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Abstract

Humans currently utilize 69-76% of the ice-free land surface. The associated Land Use
and Land Cover Change (LULCC) affects the local, regional, and global climate. The
climate impact of LULCC comprises the release or sequestration of greenhouse gases,
the biogeochemical effects, and the alteration of the local energy and water redistribution
at the land surface, the biogeophysical effects. Observations and models often disagree
on the size and even the sign of biogeophysical effects from LULCC, even though they
indicate that those effects are relevant for the local and regional climate. Most scenarios
that confine global warming levels to below 2 ◦C incorporate substantial alterations of
human land use, often to sequester greenhouse gases. It is therefore crucial to obtain a
thorough understanding of the biogeophysical effects of LULCC and reconcile them in
models with observations.

Clearing of natural forests for agricultural food production has been a widespread
LULCC in the past. This trend is now reverted in some of the developed countries. In
addition, re- or afforestation is frequently proposed as a tool to mitigate anthropogenic
greenhouse gas emissions. This thesis therefore investigates the biogeophysical effects
of re- or afforesting grassland and cropland, which is subsequently called forestation.
To this aim, I employ both climate model simulations and analysis of observational
data. In particular, I evaluate and undertake targeted improvements to reconcile the
local biogeophysical effect of forestation in the Community Land Model (CLM) with
observations. Further, I investigate whether forestation might affect precipitation in
Europe employing observational data sets.

In Chapter 2, I confront the local biogeophysical sensitivity of CLM to forestation
with various observational constraints. It appears that CLM agrees reasonably with
observations regarding the sensitivity of albedo, daily mean Land Surface Temperature
(LST), and daily maximum LST. Nonetheless, the albedo decrease following forestation is
more pronounced in CLM compared to remote sensing observations. The daily maximum
LST is distinctly lower in forests than over grassland/cropland both in observations and in
CLM with the exception of winters at higher latitudes. However, CLM exhibits a slight
positive bias in the daily maximum LST difference of forest minus grassland/cropland.
The latter bias appears to be linked to a pronounced underestimation of the increase
in EvapoTranspiration (ET) following forestation compared to various observational
constraints, which do however exhibit a substantial spread themselves. Subsequently, I
propose various modifications of the model to improve its ET sensitivity to forestation,
which also reduce the positive bias in the effect of forestation on daily maximum LST.
The simulated daily minimum LST difference between forest and grassland/cropland by
and large resembles the sensitivity of daily maximum LST, although somewhat weaker,
while remote sensing observations indicate that the daily minimum LST of forests is
often higher than the one of grassland/cropland. Overall, this study indicates that CLM
can represent some aspects of the local biogeophysical sensitivity to forestation well,
while further model development is required for other aspects to reconcile CLM with
observations.
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In the next chapter, I investigate whether the lack of Biomass Heat Storage (BHS)
in CLM is responsible for the identified biases in the sensitivity of daily maximum and
minimum LST to forestation. The cooling of daily maximum temperatures is marginal,
as most of the energy uptake by the vegetation biomass is compensated by a reduction
of the turbulent heat fluxes. On the other hand, this process results in a pronounced
warming of nighttime temperatures in forests, because the stable structure of the surface
layer at night inhibits the compensation of the energy release from the vegetation by the
sensible heat flux. The resultant nighttime warming frequently exceeds 2 ◦C in forests,
while BHS appears negligible for grassland and cropland, due their comparably small
amount of biomass. Given this diurnal asymmetry, BHS warms daily mean temperatures
in forested regions. CLM overestimates the diurnal temperature range in forests compared
to remote sensing observations, which is improved substantially after including BHS in
the model. Finally, I show that the inclusion of BHS alleviates the apparent deficiency of
CLM related to the impact of forestation on the daily minimum LST, which emerged in
Chapter 2. In summary, BHS strongly modulates nighttime temperatures in forests and is
also relevant for the daily mean temperature, while its impact on daytime temperatures is
only marginal.

In Chapter 4, I estimate alterations of precipitation from foresting agricultural land
in Europe, a biogeophysical effect that has been largely disregarded in observational
studies previously. This is done in two (almost independent) approaches: Firstly, I
identify suitable site pairs in two rain gauge data collections that differ by at least 20%
in the agricultural land and forest fractions. Secondly, I model the climatology of
a state-of-the-art spatially-continuous precipitation data set with Generalized Additive
Models (GAMs) to link precipitation to land cover. In both approaches, forestation is
estimated to increase precipitation locally, in particular during the winter months. The
structure of the GAMs further allows to estimate precipitation changes downwind of the
forestation locations. During winter, downwind precipitation increases in the southern
and western parts of Europe, while the signal is near-neutral to negative in central and
northern Europe. During summer, I find a downwind increase in precipitation due
to forestation. The combined local and downwind effect from a realistic reforestation
scenario are estimated to compensate a substantial fraction of the reduction in summertime
precipitation, which is expected under RCP4.5 by the end of this century in an ensemble
of regional climate models. While this study implies that forestation results in relevant
alterations of precipitation in Europe, I would also like to highlight that this study is novel
to the field and therefore more uncertain than the previous ones.

Forestation results in biogeophysical effects that are relevant for both the local and
regional climate. Such effects should be considered before utilizing forestation as a tool
to mitigate greenhouse gas emissions. Yet, many aspects regarding the biogeophysical
effects of LULCC in observations and models are still uncertain or unknown. In this
thesis, I demonstrate that BHS is relevant for the local climate in forests and should
consequently be included in the next generation of earth system models that are used
to assess the climate impact of LULCC. Further, I provide observational evidence of
changes in precipitation following forestation in Europe. LULCC induces therefore not
only temperature alterations, but also relevant modifications of the hydrological cycle,
which need to be considered when assessing the climatic consequences of LULCC.



Zusammenfassung

Der Mensch nutzt momentan 69-76% der eisfreien Landoberfläche. Die damit verbun-
denen Änderungen in der Landnutzung und –bedeckung (engl. LULCC für ”Land Use
Land Cover Change”) wirken sich auf das lokale, regionale und globale Klima aus.
Die klimatischen Folgen von LULCC lassen sich in biogeochemische und biogeophy-
sikalische Effekte unterteilen. Während biogeochemische Effekte die Emission und die
Sequestrierung von Treibhausgasen betreffen, beziehen sich die biogeophysikalischen
Effekte auf die Änderung der lokalen Energie- und Wasserverteilung an der Landober-
fläche. Beobachtungen und Modelle widersprechen sich häufig bezüglich der Grösse
und sogar des Vorzeichens von biogeophysikalischen Effekten durch LULCC, obwohl
beide zeigen, dass diese Effekte relevant für das lokale und regionale Klima sind. Die
meisten Klimaszenarien, welche die globale Erwärmung auf 2 ◦C beschränken, beinhal-
ten beachtliche Änderungen der menschlichen Landnutzung, meist um Treibhausgase zu
sequestrieren. Es ist daher von entscheidender Bedeutung, ein gründliches Verständnis
der biogeophysikalischen Auswirkungen von LULCC zu erlangen und diese in Modellen
mit Beobachtungen in Einklang zu bringen.

Die Abholzung von Wäldern zur Nutzung als Landwirtschaftsflächen war in der
Vergangenheit eine weitverbreitete LULCC. Dieser Trend wendet sich jetzt in einigen
Industriestaaten. Ausserdem steht Aufforstung als Massnahme zur Sequestrierung von
Treibhausgasen zur Debatte. Diese Arbeit untersucht daher die biogeophysikalischen
Effekte durch Aufforstung vonGras- undKulturflächen, was im Folgenden als Aufforstung
bezeichnet wird. Hierfür habe ich sowohl Simulationen mit Klimamodellen als auch
Beobachtungsdaten benutzt. Insbesondere habe ich die biogeophysikalischen Effekte von
Aufforstung im Landoberflächenmodell ”Community Land Model” (CLM) evaluiert und
gezielte Verbesserungen am Modell vorgenommen, um diese Effekte mit Beobachtungen
in Übereinstimmung zu bringen. Des Weiteren habe ich mit Hilfe von Beobachtungsdaten
analysiert, wie sich Aufforstung auf den Niederschlag in Europa auswirkt.

In Kapitel 2 wird die lokale Sensitivität von CLM gegenüber Aufforstung mit meh-
reren beobachtungsbasierten Datensätzen verglichen. Dabei zeigt sich, dass die Sensi-
tivität der Albedo, des Tagesdurchschnitts der Temperatur an der Landoberfläche (engl.
LST für ”Land Surface Temperature”) und des Tagesmaximums der LST (im Nach-
folgenden Tagesmaximum-Temperatur genannt) in CLM mit den Beobachtungsdaten
hinreichend übereinstimmt. Allerdings ist die Verringerung der Albedo aufgrund von
Aufforstung in CLM stärker ausgeprägt als in den Satellitendaten. Sowohl in den Beob-
achtungen als auch in CLM ist die Tagesmaximum-Temperatur in Wäldern geringer als
auf Gras-/Kulturflächen, abgesehen von den höheren Breitengraden im Winter. Diese
Temperaturdifferenz zwischen Wald und Gras-/Kulturland ist in CLM verglichen mit
Beobachtungsdaten zu positiv, was sich auf eine starke Unterschätzung der Erhöhung
von EvapoTranspiration (ET) durch Aufforstung zurückführen lässt. Die verschiedenen
Beobachtungsdaten, die ich für diesen Vergleich hinzugezogen habe, weisen jedoch selbst
eine grosse Spannweite auf. Darauffolgend schlage ich mehrere Modellmodifikationen
vor, um die Sensitivität von ET gegenüber Aufforstung zu verbessern, was gleichzeitig
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den positiven Fehler des Effekts von Aufforstung auf die Tagesmaximum-Temperatur
verringert. Für das Tagesminimum der LST gleicht die modellierte Differenz zwischen
Wäldern und Gras-/Kulturflächen im Grossen und Ganzen jener des Tagesmaximums,
ist aber etwas schwächer ausgeprägt. Dies steht im klaren Widerspruch zu den Beob-
achtungsdaten, in denen das Tagesminimum der LST von Wäldern häufig höher ist als
dasjenige von Gras-/Kulturflächen. Insgesamt weist diese Studie darauf hin, dass CLM
einige Aspekte der lokalen biogeophysikalischen Sensitivität gegenüber Aufforstung gut
wiedergeben kann, während für andere Aspekte weitere Modellentwicklungen von Nöten
sind, um CLM mit Beobachtungsdaten in Übereinstimmung zu bringen.

Im nächsten Kapitel untersuche ich, ob sich die oben beschriebenen Defizite der
Sensitivität des Tagesmaximums und des Tagesminimums der LST auf das Fehlen von
Wärmespeicherung in der Biomasse (engl. BHS für ”Biomass Heat Storage”) in CLM
zurückführen lassen. Der Kühlungseffekt von BHS auf die Tagesmaximum-Temperaturen
ist marginal, da der Grossteil der Energieaufnahme der Biomasse durch eine Reduktion
der turbulenten Wärmeflüsse kompensiert wird. Dagegen führt BHS zu einer deutlichen
Erwärmung von Wäldern in der Nacht, weil die stabile Struktur der atmosphärischen
Oberflächenschicht verhindert, dass die von der Biomasse freigegebene Energie durch
Änderungen des sensiblen Wärmeflusses kompensiert wird. Die resultierende nächtliche
Erwärmung übersteigt in Wäldern häufig 2 ◦C, wohingegen BHS für Gras- und Kul-
turflächen aufgrund derer vergleichsweise kleinen Biomasse vernachlässigbar zu sein
scheint. Wegen der beschriebenen tageszeitlichen Asymmetrie wärmt BHS auch die
Durchschnittstemperatur in Wäldern. CLM überschätzt den Tagesgang der LST in Wäl-
dern verglichen mit Satellitendaten deutlich, was durch die Implementation von BHS
im Modell merklich vermindert wird. Daneben wird auch die Abweichung des Effekts
von Aufforstung auf das Tagesminimum der LST behoben, die ich in Kapitel 2 gefunden
habe. Alles in allem verändert BHS den Tagesgang von Temperaturen in Wäldern stark
und ist auch relevant für das Tagesmittel der Temperatur, während die Auswirkung auf
Tagesmaximum-Temperaturen nur gering ist.

In Kapitel 4 habe ich die Veränderung des Niederschlags durch Aufforstung von
Landwirtschaftsflächen untersucht; ein biogeophysikalischer Effekt, der in beobachtungs-
basierten Studien bis anhin grösstenteils vernachlässigt wurde. Hierzu habe ich zwei
(beinahe vollständig unabhängige) Ansätze verwendet: Erstens habe ich geeignete Paare
von Regenmessstationen identifiziert, deren Umgebung sich um mindestens 20% in den
Anteilen an Wäldern und Landwirtschaftsflächen unterscheidet. Zweitens habe ich die
Klimatologie eines modernen, räumlich kontinuierlichen Niederschlagsdatensatzes mit
verallgemeinerten additiven Modellen (engl. GAMs für ”Generalized Additive Models”)
modelliert, um einen Bezug zwischen der Landbedeckung und dem Niederschlag herzu-
stellen. In beiden Ansätzen scheint Aufforstung den Niederschlag, insbesondere während
des Winters, lokal zu erhöhen. Aufgrund der Struktur der GAMs lässt sich ausserdem
die Veränderungen im Lee der aufgeforsteten Lokalitäten bestimmen. Im Winter erhöht
sich der Niederschlag windabwärts in Süd- und Westeuropa, während der Effekt in Zen-
traleuropa nahezu neutral und in Nordeuropa negativ ist. Im Sommer erhöht sich der
Niederschlag windabwärts von Aufforstung beinahe flächendeckend. Der kombinierte
lokale und windabwärts gerichtete Effekt eines realistischen Aufforstungsszenarios kom-
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pensiert einen beachtlichen Anteil der sommerlichen Niederschlagsabnahme, welche von
einem Ensemble regionaler Klimamodelle gegen Ende dieses Jahrhunderts unter RCP4.5
prognostiziert wird. Während diese Studie darauf hinweist, dass Aufforstung relevante
Veränderungen des Niederschlags in Europa hervorruft, muss berücksichtigt werden, dass
sie im Forschungsfeld neuartig ist und daher grössere Unsicherheiten aufweist als die
beiden vorangehenden Studien.

Zusammengefasst resultiert Aufforstung in biogeophysikalischen Effekten, welche
für das lokale und das regionale Klima relevant sind. Solche Effekte sollten beachtet
werden, bevor Aufforstung zur Kompensation von Treibhausgasemissionen genutzt wird.
Dennoch sind viele Aspekte bezüglich der biogeophysikalischen Effekte durch LULCC
in Modellen und Beobachtungen noch unsicher oder gar unbekannt. In dieser Arbeit
zeige ich auf, dass BHS für das lokale Klima in Wäldern relevant ist und daher in der
nächsten Generation von Erdsystemmodellen aufgenommen werden sollte, welche zur
Bestimmung des Einflusses von LULCC auf das Klima herangezogen werden. Ausserdem
lege ich mit Beobachtungen dar, dass Aufforstung den Niederschlag in Europa ändern
kann. LULCC rufen daher nicht nur Temperaturveränderungen, sondern auch relevante
Änderungen des Wasserkreislaufs hervor, welche bei der Abschätzung der klimatischen
Folgen von LULCC berücksichtigt werden sollten.
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1
Introduction

The services of land to humans are plentiful: Land not only provides a habitat to humans,
but is also crucial for food, fiber, energy, and wood production and serves as a recreational
space. It is therefore not surprising that an estimated 69-76% of the land surfaces is
currently directly affected by human land use (IPCC 2019a). This widespread use of
land has not occurred without leaving marks at the land surface. More than half of the
natural forests have been cleared since 1765, often to be used as cropland or pasture
(Meiyappan and Jain, 2012). Land Use and Land Cover change (LULCC) has lead to
an estimated release of 210±60GtC since pre-industrial times, accounting roughly a
third of the total anthropogenic GreenHouse Gas (GHG) emissions (Friedlingstein et al.,
2020). While land-use related alterations of the climate system have taken a somewhat
secondary role behind the combustion of fossil fuels over the last century (IPCC 2014),
land use is still a key component of climate change both on the problem and the solution
side. Further, unintentional land degradation for example from soil erosion endangers the
services provided to humans by land. 8-45% of the ice-free land area have been degraded
to date (Gibbs and Salmon, 2015), a problem which will most likely become exacerbated
by climate change (IPCC 2019e).

Over the last three decades, awareness grew that LULCC), in particular deforestation,
not only affects climate through the release or sequestration of greenhouse gases, but also
through directly altering the energy and water redistribution at the land surface (e.g., Sud
et al., 1996; Betts, 2001; Bonan, 2008; Pitman et al., 2009; Davin and deNoblet-Ducoudré,
2010; Pongratz et al., 2010; Devaraju et al., 2015; Ellison et al., 2017). This later category
of consequences is commonly referred to as biogeophysical effects of LULCC, while
direct alterations of the atmospheric GreenHouse Gas (GHG) content due to LULCC are
called biogeochemical effects. Depending on the climate zone, the biogeophysical effect
of deforestation may dominate the biogeochemical one (Claussen et al., 2001; Randerson
et al., 2006; Bala et al., 2007; Bathiany et al., 2010). Biogeophysical effects are the result
of the alteration of several properties of the land surface, whose importance varies in
space and time. This poses a challenge to observational studies and climate models, which
has not been fully solved to date (Perugini et al., 2017). This thesis is a contribution to

1



Occurrence of LULCC and LCC 2

foster our understanding of the biogeophysical consequences of de-, re-, or afforestation.
In particular, I investigate the biogeophysical effect of forestation, defined as afforestation
or reforestation of grassland and crops.

In this first chapter, I provide a brief overview of the current state of the research on
extent and occurrence of LULCC and its biogeophysical effects. Section 1.1 describes
the extent of LULCC in the past and the potential occurrence of LULCC in the future.
The next section makes a clear distinction between biogeochemical and biogeophysical
effects of LULCC and highlights an important complication with the latter category of
effects. Section 1.3 summarizes the most relevant observation-based and model-based
approaches to estimate biogeophysical effects of LULCC. In the following section, I
embrace the known biogeophysical consequences of forestation. And finally, I concretise
the objectives of this thesis and introduce the studies it comprises.

1.1 Occurrence of LULCC and LCC

Before I continue to write about LULCC, I would like to properly define this expressions
and some additional related expressions. LULCC encompasses alterations in both Land
Use (LU) and Land Cover (LC), for which I follow the definitions of Pongratz et al.
(2018). Land use refers to the purpose for which humans use a specific land area, such as
forestry or cropping, and how they manage the land to serve this purpose (e.g., tillage or
fertilization). On the other hand, LC describes the properties of the land surface and is
often categorized into broad land cover classes, such as forest or cropland. Forestation
of grassland and crops corresponds therefore always to a LC Change (LCC), but not
necessarily to a LU change. As a biogeophysical effect always requires an alteration of
the properties of the land surface, I will use the expression LCC in this context. The term
LULCC is used for anthropogenic changes in LC or LU in this thesis, excluding LCC that
occurs naturally or indirectly through human-induced climate change.

1.1.1 Extent of human LU
An estimated 15.9-18.8 Million km2 and 22.8-32.8 Million km2 were used as cropland
and pasture in 2015, respectively, corresponding together to roughly a third of the total
ice-free land area (IPCC 2019b). LU for food production has a long history. Already
more than a millennium ago, humans have used a considerable fraction of the land area,
to an uncertain extent however. Pongratz et al. (2008) estimate that 2.8 Million km2 were
used as agricultural land in 800 AD, while Kaplan et al. (2011) report that 18 Million km2

were affected by LULCC in 950 AD, which corresponds to 12.6% of the ice-free land.
Rapid population growth has led to a strong expansion of agricultural land over the last
three centuries (Ramankutty and Foley, 1999; Ma et al., 2020). This expansion has partly
come at the expense of forests. Approximately 55% of the natural forests disappeared
between 1765 and 2005 (Meiyappan and Jain, 2012). Such net numbers hide that the LC
may change several times. For example, agricultural land may be abandoned to grow a
secondary forest (Hurtt et al., 2006; Hurtt et al., 2011; Hurtt et al., 2020). In addition,
forests are frequently managed to provide wood as a fuel or construction material. Only
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17% of the European forests are estimated to be unmanaged currently (McGrath et al.,
2015). As of today, merely 50% of the ice-free land surface is classified as low human
impact areas (Fig. 1.1; Jacobson et al., 2019) and only 24-31% as unused land (IPCC
2019b). In summary, humans have altered the LC substantially in many regions of the
world, which, as we know today, has affected the climate on earth.

Figure 1.1: Global map of the intensity of human impacts. The majority of impacted cells have more
than one impact. Different impacts are related to the presence of human settlements, the presence of
agricultural land, and anthropogenic LCCs at 1 km resolution. From Jacobson et al. (2019).

1.1.2 Forest-related LCC over the last decades
The loss of primary forests has accelerated drastically over the last three centuries (Hurtt
et al., 2020). From 2000 to 2012, forest loss amounted to 2.3 Million km2 or 2.1% of
the ice-free land (Fig. 1.2; Hansen et al., 2013). Brazil alone lost more than 40’000 km2

of forest in 2003, corresponding to roughly the area of Switzerland. While many tropical
and sub-tropical regions have experienced fast rates of deforestation in the recent past,
agricultural land is increasingly abandoned in industrialized countries, often to regrow
forests. The deforestation mentioned above was therefore partly compensated by 0.8
Million km2 forest gain from 2000 to 2012 (Fig. 1.2; Hansen et al., 2013). In the EU
countries alone, the total forest area increased by 0.3 Million km2 with roughly the same
loss of cropland between 1950 and 2010 (Fuchs et al., 2013; Fuchs et al., 2014; Fuchs
et al., 2015). China as another example has launched several afforestation programs
(Zhang et al., 2016), which promoted a 0.3 Million km2 increase in the forest area from
1999 to 2013 (Chen et al., 2019).

Forest loss can also result from natural disturbances, which become more likely due
to anthropogenic climate change. Widespread disturbances by forest fires and bark beetle
outbreaks were more frequent during the last two decades than previously (Safranyik et al.,
2010; Ghimire et al., 2012; Hicke et al., 2015). Between 2000 and 2010, 0.18 Million
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km2 of forests were affected by bark beetles in western North America alone (Edburg
et al., 2012), resulting in detectable alterations of surface albedo and evapotranspiration
(Maness et al., 2013; Vanderhoof et al., 2013; Vanderhoof and Williams, 2015). Overall,
forest-related LCCs were a wide spread phenomena over the last decades across the world,
which will likely persist into the future.

Figure 1.2: Forested areas with no change in forest cover (green), forest loss (red), forest gain (blue),
and concurrent loss and gain (purple) between 2000 and 2012. From Hansen et al. (2013).

1.1.3 Future LULCC
The human population on Earth is growing rapidly at an annual growth rate of 1.2%
in 2015 and expected to reach 9.73 billion by 2050 (FAO 2017). The combination of a
growing population and dietary shifts due to increasing wealth is expected to increase the
demand for agricultural production by roughly 50% in 2050 compared to 2013. Most
likely, such an increase in food production cannot be met solely by intensification, creating
a demand for more agricultural land, potentially at the expense of forests.

In 2016, representatives from 196 countries agreed to confine the global mean
temperature to well below 2K above pre-industrial levels by signing the Paris Agreement.
As such, anthropogenic climate change has created a novel form of LU: land-based
mitigation of greenhouse gas emissions. A number of land-based strategies to sequester
GHGs were proposed, some of which exhibit a high potential (Fig. 1.3). However, the
spread of the estimated potential for GHG mitigation is often substantial. Climate change
scenarios that result in the lower range of global warming levels typically include some
form of forestation (IPCC 2018; IPCC 2019e), as the forest biomass is a natural carbon
reservoir. Griscom et al. (2017a) estimate that 10GtCO2 could be removed annually
by reforestation, corresponding to roughly a quarter of the present-day GHG emissions,
without harming security safeguards for food and fiber production. However, this value
is at the higher range compared with the potential reported by the IPCC, which amounts
to 0.5-10.2 GtCO2/yr (Fig. 1.3; IPCC 2019d).

But land-based solutions go beyond simply reverting the deforestation of the past.
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Bio-Energy with Carbon Capture and Storage (BECCS) is a component of many lowGHG
concentration scenarios (Azar et al., 2010; IPCC, 2018; IPCC, 2019c). The inclusion of
trees on agricultural land in agroforestry systems is another promising tool to sequester
carbon from the atmosphere (Zomer Robert J. et al., 2016; Swamy and Tewari, 2018).
Besides the sequestration of GHGs, LU can also be optimized to mitigate climate change
through biogeophysical mechanisms. For example, the albedo of the land surface could
be increased to reduce the amount of absorbed shortwave radiation (Seneviratne et al.,
2018). In summary, the way humans utilize land will be a central factor for the future
development of the climate. It is therefore pivotal to understand all relevant climatic
consequences of LULCC.

Figure 1.3: Overview of estimated greenhouse gas mitigation potential of various land-based
LULCC strategies in 2020–2050, measured in GtCO2-eq/yr. Only studies that were published after
2010 were considered. Purple and blue bars show the range from integrated assessment models for
the 1.5◦ and 2◦ scenarios, respectively. From IPCC (2019c).

1.2 Definition and characterization of biogeophysical effects

The climatic consequences of LULCC are often divided into biogeochemical and bio-
geophysical effects. The first category of effects refers to the release or sequestration of
greenhouse gases such as CO2, CH4, or N2O by the land surface due to LULCC (I use
the term LULCC here, because a specific LU, such as BECCS can affect atmospheric
greenhouse gas concentrations without any LCC). Such gases are distributed relatively
efficiently within the atmosphere and can therefore be directly added to other anthro-
pogenic greenhouse gas emissions such as fossil fuel combustion. The climatic of the
biogeochemical effects of LULCC can therefore be deduced from the overall sensitivity
of the climate to anthropogenic GHG emissions. The challenge remaining to the scientific
community is to quantify the release or sequestration of GHG by LULCC. This has been
done through measuring fluxes of chemical species at the land surface and upscaling them
(e.g., Jung et al., 2011), estimating the biomass within different biomes and therefrom the
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amount of the chemical species stored within them (e.g. Tyukavina et al., 2015), or using
earth system models, which represent chemical cycles (e.g., Bala et al., 2007; Pongratz
et al., 2009; Pongratz et al., 2010).

The term biogeophysical refers to all naturally occurring objects and processes of
biological, geological, or physical nature operating in an area of interest (USDA, 1976).
In the context of LCC it refers to any alterations of the water and energy redistribution at
the land surface due to LCC and their potential local and remote consequences. Prominent
biogeophysical effects of LCC include changes in albedo, the evaporative fraction, and
the surface roughness, which will be examined in more detail in Section 1.4. Fig. 1.4 (a)
illustrates biogeophysical effects due to a LCC at one specific location. This LCC will
affect the local conditions directly by altering the local energy and water redistribution at
the land surface (e.g., a decrease in albedo will result in the absorption of more shortwave
radiation and consequently in an increase of the LST). Such local biogeophysical effects
are called ∆Xl throughout this thesis, where X can be any variable describing the
local conditions and ∆X corresponds to a temporal change in X caused by LCC. ∆Xl

depends on the atmospheric and radiative conditions, which change with location on
earth and time (e.g., ∆Xl of a change in albedo depends strongly on the amount of
incoming shortwave radiation). Thus the biogeophysical effect of one specific LCC
varies spatially and temporally. Further, the LCC will alter the atmospheric conditions,
which will in term affect the local climate, thereby potentially generating a feedback
from the atmosphere. Such alterations of the atmospheric conditions can propagate
for example through advection to locations in the proximity (i.e., locations where no
LCC has occurred), which may affect the climate at those locations. For example, an
albedo decrease due LCC might warm atmospheric temperatures above the location of
LCC resulting both in locally increased convective activity and increased temperatures in
proximity. Thus, a LCC can trigger remote biogeophysical effects, ∆Xrem, which should
ideally be quantified alongside ∆Xl.

Even for the case of one isolated LCC, the quantification of ∆Xl and ∆Xrem based
on modeling or observations is not trivial, as the climate system is evolving constantly
due to other factors such as internal variability or climate change. In reality, LCCs occur
concurrently at different locations on earth, making the scenario in Fig. 1.4 (a) somewhat
synthetic. This evokes a further complication, which is exemplified in Fig. 1.4 (b) for two
LCCs that occur at the same time. The effect at the location of LCC1 is now influenced
by LCC2 and vice versa through remote effects. Hence, any LCC-induced changes in the
local conditions at locations that underwent LCC is no more attributed unequivocally to
the LCC at the respective location. In Fig. 1.4 (b) the overall effect is therefore denoted
as ∆Xtot instead of ∆Xl. Similarly, ∆Xrem is now the result of both LCCs, complicating
its attribution to one specific LCC. It is unsure to which extent the biogeophysical effects
from different LCCs are additive (e.g., whether ∆Xl + ∆Xrem = ∆Xtot holds). The
superposition of biogeophysical effects from various LCCs therefore further complicates
their quantification.

An ideal method to estimate the biogeophysical effect from the LCC of interest would
exhibit the following features: (1) It can distinguish biogeophysical effects due to this
LCC from the background variability of the climate. This includes the distinction from
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biogeophysical effects induced by LCCs at locations other than the location of interest.
(2) It can estimate the biogeophysical effect of this LCC at all locations where it is
relevant. (3) It quantifies both ∆Xl and ∆Xrem. (4) It captures temporal variations in
the biogeophysical effect of this LCC. A step beyond a method that fulfills these criteria
would be to investigate the superposition of the biogeophysical effects from various
LCCs. Observation-based and model-based studies face different challenges and employ
therefore also differing strategies to quantify biogeophysical effects of LCC, which will
be described in the next section.

Figure 1.4: Graphical illustration of biogeophysical effects due to LCC (forestation here). On the
left, state prior to occurrence of LCC (world of four grassland locations) and to the right, state after
LCC. Panel (a), local (∆X l) and remote (∆Xrem) biogeophysical effect due to alteration of the LC at
one location (lower left box). In red, boxes that are affected by remote biogeophysical effects and in
blue, boxes that are affected by local biogeophysical effects. Panel (b), biogeophysical effect due to
LCC at two locations (lower left and upper right boxes) at locations where LCC occurred (∆X tot)
and were LCC did not occur (∆Xrem). Note that there are now both local and remote effects at the
locations with LCC. ∆X refers to a temporal change in any variable X that might be altered through
biogeophysical processes (e.g. LST).

1.3 Methodological approaches to estimate biogeophysical effects
of LCC

As described in Section 1.1, LCC have not only been a widespread phenomena in the past,
but are still ongoing and will most likely also occur in the future, be it as an adaptation or
mitigation tool for climate change or just to satisfy the increasing demand of land for food
production due to the growing world population and dietary shifts. The quantification of
the biogeophysical effects of LCC is therefore required both by the scientific community
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to understand the climate of the past and more importantly by decision makers to reach
well-informed decisions. Ultimately, decision makers need to know ∆Xtot and ∆Xrem of
the LCC(s) under consideration. Further, knowledge of ∆Xl and ∆Xrem of any relevant
LCC at all relevant locations in isolation would be useful to develop LCC scenarios.
Unfortunately, observation-based and model-based approaches both face difficulties to
infer this information directly. This section provides an overview of the methodological
approaches present in the scientific literature to date, including their advantages and
disadvantages. The most important points are summarized in Table 1.1.

1.3.1 Observation-based approaches
Observation-based approaches to quantify biogeophysical effects of LCChave to overcome
two main challenges. Firstly, the execution of a controlled experiment, where a land area
of sufficient extent would be converted just for scientific purposes, is costly and hence in
most cases unfeasible. This issue is aggravated by the fact that properties of vegetation
and their biogeophysical effects change with climate. A large number of experiments
would be required to properly quantify the biogeophysical effects of all relevant LCC
at all locations of interest. Therefore, observation based studies have to rely either on
existing distribution of the LC and/or the LCC that occur anyway. Secondly, the climate
system evolves constantly through natural variability and anthropogenic drivers other
than biogeophysical effects of LCC. This impedes the distinction of the biogeophysical
response to a LCC from the noise of the background climate.

The so-called space-for-time analogy is an often-used strategy to alleviate both of
the aforementioned problems. The basic principle of this approach is to compare the
measured variables over two different LCs that are located in vicinity to each other, under
the assumption that they receive the same atmospheric forcing. Given this assumption
holds, the difference in any variable between the two LCs would correspond to the
biogeophysical effect induced by a conversion between those two LCs, as any other
temporal trend in atmospheric conditions should be the same at the two locations. A
slight modification of this is to compare locations that underwent LCC to locations where
no LCC occurred during the same period. This latter approach provides a clearer causal
link between the occurring LCC and the change in climate, particularly if it can be
demonstrated that the climate at two locations was comparable prior to the LCC. However,
samples are more scarce than in a spatial comparison of different LCs, because continuous
measurements are required at locations that undergo LCC.

Up to present, the space-for-time analogy was applied to two categories of measure-
ments. The first studies providing an observational constraint of the biogeophysical effects
of LCC compare in-situ measurements at close-by locations of differing LC. Typically,
these studies employ measurements from FLUXNET sites (da Rocha et al., 2004; von
Randow et al., 2004; Liu et al., 2005; Juang et al., 2007; Teuling et al., 2010; Lee
et al., 2011; Luyssaert et al., 2014; Zhang et al., 2014; Vanden Broucke et al., 2015;
Chen et al., 2018; Cherubini et al., 2018b; Tang et al., 2018; de Oliveira et al., 2019).
FLUXNET sites provide a comprehensive list of measured variables, facilitating the
physical understanding of the underlying mechanism of observed temperature differences.
The study of Lee et al. (2011) is a prominent example of this category of studies in the



context of the biogeophysical effect of deforestation, investigating a collection of paired
sites in North America rather than a single site pair (Fig. 1.5). An important limitation
of in-situ studies is the limited amount of available site pairs. Noteworthy, Bright et al.
(2017) upscaled FLUXNET measurements of specific LC types to global scale through
empirical relationships to retrieve estimates of the biogeophysical effect of several LCCs
with global coverage.
(a)

(b)

Figure 1.5: Location of the forest/open land
site pairs presented in Lee et al. (2011) (a).
Panel (b) shows the mean across sites in daily
maximum and minimum temperatures for the
forest (solid lines) and the open land sites
(dotted lines) located south of 45◦ N (blue
lines) and north of 45◦ N 56◦ N (red lines).
From Lee et al. (2011).

