
ETH Library

Exciton–polarons in two-
dimensional semiconductors and
the Tavis–Cummings model

Journal Article

Author(s):
Imamoglu, Atac; Cotlet, Ovidiu; Schmidt, Richard 

Publication date:
2021-04

Permanent link:
https://doi.org/10.3929/ethz-b-000480998

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
Comptes Rendus. Physique 22(S4), https://doi.org/10.5802/crphys.47

Funding acknowledgement:
178909 - Quantum photonics using van der Waals heterostructures (SNF)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0003-2776-269X
https://doi.org/10.3929/ethz-b-000480998
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5802/crphys.47
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Comptes Rendus

Physique

Atac Imamoglu, Ovidiu Cotlet and Richard Schmidt

Exciton–polarons in two-dimensional semiconductors and the
Tavis–Cummings model

Volume 22, issue S4 (2021), p. 89-96

<https://doi.org/10.5802/crphys.47>

Part of the Special Issue: Recent advances in 2D material physics

Guest editors: Xavier Marie (INSA Toulouse, Université Toulouse III Paul Sabatier,
CNRS, France) and Johann Coraux (Institut Néel, Université Grenoble Alpes,
CNRS, France)

© Académie des sciences, Paris and the authors, 2021.
Some rights reserved.

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Physique sont membres du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org

https://doi.org/10.5802/crphys.47
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org


Comptes Rendus
Physique
2021, 22, n S4, p. 89-96
https://doi.org/10.5802/crphys.47

Recent advances in 2D material physics / Physique des matériaux
bidimensionnels

Exciton–polarons in two-dimensional

semiconductors and the Tavis–Cummings

model

Exciton–polarons dans des semi-conducteurs

bidimensionnels et le modèle de Tavis–Cummings

Atac Imamoglu∗, a, Ovidiu Cotleta and Richard Schmidtb, c

a Institute for Quantum Electronics, ETH Zürich, CH-8093 Zürich, Switzerland

b Max Planck Institute of Quantum Optics, 85748 Garching, Germany

c Munich Center for Quantum Science and Technology, Schellingstrasse 4, 80799
Münich, Germany

E-mails: imamoglu@phys.ethz.ch (A. Imamoglu), ocotlet@gmail.com (O. Cotlet),
richard.schmidt@mpq.mpg.de (R. Schmidt)

Abstract. The elementary optical excitations of a two-dimensional electron or hole system have been iden-
tified as exciton-Fermi-polarons. Nevertheless, the connection between the bound state of an exciton and
an electron, termed trion, and exciton–polarons is subject of ongoing debate. Here, we use an analogy to the
Tavis–Cummings model of quantum optics to show that an exciton–polaron can be understood as a hybrid
quasiparticle—a coherent superposition of a bare exciton in an unperturbed Fermi sea and a bright collective
excitation of many trions. The analogy is valid to the extent that the Chevy Ansatz provides a good description
of dynamical screening of excitons and provided the Fermi energy is much smaller than the trion binding en-
ergy. We anticipate our results to bring new insight that could help to explain the striking differences between
absorption and emission spectra of two-dimensional semiconductors.

Résumé. Les excitations optiques élémentaires d’un système bidimensionnel d’électrons ou de trous ont
été identifiées comme des exciton-Fermi-polarons. Néanmoins, la connexion entre l’état lié d’un exciton et
d’un électron, appelé trion, et les exciton–polarons fait l’objet d’un débat permanent. Ici, nous utilisons une
analogie avec le modèle de Tavis–Cummings de l’optique quantique pour montrer qu’un exciton–polaron
peut être compris comme une quasi-particule hybride — une superposition cohérente d’un exciton nu dans
une mer de Fermi non perturbée et une excitation collective brillante de nombreux trions. L’analogie est
valable dans la mesure où l’Ansatz de Chevy fournit une bonne description de l’écrantage dynamique des
excitons et à condition que l’énergie de Fermi soit beaucoup plus petite que l’énergie de liaison des trions.
Nous espérons que nos résultats apporteront de nouvelles connaissances qui pourraient aider à expliquer les
différences frappantes entre les spectres d’absorption et d’émission des semi-conducteurs bidimensionnels.
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Two-dimensional (2D) semiconductors [1] such as monolayers of transition metal dichalco-
genides (TMD) have emerged as an exciting platform for investigating many-body physics and
strong correlations [2, 3]. Due to strong Coulomb interactions, the optical excitation spectra of
neutral TMDs are dominated by tightly bound excitons. The small Bohr radius aB of TMD exci-
tons leads to ultra-short radiative decay rates, in turn ensuring that in clean samples the exci-
ton resonance is predominantly radiatively broadened [4, 5]. Introduction of itinerant electrons
(holes) into the monolayer dramatically modifies the nature of the optical spectra and leads to the
emergence of a new absorption/reflection resonance near the energy of the three-body bound—
trion—state of an exciton and an electron (hole) [3]. It has been recently shown that the relevant
elementary optical excitations in this limit are excitons that are dynamically dressed by Fermi sea
electrons (holes), termed attractive or repulsive exciton–polarons [6–8].

