouring cases: A 
thin cortex leading to missing parts of the radius, the ulna (partly being visible on the right) 
being close to the radius (bone on the left) and hence being included in the contour, the 
combination of the previous two, and a low visual grading score. Only the 3D-GAC approach 
manages to generate visually correct contours in most cases. Scale bar is 2 mm. 
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Table 3.4.1 Deviations of the bone morphometrics derived using 3D-GAC based contours 
 

Morphometric 

Index 

Deviation from Gold Standard 

Tt.vBMD 0.190 ± 3.668% 

Tb.vBMD 0.662 ± 3.226% 

Ct.vBMD -0.131 ± 2.437% 

Tb.Ar 0.510 ± 4.920% 

Ct.Ar -0.710* ± 2.530% 

Tb.BV/TV 0.540 ± 2.830% 

Tb.N -0.093 ± 1.497% 

Tb.Th 0.147 ± 1.017% 

Tb.Sp 0.181 ± 1.625% 

Ct.Pm -0.333 ± 2.402% 

Ct.Th -1.341* ± 4.911% 

Morphometric Indices: total volumetric bone mineral 
density (Tt.vBMD), trabecular volumetric bone mineral 
density (Tb.vBMD), cortical volumetric bone mineral 
density (Ct.vBMD), trabecular area (Tb.Ar), cortical area 
(Ct.Ar), trabecular bone volume fraction (Tb.BV/TV), 
trabecular number (Tb.N), trabecular thickness (Tb.Th), 
trabecular separation (Tb.Sp), cortical perimeter (Ct.Pm), 
cortical thickness (Ct.Th).  
*indicates significant deviation (P<0.05) 

 

3.4.4 Discussion 

3.4.4.1 Fractured radii: Comparison of the 3D-GAC approach to hand-drawn 

contours 

56 out of 60 images were contoured without major issues by the 3D-GAC approach. We 

observed clear inter-operator variability that is a known issue of hand-contouring bone (de 

Waard et al., 2018). On average, the generated contours by the 3D-GAC algorithm agree well 

with operators. The slightly larger inter-quartile range especially for appointments 2 and 3 can 

be explained by the formation of a callus in this time period and the resulting low mineralization 
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of background voxels visible in the HR-pQCT images. This makes it harder for both operators 

and the algorithm to decide on the correct contour. Bland-Altman plots show no systematic 

deviations between operators and the 3D-GAC approach that is larger than between operators 

themselves (Figure 3.4.3). Hence, the 3D-GAC contouring approach provides accurate contours 

for HR-pQCT images of fractured distal radii compared to the gold standard. 

Interestingly, the default manufacturer pipeline only reliably contoured HR-pQCT images taken 

one year post fracture (Figure 3.4.1b). Given the fact that this pipeline was not designed to work 

with images of impaired cortices, this might indicate structural weaknesses in the cortex even 

6 months post fracture. This observation is in agreement with recent findings suggesting that 

fracture repair is a long term process which might take as long as two years (de Jong et al., 

2016). 

3.4.4.2 Intact radii: Comparison of the 3D-  

Comparing the 3D-GAC approach to the manufacturer default pipeline, the failure rate of the 

latter approach was much higher (94 vs 12 failed contours). Since this study used HR-pQCT 

images of fracture patients, the used cohort may inherently have poorer bone quality than 

standard populations, which could be one reason for the high number of failed contours for the 

default manufacturer approach. One of the major reasons for failure was the inclusion of the 

ulna into the outer contour of the radius, which is a known issue of this approach that is 

implementation dependent (Buie et al., 2007). The second reason for failure is having obvious 

missing parts, which appears to happen if the cortex has very thin or low-density structures 

(Figure 3.4.5). The fallback option of the default manufacturer pipeline is to create hand-drawn 
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Fig. 3.4.6 Bland-Altman plots of morphometric indices characterize potential differences in 
3D-GAC and contours from the default manufacturer pipeline. Robust linear model fits are 
shown in red. Regression parameters are presented above each plot with slope and intercept 
parameters statistically significantly different from zero being indicated by (*, P<0.05). Indices 
are total volumetric bone mineral density (Tt.vBMD), trabecular volumetric bone mineral 
density (Tb.vBMD), cortical volumetric bone mineral density (Ct.vBMD), trabecular area 
(Tb.Ar), cortical area (Ct.Ar), trabecular bone volume fraction (Tb.BV/TV), trabecular number 
(Tb.N), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), cortical perimeter (Ct.Pm), 
cortical thickness (Ct.Th).  
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contours, which can be done using a built-

proposed solution for this is to increase of the number of dilation steps of the algorithm (Buie 

et al., 2007), however this can lead to unwanted smoothing of the contour (Buie et al., 2007). 

Defining per-image numbers of dilation steps on the other hand would reduce the degree of 

automation drastically. The 3D-GAC approach only failed for one image with sufficient image 

quality to be typically included in HR-pQCT studies (de Waard et al., 2018; Manske et al., 

2017; Nishiyama et al., 2015), showing and overall improvement in robustness compared to the 

current gold standard. 

Accuracy of the generated contours was high with the mean Dice score being 0.996 ± 0.001. 

Using these generated masks, trabecular morphometric indices agreed well with those generated 

using the gold standard method with deviations well below the precision error of these indices 

(Mueller et al., 2009). Interestingly, for the cortical parameters, accuracy was slightly worse 

with Ct.Th showing deviations of 1-2%; however, these differences are still less than 1 voxel 

in thickness and thus at the accuracy limit of the device (Figure 3.4.6). Furthermore, differences 

in cortical thickness were at the reproducibility limit of the standard patient evaluation (1.3-

3.9% dependent on subject age) (Burghardt et al., 2010a) and were still below differences 

observed between patient groups from the literature, e.g. healthy and osteopenic women 

(12.8%) (Nishiyama et al., 2010), indicating that the 3D-GAC approach is a viable option for 

clinical studies of non-fractured radii as well. 