The emergence of remote sensingmeasure-
ments that cover several years has opened a sec-
ond avenue of observation-based studies on the
biogeophysical effects of LCC. These studies
typically employ a moving window approach,
where grid cells of differing LC or differing LC
conversion rates are contrasted within moving
windows of a certain size (Fig. 1.6; Peng et al.,
2014; Li et al., 2015; Alkama and Cescatti,
2016; Li et al., 2016b; Bright et al., 2017;
Schultz et al., 2017; Duveiller et al., 2018b;
Tang et al., 2018; Chen and Dirmeyer, 2019b;
Forzieri et al., 2020; Zeppetello et al., 2020).
However, there exist slight variations in the
strategy to find spatial comparison samples
(e.g., Ge et al., 2019). Since the employed
remote sensing products typically cover the en-
tire globe, the spatial coverage of these studies
is much better than for the paired in-situ site
studies (Fig. 1.7). However, the variety of vari-
ables that are measurable from space is limited.
The Land Surface Temperature (LST) and the
albedo can be estimated at relatively high cer-
tainty by measuring the radiation emitted by
the land surface and the shortwave fluxes at the
land surface, respectively. On the other hand,
the 2m air temperature (T2M), the sensible
heat flux, and the latent heat flux can not be
measured easily from space, as they are not

directly linked to radiative fluxes. The inability to measure T2M could be problematic
as modeling studies suggest that it might respond differently to deforestation than LST
(Chen and Dirmeyer, 2019a; Winckler et al., 2019b; Breil et al., 2020). Further, the
uncertainty in the turbulent heat flux estimates impedes the understanding of the processes
behind the estimates of the LST response to LCC. The moving window approach results
in typical window sizes of 0.25–0.5◦, which can impede the assumption of the same
atmospheric forcing within the windows in particular in regions with complex topography.
More advanced statistical methods, such as generalized additive models, that allow to
incorporate climatic drivers other than LC are a promising tool to alleviate this problem
(e.g.; Schwaab et al., 2020), which will be used in Chapter 4.



Figure 1.6: Graphical illustration of the moving window approach to reconstruct the biogeophysical
response to deforestation at the blue-edged grid cell. The numbers indicate the change in tree fraction
between the preindustrial and present-day periods in each grid cell. Red grid cells are high-LCC
grid cells, in which the tree fraction has decreased by more than 15%, while green grid cells are
low-LCC grid cells, in which the tree fraction has decreased by less than 15% or increased. Light
blue grid cells are ocean or lake grid cells. Note that the nomenclature in this figure is different
from the rest of this thesis. "LCC impact" corresponds to ∆X l, while ∆X in this figure stands for a
temporal change in the average of variable X rather than the biogeophysical response of variable X
to LCC. From Lejeune et al. (2017).

Figure 1.7: Annual mean LST difference of forest
minus open land (grassland and crops) at 13:30
(a), 1:30 (b), and daily average (c). From Li et al.
(2015).

A major caveat of the space-for-time
analogy is its inability to properly disen-
tangle direct local biogeophysical effects
from the indirect ones that act through
the alterations of atmospheric conditions
(Chen and Dirmeyer, 2020). When com-
paring locations of differing LC or LC
conversion rates, measurements at one
location will be influenced to some ex-
tent by the LC at other locations (∆Xrem).
This approach therefore determines in fact
∆Xtot - ∆Xrem, which is likely a good ap-
proximation of ∆Xl. However, it is dif-
ficult to assess from observations alone
whether this holds, as only few studies
have attempted to quantify ∆Xrem. Cohn
et al. (2019) showed that nearby forest
loss increases daily maximum air temper-
atures over cropland in Brazil. Also, the
amount of precipitation in tropical region
increases when the respective air mass has
overpassed more vegetation (Spracklen
et al., 2012). These studies imply that

∆Xrem is indeed not negligible and should therefore be quantified alongside local effects.
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1.3.2 Model-based approaches
Earth System Models (ESMs)∗ have two major advantages over the real world in terms
of quantifying biogeophysical effects: First, the alteration of LC in the modeling world
comes at virtually no cost (although model simulations can of course still require high
amounts of computational resources). Second, the implied LCC occurs only in the
modeling world and does therefore not affect the services provided by the land in the
real world. For example, the biogeophysical effect of foresting all agricultural land on
earth can be estimated in ESMs without financing an exorbitant re- and afforestation
program and without starving the world population. However, the land surface is highly
heterogeneous and a vast number of biological, physical, and chemical processes occur at
the land surface at the same time. As a consequence, land surface models (LSMs) are not
the numerical implementation of a well-defined set of physical laws, but rely heavily on
parametrisations. Hence, the biogeophysical effect of LCC produced in ESMs needs to
be verified carefully with observations before it can be trusted. Unsurprisingly, numerous
studies have highlighted strong discrepancies among ESMs and/or between ESMs and
observations (de Noblet-Ducoudré et al., 2012; Kumar et al., 2013; Lejeune et al., 2017;
Davin et al., 2020).

In total there exist fourwidely-used approaches to assess biogeophysical effects of LCC
with models: (1) The factorial experiment, (2) the reconstruction method, (3) the sub-grid
comparison, which will is employed in Chapters 2 and 3, and (4) the chessboard approach.
The most intuitive and therefore first-emerging method is the factorial experiment, which
compares two simulations of the same set up except for the LC (Oleson et al., 2004; Bala
et al., 2007; Davin et al., 2007; Pongratz et al., 2010; de Noblet-Ducoudré et al., 2012;
Tölle et al., 2014; Lejeune et al., 2015; Malyshev et al., 2015; Vanden Broucke et al.,
2015; Devaraju et al., 2015; Li et al., 2016a; Naudts et al., 2016; Thiery et al., 2017;
Cherubini et al., 2018a; Devaraju et al., 2018; Li et al., 2018; Luyssaert et al., 2018;
Skinner et al., 2018; Tölle et al., 2018; Chen and Dirmeyer, 2019b; Ge et al., 2019; Hauser
et al., 2019; Hu et al., 2019; Laguë et al., 2019; Davin et al., 2020; Devanand et al., 2020;
Kim et al., 2020). The difference in any variable between the two simulations can then
be attributed to the LC difference, assuming the simulations were of sufficient length to
average out internal variability of the climate system. The retrieved signal corresponds to
∆Xtot at locations where LCC occurred and ∆Xrem elsewhere, the information required
by decision makers. However, a separate simulation for each grid cell would be required
to determine the biogeophysical effect of a given LCC at a specific location in isolation,
which is not feasible. This impairs the comparison to observational studies, which only
estimate ∆Xl in most cases. Such experiments are therefore typically used to assess the
effect of larger-scale LCC, such as the total effect of deforestation since pre-industrial
times. However, a large spread appeared in the first multi-model intercomparison projects
that assessed the biogeophysical effect of historical LCC (de Noblet-Ducoudré et al.,
2012; Kumar et al., 2013). Therefore, new approaches to isolate ∆Xl were required to
confront models with observations.

∗For simplicity, I use the term earth system model in this thesis even though a general circulation model could
in principle be sufficient to assess biogeophysical effects of LCC.
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Kumar et al. (2013) introduced the moving window approach, which was subsequently
applied frequently to remote sensing data, as described in the previous section. The first
studies employing this method contrasted grid cells with LCC above a certain threshold
to grid cells with LCC below this threshold in historical simulations (Kumar et al.,
2013; Lejeune et al., 2017). Later, multiple linear regression models were used to derive
relations between the LCC fraction (Lejeune et al., 2018) or the LC fraction (Lejeune et al.,
2020) and response variables of interest. An obvious advantage of the moving window
approach over factorial experiments is that it requires only one model simulation to isolate
a signal at different locations on earth. Further, studies using this approach are comparable
to observational studies that employ the same method. Naturally, such modeling studies
suffer from similar disadvantages as their observational counterparts. The assumption
of the same atmospheric forcing is undermined even more in modeling studies, as they
typically have coarser resolutions of 1–2.5◦ than remote sensing data, resulting in moving
window sizes of 10–20◦. Also, they do not quantify remote effects in isolation, which
could however be alleviated by combining the moving window approach with a factorial
experiment: ∆Xrem corresponds to the difference in X between a simulationwith LCC and
a simulation with constant LC at locations where there was no LCC in both simulations.
∆Xl on the other hand can be estimated by applying the moving window approach to the
simulation with LCC.

Figure 1.8: Sketch of a cropland and a forest tile
within one grid cell. Model output at tile level (e.g.,
TgC and TgN ) can be used to compare different LC
types under the same atmospheric forcing. From
Malyshev et al. (2015).

Due to the relatively high heterogene-
ity of the land surface in comparison to
the atmosphere, a number of ESMs divide
the land grid cells into tiles of different
LCs, which are all forced by the same at-
mospheric grid cell above. Thus, model
output at tile level allows to compare the
different LCs within a grid cell under the
same atmospheric forcing, which is called
the sub-grid signal in this thesis (Fig. 1.8;
Malyshev et al., 2015; Schultz et al., 2016).
Since the different LCs within a grid cell
share the same atmospheric forcing, such
experiments can be conducted in land
surface-only simulations, where the atmo-
spheric forcing is prescribed fromobserva-
tions (sometimes referred to as offline sim-
ulations). A pseudo sub-grid signal can
be retrieved by conducting factorial exper-
iments in offline simulations, for models
that do not use a tile approach (Fatichi
et al., 2014; Duveiller et al., 2018a; Laguë
et al., 2019). Model experiments that pre-
scribe the atmospheric forcing are compu-
tationally much cheaper than experiments
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that simulate the atmosphere. Also, the retrieved LCC signal at one location is not blurred
by LCC in other grid cells and therefore comparable to observational studies that assume a
comparison of different LCs under the same atmospheric forcing. However, this approach
completely neglects any feedbacks from the atmosphere be it locally or remotely and
therefore misses a potentially important part of the signal (see Section 1.4.5). On the
other hand, the neglect of atmospheric feedbacks simplifies the process understanding
somewhat. In Malyshev et al. (2015), the sub-grid signal of deforestation was somewhat
stronger in most cases than the factorial signal, indicating that atmospheric feedbacks
often form a negative feedback to the initial biogeophysical response of the land surface
to LCC. The introduction of proxy LC classes that cover only a small fraction of each
grid cell can be used further to distinguish changes in atmospheric conditions from the
local signal of LCC (Chen and Dirmeyer, 2020). Since the proxy LC covers only a small
fraction of a grid cell, it can be assumed that its presence has a negligible influence on the
local climate. The sub-grid output from this LC class can therefore be used as a virtual
measurement station in the modeling world that traces changes in atmospheric conditions.

Finally, Winckler et al. (2017) introduced the chessboard approach, which is able
to determine all components of the biogeophysical effects of LCC (Robertson, 2019;
Winckler et al., 2019c; Winckler et al., 2019b; Winckler et al., 2019a). This approach
uses a factorial experiment, in which the LC is perturbed in a regular, chessboard-like
pattern (Fig. 1.9). As a result, such an experiment retrieves a regular pattern of ∆Xrem at
the grid cells with no LCC, which can be interpolated to retrieve a spatially continuous
field of ∆Xrem. Correspondingly, the interpolated signal at the grid cells with LCC
corresponds to ∆Xtot. Finally, ∆Xl is estimated as the difference between the fields of
∆Xtot and ∆Xrem. Unlike the methods presented previously, the chessboard approach
determines all components of the biogeophysical response to LCC. However, ∆Xrem

depends on the extent of the implied LCC (Winckler et al., 2017). The estimated ∆Xrem

is therefore specific to the chosen LCC pattern, which is somewhat synthetic in the case of
the chessboard approach. In addition, the method assumes additivity of ∆Xrem and ∆Xl

to ∆Xtot, which is yet to be confirmed. Further, the spatial interpolation of ∆Xtot and
∆Xrem may introduce some errors, which appeared to be of non-negligible magnitude in
particular for ∆Xrem in Winckler et al. (2017).

Overall, each model-based method has its strengths and limitations. Which method is
appropriate therefore depends on the research question. The factorial experiment is best
suited to provide policy relevant information about the biogeophysical implications of
one specific LCC distribution. The reconstruction method and the sub-grid approach are
best suited for comparison to observational studies. The chessboard approach provides
the most comprehensive isolation of ∆Xtot, ∆Xrem, and ∆Xl and can also be used for
comparison to observations (Winckler et al., 2017; Robertson, 2019). However, it is
restricted to idealized experiments and estimates ∆Xl only from the difference in ∆Xtot

and ∆Xrem.
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Figure 1.9: Example of the chessboard approach. Panel (a) shows the response to deforesting one
out of eight grid cells. The signal at grid cells with no deforestation (b) is interpolated to retrieve a
spatially continuous field of ∆Xrem (c). The interpolation of the signal at grid cells with deforestation
(d) provides ∆X tot (e). ∆X l is estimated as the difference between ∆X tot and ∆Xrem (panel e minus
panel c). From Winckler et al. (2017).

1.4 Known biogeophysical effects of forestation

In this thesis, I focus on the biogeophysical effect of foresting open land, which I simply
call forestation in the following, where open land corresponds to grassland and cropland.
This section provides an overview of the known biogeophysical effect of this LCC. From
here on, ∆X corresponds to the difference in variable X between forest minus open land,
where X can be the albedo (α), EvapoTranspiration (ET), LST, T2M, or precipitation (P),
with the superscripts ’l’, ’rem’, and ’tot’ for the local, remote, and total difference in those
variables, respectively. In this thesis, the LST is defined as the temperature at which the
land surface as a whole (i.e., not distinguishing between the soil and vegetation) emits
radiation according to the Stefan-Boltzmann law:

LST = 4
√

J/εσ (1.1)

,where J is the radiation emitted by the land surface, ε its emissivity, and σ the Stefan-
Boltzmann constant (5.67 × 10−8 Wm−2K−4). Forests differ in a number of physical
properties from agricultural land. The nature of these differences as well as their
importance varies in space and time. In consequence, the overall biogeophysical effect of
forestation is the result of a complex superposition of various biogeophysical effects. A
thorough scientific comprehension of the overall biogeophysical effect of LCC requires
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to attribute parts of the effect to specific altered properties of the land surface. Modeling
studies can achieve this by manipulating one property at the time (Davin and de Noblet-
Ducoudré, 2010; Burakowski et al., 2018; Laguë et al., 2019; Winckler et al., 2019a). In
observations, the difference in a specific property between different LCs can be measured
at varying degrees of certainty. However, two kinds of LC rarely differ only by one
property impeding a direct casual link of the contribution of individual properties to
the overall biogeophysical effect. For the biogeophysical LST difference between LCs,
(∆LST l) various decomposition methods have emerged to establish such a link. The
energy balance decomposition attributes ∆LST l to differences in the energy fluxes at the
land surface between the LCs of interest by solving the total derivative of the energy
balance for the tendency in LST (Juang et al., 2007; Luyssaert et al., 2014; Vanden
Broucke et al., 2015). While being able to complete the overall LST difference well,
this method does still not attribute the LST difference to specific properties of the land
surface, but to differences in various energy fluxes. Therefore, two other techniques
have been proposed to attribute ∆LST l to differences in surface properties: The intrinsic
biophysical mechanism method (Lee et al., 2011; Chen and Dirmeyer, 2016; Burakowski
et al., 2018; Ge et al., 2019) and the two-resistance mechanism method (Rigden and Li,
2017; Liao et al., 2018; Wang et al., 2020). A description of those two methods is not
provided here, but can be found for example in Liao et al. (2018).

1.4.1 Albedo effect

Figure 1.10: Example of the snow masking by
trees. Areas covered by forest appear much darker
than open areas. Photo by Balazs Busznyak on
Unsplash.

In most cases, forests tend to have a lower
albedo than grassland or crops, which is
probably the best constrained biogeophys-
ical effect of forestation. In consequence,
forests absorb more of the incoming ra-
diation thereby warming the land surface.
This biogeophysical effect was observed
in numerous studies using in-situ observa-
tions (Juang et al., 2007; Luyssaert et al.,
2014; Vanden Broucke et al., 2015) and
satellite data (Li et al., 2015; Schultz et
al., 2017; Duveiller et al., 2018b). These
studies revealed that the albedo difference
between forests and open land (∆α l) is particularly distinct under the presence of snow,
as forests partly cover the underlying snow surface while shorter vegetation is buried
more easily by snow (Fig. 1.10; Harding et al., 2001). Most models are able to capture
the albedo decrease following forestation (Bonan et al., 1992; de Noblet-Ducoudré et al.,
2012; Kumar et al., 2013; Lejeune et al., 2017; Davin et al., 2020), which is not surprising
given the qualitative robustness of this effect in observations. Still, models exhibit a large
spread regarding the magnitude of the albedo change from forestation, which is relevant
for the estimated radiative forcing due to LULCC of the past (Lejeune et al., 2020).
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1.4.2 Roughness effect
A forest consists of relatively large objects with an often considerable variability in height
compared to open land. In the field, the amount of friction generated by a specific land
surface is often characterized by the surface roughness. Following this terminology,
forests have normally a higher surface roughness then open land. In consequence, they
exert more friction at the land surface and induce more turbulence in the surface layer. The
latter effect facilitates the turbulent exchange of energy, water vapour, and other chemical
species between the land surface and the overlying atmosphere. Several modeling studies
assessed the role of the higher surface roughness of forests for the biogeophysical effect
of forestation by manipulating the surface roughness in isolation (Davin and de Noblet-
Ducoudré, 2010; Laguë et al., 2019; Winckler et al., 2019a). In general, the increase
in surface roughness cools the land surface, as the solar radiation absorbed by land can
be transported away to the atmosphere through the sensible and latent heat fluxes more
efficiently (Fig. 1.11). In observations, the relevance of the surface roughness for the
observed LST change following forestation is more difficult to assess, as it cannot be
manipulated in isolation. A few studies using in-situ observations applied either the
intrinsic biophysical mechanism method and/or the two-resistance mechanism method,
confirming the daily mean cooling due to increased surface roughness (Lee et al., 2011;
Burakowski et al., 2018). Further, the higher surface roughness of forests increases
nighttime LST, as the sensible heat flux is normally directed towards the land surface
during night. Thus, the surface roughness effect of forestation exhibits a distinct diurnal
asymmetry resulting in a dampening of the diurnal LST cycle in forests, which was found
both in modeling studies (Winckler et al., 2019a) and observations (Chen and Dirmeyer,
2016; Schultz et al., 2017; Burakowski et al., 2018; Liao et al., 2018).

Figure 1.11: Change in surface temperature [K] (colors) and in turbulent heat flux (sum of latent
and sensible heat; contours every 10 W m−2, with dashed lines for negative values) due to the surface
roughness change associated with converting forests to grassland in the IPSL model. From Davin
and de Noblet-Ducoudré (2010).
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1.4.3 Surface resistance to evapotranspiration
Differences between forests and open land in physiological properties, such as the root
distribution or stomatal regulation, influence how much water is transpired by those LC
types and therefore how the available energy at the land surface is partitioned into sensible
and latent heating. In consequence, the physiological properties of forests and open land
exert a strong control on ∆ET l. However, a difference in ET between forest and open land
cannot be directly attributed to physiological differences, because ET is also affected by
the amount of available energy and the atmospheric resistance to turbulent transport. As
such, both the albedo effect and the roughness effect of forestation influence indirectly
∆ET l. In addition, different plant species within the LC types forest and open land
exhibit a wide variety of physiological properties and strategies to cope with potential
soil moisture stress (e.g., an evergreen needleleaf tree in Scandinavia will react much
differently to soil moisture stress than a rain green broadleaf tree in the Sahel region).
Unsurprisingly, there are therefore no consistent results regarding the change in surface
resistance to ET due to forestation.

Figure 1.12: Example of soil moisture access from
deep soils at a forest site. Panel (a), water stored in
soil up to a depth of 2m (circles) and panel (b), water
stored between 2 and 3.4m depth (triangles) at a pasture
site (empty symbols) and a forest site (filled symbols).
Note that the water stored in the lower part of the soil
decreases much stronger during the dry periods for the
forest site than for the pasture site. From von Randow
et al. (2004).

Observations generally indicate
that ET is higher over forests com-
pared to open land in the tropics and
during the warm season outside of the
tropics (von Randow et al., 2004; Liu
et al., 2005; Vanden Broucke et al.,
2015; Peng et al., 2014; Li et al., 2015;
Schultz et al., 2017; Duveiller et al.,
2018b). However, it is unsure how
much of this difference emerges ac-
tually from differing water use strate-
gies and how much is a side effect
of the biogeophysical differences de-
scribed in the previous two sections.
Unlike nearby pasture, forests in the
tropics were observed to sustain high
amounts of ET during dry periods
by extracting water from below 2m
through their deeper roots (Fig. 1.12; Jipp et al., 1998; von Randow et al., 2004). On
the other hand, grasslands were observed to evaporate more during the early stages of
a summer heat wave in Europe (Teuling et al., 2010; Van Heerwarden and Teuling,
2014). Also, Williams et al. (2012a) find that grasslands evaporate a larger fraction of the
incoming precipitation than forested landscapes when applying the Budyko framework to
the La Thuile FLUXNET data collection. The intrinsic biophysical mechanism and the
two-resistance mechanismmethods attribute LST temperature changes from forestation to
changes in the bowen-ratio (ratio of sensible and latent heat flux) and the surface resistance,
respectively, thereby providing a term more directly linked to the plant physiological
control on transpiration. However, studies applying these methods in a comparison of
forests and open land find generally no strong and consistent contribution of these terms



to the overall LST difference, again highlighting the physiological diversity of different
plant species (Lee et al., 2011; Burakowski et al., 2018; Liao et al., 2018). Some of the
inconsistencies among observational studies could emerge from the underestimation of
ET in eddy-covariance measurements (Foken, 2008; Teuling, 2018). Different models
generally exhibit a wide spread of the ET response to forestation, with an increase in ET in
the multi-model mean (de Noblet-Ducoudré et al., 2012; Kumar et al., 2013; Lejeune et al.,
2017). The inter-model spread in the evaporative fraction response to forestation was the
dominant factor for the spread in the summer ∆T2Mtot in a multi-model experiment in
Europe (Davin et al., 2020). This indicates that discrepancies in ∆ET l among models
play a central role for the disagreement regarding the temperature response to forestation.

1.4.4 Overall effect of forestation on temperature
The overall biogeophysical effect of forestation on temperature varies in space and
time, as the relevance and effect of the different biogeophysical properties altered by
forestation vary with radiative and atmospheric conditions at the land surface. LST is
the temperature variable most closely linked to the energy balance at the land surface. In
tropical regions, the lower albedo and subsequent increase in absorbed solar radiation of
forests is over-compensated by larger turbulent heat fluxes and a higher bowen-ratio of
forests compared to open land, resulting in a negative ∆LST l (Fig. 1.7 c; von Randow
et al., 2004; Alkama and Cescatti, 2016; Li et al., 2015; Li et al., 2016b; Schultz et al.,
2017; Duveiller et al., 2018b; de Oliveira et al., 2019; Zeppetello et al., 2020). Moving
towards higher latitudes, ∆α l increases gradually, while ∆ET l decreases (Li et al., 2015;
Schultz et al., 2017; Duveiller et al., 2018b). In consequence, ∆LST l becomes positive
between roughly 40-50◦ N/S (Li et al., 2015; Ge et al., 2019). Beyond 30◦ N/S the sign of
∆LST l varies seasonally, with positive values during winter, when ∆α l is intensified due
to the snow-masking effect, and negative values during summer, when a positive ∆ET l

dominates.
∆LST l varies not only seasonally, but also over the diurnal cycle. The (shortwave)

albedo effect is unimportant during the night due to the absence of solar radiation.
Similarly, the surface resistance to ET is less relevant at night due to the lack of solar
radiation for photosynthesis, which causes plants to close their stomata to reduce water
loss (Note however that nighttime ET still accounts for a non-negligible fraction of total
ET; see Padrón et al., 2020). In addition, the higher surface roughness of forests has a
warming effect when the surface layer is stable. Thus, the cooling effect of forests on LST
emerges most distinct during the day, while ∆LST l is only slightly negative during night
in the tropics and even positive outside of the tropics (Fig. 1.7 b; Alkama and Cescatti,
2016; Li et al., 2015; Li et al., 2016b; Schultz et al., 2017; Duveiller et al., 2018b).
Overall, forestation therefore dampens the diurnal temperature range in observations.
Further, the T2M response to forestation in observations has generally the same sign as
the LST response, but is smaller in magnitude (Vanden Broucke et al., 2015; Alkama and
Cescatti, 2016).

Global and regional climate models exhibit a wide inter-model spread in the temper-
ature response to deforestation (de Noblet-Ducoudré et al., 2012; Kumar et al., 2013;
Li et al., 2018; Davin et al., 2020), mainly caused by discrepancies in the simulated



Known biogeophysical effects of forestation 20

∆ET l. Also, models disagree with observations often even in sign, in particular regarding
the effect of forestation on the diurnal temperature cycle (Fig. 1.13; Vanden Broucke
et al., 2015; Lejeune et al., 2017). LST and T2M can respond in opposite direction to
forestation in models especially during the day (Chen and Dirmeyer, 2019a; Winckler
et al., 2019b; Breil et al., 2020). As such, part of the disagreement with observations
may originate from comparing the wrong model variable to observations. In addition,
observations neglect atmospheric feedbacks due to the space-for-time assumption and are
restricted to clear-sky conditions in the case of remote sensing observations. In the case
of CESM, the simulated LST response without atmospheric feedbacks conforms with
observations, while the signal that includes atmospheric feedbacks differs considerably
(Chen and Dirmeyer, 2020). ESMs suggest that the change in temperature extremes due
to forestation differs from the change in the mean state. Lejeune et al. (2018) find a cooling
in warm temperature extremes employing the reconstruction method on simulations of
several ESMs. On the other hand, a multi-model factorial experiment finds an increase
in warm temperature extremes (Li et al., 2018). This points towards the importance of
∆Xrem also for temperature extremes as the method of the first study ignores atmospheric
feedbacks while they are accounted for in the second study.

1.4.5 Remote effects of forestation
As mentioned previously, some of the discrepancies between observed and modeled
temperature responses to deforestation may originate from the neglect of remote effects
associated with common observation-based approaches. Several modeling studies have
revealed a considerable non-local warming due to forestation outside of the tropics
(Fig. 1.14; note that this figure shows the effect of deforestation; Winckler et al., 2017;
Devaraju et al., 2018; Winckler et al., 2019c; Winckler et al., 2019b; Chen and Dirmeyer,
2020). This warming originates from exporting the additional energy absorbed due to the
negative ∆α following forestation to downwind areas (Davin and de Noblet-Ducoudré,
2010; Winckler et al., 2019c). Unlike ∆LST l, ∆LSTrem is strongly dependent on the
extent of forestation (Fig. 1.14; Winckler et al., 2019c). As such, modeling studies likely
exaggerate the relevance of remote effects, as they estimate the ∆LSTrem of unrealistic
extreme forestation scenarios in most cases (e.g., forestation of the entire land area).
Observation-based studies on ∆LSTrem are scarce, because the extent of forestation in
reality is comparably small resulting in weaker remote effects that are difficult to detect.
Only one study has estimated the non-local effect of forestation in the tropics, finding
a cooling effect on daily maximum temperatures (Cohn et al., 2019). Therefore, it is
difficult to assess the realism of the simulated ∆LSTrem, which can differ substantially
among different ESMs (Devaraju et al., 2018; Winckler et al., 2019c).
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Figure 1.13: At the top, seasonal cycle of the mean observed difference in daily maximum (red)
and minimum (blue) air temperatures between open land and forest over 22 selected site pairs from
Lee et al. (2011). The boxes indicate the interquartile range, while the whiskers show the range
between the first and ninth deciles. Below, the seasonal cycle of the reconstructed ∆T2Ml for six
LUCID models and 11 CMIP5 models over North America. The full lines indicate the results for
the ensemble mean, while the dashed lines represent the spread between ensemble simulations (two
standard deviations). Note the different y-axis scale between the topmost panel and the others. From
Lejeune et al. (2017).
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Figure 1.14: Boreal summer (JJA) change in mean LST [K] due to sparse deforestation (a, c; one
out of eight grid cells) and extensive deforestation (b, d; seven out of eight grid cells). Panels (a),
(b), local effects and panels (c), (d) remote effects. From Winckler et al. (2017).

1.4.6 Effect of forestation on the hydrological cycle

Figure 1.15: Panel (a), land cover map for
the Landes region in south-western France.
Panel (c), mean JJA cloud frequency (2004-
2008, 6-18UTC) for the MSG-CPP product.
From Teuling et al. (2017).

The aforementioned changes in biogeophysi-
cal properties due to forestation may not only
alter temperatures but also the hydrological
cycle. Modeling studies find an increase in
precipitation due to forestation in most cases,
in particular in tropical regions (Lejeune et
al., 2015; Perugini et al., 2017; Winckler et
al., 2017; Cherubini et al., 2018a). However,
precipitation may be increased locally above
cleared forest patches in the tropics (Khanna
et al., 2017).

On the observational side, only few stud-
ies exist on the impact of forestation on the
water cycle besides the estimates of ∆ET de-
scribed in Section 1.4.3. In tropical regions,
forestation appears to increase precipitation
(Spracklen et al., 2012; Kumagai et al., 2013),
likely owed to the high ET of forests. Teuling
et al. (2017) find enhanced cloud coverage over
two large forest patches in Europe compared to
surrounding areas during summer (Fig. 1.15),
which might be linked to a high sensible heat
flux over forests (Bosman et al., 2019). More
clouds over forests could be connected to more
precipitation. Further, increasing the forest
coverage is estimated to reduce runoff, hinting towards higher ET of forests compared
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to open land (Trabucco et al., 2008; Buendia et al., 2016; Teuling et al., 2019). Overall,
observational studies on the consequences of forestation on the hydrological cycle exhibit
high uncertainties and are sometimes contradictory, which impedes the evaluation of the
representation of such biogeophysical effects in ESMs.

1.5 Objectives and outline

In this thesis, I intend to foster our understanding of the biogeophysical consequences of
converting open land, defined as grassland and crops. In the present chapter, I have given
an overview of the current state of research on the biogeophysical effects of forestation.
The following chapters consists of three published articles, each forming one chapter of
the thesis (Meier et al., 2018; Meier et al., 2019; Meier et al., 2020). The final chapter
synthesizes my results and provides an overview of potential directions for future research.
Specifically, my thesis is a contribution to answer the following three research questions:

• Question 1: What are the biogeophysical effects of forestation on temperature and
precipitation?

• Question 2: Which are the underlying mechanisms of those biogeophysical effects?

• Question 3: How well are the biogeophysical effects represented in the Community
Land Model (CLM) and how could their representation be improved?

I address these research questions in the following three studies:

Chapter 2 “Evaluating and improving the Community Land Model’s sensitivity to land
cover”. Meier et al. (2018), Biogeosciences. The emergence of global observation-
based data sets on the local biogeophysical effect of forestation enables to assess their
representation in LSMs. In this study, I confront the Community Land Model 4.5
(CLM4.5) with several observation-based data sets. I evaluate the representation of ∆αl ,
∆ETl , and ∆LST l in CLM4.5 and propose several modifications of this model to alleviate
some of the identified discrepancies with the observation-based data sets. This chapter
therefore focuses on Questions 1 and 3.

Chapter 3 “Biomass heat storage dampens diurnal temperature variations in forests”.
Meier et al. (2019), Environmental Research Letters. Energy is stored in the vegetation
biomass during the course of the day. Several in-situ studies have estimated that biomass
heat storage is of relevant magnitude in particular in forests. However, most LSMs,
including CLM, disregard this energy storage term. In this chapter, I test the effect
of including biomass heat storage in CLM5.0 on the simulated diurnal temperature
variability and on the biogeophysical temperature effect of forestation. As such, this
chapter addresses both Questions 2 and 3.
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Chapter 4 “Empirical estimate of forestation-induced precipitation changes in Europe
”. Meier et al. (2020), Nature Geoscience. To date, no observation-based study on
precipitation changes due to forestation has been published for regions outside of the
tropics, despite evidence from several modeling studies that they could be relevant. In
this chapter, I estimate the local and remote precipitation change due to forestation in
Europe employing a site-pair analysis as well as a statistical model. This study contributes
therefore to answering Question 1 and provides some first insights into the underlying
mechanisms (Question 2).



2
Evaluating and improving the
Community Land Model’s sensitivity to
land cover

Biogeosciences, 15, 4731-4757, https://doi.org/10.5194/bg-15-4731-2018∗, RonnyMeier1,
Edouard L. Davin1, Quentin Lejeune2, Mathias Hauser1, Yan Li3, Brecht Martens4, Na-
talie M. Schultz5, Shannon Sterling6, and Wim Thiery7

Abstract Modelling studies have shown the importance of biogeophysical effects of
deforestation on local climate conditions, but have also highlighted the lack of agreement
across different models. Recently, remote sensing observations have been used to assess
the contrast in albedo, EvapoTranspiration (ET), and Land Surface Temperature (LST)
between forest and nearby open land on a global scale. These observations provide an
unprecedented opportunity to evaluate the ability of land surface models to simulate the
biogeophysical effects of forests. Here, we evaluate the representation of the difference
of forest minus open land (i.e., grassland and cropland) in albedo, ET, and LST in the
Community Land Model version 4.5 (CLM4.5) using various remote sensing and in-situ
data sources. To extract the local sensitivity to land cover we analyse plant functional
type level output from global CLM4.5 simulations, using a model configuration that
attributes a separate soil column to each plant functional type. Using the separated
soil column configuration, CLM4.5 is able to realistically reproduce the biogeophysical
contrast between forest and open land in terms of albedo, daily mean LST, and daily

∗This publication was slightly changed from its original version to ensure consistency throughout this thesis.
1Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
2Climate Analytics, Berlin, Germany
3Faculty of Geographical Science, Beijing Normal University, Beijing, China
4Laboratory of Hydrology and Water Management, Ghent University, Ghent, Belgium
5School of Forestry and Environmental Studies, Yale University, New Haven, USA
6Department of Earth Sciences, Dalhousie University, Halifax, Canada
7Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Brussels, Belgium
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maximum LST, while the effect on daily minimum LST is not well captured by the
model. Furthermore, we identify that the ET contrast between forests and open land is
underestimated in CLM4.5 compared to observation-based products and even reversed
in sign for some regions, even when considering uncertainties in these products. We then
show that these biases can be partly alleviated by modifying several model parameters,
such as the root distribution, the formulation of plant water uptake, the light limitation of
photosynthesis, and the maximum rate of carboxylation. Furthermore, the ET contrast
between forest and open land needs to be better constrained by observations in order to
foster convergence amongst different land surface models on the biogeophysical effects
of forests. Overall, this study demonstrates the potential of comparing sub-grid model
output to local observations to improve current land surface models’ ability to simulate
land cover change effects, which is a promising approach to reduce uncertainties in future
assessments of land use impacts on climate.

2.1 Introduction

While the forested area has stabilized or is even increasing over Europe andNorth America,
deforestation is still ongoing at a fast pace in some areas of South America, Africa, and
Southeast Asia (Huang et al., 2009; Hansen et al., 2013; Margono et al., 2014; McGrath
et al., 2015). In addition, carbon sequestration by re- or afforestation has been proposed
as a strategy to mitigate anthropogenic climate change (Brown et al., 1996; Sonntag
et al., 2016), making forest loss or gain likely an essential component of future climate
change. Changes in forest coverage impact climate by altering both the carbon cycle
(Ciais et al., 2013) and various biogeophysical properties of the land surface such as
albedo, evaporative fraction and roughness length (Bonan, 2008; Pitman et al., 2009;
Davin and de Noblet-Ducoudré, 2010; Li et al., 2015). However, there exist considerable
discrepancies in the representation of biogeophysical effects amongst land surface models,
thus generating a need for a thorough evaluation of the representation of these effects in
individual models.