The connection between attractive exciton polaron (AP) and trion excitations has been the
subject of ongoing debate. The oscillator strength for optical generation of a single isolated trion
by diffraction limited resonant light is fT ∼ fx (kphaT )2, where fx is the exciton oscillator strength,
aT is the trion Bohr radius and kph = ET /(ħc) is the momentum of a photon resonant with the
trion transition (ET ). In the presence of a finite electron density ne , it was predicted that the
oscillator strength would be proportional to ne [9–11], which is precisely the scaling one gets
for AP oscillator strength for low ne . The goal of this Letter is to shed new light on the relation
between AP and trion excitations by making use of the Tavis–Cummings (TC) model of quantum
optics [12].

1. Tavis–Cummings model

We start our analysis by recalling that the TC model describes an ensemble of Na two-level atoms
with an energy splitting ωeg between the ground (|g 〉) and excited (|e〉) states coupled to a single
cavity mode [12] of frequency ωc . The interaction Hamiltonian of this system is given by

Hint =
∑

i
g i

c (σi
eg ac +h.c.), (1)

where a†
c is the cavity creation operator and σi

eg denotes the raising operator of the i th two-level
atom. The cavity mode and atoms are coupled by the single-atom coupling rate g i

c which we, for
simplicity, assume to be identical for all atoms in the following, ∀i g i

c = gc .
The lowest energy excitation spectrum of the TC model consists of Na −1 dark states at energy

ωeg and two polariton states that can be expressed as a superposition of bare cavity and atomic
excitations. We refer to the lowest energy excited state as the lower polariton (LP) state, which can
be expressed as

|ΦLP〉 =
(
αa†

c +β
Na∑
i=1

σi
eg

)
|0〉. (2)

Here the state |0〉 describes the vacuum of the cavity and all atoms in their ground state. We
consider the case where the cavity frequency ωc is blue-detuned with respect to the atomic
transition ωeg by a detuning ∆=ωc −ωeg .

In the limit when the detuning ∆ is large compared to gc
p

Na , as well as the cavity (κc ) and
atomic (Γeg ) decay rates, one finds

α= gc

√
Na/∆. (3)
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For this parameter range the LP state is a predominantly bright (symmetric) excitation of Na

atoms, together with a small probability amplitude (α) for a single cavity-photon excitation. The
expression for α shows the well-known collective enhancement of cavity-atom coupling from gc

to gc
p

Na . As a result of this enhanced coupling, the LP state is red-shifted in energy as compared
to the Na −1 atomic dark states by an energy

ELP =α2∆= g 2
c Na/∆, (4)

provided that the cavity decay rate κc ¿ gc
p

Na (strong-coupling limit). It is important to
emphasize that the LP resonance is insensitive to inhomogeneous broadening of atomic energy
levels, provided that this broadening is smaller than ELP.

Our simplified discussion of the TC model did not account for the spontaneous emission of
the atoms: if the cavity-mode area is large compared to the square of the cavity-mode wavelength
λc , the total spontaneous emission rate of the atoms is hardly modified. In the opposite limit
where cavity-Purcell enhancement dominates the atomic decay, the atomic decay takes place
predominantly through a two-step process where coherent excitation exchange between the
atoms and the cavity is followed by cavity decay.