3.4.4.3 Limitations 

This study is not without limitations. The repeat scans of the contralateral site were spaced over 

a year, thus may include variations in bone due to natural remodelling. Additional scans for 

reproducibility were not possible due to radiation concerns. However, it would be expected that 

these natural variations would only decrease the reproducibility found. The same intervals 

between scans was used for the images of the fractured radii. Due to the large structural changes 

happening during fracture repair, the images of the fracture site could not regarded as repeat 

scans. Therefore, no direct assessment of reproducibility was possible for images of fractured 

radii. However, the high accuracy observed for 60 images does indicates also high levels of 

reproducibility. Another limitation is the low number of hand-drawn contour slices (270). While 

time was a limiting factor (operators reporting to take roughly 1-2 minutes per slice) for creating 

more hand-drawn contours, we included images of the intact contralateral site to cover a large 
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variety of bone morphologies, which we could benchmark against existing automatic 

approaches for intact radii. Another limitation is that the 3D-GAC contours were generated only 

proximal to the lunate fossa. However, the morphometric analysis of the standard patient 

evaluation has only been developed for that region, making this region the most relevant for 

clinical studies. Furthermore, no hand-corrected contours were generated for intact radii to 

estimate the bias introduced by the automated protocol. However, recent studies have already 

done this for the gold standard (Whittier et al., 2020) and, given the good agreement of the 3D-

GAC approach with the gold standard, the requirement for minor manual corrections should be 

on a similar level. 

3.4.5 Conclusion 

Our proposed 3D-GAC algorithm provides a unified pipeline for generating outer contours from 

HR-pQCT images of distal radii, including both fractured and intact bones. Importantly, our 

method automatically contours radii both accurately and reproducibly, while showing 

robustness when dealing with a wide variety of cortex structures. This will facilitate future 

clinical studies using large patient cohorts to support the development of improved treatment 

protocols of radius fractures. 
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4.1 Mechanoregulation in distal radius fractures 
assessed in vivo by time-lapsed HR-pQCT images  
N. Ohs1, F.C. Marques1, P. R. Atkins1, C. J. Collins1, M. Blauth2, P.Christen1,3, D. C. Tourolle 

né Betts1, R. Müller1 

1Institute for Biomechanics, ETH Zurich, Zurich, Switzerland 
2Department for Trauma Surgery, Innsbruck University Hospital, Innsbruck, Austria 
3Institute for Information Systems, FHNW University of Applied Sciences and Arts 

Northwestern Switzerland, Olten, Switzerland 

Abstract 

Radius fractures are among the most common fracture types; however, there is limited 

consensus on the optimal treatment protocol. A better understanding of the fracture healing 

process could help to shape future protocols and thus improve functional outcomes of patients. 

High-resolution peripheral quantitative computed tomography (HR-pQCT) allows close 

monitoring and evaluation of the radius on the micro-structural level, which is crucial to our 

understanding of the fracture healing process. Since local mechanical tissue loading is essential 

for bone adaptation and fracture healing, the question of whether or not HR-pQCT can be 

utilized to study mechanoregulation in distal radii during the fracture healing process arises.  

In the present study, we investigate local mechanoregulation in HR-pQCT of fracture patients. 

For this, in silico bone adaptation simulations are first used to test the ability of an existing 

micro-CT-based method for quantifying mechanoregulation to handle HR-pQCT images as 

input. Three loading scenarios, (i) homeostatic, (ii) catabolic, and (iii) anabolic bone adaptation, 

were simulated. For all scenarios, images were downscaled from 25 µm to various resolutions 

and various levels of noise were added, including the resolution and noise level of second 

generation HR-pQCT (61 µm). In virtual experiments, images with added noise and reduced 

resolution from these simulations were taken and the correct classification of remodelling 

events were quantified. Second, mechanoregulation of seven patients with distal radius 

fractures whose fractured and contralateral radii were scanned six times over the course of a 

year was quantified using the tested method. 
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Virtual experiments on in silico data show that mechanoregulation can be extracted from 

images with resolution and signal to noise ratio matching clinical HR-pQCT. 

Mechanoregulation was detected in the patient data with the formation and resorption processes 

during fracture repair being more mechanosensitive. 

Keywords:  

HR-pQCT; fracture; radius; mechanoregulation; bone adaptation; fracture healing 
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4.1.1 Introduction 

Bone fractures are increasingly common and have become a major socioeconomic burden in 

our ageing population (Johnell and Kanis, 2006). Even though fractures of the distal radius are 

among the most common fracture types and indicative of a reduction in bone quality (Court-

Brown and Caesar, 2006), there is currently limited consensus on the optimal treatment protocol 

(Ng and McQueen, 2011). Conservative treatment of many radius fractures, namely cast 

immobilization, provides a unique opportunity to study the fracture healing process in humans. 

A deeper insight into what drives this process could help to shape future treatment protocols of 

distal radius fractures, ultimately resulting in better functional outcomes for patients.  

Local mechanical tissue loading is essential for both bone adaptation and remodelling as well 

as fracture healing (Augat et al., 2005, 1996; Boerckel et al., 2012; Carter, 1987; Carter et al., 

1998, 1987; Claes et al., 1998; Giannoudis et al., 2007; Huiskes et al., 2000; Isaksson et al., 

2006; Klein et al., 2003). In a mouse defect-healing model, microstructural tissue formation has 

already been linked to the local mechanical environment using longitudinal, micro-CT imaging 

(Tourolle né Betts et al., 2020). With the availability of high-resolution peripheral quantitative 

computed tomography (HR-pQCT) in clinics, it has now become possible to non-invasively 

and longitudinally observe bone microstructural changes in patients (Burghardt et al., 2010; 

Burt et al., 2017; Ellouz et al., 2014; Nishiyama et al., 2015; Shanbhogue et al., 2017). 

Furthermore, efforts have been made to combine HR-pQCT images with finite element analysis 

to obtain information on the local mechanical environment (Ohs et al., 2020a). Preliminary 

findings indicate that these techniques are also viable to monitor fracture healing in patients, 

longitudinally (De Jong et al., 2014).  