Model simulations indicate that the biogeophysical effects of historical deforestation
have been rather small on a global scale (Davin et al., 2007; Findell et al., 2007; Davin
and de Noblet-Ducoudré, 2010; de Noblet-Ducoudré et al., 2012; Malyshev et al., 2015).
However, they have likely been significant on regional and local scales, especially over
areas which experienced intense deforestation rates (Pongratz et al., 2010; de Noblet-
Ducoudré et al., 2012; Kumar et al., 2013; Malyshev et al., 2015; Lejeune et al., 2017;
Lejeune et al., 2018). Similarly, present-day observational data, either based on in-
situ (Juang et al., 2007; Lee et al., 2011; Zhang et al., 2014; Bright et al., 2017) or
remote-sensing measurements (Li et al., 2015; Alkama and Cescatti, 2016; Li et al.,
2016b; Duveiller et al., 2018b) show that biogeophysical effects of forests can strongly
influence local climate conditions. Among the different biophysical effects, the increased
surface albedo (cooling effect), the alteration of the evaporative fraction (warming or
cooling effect, depending on the region and season), and the lower surface roughness
causing a reduction of the turbulent heat fluxes (warming effect) have been identified
as the three main drivers of the climate impact of deforestation (Bonan, 2008; Pitman



et al., 2009; Davin and de Noblet-Ducoudré, 2010; Li et al., 2015). However, some of
these biogeophysical processes are not well represented in current land surface models.
The model intercomparison projects LUCID (Land-Use and Climate, IDentification of
robust impacts) and CMIP5 (Coupled Model Intercomparison Project Phase 5) exposed
the lack of model agreement concerning the biogeophysical impacts of historical Land
Cover Change (LCC), especially regarding the impact on EvapoTranspiration (ET) and
temperature during the warm season over the mid-latitudes of the northern hemisphere
(de Noblet-Ducoudré et al., 2012; Kumar et al., 2013; Lejeune et al., 2017). In addition,
distinct discrepancies between present-day temperature observations and the simulated
historical effects of LCC over North America were identified (Lejeune et al., 2017). This
highlights the need for systematic evaluation and improvement of the representation of
biogeophysical processes in land surface models.

Observing the local climatic impact of LCC is not straightforward. When temporally
comparing observational data over an area undergoing LCC, it is difficult to disentangle
the effect of the LCC forcing from other climatic forcings (e.g., greenhouse gas forcing).
To overcome this difficulty, observational studies often spatially compare nearby sites of
differing Land Cover (LC), assuming that they receive the same atmospheric forcing (e.g.,
von Randow et al., 2004; Lee et al., 2011). Hence, the sensitivity of land surface models
to LC can be evaluated best with observational data by spatially comparing different LC
types in models. Recently, Malyshev et al. (2015) employed a new approach to assess the
local impacts of LCC in land surface models by comparing climate variables over tiles
corresponding to different Plant Functional Types (PFTs) located within the same grid cell.
Since PFT tiles within the same grid cell experience exactly the same atmospheric forcing,
the resulting sub-grid LC signal extracted by this method achieves good comparability
to local observations which contrast neighbouring forest and open land sites (Lee et al.,
2011; Li et al., 2015; Alkama and Cescatti, 2016; Li et al., 2016b). Here we aim to
evaluate and improve the sensitivity of the Community Land Model 4.5 (CLM4.5) to
LC, using observational data of the local contrast between forest and open land (i.e.,
grassland and cropland). In Section 2.3.1 of this study, we systematically analyse the
representation of the local difference of forest minus open land in albedo, ET and land
surface temperature (LST) in CLM4.5 against the newly released observational remote-
sensing-based products of Li et al. (2015). The forest signal in CLM4.5 is extracted
by comparing tiles corresponding to forest and open land, similar to Malyshev et al.
(2015). Given the uncertainties in observation-based ET estimates, we further extend
our evaluation by including data from the Global Land Evaporation Amsterdam Model
(GLEAM) version 3.1a (Miralles et al., 2011; Martens et al., 2017) and the Global ET
Assembly (GETA) 2.0 (Ambrose and Sterling, 2014), which are based on remote-sensing
and in-situ observations, respectively. Finally, a sensitivity experiment is presented in
Section 2.3.2, in order to explore the possibilities to better represent the ET impact of
forests in CLM4.5. This configuration of CLM4.5 incorporates modifications in root
distribution, plant water uptake, light limitation of photosynthesis, and maximum rates
of carboxylation.



Methods and data 28

2.2 Methods and data

2.2.1 Model description and set up
CLM is the land surface component of the Community Earth System Model (CESM),
a state-of-the-art earth system model widely applied in the climate science community
(Hurrell et al., 2013). CLM represents the interaction of the terrestrial ecosystem with
the atmosphere by simulating fluxes of energy, water and a number of chemical species
at the interface between the land and the atmosphere. The represented biogeophysical
processes include absorption and reflection of both diffuse and direct solar radiation by
the vegetation and soil surface, emission and absorption of longwave radiation, latent and
sensible heat fluxes from the soil and canopy, and heat transfer into the snow and soil.
Sub-grid heterogeneity is taken into account in CLM by the subdivision of each land grid
cell in five land units (glacier, wetland, vegetated, lake, and urban). The vegetated land
unit is further divided into 16 tiles representing different PFTs (including bare soil).

We run CLM version 4.5 at 0.5° resolution for the period 1997-2010. A five-year
(1997-2001) spin-up period is excluded from the analysis to minimize the impact of the
model initialization. The analysis of CLM4.5 therefore covers the period of 2002 to
2010 which matches well with the observation period of 2002 to 2012 of Li et al. (2015).
Assuming that the feedback of the land surface to the atmosphere is of minor importance
for the sub-grid contrast between forest and open land tiles, simulations are performed
in offline mode using atmospheric forcing from the CRUNCEP v4 reanalysis product
(Vivoy, 2009; Harris et al., 2014). The LC map and vegetation state data are prescribed
based on MOD -Li15 observations (Lawrence and Chase, 2007, Fig. A.1). The LC map
from the year 2000 is kept static during the entire simulation period, since no LCC is
required to retrieve a spatial contrast between forest and open land. The optional carbon
and nitrogen module of CLM4.5 as well as the crop- and irrigation modules are kept
inactive in our simulations.

By default, all PFTs within a grid cell in CLM4.5 share a single soil column (Oleson
et al., 2013), implying that all PFTs experience the same soil temperature and soil moisture.
Further, the surface energy balance at PFT level is closed using the ground heat flux
(i.e., it is calculated as the residual of the other energy fluxes). Hence, the soil warms in
case of an energy excess at the land surface and vice versa. Warmer (cooler) soil in turn
will result in increased (decreased) sensible and latent heat fluxes away from the ground
and/or increased (decreased) emitted longwave radiation, thereby counteracting the initial
energy imbalance. Consequently, this model architecture eventually results in near-zero
daily mean ground heat flux, once the soil temperature has adjusted to an equilibrium
state with a near-zero energy imbalance. On shared soil columns, however, ground heat
fluxes can reach unrealistically high values for individual PFTs (Fig. A.2 a and c), because
a common soil temperature is artificially maintained for all PFTs, which differs from
their individual equilibrium states. This assumption leads to a net ground heat flux into
the soil over open land PFTs and out of the soil over forest PFTs for the majority of the
locations across the globe, implying a lateral subsurface heat transport from open land
towards forests (Schultz et al., 2016). To resolve this issue, Schultz et al. (2016) proposed
a modification of CLM4.5 which attributes a separate soil column to each PFT. This
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modification allows the soil of individual PFTs to equilibrate to a different temperature
(Fig. A.3) and suppresses these unrealistically high (lateral) ground heat fluxes (Fig. A.2 b
and d). Here, we present results from a simulation on separated soil columns, called
CLM -BASE, unless stated otherwise (TableA.4). We also performed a simulation on
shared soil columns named CLM -DFLT.

Further, we present a sensitivity experiment, named CLM - PLUS in Section 2.3.2, in
which we try to alleviate detected biases in ET. Besides the separated soil columns, four
aspects in the parametrisation of vegetation transpiration are modified in this sensitivity
experiment:

• Shallower root distribution for grass- and cropland PFTs. CLM4.5 accounts for soil
moisture stress on transpiration through a stress function βt , which ranges from
zero (when soil moisture limitation completely suppresses vegetation transpiration)
to one (corresponding to no soil moisture limitation of vegetation transpiration).
Forests for the most part experience higher soil moisture stress than open land in
CLM -DFLT except in the northern high-latitude winter (Fig. A.4), partly caused
by the similar root distribution for all PFTs but evergreen broadleaf trees (Fig. A.5).
In reality, observed maximum rooting depths are considerably higher for forests
than for grassland and cropland (Canadell et al., 1996; Fan et al., 2017). Likewise,
in-situ observations in the tropics show that grassland ET decreases during dry
periods, because grasses have only limited access to water reservoirs located below
a depth of 2 m (von Randow et al., 2004). Hence, we aim to increase soil moisture
stress of open land PFTs and reduce their ability to extract water from the lower part
of the soil, by introducing a shallower root distribution for these PFTs (Fig. A.5).
This root distribution was not fitted to a particular observed root distribution.
However, the new root distribution agrees better with the average rooting depth of
annual grass reported by Fan et al. (2017).

• Dynamic plant water uptake. Tropical forests are often observed to exhibit increased
ET during dry periods, due to increased incoming shortwave radiation (da Rocha
et al., 2004; Huete et al., 2006; Saleska et al., 2007). That is, despite the upper soil
being dry, tropical trees still have sufficient access to water from deeper soil layers
(Jipp et al., 1998; von Randow et al., 2004). We aim to allow a similar behaviour
in CLM4.5 by introducing a dynamic plant water uptake, where plants only extract
water from the 10% of the roots with best access to soil moisture (example in
Fig. A.6).

• Light limitation reduction for all C3 PFTs and enhancement for C4 PFTs. In CLM -
BASE ET of boreal PFTs is underestimated compared to GETA 2.0 (Fig. 2.4 f).
Since vegetation transpiration of these PFTs is only weakly affected by soil moisture
stress, light limitation for C3 plants is reduced. On the other hand, C4 grass shows
a considerable positive bias in ET, which we try to alleviate by increasing the light
limitation of this PFT.

• Modified maximum rates of carboxylation (Vcmax ; TableA.1). This PFT-specific
parameter is suitable to tune vegetation transpiration, since it is not well constrained



from observations and vegetation transpiration in models is highly sensitive to this
parameter (Bonan et al., 2011). The new values were chosen with the aim to
alleviate biases relative to GETA 2.0 (Fig. 2.4 f) and still lie well within the range
of observations collected in the TRY plant trait database (Boenisch and Kattge,
2017). Additionally, the minimum stomatal conductance of C4 plants, which is by
default four times larger than that of C3 plants, is reduced.

A technical description of these modifications as well as a discussion of the effect on ET
by each individual modification is provided in AppendixA.1.

2.2.2 Observational data
The data published in Li et al. (2015) are used to evaluate the effects of forests on local
climate variables in CLM4.5. This data set was created by applying a window searching
algorithm to remote-sensing LST, albedo, and ET products from the MODerate resolution
Imaging Spectroradioameter (MODIS), in order to systematically compare these variables
over forest and open land on a global scale. The data of this study, hereafter referred to
as MOD -Li15, cover the period of 2002 to 2012 and were aggregated from the initial
window size of 0.45° × 0.25° to 0.5° × 0.5° spatial resolution. Hence, the similar spatial
scale of the MOD -Li15 data and the CLM4.5 simulations allows for good comparability
between these two data sources.

We also use two additional observation-based datasets of ET to consider uncertainties
in present-day ET estimates. A number of different global ET products are available which,
however, exhibit substantial discrepancies (Mueller et al., 2011; Wang and Dickinson,
2012; Mueller et al., 2013; Michel et al., 2016; Miralles et al., 2016). In particular, the
algorithm from Mu et al. (2011) used to retrieve the MODIS ET product was found to
systematically underestimate ET compared to in-situ and catchment-scale observations
(Michel et al., 2016; Miralles et al., 2016). In addition, algorithms used to infer ET
from remote-sensing observations make assumptions on how the LC type influences ET,
preventing an independent identification of the influence of LCC on ET. We therefore
complement our evaluation of the ET impact of forest in CLM4.5 with two additional data
sets: GLEAM version 3.1a and GETA 2.0. GLEAM was introduced in 2011 (Miralles
et al., 2011) and revised twice, resulting in the current version 3.1 (Martens et al., 2017).
It provides estimates of potential ET for tall canopy, bare soil, and low vegetation after
Priestly and Taylor (1972). Potential ET of vegetated land surfaces is converted into
actual ET using vegetation-dependent parametrisations of evaporative stress. Canopy
interception evaporation is calculated separately using the parametrisation of Gash and
Stewart (1979). GLEAM uses surface radiation, near-surface air temperature, surface soil
moisture, precipitation, snow water equivalent, and vegetation optical depth observations
to estimate ET globally at 0.25° resolution. To maximize spatial and temporal overlap
with the MOD -Li15 observations, we choose GLEAM version 3.1 a (hereafter referred
to as GLEAM), which incorporates reanalysis input besides satellite observations. We
compare the ET estimates for tall canopy and low vegetation to model output for forests
and open land, respectively. Since interception loss is only estimated for tall canopy, it
was fully attributed to ET from forests.
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GETA 2.0 (Ambrose and Sterling, 2014) is a suite of global-scale fields of actual
ET for 16 separate LC types derived from a collection of in-situ measurements between
1850 and 2010. Using a linear mixed effect model with air temperature, precipitation,
and incoming shortwave radiation as predictors, yearly ET estimates for each of these 16
different LC types have been obtained with a global coverage and 1° spatial resolution.
We then use the same LC map employed for the CLM4.5 simulations to weigh the
different LC types in this data set and retrieve an ET value for forest and open land (see
Section 2.2.3 for more details). Since our CLM4.5 simulations were conducted without
irrigation, we did not include the GETA 2.0 irrigation layer. We refer to this data set as
GETA in this study.

2.2.3 Model evaluation
The forest signal in CLM4.5 is extracted by comparing the area-weighted mean of the
variables of interest over all forest tiles to its corresponding values over open land tiles
(i.e., grassland and cropland), similar to Malyshev et al. (2015). As such, it becomes
possible to infer a forest signal for every model grid cell containing any forest and any
open land PFT, no matter how small the fraction of the grid cell covered by these PFTs.
The different PFT tiles within a 0.5° × 0.5° grid cell in our CLM4.5 simulations are
subject to the exact same atmospheric forcing and are hence comparable to the almost
local effect of forests retrieved at a resolution of 0.45° × 0.25° in MOD -Li15. It needs to
be noted that the MODIS observations can only be retrieved under clear-sky conditions,
thereby potentially impairing the comparability to our CLM4.5 data which are not filtered
for clear-sky days. Nevertheless, it was decided to include cloudy days for the analysis of
the CLM4.5 simulations, to preserve the comparability to studies which do not distinguish
between cloudy and clear-sky days (e.g. GLEAM; GETA; da Rocha et al., 2004; von
Randow et al., 2004; Liu et al., 2005).

Twelve of the 16 PFTs of CLM4.5 are attributed to either the forest or the open
land class as described in TableA.2. Consistent with Li et al. (2015), open land was
considered the combination of grassland and cropland. Hence, bare soil as well as
shrubland are excluded from our analysis. Forest and open land ET of GETA was
aggregated similarly using the same LC map as in the CLM4.5 simulations, with the LC
types of GETA attributed to the different CLM4.5 PFTs as listed in TableA.3. To ensure a
consistent comparison with the LST data fromMODIS, we derive a radiative temperature
(Trad) from the emitted longwave radiation output (LWup) in CLM4.5 according to
Stefan-Boltzmann’s law (assuming that emissivity is 1 as in Eq. 4.10 of Oleson et al.,
2013):

Trad =
4

√
LWup

σ
(2.1)

with σ being the Stefan-Boltzmann constant (5.67 × 10−8 Wm−2K−4). Hereafter Trad
will be referred to as LST. For the local difference of forest minus open land in albedo, ET,
daily mean LST, daily maximum LST, and daily minimum LST we will use the symbols
∆α l, ∆ET l, ∆LST l

avg, ∆LST l
max, and ∆LST l

min, respectively.
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Figure 2.1: The Köppen-Geiger climate zones (Kottek et al., 2006) used for the analysis.

In order to evaluate the different CLM4.5 simulations objectively, three different
metrics are calculated over the following eight Köppen-Geiger climate zones (Kottek
et al., 2006): Equatorial humid (E-h), Equatorial seasonally dry (E-sd), arid (Arid), warm
Temperate winter dry (T-wd), warm Temperate summer dry (T-sd), warm Temperate fully
humid (T-fh), Snow warm summer (S-ws), and Snow cold summer (S-cs) (Fig. 2.1). As
a first metric, the area-weighted mean for a given variable over these climate zones (∆Xi)
is calculated as follows:

∆Xi =

∑
i

Ai∆Xi∑
i

Ai
(2.2)

where ∆Xi are the differences of forest minus open land in variable X of all the grid cells
i belonging to the respective climate zone and Ai their areas. Secondly, the CLM4.5
simulations are compared in terms of the area-weighted Root Mean Squared Deviation
(RMSD) to the observation-based data sources:

RMSD(∆Xl
i ) =

√√√√√√√√∑
i

Ai

(
∆Xl

i,sim − ∆X
l
i,obs

)2

∑
i

Ai
(2.3)

where ∆Xl
i,sim and ∆Xl

i,obs are the simulated and observed differences of forest minus open
land in variable X. RMSD for a Köppen-Geiger climate zone is calculated from a data
pool collecting all monthly values with data in CLM4.5 and the given observational data
which lie within the respective climate zone (except when comparing to GETA for which
only long-term annual means are available). Lastly, the Index of Agreement (IA; Duveiller
et al., 2016) was calculated for the same data pools as RMSD. This dimensionless metric
describes the agreement between two data sets, with 0 indicating no agreement and 1
indicating perfect agreement. By definition, this metric is set to 0 if the two compared
data sets exhibit a negative Pearson correlation. Since results of this metric generally
support those of RMSD, they are shown in the Appendix (Fig. A.8).
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2.3 Results

2.3.1 Evaluation of the local effect of forests in CLM4.5
Albedo

The MODIS satellite observations and CLM -BASE agree on a generally negative
∆α l (Fig. 2.2). Effectively, MOD -Li15 observations show slightly positive ∆α l for
some latitude-month combinations concentrated in the tropics and sub-tropics (Fig. 2.2);
however, these differences are mostly insignificant and must be considered in the light of
uncertainties in the MOD -Li15 observations, which are more sparse over these regions
due to frequent cloud coverage (Li et al., 2015). The negative albedo difference is
amplified towards the poles and in wintertime due to the snow masking effect (Harding
et al., 2001). Among the non-snow climate zones, the albedo contrast between forest and
open land is strongest in the Arid and the T-sd climate zones (Fig. 2.4 a). This could be
related to the occurrence of dry periods in these climate zones during which open land
dries out more easily than forests due to their shallower root profiles (Canadell et al.,
1996; Fan et al., 2017). As green leaves have lower albedo than dry leaves and the soil,
the albedo contrast between the still-green forest and the dried-out open land would be
intensified in such a scenario (Dorman and Sellers, 1989). ∆α l tends to be more negative
in CLM -BASE than in the satellite observations in all Köppen-Geiger climate zones,
especially in the snow climate zones. RMSD values over the climate zones exhibit similar
tendencies as the magnitudes of mean ∆α l and have roughly the same magnitude of mean
∆α l (Fig. 2.3 a). The exception to this are the tropical climate zones where the magnitude
of RMSD is considerably higher than the mean values of ∆α l. This is likely related to
the fact that MOD -Li15 observes only a weak albedo signal of forests in these climate
zones.

Evapotranspiration

All of the considered observation-based ET products indicate that annual mean ∆ET l is
positive in every climate zone, despite considerable variations in the magnitude of this
difference (Fig. 2.4 e). GLEAM suggests a near zero ∆ET l in the Arid climate zone most
likely because it uses surface soil moisture data as an input to estimate ET. Also, GLEAM
exhibits positive ∆ET l throughout the year in the mid-latitudes, unlike MOD -Li15 which
has a negative ∆ET l during winter (Fig. 2.6). Paired-site FLUXNET studies offer an
additional opportunity to compare ET over forest and over open land on a point scale.
Overall, they report higher ET for tropical forests (Jipp et al., 1998; von Randow et al.,
2004; Wolf et al., 2011). In the mid- and high-latitudes a number of FLUXNET studies
observe a positive ∆ET l during summer, and a near-zero negative ∆ET l during winter,
similar to MOD -Li15 (Fig. 2.6; Liu et al., 2005; Stoy et al., 2006; Juang et al., 2007;
Baldocchi and Ma, 2013; Vanden Broucke et al., 2015; Chen et al., 2018). On the other
hand, negative ∆ET l have been observed at some paired FLUXNET sites in the tropics
(Van der Molen et al., 2006) and in the mid-latitudes during summer (Teuling et al.,
2010). The considered global ET data sets however consistently exhibit higher ET over
forests in most regions (Fig. 2.5). This agreement across the different independent global
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Figure 2.2: Seasonal and latitudinal variations of ∆αl in (a) the MOD - Li15 observations and (b)
CLM -BASE. Points with a mean which is insignificantly different from zero in a two-sided t-test at
95% confidence level are marked with a black dot. All data from the 2002-2010 analysis period
corresponding to a given latitude and a given month are pooled to derive the sample set for the test.
Panel (c) shows the zonal annual mean of both MOD - Li15 (in green along with its interquartile
range in grey) and CLM -BASE (in red, interquartile range in orange). Note that on this subfigure
results have been smoothed with a 4° latitudinally-running mean. Only grid cells containing valid
data in the MOD - Li15 observations were considered for the analysis of CLM -BASE.

data sources gives some confidence in the fact that ET is generally higher over forests.
Nevertheless, it needs to be noted that ∆ET l GETA shows fundamentally different results
when considering the data over irrigated crops instead of data over rainfed (resulting in
negative ∆ET l at many locations). Therefore, distinguishing irrigated from rainfed crops
in future evaluations would be essential, but remains beyond the scope of this study.

CLM -BASE exhibits considerable discrepancies in ∆ET l to the observation-based
data sets both for the annual mean values (Fig. 2.5) and the seasonal cycle (Fig. 2.6).
∆ET l in CLM -BASE is near zero in all climate zones (Fig. 2.4 e), and even negative in
the E-sd climate zone, unlike the global ET datasets which clearly suggest positive values.
The large bias of ∆ET l in CLM -BASE is also apparent in the RMSD values, which tend
to be slightly larger than the observed mean signal (compare Figs. 2.4 e and 2.3 e). A
comparison of the absolute ET values of each PFT in CLM -BASE versus the GETA
data reveals that CLM -BASE generally exhibits similar ET averages for needleleaf PFTs,
lower ET averages for broadleaf deciduous trees as well as crops, and higher ET averages
for non-arctic grasses and broadleaf evergreen trees (Fig. 2.4 f). Notably, evergreen and
deciduous tropical broadleaf trees as well as C4 grass have a bias larger than 0.2 mm/day
relative to GETA. The biases of these PFTs can have a large effect on the overall ∆ET l as
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they cover a large proportion of the land surface (9.5%, 8.0%, and 8.0%, respectively).
Similarly, CLM -BASE overestimates ET compared to in-situ measurements conducted
over a pasture site in the Amazon by von Randow et al. (2004) and underestimates ET
compared to the two forest sites in Alaska reported in the study of Liu et al. (2005)
(Table 2.1).

Figure 2.3: RMSDofCLM - BASE (red), andCLM -PLUS (orange) againstMOD - Li15 observations
over Köppen-Geiger climate zones (Kottek et al., 2006, ; Fig. 2.1) of monthly (a) ∆α l, (b) ∆LST l

avg,
(c) ∆LST l

max, and (d) ∆LST l
min. Panel (e) shows the RMSD over the Köppen-Geiger climate zone of

∆ET l of CLM -BASE (red), and CLM -PLUS (orange) against MOD - Li15 (green edge), GLEAM
(light blue edge), GETA (dark blue edge). The numbers indicate the size of the data samples used
for the calculation of RMSD.
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Figure 2.4: Area-weighted annual mean over Köppen-Geiger climate zones (Kottek et al., 2006,
; Fig. 2.1) of (a) ∆α l, (b) ∆LST l

avg, (c) ∆LST l
max, and (d) ∆LST l

min in MOD - Li15 (green), CLM -
BASE (red), and CLM -PLUS (orange). Only grid cells containing valid data in the MOD - Li15
observations were considered for analysis of CLM4.5. Panel (e) shows the area-weighted mean
over the Köppen-Geiger climate zone of ∆ET l in MOD - Li15 (green), GLEAM (light blue), GETA
(dark blue), CLM -BASE (red), and CLM -PLUS (orange) and panel (f) the area-weighted mean
ET for each PFT analyzed in this study according to the GETA (dark blue), CLM -BASE (red), and
CLM -PLUS (orange). The acronyms of the PFTs are defined in Table A.2.
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Table 2.1: ET and latent heat flux in-situ observations from various studies and the values in
CLM -BASE and CLM -PLUS at the respective locations.

Study Region PFTs Unit Season Obs. CLM -BASE CLM - PLUS

da Rocha et al. (2004) Amazon EBT mm/day
Dry 3.96 3.49 3.48
Wet 3.18 3.57 3.37
All 3.51 3.54 3.40

von Randow et al. (2004) Amazon
EBT

W m−2

Dry 108.6 82.9 90.8
Wet 104.5 113.9 108.9

Grass Dry 63.9 81.2 64.7
Wet 83.0 113.9 100.1

Liu et al. (2005) Alaska
Grass

W m−2
All 16.1 16.4 16.8

DBT All 22.5 13.7 14.1
ENF All 23.9 18.0 18.4

Interestingly, deciduous trees are mostly responsible for this discrepancy in ∆ET l at
latitudes below 30° (Fig. A.7). In the mid-latitudes, on the other hand, both deciduous
and evergreen trees show lower ET than open land during summer and higher ET during
winter, which is inconsistent with GLEAM and, even more so, inconsistent with the
seasonally-varying ∆ET l in MOD -Li15. Another noteworthy result is that the separated
soil column configuration (i.e., CLM -BASE) appears to impair the agreement on ∆ET l

between CLM4.5 and the observations (Fig. 2.6). CLM -DFLT exhibits a positive ∆ET l

throughout the year except for the tropical dry season which is caused by deciduous
broadleaf trees exhibiting lower ET than open land (Fig. A.7 a, b, and c). There are two
potential reasons for the negative bias in ∆ET l introduced by separated soil columns.
First, the implicit lateral ground heat flux from open land towards forest which occurs
in CLM -DFLT (Fig. A.2) provides additional energy over forests for turbulent heat
fluxes. This energy source (sink) for forests (open land) is disabled by separated soil
columns. Second, the lower soil temperature of forests in CLM -BASE (Fig. A.3) reduces
the specific humidity gradient between the soil surface and the atmosphere and hence
also the absolute soil evaporation. It needs to be noted that the weaker agreement with
observational data of ∆ET l in CLM -BASE than in CLM -DFLT does not necessarily
imply a worse representation of the evaporative processes in CLM -BASE, but could also
originate from the fact that CLM4.5 was tuned to retrieve realistic ET values on shared
soil columns.

To shed light on the origin of the ∆ET l bias in CLM4.5, we separately analyze the
three components of ET in CLM4.5: soil evaporation (including sublimation/evaporation
from the snow- and water-covered fraction of the soil), canopy interception evaporation,
and vegetation transpiration. As seen in Fig. 2.7 (b), there is a distinct band around
the equator where soil evaporation is considerably lower in forests than in open land.
Interestingly, both the study of Chen et al. (2018) and ours show that the lower soil
evaporation signal only arises for the configuration with separated soil columns (data of
CLM -DFLT are not presented here). Thus, lower soil evaporation around the equator in
CLM -BASE is likely related to the diminution of the soil temperature and of the available
energy mentioned earlier in this section. It appears reasonable that, in comparison with
open land, forests have lower soil evaporation since (1) the forest soil surface receives
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Figure 2.6: Seasonal and latitudinal variations of ∆ET l in (a) the MOD - Li15 and (b) GLEAM
observations, (c) CLM -DFLT, (d) CLM -BASE, and (e) CLM -PLUS. Points with a mean which
is insignificantly different from zero in a two-sided t-test at 95% confidence level are marked with
a black dot. All data from the 2002-2010 analysis period corresponding to a given latitude and a
given month are pooled to derive the sample set for the test.

less incoming solar radiation, (2) more of the incoming precipitation is intercepted by the
canopy, and (3) the water vapour concentrations within the canopy are higher. Yet soil
evaporation and canopy interception evaporation contribute a larger proportion to total ET
in CLM4.5 (31% and 19%) compared to GLEAM (14% and 10%; Martens andMiralles,
2017). It is thus possible that the strength of this effect is too large in CLM4.5. However,
most ET measurement techniques cannot distinguish among the different components of
ET, making it difficult to assess which partitioning is more realistic. Overall, negative
∆ET l values in CLM -BASE typically coincide with negative differences in vegetation
transpiration, in particular during the wet season in the tropics and sub-tropics and
during summer at higher latitudes (Fig. 2.7 a and d), whereas negative values in the
soil evaporation difference are partly compensated by positive values in interception
evaporation (Fig. 2.7 b and c). It is therefore likely, that vegetation transpiration is the
main driver behind the ∆ET l bias even though the contribution of the individual ET
components to the total signal cannot be evaluated. For this reason, the modifications in
the CLM - PLUS sensitivity experiment are targeted at altering vegetation transpiration.

In summary, ∆ET l in CLM4.5 exhibits considerable discrepancies to the considered
global ET datasets and in-situ observations. The separated soil column configuration
amplifies these discrepancies, which are typically driven by the difference in vegetation
transpiration of forest minus open land.

Land surface temperature

The overall local temperature impact of forests is the result of several biogeophysical
properties acting simultaneously. They include lower albedo of forests (warming effect),
higher surface roughness (cooling effect if land surface is warmer than boundary layer),
and alteration of the evaporative fraction (Bonan, 2008; Pitman et al., 2009; Davin and
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Figure 2.7: Seasonal and latitudinal variations of difference of forest minus open land in (a) total
ET, (b) soil evaporation, (c) canopy interception evaporation, and (d) vegetation transpiration in
CLM -BASE. Points with a mean which is insignificantly different from zero in a two-sided t-test at
95% confidence level are marked with a black dot. Note that the colorbar in this figure is different
from the one in Figs. 2.5 and 2.6

de Noblet-Ducoudré, 2010; Li et al., 2015). For daily mean LST forests exhibit a cooling
effect in MOD -Li15 except for the winter months at latitudes exceeding 30◦ (Fig. 2.9 a).
This implies that the cooling effects of higher surface roughness and generally higher
evaporative fraction over forests are stronger than the warming effect due to their lower
albedo. ∆LST l

avg and ∆LST l
max are positive only under the presence of snow, as ∆α l is

amplified due to the snow masking effect (moreover sensible heat fluxes are often directed
towards the land surface during winter at high latitudes, resulting in warmer forests due
to their higher surface roughness inducing stronger turbulent heat fluxes; Liu et al., 2005).
The observed magnitude of ∆LST l

max tends to be larger than that of ∆LST l
avg likely due to

the fact that the observed daytime effect is partly compensated by an opposing nighttime
effect (Fig. 2.4 b, c, and d). MOD -Li15 exhibits an overall cooling effect of forests on
daily mean LST in all climate zones, including the snow climate zone where the sign
of the difference changes seasonally (Fig. 2.9 d). Further, this dataset shows a slightly
negative ∆LST l

min in tropical and sub-tropical regions and even a positive ∆LST l
min in

the mid-latitudes (Fig. 2.9 g). This nighttime signal in the mid-latitudes is observed in
several observational studies but its source is not yet fully determined (Lee et al., 2011;
Vanden Broucke et al., 2015; Li et al., 2015).

CLM -BASE generally captures the sign and magnitude of ∆LST l
avg and ∆LST l

max
compared to MOD -Li15 (Fig. 2.9). The separated soil columns used in CLM -BASE
allow for larger LST differences between forest and open land than the default version
of CLM4.5 (CLM -DFLT) on shared soil columns, resulting in a better agreement with
the observed magnitudes. This is due to the fact that the ground heat flux on shared soil
columns counteracts the soil temperature difference and thereby also the LST difference
between forest and open land. Nevertheless, there are still some discrepancies between the
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LST signal in CLM -BASE and the MOD -Li15 observations. It appears that ∆LST l
avg

in CLM -BASE has a positive bias in the equatorial, the arid, and the snow climate
zones and a negative bias in the T-wd and T-fh climate zones (Fig. 2.4 b). ∆LST l

max in
CLM -BASE appears qualitatively similar to the MOD -Li15 observations (Fig. 2.9 d, e,
and f) but is biased positively in all climate zones (Fig. 2.4 c). In contrast, daily minimum
LST shows much larger discrepancies between CLM -BASE and MOD -Li15 (Fig. 2.9 g,
h, and i). In CLM -BASE, ∆LST l

min is similar to ∆LST l
avg and ∆LST l

max, i.e. forests have
an overall nighttime cooling effect in all climate zones except for the neutral signal in the
snow climate zones, whereas MOD -Li15 exhibits an only weak nighttime cooling effect
in the tropical climate zones and a clear nighttime warming effect in all other climate
zones (Fig. 2.4 d). The weak performance of CLM -BASE in terms of ∆LST l

min is also
visible in the RMSD values which are considerably larger than the mean ∆LST l

min signal
(compare Figs. 2.4 d and 2.3 d)

Figure 2.8: Seasonal and latitudinal variations
of (a) daily maximum T2M difference of forest mi-
nus open land and (b) ∆LST l

max in CLM -BASE.
Points with a mean which is insignificantly differ-
ent from zero in a two-sided t-test at 95% con-
fidence level are marked with a black dot. All
data from the 2002-2010 analysis period corre-
sponding to a given latitude and a given month are
pooled to derive the sample set for the test. Only
grid cells containing valid data in the MOD - Li15
observations were considered for the analysis.

Interestingly, and in contrast to LST,
CLM4.5 simulates a small year-round
warming effect of forests on daily max-
imum 2m air temperature (T2M, Fig. 2.8).
This contradicts a number of observa-
tional studies which show that the T2M
difference of forest minus open land
(∆T2Ml) has the same sign, but is attenu-
ated compared to ∆LST ł (Li et al., 2015;
Vanden Broucke et al., 2015; Alkama and
Cescatti, 2016; Li et al., 2016b). The
fact we use offline simulations in our ex-
periments might explain this behaviour,
because some land-atmosphere feedbacks
are not represented. However, Lejeune et
al. (2017) report similar discrepancies of
∆T2Ml in CLM with observational data
for coupled simulations, suggesting that
the behaviour of ∆T2Ml in our simula-
tions may not be related to the lack of
atmospheric feedbacks.