The TC model can be extended to a two-dimensional setting by assuming that the Fabry–Perot
cavity consists of two parallel mirrors and the atoms are embedded in a 2D lattice with a period
d ¿ λc . In this case, the in-plane momentum of the polariton excitations constitutes a good
quantum number. One may then define the collective atomic raising operator corresponding to
an excitation with momentum k,

σeg (k) =∑
j
σ

j
eg eik·R j , (5)

where the R j denote the atomic lattice sites. The ansatz for the lower polariton branch of the two-

dimensional TC model is then finally obtained by replacing ac by ac (k) and
∑

j σ
j
eg with σeg (k)

in (2).

2. Exciton–polarons

The Hamiltonian describing the interacting exciton–electron system in a TMD monolayer can be
written as [7, 8, 13]

Hxe =
∑

k
ωkx†

kxk +
∑

k
εke†

kek +
v

A

∑
k,k′,q

x†
k+qxke†

k′−qek′ . (6)

Here, ek and xk denote the annihilation operators of electrons and excitons with momentum k,
respectively. The electronic dispersion is εk = k2/(2me ). The exciton dispersion ωk = k2/(2mx ) is
defined with respect to the exciton energy Ex which we set to zero.

The contact coupling constant v characterizes the short-range interaction between excitons
and electrons and it is related to the trion binding energy by the Lippmann–Schwinger equation

v−1 =− 1

A

∑
|k|<Λ

1

ET +ωk +εk
. (7)

Here ET = ħ2/(2ma2
T ) denotes the trion binding energy, and 1/m = 1/mx +1/me is the reduced

mass. As evident from (7), the interaction is regularized by a UV cutoff Λ which can physically
be related to the inverse Bohr radius of the exciton. However, assuming that the exciton Bohr
radius is the smallest length-scale in the problem, one may take the limitΛ→∞ at the end of the
calculation.

C. R. Physique — 2021, 22, n S4, 89-96
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It has been shown [14,15] that the eigenstates of the interacting polariton–electron system can
be accurately described using the variational Chevy ansatz [16]

|ΨAP,p〉 =
(
φpx†

p +
∑
kq
φ

p
kqx†

p+q−ke†
keq

)
|Φ〉 (8)

=
(
φpx†

p +
∑
νq
η

p
νqt †

νp+qeq

)
|Φ〉, (9)

which expands the wavefunction in excitations of the non-interacting ground state |Φ〉 of the
electron system in the TMD monolayer. The variational ground state |ΨAP,p〉 is the so-called
attractive polaron (AP) of momentum p which describes the exciton as a quasiparticle dressed
by the attractive interactions with the Fermi sea of electrons.

In the second line of (8), we have introduced the creation operator t †
νl that generates a

composite trion state of center-of-mass momentum l in an internal state ν:

t †
νl =

∑
k
χl
νkx†

l−ke†
k. (10)

Here the states ν denote both bound trion as well as electron–exciton scattering states [13].
Importantly, while the sum over ν in (8) runs over all these composite states, for excitations
around the AP resonance the bound trion state is the most relevant one (ν = 0). For a zero-
momentum AP, Equation (8) can therefore be expressed as

|ΨAP,p=0〉 ≈
(
φ0x†

0 +χ0
∑

q
η̃qt †

qeq

)
|Φ〉, (11)

where φ0 ≡ φp=0, χ0η̃q ≡ η
p=0
ν=0,q. Equation (11) can be interpreted as describing a quasiparticle

where an exciton with momentum p = 0 is hybridized with a collective optical excitation of all
electrons in the Fermi sea. As we will show below, for low electron densities, where the Fermi
momentum kF satisfies k2

F a2
T ¿ 1, an AP excitation has a small probability amplitude (φ0) for a

bare exciton excitation.

3. Correspondence of the TC and exciton–polaron models

The forms of the LP and AP wavefunctions given in (2) and (11) already hint at a one-to-one
correspondence between the elementary excitations occurring in rather different experimental
systems. The equivalence of these two models can be clarified by identifying the correspondence
between the operators

σi
eg ⇐⇒ η̃qt †

qeq

a†
c ⇐⇒ x†

0

and key parameters

ωc ⇐⇒ Ex

ωeg ⇐⇒ Ex −ET

∆ ⇐⇒ ET

Na ⇐⇒ Ne =A ne =A k2
F /(4π)

ELP ⇐⇒ δE AP,
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where ne = k2
F /4π denotes the electron density in a single valley, A is the area of the TMD

monolayer, EF = ħ2k2
F /2me is the Fermi energy, and δE AP = −ET − E AP

p=0 is the energy differ-
ence between the AP and trion resonances. The wave functions of the LP and AP are related
by

β ⇐⇒ χ0

α ⇐⇒ φ0.