To assess the local mechanoregulation, the mechanical loading at the tissue level has to be 

correlated with bone tissue formation and resorption. Only one study so far has attempted this 

using HR-pQCT images (Christen et al., 2014). However, this pilot study used an alternative 

method than the established one for animal experiments introduced by Schulte and colleagues 

(Schulte et al., 2011), making comparisons to the existing literature difficult. Using the 

approach developed for animal experiments on HR-pQCT images, on the other hand, is not 

trivial as this approach was developed for micro-CT images. The difference in image modality 

between HR-pQCT and micro-CT images can influence the outcome of image analysis tools 
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such as segmentation and filtering, mandating a separate validation of any tool developed for 

micro-CT for use with HR-pQCT images (Ohs et al., 2020a).  

The challenge with validating longitudinal assessment approaches, such as the quantification 

of mechanoregulation, is finding a proper ground truth. Typically, cadaveric bone tissue is used 

in the validation of methods for processing and analysis of HR-pQCT data as they can be 

scanned with high-resolution micro-CT. However, cadaveric samples do not enable the 

assessment of longitudinal data. Therefore, this common validation technique cannot be used 

for the validation of any method quantifying in vivo mechanoregulation. Instead, the use of 

simulated data has been suggested as a possible ground truth for the validation of longitudinal 

assessment approaches (Ohs et al., 2020a). With recent advancements in bone adaptation 

simulations, it is now possible to simulate bone formation and resorption in response to 

mechanical loading on HR-pQCT images (Ohs et al., 2020b). These simulations not only 

provide data at a high resolution (25 µm) compared to HR-pQCT (61 µm)  but also have the 

advantage of every occurring adaptation event being 100% driven by mechanics, which would 

not be known for any scanned in vivo bone structure. Furthermore, simulations allow one to 

obtain diverse adaptation scenarios easily; for example, homeostatic or anabolic bone 

(re)modelling, which result in a more robust validation. Finally, these simulations can be used 

to conduct virtual experiments with added noise and/or reduced image resolution to study 

differences in image modalities and their impact on the resultant mechanoregulation. 

The goal of the present study was to investigate mechanoregulation during fracture healing 

using clinical resolution HR-pQCT. We first quantified to which extent mechanoregulation can 

be extracted from HR-pQCT images using the approach of Schulte and colleagues (Schulte et 

al., 2011) by performing virtual experiments on simulated data for three bone adaptation 

scenarios: (i) homeostatic, (ii) catabolic, (iii) and anabolic bone adaptation. Here, we accounted 

for variations in signal to noise ratio and image resolution. Then, we investigated differences in 

mechanoregulation between fractured and intact distal radii of seven patients using HR-pQCT 

images that were acquired throughout the first year of the healing process. 
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4.1.2 Materials and Methods 

4.1.2.1 Data 

HR-pQCT images (XtremeCT II, Scanco Medical AG, Switzerland; 60.7 µm voxels, 68 kV, 

1470 µA, 43 ms integration time) were obtained from the database of a previous fracture study 

conducted at Innsbruck Medical University. Patients provided informed consent and 

participated in a study approved by the ethics committee of the Medical University of 

Innsbruck. For each of the 75 patients that completed the study, six scans of the fractured (up 

to 504 slices per scan distributed over three stacks) and contralateral (up to 168 slices per scan, 

one stack only) radius were taken over the course of one year (1, 3, 5, 13, 26, and 52 weeks 

post-fracture). A subset of patients were selected from the database based on visual grading 

scores (VGS) (Pialat et al., 2012) of three or better for all images and minimal stack-artefacts 

as well as low fracture fragment movement. Data from one patient was selected for the bone 

adaptation simulations. Data from seven others were selected for the mechanoregulation 

analysis. 

4.1.2.2 Image pre-processing 

Images of the contralateral radii were registered using a pyramid-based rigid registration 

approach (Thévenaz et al., 1998). For images of the fractured radii, the middle stacks were 

registered first using the same method, followed by the outer stacks using the temporal 

misalignment of the centre stack to find overlapping regions of outer stacks to centre stacks of 

other time points. Any gaps between stacks were filled by linearly interpolating between the 

two adjacent slices. Outer contours of the radius were generated for each image using a 

previously developed algorithm (Chapter 3.4). 

4.1.2.3 Mechanoregulation analysis 

Surface-based mechanoregulation analysis was performed on segmented images as is described 

in the work of Schulte and colleagues (Schulte et al., 2011). To quantify the amount of correctly 

classified mechanoregulation, the correct classification rate (CCR) was used as described by 

Tourolle and colleagues (Tourolle né Betts et al., 2020). 
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4.1.2.4 Trabecular region mask 

Since mechanoregulation is analysed only for the trabecular region in the current study, a mask 

of this region was automatically generated for each image using the following steps. First, the 

density values in the image were rescaled to the interval [0, 1]. Next, the rescaled density image 

and the outer contour were mirrored along the z-axis (longitudinal axis of the radius) at the top 

and bottom of the image to provide a continuous boundary at these edges. A binary erosion 

neighbourhood. Rescaled density values outside the outer contour mask were set to 1 and a 

Gaussian filter was applied with a sigma of 22, truncated at 4 standard deviations. The filtered 

density was binarized by only keeping values above 0.5. The greatest connected component of 

this structure, i.e. the combined background and high-density cortex, was identified and binary 

inverted, resulting in a mask only covering the trabecular region. Finally, the mirrored slices at 

the top and bottom of this mask were removed and the common region of all time-points per 

patient were used as the mask for this patient. 

4.1.2.5 Bone adaptation simulation 

The mechanostat based bone adaptation simulation by Schulte and colleagues (Schulte et al., 

2013) was used with the implementation in Python being described in chapter 3.3 to generate a 

series of images with changes in bone structure that are 100% mechanically driven. The 

simulation was only run on the masked trabecular region of the selected sample. 

4.1.2.5.1 Input model generation 

Bone volume fraction (BV/TV) of the sample was determined by applying a threshold of 320 

mg HA/cm³ to the 

using cubic interpolation to achieve accurate results, and simulation inputs were generated from 

this image as was done in chapter 3.3. To generate a valid input model for the simulation, a 

threshold was applied that resulted in identical BV/TV as was computed for the original 

resolution image. Then, surface voxels of this intermediate binary structure were filled with the 

original grayscale value of each voxel relative to the applied threshold, respectively, and the 

structure was multiplied by a density value of 750 mg/cm³. Finally, the greatest connected 

component of the structure was identified using component labelling and disconnected bone 

fragments were discarded since no realistic loading can be calculated for them. 
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4.1.2.5.2 Boundary Conditions

For the micro-finite element (micro-FE) step of the simulation, a longitudinal (z-axis), high-

friction compressive boundary condition was chosen. The applied compressive force was 

estimated using a force estimation algorithm (Christen et al., 2013), considering 0.02 MPa as 

the reference value for the target homogeneous strain energy density value in the structure 

(Badilatti et al., 2016; Mullender and Huiskes, 1995). 