Figure 2.9: (Next page) Seasonal and latitudinal variations of ∆LST l
avg in (a) the MOD - Li15

observations, (b) CLM -DFLT, and (c) CLM -BASE. Points with a mean which is insignificantly
different from zero in a two-sided t-test at 95% confidence level are marked with a black dot. All data
from the 2002-2010 analysis period corresponding to a given latitude and a given month are pooled
to derive the sample set for the test. Panel (d) shows the zonal annual mean of MOD - Li15 (green,
interquartile range in grey), CLM -DFLT (blue, interquartile range in blue), and CLM -BASE (red,
interquartile range in orange). Note that on this subfigure results have been smoothed with a 4°
latitudinally-running mean. Only grid cells containing valid data in the MOD - Li15 observations
were considered for the analysis of CLM -DFLT and CLM -BASE. The same for ∆LST l

max in panels
(e), (f), (g), (h) and for ∆LST l

min in panels (i), (j), (k), (l).
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2.3.2 Sensitivity experiment to alleviate ET biases in CLM4.5
In the previous section, striking discrepancies between the effect of forests in CLM -BASE
and observation-based data were found for ∆ET l. An important driver responsible for
these differences was identified to be vegetation transpiration (Fig. 2.7). In addition, it be-
came apparent that the separated soil column configuration impairs the ∆ET l compared to
the shared soil column configuration (Fig. 2.6), despite improving ∆LST l

avg and ∆LST l
max

(Fig. 2.9). Hence, in this section we aim to improve the comparability of modeled ∆ET l

to observation-based results by testing a modified parametrisation of vegetation transpira-
tion in a sensitivity experiment called CLM - PLUS. This model configuration comprises
(1) a shallower root distribution for open land PFTs, (2) a modified plant water uptake
scheme whereby plants only extract water from the 10% of the roots with best access to
soil moisture, (3) altered light limitation of photosynthesis (decreased for C3 plants and
increased for C4 plants), and (4) altered Vcmax values to alleviate ET biases at PFT level
compared to the GETA data.
∆αl is only marginally affected by the modifications of CLM - PLUS compared

to CLM -BASE (Fig. 2.4 a). This is expected since the modifications are targeted at
modifying vegetation transpiration which is not linked directly to albedo. ∆ET l in CLM -
PLUS becomes more positive than in CLM -BASE in all climate zones, thereby better
matching the observation-based estimates (Fig. 2.4 e). The improvement is also apparent
in the RMSD values which are reduced in CLM - PLUS for all data sets and climate
zones, except for GETA in the E-h climate zone (Fig. 2.3 e). The bias in average ET
compared to GETA is smaller in CLM - PLUS than in CLM -BASE for all PFTs except
for boreal deciduous needleleaf trees and crops (Fig. 2.4 f). Some discrepancies with
observation-based ET products nevertheless remain. ∆ET l in CLM - PLUS is still mostly
less positive compared to remote sensing-based observations and GETA, and remains
of opposite sign during the warm season in the temperate regions and in a narrow band
around the Equator (Figs. 2.6 and 2.4e). This band originates from a negative ∆ET l

around the western part of the equator in Africa and over Indonesia (Fig. 2.5). GLEAM
and GETA observations cover these areas which explains the only moderate reduction
of RMSD of CLM - PLUS against GLEAM and the increase in RMSD against GETA
in the E-h climate zone. On the other hand, the RMSD against MOD -Li15 is reduced
considerably in CLM - PLUS, since MOD -Li15 observations are sparse over Africa and
Indonesia (Fig. 2.3 e). Also, relative to the in-situ observations of von Randow et al.
(2004), biases in CLM - PLUS are reduced, yet not completely eliminated (TableA.2).
As a consequence of the improved ∆ET l, we find that CLM - PLUS partly alleviates the
positive bias in ∆LST l

max compared to the MOD -Li15 data, especially in the equatorial
climate zone which also reduces the RMSD in all but the Arid climate zone (Figs. 2.4 c
and 2.3 c). This hints that a realistic representation of ∆ET l is crucial for resolving the
underestimated cooling effect of forests on daily maximum LST. Similarly, RMSD of
∆LST l

avg decreases in the Equatorial and Arid climate zones, whereas it increases in the
temperate and snow climate zones (Fig. 2.3 b). At the same time, the RMSD of ∆LST l

min
is only marginally increased in all climate zones (Fig. 2.3 d).
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2.4 Discussion

The combination of separated soil columns and the further modifications introduced
in CLM-PLUS led to substantial improvements in CLM4.5’s capability to represent
forest/open land contrast. Nevertheless, some biases still persist. In particular, CLM4.5
is still unable to represent the nighttime warming effect of forests in the mid-latitudes
exhibited by observational data (Lee et al., 2011; Zhang et al., 2014; Vanden Broucke et al.,
2015; Li et al., 2015; Alkama and Cescatti, 2016; Li et al., 2016b). Additionally, there is
a remaining positive bias of ∆LST l

max compared with MOD -Li15 even though this bias
is alleviated to some extent due to the more positive ∆ET l. Inadequate representation or
omission of several processes in CLM4.5 could be the source of these discrepancies with
MOD -Li15. The biases in both∆LST l

max and∆LST l
min could be alleviated by accounting

for biomass heat storage, a process which is currently disregarded in CLM4.5. Observed
diurnal biomass heat storage fluxes reach an amplitude of 10–20 Wm−2 in the mid- and
high-latitudes (McCaughey and Saxton, 1988; Lindroth et al., 2010; Kilinc et al., 2012)
and 20–70 Wm−2 in the tropics (Moore and Fisch, 1986; Meesters and Vugts, 1996;
Michiles and Gielow, 2008). Fluxes of this magnitude are sufficient to considerably alter
the diurnal temperature cycle in forests and hence potentially resolve the discrepancies
in ∆LST l

max and ∆LST l
min of CLM4.5 with MOD -Li15. While ∆ET l in CLM - PLUS

is improved against all the considered ET data sets in almost every climate zones, some
biases persist especially concerning the seasonality in the mid- and high-latitudes as well
as annual mean values around the equator. In CLM - PLUS the focus was on vegetation
transpiration, thereby neglecting the contribution from soil and interception evaporation.
However, soil evaporation is considerably lower over forests around the equator in CLM -
PLUS which might explain the remaining negative ∆ET l in this region. We therefore
encourage additional sensitivity experiments which also focus on the other components
of ET. When testing new model configurations, care should be taken that the implemented
modifications do not impair other features of the model, related not only to the water
but also the energy and carbon budgets. Reassuringly, we find that global ET averages
are only weakly affected in the sensitivity experiment, with an average of 1.43 mm/day
in CLM -BASE compared to 1.41 mm/day in CLM - PLUS. These values lie within the
range of 1.2 mm/day to 1.5 mm/day estimated from surface water budgets (Wang and
Dickinson, 2012). Nevertheless, it would be desirable in future studies to evaluate the
biogeochemical effects of the different model configurations investigated here alongside
the biogeophysical effects.

For comparison with LST data we used the radiative temperature in CLM4.5 rather
than the more common T2M diagnostic which exhibits an observation-contradicting
sign in CLM4.5 (compare Figs. 2.9e and 2.8). Such T2M-specific discrepancies with
observations could be related to a differing definition of T2M over forests in the model
and observations. For example, the differing sign of ∆T2Ml

max in climate models using
CLM and the observations of Lee et al. (2011) found in Lejeune et al. (2017) might be
related to the fact that T2M observations were made 2 to 15m above the forest canopy
whereas T2M of CLM4.5 lies within the forest canopy (Oleson et al., 2013). Therefore,
T2M in CLM4.5 should be used with care when comparing to observations.
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There are several factors which may affect the comparability of the signal extracted
from our CLM4.5 simulations and the considered observational data sets. (1) the different
data sources use differing LC information. For example, GLEAM uses the MOD44B
product which provides the fraction of each grid cell covered by trees, non-tree vegetation,
and non-vegetated land surfaces, whereas MOD -Li15 uses MCD12C1 product which
provides the dominant IGBP LC type (Li et al., 2015; Martens et al., 2017). Further, the
definition of forest and open land in the Li et al. 2015 dataset can be a source of model-data
discrepancy. The methodology applied by Li et al. (2015) relies on the definition of a
threshold (80%) in the coverage of forest (open land) for a pixel to be classified as forest
(open land). There are therefore some mixing effects between the forest and open land
categories in this dataset, whereas our evaluation method isolates pure signals over forest
and open land in CLM4.5. In fact, MODIS albedo retrievals were found to underestimate
albedo over grass- and cropland, especially under the presence of snow, and overestimate
it over forests due to the heterogeneity of LC within pixels (Cescatti et al., 2012; Wang
et al., 2014). Therefore, it is possible that the magnitude of ∆α l is underestimated in
MOD -Li15 rather than overestimated in CLM4.5. Consistently, in-situ observations of
paired forest and open land sites support the higher ∆α l found in CLM -BASE (von
Randow et al., 2004; Liu et al., 2005). (3) MODIS LST data are retrieved under clear-sky
conditions only, whereas we do not mask out cloudy days in the evaluation of the CLM4.5
simulations. (4) the overpass times of the MODIS satellite system are at 1:30 am and
1:30 pm, hence not necessarily coinciding with the daily maximum and minimum LST
in CLM4.5. And finally (5), the meteorological conditions within one search window
of MOD -Li15 may vary between the different pixels, whereas the different PFT tiles in
our CLM4.5 simulations where subject to the exact same atmospheric forcing. However,
Li et al. (2015) partly accounted for this effect by applying an elevation adjustment.
Moreover, they found little sensitivity of the forest minus open land signal to the size of
the chosen window.

In this study, we focused on the contrast between forest and open land. However, we
acknowledge that future studies should consider other types of land conversions or land
management changes, as an increasing number of studies have demonstrated that other
LCCs than de- or reforestation also have remarkable biogeophysical effects (e.g., Davin
et al., 2014; Malyshev et al., 2015; Naudts et al., 2016; Thiery et al., 2017; Chen et al.,
2018). The two new observation based data sets of Bright et al. (2017) and Duveiller et al.
(2018b) assess the biogeophysical consequences of a series of different LCCs globally,
thereby enabling the evaluations of the sensitivity to additional types of LC in future
studies. An additional advantage of these two studies is that they both provide a signal for
a complete conversion from one LC type to another (i.e. they do not rely on a coverage
threshold as MOD -Li15). In our evaluation approach we focus on the local climatic
impact of forests, thereby neglecting feedback mechanisms between the atmosphere and
the land surface. While they appear to be relevant in many climate models (Winckler et al.,
2017; Devaraju et al., 2018), their evaluation is prevented by the lack of observations at
the moment.
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2.5 Conclusions

In this study we evaluate the representation of the local biogeophysical effects of forests
in the Community Land Model 4.5 (CLM4.5), using recently published MODIS-based
observations of the albedo, evapotranspiration (ET), and land surface temperature (LST)
difference between forest and nearby open land. Given the uncertainties in observation-
based ET estimates, we further extend our evaluation for this variable by including data
from GLEAM v3.1a and GETA 2.0. In our model evaluation we extract a local signal
of forests by analysing PFT-level model output, allowing for good comparability with
the high-resolution satellite observations. Further, we use a modified version of CLM4.5
which attributes a separated soil column to each plant functional type (PFT), resulting in
a more realistic sub-grid contrast between forest and open land.

Overall, the lower albedo over forests in CLM4.5 is in line with the MOD -Li15
observations. However, the albedo contrast between forest and open land is somewhat
more pronounced in the model. Ground observations support the stronger albedo contrast
in CLM4.5, suggesting that MODIS albedo observations should be used carefully when
contrasting different LC types, as satellite observations tend to retrieve a mixed signal of
various LC types due to their limited spatial resolution. By suppressing lateral ground
heat fluxes, the soil column separation considerably improved the representation of the
impact of deforestation on daily mean and maximum LST, resulting in a good agreement
with the MOD -Li15 observations. Both exhibit an overall cooling effect of forests on
these variables, except for winter at latitudes exceeding 30°. Nevertheless, it appeared
that the LST difference of forest minus open land in CLM4.5 tends to have a positive
bias compared to observational studies. Also, it emerged that caution is required when
comparing 2m air temperature in CLM4.5 to observational data. This variable is only
diagnostic in CLM4.5 and might not be conform with measurements, despite realistic
LST values. The nighttime warming effect of forests in the mid-latitudes which emerged
in a number of recent observational studies, is not represented by CLM4.5. The biases in
the daily maximum and minimum LST signal of forests might be at least partly alleviated
by accounting for heat storage in the vegetation biomass. We therefore encourage a
modification of CLM which enables the representation of biomass heat storage.

Observation-based ET estimates generally agree on higher ET over forests than open
land throughout the year at low latitudes and during summer at mid- and high latitudes.
This was however not represented by the CLM4.5 configuration using separated soil
columns. In fact, the soil column separation impaired the ET signal of forests in CLM4.5,
despite improving the LST signal of forests considerably. Hence, a complete evaluation
and verification of this modification of CLM4.5 should be undertaken before including
it in future versions of CLM. We succeeded in attenuating the biases in ET and also
daily maximum LST in a sensitivity experiment which incorporated modifications on
four aspects of the parametrisation of vegetation transpiration: The root distribution, a
dynamic plant water uptake instead of the current static one, the light limitation, and the
maximum rate of carboxylation.

Historically the most important Land Cover Change (LCC), deforestation is still
ongoing in large parts South America, Africa, and Southeast Asia. A realistic represen-
tation of the biogeophysical effects of LCC in climate models is needed as a number
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of observational studies revealed that they can have a considerable impact on the local
climate. An appropriate representation of the effects of LCC is not only a feature land
surface models need to have in order to understand the climate of the past and project
future climate, but is also a chance to achieve a more realistic simulation of processes at
the land surface. To this end, the analysis of model output at PFT level can help revealing
model deficiencies that otherwise would have been hidden below the veil of grid-scale
aggregation.
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Biomass heat storage dampens diurnal
temperature variations in forests
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Abstract Observational evidence suggests that compared to non-forested areas, forests
have a cooling effect on daytime Land Surface Temperature (LST) and a warming effect
on nighttime LST in many regions of the world, thus implying that forests dampen the
diurnal temperature range. This feature is not captured by current climate models.
Using the Community Land Model 5.0 (CLM5.0), we show that this diurnal behaviour
can be captured when accounting for Biomass Heat Storage (BHS). The nighttime release
of energy absorbed by the vegetation biomass during the day increases both nighttime
LST and ambient air temperature in forested regions by more than 1K. The daytime
cooling is weaker than the nighttime warming effect, because the energy uptake by the
biomass is compensated by a reduction in the turbulent heat fluxes during day. This
diurnal asymmetry of the temperature response to BHS leads to a warming of daily mean
temperatures, which is amplified during boreal summer warm extremes. Compared to
MODIS, CLM5.0 overestimates the diurnal LST range over forested areas. The inclusion
of BHS reduces this bias due to its dampening effect on diurnal LST variations. Further,
BHS attenuates the negative bias in the nighttime LST difference of forest minus grassland
and cropland, when compared to MODIS observations. These results indicate that it is
essential to consider BHS when examining the influence of forests on diurnal temperature
variations. BHS should thus be included in land surface models used to assess the climatic
consequences of land use changes such as deforestation or afforestation.
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3.1 Introduction

Forests play a critical role in the climate system by regulating land-atmosphere exchanges
of greenhouse gases, energy, and water (e.g., Pongratz et al., 2010; de Noblet-Ducoudré
et al., 2012). The influence of forests on climate can be divided into two categories of
processes: (1) the globally acting biogeochemical processes, representing the release or
sequestration of greenhouse gases, and (2) the biogeophysical processes, representing
direct alterations of the local energy and/or water budget. While the first category of
processes appears to be dominant on a global scale (Pongratz et al., 2010), the latter alter
the climate considerably at local to regional scale and are thus essential in determining
the influence of forests on local climate (Lee et al., 2011; Li et al., 2015; Li et al., 2016b;
Bright et al., 2017; Duveiller et al., 2018b).

In the absence of snow, forests are observed to have a local cooling impact on
both Land Surface Temperature (LST) and above-canopy air temperature during the day
compared to open land (i.e., grassland and cropland; Lee et al., 2011; Li et al., 2015;
Alkama and Cescatti, 2016; Duveiller et al., 2018b). During nighttime, forests tend to be
only slightly colder than open land in tropical and subtropical areas and even warmer than
open land in the mid-latitudes. Hence, forests tend to dampen the Diurnal Temperature
Range (DTR) everywhere but the boreal regions (Lee et al., 2011; Duveiller et al., 2018b).
In the mid-latitudes, the sign of the temperature difference of forest minus open land
even changes during the diurnal cycle, from a negative daytime difference to a positive
one at night (Lee et al., 2011; Zhang et al., 2014). This feature is missing in all the
climate models analysed in the LUCID, CMIP5 and LUCAS intercomparisons (Lejeune
et al., 2017; Davin et al., 2020). A considerable fraction of the models even exhibits a
warming effect of forests on daily maximum 2m air temperature (T2M) and a cooling
effect on daily minimum T2M, opposing observations completely. Such biases could be
partly related to the calculation of T2M in models, which does not necessarily correspond
to the temperature 2m above the canopy in forests (Meier et al., 2018; Winckler et al.,
2019b). However, the nighttime warming by forests is still not represented in CLM4.5
when considering LST, which is more directly comparable to remote sensing observations
(Meier et al., 2018). This systematic model bias suggests that land surface models
are either missing or are poorly representing an important process affecting the energy
redistribution at the land surface.

There is a general consensus about the processes leading to the daytime cooling
effect of forests compared to open land. Namely, forests have higher surface roughness,
which results in stronger turbulent heat fluxes, as well as higher evaporative fraction,
which is associated with more evaporative cooling (Davin and de Noblet-Ducoudré,
2010; Lee et al., 2011; Vanden Broucke et al., 2015; Schultz et al., 2017). Indeed,
reducing the negative bias in the ET difference of forest minus open land in CLM4.5
also attenuated the positive bias in the daytime LST difference between these Land Cover
(LC) types (Meier et al., 2018). On the other hand, little is known about the mechanism
behind the nighttime warming effect of forests in the mid-latitudes. Lee et al. (2011)
hypothesized that under stable conditions warm air from the planetary boundary layer
is transported more effectively towards the land surface over forests, due to their higher
surface roughness compared to the one of open land. Vanden Broucke et al. (2015)
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observed that the nighttime warming of forests is not only related to sensible heat fluxes
but also to more incoming longwave radiation. They hypothesized that the latter flux
could be explained by (1) a stronger greenhouse gas effect over forests due to a moister
boundary layer, (2) higher aerosol loading over forests, or (3) the presence of warmer air
due to more turbulent mixing over forests (i.e., the higher incoming longwave radiation
is a side effect of the stronger turbulent mixing over forests). An additional explanation
for the nighttime warming effect of forests could be that energy accumulated in the plant
biomass during the day is released into the canopy space during the night (Schultz et al.,
2017; Meier et al., 2018). Due to the high amounts of biomass in forests compared to
grasslands or croplands, Biomass Heat Storage (BHS, i.e. heat storage in the biomass
itself) is likely much larger over forests and could thus be a driver behind the nighttime
warming effect of forests. Indeed, in-situ observational studies indicate that the diurnal
amplitude of the Biomass Heat Flux (BHF; i.e., the change of energy stored in the biomass)
can be substantial (Aston, 1985; Moore and Fisch, 1986; McCaughey and Saxton, 1988;
Meesters and Vugts, 1996; Vogt et al., 1996; Silberstein et al., 2001; Meyers andHollinger,
2004; Oliphant et al., 2004; Michiles and Gielow, 2008; Garai et al., 2010; Lindroth
et al., 2010; Kilinc et al., 2012; Burns et al., 2015). While the BHF is negligible when
integrated over longer time scales, it typically exhibits diurnal amplitudes of 15-75 W m−2

in mature forests (e.g., Oliphant et al., 2004; Haverd et al., 2007; Lindroth et al., 2010;
Kilinc et al., 2012; Burns et al., 2015). A flux of this magnitude appears sufficient to
considerably alter diurnal temperature variation over forests. Hence, several land surface
model have already included the process BHS (e.g., Verseghy et al., 1993; Samuelsson
et al., 2011; Boone et al., 2017; Heidkamp et al., 2018).

Still, the relevance of BHS for the local climate has to our knowledge not been
assessed at a global scale. In this study, we therefore investigate, how BHS affects diurnal
LST and T2M variations over forested regions using the Community Land Model 5.0
(CLM5.0). Swenson et al. (2019) recently introduced a scheme simulating energy storage
in leaves and stems in CLM5.0. Here, we extend the BHS scheme of Swenson et al.
(2019), by coupling BHS to the biomass carbon stocks simulated by the model with an
active carbon and nitrogen cycle. As a consequence, the leaf area index, leaf biomass,
stem biomass, and vegetation height are diagnosed directly from the simulated vegetation
carbon pools instead of relying on uncertain parameter values, thereby improving the
internal consistency within the model. We then present a first global estimate of the
diurnal amplitude of the BHF and compare the simulated BHF to in-situ studies to assess
the realism of the BHS scheme. In a second step, we assess how BHS affects temperatures
at grid cell level and evaluate the modeled DTR with remote sensing observations from
the MODerate resolution Imaging Spectroradiometer (MODIS) system. Finally, we
investigate how BHS affects the sensitivity of LST to LC at sub-grid scale, which we
compare to twoMODIS-based data sets (Li et al., 2015; Duveiller et al., 2018b), following
the evaluation strategy in Meier et al. (2018).



Methods and data 51

3.2 Methods and data

3.2.1 Model description
CLM5.0 is the land component of the Community Earth System Model (CESM2;
Lawrence et al., 2019). CLM5.0 simulates thermodynamic processes, such as absorption,
reflection, and emission of shortwave and infrared radiation, sensible and latent heat
fluxes from the vegetation and soil, and heat storage in the soil column. The hydrology of
the land surface considers infiltration, runoff, canopy interception, and evapotranspiration,
distinguishing between the water, snow, and ice phase. Further, CLM5.0 can represent the
exchange of carbon and nitrogen via processes such as photosynthesis, autotrophic and
heterotrophic respiration, litterfall, nitrogen deposition, nitrogen fixation, and nitrogen
mineralization, denitrification, and fire.

Recently, Swenson et al. (2019) implemented a BHS scheme to a post-release version
of CLM5.0 which allows the representation of heat storage in stems and leaves. An
additional vegetation temperature, the stem temperature, was introduced in this scheme,
besides the already existing bulk canopy temperature (representing the temperature of the
leaves). As a consequence, the energy balance is solved both for the leaf and the stem.

The leaf energy balance is closed at each time step, under the assumption that leaf
temperature (Tlea f ) is in balance with the leaf energy fluxes given the high surface
area/volume ratio (i.e., the leaf temperature is iteratively adjusted until the energy balance
is closed):

−→
S lea f +

−→
L lea f (Tlea f ) − Hlea f (Tlea f ) − λElea f (Tlea f ) − Clea f

dTlea f
dt

= 0 (3.1)

, where −→S lea f and
−→
L lea f are the net solar and the net longwave radiation absorbed by

the leaves, Hlea f and λElea f are the sensible and latent heat fluxes from the leaves, and
Clea f is the heat capacity of the leaves.

The energy balance of the stem is computed after calculating Tlea f as follows:

−→
S stem +

−→
L stem(Tstem) − Hstem(Tstem) = Cstem

dTstem
dt

(3.2)

, where −→S stem and −→L stem are the net solar and the net longwave radiation absorbed by
the stem (Eqs. 6 and 7 in Swenson et al., 2019) , Hstem is the sensible heat flux from
the stem (Eq. 12 in Swenson et al., 2019), Cstem is the heat capacity of the stem, and
Tstem is the stem temperature. Hence, the energy surplus (deficit) of the stem (i.e., the
left-hand side of Eq. 3.2) is then taken up (released) by the stem and the stem temperature
is adjusted accordingly. The BHF represents the change in energy content of the biomass
and is calculated as follows:

BHF = Clea f

dTlea f
dt

+ Cstem
dTstem

dt
(3.3)

We introduce a few modifications and different parameter choices compared to the
original implementation of Swenson et al. (2019). In addition to the leaf area index, the
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BHS module requires a number of plant functional type-specific parameters. We assume
a dry wood density of 500 kg m−3 (Swenson et al., 2019). For the fraction of the biomass
that is water ( fw) we use a value of 0.7 for the leaves (Bonan et al., 2018) and a value of 0.5
for the stem, which is representative for the outer section of the stem (Herrington, 1969).
For the tree number density, the value of the closest biome of Crowther et al. (2015) is
chosen for each Plant Functional Type (PFT). Further, we couple the BHS scheme to the
prognostic carbon and nitrogen module in CLM5.0 (referred to as the Bgc-mode in the
model community). This allows to calculate the dry leaf mass (Mlea f , kg m−2) and dry
stem mass (Mstem, kg m−2) based on the simulated carbon pools as follows:

Mlea f = CPlea f ∗ bcarbon (3.4)

Mstem = CPstem ∗ bcarbon (3.5)

, where CPlea f and CPstem are the leaf and stem carbon pools, which are prognostically
simulated by CLM5.0, and bcarbon is the ratio of dry biomass to carbon with a constant
value of 2 kg/kgC (Bonan et al., 2018). Mlea f and Mstem are subsequently used to
compute Clea f and Cstem, respectively after Eqs. 9 and 22 in Swenson et al. (2019). This
approach enables the calculation of a breast-height diameter (Dbh) from Mstem instead
of assuming a globally constant value by combining Eqs. 10 and 11 of Swenson et al.
(2019):

Dbh = 2 ∗

√
Mstem

π htree Ntree ρwood
(3.6)

, where htree is the tree height, Ntree the tree number density, and ρwood the dry wood
density. As in Swenson et al. (2019), the resistance to heat transfer between the interior
of the tree and the tree surface, rbole, is linked to the Dbh as follows:

rbole = rw ∗ Dbh (3.7)

, where rw is resistance to heat transfer per meter of stem diameter. We use rw as
a tuning parameter to achieve realistic BHF values and arrive at the same value of
1000 s m−2 as in Swenson et al. (2019). In this study however, rbole may vary spatially
and temporally as the Dbh is linked to the stem carbon pool. Additionally, the Bgc-
module computes the leaf area index, stem area index∗, and vegetation height based
on the vegetation carbon pools instead of using values estimated from remote sensing
observations (Lawrence et al., 2018). The source code used in the simulations is available
at https://github.com/RonnyMeier/ctsm/tree/ERL-106754_corrected.

3.2.2 Simulation setup
The simulations presented in this study are analysed over the period of 2002 to 2010 (since
the observational data described in the section below start from 2002 and the atmospheric
forcing is available only until 2010). They were run in offline mode, forced by the

∗This variable is called stem area index in CLM. However, this variable was initially called "the stem and dead
leaf area index" when introduced in CLM (Zeng et al., 2002) and exhibits a distinct seasonal cycle with a peak for
deciduous trees in autumn in the higher latitudes. As such, the name "stem area index" is misleading.

https://github.com/RonnyMeier/ctsm/tree/ERL-106754_corrected
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Global Soil Wetness Project (GSWP3) data set, at 0.5◦ spatial resolution (Kim, 2017).
The percentage of the different PFTs within each grid cell is derived from MODerate
resolution Imaging Spectroradiometer (MODIS) observations, as described in Lawrence
and Chase (2007), and is kept constant throughout the simulation at the coverage of
the year 2000 (Fig. B.1). We use separated soil columns in our simulations to suppress
unrealistically large lateral ground heat fluxes between different PFTs (Schultz et al., 2016;
Meier et al., 2018). To isolate the effect of BHS, we run a control simulation with no BHS
(CLM -CTL). The second simulation, CLM -BHS, is run in the exact same configuration
but with an active BHS scheme. As in Swenson et al. (2019), we raise the upper cap of the
Monin-Obukhov stability parameter in the surface layer from 0.5 to 100 to assess the full
impact of BHS in both simulations (thereby making the atmospheric stability virtually
unconstrained). Both the CLM -CTL and CLM -BHS simulations start from the same
initial state and are run for the years 1997 to 2010 (Note that this experimental design
mutes feedbacks arising from BHS on the simulated carbon stocks themselves). There
is therefore an additional 5 years of spin up before the analysis period of 2002 to 2010.
The initial state in 1997 is retrieved by running the model for 146 years at 0.5◦ spatial
resolution, starting from an already spun-up, pre-industrial state, which was interpolated
from the original resolution of 0.9° × 1.25° to 0.5° × 0.5° resolution. For this additional
spin up, we first cycle five times through the atmospheric forcing data of the years 1901
to 1910 for the period of 1851 to 1900. After, we force the model with the reanalysis data
of the years 1901 to 1996. During this spin up, BHS remains inactive. Fig. B.2 illustrates
the resulting aboveground biomass of different LC types.

3.2.3 Observational data
We evaluate the modeled LST with MODIS observations both at grid cell level and in
terms of the sub-grid difference between forest minus open land. TheMODIS instruments
aboard the satellites Aqua and Terra provide LST measurements at approximately 01:30
and 13:30 solar time at 0.05° × 0.05° resolution. For the evaluation at grid cell level we
use the data of the monthly MYD11C3 data product from July 2002 to December 2010.
After masking out observations with a reported LST error estimate larger than 1K and/or
an emissivity error estimate larger than 0.01 (as in Li et al., 2015) and discarding pixels
with a land fraction lower than 80%, the original data is averaged to the model resolution
of 0.5° × 0.5°. The resulting monthly values are then used to derive a multi-year monthly
average. From this multi-year monthly average we then calculate the multi-year total
average, excluding pixels with no valid data for at least one month.

The model performance in terms of its representation of the local LST difference of
forest minus open land is evaluated using the two MODIS-based data sets of Li et al.
(2015) and Duveiller et al. (2018b), subsequently called MOD -Li15 and MOD -Du18.
These data sets compare LST over different LCs within moving windows of 9 by 5 pixels
or 5 by 5 pixels to infer a LST difference of forest minus open land at roughly 01:30
and 13:30 solar time. Given the relatively high resolution of the two data sets, it is a
reasonable assumption that the different pixels within the moving window experience
similar climatic conditions. Thus, the data sets are assumed to capture the local impact
of a conversion from forest to open land.
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MOD -Li15 and MOD -Du18 differ in methodology, time frame, and the MODIS
products utilized. MOD -Li15 uses the MYD11C2 product extracting data from the
period 2002-2012. On the other hand, MOD -Du18 employs MYD11C3 data from 2008
to 2012. The MYD11C2 and MYD11C3 products are both aggregated from daily LST
observations (MYD11C1) to 8 day average values in the case of MYD11C2 and monthly
average values in the case of MYD11C3 (Wan and Hulley, 2015a; Wan and Hulley,
2015b). Although the two data sets exhibit a comparably high spatial resolution, the
observed pixel usually still comprises different LC types. Thus, it is challenging to isolate
a LST over forest or open land only. MOD -Li15 defined a threshold of 80% in the
coverage of a certain pixel by forest or open land for the pixel to be classified as forest
or open land, respectively, and calculated the difference between the forest minus the
open land pixels within search windows of 9 by 5 pixels. The LST of the different pixels
was corrected for elevation differences using a lapse rate which was inferred from the
MODIS observations. Further, the comparison samples were masked for an elevation
difference of less then 500m. The more recent MOD -Du18 data set on the other hand
used a multiple linear regression model within windows of 5 by 5 pixels to establish
a relationship between the fraction of different vegetation types and LST. Additionally,
Duveiller et al. (2018b) applied stricter criteria to mask out pixels with too high elevation
variability but did not apply an elevation adjustment to the LST data.

3.2.4 Model evaluation
The data sets of Li et al. (2015) and Duveiller et al. (2018b) depict the local LST difference
of forest minus open land under similar atmospheric forcing. We extract a comparable
signal from our simulations by calculating the sub-grid difference of forest minus open
land in the variables of interest following the approach of Malyshev et al. (2015). In
this approach the average in a certain variable over the forest tiles within a grid cell
is subtracted from the average over the open land tiles within the same grid cell (i.e.
under the same atmospheric forcing). Note that this difference is comparable to the
signal of an open-land-to-forest transition (i.e., afforestation or reforestation) rather than
a deforestation signal. A more detailed description of this methodology can be found in
Meier et al. (2018).

The LST is calculated as the weighted average between the leaf temperature (Tlea f )
and the ground temperature (Tgrnd):

LST = ev ∗ Tlea f + (1 − ev) ∗ Tgrnd (3.8)

The vegetation emissivity, ev , is calculated as in Eq. 4.20 in Lawrence et al. (2018):

ev = 1 − e−(L+S)/µ̄ (3.9)

, where L and S are the leaf area index and stem area index, respectively, and µ̄ is the
average inverse optical depth for longwave radiation (with a value of 1). Tgrnd is inferred
from the snow temperature (Tsnow), the temperature of the top soil layer (Tsoil), and the
surface water temperature (TH2O) as follows:

Tgrnd =
(

fsnow∗(Tsnow)4+(1− fsnow− fH2O)∗(Tsoil)
4+ fH2O∗(TH2O)

4
)1/4

(3.10)
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, where fsnow and fH2O are the fraction of the ground covered by snow and liquid water,
respectively. Since the MODIS observations are available at around 01:30 and 13:30
solar time, LST values in the model are output at the corresponding time steps. As in
Duveiller et al. (2018b), we assume that the LST difference at 01:30 and 13:30 reasonably
represent the daily minimum and maximum LST difference (we find that this assumption
is reasonable in the context of CLM5.0 output). Hence, ∆LST l

min and ∆LST
l
max refer to

the LST difference of forest minus open land at 01:30 and 13:30, respectively. In addition,
we analyse the effect of forests on the DTR, which can be calculated as the difference
of ∆LST l

max minus ∆LST l
min (Duveiller et al., 2018b). Accordingly, this variable is

called ∆DTRl. While the advantage of LST is that there exist observations with a global
coverage, T2M is used more frequently as a temperature metric and is thus more readily
interpreted. We therefore also analyse the impact of BHS on T2M at grid cell level
(Eq. 5.58 in Lawrence et al., 2018). T2M is a diagnostic variable in CLM5.0, representing
the air temperature 2m above the apparent sink of sensible heat (i.e., 2m above the sum of
the roughness length for sensible heat and the displacement height). Note that this height
normally lies below the canopy for forests but above the canopy for shorter vegetation,
such as grassland or cropland.