From this correspondence between the two models one would expect δE AP to satisfy an
expression similar to the one for ELP in (4). In fact, without calculation, the correspondence would
directly imply that δE AP =φ2

0ET . In the following, we demonstrate that this is indeed the case by
an explicit calculation.

To this end, we use the electron–exciton scattering T -matrix that accounts for effects of the
finite electron density [6, 17, 18],

T (p,ω)−1 = v−1 − 1

A

∑
|k|>kF

1

ω−εk −ωp−k + i0+
, (12)

where p and ω denote the total momentum and energy of the exciton and the electron. The
exciton self-energy is obtained from the T -matrix as:

Σx (p,ω) = 1

A

∑
|q|<kF

T (p+q,ω+εq). (13)

The quasi-particle weight |φp|2 in turn is given by

|φp|2 =
(
1− ∂

∂ω

[
Σx (p,ω)

]
ω=E AP

p

)−1

, (14)

where E AP
p denotes the energy of the AP at momentum p, as determined by the solution of the

Dyson equation [
ω−ωp −Σx (p,ω)

]∣∣
ω=E AP

p
= 0. (15)

We now focus on zero momentum p = 0. To obtain an analytical expression for φp=0, we
consider the low electron density limit where ET À EF . As shown in Appendix A in this limit
the exciton self-energy can be approximated by

Σx (ω) =Σx (p = 0,ω) ' ne Txe (0,ω), (16)

where the two-body T -matrix is given by

Txe (0,ω) = 2πħ2

m

1

ln[ ET
ω+i0+ ]+ iπ

(17)

' 2πħ2

m

ET

ET +ω . (18)

In the second line the T -matrix is evaluated for energiesω close to the pole atω=−ET , i.e. for the
condition |ET +ω| ¿ ET . Using this approximate expression for Txe (0,ω) evaluated at ω = E AP

p=0,
we obtain

|φp=0|2 ' (δE AP)2

ET

m

ne 2πħ2 . (19)

To express φp=0 in terms of the Fermi momentum kF and aT , we use the fact that the AP
resonance energy E AP

p=0 is given by the lowest energy pole of the exciton propagator, i.e. the

solution of (15). In the limit |ET −E AP
p=0|¿ ET , we obtain

δE AP =−ET −E AP
p=0 = ne

2πħ2

m
= me

m
EF . (20)

C. R. Physique — 2021, 22, n S4, 89-96
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Substituting for δE AP in (19), we thus arrive at the expression,

φ2
p=0 = k2

F a2
T . (21)

Equation (21) shows that the AP resonance has a collectively enhanced oscillator strength fAP =
k2

F a2
T fx . Finally, using (21) and (20), we find δE AP =φ2

0ET , verifying the perfect correspondence
between the LP and AP resonances of the two models.

4. Discussion of limitations

We emphasize that despite the remarkable correspondence between the LP and AP resonances,
the analogy between exciton–polarons and the TC model breaks down for the repulsive polaron
branch owing to the logarithmic energy dependence of the exciton–electron T -matrix, and
consequently of Σxe (p,ω). In contrast, the photon self-energy in the TC model is given simply
by g 2

c Na/(E −ωeg ).
The approximationΣx (ω,p = 0) ' ne Txe (0,ω) we used is valid either in the limit of low electron

density ne or if the electron mass were much larger than the exciton mass; this would be the case
if the monolayer is embedded in a 2D cavity with a small cavity length where the elementary
excitations are exciton–polaritons with a very light effective mass. In the absence of a cavity,
however, the fermionic nature of the electrons leads to a broadening of the trion transition of
order EF , which is in turn comparable to the shift of the AP resonance φ2

p=0ET . Consequently,
and unlike in the ideal TC model, the trion–hole pairs that contribute to the AP resonance do not
have identical energy. Nevertheless, within the Chevy description, the AP resonance is insensitive
to this broadening even for finite ne and is broadened exclusively by radiative decay arising from
its bare exciton character.