4.1.2.5.3 Adaptation scenarios 

The mechanostat used was identical to the one used in a previous study (Ohs et al., 2020b). The 

simulation time was set to five years, from which the first 1.5 years were used as an adaptation 

phase to the new boundary conditions and dismissed (Badilatti et al., 2016; Schulte et al., 2013), 

yielding 25 iteration steps of the remaining 3.5 years for three adaptation scenarios based on 

changes in BV/TV: (i) homeostatic, (ii) catabolic, (iii) and anabolic bone adaptation. The 

anabolic and catabolic cases were defined by a change in BV/TV of approximately 5% at the 

end of the simulation period (Badilatti et al., 2016), which was achieved by scaling the boundary 

forces by 1.5 (catabolic), 2.6 (homeostatic), 4.6 (anabolic). The simulations were performed at 

the Swiss National Supercomputing Centre (Piz Daint, CSCS, Lugano, Switzerland). 

4.1.2.5.4 Virtual experiments 

Virtual experiments were performed on the simulation data to determine to what extent the 

mechanoregulation governing the simulation could be recovered given different image voxel 

sizes and noise levels. 

For this, the simulated data (25 images for each of the three adaptation scenarios, respectively) 

wit  

range from micro-CT resolution to clinically available HR-

-pQCT images followed a Gaussian distribution 

with a standard deviation of approximately 100 mg HA/cm³. Therefore, from each set of the 25 

with a standard deviation ranging from 0 to 120 mg HA/cm³ in steps of 20 mg HA/cm³. 

For each of the 28 different configurations (4 resolutions times 7 noise levels), FE simulations 

were run on all images using a longitudinal compression boundary condition. The applied force 

for each configuration was determined by running the force estimation (Christen et al., 2013) 

algorithm on the last image of the respective adaptation scenario for that configuration.  
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Finally, for each configuration, mechanoregulation was extracted for all possible time steps and 

the median, minimum, and maximum CCR was computed for all configurations. 

4.1.2.6 HR-pQCT grayscale-based micro-FE 

Registered images were cropped to only contain parts of the bone visible in all images across 

all time points. Next, images were filtered using a Gaussian filter (sigma = 0.8, support = 1). 

Grayscale images (units mg HA/cm³, provided by the manufacturer software) were converted 

al., 2007). Additionally, values below 0.2 MPa were set to 0.2 MPa to avoid convergence issues 

in the analysis. Linear micro finite element analysis (micro-FEA) was run for each image using 

the matrix-free and octree-based parallel solver parOsol (Flaig, 2012). The boundary condition 

set for the micro-FEA was 1% compression in the longitudinal direction with a fully fixed 

bottom sli -

results were saved for each analysis for further processing, since partial volume effects in 

greyscale-based FEA lead to unrealistic surface SED values. 

4.1.2.7 Morphometric indices 

Morphometric indices for the contralateral radii were computed using the scanner 

s stated above, which 

has been shown to yield accurate results (chapter 3.4). Computed indices were: trabecular 

volumetric bone mineral density (Tb.vBMD), trabecular bone volume fraction (Tb.BV/TV), 

trabecular area (Tb.Ar), trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular 

separation (Tb.Sp). 

4.1.2.8 Mechanoregulation analysis on patient data 

As stated before, mechanoregulation was computed using the approach by Schulte and 

colleagues (Schulte et al., 2011). To obtain the necessary binary inputs, threshold of 320 mg 

HA/cm³ was applied to each Gaussian filtered image (same parameters as for the grey-scale 

micro-FE), which is the default threshold of the manufacturer for trabecular bone. The CCR 

was computed for each consecutive pair of images (weeks: 1-3, 3-5, 5-13, 13-26, 26-52), 

respectively. EFF was used for the local mechanics and all EFF values were cut off at and 

normalized by the value of 0.258, which was visually determined as the best value to exclude 
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unrealistic (extremely high) EFF values from the FE analysis across all samples while 

discarding as little EFF values as possible. 

4.1.2.9 Statistics 

Statistical significance for the comparisons of CCR between fractured and intact radii were 

t-test. Significance level was set to p<0.05. Holm-

Bonferroni corrections for multiple comparisons were applied. 

 

 

Fig. 4.1.1 HR-pQCT noise levels and voxel size allow for assessment of mechanoregulation in 
patient data. Correct classification rate (CCR) of mechanoregulation is shown for data with (A) 
native HR-pQCT resolution with different levels of noise and (B) clinical HR-pQCT noise 
levels with different image resolutions. Coloured lines show median values of CCR for three 
simulated adaptation scenarios: catabolic, homeostatic, and anabolic. Coloured shades show the 
range between max and min CCR found. Vertical lines show native HR-pQCT noise levels and 
voxel size, respectively. Horizontal lines show the 33% line, i.e. the random 
classification/detection limit. 

4.1.3 Results 

Virtual experiments on in silico bone adaptation simulations showed median CCRs of larger 

than 60% for all three adaptation scenarios and all tested voxel sizes and noise levels (Figure 

4.1.1). Minimum CCRs were observed for images with close to no structural differences, but 
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were still above the 61 m detection limit (Figure 4.1.1). Median CCR for native HR-pQCT 

noise levels and resolution were: 68% (homeostatic), 66% (catabolic), and 65% (anabolic). 

These values are lower than what can be found for the highest tested resolution (25 µm) and no 

added noise: 78% (homeostatic), 73% (catabolic), and 77% (anabolic). 

 

 

Fig. 4.1.2 Trabecular morphometric indices of the contralateral site are stable over time. 
Assessed parameters include: trabecular volumetric bone mineral density (Tb.vBMD), 
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trabecular bone volume fraction (Tb.BV/TV), trabecular area (Tb.Ar), trabecular number 
(Tb.N), trabecular thickness (Tb.Th), and trabecular separation (Tb.Sp). 