3.3 Results

3.3.1 Magnitude of simulated BHFs
The diurnal range of the BHF (daily maximum of BHF minus daily minimum of BHF)
simulated in CLM -BHS generally lies in the range 30-75 W m−2 and even exceeds
75 W m−2 in few densely forested areas in the tropics and the northern mid-latitudes
(Fig. 3.1). The simulated BHFs are small in areas with low forest coverage (cf. Figs. 3.1 a
and B.1 a), since the main contribution to the BHF comes from the stem of trees, which
have a much larger storage capacity than the leaves. The simulated diurnal range of
the BHF is of similar magnitude as found in in-situ studies (Fig. 3.1 b; McCaughey and
Saxton, 1988; Moore and Fisch, 1986; Meesters and Vugts, 1996; Silberstein et al.,
2001; Oliphant et al., 2004; Haverd et al., 2007; Michiles and Gielow, 2008; Garai et al.,
2010; Lindroth et al., 2010; Kilinc et al., 2012). However, the spatial variability in the
observations is considerable and much higher than in the model, which can be related to
several factors. First, the observational studies utilize differing methodologies to estimate
BHS. Second, those studies are conducted for a limited time period and are thus impacted
strongly by the meteorological conditions during the measurement campaign. Finally,
the geometry of the vegetation at the site has an impact on BHS. An example for the
latter factor is the study of Kilinc et al. (2012), which was conducted at a site with
relatively few but enormous trees (average mass of 29Mg per tree), thereby resulting
in a relatively small BHF when compared to the large amount of aboveground biomass
(AGB). The opposite is the case in Burns et al. (2015), where the exceptionally high tree
number density of 0.4m−2 is contributing to a comparably high BHF range. As can be
seen in Fig. 3.1 (b), CLM -BHS can not capture such exceptionally large BHFs, which
is related to two reasons: First, the land surface characterization in the simulation is not
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(a)

(b)

Figure 3.1: Panel (a) dipslays the diurnal range of the biomass heat storage fluxes averaged over
all plant functional types (PFTs, including shubs, crops, and grassland). Panel (b) shows the zonal
median (brown line) and the range between the 10% and 90% percentile (grey shaded area) of the
diurnal range averaged over all forest PFTs. Black squares depict different observational studies and
the orange squares corresponding modeled values connected by a black string (for more information
see Table B.1).

necessarily representative for a specific site. For example, the tree number density for
temperate evergreen needleleaf forest reported in Crowther et al. (2015) is much lower
than the observed value at the site of Burns et al. (2015) (0.03m−2 versus 0.4m−2).
Second, the atmospheric conditions observed at a site during a measurement can differ
considerably from the global GSWP3 data set. In fact, the BHS scheme implemented in
CLM5.0 can capture the BHFs and diurnal temperature variations observed in Burns et al.
(2015), when the model is forced with observed vegetation parameters and atmospheric
conditions (Swenson et al., 2019).

3.3.2 Impact of BHS at grid cell level
The comparison of the CLM -BHS and the CLM -CTL simulations during boreal summer
(JJA) shows that BHS has a considerable impact on T2M in areas with a large fraction
covered by forests (cf. Figs. 3.3 and B.1 a). The diurnal T2M impact induced by BHS is



asymmetric: While the daily minimum T2M often increases by more than 1K, the daily
maximum cooling effect of BHS rarely exceeds 0.1K (Fig. 3.3 a and b). As a consequence,
daily average T2M tends to be higher in CLM -BHS. This warming frequently exceeds
0.4K both for daily mean T2M and daily mean LST (see Fig. B.3 for LST). BHS also has
important implications regarding extreme conditions. In fact, the warming effect of BHS
during the 5% hottest days of JJA is stronger in most regions than the effect on the mean,
frequently exceeding 1K over forested areas (Fig. 3.3 d and Fig. B.4 c). In addition, the
implications of BHS vary with season. For example, the daytime cooling effect of BHS
is more pronounced during winter in the northern latitudes, resulting in a weaker increase
of daily mean T2M and daily mean LST due to BHS during this season (Figs. B.5 and
B.6). The temperature impact of BHS displayed in Figs. 3.3, B.3, B.5, and B.6 originates
mostly from the forest PFTs. When considering only the forest PFTs, BHS often increases
the daily minimum T2M by more than 2K (Fig. 3.4 b). On the other hand, the impact of
BHS over the open land PFTs is marginal, due to the negligible storage capacity of leaves
(Fig. 3.4 d).
(a)

(b)

Figure 3.2: Grid-cell-level annual mean diurnal
temperature range inMODIS (green), CLM -CTL
(blue), and CLM -BHS (orange) binned by differ-
ent percentages of forest coverage. Displayed
are the median (black line), interquartile range
(coloured area), and the range from the 5% to the
95% quantile (shaded area) between (a) 30◦ S
and 30◦ N and (b) 30◦ N/S and 60◦ N/S. The num-
bers above the boxplots indicate the number of
grid cells belonging to the respective category.

The increase in nighttime temperatures
and decrease in daytime temperatures re-
sulting from BHS, dampen diurnal temper-
ature variations in forested regions leading
to a better agreement with the MODIS data
in these regions, as illustrated in Fig. 3.5.
The MYD11C3 data show a clear signa-
ture of decreasingDTR (LSTmax - LSTmin)
with increasing forest fraction (Fig. 3.2).
The highest DTR-values are observed in
desert regions, where the DTR frequently
exceeds 25K, whereas the DTR in grid
cells with a considerable amount of for-
est coverage typically lies in the range of
8 to 15K (Fig. 3.5 a). In comparison to
MODIS, CLM -CTL tends to exhibit neg-
ative bias in DTR over regions with low
forest coverage, and a positive bias over
regions with higher forest coverage both
in the tropics and subtropics as well as in
themid-latitudes (Figs. 3.5 b and 3.2). This
finding is supported by a pattern correlation
coefficient of 0.48 between the DTR bias
of CLM -CTL (Fig. 3.5 b) and the forest
fraction in the LC data (Fig. B.1 a). BHS
reduces part of the positive DTR bias over
forested regions, by dampening the DTR

(Fig. 3.5 c, d, and e). The relative reduction of the DTR bias in forested regions is most
distinct in the northern mid-latitudes, where CLM -CTL typically overestimates the DTR
by 1 to 5K. The relative improvement is more moderate in tropical regions, as CLM -CTL
frequently overestimates the DTR by more than 5K, which is not alleviated completely
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by BHS. Therefore, the overall tendency to overestimate the DTR in forested regions
and underestimate the DTR in sparsely vegetated regions partly persists in CLM -BHS,
despite these improvements (Fig. 3.2).

Figure 3.3: Difference of CLM -BHS minus CLM -CTL during boreal summer (JJA) in (a) daily
maximum, (b) daily minimum, and (c) daily average 2m air temperature. Panel (d) displays the
daily average 2m air temperature difference of CLM -BHS minus CLM -CTL during JJA averaged
over the days when the atmospheric temperature exceeded its 95% percentile.

Figure 3.4: Difference during boreal summer (JJA) of CLM -BHS minus CLM -CTL in (a) daily
maximum, (b) daily minimum, and (c) daily average 2m air temperature over the forest plant
functional types (PFTs). Panel (d) displays the daily minimum 2m air temperature difference of
CLM -BHS minus CLM -CTL during JJA averaged over the grassland and cropland PFTs.
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3.3.3 Impact of BHS on LST sensitivity to LC
In this section we evaluate how BHS affects the LST sensitivity to LC, by contrasting
the local difference of forest minus open land in LSTmax and LSTmin of the CLM5.0
simulations with the two MODIS-based datasets of Li et al. (2015) (MOD -Li15) and
Duveiller et al. (2018b) (MOD -Du18). ∆LST l

min is on average in the order of 1K higher
in CLM -BHS as compared to CLM -CTL, resulting in a considerable reduction of the
global root-mean-squared deviation (RMSD) in comparison to both observational data
sets (Fig. 3.6). In contrast to the clearly negative ∆LST l

min in CLM -CTL, ∆LST l
min of

CLM -BHS is close to zero in tropical regions as observed in the MODIS-based products.
However, there is still some disagreement on the nighttime signal of forests between
CLM -BHS and the observations in the extra-tropics. The nighttime warming by forests
between 20◦ N and 55◦ N is sometimes too weak in the BHS simulation, especially in
comparison to MOD -Li15 (Fig. 3.6 d and h). However, the nighttime warming by forests
at these latitudes is less pronounced in MOD -Du18 than in MOD -Li15, highlighting a
certain degree of uncertainty in the observations. Similarly, CLM does not capture the
distinctly positive ∆LST l

min between 25◦ S and 40◦ S which is observed in MOD -Li15,
whereas the BHS simulation agrees with MOD -Du18 overall at these latitudes. At
high-latitudes on the other hand, BHS impairs the already positively-biased ∆LST l

min.
During the day, BHS consistently decreases ∆LST l

max by about 0.1K, which causes only
a small change in RMSD (Fig. B.8). In offline simulations, BHS appears therefore mostly
relevant for the LC sensitivity of the model during night, whereas its effect is less distinct
during the day.

3.4 Discussion and conclusions

3.4.1 Diurnal asymmetry of BHS impact on temperature

Surface 
temperature

Stability of 
surface layer

−

+

−

Biomass heat 
storage

+−Daytime

Late night

Sensible heat 
flux

Latent heat 
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−
− +/−

−
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Figure 3.7: Sketch of the daytime (orange) and
and late night (green) feedback from turbulent
heat fluxes induced by biomass heat storage.
A positive (negative) sign indicates that an in-
crease in the first variable would increase (de-
crease) the second variable. The octagons with
the black edge in the middle of the loop indicate
the sign of the entire feedback loop.

We found that BHS affects daytime temper-
ature much less than nighttime temperature,
although roughly the same amount of energy
absorbed by the vegetation during the day is
released during night (i.e. the daily average
BHF is close to zero).We hypothesize that
this diurnal asymmetry of the temperature
impact is related to a different structure of
the surface layer during daytime compared
to the nighttime. During the day, the surface
layer tends to be unstable and the turbulent
heat fluxes are directed from the land surface
towards the atmosphere. An initial reduc-
tion of the surface temperature due to the
energy uptake by the vegetation decreases
the surface layer instability and thus also the
turbulent heat fluxes. The lower turbulent
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Figure 3.6: Nighttime land surface temperature difference between forest minus open land
(∆LST l

min): Seasonal and latitudinal variations of ∆LST l
min in (a) the MOD - Li15 observations,

(b) CLM -CTL, and (c) CLM -BHS. Points with a mean which is insignificantly different from zero
in a two-sided t-test at 95% confidence level are marked with a black dot. All data from the
2002-2010 analysis period corresponding to a given latitude and a given month are pooled to derive
the sample set for the test. The numbers next to the titles are the area-weighted spatiotemporal
root-mean-squared deviation of the respective simulation against the MOD - Li15 data set (Meier
et al., 2018). Panel (d) shows the zonal annual mean of MOD - Li15 (green, range between the 10th
and 90th percentiles in grey), CLM -CTL (blue, range between the 10th and 90th percentiles in
blue), and CLM -BHS (red, range between the 10th and 90th percentiles in orange). Note that on
this subfigure results have been smoothed latitudinally with a simple moving average over 4◦. The
same with MOD -Du18 in panels (e), (f), (g), and (h). For values over different latitudinal bands
see Fig. B.7.
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heat fluxes lead to a higher surface temperature (because less energy is transported
away from the surface) and form therefore a negative feedback to the initial temperature
decrease (Fig. 3.7). In other words, the energy uptake by BHS during day is mainly
compensated by a reduction of the turbulent heat fluxes. During the late night on the other
hand, the surface layer is often stable. Therefore, the energy released from the biomass
is compensated less efficiently by increased turbulent heat fluxes. Further, the sensible
heat flux can be directed towards the land surface during the late night. In this case, the
increase in surface temperature due to BHS reduces the surface layer stability and the
suppression of turbulent mixing, resulting in more intrusion of relatively warm boundary
layer towards the surface. Consequently, the feedback from the surface layer to the initial
surface temperature increase can even be an additional warming of the surface (Fig. 3.7).

This behaviour can be seen in point scale simulations in the tropics at the site of
Michiles and Gielow (2008). As long as there is solar irradiance, the energy taken up/re-
leased by the vegetation is compensated for to a large extent by a reduction/increase in
turbulent heat fluxes (Fig. 3.8 a, compensation calculated from the difference of the respec-
tive flux between a CLM -CTL-like simulation and that of a CLM -BHS-like simulation).
Fig. 3.8 b displays the fraction of the BHF that is compensated by decreased/increased
emission of longwave radiation by the land surface ( frad) against the gradient between the
atmospheric temperature and the vegetation temperature (as an indicator for near-surface
stability). frad remains low and surprisingly constant throughout the day, indicating an
only weak reduction of the LST when BHS is positive. Once the sun sets, the surface
layer grows more stable, thereby inhibiting the compensation by the turbulent heat fluxes.
Therefore, frad gradually increases during early night up to roughly 0.6 and remains
relatively constant during the second half of the night (accompanied by a strong nighttime
increase in LST). As hypothesized before, sensible heat even provides a small positive
(a) (b)

Figure 3.8: Panel (a), the average diurnal cycle during boreal winter (DJF) at 2.75◦ S/60.25◦W
(location of Michiles and Gielow, 2008) of the biomass heat flux (BHF) in black. The shaded areas
indicate the amount of the BHF compensated for by a change in the ground heat flux (brown), latent
heat flux (blue), sensible heat flux (orange) and the emitted longwave radiation (red) compared to
a simulation without biomass heat storage (BHS; compensation calculated from the difference of
a simulation without BHS minus a simulation with BHS in the respective flux). The dashed lines
indicate the sunrise and sunset. Panel (b) displays the fraction of the BHF that is compensated by
emitted longwave radiation (red area divided by black curve in panel a) against the gradient between
the atmospheric temperature and the vegetation temperature (as an indicator for near-surface
stability). The colour of the markers displays the BHF. Half-hourly values of the monthly-averaged
diurnal cycles were used for this plot.
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feedback during the late night, due to the lower surface stability resulting from BHS (The
dark red area in Fig. 3.8 a from 2:00 to 7:00 am indicates that sensible heat has a warming
effect compensating part of the emitted longwave radiation effect). A similar diurnal
cycle of frad occurs in the mid-latitudes at the site of Lindroth et al. (2010) during the
summer months (Fig. B.9).

The strong dependency of frad on the surface layer stability can also explain why
the daytime cooling effect of BHS in the mid-latitudes is more pronounced during winter.
During this season the daytime compensation of BHF by reduced turbulent heat fluxes
is less efficient as stable conditions occur more frequently than during summer (Chan
and Wood, 2013). Hence, a larger proportion of the BHF is compensated by reduced
emission of longwave radiation. At the site of Lindroth et al. (2010), frad often exceeds
0.1 during the mid-latitudinal winter even when the BHF is positive (i.e., the biomass
takes up energy), which is normally not the case during summer (cfs. Figs. B.9 and B.10).
Hence, the characteristic diurnal cycle of frad which emerges in the tropics and during
summer in the mid-latitudes, does not develop as clearly during DJF.

According to our modeling results, the diurnally asymmetric temperature difference
between forest and nearby open land, which was found in observational studies (Lee et al.,
2011; Vanden Broucke et al., 2015; Li et al., 2015; Schultz et al., 2017; Duveiller et al.,
2018b), can thus be explained by differing relevant processes during day and night. In
various studies it was found that the differences in the evaporative fraction and albedo are
more relevant for the temperature difference of forest minus open land during day (Liu
et al., 2005; Vanden Broucke et al., 2015; Meier et al., 2018), whereas it appears that BHS
mainly affects nighttime temperatures (Swenson et al., 2019 and this study). However,
another part from this asymmetry is likely related to the higher turbulent heat fluxes over
forests due to their high surface roughness (Schultz et al., 2017). The sensible heat flux
can thus have a cooling effect over forests during day and a warming effect during night
compared to open land, if this flux changes the vertical direction during the course of the
day (which is normally the case; Liu et al., 2005; Vanden Broucke et al., 2015).

3.4.2 Limitations and knowledge gaps
While this study demonstrates the importance ofBHSon a global scale, it could not address
several aspects. The evaluation of the DTR in the CLM5.0 simulations with MODIS
at grid-cell-level is to some degree an unfair comparison, as part of the biases could
be the result of discrepancies between the atmospheric forcing used in our simulations
and the actual conditions during the MODIS observations. As a consequence, even a
perfect land surface model could not achieve a perfect agreement with the observations.
Unfortunately, it is not straight-forward to assess the disagreement between MODIS and
GSWP3 as LST is not directly comparable to atmospheric temperature at the lowest
level. Yet, we find that the DTR in the MODIS LST data often considerably exceeds
the DTR in the GSWP3 forcing, at locations where CLM5.0 underestimates the DTR in
LST (cfs. Fig. 2.2 and Fig. B.11). Also, the MODIS observations can be retrieved only
under cloud-free conditions. Unfortunately, the GSWP3 forcing does not contain any
cloud cover information, hence making it difficult to mask out cloudy days in the model
output. Further, the disagreement in DTR between CLM5.0 and MODIS could also be
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related to bare soil or open land PFTs, where BHS is unimportant due to the small (or
non-existent) biomass of these LC types. In fact, our analysis revealed that the DTR is
often underestimated by CLM5.0 in sub-tropical and mid-latitudinal regions, which are
mostly covered by bare soil or open land (cf. Figs. 2.2 b and B.1). Hence, the missing
process of BHS is likely not the only source for the difference between our CLM5.0
simulations and the MODIS DTR.

At least two potential feedbacks to BHS cannot be addressed with our simulation set
up. First, land-only simulations inherently mute the feedbacks from the atmosphere. We
found that approximately 90% of the energy-uptake by the biomass is compensated by a
reduction of the turbulent heat fluxes during the day. BHS therefore reduces the daytime
energy input from the land surface into the boundary layer. This reduced energy input
could result in dynamical feedbacks in the boundary layer. It seems therefore necessary
to analyse simulations coupled to the atmosphere to capture the full effect of BHS.
Another feedback of BHS that we do not assess in this study are the changes in vegetation
structure induced by BHS. The alteration of the local climate due to BHS affects primary
productivity and respiration (not shown). This can not only alter the vegetation phenology
(e.g., vegetation height, leaf area index, biomass) but also the carbon budget of the land
surface. We therefore encourage further research in this direction.

Finally, there remain several aspects of energy storage at the land surface that could be
further improved in the CLM modeling framework. First, the model we use restricts the
energy storage at the land surface to the ground and biomass energy storage, neglecting
the sensible and latent heat stored in the canopy air space, which can be of comparable
magnitude in observations as BHS (e.g., Michiles and Gielow, 2008; Lindroth et al.,
2010; Kilinc et al., 2012). Bonan et al. (2018) find that introducing a multi-layer canopy
model, which represents the roughness sublayer and thus the canopy air space, did reduce
but not alleviate completely the positive bias in the DTR in forests. However, this model
version did not account for BHS in the stem. Hence, the combination of a multi-layer
canopy model and heat storage in the stem could potentially alleviate the overestimation
of the DTR in forests completely. Second, we assume a uniform stem temperature in
our model, which is of course not the case in reality. The existing BHS parametrisation
could thus be refined with the "force-restore" method, which represents two stem layers
(Haverd et al., 2007), or even by including multiple stem layers, as proposed in the "analog
model" by Herrington (1969). Further, a number of parameters such as the tree number
density are assumed to be globally constant for the different PFTs. In reality however,
such parameters can vary considerably within a PFT. Hence, it could be beneficial to
include spatially explicit data if available from observations.

3.4.3 Implications for LCC impacts on climate
Recently, the local and regional climate impact of LC changes such as deforestation has
been a heavily discussed topic in the literature. These climatic impacts are often assessed
by contrasting climate model simulations that differ in LC. However, all of the CMIP5, LU-
CID, and LUCAS regional climate models miss or underestimate the observed nighttime
cooling effect and daytime warming effect associated with deforestation (Lejeune et al.,
2017; Davin et al., 2020). This indicates, that current climate models miss an important
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part of the climate signal of forest-related land-use changes. Up to now, BHS has often
been neglected in global climate models, although observed BHFs are of non-negligible
magnitude across the diurnal cycle. Given our results of including BHS in CLM5.0,
we reach the following three main conclusions regarding the role of BHS in the climate
system: (1) BHS dampens the DTR in forested regions, thereby improving the model
agreement with MODIS observations. (2) BHS affects LST stronger under stable surface
layer conditions as compared to unstable conditions. As a consequence, the BHS-induced
temperature increase during the night tends to exceed the temperature reduction during
the day. (3) The effect of BHS is especially pronounced during warm extremes. These
conclusions indicate that the representation of BHFs is important, especially in the case
of diurnal temperature variations and/or temperature extremes in forests. Climate models
used to assess the biogeophysical impact of forest-related land-use changes should thus
consider including BHS in their land surface component.
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Box 1: Preliminary results on atmospheric feedbacks from BHS

Introduction As mentioned in the article, the compensation of BHS by the turbulent
heat fluxes implies that BHS might trigger relevant feedbacks in the atmosphere. Here,
I briefly discuss two specific effects of BHS that appear in coupled regional climate
simulations over a maximally forested Europe. This topic is currently pursued more
systematically in a Master’s thesis by Chenwei Xiao.

Model simulations The simulations presented here follow the FOREST protocol of
the LUCAS phase one (Davin et al., 2020). They were performed with the atmospheric
component of COSMO-CLM coupled to CLM5.0. Coupling previous versions of
CLM to COSMO-CLM has proven to improve the model performance over Europe
considerably (Davin et al., 2011; Davin and Seneviratne, 2012; Davin et al., 2016).
The simulations cover a Europe, where all the land surface except for bare soil has
been converted to the dominant forest type. They are conducted at 0.44◦ resolution
and are analysed from 1986-2015 following a seven year spinup from 1979-1985. The
effect of BHS is assessed by comparing two simulations: CC -DFLT, COSMO-CLM
coupled to the default version of CLM5.0 (with an upper cap for the Monin-Obukhov
stability parameter at 0.5), and CC -BHS, where BHS is active and the upper cap of
the Monin-Obukhov stability parameter is raised to 100.
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Summertime increase in convective precipitation It appears that BHS increases
the amount of convective precipitation during the summer months in Europe (Fig. 3.9).
Most likely linked to it is an increase in the latent heat flux and the convectively available
potential energy (not shown). Note however that convection is parametrised in the

-10 0 10 20 30

35

40

45

50

55

60

65

70

-0.18

-0.14

-0.1

-0.06

-0.02

0.02

0.06

0.1

0.14

0.18

D
iff

er
en

ce
 in

 c
on

v.
 p

re
ci

pi
ta

tio
n 

[m
m

/d
ay

]
D

F
LT

 h
ig

he
r 

   
   

 B
H

S
 h

ig
he

r

Figure 3.9: Difference in JJA convective precip-
itation of CC - BHS minus CC -DFLT.

presented simulations due to their rel-
atively coarse resolution, which can
impede the representation of clouds
and precipitation (Hohenegger et al.,
2009; Prein et al., 2015; Hentgen
et al., 2019). Therefore, it is pos-
sible that this signal is an artefact
of the parametrisation of convection
(i.e., that precipitation events are al-
located to convection more frequently
without an overall change in precipita-
tion).

Nighttime cooling in winter During the winter months, CC -BHS is colder at night
than CC -DFLT in most regions of Europe, which is not necessarily expected from the
nature of the process (Fig. 3.10 a). An energy balance decomposition after Luyssaert
et al. (2014) reveals that the main contributor to this is the difference in the sensible heat
flux between CC -BHS and CC -DFLT (Fig. 3.10 c). This term overcompensates the
nighttime warming induced by BHS (Fig. 3.10 b) in many regions, leading to a colder
temperatures in CC -BHS overall. This effect likely originates partly from the removal
of the stability cap in CC -BHS, which has an amplified effect during night and during
winter, when the surface layer is frequently stable.
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Figure 3.10: LST difference at 01:30 solar time in DJF of CC - BHS minus CC -DFLT (a).
Contribution to this difference from BHS (b) and the difference in the sensible heat flux (c)
after the energy balance decomposition of Luyssaert et al. (2014). Note that only the two most
relevant terms of the energy balance decomposition are shown here.
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use an observation-based continental-scale statistical model to show that forestation of
rainfed agricultural land in Europe triggers substantial changes in precipitation. Locally,
we find an increase in precipitation following forestation, in particular in winter, which is
supported by a paired rain gauge analysis. In addition, forests are estimated to increase
downwind precipitation in most regions during summer. In contrast, the downwind effect
in winter is positive in coastal areas but near-neutral and negative in Continental and
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reforestation scenario, constrained by sustainability safeguards, are estimated to increase
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change. We therefore conclude that land cover-induced alterations of precipitation should
be considered when developing land management strategies for climate change adaptation
and mitigation.
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4.1 Introduction

Observations show that Land Cover Changes (LCCs) alter local temperatures considerably
through biogeophysical processes (Lee et al., 2011; Li et al., 2015; Duveiller et al., 2018b;
IPCC 2019c). Such observational constraints have enabled the evaluation of the Land
Cover (LC)-temperature coupling in climate models (Lejeune et al., 2017; Winckler
et al., 2017; Duveiller et al., 2018a; Meier et al., 2018; Meier et al., 2019). Alongside
temperature, water availability is amongst the most important climate drivers for life
on Earth. The high precipitation amounts over tropical rainforests are partly sustained
by the presence of the forests themselves (Spracklen et al., 2012; Lejeune et al., 2015).
On the other hand, precipitation can increase locally after clearing a forest patch in the
Amazon (Khanna et al., 2017). Outside of the tropics, modeling studies suggest that
LCCs can trigger substantial changes in precipitation (Yosef et al., 2018; Belušić et al.,
2019). However, such studies lack solid observational constraints at regional to global
scales, as little work has been conducted on estimating the LC-precipitation coupling in
the mid-latitudes based on observations (Perugini et al., 2017). This is likely owed to
the difficulty of isolating such a signal. The distribution of a certain LC type itself is
often influenced by the precipitation climatology, by other factors (e.g., elevation) that in
turn affect precipitation, or systematic preferences for certain terrain types from human
land use (Sandel and Svenning, 2013). A further complication is that LC-precipitation
couplings do not necessarily occur at the location of the LC, but might also have an
influence on precipitation further downwind. Thus, they are difficult to observe especially
in regions of heterogeneous LC, as in Europe.

In this study, we estimate the impact of converting rainfed agricultural land (ALr ;
including pasture) to forest on precipitation over Europe. We focus on this LC conversion
since it has been the dominant LCC over the last decades in many European regions
(Fig. C.8; Fuchs et al., 2013; Hansen et al., 2013; Fuchs et al., 2014; McGrath et al., 2015).
An estimated 20% of the European land area has undergone de-, re-, or afforestation
between 1900 and 1990mainly in exchange for cropland and grassland (Fuchs et al., 2014).
In addition, reforestation has been proposed as a tool to mitigate greenhouse gas emissions
(Griscom et al., 2017a), while potentially providing additional co-benefits for biodiversity
(Navarro and Pereira, 2015), soil protection (Navarro and Pereira, 2015), and the local
climate (Lee et al., 2011; Li et al., 2015; Duveiller et al., 2018b). For simplicity, we assume
here that forestation corresponds only to the conversion of ALr to forest. We acknowledge
however that other forms of human land use, such as settlements, might also be suitable
for forestation. Also, we use forestation as a general term, not distinguishing between
afforestation and reforestation. Due to the lack of constraints from previous studies, we
employ two independent methodologies to corroborate our results (Fig. 4.1): (1) We
search for suitable closely-located rain gauge site pairs in the Global Sub-Daily Rainfall
Dataset (GSDR; Lewis et al., 2019) and Global Historical Climatology Network (GHCN;
Menne et al., 2012b; Menne et al., 2012a), which differ in the ALr and forest fractions.
Such an approach has previously been applied to assess the effect of LC on temperature
(Lee et al., 2011; Zhang et al., 2014) and the surface energy budget (Liu et al., 2005; Juang
et al., 2007; Vanden Broucke et al., 2015). (2) We statistically disaggregate the monthly
precipitation climatology over 1986 to 2015 from MSWEP v2.2 (Multi-Source Weighted-
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Ensemble Precipitation version 2.2; Beck et al., 2019b) with a Generalized Additive
Model (GAM) to infer the contribution of LC on the spatial distribution of precipitation.
Statistical models were successfully used as a tool to assess both local (Schwaab et al.,
2020) and remote (Cohn et al., 2019) temperature changes induced by LCC. For the GAM
presented here, we consider topographic effects, which strongly modulate the spatial
distribution of precipitation (Houze Jr., 2012), by including a number of topographic
metrics as predictors. The ERA5-Land 2m temperature climatology (C3S, 2019) serves
as an indicator for climatic conditions, as the amount of precipitation varies considerably
across climate zones. Further, the atmospheric circulation is an important driver of the
spatial distribution of precipitation (Daly et al., 2008) and is therefore represented in the
GAM by various metrics based on ERA5 air parcel trajectories (Sprenger and Wernli,
2015). Finally, we employ the CORINE LC data (Kosztra et al., 2019) as predictors in
the GAM to examine the relation between LC and precipitation. Alongside the local LC,
we consider the upwind LC fractions, calculated from the backwards ERA5 air parcel
trajectories. Therefore, we can not only isolate the local effect of forestation but also its
downwind effect.

4.2 Methods

Fig. 4.1 provides an overview of the overall procedure and how the various datasets
(Table 4.1) and analysis steps are connected.
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Figure 4.1: Overview of the steps, softwares, and input data sets described in the Methods and
how they are interconnected. White boxes, input data sets and yellow boxes softwares used in the
study (Table 4.1). The blue boxes show variables that were used as predictor variables in the GAMs
and for the selection criteria in the site pair analysis, the green boxes derived data sets and objects,
and red boxes the final results.
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4.2.1 Gridded data
We employ a number of gridded data sets, which are used for two purposes: (1) They
serve as criteria to find suitable site pairs in the GSDR and GHCN data. (2) They are
used as response variables and predictors for the GAM. All the data are used at a regular
0.1◦ grid, which is the native resolution of the MSWEP data set. The study domain of
the GAM is confined to the coverage of the CORINE LC data. Turkey was removed from
the analysis, since it is surrounded by areas not covered by CORINE, which hampers the
calculation of the upwind LC fractions.

Table 4.1: Overview of the different data sets and softwares used in this study, the variables derived
from them, their reference, and their availability.

Date set Variables Reference Data availability
GSDR In-situ precipitation Lewis et al. (2019) Upon request from Elizabeth Lewis

GHCN-Daily v3.20 In-situ precipitation Menne et al. (2012b)
Menne et al. (2012a) ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/

MSWEP v2.2 Gridded precipitation Beck et al. (2019b) https://platform.princetonclimate.com/PCA_Pl
atform/

EU-DEM v1.1 alt, slope, expo, TPI,
TRI EEA (2014) https://land.copernicus.eu/imagery-in-situ/eu-d

em/eu-dem-v1.1

CLC pct_LCi , prox_LCi ,
uw_pct_LCi

Kosztra et al. (2019) https://land.copernicus.eu/pan-european/corine
-land-cover/clc-2000

GMIA5 pctagr_irr , proxagr_irr ,
uw_pctagr_irr

Siebert et al. (2013) http://www.fao.org/aquastat/en/geospatial-inf
ormation/global-maps-irrigated-areas

ERA5 uw_hd, dw_hd, uw_cd,
uw_pct_LCi , uw_ct

C3S (2017) https://cds.climate.copernicus.eu

ERA5-Land T2M C3S (2019) https://cds.climate.copernicus.eu

WRPM Reforestation potential Griscom et al. (2017a),
Griscom et al. (2017b) https://zenodo.org/record/883444

CH2018 Climate change signal CH2018 (2018) https://doi.org/10.18751/climate/scenarios/ch
2018/1.0

Software Variables Reference Data availability

GDAL alt, slope, expo, TPI, TRI - https://cran.r-project.org/web/packages/rgdal/
index.html

LAGRANTO uw_hd, dw_hd, uw_cd,
uw_pct_LCi , uw_ct

Wernli and Davies (1997),
Sprenger and Wernli (2015) www.lagranto.ethz.ch

mgcv Estimated precipitation
changes Wood (2011), Wood (2017) https://cran.r-project.org/web/packages/mgcv/i

ndex.html

Precipitation fields

We use the monthly precipitation climatologies from MSWEP v2.2 over the period 1986-
2015 as the response variable to train the GAMs. This data set is the latest version of
the Multi-Source Weighted-Ensemble Precipitation data set (Beck et al., 2019b). For
simplicity we refer to it as MSWEP. It is available globally at 0.1◦ spatial and 3-hourly
temporal resolution. As indicated by its name, multiple rain gauge data sets, remote
sensing products, and reanalysis products were used to create MSWEP (Beck et al.,
2017a). This data set systematically outperforms other gridded precipitation data sets
when evaluated with rain gauge data and streamflow measurements (Beck et al., 2017b)
as well as radar measurements (Beck et al., 2019a). We calculate monthly precipitation
climatologies from MSWEP over the period 1986-2015 (Fig. 4.2).

ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/
https://platform.princetonclimate.com/PCA_Platform/
https://platform.princetonclimate.com/PCA_Platform/
https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1
https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1
https://land.copernicus.eu/pan-european/corine-land-cover/clc-2000
https://land.copernicus.eu/pan-european/corine-land-cover/clc-2000
http://www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas
http://www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas
https://cds.climate.copernicus.eu
https://cds.climate.copernicus.eu
https://zenodo.org/record/883444
https://doi.org/10.18751/climate/scenarios/ch2018/1.0
https://doi.org/10.18751/climate/scenarios/ch2018/1.0
https://cran.r-project.org/web/packages/rgdal/index.html
https://cran.r-project.org/web/packages/rgdal/index.html
www.lagranto.ethz.ch
https://cran.r-project.org/web/packages/mgcv/index.html
https://cran.r-project.org/web/packages/mgcv/index.html


Methods 71

Figure 4.2: Climatology in daily precipitation of MSWEP over 1986-2015 averaged over the entire
year (a), January (b), and July (c).

Topography

Topography plays a crucial role in the spatial distribution of precipitation (Daly et al.,
2008; Houze Jr., 2012; Lu, 2019). We use the Digital Elevation Model over Europe
version 1.1 (EU-DEM v1.1; EEA, 2014) to derive a number of relevant metrics. First, we
compute the mean elevation at 0.1◦ resolution from the original 30m resolution. Besides,
we calculate the slope, exposition of the slope, the Topographic Position Index (TPI),
and the Terrain Ruggedness Index (TRI) using the gdaldem tool of the Geospatial Data
Abstraction software Library 2019 (GDAL, Fig. 4.3). The TPI describes the elevation of
a point in comparison to the surrounding areas. It is defined as the elevation difference
between the focal grid cell and the mean of the eight surrounding grid cells. The TRI
is a measure of terrain variability and calculated as the mean of the absolute elevation
differences between the focal grid cell and the eight adjacent grid cells. The exposition
of the slope and the TPI are calculated from the 0.1◦ elevation data, whereas the slope
and TRI are computed at the original resolution of EU-DEM and than averaged over the
0.1◦ grid.

Table 4.2: Aggregation of the CLC classes (https:// land.copernicus.eu/user-corner/ technical-libra
ry/corine-land-cover-nomenclature-guidelines/html) to the LC types used in this study. Left column
the names of the classes used in this study, middle column CLC classes aggregated to respective
class, and right column fraction of study domain covered by respective class.