The analogy we developed uses the simplest Ansatz for describing correlated exciton–electron
states. In particular, this Chevy Ansatz does not capture the screening of trions by the Fermi sea of
electrons (for a discussion in the context of ultracold atoms see [19]); indeed, neglecting Coulomb
repulsion between electrons, it has been shown theoretically that dynamically screened trions
have lower energy than AP provided kF aT ≤ 0.1 [20–23].

Arguably, the most important difference between the exciton–electron system and the 2D
TC model is the drastic reduction of coupling of high momentum collective atomic excitations
to the corresponding cavity modes in the TC model. Since the effective cavity photon mass is
orders of magnitude smaller than that describing the collective atomic excitations, only the bright
symmetric atomic excitation couples appreciably to the cavity mode. In the limit of a 0D cavity,
this description becomes exact and justifies referring to the Na−1 antisymmetric excitations with
energy ωeg as dark states.

Due to the comparable effective masses of the exciton, electron and the trion, each trion–hole
pair state with total momentum p (t †

νp+qeq) hybridizes with the exciton mode xp. Therefore, in
the limit kF aT ¿ 1, only polaron states couple to light. Moreover, this coupling is proportional
to the quasi-particle weight |φp|2, i.e. it is exclusively due to the bare-exciton character of the
polaron. This argument of course does not preclude possible observation of single trion decay
in a nonequilibrium experiment such as photoluminescence [24]; if we ignore the dynamical
screening of trions, each single trion–hole pair state is a superposition of AP eigenstates. Even
in the presence of a finite electron density, an optically generated electron–hole pair could form
a trion with a single electron and subsequently decay by emitting a photon before the excitation
is spread throughout the sample to form the AP state at p ' 0.

In summary, we have developed an analogy between the interacting exciton–electron problem
in 2D materials and the TC model. Our work shows that the AP resonance can be described as a
hybridization of collective trion–hole pair excitations with excitons, which in turn ensures their

C. R. Physique — 2021, 22, n S4, 89-96
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enhanced coupling to external light fields. We emphasize that a simplistic picture describing
the total optical absorption strength as having contributions from all Ne = ALk2

F /(4π) electrons
within the excitation spot with area AL yields a similar result as what we obtain using the polaron
model. However, such a description would erroneously predict line broadening by EF and misses
out on the energy shift of the AP resonance (δE AP) from the single trion energy. Finally, the
collective nature of the polaron excitation with minimal disturbance of each electron ensures that
polaron excitation constitutes an invaluable nondestructive spectroscopic tool for investigating
strongly correlated states of electrons.
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Appendix A. Exciton self-energy at low doping

As shown in [25] the solution to the variational ansatz is equivalent to a non-selfconsistent
resummation of ladder diagrams. Thus we may express our results by using the language of
many-body field theory in terms of T -matrices and selfenergies. Generalizing [17] to the mass-
imbalanced case one finds the expression for the exciton selfenergy

Σx (p = 0,ω) =
∫
|q|<kF

d2q

(2π)2 Txe

×
[

1

2

(
ω+εq +ωq −2εTot

q −εR
F + i0+−

√
(ω+εq − ωq −εR

F )2 −4εx
Fωq − i0+

)]
,

(A1)

where we define εTot
q = q2/(mx+me ), εx

F = k2
F /(2mx ), and εR

F = k2
F /(2m). Since the integral extends

only up to |q| < kF and the pole of the polaron will be in the vicinity of ω ∼ ET at low electron
density we may expand the square root in (A1) to obtain

Σx (0,ω) ≈
∫
|q|<kF

d2q

(2π)2 Txe

[
ω+εq −εTot

q −εR
F + i0+

]
. (A2)

Inserting the expression for Txe given by (17) yields

Σx (0,ω) ≈ 2π

m

∫ kF

0

dqq

2π

1

ln

[
ET

ω−εR
F +γq2+i0+

]
+ iπ

(A3)

where we define γ= 1/2me −1/2mTot with mTot = me +mx .
Equation (A3) can be integrated analytically and gives

Σx (0,ω) ≈ ET

2mγ

[
li

(−ω+εR
F −γk2

F

ET

)
− li

(−ω+εR
F

ET

)]
(A4)

where li(x) is the logarithmic integral function. Expanding to second order in kF finally yields

Σx (0,ω) ≈− k2
F

2m

1

ln
(
−ω
ET

) = ne Txe (0,ω) (A5)

which proves (16).
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