 

 

Fig. 4.1.3 Events of formation, quiescence, and resorption are better associated with mechanics 
in (A) fractured than in (B) intact radii. Per effective strain (EFF) bin, normalized probability 
for the three events is shown for different levels of EFF. Random classification (33%) is 
indicated by horizontal bold lines. Vertical lines show division of EFF into intervals of correct 
classification rate maximizing (left to right) resorption, quiescence, and formation. 
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Trabecular indices for the contralateral site were stable over time (Figure 4.1.2). Averages over 

all seven patients and time were: Tb.vBMD (121.37 ± 18.95 mg HA/cm³), Tb.BV/TV (0.17 ± 

0.02), Tb.N (1.29 ± 0.12 mm-1), Tb.Th (0.22 ± 0.01 mm), and Tb.Sp (0.76 ± 0.07 mm). 

Visually, correct prediction of local remodelling was higher for the fractured radii compared to 

the intact contralateral radii when combining all time intervals (Figure 4.1.3). This can also be 

seen in the correct classification percentages of formation, resorption, and quiescence for the 

lowest and highest EFF values (Table 4.1.1). CCRs were 0.44 for the fractured and 0.39 for the 

intact radii when combining all time intervals. For the fractured side, classification of 

quiescence was close to random for most EFF values, while formation and resorption were 

determined by mechanics (Figure 4.1.3A). For the contralateral side, higher resorption occurred 

for low EFF; however, for high EFF, quiescence and resorption were close to random (Figure 

4.1.3B). Conversely, formation events for the contralateral site were determined by mechanics 

over the entire range of EFF values (Figure 4.1.3B). 

 

 

Fig. 4.1.4 Mechanics predict local bone formation, quiescence, and resorption better in 
fractured compared to intact radii for up to 26 weeks post fracture. Combined correct 
classification rate (CCR) of formation, resorption, and quiescence is plotted for fractured and 
corresponding contralateral radii scanned over the course of one year. Significance was 
determined using a paired t-test with: * p<0.05, ** p<0.01. Holm-Bonferroni was used to 
correct for multiple comparisons. 
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For the first half-year post fracture, CCR of mechanoregulation was significantly higher for the 

fracture site compare to the contralateral site (p<0.05 for weeks 1 to 3, 3 to 5, and 13 to 26; 

p<0.01 for weeks 5 to 13). No significant difference was found between sides for the latter half 

of the year. Mechanoregulation of the contralateral site visually appeared stable over the entire 

year (Figure 4.1.4). 

 

Table 1 Classification of formation, resorption, and quiescence events in patient data for the 
lowest and highest calculated effective strain values. 

 FRACTURE INTACT 

 Rel. EFF < 1% Rel. EFF > 

99% 

Rel. EFF < 1% Rel. EFF > 

99% 

FORMATION 19 ± 3% * 54 ± 4% * 25 ± 1% 45 ± 4% 

RESORPTION 57 ± 9% 18 ± 5% ** 51 ± 3% 29 ± 2% 

QUIESCENCE 24 ±  7% 28 ± 3% 23 ± 2% 25 ± 4% 

Rel. EFF: Effective strain relative to the reference value 0.0258 
Statistical significance from paired t-test with Holm-Bonferroni correction: * (p<0.05), 
**(p<0.01) 

 

4.1.4 Discussion 

The purpose of the virtual experiments was to determine if mechanoregulation can be observed 

with HR-pQCT, using standard clinical settings. Median CCRs of 60% (Figure 4.1.1) were 

observed with noise levels and voxel sizes comparable to clinical HR-pQCT, showing that 

mechanoregulation was in fact observable with clinical HR-pQCT image properties. 

Interestingly, even for zero noise and micro-CT voxel size the CCR does not reach 100%; this 

can be explained by the difference in using EFF for the analysis and the Gaussian dilated SED 

for the bone remodelling simulations (Schulte et al., 2013). 

In the patient dataset, mechanoregulation was found for both fractured and intact radii (Figure 

3). CCR results during fracture healing were around 42-44% (Figure 4.1.4) which is comparable 

to what has been found in fracture healing animal studies (35-43%) (Tourolle né Betts et al., 

2020). The almost random events of high EFF resorption in intact radii (Figure 4.1.3B) are in 

line with the theory of the remodelling cycle also acting as a maintenance protocol of bone 
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(Kenkre and Bassett, 2018). Interestingly, this effect was less present in the fracture site. This 

could indicate that processes specific to fracture repair exhibit more mechanosensitivity to 

mechanical signals compared to bone remodelling events in intact bone. All seven patients 

showed similar mechanoregulation curves, which is probably related to the fact that their 

BV/TV values were all around 17% (Figure 4.1.2), hence a broader range in BV/TV should be 

explored to e.g. also include osteoporotic patients (BV/TV  <10%) (Krause et al., 2014). 

4.1.5 Limitations 

This study is not without limitations. A limitation was the use of just one patient for the virtual 

experiments. However, using more samples would have been beyond our computing budget. 

Furthermore, since every simulation provided 25 iterations of data and three different 

adaptation scenarios were simulated, the total number of images used for validation was 

actually 75. 

Another limitation was the number of samples (N=7) used, which is low compared to other HR-

pQCT studies. However, for the only other study looking at mechanoregulation in humans 

without fracture, sample numbers are not much higher (N=9) (Christen et al., 2014). 

Furthermore, fracture data has the added difficulty of many samples showing fracture fragment 

movements, which still cannot be accurately registered over the entire bone volume (De Jong 

et al., 2017), further reducing the samples that can be used for such an analysis.  

Another limitation was the use of a simple axial compression instead of a more complex 

combination of loading scenarios based on physiological load estimation algorithms (Christen 

et al., 2013). However, the axial compression is still the most used FEA boundary condition for 

HR-pQCT image data (Ohs et al., 2020a). Furthermore, the existing mechanoregulative 

algorithm works with SED and not with EFF. However, greyscale-based FEA yields unrealistic 

surface SED values due to partial volume effects. On the other hand, not using greyscale FEA 

results in poor local mechanical accuracy (chapter 3.3). Hence, EFF was used in the 

mechanoregulation analysis to circumvent issues with any surface SED values while still 

benefiting from the results of the greyscale-based micro-FEA. 