Name CLC classes Fraction [%]
Artificial surfaces 1. Artificial Surfaces (classes 1-11) 3.7
Rainfed agricultural land 2. Agricultural areas (classes 12-22)a 39.2
Irrigated agricultural land 2. Agricultural areas (classes 12-22)b 1.8
Forest 3.1 Forest (classes 23-25) 32.7
Natural low vegetation 3.2.1 Natural grassland and 3.2.2 Moors and heathland (classes 26-27) 5.3
Shrubland 3.2.3 Sclerophyllous vegetation and 3.2.4 Transitional woodland/shrub (classes 28-29) 6.9
Natural bare land 3.3 Open spaces with little or no vegetation (classes 30-34) 4.0
Wetland 4. Wetlands (35-39) 2.7
Open water 5. Water bodies (classes 40-44) 3.9
a "2. Agricultural areas" in CLC minus irrigated agricultural land.
b Minimum of irrigated agricultural land fraction according to Global Map of Irrigated Areas version 5 and "2. Agricultural
areas" in CLC.

https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-guidelines/html
https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-guidelines/html
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Figure 4.3: Exposition (a), slope (b), topographic position index (c), and terrain ruggedness index
(d) based on EU-DEM.

Land cover information

For the LC information, we regrid the CORINE Land Cover (CLC) data from the year
2000 at 100m resolution to 0.1◦ resolution (Kosztra et al., 2019). The original 44 LC
classes are aggregated to the classes artificial surfaces, agricultural land, forest, shrubland,
natural low vegetation, bare soil, wetland, and open water according to Table 4.2. Further,
we differentiate irrigated agricultural land using the Global Map of Irrigation Areas
version 5 (GMIA5; Siebert et al., 2013), because irrigation itself can trigger substantial
modifications of the precipitation distribution (DeAngelis et al., 2010; Thiery et al., 2017).
The fraction of irrigated agricultural land in a grid cell from GMIA5 is used, unless it
exceeds the fraction of agricultural land in CLC. In this case, it is set to the fraction of
agricultural land in CLC, to assure the fraction of irrigated agricultural land does not
exceed the total fraction of agricultural land in CLC (Fig. 4.4). The remainder of the
agricultural land in CLC is then attributed to ALr .



Trajectory-based fields

Figure 4.4: Fraction of land covered by forest
(a), ALr (b), and irrigated agricultural land
(c).

The spatial distribution of precipitation is not
only affected by the properties of the land
surface at a given location, but also the atmo-
spheric motion prior to reaching this location.
In particular the distance to the coast along the
path of atmospheric motion is an important
driver of how much moisture is available for
precipitation (Daly et al., 2008), as the oceans
are the most important moisture source. To
account for the relationship between the at-
mospheric circulation and precipitation, we
use the LAGRangian ANalysis TOol (LA-
GRANTO) based on hourly ERA5 reanalysis
data (Wernli and Davies, 1997; Sprenger and
Wernli, 2015). Every six hours between Jan-
uary 1986 and December 2015, we calculate
two kinematic trajectories five days backward
in time for all land grid cells where the precip-
itation exceeded 1mm/hr. We choose the two
pressure levels that have produced most pre-
cipitation in the ERA5 data as starting heights,
where the precipitation production at a specific
level was calculated from the volumetric rain
and snow water content of this level minus
the volumetric rain and snow water content of
the level above (Fig. C.16). The calculations
are done in time steps of 10min using hourly
ERA5 wind field data at 0.5◦ resolution. LA-
GRANTO enables to track the position of the
air parcel, the specific humidity, the land-sea
mask, the elevation of the surface, and precip-
itation at the surface of ERA5, as well as the
LC fractions fromCLC. In the post-processing,
we follow the trajectories backwards in time
until the coast to determine the distance of the
final precipitation event to the coast along the trajectory (uw_cd), the time it took to reach
the coast (uw_ct), and the elevation difference between the highest topographic point the
airmass surmounted on its path from the coast and the end point (uw_hd; Fig. 4.5 d and
e). In addition, we compute the average fraction of each LC class the airmass overpassed
during the previous five days, which are called upwind LC fractions here (uw_pct_LCi ;
Fig. 4.5 a-c). In the calculation of the upwind LC fractions we stop tracking the trajectory
if the specific humidity of the parcel falls below 0.05 g/kg or if a land point is reached
according to the ERA5 land-sea mask that is outside of the CLC domain. Collecting all
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trajectories for a given location and month, we then compute the median value for each
of those metrics to retrieve the predictor fields for the GAMs. Using a similar approach,
we calculate the median of the elevation difference between highest topographic point the
airmass surmounted during the day following the precipitation event and the point where
the precipitation occurred (dw_hd; Fig. 4.5 f).

2m Temperature

Finally, we use the ERA5-Land monthly 2m temperature climatology from 1986-2015 as
a predictor in the GAM, which is available at the required 0.1◦ resolution (C3S, 2019).

Figure 4.5: Examples of trajectory-based fields. Upwind forest fraction in January (a) and August
(b). Panel (c) shows the upwind fraction of ALr in August. Panel (d) shows the upwind distance
to coast, panel (e) the upwind height difference, and panel (f) the downwind height difference in
January.
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4.2.2 Site pair analysis
For the paired rain gauge station analysis we employ the GSDR data set (Lewis et al.,
2019) of the following countries: Belgium, Spain (Catalonia), Finland, Germany, Ireland,
Italy, Norway, Portugal, Switzerland, and the UK. In addition, we include the data from
the Integrated Surface Database (Smith et al., 2011), which is not country specific. GSDR
has been extensively quality controlled for common mechanical, recording, and storage
errors in rainfall data as well as being checked against neighbouring gauges (Blenkinsop
et al., 2017). The station data are aggregated from the original hourly to a three-hourly
resolution to match with the temporal resolution of MSWEP. We exclude stations with
more than 50% missing data arriving at a total of 3481 stations in the study domain.
Besides GSDR, we also employ the GHCN-Daily v3.20 (Menne et al., 2012a; Menne
et al., 2012b) rain gauge collection, which is available at daily resolution and has 2376
stations with less than 50%missing days available in the study domain (Fig. C.10). Given
the differing temporal resolution and quality checks of the two data sets, we only look
for site pairs within one data set. Further, we neglect any measured data prior to 1986.
For all of these stations we extract the values of the gridded data sets at the respective
location to check for the following criteria to find station pairs: (1) The first site has at
least 20% more forest coverage and at least 20% less coverage by ALr than the second
site according to the CLC data. Note that the site comparison does not correspond to a
pure local comparison, but rather to a comparison of having 20%more/less of ALr /forest
within a grid cell of roughly 11 km by 7 km. The isolated signal does therefore not only
include the effect of foresting one specific location but also the effect of foresting areas in
close proximity. (2) The sum of the ALr and forest fractions is at least 50% at each site.
(3) The great-circle distance between the two sites is less than 0.75◦ corresponding to
83.5 km. (4) They have at least three overlapping years of measurements. (5) They differ
less than 25m in altitude, 5◦ in slope, 3m in TRI, 20% in the open water fraction, 20% in
the upwind open water fraction, and 0.25◦ in the annual mean uw_cd. For each station in
a pair, we then calculate the monthly rainfall climatology considering only times during
which both stations have collected data. As an additional quality check, we discard station
pairs that had a smaller sample size than 400 and 50 for any month in GSDR and GHCN,
respectively (corresponding to 50 measurement days). An analysis of the sensitivity of
the site pair analysis on the selection criteria is presented in Supplement C.1.

4.2.3 GAM construction
GAMs express the expected value, E, of a response variable, Yi , as the sum of a number
of smooth functions (Wood, 2017):

g(E(Yi)) = f1(x1i) + f2(x2i) + f3(x3i, x4i) + ... (4.1)

, where g is a link function, fj are the smooth functions, and xk are different pre-
dictor variables. GAMs possess a number of features that are advantageous for our
analysis: (1) The smooth functions allow to empirically capture non-linear relations
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(a)

(b)

Figure 4.6: Example of smooth functions. Panel
(a), thin plate regression spline (’s’ smooth) of 2m
temperature in January (black) with standard error
(grey) and partial residuals (orange). Panel (b), tensor
product smooth (’ti’ smooth) for the proximity forest,
2m temperature, and altitude term in January. Each
panel shows a two dimensional smooth for proximity
forest (X-axis) and 2m temperature (Y-axis) at a specific
altitude. Contours are the precipitation smooth. Note
that a smooth of variables that are present in several
other smooths cannot be interpreted in isolation.

between the predictor and the re-
sponse variables without a prior as-
sumption regarding the shape of this
relation. (2) The smooth functions
can depend on several predictor vari-
ables. (3) The additive structure
of GAMs makes them readily in-
terpretable. (4) The smooth func-
tions are penalized for their ’wiggli-
ness’, which prevents overfitting of
the model. In this case, the response
variable is the monthly precipitation
climatology of MSWEP, which is as-
sumed to follow a gamma distribu-
tion, g is the natural logarithm, and
the fj terms are summarized in Ta-
ble 4.3. The logarithmic link func-
tion was chosen to avoid harming the
assumption of constant variance of
residuals. Precipitation changes from
forestation are estimated in a spatially-
explicit waywith ourGAM, by includ-
ing interaction terms between the LC
fractions and other spatially-varying
variables (’prox_LCi , T2M, alt’ and
’uw_pct_LCi , T2M, uw_ct’ smooths)
and by directly including interac-
tions terms of the LC fractions with
the spatial dimensions (’prox_LCi ,
lat, lon’ and ’uw_pct_LCi , lat, lon’
smooths).

We employ the extensive R packageMixedGAMComputationVehicle with automatic
smoothness estimation (’mgcv’; Wood, 2011; Wood, 2017) to construct a GAM for each
month of the MSWEP precipitation climatology. To shorten computation times the model
is fitted with the ’bam’ function, which is numerically optimized for large datasets, using
the fast REstricted Maximum Likelihood method (fREML) to estimate the smoothing
parameters (if not specified) and discretisation of covariate values, which increases the
computational efficiency of the fREML method (Wood et al., 2017; Li and Wood, 2020).
We use thin plate regression splines (’s’ smooths) for the one-dimensional terms, which
are invariant in space and therefore called global terms here, and tensor product smooths
(’ti’ smooths) for the multi-dimensional terms, which are suitable if other terms using
the respective predictors are used (Fig. 4.6). To avoid unrealistically noisy results, the
smoothing parameters were chosen manually for the multi-dimensional terms. For the
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Table 4.3: Smooths used to construct the GAM. First column the predictor variables used in the
respective smooth. Second column names the type of smooth used. Third column shows the maximum
number of nodes of the smooth (higher k more flexibility) and column sp the smoothing parameter
applied (higher sp results in a smoother function). In blue smooths that were removed when fitting the
’no LC’ GAM. Last column shows the maximum p-value across the GAMs for the individual months
of the respective smooth and in brackets number of months for which this smooth had a p-value
larger than 0.01. For the LC-related smooths values are given in order of forest, ALr , shrubland,
natural low vegetation, artificial surfaces, irrigated agricultural land, natural bare land, open water,
and wetland.

Variable(s) Type k sp Description Max p-value
alt s 15 estimated global altitude term 3.1e-29 (0)
alt, lat, lon ti 5 5 spatially varying altitude term 7.1e-19 (0)
TPI s 10 estimated global TPI term 7.4e-42 (0)
expo s 10 estimated global exposition term 1.3e-7 (0)
expo, lat, lon ti 5 5 spatially varying exposition term 8.6e-22 (0)
slope s 15 estimated global slope term 1.9e-2 (1)
slope, lat, lon ti 5 5 spatially varying slope term 7.2e-34 (0)
TRI s 10 estimated global TRI term 8.6e-2 (2)
T2M s 20 estimated global 2m temperature term 1.0e-71 (0)
uw_hd s 10 estimated global upwind height difference term 1.2e-41 (0)
dw_hd s 10 estimated global downwind height difference term 8.8e-76 (0)
uw_cd s 10 estimated global upwind coast distance term 4.2e-45 (0)

prox_LCi s 10 estimated global term for local effect of each LC class
1.6e-4 (0), 5.1e-5 (0), 1.45e-13 (0),
8.2e-3 (0), 1.5e-1 (3), 1.2e-14 (0),
1.4e-4 (0), 2.2e-2 (1), 2.1e-8 (0)

prox_LCi , lat, lon ti 3 5 spatially varying local effect of each LC class
2.6e-2 (1), 2.3e-6 (0), 1.3e-2 (1),
1.7e-1 (1), 1.1e-2 (1), 5.4e-1 (3),
2.7e-2 (1), 2.1e-4 (0), 9.8e-1(4)

prox_LCi , T2M, alt ti 5 5 term varying with mean climate for local effect
of each LC class

7.3e-27 (0), 1.3e-20 (0), 2.1e-9 (0),
5.0e-6 (0), 1.9e-2 (2), 1.7e-15 (0),
5.3e-12 (0), 3.2e-2 (1), 5.4e-8 (0)

uw_pct_LCi s 10 estimated global upwind term for each LC class
1.9e-15 (0), 5.5e-18 (0), 4.4e-11 (0),
1.5e-8 (0), 1.1e-24 (0), 2.9e-58 (0),
5.4e-19 (0), 2.0e-21 (0), 2.0e-2 (1)

uw_pct_LCi , lat, lon ti 3 5 spatially varying upwind term for each LC class
6.0e-1 (2), 3.2e-2 (3), 1.8e-5 (0),
1.5e-9 (0), 2.2e-2(1), 3.6e-5 (0),
0.34e-2 (1), 2.2e-2 (2), 2.4e-1 (2)

uw_pct_LCi , T2M, uw_ct ti 5 5 upwind term varying with mean climate for
each LC class

4.9e-12 (0), 6.7e-7 (0), 1.9e-44 (0),
4.5e-33 (0), 5.0e-3 (0), 2.0e-60 (0),
1.1e-3 (0), 5.3e-3 (0), 2.0e-11 (0)

lat, lon ti 15 5 spatial term to capure large scale variation of
precipitation 0 (0)

local effect of LC, we also account for proximity effects by computing proximity LC
fractions giving a third weight to the central grid cell and a sixth weight to each of the
four grid cells that share an edge with the central grid cell (prox_LCi).

4.2.4 Performance assessment of GAM
Across all months, the GAM achieves an adjusted R2 of 0.93, a RMSE of 0.30mm/day,
and an index of agreement (Duveiller et al., 2016) of 0.96. Overall, the residuals still show
some spatial correlation up to a distance of approximately 1.5◦, which we accept in order
to not have to over-fit the precipitation field with the purely spatial term (Figs. C.15 and
C.17). The GAM slightly deteriorates the agreement with the precipitation climatologies
at the GSDR rain gauges compared to the original MSWEP data (Fig. C.14). However,
considerable differences are already present between GSDR and MSWEP, likely owed
to the different spatial and temporal scales of these data sets. These differences are not
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systematic however. The significance of the individual smooths was tested in a type
III ANOVA, using the ’mgcv’ function ’anova’. Overall, all the smooths remain highly
significant throughout the year, with a few exceptions mostly for interactions terms of
some variables with latitude and longitude (Table 4.3). Note however, that the significance
of the terms is likely to be slightly overestimated due to the spatial auto-correlation of the
residuals (Dormann et al., 2007).

To compare the results of the GAM with the site pairs, we make a GAM prediction
extracting the forcing data from each individual site in a site pair. Due to the differing
spatial scales of the rain gauge data (point scale) and the MSWEP data (0.1◦ grid), we
use the local CLC fractions at the sites (within 0.1◦ grid cell) as the proximity when
conducting the GAM prediction. Besides this, we make a second GAM prediction, using
only the local CLC ALr and forest LC information from the individual sites, but setting
all other predictor variables to the values at the location of the site with more forest
coverage (Site 1). The ALr and forest LC fractions at the second site are computed as
follows to ensure the LC fractions still add up to 100%:

∆Fr = mean(pct f or1 − pct f or2, pctagr2 − pctagr1),

∆Fr = min(pct f or1, 100 − pctagr1,∆Fr),

pct∗agr1 = pctagr1 + ∆Fr, pct∗f or1 = pct f or1 − ∆Fr

(4.2)

, where pct f or1 and pctagr1 are the fraction forest and fraction ALr at the site with more
forest, pct f or2 and pctagr2 the respective fractions at the site with less forest, ∆Fr the
imposed LCC, and pct∗

agr1 and pct∗
f or1 the new fractions of ALr and forest to compute

the contribution from the differences in those two LCs. A GAM prediction at Site 1 with
these updated LC fractions is then subtracted from the original prediction at Site 1 to
isolate the actual contribution from the differences in the ALr and forest fractions, while
excluding contributions from other factors, such as elevation. To further corroborate
our results, we fit a GAM without the local LC fractions as predictors (blue terms in
Table 4.3). Note that the linear fits in Figs. 4.8, C.13, and C.14 are produced with the
Matlab function ’fitlm’ using the option ’RobustOpts’ to be less affected by outliers when
fitting. A discussion on the sensitivity of the GAM results on its structure is provided in
Supplement C.2.

4.2.5 Estimating the theoretical effect of forestation on precipitation
When estimating the forestation-induced precipitation change, we confine ourselves to
foresting 20% of the land surface, to (1) ensure the imposed LCC is of realistic magnitude
and (2) prevent moving outside of the boundaries of the predictor space for the ALr and
forest LC fractions. Further, the GAM estimate of the local precipitation change from
foresting ALr on 20% of the land surface (∆P l

20%) is evaluated with the site pair analysis.
We determine ∆P l

20% using one LC map with 10% more forest and 10% less ALr and a
second LC map with 10% less forest and 10% more ALr relative to CLC. When creating
these maps, we prevent LC fractions from falling below 0% or above 100%. In case it is
impossible to convert 10% of the land surface in one direction, we allow for more than
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10% conversion in the other direction up to a total conversion of 20%:

∆LCtot = min(20 %, proxagr + prox f or ),

∆LC1 = min(proxagr,max(10 %,∆LCtot − prox f or )),

and ∆LC2 = min(prox f or,max(10 %,∆LCtot − proxagr ))

(4.3)

, where proxagr and prox f or are the proximities ALr and forest in the CLC, ∆LCtot

is the total LCC between the map with more forest cover and the map with more ALr ,
and ∆LC1 and ∆LC2 are the imposed changes in the ALr and forest fraction for the
forested map and the deforested map, respectively. ∆LC1 is than added to the forest
fraction and subtracted from the fraction of ALr to create the forested LC map (LC1),
while the opposite is done with ∆LC2 to create the deforested map (LC2). To avoid the
estimation of the forestation effect in regions with no ALr available for forestation in
Scandinavia, we prevent forestation at grid cells where the average fraction of ALr within
a moving window of 3.1◦ is below 8%. With this procedure, it is possible to achieve 20%
forestation almost everywhere in Europe (Fig. 4.7 a). Then, we predict precipitation with
each of the two new LCmaps (Ppred(LC1) and Ppred(LC2)) and calculate the difference
of the two predictions to estimate the local change in precipitation due to foresting 20%
of the land surface:

∆P l
20% = Ppred(LC1) − Ppred(LC2) (4.4)

Using the same procedure, we calculate the upwind LC fractions if the land was trans-
formed according to the mentioned rules when processing the wind trajectories (Fig. 4.7 b
and c; uw_pct_LCi(LC1) and uw_pct_LCi(LC2)). Again, the two GAM predictions for
each of the resulting upwind LC fractions are subtracted to determine the remote change
in precipitation due to foresting ALr on 20% of the land surface, ∆P rem

20%:

∆P rem
20% = Ppred(uw_pct_LCi(LC1)) − Ppred(uw_pct_LCi(LC2)) (4.5)

4.2.6 Realistic forestation scenario
Finally, we estimate the precipitation change of reforesting Europe according to the
World Reforestation Potential Map (WRPM; Griscom et al., 2017b), which estimates the
reforestation potential relative to the LC state from 2000-2009. Starting from the original
binary map indicating whether a location is suitable for reforestation at 0.0083◦ resolution,
we calculate the area fraction which is suitable for reforestation at 0.1◦ resolution. This
fraction we then add to the forest and subtract from the ALr fractions of CLC, again
making sure the ALr cover fraction does not fall below 0% and the forest fraction does not
exceed 100%. The estimate of the precipitation change due to this reforestation scenario
then amounts to the difference of a GAM prediction with the forested local and upwind
LC fractions minus a GAM prediction with local and upwind LC fractions according to
CLC.
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4.2.7 Comparison to climate change signal
The EURO-CORDEX EUR-11 regional climate simulations, used for comparison to
the climate change signal, stem from the CH2018 collection (CH2018, 2018). EURO-
CORDEX simulations at 0.44◦ resolution are excluded from the analysis, since they

Figure 4.7: Changes in LC fractions for
uniform forestation scenario. Panel (a),
change in local ALr and forest fractions used
to predict the local effect of forestation with
the GAM (calculated from Eq. 4.3). To the
right, the change in the upwind forest frac-
tion following 20% forestation in January (b)
and July (c), retrieved from recalculating the
upwind LC fractions in the trajectories with
the altered LC maps.

generally represent present day precipitation
fields worse than the ensemble at 0.11◦ reso-
lution (Prein et al., 2016). Compared to the
original EURO-CORDEX ensemble (Jacob et
al., 2014), some simulations were removed in
CH2018 following quality checks. We use
data from nine different RCM/GCM combi-
nations with a total of ten available ensemble
members at 0.11◦ resolution for the RCP4.5
andRCP8.5 scenarios to calculatemulti-model
mean precipitation climatologies for the pe-
riods 1986-2015 and 2071-2100 (Table 4.4,
note that MPI-CSC-REMO2009/MPI-M-MPI-
ESM-LR provides two ensemble members).
The original data on a rotated grid were inter-
polated to a regular 0.1◦ grid using distance-
weighted remapping of CDO. Then, we com-
pute the area-weighted change in precipitation
between 2071-2100 and 1986-2015 over five
aggregated biogeographical regions compared
to the climatology of 1986-2015. For the re-
alistic forestation scenario, we compute the
precipitation changes from this scenario com-
pared to theMSWEPprecipitation climatology
of 1986-2015.

Table 4.4: Ensemble of EUR-11 regional climate
model (RCM) simulations forced by RCP4.5 and
RCP8.5 in CH2018. Middle column name of driving
general circulation model (GCM) and right column
number of ensemble members.

RCM Name Driving GCM N
CLMcom-CCLM4-8-17 ICHEC-EC-EARTH 1
CLMcom-CCLM4-8-17 MOHC-HadGEM2-ES 1
CLMcom-CCLM4-8-17 MPI-M-MPI-ESM-LR 1
DMI-HIRHAM5 ICHEC-EC-EARTH 1
MPI-CSC-REMO2009 MPI-M-MPI-ESM-LR 2
SMHI-RCA4 ICHEC-EC-EARTH 1
SMHI-RCA4 IPSL-IPSL-CM5A-MR 1
SMHI-RCA4 MOHC-HadGEM2-ES 1
SMHI-RCA4 MPI-M-MPI-ESM-LR 1
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4.3 Results

4.3.1 Local effect of land cover on precipitation in site pairs
Among the 3481 rain gauge stations of GSDR and the 2376 stations of GHCN included
in our analysis (Fig. C.10), we find a total of 1512 station pairs that differ at least by 20%
in the ALr and forest LC fractions according to the CORINE LC data at 0.1◦ resolution
and fulfill the additional selection criteria defined to mitigate the influence of potential
confounding factors. Here, we focus on five clusters of station pairs, as approximately
100 sites pairs are required for a robust signal (Fig. 4.8 a). Precipitation is significantly
higher at the sites dominated by forests in all regions, despite a considerable spread
among individual station pairs, with the exception of Region 5 from April to July (green
bars in Figs. 4.8 b, d and Fig. C.11). A stronger signal appears during the winter months,
while the summer signal tends to be only slightly positive. Further, the precipitation
differences between the sites with more forest minus the site with more ALr (∆P l) is
more pronounced under the oceanic climate of Regions 1 and 2 and decreases in strength
as the regions become more continental. In relative terms, the median ∆P l correspond
to 5-15% and 0-10% of the total precipitation during winter and summer, respectively
(Fig. C.9).

In order to infer the relationship between forestation and precipitation in a spatially-
explicit way across Europe, we use a GAM, which we first validate here at the site pairs.
The ∆P l predicted by the GAM at the site pairs has a smaller spread than the one of the
rain gauge pairs but gives a similar result for the magnitude and seasonality of the median
∆P l over the five regions, supported by an index of agreement (IA; Duveiller et al., 2016)
of 0.80 (red/’all forcings’ in Fig. 4.8 b-d and Fig. C.11). To ensure that the observed ∆P l

does not originate from systematic differences in variables other than the local ALr and
forest LC fractions, we make a second GAM prediction, using the forcing data from the
first station for all predictors at both sites except for these two LC fractions (orange/’LC
only’ in Fig. 4.8 b-d and Fig. C.11). While the signal in this GAM prediction is somewhat
weaker in all regions, it shows a similar pattern as the paired sites (IA of 0.61), indicating
that most of the precipitation difference at the site pairs can be explained by the difference
in the ALr and forest LC fractions. For a second confirmation, we fitted another GAM
without the LC-related predictors to the MSWEP precipitation climatology. Reassuringly,
the precipitation difference predicted by this GAM for the site pairs captures only a small
fraction of the signal from the site pairs (blue/’no LC’ in Fig. 4.8 b-d and Fig. C.11, IA of
0.052).
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Figure 4.8: (Previous page) Local precipitation difference between forest and agricultural land
at site pairs. Panel (a), locations of the site pairs in GSDR (purple) and GHCN (orange). To
the right the median (black line), interquartile range (coloured shading), and range between 10th
and 90th percentile (grey shading) of the monthly precipitation difference between the site with
more forest coverage minus the site with more rainfed agricultural land (∆P l) over all site pairs
(b) and Region 3 (d), which exhibits an intermediate signal strength (other regions are shown in
Fig. C.11). Bars correspond to distribution amongst the site pairs in the rain gauge data sets (green),
the generalized additive model (GAM) prediction using all the forcings at the individual stations
(red), the contribution to ∆P l in the GAM from the differences in the local ALr and forest fractions
(orange), and prediction of a GAM that was fitted without the land cover (LC) information (blue).
Coloured circles indicate samples which are significantly different from zero in a t-test and diamonds
GAM prediction samples which are significantly different from the sample of the site pairs in a
Welch’s t-test both at 5% confidence level. N is number of site pairs and ∆Fr median difference
in forest/rainfed agricultural land fraction among site pairs used to estimate the contribution from
those LCs in the GAM. Panel (c) shows monthly medians of ∆P l over the five regions in the site pairs
against monthly medians of the all-forcing GAM (red), LC only GAM (orange), no LC GAM (blue),
and medians of LC only GAM plus medians of no LC GAM (purple). R denotes Pearson correlation
coefficient and λ the index of agreement.

4.3.2 Theoretical effect of uniform forestation on precipitation
We employ the GAM that was evaluated in the previous section to estimate the effect of
a 20% increase in forest cover uniformly across Europe, with the exception of Northern
Scandinavia, where no agricultural land is available for forestation (Fig. 4.7). Locally, such
a forestation increases precipitation in almost all locations with a mean of 0.087mm/day
across the area that is reforested (Fig. 4.9 c). ∆P l

20% is more positive during winter
(mean of 0.13mm/day) and tends to be stronger at locations close to the coast (Fig. 4.9 a).
During the summer months, precipitation locally increases only weakly or even decreases
slightly due to forestation (Fig. 4.9 b, mean of 0.043mm/day). Besides the overall local
increase in precipitation associated with forestation, we find substantial downwind effects
from this LCC on precipitation (∆P rem

20%). Foresting 20% of the land surface decreases
winter downwind precipitation over Northern Europe, exhibits a weak signal in Central
and Eastern Europe, and increases precipitation in coastal areas of Western and Southern
Europe (Fig. 4.9 d, mean of 0.043mm/day). On the other hand, the GAM predicts a
downwind increase due to forestation in summer precipitation over most of Europe
(Fig. 4.9 e, mean of 0.17mm/day). The ∆P rem

20% during winter originates mostly from
forestation in regions close to the coast, while the relevance of forestation in continental
regions for downwind precipitation is confined to the summer season (Supplement C.3).
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Figure 4.9: Theoretical precipitation change from foresting 20% of the land surface across
Europe. Estimated ∆P l

20% (a-c) and ∆Prem
20% (d-f) after foresting 20% of the land surface in the

entire study domain. Top row boreal winter, middle row boreal summer, and bottom row annual
mean.
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4.3.3 Implications for a realistic forestation scenario
The forestation scenarios presented so far were stylized and might not be applicable in all
regions of Europe. Therefore, we estimate the changes in precipitation if the reforestation
potential according to the Global Reforestation Potential Map (Griscom et al., 2017a;
Griscom et al., 2017b) was realized. This map was constrained by safeguards for food
and fibre security, biodiversity, and against adverse biogeophysical temperature effects
(Lee et al., 2011; Li et al., 2015; Duveiller et al., 2018b). In total, 14.4% of the land
surface in the study domain is suitable for forestation, with concentrations over the British
Isles, western and southern France, Portugal, Italy, and Eastern Europe (Fig. 4.10 j). The
∆P l

ref due to this scenario often exceeds 0.1mm/day during winter, while the summer
signal rarely exceeds this value except for the British Isles. Additionally, this forestation
scenario triggers substantial non-local changes in the precipitation field (Fig. 4.10 d-f).
These downwind effects reach regions with no significant forestation potential, such as
Scandinavia, where reforestation was prohibited due to the local biogeophysical warming
effect of forests in those areas (Griscom et al., 2017a; Griscom et al., 2017b). Adding the
two contributions up, precipitation is increased by 0.14mm/day in winter, 0.13mm/day
in summer, and 0.16mm/day for the annual mean averaged over the continent. The
precipitation change amounts to more than 10% of the annual mean precipitation for
27% of the European area (Fig. 4.10 l).

The precipitation changes induced by realistic forestation have the potential to com-
pensate part of the climate change signal, as estimated by ten EURO-CORDEX EUR-11
ensemble members (Fig. 4.11). During summer, realistic forestation is estimated to
alleviate the precipitation decreases under RCP4.5 in the Mediterranean, Atlantic, and
the Continental biogeographical regions (Fig. 4.10 k) and to compensate a considerable
fraction of the precipitation signal under RCP8.5 (Fig. C.12). Therefore, forestation
could play a crucial role in adapting to the increased risks of summer droughts due to
climate change (Sheffield and Wood, 2008). Further, forestation is estimated to attenuate
the wintertime precipitation increase in the Boreal region and even overcompensate the
precipitation reduction in the Mediterranean (Fig. 4.10 k). On the other hand, it could also
have potentially adverse effects by further intensifying climate change-induced precipi-
tation increases in the Atlantic region. It needs to be noted that the forestation-induced
precipitation changes presented here are determined under recent climatic conditions and
may be altered under a warmer climate. Also, the EUR-11 ensemble exhibits substantial
(mostly positive) biases in the simulated precipitation distribution of the recent past (Kot-
larski et al., 2014; Prein et al., 2015), which could also affect the estimated precipitation
changes due to climate change.
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Figure 4.11: Comparison of precipitation changes from climate change and forestation. Change
in precipitation in EURO-CORDEX EUR-11 multi model ensemble under RCP4.5 scenario between
1986-2015 and 2071-2100 relative to modeled precipitation climatology of 1986-2015 (a, d), esti-
mated precipitation changes due to realistic forestation scenario relative to precipitation climatology
of 1986-2015 in MSWEP (b, e), and sum of the two (c, f) in boreal winter (a, b, c) and boreal summer
(d, e, f). Below, area-weighted average plus/minus area-weighted mean absolute deviation from
average of relative precipitation change under RCP4.5, following forestation, and sum of the two
over biogeographical regions (Fig. 4.10 k). In bold numbers of forestation that reduce the climate
change signal.
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4.4 Discussion and conclusions

Here, we provide a first observational estimate of forestation-induced changes in precipi-
tation over Europe. Therefore, it is difficult to assess the robustness of our estimate with
previous studies. Forest differs in several biogeophysical characteristics from agricultural
land, which can explain the identified precipitation changes. Firstly, forests typically
have a higher surface roughness than agricultural land. We hypothesize that this might
alter the local precipitation amount by inducing more turbulence and slowing movement
of precipitating air masses. The increased surface roughness over urban areas has been
identified as an important contributor to the amplification of precipitation over cities and
downwind of cities (Liu and Niyogi, 2019). Similarly, the high surface roughness of
forests was an important contributor to the precipitation increase from afforestation in the
Sahel region in a model experiment (Yosef et al., 2018). Further supporting this hypothe-
sis, we find that higher wind speeds, as an anti-correlated proxy for the surface roughness,
are associated with lower precipitation in particular during winter (Supplement C.4). The
surface roughness has also implications for ∆P rem. A decreased number of cyclones was
found following large-scale reforestation of Europe in a regional climate model, mainly
due to the high surface roughness of forests (Belušić et al., 2019). Especially forests close
to the coast might therefore hinder the propagation of frontal systems into the interior of
the continent. As cyclones contribute more to the total precipitation during winter than
during summer (Van der Ent and Savenije, 2011; Rüdisühli et al., 2020), this can explain
why forestation leads to a downwind increase of precipitation in areas close to the coast
during winter, while the signal is neutral in Central andWestern Europe and even negative
in Northern Europe. Indeed, forestation is estimated to decrease the propagation speed
of the calculated wind trajectories further away from the coasts, leading to a reduction
of the rainfall amount (Supplement C.4). Secondly, observations indicate that forests
typically sustain higher evapotranspiration than ALr in particular during the summer
season (Li et al., 2015; Schultz et al., 2017; Duveiller et al., 2018b). We hypothesize
that this is an important driver behind the downwind summertime precipitation increase
from forestation in most locations of Europe, which is supported by applying a moisture
source diagnostic to the wind trajectories used in this study (Supplement C.5). Higher
evapotranspiration of forests was also linked to increased precipitation in the tropics
(Spracklen et al., 2012; Lejeune et al., 2015) and the Sahel region (Yosef et al., 2018).
Thirdly, forestation warms the land surface during winter but cools it during summer
(Li et al., 2015; Schultz et al., 2017; Duveiller et al., 2018b). This could explain the
seasonal cycle of the local signal we observe, as warmer temperatures at the land surface
destabilize the planetary boundary layer, thereby favouring the creation of precipitation.
In fact, the urban heat island effect was linked to locally increased precipitation (Liu
and Niyogi, 2019). Overall, future sensitivity experiments with models could provide a
valuable contribution to understand the processes underlying the signals observed here.