Finally, a limitation of this study is the use of automatically generated masks of the trabecular 

compartment with a very conservative approach, such that trabeculae close to the cortex are not 
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included into the analysis. Although considered the gold-standard, hand-drawn contours are 

known to show operator-bias (chapter 3.4). Furthermore, this effect is magnified by the 

complicated and often unclear geometries found in HR-pQCT images of fractures and fracture 

calluses, which would result in a further reduced reproducibility of the study. 

4.1.6 Conclusion 

In conclusion, HR-pQCT images can be used to study mechanoregulation in patients. 

Furthermore, for the first time, mechanoregulation of local bone remodelling was observed in 

fractured distal radii in vivo, making this a viable option to study fracture healing locally on the 

microscale. Differences in mechanoregulation were found between the fractured and 

contralateral site, showing the need for further studies of the mechanosensitivity of fracture-

repair-specific biological processes. We hope that future fracture studies will include 

mechanoregulation analyses to better understand fracture healing ultimately leading to 

improved treatment protocols and functional patient outcomes. 
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5.1 Background 
Modern technology and medicine has allowed humans to grow older than ever before (United 

Nations, 2020). However, with the blessing of longevity come the challenges of age related 

health issues. Bone fractures for example are increasingly common and have become a major 

socioeconomic burden (Johnell and Kanis, 2006), with the radius fracture being the most 

common fracture type and also indicative of a generally reduced bone quality (Court-Brown 

and Caesar, 2006; Mallmin and Ljunghall, 1994). It is known that healthy bone is able to 

structurally support the human body (Rho et al., 1998), to maintain itself and adapt to changes 

(Hill, 1998), and to even fully repair itself without scar tissue (Claes et al., 2012). These 

processes are choreographed across multiple scales in a hierarchical fashion, from organ scale 

mechanical loads down to protein expressions in cells signalling the requirement for additional 

deposition of mineral (Gardner et al., 2006; Robling and Turner, 2009). For all the biological 

complexity of bone, it has been shown that mechanical loading is the key driver behind all these 

processes (Augat et al., 2005, 1996; Boerckel et al., 2012; Carter, 1987; Carter et al., 1998; 

Claes et al., 1998; Giannoudis et al., 2007; Huiskes et al., 2000; Klein et al., 2003). This in turn 

means that being able to monitor the response of bone to mechanical loading could give insight 

into all this underlying physiological complexity. Given the current lack of consensus regarding 

fracture treatment protocols, a deeper understanding of the role mechanics play in fracture 

healing could ultimately also lead to better protocols and hence to better functional outcomes 

for patients. 

Micro-CT has been established as a common tool to study bone remodelling and fracture 

healing due to its ability to resolve bone at the microstructural level (Bouxsein et al., 2010; 

Morgan et al., 2009; Schulte et al., 2011; Tourolle né Betts et al., 2020; Wehrle et al., 2019). 

To analyse these micro-CT images, computational tools have been developed to quantify 

changes in bone morphology (Goulet et al., 1994; Hildebrand et al., 1999; Hildebrand and 

Rüegsegger, 1997; Odgaard and Gundersen, 1993; Rüegsegger et al., 1996; Wachter et al., 

2001; Whitehouse, 1974), to compute local mechanical stresses and strains (Chen et al., 2017; 

Hambli, 2013; Rüegsegger et al., 1996; van Rietbergen et al., 1995), to estimate physiological 

loading (Christen et al., 2012) and to quantify mechanoregulation, i.e. how much of the 

observed difference in bone structure can be attributed to local mechanical environments 

(Schulte et al., 2011; Tourolle né Betts et al., 2020). However, micro-CT only allows for 

longitudinal animal studies or cadaver studies. Since not all processes in animals and humans 
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are identical, e.g. age related bone loss known 

mouse models (Lambers et al., 2015), the development of high-resolution peripheral 

quantitative computed tomography (HR-pQCT) allows for the monitoring of distal radii and 

tibia in patients longitudinally. 

With the introduction of HR-pQCT, different computational approaches compared to those for 

micro-CT were used for many of the morphological parameters, to cope with the lower 

resolution of HR-pQCT (82 µm) devices compared to micro-CT (1-25 µm) (Ohs et al., 2020). 

For the assessment of mechanoregulation, a similar reason was given to develop an independent 

approach (Christen et al., 2014). The obvious drawback is limited comparability with existing 

animal studies. Validation studies showed only moderate agreement for a lot of the methods 

between animal studies and patient studies (Ohs et al., 2020). However, some studies have tried 

to use identical methods showing promising accuracy (Christen et al., 2016, 2013, 2012; 

MacNeil and Boyd, 2007). With the introduction of second generation HR-pQCT (61 µm), 

studies have started to utilize established animal study methods, given the increased resolution 

of second generation HR-pQCT. Nevertheless, so far, no one has addressed the quantification 

of mechanoregulation for this device generation.   

There are additional challenges when investigating the mechanoregulation of fracture. Soft 

tissue in general cannot be identified in micro-CT or HR-pQCT images. For animal studies, 

novel algorithms were developed to identify the fracture region in a defect model (Tourolle né 

Betts et al., 2020). For HR-pQCT, segmentation algorithms have been developed for intact 

bones to reduce inter-operator variability of manual hand-drawn approaches (Buie et al., 2007; 

Burghardt et al., 2010). However, even smaller cortical interruptions can lead to broken 

segmentations with these approaches (Ang et al., 2020; Buie et al., 2007; Soltan et al., 2019; 

Zebaze et al., 2013). Lately, active contours have been proposed to be used to segment HR-

pQCT images as they much better deal with cortical gaps (Caselles et al., 1997; Hafri et al., 

2016a, 2016b; Kass et al., 1988; Marquez-Neila et al., 2014), but these methods have not been 

adapted to work with HR-pQCT images of fractures. There is a need for an algorithm which 

can consistently contour both the healthy and fractured distal radius. 

Analysing only the mechanoregulation in bone can have the limitation that many treatments 

and therapies target the molecular level. Linking observed differences in mechanoregulation or 

morphology and the underlying biological complexity has proven to be difficult. In mice, two 

major approaches have been pursued. One is a combination of micro-CT images with 
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immunohistochemistry to spatially correlate changes in microstructure and local mechanical 

environments with cell locations (Scheuren, 2020; Trüssel, 2015). This approach, while 

powerful, is not applicable for clinical studies. The other approach is the use of computer-

models. A multi-physics model has been recently proposed that models the key molecular 

interactions in bone (Tourolle, 2019). By tuning parameters to fit observed mechanoregulation 

profiles, chemical concentrations and cell counts can be inferred. However, this model is still 

in its early development phase. A simpler mechanostat-based (Frost, 1987) approach (Schulte 

et al., 2013) has already been shown to realistically simulate osteoporotic bone structures on 

cadaveric micro-CT images (Badilatti et al., 2016). While not offering the same level of detail 

as the multi-physics model, separate mechanostat parameters responsible for formation or 

resorption can still narrow down the list of potential pathways to investigate. However, while 

this in silico model has been used successful on micro-CT images, in contrast to morphological 

analysis tools, it is not clear how the difference in resolution between HR-pQCT and micro-CT 

affects simulation accuracy. 

Therefore, the goal of this thesis was to 1) provide a computational framework to study fracture 

healing and 2) investigate the mechanoregulation of fracture healing in a patient cohort. To 

achieve these aims, a Python framework was developed that encompasses existing validated 

methods as well as providing a basis for future computational research in the bone field. To 

demonstrate the capabilities of the framework, a proof-of-concept bone adaptation algorithm 

including biological markers was developed studying the effect of mechanical disuse on bone. 

Furthermore, within this framework, the established mechanostat-based bone adaptation 

simulation by Schulte et al was implemented. An upscaling pre-processing step was studied to 

address issues of resolution dependent convergence. Moreover, a regularization pre-processing 

step was developed to deal with initialization shocks of this model. This implementation was 

used to generate fully mechanically regulated time series of bone adaptation which were used 

to evaluate the ability of the established mechanoregulation quantification algorithm to work 

on images with resolution and noise levels identical to those produced by HR-pQCT. To address 

segmentation of HR-pQCT fracture data, a novel active-contour based approach was developed. 

The evaluated mechanoregulation analysis and the contouring approach were then used to study 

mechanoregulation in fracture patients, comparing their fractured to their contralateral arm.
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5.2 Main findings and implications 
The studies of this thesis have shown that second generation HR-PQCT images contain enough 

information to apply micro-CT methodologies to them, from bone adaptation simulations to 

mechanoregulation analyses in fracture data, all within one computational framework. Firstly, 

a novel Boolean network based bone remodelling algorithm was introduced to demonstrate the 

ease with which novel technologies can be incorporated into the framework. Simulating 

physical disuse, the model predicted bone loss in agreement with what was found in astronauts 

(Shackelford et al., 2004). 

The next achievement was the realisation of accurate bone adaptation simulations on HR-

pQCT. Based on the work by Schulte and colleagues (2013) and motivated by the success of 

Badilatti and colleagues (Badilatti et al., 2016) to simulate osteoporotic structures on ex vivo 

human micro-CT scans, the bone adaptation algorithm was incorporated into the framework. 

Initialisation shocks, i.e. drastic changes in parameters during the first few iterations, were 

observed in alignment with previous studies (Badilatti et al., 2016; Schulte et al., 2013). A 

regularization pre-processing step was developed in which information from the grayscale 

image rather than from the binarized image was used for model initialisation. This reduced 

occurring initialisation shocks allowing for direct comparisons of simulation outcomes to 

clinically observed changes in bone microstructure. Furthermore, it was established that 

upscaling images with HR-pQCT resolution prior to running simulations led to accurate results 

in terms of morphometrics compared to simulations run on micro-CT images. A clear drop in 

accuracy was found without this additional upscaling showing a clear dependence on resolution 

as was also observed for other micro-CT methods (Christen et al., 2016; Müller et al., 1996). 

The drop in accuracy is in line with other studies that showed that no single threshold can be 

applied to HR-pQCT images to obtain both, accurate morphometric and accurate mechanics 

(Alsayednoor et al., 2018), the two key components of bone adaptation simulations. Thus, the 

groundwork for future simulation work has been laid with the findings suggesting that the 

information contained within images of HR-pQCT resolution is sufficient to recreate 

morphologically and mechanically accurate representations in silico. In particular, this 

questions the one to one correspondence between numerical mesh and image voxels primarily 

used with HR-pQCT images (Ohs et al., 2020). 
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The second achievement was the development of an accurate automated contouring approach 

for HR-pQCT images of distal radii. Observations of the current gold standard approach 

developed for intact radii failing to cope with larger cortical interruptions (Buie et al., 2007) 

and observations of inter-observer variability for hand-drawn contours motivated the 

development of an approach to use active contours. The developed approach was found to 

accurately contour images of fractured distal radii throughout the entire healing phase compared 

to hand-drawn contours. While no study has looked at fracture data so far, this result is in line 

with applications of active contours to ultra-distal scans in which cortical interruptions are also 

more prominent (Hafri et al., 2016b). Interestingly, the gold standard approach developed for 

intact radii was only successful on images one year post fracture, supporting evidence found 

that fracture healing could be a longer process than previously anticipated (de Jong et al., 2016). 

Furthermore, the gold standard approach was also found to struggle with contouring the 

contralateral images. This is in line with findings that radius fractures can be indicative of poor 

bone quality in general (Mallmin and Ljunghall, 1994).         

Building on work performed by Schulte and Colleagues (Schulte et al., 2013, 2011) on bone 

adaptation simulations and quantification of mechanoregulation, bone adaptation simulations 

were used to demonstrate that mechanoregulation can be obtained from images with HR-pQCT 

resolution and noise levels. Such a form of validation is similar to the bone resorption based 

one by Salmon and colleagues (Salmon et al., 2015). Mechanoregulation was detected for bone 

remodelling (Christen et al., 2014) and fracture repair with levels similar to those found in 

mouse studies (Tourolle né Betts et al., 2020). This supports evidence that the healing process 

in distal radius fractures can be assessed by HR-pQCT (De Jong et al., 2014). Furthermore, an 

increased mechanoregulation was found during the early stage of fracture healing. This is in 

contrast to animal studies, however they studied a large size defect, which differs significantly 

from a conservatively treated radius fracture (Tourolle né Betts et al., 2020). Interestingly, the 

late reparative phase shows similar levels of mechanoregulation which would support the 

hypothesis that fracture healing and bone adaptation share similar mechano-regulatory 

processes (Huiskes et al., 2000; Isaksson et al., 2009). 