Despite the fact that our results are consistent with the current understanding of
mechanisms at play, a number of potential caveats in the analysis should be highlighted.
Our results are based on a spatial rather than a temporal comparison of the precipitation
amount over different LCs. In consequence, the observed ∆P l can be the result of a
spatial redistribution of precipitation rather than an alteration of the overall amount of
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precipitation, which would imply that the estimated ∆P l is not directly attributable to
the effect of forestation at larger scales. Further, causality is inherently uncertain in
such observation-based approaches. By choosing precipitation as a response variable
and LC as a predictor, we implicitly assume that the latter influences the former. In
reality, the distribution of the different LC types may also be influenced by precipitation
amounts. However, the results of the site pair analysis are robust against the stringency
of the selection criteria (Supplement C.1). As for the GAM analysis, the influence of
potential confounding factors is minimized by including them as predictors. While the two
estimates of ∆P l based on different data sets and methodologies show good agreement,
they are not fully independent, as MSWEP v2.2 incorporates rain gauge measurements
besides reanalysis products and remote sensing data sets. Hence, we cannot exclude that
systematic biases in the rain gauge measurements translate to the GAM analysis. The
undercatch of rain gaugesmeasurements is exacerbated by highwind speeds (Pollock et al.,
2018). As forests typically have a higher surface roughness than ALr , lower surface wind
speeds occur at the sites in regions with more forest (Supplement C.4). This could result
in weaker undercatch at those sites compared to the sites with more ALr in their proximity.
Further, the ∆P l in the GAM could not be evaluated in the southern half of Europe, due to
the scarcity of rain gauge data in those areas. Thus, the compensatory effect of forestation
on the projected reduction of precipitation due to climate change in Southern Europe
is prone to larger uncertainties than the precipitation changes from forestation in other
regions (Note however that the GAM exhibits a similar signal as the rain gauge data over
the Iberian Peninsula with relaxed selection criteria; Fig. C.13). Uncertainties are larger
for ∆P rem, for which we rely solely on the GAM. Overall, our results are consistent with
observations in the tropics (Spracklen et al., 2012) and modeling studies (Lejeune et al.,
2015; Belušić et al., 2019). Nevertheless, the estimated downwind effect of forestation
is sensitive to both the construction of the GAM and the starting heights of the wind
trajectory calculation, although qualitatively robust (Fig. C.3 and Supplement C.2). We
therefore encourage a more thorough analysis of ∆P rem.

Overall, our results imply that forestation could trigger substantial changes in precip-
itation over Europe. Forestation-induced precipitation changes appear to be subject to
spatial trade-offs due to downwind effects. While we find a local increase in precipitation
due to forestation across Europe, forestation might reduce precipitation further downwind
in winter. On the other hand, forestation increases precipitation downwind in summer,
likely due to higher moisture supply by forests than by ALr . This downwind enhancement
of precipitation might come at the cost of a local reduction of runoff (Trabucco et al.,
2008; Padrón et al., 2017), adding yet another dimension to the spatial interconnections.
Overall, our results highlight that LCCs, such as forestation, can alter precipitation in the
mid-latitudes considerably, both locally and further downwind. Hence, the consequences
of human land-use for water availability should be considered alongside biogeochemical
effects and the biogeophysical alteration of temperatures. As droughts are projected to
become more severe with changing climate in Europe (Sheffield and Wood, 2008), the
interplay between LC and water availability deserves more attention.
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5
Conclusions and outlook

5.1 Conclusions

This thesis examines the biogeophysical effects of foresting grassland or cropland. Overall,
there is growing evidence that these effects should be considered when assessing the
climatic consequences of LULCCs. The biogeophysical effects of forestation exhibit
complex variations in space and time. In addition, they act both at a local scale and a
regional scale, which poses a challenge for modeling and observational studies. Due to
these complexities, our understanding of the biogeophysical effects of forestation is still
incomplete. With this thesis, I contribute to close some of the remaining knowledge gaps.

The local LST response is probably the best-constrained biogeophysical effect of
forestation, besides ∆α l. Forests cool the daily mean and maximum LST in observations
with the exception of the winter months at higher latitudes when snow is present. In
Chapters 2 and 3, I compare the observed LST response to the sub-grid LST difference
of the forest tiles minus the grassland and cropland tiles in offline CLM simulations. By
and large, CLM is able to reproduce the daily mean and maximum LST signal given a
fair comparison. It is crucial to place the different PFTs on separate soil columns when
extracting the sub-grid signal to suppress lateral energy exchange in the soil, which is not
realistic at the spatial scales of the observational studies. CLM4.5 exhibits a positive bias
for ∆LST l

max compared to observations, which appears to be related to a negative bias
in ∆ET l. Such biases may be addressed by better constraining the vertical distribution
of the roots, refining the dynamics of plant water uptake, and/or parameter choices
for the parametrisation of photosynthesis. A combination of these measures reduces
both the positive ∆LST l

max bias and the negative ∆ET l bias in CLM4.5. It needs to be
noted however, that spatially-continuous observational ET products exhibit considerable
uncertainties themselves, particularly for individual LCs. Also, atmospheric feedbacks
to forestation are neglected in the first two studies owned to the offline simulations, while
they cannot be excluded entirely in observations, which impairs the comparability of the
sub-grid signal and the remote sensing observations.

91
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During the night, forestation appears to cool the LST only slightly in the tropics and
even warm it outside of the tropics in observations. CLM exhibits a distinct negative bias
in ∆LST l

min in comparison to remote sensing estimates. Chapter 3 demonstrates that the
neglect of BHS is an important contributor to this bias. The vegetation biomass absorbs
and stores energy during the day, in particular the stems of trees. In offline simulations,
this cools daytime temperatures at the land surface only slightly, as the energy uptake
by the biomass is compensated by a reduction of the turbulent heat fluxes. During night,
energy is released from the biomass. Due to the stable structure of the surface layer at
night, the compensation by the sensible heat flux is weak. Therefore, the land surface
warms and releases the energy radiatively. This warming exceeds 2K frequently in forests.
BHS thus appears to be a relevant process for the diurnal temperature cycle in forests.

Chapter 4 estimates the local and downwind response of precipitation to forestation in
Europe using rain gauge pairs and GAMs. Locally, forestation increases precipitation in
particular during the winter months. By linking the spatial distribution of precipitation to
the LC overpassed prior to precipitation events, I further determine that forestation could
have important implications for the precipitation further downwind. Most importantly,
forestation increases precipitation downwind during the summer months. This implies
that the land is an important moisture source during the warm season, which is confirmed
with a moisture source diagnostic. The estimated changes in precipitation from a
realistic reforestation scenario are of comparable magnitude as the climate change signal
under RCP4.5 by the end of this century. Therefore, forestation has not only relevant
biogeophysical effects on temperature but also on the hydrological cycle, which deserves
more attention in future studies. It remains open however, whether the relations between
precipitation and the (upwind) LC fractions can be upscaled directly to forestation
scenarios at larger scale. In particular the local signal might be rather the result of a
spatial redistribution of precipitation than an overall increase. The finding of locally
increased precipitation over forests has important implications for studies employing the
Budyko framework, which examines the relationship between the fraction of ET and
precipitation and the fraction of potential ET and precipitation. Differences in those
fractions among catchments dominated by different LCs may not only originate from
the amount of ET in those catchments but also the amount of water available from
precipitation, which can be influenced by LC. For example, a catchment dominated by
forests may exhibit a lower fraction of ET/P than a catchment dominated by agricultural
land not because of lower ET but because of higher precipitation.

Overall my thesis demonstrates that forestation has important biogeophysical im-
plications for the local and regional climate. It is crucial to examine and understand
these effects before employing forestation as a mitigation tool for climate change, as
frequently proposed. However, the biogeophysical effects of forestation are still prone
to considerable uncertainties both in ESMs and observations. In particular there are
three aspects that still require further attention: (1) How does forestation affect different
temperature metrics at the land surface and which ones are most relevant for life on earth?
Several modeling studies find that ∆LST l can differ in sign from ∆T2Ml. In consequence,
the cooling potential of forests found in remote-sensing studies might be restricted to
LST. On the other hand, forestation might warm T2M, which could be more relevant
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than LST for human thermal comfort and the functioning of ecosystems. (2) What are
the remote biogeophysical effects of forestation? Especially, we need to know at which
spatial scales of forestation they become relevant. Further it would be valuable to conduct
more observational studies on remote effects to constrain them in models. (3) More
attention should go towards the implications of forestation for the hydrological cycle, as
water is the essence of life and therefore crucial both for humans and wildlife. The current
literature on this topic frequently exhibits contradictory results, which prevents us from
drawing robust conclusions on how forestation affects water availability.

5.2 Outlook

5.2.1 LULCC beyond forestation
Conversions between forests and grassland/cropland were and still are the most prominent
anthropogenic LULCC. Nevertheless, humans alter the properties of the land surface
in other ways too. This sections provides a brief insight into the literature on the
biogeophysical effects of some LULCC beyond de-, re-, and afforestation. Broadly, LUCs
can be divided into land use conversions and land management (Pongratz et al., 2018).
The first category corresponds to a change in human land use (e.g., abandonment of
agricultural land) and is often associated with complete conversion of the LC type (e.g.,
conversion of cropland to natural forests). The second category refers to the way the land
is managed to generate its benefit for humans (e.g., whether cropland is tilled and which
species are cultivated on it).

Other LU conversions Urbanization is probably the most drastic anthropogenic LCC,
altering the biogeophysical land properties completely. Despite covering only about

Figure 5.1: LST in Milan during a heat wave.
The city center appears much warmer than
the surrounding areas. Credit: NASA/PL-
Caltech.

0.5% of the land surface (Hurtt et al., 2020),
urban areas still deserve attention due to their
pronounced biogeophysical effect and their im-
portance as a habitat for humans. Observed
air temperatures are generally several degrees
warmer in urban areas compared to nearby ru-
ral areas (Tzavali et al., 2015), a phenomena
called the urban heat island effect (Fig. 5.1).
This warming is most pronounced during the
night. Similar as in BHS, the buildings in a
city form an energy storage reservoir, which
releases energy during the night that has been
absorbed during day (Rizwan et al., 2008). In
addition, the emitted longwave radiation of ur-
ban surfaces is frequently re-absorbed due to
the low sky-view factor in cities, trapping the
stored energy (Zhang et al., 2019). The frac-
tion of the world population living in urban
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areas has increased strongly over the last decades, reaching more than 50% today, and
is expected to increase further (World Urbanization Prospects, 2018). The matter of the
urban heat island effect and in particular strategies to mitigate this effect deserve therefore
certainly attention. Unsurprisingly, a number of mitigation strategies have been proposed
in the literature, often including the introduction of more vegetation in urban areas (e.g.,
Rizwan et al., 2008; Zhang et al., 2017).

Land management Besides the LUCs that incorporate a complete conversion from
one LC type to another, such as deforestation or urbanization, humans also alter climate
through land management, which can have a biogeophysical effect comparable to the one
of a complete LC conversion (Luyssaert et al., 2014). LCCs associated with European
forests since 1750 exerted a warming effect on summertime temperatures, mainly owned
to forest management rather de-, re-, and afforestation (Naudts et al., 2016). The
biogeophysical effect of species conversion from broadleaf to needleleaf trees was the
dominant contributor to this signal, highlighting the importance of both biogeophysical
effects and land management at least for the regional climate. Similarly, Luyssaert
et al. (2018) find that the forest management strategy that minimizes the T2M in Europe
differs substantially from the strategy that maximizes the land carbon sink. In detail,
increasing the fraction of broadleaf trees in European forests would be beneficial for
the local temperatures. Similarly, we find in an observational study that was part of
the CLIMPULSE project that replacing needleleaf with broadleaf trees mitigates warm
temperature extremes (Box 2).

Land management has not only been an important climatic driver in the past and
present, but provides also an opportunity to mitigate and adapt to climate change while
maintaining the services provided by land to humans. Besides forest management and
measures to mitigate the urban heat island effect, management practices for cropland are
another promising tool. Increasing the albedo of cropland reduces the mean temperature
and even more so temperature extremes (Seneviratne et al., 2018). This could be
achieved for example through no-tillage farming (Davin et al., 2014), cover crops, or
low-chlorophyll crops (Lugato et al., 2020). Irrigation is another management practice
that reduces temperatures in regions where it is applied, by repartitioning more of the
available energy into latent heating (Thiery et al., 2017).
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Box 2: Increasing thebroad-leaved tree fraction inEuropean forests
mitigates hot temperature extremes

Introduction Not only the presence of forests but also the way they are managed
affects the local climatic conditions. In this study, we estimate the impact of increasing
the broadleaf tree fraction (BTF) in European forests on LST. I here provide a brief
synthesis of the results from this study. For the full publication refer to Schwaab et al.
(2020).

Methods Generalized additive models are fitted to the LST climatologies for a given
month and time of day from MODIS (1 km resolution, up to four samples per day;
Wan, 2014) and SEVIRI (Spinning Enhanced Visible and InfraRed Imager, 3-5 km
resolution, 15min temporal resolution; Trigo et al., 2008). The models are calibrated
for five biogeographical regions individually, using as predictors the forest type from
the Copernicus Land Monitoring Service (Langanke, 2018) to distinguish between
broadleaf and needleleaf forest, 15 LC categories from CORINE Land Cover (Kosztra
et al., 2019), elevation, slope, exposition, TRI, and TPI based on EU-DEM v1.0 (EEA,
2014), and the geographic coordinates. Further, GAMs are produced for the 0.1, 0.2, ...,
0.9 quantiles of the daily maximum LST in SEVIRI during summer. Finally, the effect
of increasing the BTF by 80% is calculated from the difference of a GAM prediction
with a BTF of 90% minus a prediction with a BTF of 10%.

Figure 5.2: Monthly diurnal cycle of LST change induced by an increase of the BTF by
80% in five biogeographical regions. For every month denoted as J (January), . . . , D
(December) on the x-axis the mean diurnal cycle of the LST change induced by an 80%
increase of the broad-leaved tree fraction is shown. For SEVIRI (triangles) hourly mean
values are available (i.e. 24 values for each month). For MODIS (circles), observations
are available at four different time steps per day which are approximately at 01:30, 10:30,
13:30 and 22:30 local solar time. Confidence intervals for SEVIRI are shown in grey.
Confidence intervals for the MODIS observations are denoted as black lines through the
colored dots. Red markers stand for a warming due to an increase in the BTF and blue
markers for a cooling. Adapted from Schwaab et al. (2020).
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Figure 5.3: LST change (based on SEVIRI)
related to an increase of 80% in BTF for dif-
ferent temperature quantiles, going from the
LST change at moderate background temper-
atures on the left (0.1 quantile) to very high
background temperatures on the right (0.9
quantile). The error bars show the 95%
confidence interval. From Schwaab et al.
(2020).

Results The LST response to increas-
ing the BTF exhibits a distinct diurnal
and seasonal cycle (Fig. 5.2). Broadleaf
trees strongly decrease the LST dur-
ing the day and slightly increase the
LST during night. The daytime cool-
ing is most distinct during the sum-
mer months, while there is only a
slight cooling or even a warming by
broadleaf trees during winter. The
summertime cooling effect on the daily
maximum LST due to an increase in
the BTF increases in strength for the
higher temperature percentiles (Fig. 5.3).
As such, broadleaf trees appear to
be particularly beneficial during heat
waves.

5.2.2 Future avenues for modeling studies
Improvements for aboveground energy storage scheme in CLM In Chapter 3, I
demonstrated that BHS is a relevant process for the diurnal LST evolution in forests.
While this first implementation was able to capture the broad nature of BHS, several
aspects regarding the aboveground energy storage could still be improved. In detail,
the simulated BHF could be evaluated more thoroughly with field site studies. Besides
using the model parameters associated with the current implementation of BHS, a more
complex BHS scheme could improve the realism of the simulated BHF. The current
version assumes a uniform temperature within the stem, which is of course a strong
simplification. Haverd et al. (2007) successfully applied the force-restore method to
simulate BHS at a specific site. This method was originally designed to represent the
soil energy storage in general circulation models (Bhumralkar, 1975). Another option
could be to represent several stem layers, similar to the representation of the ground.
Herrington (1969) provides a detailed proposition on how this could be done including
choices for model parameters. Finally, the sensible and latent heat stored in the canopy air
space is another energy storage component currently missing in CLM. Bonan et al. (2018)
developed a multi-layer canopy version of CLM4.5 including a new parametrisation
for the roughness sub-layer. This development brings along the representation of the
energy stored in the canopy air, but also increases the complexity of the canopy model
substantially compared to the current big-leaf approach. Heidkamp et al. (2018) use the
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canopy height to estimate the size of the energy reservoir in the canopy air space, which
is compatible with the big-leaf approach. During my PhD, I have implemented both the
force-restore method and the energy storage in the canopy air space after the example
of Heidkamp et al. (2018) (Box 3). However, these model developments require more
testing and evaluation with data from in-situ sites.

Box 3: Further refinement of canopy energy storage in CLM5.0

Introduction The implementation of the canopy energy storage presented in Swen-
son et al. (2019) and Meier et al. (2019) can be refined on several aspects. Here, I
present preliminary results of a model version that uses the force-restore method for
the energy storage in the stem after Haverd et al. (2007) and the simple method rep-
resenting the sensible and latent heat storage in the canopy air of Heidkamp et al. (2018).

Methods In the force-restore method, the stem is presented by the temperature of the
bark and the temperature of the core. The calculation of the core temperature tendency
remains similar to the original scheme (Swenson et al., 2019). However, the emitted
longwave radiation and the sensible heat flux from the stem are calculated from the bark
temperature. The bark temperature tendency is computed after Eq. (31) in Haverd et al.
(2007). For the resistance to heat transfer per meter of stem diameter (rw in Chapter 3),
300 s m−2 is chosen for the force-restore method instead of 1000 s m−2 in the original
scheme. It is assumed that the air volume can be calculated from the canopy height
to estimate the sensible and latent heat storage in the canopy air space. The sensible
and latent heat storage terms are then computed from the change in the canopy air
temperature and canopy specific humidity, respectively.

Four point scale simulations are run in the satellite phenology mode for 1997-
2010, where the first five years correspond to the spin up period: (1) a simulation
without any storage terms in the canopy corresponding to CLM-CTL in Chapter 3; (2)
a BHS simulation with the original scheme (CLM-BHS); (3) a simulation using the
force-restore method to compute the energy storage in the stem; (4) a simulation using
both the force-restore method and the energy storage terms in the canopy air space.
The simulations are conducted at 2.75◦ S/60.25◦W, corresponding to the location of
Michiles and Gielow (2008). This location is dominated by a dense broadleaf evergreen
forests with an aboveground stem biomass of 104 kg m−2 and a canopy height of 29.2 m.

Results The energy storage in the stem with the force-restore method tends to be
smaller than with the original scheme and both the positive and negative peak occur
earlier during the day (Fig. 5.4 b). The sensible and latent energy storage in the canopy
air space make a substantial contribution to the overall energy storage in the canopy
during the day. They might be overestimated however, as the current implementation
is rather rudimentary. All simulations that include BHS exhibit a similar diurnal
LST cycle with considerably warmer temperatures than the control simulation at night
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(Fig. 5.4 c). Accounting for the energy stored in the canopy air reduces the LST between
07:00 and 11:00 am. Interestingly, the temperature in the canopy air space is colder
in the simulations employing the force-restore method than in the simulation with the
original scheme throughout the day (Fig. 5.4 d).

Both the way the energy storage in the stem is implemented and the energy storage
in the canopy air appear to affect the diurnal temperature cycles at the land surface.
Further, the new energy storage schemes exhibit short-term fluctuations, which should
be addressed when developing those schemes further. Overall, it would be desirable to
thoroughly evaluate the canopy energy storage fluxes with several in-situ studies.
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Figure 5.4: Panel (a), the average diurnal cycle of total energy storage in canopy during boreal
winter (DJF) at 2.75◦ S/60.25◦W (location of Michiles and Gielow, 2008) of different schemes.
Panel (b), average diurnal cycle of energy stored in stem (brown), leafs (green), and in canopy
air space as sensible heat (red) and latent heat (blue). Average diurnal cycle in LST (c), canopy
air temperature (red, d), and stem core temperature (brown, d). Dotted lines scheme without
canopy energy storage, dashed lines original BHS scheme, dashed-dotted lines force-restore
scheme, and continuous lines force-restore scheme with energy storage in canopy air.

Biogeophysical effects of forestation in convection-resolving simulations Climate
andweathermodels are able to represent deep convection at roughly a horizontal resolution
of 4 km or higher, which has important implications particularly for the simulated
precipitation fields (Weisman et al., 1997; Panosetti et al., 2020). It is therefore not
surprising that the simulated biogeophysical effect of LCC is sensitive to the choice of
the horizontal and vertical resolution of the atmosphere (Devanand et al., 2020) and even
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agrees better with observational constraints if the model resolution is high enough to
resolve convection (Vanden Broucke and Van Lipzig, 2017). Computational capacities
have been increasing over the last decades, thereby allowing for higher model resolutions.
As of today, there are even ambitions to run global climate simulations with resolved
convection (Fuhrer et al., 2018). Therefore, studies employing convection resolving
resolutions to study the biogeophysical effect of LCC will likely become more common
in future.

5.2.3 Dynamics of forest-related LCC
The estimated biogeophysical effect of forestation frommost studies in the field (including
the studies in this thesis) build upon a spatial comparison of established forests to other LC
types, disregarding the fact that it can take decades to (re-)establish forest. Disturbances
of forests, such as fires or bark beetles, cause detectable alterations of the exchange in
chemical species and energy over decades (Fig. 5.5; Liu et al., 2005; Randerson et al., 2006;
Williams et al., 2012b; Vanderhoof and Williams, 2015). On the other hand, grassland
or cropland reaches maturity much faster following deforestation. As such, forest-related
LCCs exhibit hysteresis in the sense that the equilibrium state of the vegetation establishes
quicker in one direction (deforestation) than in the other (forestation). This has important
implications. Firstly, forestation as amitigation/adaptation tool for climate change requires
decades to realize its full benefit. Secondly, foresting the same area to compensate for
deforestation elsewhere results in a temporary biogeophysical and biogeochemical effect,
even if the two locations exhibit the same climate (i.e., the equilibrium states of the
forest and agricultural land at the two locations would be the same). In consequence,
ignoring the physiological evolution of forests with their age structure or only simulating
net LCCs in ESMs neglects part of the climatic consequences of the imposed LCCs. This
is certainly relevant, as gross LCC exceed net LCC considerably (Fuchs et al., 2014;
Fuchs et al., 2018).

Figure 5.5: Percent change in seasonal evapotranspiration with years since bark beetle outbreak
for 2012. Change is calculated relative to local, for each plot, non-attacked forest. Error bars are
plus and minus standard error. From Vanderhoof and Williams (2015).
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Such dynamics could be considered best in LSMs by simulating the age structure of
the trees forming the forest instead of using one average tree to represent the entire forest
at a given location. Several approaches to simulate vegetation demographic processes in
ESMs have therefore been developed over the last two decades (Fisher et al., 2018) and
will enable to consider these dynamics when investigating the biogeophysical effects of
LCCs.



A
Appendix to Chapter 2

A.1 Sensitivity of CLM4.5 to individual modifications

Here we present a more detailed description and discussion of the individual modifications
described in Section 2.3.2. In order to isolate the effect of the individual modifications
three additional sensitivity experiments are presented: CLM -ROOT, CLM - 10PER, and
CLM -LIGHT. TableA.4 shows which modifications of CLM4.5 are incorporated in the
different sensitivity experiments.

A.1.1 Sensitivity to root distribution
In CLM4.5 ET is strongly and positively correlated to Soil Moisture (SM) at most
locations, indicating that SM limitation exerts a strong control on the magnitude of
ET (not shown). In CLM -DFLT, where SM is the same for all PFTs within a grid
cell, forest mostly experiences higher SM stress except for the northern high-latitude
winter (Fig. A.4 a). Once the separated soil columns are introduced in CLM -BASE, the
differences in the SM stress are also influenced by the differences in SM, which in term
are affected by the various ET rates over forest and open land. In other terms, it is possible
that forests experience less SM stress than open land but only because they evaporate less
water and vice versa (Fig. A.4 b). We argue that the difference in the SM stress of forest
minus open land in CLM -DFLT is more representative, because it is unaffected by the ET
rates of the individual PFTs in this model configuration. Under this assumption, forests
are often more SM-limited than open land in CLM4.5. In contrast, two observational
studies comparing SM profiles of forest and nearby pasture sites in the Amazon reveal
that forests have a considerably higher capacity to access water from the soil below a
depth of 2 m (Jipp et al., 1998; von Randow et al., 2004). Further, there are a number
of studies reporting increased forest ET during the dry season due to the higher amount
of incoming shortwave radiation, whilst the response is the opposite over pasture (Jipp
et al., 1998; da Rocha et al., 2004; von Randow et al., 2004; Huete et al., 2006; Saleska
et al., 2007). Altogether these studies indicate that forest ET should be less SM-limited
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than open land ET. It is thus possible that forests experience too high and/or open land
too little SM stress in CLM4.5.

CLM4.5 accounts for SMstress on vegetation transpiration through a stress function βt ,
which ranges from zero (when soil moisture limitation completely suppresses vegetation
transpiration) to one (corresponding to no SM limitation on vegetation transpiration).
This function is calculated as the sum of the root fraction in each soil layer (ri) multiplied
by a PFT-dependent wilting factor (wi):

βt =
∑
i

wiri (A.1)

The original root distributions in CLM4.5 were adapted from Zeng (2001) and are
rather similar for all PFTs, especially for needleleaf trees, broadleaf deciduous trees, and
grassland in the lower part of the soil (Fig. A.5). Therefore, there is no considerable
difference in the default configuration of CLM4.5 regarding the ability to extract water
from the lower part of the soil between forests and open land PFTs (except for broadleaf
evergreen trees). Furthermore, all tree PFTs have a less negative soil matrix potential at
which the stomata are fully closed and opened than the open land ones, i.e., tree PFTs
have their permanent wilting point at a higher SM content than open land and hence use
water more conservatively. In order to increase SM limitation for open land PFTs and
thus reduce their ability to extract water from the lower part of the soil, we conduct a
sensitivity experiment, called CLM -ROOT, with a much shallower root distribution for
open land PFTs. The new values for the root distribution factors (ra and rb) are shown in
TableA.1 and the resulting root distribution in Fig. A.5.

The modified root distributions strongly reduce the ET of non-arctic open land PFTs,
especially ET of C4 grass (TableA.5). Also, the ET of grassland at the location of the
pasture site in the Amazon in the study of von Randow et al. (2004) is considerably
reduced during the dry period, even overcompensating the positive bias in CLM -BASE
(TableA.6). On the other hand, it does not affect ET during the wet season, when ET is
not SM limited. Overall, this experiment reveals that modifying the root distribution has
high potential to alleviate biases of CLM4.5 in ET, except for the arctic region where likely
temperature and incoming shortwave radiation are the main factors limiting vegetation
transpiration.

A.1.2 Sensitivity to dynamic plant water uptake
In the tropics forests often exhibit increased ET during dry periods, due to increased light
availability (da Rocha et al., 2004; Huete et al., 2006; Saleska et al., 2007), even though
the upper soil is dry, as they still have sufficient water supply from the lower part of the
soil (Jipp et al., 1998; von Randow et al., 2004). We aim to allow a similar behaviour in
CLM4.5 by introducing a dynamic plant water uptake, where plants only extract water
from the 10% of the roots with the highest wilting factor (i.e., best access to SM) for
the calculation of the βt -factor and the extraction of soil water (example in Fig. A.6).
The resulting model simulation, called CLM - 10PER, was conducted by adding this
modification to the configuration from the CLM -ROOT experiment.

This modification generally reduces SM stress for plants and hence increases ET for
all non-arctic PFTs (TableA.5). Its impact is limited for arctic PFTs where temperature
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and shortwave radiation are more important limiting factors of vegetation transpiration
than water availability. A notable improvement can be observed for tropical deciduous
broadleaf trees for which average ET is increased by 0.11 tmm/day, thereby alleviating
the negative bias compared to GETA. Furthermore, it improves the seasonal dynamics of
forest ET in the tropics. With the 10% modification forests show increased ET during
the dry period at the forest site of da Rocha et al. (2004). This is the case as trees are now
less SM-limited during the dry period than in CLM -BASE, since they have a significant
fraction of their roots in the still-moist lower part of the soil, allowing them to exploit the
increase in incoming shortwave radiation. On the other hand, ET at the pasture site of
von Randow et al. (2004) remains largely unaffected, as grassland has only limited access
to SM from the lower part of the soil due to the shallow root distribution introduced in
CLM -ROOT. It hence appears that a dynamic plant water uptake could be crucial for the
representation of the seasonal dynamics of ET (and possibly photosynthetic activity in
general) in the tropics.

A.1.3 Sensitivity to light limitation
As arctic PFTs are only weakly affected by the previously introduced modifications of
SM stress as well as the maximum rate of carboxylation described in the next section, we
performed a sensitivity experiment with altered light limitation, which is called CLM -
LIGHT. Since ET values are strongly negatively biased for boreal deciduous broadleaf
trees and C3 arctic grass (TableA.5), the light limitation of photosynthesis for C3 plants
was lessened by increasing the factor 0.5 in Eq. 8.7 of Oleson et al. (2013) to 0.6. Because
ET of C4 grass exhibits a strong positive bias, their quantum efficiency was reduced from
0.05 to 0.025 mol CO2 mol−1 photon, thereby increasing their light limitation.

Altering the light limitation of photosynthesis impacts ET in all climate zones
(TableA.5). Its impact is strongest in the tropics and remains small in boreal regions. Of
the C3 PFTs tropical evergreen broadleaf trees are impacted strongest. The implemented
modification alleviates the negative ET bias for evergreen broadleaf trees during the
dry season but slightly increases the positive bias during the wet season, overall still
leading to a further improvement of the difference between the two seasons (TableA.6).
Additionally, the increased light limitation reduces ET of C4 grass during the wet season
similar to the observations over the grassland site in von Randow et al. (2004). This is
likely responsible for the increased ET during the dry season as well, since the reduced SM
consumption during the wet season is carried over to the following dry season, therefore
reducing the SM stress.

A.1.4 Sensitivity to the maximum rate of carboxylation
Vcmax appears to be a suitable parameter to tune vegetation transpiration values, since
it is not well constrained from observations and vegetation transpiration in models is
highly sensitive to this parameter (Bonan et al., 2011). In CLM4.5 the values reported
by Kattge et al. (2009) are used except for tropical evergreen broadleaf trees, for which
a higher value was chosen to alleviate model biases (Bonan et al., 2012; Oleson et al.,
2013). In order to test the sensitivity of the PFT-specific ET values to Vcmax , we
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conduct a final sensitivity experiment with new values of this parameter in addition to the
other modifications presented beforehand, with the aim to alleviate the biases to GETA
(TableA.1). Additionally, the minimum stomatal conductance of C4 plants, which is by
default four times larger than that of C3 plants, was reduced from 40 000 µmol m−2 s−1

to 20 000 µmol m−2 s−1 (see Eq. 8.1 in Oleson et al. 2013) in this sensitivity experiment,
which we call CLM - PLUS.

As already shown by Bonan et al. (2011), photosynthetic activity of C3 PFTs is
strongly influenced by the choice of Vcmax , except for the boreal ones where light or
temperature are more important limiting factors of photosynthesis. The CLM - PLUS
simulation alleviates biases in ET averaged for the individual PFTs compared to GETA, in
particular by reducing ET over temperate evergreen needleleaf trees, both temperate and
tropical evergreen broadleaf trees, and C4 grass, as well as by increasing ET of tropical
deciduous broadleaf trees (TableA.5). The mismatch between results of CLM4.5 and
the in-situ measurements of von Randow et al. (2004) and da Rocha et al. (2004) in the
Amazon region are reduced in this new configuration during the wet season, but enhanced
during the dry one (Tables A.6). As in the CLM -LIGHT experiment the reduction of C4
grass ET during the wet season at the pasture site of von Randow et al. (2004) is partly
compensated by an ET increase during the dry period. Overall, ET of C4 grass compares
well with the mean value of GETA. The in-situ observations of von Randow et al. (2004)
on the other hand support a stronger tuning for this particular PFT in order to further
reduce its ET.
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A.2 Appendix figures and tables

Figure A.1: The fraction of the CLM4.5 grid cells covered by (a) bare soil, (b) forest, (c) shrubland,
and (d) open land.

Figure A.2: Ground heat flux for forests (a and b) and open land (c and d) in CLM -DFLT (a and
c) and CLM -BASE (b and d). Positive values correspond to a heat flux out of the soil.
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Figure A.3: Difference in vertically-averaged annual mean soil temperature of forest minus open
land in CLM -BASE.

Figure A.4: Seasonal and latitudinal variations of βt -factor differences of forest minus open land
in (a) CLM -DFLT and (b) CLM -BASE. Points with a mean which is insignificantly different from
zero in a two-sided t-test at 95% confidence level are marked with a black dot.
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Figure A.5: Vertical root fraction distribution of the different PFTs in the default version of CLM4.5
and in light blue the modified root fraction distribution of open land PFTs used in CLM - PLUS. The
asterisks mark the reported maximum rooting depths of Fan et al. (2017) for annual grass (yellow),
evergreen needleleaf trees (dark blue), deciduous broadleaf trees (ligth green), and evergreen
broadleaf trees (dark green).
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Figure A.6: Example of the calculation of the βt -factor with the 10% modification. Shown are
five soil layers with the fraction of the roots in these layers in brown and the wilting factor in blue.
On the bottom the calculation of βt for this particular example with the 10% modification (β 10PER

t )
and the default calculation in CLM4.5 (β DFLT
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Figure A.8: IA (Duveiller et al., 2016) of CLM -BASE (red), and CLM -PLUS (orange) with
forestation observations over Köppen-Geiger climate zones (Kottek et al., 2006, ; Fig. 2.1) for
monthly (a) ∆α l, (b) ∆LSTrem

avg , (c) ∆LST l
max, and (d) ∆LST l

min. Panel (e) shows the IA over
the Köppen-Geiger climate zone for ∆ET l of CLM -BASE (red), and CLM -PLUS (orange) with
forestation (green edge), GLEAM (light blue edge), GETA (dark blue edge). The numbers indicate
the size of the data samples used for the calculation of IA.
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Table A.1: The PFT-specific values of Vcmax [µmol m−2 s−1], ra , and rb [ ] in default of CLM4.5
and in CLM -PLUS.

PFT name Default CLM - PLUS
ra rb Vcmax ra rb Vcmax

NET - temperate 7.0 2.0 62.5 default 50
NET - boreal 7.0 2.0 62.6 default default
NDT - boreal 7.0 2.0 39.1 default default
EBT - tropical 7.0 1.0 55.0 default 35
EBT - temperate 7.0 1.0 61.5 default 50
DBT - tropical 6.0 2.0 41.0 default 65
DBT - temperate 6.0 2.0 57.7 default default
DBT - boreal 6.0 2.0 57.7 default 70

C3 arctic grass 11.0 2.0 78.2 11.0 11.0 90
C3 grass 11.0 2.0 78.2 11.0 11.0 60
C4 grass 11.0 2.0 51.6 11.0 11.0 default
Crop 6.0 3.0 100.7 11.0 11.0 90

Table A.2: The default PFT classification in CLM4.5.