5.3 Limitations and future research 
A limitation of the model in chapter 3.2 is its inability to capture different concentrations for 

different molecular markers. Markers are either present in a voxel or not which does not 
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represent physiological conditions. However, the main purpose of this model was to 

demonstrate the capabilities of the implemented framework to work with bone data. This 

already has spawned several new projects utilizing the framework (Scheuren, 2020; Tourolle, 

2019). The model by Tourolle and colleagues is a logical extension of the Boolean network 

approach in which molecular markers are stored as concentrations and molecular interactions 

happen via diffusion-reaction equations instead of Boolean logic. Such a model presents new 

research potential to simulate the effects of medication on morphological and mechanical 

properties of bone microstructure. 

A limitation of the validation study in chapter 3.3 is the lack of experimental data. Accuracy 

was only determined from downscaling micro-CT images with respect to micro-CT. No HR-

pQCT images of the same bone samples were taken. However, downscaling has already been 

used in several other studies to simulate HR-pQCT images (Christen et al., 2016; Liu et al., 

2011; Manske et al., 2015). Furthermore, simulations run on micro-CT images have already 

been shown to yield realistic results (Badilatti et al., 2016), providing a reasonable ground truth. 

Furthermore, while HR-pQCT images can in principle be obtained from cadavers, they do not 

incorporate other imaging artefacts typically associated with HR-pQCT, such as motion 

artefacts. On the other hand, using HR-pQCT images of patients lacks the necessary micro-CT 

ground truth. Therefore, future effort should be put into capturing changes observed in HR-

pQCT time-lapse images. These efforts, however, do not necessarily require the model used in 

chapter 3.3 (Schulte et al., 2013). Since one of the observations of chapter 3.3 was that HR-

pQCT obtains enough information to generate a morphologically and mechanically accurate 

representation of a scanned bone in silico, more advanced models could also be tested, such as 

the model by Tourolle (Tourolle, 2019). 

The major limitation of chapter 3.4, the development of an automatic fracture contouring 

algorithm for HR-pQCT images of distal radius fractures, is the variability found in the gold 

standard hand-drawn contours used for validation. While the approach was accurate within that 

variability, operators themselves did not always agree on the same contour lines. Especially 

fracture gaps in the cortex were sometimes identified as part of the fractured radius, and 

sometime as background. However, it is unclear, what the effect of this variability is on 

parameters of interest such as morphological indices or mechanical properties. Future studies 

should therefore investigate these effects and develop clear guidelines on how to draw these 

contours by hand for images of fractured radii based on these results. This way, automatic 
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contours can be combined with manual corrections such as is already the case for HR-pQCT of 

intact radii (Buie et al., 2007; Whittier et al., 2020) creating the best of both worlds. 

With respect to chapter 4.1, the study of mechanoregulation has very strict selection criteria for 

HR-pQCT images that can be used for analysis. Several pre-conditions limited the number of 

patients that could be included in chapter 4.1. First of all, some patients did not complete the 

study limiting the database to 75 patients. Secondly, poor image quality, mainly on the 

contralateral arm, prohibited accurate image registration and would also prohibit accurate 

identification of sites of formation and resorption, which are required for the analysis of 

mechanoregulation. Thirdly, fracture fragment movement could not be compensated for by the 

commonly used rigid body registration. This led to poor registration results for some regions 

resulting again in incorrect detection of formation and resorption. Future studies can improve 

upon this by enhancing retention rates for studies can be challenging but strategies have been 

developed to ensure that most patients finish the study (Norvell et al., 2016). To compensate 

for poor image quality, future studies should account for re-scans (Cheung et al., 2013) in their 

study protocol in case poor image quality is detected. Since the image quality of the 

contralateral site was poor most of the times, patients should be clearly informed about the 

importance of the contralateral scan. Fracture fragment registration has already been attempted 

(De Jong et al., 2017) but with the currently proposed method, much of the scanned volume has 

to be discarded. Further studies should be conducted to improve the usable volume of such 

registered images, as other artefacts such as stack gaps (another form of movement artefact) 

already limit the usable volume in scanned HR-pQCT multi stack fracture images. 

5.4 Conclusion  
In conclusion, the development of a computational framework and its application to study 

fracture healing on longitudinal HR-pQCT images of fracture patients was successful. We 

demonstrated how and that HR-pQCT images can be used to run accurate bone adaptation 

simulations. We showed how upscaling and regularisation leads to better in silico 

representations of bone structures scanned with HR-pQCT with respect to morphology and 

mechanics. We proposed a novel approach to automatically contour HR-pQCT images of distal 

radius fractures, avoiding time intensive operator-biased manual contouring. Application of this 

approach to HR-pQCT images of intact distal radii showed that the novel approach is more 

robust than the current gold standard with respect to ultra-distal scans and poor bone quality. 
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Combining these technologies, we demonstrated how bone adaptation simulations can be a vital 

tool in method validation, by demonstrating that mechanoregulation can be obtained from 

images with HR-pQCT resolution and noise levels. Analysing a patient cohort of fracture 

patients, we confirmed that human bone remodelling is load driven and we showed for the first 

time in vivo that human fracture healing is mechanically regulated on the microstructural level. 

The developed framework and the incorporated tools allow for comprehensive investigations 

of mechanoregulation in fracture patients. The successful utilization of HR-pQCT images for 

bone adaptation simulations indicate novel opportunities to study pharmaceutical interventions 

in humans in vivo. The successful application of animal-study tools used in the presented studies 

indicate that future HR-pQCT studies can employ such tools allowing for a stronger feedback 

cycle between labs and the clinics, helping to fully utilize both settings to unravel the 

mechanism governing fracture healing. 
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