No. Abbr. Full name Class

1 Bare soil –

2 NET - temperate Temperate evergreen needleleaf tree Forest
3 NET - boreal Boreal evergreen needleleaf tree Forest
4 NDT - boreal Boreal deciduous needleleaf tree Forest
5 BET - tropical Tropical evergreen broadleaf tree Forest
6 BET - temperate Temperate evergreen broadleaf tree Forest
7 BDT - tropical Tropical deciduous broadleaf tree Forest
8 BDT - temperate Temperate deciduous broadleaf tree Forest
9 BDT - boreal Boreal deciduous broadleaf tree Forest

10 BES - temperate Temperate evergreen broadleaf shrub –
11 BDS - temperate Temperate deciduous broadleaf shrub –
12 BDS - boreal Boreal deciduous broadleaf shrub –

13 C3 arctic grass Open land
14 C3 grass Open land
15 C4 grass Open land
16 Crop Unmanaged rainfed C3 crop Open land
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Table A.3: The LC types from Ambrose and Sterling (2014) (GETA) used in this study and the
numbers of the respective PFTs in CLM4.5 applied to the different LC types (Table A.2).

Abbr. GETA Full name GETA PFTs of CLM4.5

ENF Evergreen needleleaf forest 2, 3
DNF Deciduous needleleaf forest 4
EBF Evergreen broadleaf forest 5, 6
DBF Deciduous broadleaf forest 7, 8, 9

GRS Grassland 13, 14, 15
CRN Non-irrigated cropland 16

Table A.4: Overview of the different modifications of CLM4.5 incorporated in the simulations
presented this study.

Run SeSCs Shallow roots 10% Light limitation Vcmax

CLM -DFLT – – – – –
CLM -BASE X – – – –
CLM -ROOT X X – – –
CLM - 10PER X X X – –
CLM -LIGHT X X X X –
CLM - PLUS X X X X X

Table A.5: Area-weighted annual mean ET for each PFT analysed in this study according to the
GETA data and in the different configurations of CLM4.5 and fraction of the land surface covered
by the different PFTs. On the bottom is listed the global integral of annual ET.

Abbr. Full name Frac. [%] ET [mm/day]
GETA BASE ROOT 10PER LIGHT PLUS

NET - temperate Needleleaf evergreen tree - temperate 3.2 1.74 1.78 1.78 1.81 1.84 1.75
NET - boreal Needleleaf evergreen tree - boreal 6.9 1.00 0.97 0.97 0.98 1.00 1.00
NDT - boreal Needleleaf deciduous tree - boreal 1.0 0.72 0.72 0.72 0.72 0.73 0.73
EBT - tropical Broadleaf evergreen tree - tropical 9.5 3.47 3.70 3.70 3.78 3.87 3.52
EBT - temperate Broadleaf evergreen tree - temperate 1.5 2.58 2.61 2.61 2.66 2.70 2.60
DBT - tropical Broadleaf deciduous tree - tropical 8.0 2.65 2.31 2.31 2.42 2.44 2.62
DBT - temperate Broadleaf deciduous tree - temperate 3.1 1.78 1.74 1.74 1.76 1.79 1.79
DBT - boreal Broadleaf deciduous tree - boreal 1.3 1.23 1.08 1.08 1.08 1.10 1.13

C3 arctic grass 3.1 0.81 0.66 0.65 0.65 0.66 0.67
C3 grass 8.8 1.48 1.60 1.53 1.56 1.57 1.53
C4 grass 8.0 2.06 2.32 2.18 2.22 2.12 2.04
Crop C3 unmanaged rainfed crop 10 1.90 1.76 1.70 1.73 1.74 1.73

Total ET [km3 yr−1] 70223 69059 70322 70649 69023
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Table A.6: ET and latent heat flux in-situ observations from various studies and the values of the
different CLM4.5 sensitivity tests at the respective locations.

Study Region PFTs Unit Season Obs. BASE ROOT 10PER LIGHT PLUS

da Rocha et al. (2004) Amazon EBT mm/day
Dry 3.96 3.49 3.49 3.90 4.06 3.48
Wet 3.18 3.57 3.57 3.57 3.64 3.37
All 3.51 3.54 3.54 3.68 3.79 3.40

von Randow et al. (2004) Amazon
EBT

W m−2

Dry 108.6 82.9 82.9 100.6 105.3 90.8
Wet 104.5 113.9 113.9 113.8 116.2 108.9

Grass Dry 63.9 81.2 56.0 60.2 62.7 64.7
Wet 83.0 113.9 113.9 113.9 106.1 100.1

Liu et al. (2005) Alaska
Grass

W m−2
All 16.1 16.4 16.8 16.8 16.8 16.8

DBT All 22.5 13.7 13.7 14.0 14.0 14.1
ENF All 23.9 18.0 18.0 18.4 18.4 18.4
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Figure B.1: The fraction of the CLM5.0 grid cells covered by (a) forest, (b) open land, (c) bare soil,
and (d) shrubland.
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Figure B.2: Aboveground biomass averaged over (a) all needleleaf plant functional types (PFTs),
(b) all broadleaf evergreen PFTs, (c) all broadleaf deciduous PFTs, and (d) all tree PFTs.

Table B.1: Comparison of AboveGround Biomass (AGB) [kg m−3] and diurnal range of the
Biomass Heat Flux (BHF) [W m−2] in in-situ observations and the CLM -BHS simulation. The
months during which measurements were made go from January (1) to December (12). Values
marked with a asterisk were estimated by reading from graphs displaying the diurnal cycle of
biomass heat fluxes. For some studies the respective plant functional type was not available at the
location of the observational study. Therefore, the values of 1temperate broadleaf evergreen forest,
2tropical broadleaf evergreen forest, 3 tropical broadleaf evergreen forest, and 4temperate needleleaf
evergreen forest at 38.25◦ N/122.25◦W were used instead when comparing to the observational
studies of Haverd et al. (2007), Silberstein et al. (2001), Meesters and Vugts (1996), and Garai et al.
(2010), respectively.

Study Lat. Lon. Months Forest type Observations Model
AGB Range BHF AGB Range BHF

Kilinc et al. (2012) 37.25◦ S 145.25◦ E

1, 2, 12

Broadleaf evergreen 112.5

43.0*

26.2

55.7
3, 4, 5 28.0* 47.6
6, 7, 8 22.0* 38.6
9, 10, 11 35.0* 49.1

Haverd et al. (2007)1 35.75◦ S 148.25◦ E 3 Broadleaf deciduous 66.0 105* 32.9 68.3

Silberstein et al. (2001)2 32.75◦ S 116.25◦ E 3 Broadleaf deciduous 37.8 125* 33.4 66.6
10 115* 56.5

Meesters and Vugts (1996)1 17.75◦ S 177.25◦ E 8 Needle (plant.) 18.4 54.0* 76.3 63.8

Moore and Fisch (1986) 2.75◦ S 59.75◦W 5, 6, 7, 8 Broadleaf evergreen 60.3 45.0* 58.8 76.2

Michiles and Gielow (2008) 2.75◦ S 60.25◦W 4 Broadleaf evergreen 66.8 45.0* 60.0 62.3
8 53.0* 79.1

Garai et al. (2010)3 38.25◦ N 121.75◦W 6 Broadleaf deciduous 7.2 17.8* 9.2 33.1

Oliphant et al. (2004) 39.25◦ N 86.25◦W all Broadleaf deciduous 19.5 24.8* 35.5 46.2

Burns et al. (2015) 40.25◦ N 105.75◦W 5, 6, 7, 8, 9 Needleleaf evergreen ? 120 4.0 25.0

McCaughey and Saxton (1988) 45.75◦ N 77.25◦W 5, 6, 7, 8 Mixed forest 20.9 17.5* 32.3 53.0

Lindroth et al. (2010) 60.25◦ N 17.25◦ E 6, 7 Needleleaf evergreen 43.4 60.0* 53.5 55.8
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Figure B.3: As Fig. 3.3 but LST during boreal summer (JJA).

Figure B.4: Temperature change due to BHS averaged over the days when the atmospheric
temperature exceeded its 95% percentile in comparison to the mean temperature change over all
days for (a) 2m air temperature (T2M) during boreal winter (DJF; Fig. B.5 d - c), (b) LST during
DJF (Fig. B.6 d - c), (c) T2M during boreal summer (JJA; Fig. 3.3 d - c), and (d) LST during JJA
(Fig. B.3 d - c).
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Figure B.5: As Fig. 3.3 but for boreal winter (DJF).

Figure B.6: As Fig. 3.3 but for LST during boreal winter (DJF).
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Figure B.7: Area-weighted annual mean over different latitudinal bands of the average of the two
MODIS products (green; Li et al., 2015; Duveiller et al., 2018b), CLM -CTL (blue), and CLM -BHS
(orange) in (a) ∆LST l

max, (c) ∆LST l
min, and (e) ∆DTR

l. The black whiskers depict the range between
the two observational data sets. Panels (b), (d), and (f) display the area-weighted spatiotemporal
root-mean-squared deviation (RMSD) of CLM -CTL (blue), and CLM -BHS (orange) against the
two MODIS data sets for (b) ∆LST l

max, (d) ∆LST l
min, and (f) ∆DTR l, respectively. The numbers

below the bar indicate the size of the sample used to calculate the RMSDs and the whiskers the range
between the RMSD against MOD - Li15 and the RMSD against MOD -Du18.
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Figure B.8: As Fig. 3.6 but for ∆LST l
max.

(a) (b)

Figure B.9: As Fig. 3.8 but for boreal summer (JJA) at 60.25◦ N/17.25◦ E (location of Lindroth
et al., 2010). Panel (b) displays the fraction the BHF compensated by emitted longwave radiation
based on the monthly-averaged diurnal cycle from May to September.
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(a) (b)

Figure B.10: As Fig. B.9 bur for boreal winter (DJF) in both panels.

Figure B.11: Difference of the Diurnal Temperature Range (DTR) in GSWP3 data set (used to force
CLM5.0) minus the DTR of the MODIS LST. Forcing data where extracted at 1:30 am/pm solar time
for comparison with MODIS.
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Appendix to Chapter 4

C.1 Sensitivity of site pair analysis to selection criteria

Here, we present sensitivity tests of the site pair analysis to the selection criteria of the
site pairs, which are summarized in Table C.1. Overall, the site pair analysis is affected
by a trade-off between the necessity of obtaining large enough sample size to reduce
the influence of noise and excluding confounding factors by applying stricter selection
criteria (Fig. C.1 a). With an increasing number of site pairs the agreement between the
full GAM and the rain gauges measurements increases. Synchronously however, the
fraction of ∆P l that can be explained by other factors than LC increases, resulting in an
increasing IA between the ’no LC’ GAM and the rain gauges. The IA of the portion of
∆P l that is explained by the differences in ALr and forest fraction in the GAM exhibits
an optimum at approximately 1000 to 2000 sites.

The magnitude of the median ∆P l increases with an increasing minimum threshold
for the differences in the fractions of ALr and forest (Fig. C.1 b). However, this increasing
tendency weakens towards higher minimum thresholds, implying that ∆P l is nonlinear
and saturates for higher rates of forestation. ∆P l tends to strengthen for higher thresholds
also in Region 1, with the exception of the highest threshold, for which the robustness of
the signal disintegrates due to the small sample size (Fig. C.1 d). ∆P l also exhibits a weak
increasing tendency when relaxing other selection criteria than the fractions of ALr and
forest (Fig. C.1 c). This likely originates from the increasing influence of confounding
factors for the median ∆P l, as indicated by the higher IAs for the ’no LC’ GAM for
larger numbers of site pairs. More distinctively, the spread among the site pairs increases,
implying that relaxed selection criteria result in more noise due to other variables than
the ALr and forest fractions.

120



Sensitivity of site pair analysis to selection criteria 121

(b
)

(d
)

(c
)

(a
)

Fi
gu

re
C
.1
:
Pa

ne
l(
a)
,I
A
fo
rt
he

di
ffe
re
nt

se
le
ct
io
n
cr
ite
ri
a
in

Ta
bl
eC

.1
be
tw
ee
n
m
on
th
ly
m
ed
ia
n
∆
P
l
ov
er

th
e
fiv
e
re
gi
on
si
n
Fi
g.
4.
8
(a
)o

fr
ai
n
ga
ug
e

pa
irs

an
d
th
e
fu
ll
G
AM

(r
ed
),
th
e
co
nt
rib

ut
io
n
fro

m
th
e
di
ffe
re
nc
e
in

fo
re
st
an

d
AL

r
(o
ra
ng
e)
,a

nd
’n
o
LC

’G
AM

(b
lu
e)
.P

oi
nt
sm

ar
ke
d
wi
th

a
bl
ac
k
cr
os
s

co
rr
es
po

nd
to

sit
e
pa

ir
an

al
ys
is
pr
es
en
te
d
in

th
e
m
ai
n
pa

rt
of

th
is
stu

dy
.X

-a
xi
si
st
he

nu
m
be
ro

fs
ite

pa
irs

fo
un

d
wi
th

th
e
re
sp
ec
tiv
e
se
le
ct
io
n
cr
ite
ria

on
a

lo
ga
rit
hm

ic
sc
al
e.

Pa
ne
l(
b)
,d

ist
rib

ut
io
n
of
∆
P
l
am

on
g
ra
in

ga
ug
e
sit
e
pa

irs
fo
rd

iff
er
en
tt
hr
es
ho

ld
so

ft
he

m
in
im

um
di
ffe
re
nc
e
in

th
e
fra

ct
io
ns

of
AL

r
an

d
fo
re
st.

Pa
ne
l(
c)
,d
ist
ri
bu
tio

n
of
∆
P
l
am

on
g
ra
in

ga
ug
e
si
te
pa
irs

w
ith

di
ffe
re
nt

th
re
sh
ol
ds

fo
rs

el
ec
tio

n
cr
ite
ri
a
ot
he
rt
ha
n
th
e
m
in
im
um

di
ffe
re
nc
e
in

th
e

fra
ct
io
ns

of
AL

r
an

d
fo
re
st.

Pa
ne
l(
d)
,a

sp
an

el
(b
)b

ut
fo
rs

ite
si
n
Re

gi
on

1
on

ly
.



Uncertainty due to choice in GAM structure 122

Table C.1: Sensitivity tests for selection criteria. From left to right, identification number of
sensitivity test, number of site pairs found in respective test, minimum thresholds for difference in
fraction of ALr and forest, minimum threshold for sum of the ALr and forest fractions, as well as
maximum thresholds for distance between sites, altitude difference, difference in open water fraction,
difference in upwind open water fraction, difference in slope, difference in TRI, and difference in
annual mean upwind distance to coast. Last column, median annual mean ∆P l across all site pairs
and interquartile range of annual mean ∆P l in brackets.

ID N ∆LC Sum Dist. Alt. pct_ow uw_pct_ow Slope TRI uw_cd Median ∆P l

[%] [%] [◦] [m] [%] [%] [◦] [m] [◦] [mm/day]
1 199 30 50 0.50 15 15 15 4 2 0.20 0.14 (0.02-0.27)
2 319 40 50 0.75 25 20 20 5 3 0.25 0.17 (0.07-0.31)
3 645 25 50 0.60 20 15 15 5 3 0.25 0.15 (0.04-0.29)
4 721 30 50 0.75 25 20 20 5 3 0.25 0.17 (0.06-0.31)
5 1112 20 50 0.75 25 20 20 5 3 0.15 0.14 (0.02-0.27)
6∗ 1515 20 50 0.75 25 20 20 5 3 0.25 0.14 (0.02-0.28)
7 3242 20 40 0.75 40 20 20 8 6 0.40 0.15 (0.01-0.30)
8 3442 10 50 0.75 25 20 20 5 3 0.25 0.11 (-0.02-0.25)
9 6201 20 40 1.00 50 20 20 10 6 0.50 0.15 (0.00-0.33)
10 17053 15 40 1.00 100 20 20 12 7 0.60 0.16 (-0.01-0.38)
∗Presented in main part of study.

C.2 Uncertainty due to choice in GAM structure

The results from the GAMs, in particular ∆P rem, are sensitive to the structure of the GAM.
Here we present three additional GAMs to illustrate this sensitivity, besides the GAMs
presented in the main part of this study (Table C.2): (1) A GAM with a more flexible
pure spatial term. (2) A GAM were we removed the interaction terms of the LC-related
variables with latitude and longitude, which were sometimes insignificant according to
the ANOVA analysis. (3) A GAM, for which the wind-related predictor variables were
calculated based on trajectories that were started 200 and 300 hPa above the surface
instead of starting at the two pressure levels that produced most precipitation (but still for
the same precipitation events; Fig. C.16). The ’no LC’ GAM was also added in Table C.2
for completeness, but is not discussed here further. To quantify the spatial autocorrelation
of the residuals we compute the average Moran’s I across the months for distances below
1.5◦ (MI<1.5) and for distances from 1.5◦ to 3◦ (MI1.5−3), weighting points by one
divided by distance from the central point squared. For a comparison, the MSWEP
precipitation fields exhibit a MI<1.5 and MI1.5−3 of 0.758 and 0.326, respectively.

When increasing the flexibility of the pure spatial term the resulting GAM2 represents
the precipitation climatology of MSWEP better than GAM1 and reduces the spatial
autocorrelation of the residuals. However, the agreement of GAM2 with the site pairs is
lower than the one of GAM1, as part of ∆P l

20% becomes incorporated in the more flexible
spatial term. Looking atGAM3, it appears that its performance isweaker thanGAM1 in all
aspects considered. In particular, the spatial interaction terms of the LC-related variables
appear relevant for the conformity of the GAMs with the site pair analysis. Nevertheless,
the overall features of ∆P l

20% are similar for the individual GAMs, indicating that this
part of the precipitation signal from forestation is robust (Fig. C.2). Larger discrepancies
emerge for ∆P rem

20%, in particular regarding the strength of the signal in summer over the
central parts of Europe (Fig. C.3). Notably, the selection of the starting heights when
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calculating the wind trajectories has a distinct effect on the estimate of ∆P rem
20% (compare

GAM1 and GAM4). GAM4 even represents the precipitation climatology of MSWEP
slightly better than GAM1, even though the underlying wind trajectories are presumably
less tightly linked to the precipitation events for GAM4. Based on this argument, we
have decided to utilize the trajectories for which the starting heights were based on the
production of precipitation to generate the results presented in the main part of this
study. All things considered, the sensitivity of ∆P rem on the starting heights of the wind
trajectories certainly deserves further attention in future studies.

Table C.2: Sensitivity tests for GAM structure. First column, ID used for respective GAM followed
by changes made in comparison to GAM1, which is presented in main part of this study (see
Section 4.2.3). Columns three to seven, adjusted R2, RMSE, and IA of precipitation fields simulated
by GAMs in comparison to MSWEP as well as average MI<1.5 and MI1.5−3 of the residuals. Last
column, IA of monthly median ∆P l

20% for the five regions in Fig. 4.8 (a) between rain gauge site pairs
and GAMs.

ID Changes R2 RMSE IA MI<1.5 MI1.5−3 IAPS

GAM1 - (GAM presented in main part) 0.933 0.298 0.964 0.430 -0.0284 0.802
GAM2 k=20, sp=3 for pure spatial term instead of 15 and 5 0.942 0.279 0.969 0.407 -0.0170 0.769
GAM3 no ’prox_LCi , lat, lon’ and ’uw_pct_LCi , lat, lon’ terms 0.930 0.303 0.963 0.434 -0.0288 0.749
GAM4 Trajectories starting from 200 and 300 hPa above surface 0.936 0.293 0.966 0.417 -0.0249 - (0.80)∗
no LC Terms including prox_LCi removed 0.921 0.319 0.957 0.448 -0.0286 0.0910
∗ Not directly comparable as different trajectories affects uw_pct_opwa and uw_cd criteria in site pair selection.

C.3 Sensitivity of downwind precipitation changes to location of
forestation

As for the local effect, the location of forestation is important for downwind alterations of
precipitation. Here, we briefly discuss ∆P rem from two additional forestation scenarios
besides the European-wide 20% forestation: (1) foresting 20% of the land in areas
with an annual mean upwind coast distance (Fig. 4.5 d) less than 5◦ and (2) foresting
20% of the land in areas with an annual mean upwind coast distance exceeding 5◦
(corresponding to 557 km). This is done by recalculating the upwind LC fractions as
described in ’Estimating the theoretical effect of forestation on precipitation’ in the
Methods, if forestation only occurs in the respective regions of interest.

Forestation over areas with an average upwind coast distance of less than 5◦ explains
most of the estimated ∆P rem in winter, while forestation over areas further away from the
coast has only aminor downwind effect on precipitation (Fig. C.4 a, d, g, and j). In summer
on the other hand, forestation over the more continental regions of Europe increases
precipitation over those areas, indicating that the high ET of forests can be an important
source of moisture in continental climates (Fig. C.4 b, e, h, and k). This is consistent
with the finding that atmospheric moisture recycling in the northern mid-latitudes is
unimportant during winter but substantial during summer (Van der Ent and Savenije,
2011, ; also see Supplement C.5). It therefore appears that the downwind reduction in
winter precipitation due to forestation can be avoided by prohibiting forestation in areas
close to the coast, while still profiting from the downwind increase in precipitation during
summer. It needs to be mentioned however that forestation over the continental parts of
Europe might affect winter precipitation in regions that lie outside of our study domain.
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Figure C.2: Estimated ∆P l
20% from foresting 20% of the land surface according to GAM1 (a-c;

Fig. 4.9 (a)-() repeated for convenience), GAM2 (d-f), GAM3 (g-j), and GAM4 (j-l) in Table C.2.
Left column boreal winter, middle column boreal summer, and right column annual mean.
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Figure C.3: As Fig. C.2 but for ∆Prem
20%.
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C.4 The role of surface roughness

It was hypothesized in the main part of this study that the higher surface roughness of
forests compared to ALr is an important physical driver of the estimated precipitation
changes from forestation through altering the propagation speed of precipitating air
masses. Here, we analyze the connection of the monthly ERA5-Land (C3S, 2019) wind
speed 10m above the surface (WS) and the propagation speed of the wind trajectories (PS),
calculated from the upwind coast distance divided by the upwind coast time (see 4.2.1), to
forestation and precipitation. We use these two variables as a proxy for the local surface
roughness in the case of WS and the upwind surface roughness prior to precipitation
events in the case of PS. We present results from three additional GAMs in this section:
Two GAMs of the same structure as the GAM of the main part (Table 4.3), but with
WS and PS as the response variables instead of the MSWEP precipitation climatology.
The third GAM is composed of a number of ’s’ terms for various physical variables that
might affect precipitation, including WS and PS (Table C.3), and is fitted to the MSWEP
precipitation climatology as described in Section 4.2.3. With the latter GAM, we estimate
the change in precipitation associated with an 1m/s increase in WS by subtracting a GAM
prediction where WS was decreased by 0.5m/s from a GAM prediction where WS was
increased by 0.5m/s. Using the same procedure, we estimate the change in precipitation
following a 4m/s increase in PS.

During the winter months, the latter GAM identifies a pronounced link between
precipitation and wind speed (Fig. C.5 a and d). Higher surface wind speeds are associated
with lower precipitation, implying that rougher surfaces receive more precipitation.
According to the GAM that was fitted to WS, forestation results in a decrease of WS
during this season in most regions of the study domain, in particular in Regions 1 and 2,
where ∆P l

20% was strongest (Fig. C.6 a). Further, a faster propagation of the air masses
from the coast to the precipitation event is associated with higher amount of precipitation
during winter (Fig. C.5 d). Forestation appears to hinder the propagation of precipitation
events towards the continental regions of Europe, as indicated by the estimation reduction
in downwind PS due to forestation (Fig. C.6 d-f). This conforms with the positive ∆P rem

20%
along the southern and western coastal regions of Europe and the neutral to negative
∆P rem

20% toward the East (Fig.4.9). During summer on the other hand, the relationship
between precipitation and WS is weaker, in agreement with the less positive ∆P l

20% than
during winter. Also, we find an only minor connection of PS and precipitation, implying
that different processes such as evapotranspiration are more relevant for the estimated
∆P rem

20% during this season.
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Figure C.5: Panels (a)-(c), change in precipitation associated with a WS increase of 1m/s. Panels
(d)-(f), change in precipitation associated with a PS increase of 4m/s. Left column boreal winter,
middle column boreal summer, and right column annual mean.

Figure C.6: Panels (a)-(c), estimated local change in surface WS from foresting 20% of the land
surface in the entire study domain. Panels (d)-(f), estimated downwind change in PS from the same
forestation scenario.
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Table C.3: Terms used to construct the GAMwith potential physical drivers of precipitation. Consult
Section 4.2.3 for more information on meaning of terms and construction of GAM.

Variable(s) Type k sp Data source
alt s 10 estimated EU-DEM v1.1 (Section 4.2.1)
expo s 10 estimated EU-DEM v1.1 (Section 4.2.1)
slope s 10 estimated EU-DEM v1.1 (Section 4.2.1)
TPI s 10 estimated EU-DEM v1.1 (Section 4.2.1)
TRI s 10 estimated EU-DEM v1.1 (Section 4.2.1)
dw_hd s 10 estimated ERA5 (Section 4.2.1)
uw_cd s 10 estimated ERA5 (Section 4.2.1)
uw_hd s 10 estimated ERA5 (Section 4.2.1)
PS s 10 estimated ERA5 (Section 4.2.1)
Albedo s 10 estimated ERA5-Land
Latent heat flux s 10 estimated ERA5-Land
Sensible heat flux s 10 estimated ERA5-Land
T2M s 10 estimated ERA5-Land
ws s 10 estimated ERA5-Land
lat, lon ti 15 5 -

C.5 Moisture source diagnostic

In this supplement we apply the Lagrangian moisture source diagnostic (Sodemann
et al., 2008) to the air parcel trajectories described in Section 4.2.1 in order to inspect
the importance of the different LC types as a moisture source for precipitation. This
diagnostic attributes moisture uptake along a Lagrangian trajectory to a precipitation
event at the end of this trajectory by tracking the specific humidity of the air parcel along
its path (for a more detailed description check Sodemann et al., 2008). We deviate from
the method as described in Sodemann et al. (2008) on three aspects: (1) We apply the
diagnostic at hourly instead of 6-hourly temporal resolution. (2) We remove the threshold
for the minimal change in specific humidity for a moisture uptake to be identified i.e,
any change in specific humidity is treated. (3) We do not check whether an identified
moisture uptake occurred within the planetary boundary layer, as was done in a follow-up
study using the same diagnostic (Aemisegger et al., 2014). Ultimately, the diagnostic
retrieves the fraction of moisture provided from each point the trajectory overpassed to
the final precipitation event. We then divide the fraction of the moisture provided by
each point into fractions from the different LCs proportionally to the CLC fractions at
this point. As a result, it can be quantified for each trajectory, which fraction of the final
precipitation event was supplied by each LC class, by summing the fractions contributed
by the individual LC types along the trajectory. These fractions are then converted into
contributions (in mm/h) by multiplying the fractions with the precipitation rate at the end
of the trajectory. Finally, we calculate the median contribution from each LC class for
each location and month.
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The moisture source diagnostic reveals that the moisture supply for precipitation is
fundamentally different between summer and winter. During winter, the vast majority
water vapour originates from open water (Fig. C.7 a). Along the coasts, both ALr and
forests provide hardly any moisture for precipitation (Fig. C.7 c and e), indicating that
the downwind precipitation increase due to forestation in those regions (Fig. 4.9 d and
Fig. 4.10 d) is rather the result of altered atmospheric dynamics than an alteration in
moisture supply. On the other hand, reduced downwind precipitation due to forestation in
Central Europe and Scandinavia is at least partly explained by reduced moisture supply for
precipitation following forestation (Fig. C.7 g). During summer, the contribution of open
water to precipitation declines sharply moving away from the coast, which exemplifies
the importance of moisture supply from land during this season (Fig. C.7 b). Both ALr
and forest contribute over-proportionally to precipitation in comparison to the upwind LC
fractions associated with these LCs (Fig. C.7 d and f). However, this over-proportionality
is more pronounced for forest, indicating that increased ET over forests in comparison to
ALr can explain the remote increase in precipitation following forestation that is found
in the main part of this study (Fig. 4.9 e and Fig. 4.10 e).

While the results from the moisture source diagnostic conform overall with the ∆P rem

from the main part of this study, there are some limitations to this analysis. Firstly, the
moisture source diagnostic cannot capture mechanisms other than moisture supply, such
as slowing down the propagation of precipitating air masses or preferential triggering
of convection over a certain land cover. This is most obvious in coastal regions during
winter, where moisture contributions from ALr and forest can clearly not explain the
remote precipitation increase following forestation in those areas. Secondly, we assume
that the moisture uptake at a certain position is originating from the different LC types
proportionally to their fractional coverage, which is an oversimplification. Finally, it
cannot account for local modifications in precipitation by specific LC types. Given
our results of locally increased precipitation over forests in comparison to ALr , an
underestimation of the moisture supply from forests appears likely, as part of their
moisture supply is compensated by increased precipitation over forests, which leads to a
reduction of the specific humidity.
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C.6 Appendix figures and tables

(a)

(c)

(b)

(d)

Figure C.8: Changes in ALr and forest between 1990 and 2018. Panel (a), spatial map of change
in ALr fraction according to CLC and panel (b) histogram of these changes. Panels (c) and (d) the
same for the forest fraction. Note that fewer countries were included in CLC of 1990 resulting in
missing data for some areas.
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Figure C.9: The median (black line), interquartile range (coloured shading), and range between
10th and 90th percentile (grey shading) ∆P l in the rain gauge data sets as a fraction of the
precipitation at the site with more ALr over the five regions in Fig. 4.8 (a).
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Figure C.10: Location of the GSDR (purple) and GHCN (orange) rain gauge stations included in
the site pair analysis.
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Figure C.12: As Fig. 4.11 but for RCP8.5.
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Ppred = 0.36 + 0.83*Pobs (N = 70284), R = 0.84, 6 = 0.84

Ppred = 0.57 + 0.71*Pobs (N = 70284), R = 0.83, 6 = 0.82
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Figure C.14: Comparison of monthly precipitation climatologies between the rain gauge data and
original MSWEP precipitation climatology at the respective locations (green dots) and the GAM fit
of MSWEP (orange dots). Black, green, and red lines show the 1:1 line, a linear fit of the original
MSWEP data, and a linear fit of the GAM data, respectively. On top is shown the formula of the
linear fit, the Pearson correlation coefficient, and the IA.

Figure C.15: Residuals of GAM-modeled precipitation fields in January (a) and July (c). To the
right the residuals as a fraction of the precipitation climatology in MSWEP in January (b) and July
(d).
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Figure C.16: Histogram of the two vertical levels in ERA5 reanalysis data that produced most
precipitation. Blue bars boreal winter (DJF) and red bars boreal summer (JJA). X-axis is pressure
above the surface pressure.

Figure C.17: Area-weighted semivariogram of the GAM residuals in January (blue) and July
(orange).



List of symbols and abbreviations

Symbol/Abbr. Long name/description [unit]
α Albedo [ ]
βt Soil moisture stress function for photosynthesis and vegetation tran-

spiration in CLM [ ]
∆α l Local albedo change due to forestation [ ]
∆DTRl Local diurnal temperature range change due to forestation [K]
∆ET l Local ET change due to forestation [mm/day]
∆LST l Local land surface temperature change due to forestation [K]
∆LST l

avg Daily average local land surface temperature change due to forestation
[K]

∆LST l
max Daily maximum land surface temperature change due to forestation

[K]
∆LST l

min Daily minimum local land surface temperature change due to foresta-
tion [K]

∆LSTrem Remote land surface temperature change due to forestation [K]
∆P l Local precipitation difference of sites with more forest minus site

with more ALr [mm/day]
∆P l

20% Local change in precipitation due to foresting 20% rainfed agricul-
tural land [mm/day]

∆P l
ref Local change in precipitation due to realistic reforestation scenario

[mm/day]
∆P rem

20% Downwind change in precipitation due to foresting 20% rainfed
agricultural land [mm/day]

∆P rem
20% Downwind change in precipitation due to realistic reforestation sce-

nario [mm/day]
∆T2Ml Local 2m temperature change due to forestation [K]
∆Xl Local change in variable X due to biogeophysical effects of LCC
∆Xrem Remote change in variable X due to biogeophysical effects of LCC
∆Xtot Total change in variable X due to biogeophysical effects of LCC
AGB Aboveground biomass [kg m−2]
ALr Rainfed agricultural land
ALB Aboveground leaf biomass [kg m−2]
ANOVA Analysis of variance
ASB Aboveground stem biomass [kg m−2]
alt Altitude [m]
BDT Deciduous broadleaf tree
BET Evergreen broadleaf tree
BHF Biomass heat flux [W m−2]
BHS Biomass heat storage

139
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BTF Broadleaf tree fraction [%]
CESM Community Earth System Model
CLC CORINE Land Cover 2000
CLM Community Land Model
CMIP5 Coupled Model Intercomparison Project Phase 5
DJF December/January/February (boreal winter)
DTR Diurnal temperature range [k]
dw_hd Downwind height difference [m]
ESM Earth system model
ET Evapotranspiration [mm/day]
expo Exposition [◦ from North]
FAO Food and Agriculture Organization of the United Nations
frad Fraction of biomass heat flux that is compensated by decreased/in-

creased emission of longwave radiation by the land surface [ ]
fREML Fast restricted maximum likelihood method
GAM Generalized additive model
GCM General circulation model
GDAL Geospatial Data Abstraction software Library 2019
GETA Global Evapotranspiration Assembly
GHCN Global Historical Climatology Network
GHG Greenhouse gas
GLEAM Global Land Evaporation Amsterdam Model
GMIA5 Global Map of Irrigation Areas version 5
GSDR Global Sub-Daily Rainfall Dataset
GSWP3 Global Soil Wetness Project
IA Index of agreement
IPCC Intergovernmental Panel on Climate Change
JJA June/July/August (boreal summer)
k Maximum number of nodes (in a smooth/spline)
LAGRANTO Lagrangian Analysis Tool
LC Land cover
LCC Land cover change
LU Land use
LUC Land use change
LUCAS Land Use & Climate Across Scales (model intercomparison project)
LUCID Land-use and Climate, Identification of Robust Impacts (model inter-

comparison project)
LULCC Land use and land cover change
LSM Land surface model
LST Land surface temperature [K]
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mgcv Mixed GAM Computation Vehicle with Automatic Smoothness Esti-
mation

MI Moran’s I [ ]
MODIS Moderate Resolution Imaging Spectroradiometer
MSWEP Multi-Source Weighted-Ensemble Precipitation version 2.2
NDT Deciduous needleleaf tree
NET Evergreen needleleaf tree
P Precipitation [mm/day]
pct_LCi Fraction of land cover i [%]
PFT Plant functional type
prox_LCi Proximity fraction of land cover i [%]
PS Propagation speed of wind trajectories [m/s]
RCM Regional climate model
RMSD Root mean squared deviation
TPI Topographic position index [m]
TRI Terrain ruggedness index [m]
s Thin plate regression spline
SEVIRI Spinning Enhanced Visible and Infrared Imager
sp Smoothing parameter
T2M 2m air temperature [K]
ti Tensor product smooth
uw_cd Upwind distance to coast [◦ from coast]
uw_ct Upwind time to coast [h]
uw_hd Upwind height difference [m]
uw_pct_LCi Upwind fraction of land cover i [%]
Vcmax Maximum rate of carboxylation [µmol m−2 s−1]
WRPM World Reforestation Potential Map
WS Wind speed 10m above surface [m/s]
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