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Abstract

Autonomous driving and highly automated manufacturing processes are only two examples for
rapidly increasing system complexity. At the same time, almost unlimited connectivity produces
never before seen amounts of data. As a consequence, the spotlight of control community turns
more and more to data-driven approaches. Data-enabled Predictive Control (DeePC) is such an
approach. Built on behavioural systems theory, it refers to Willems’ Fundamental Lemma and
replaces the parametric state-space model at the core of the Model Predictive Control framework
by data trajectories. While benefiting from advantages of the MPC framework, like including safety
constraints, DeePC is purely based on measured data and independent of any parametric system
model. Unfortunately, the mathematical foundations of DeePC are strongly tied to linear time-
invariant systems. Hence, challenges arise, when applying DeePC to nonlinear systems. Within
this thesis, we explore nonlinear extensions of DeePC and derive heuristics for its hyperparameters
by means of simulation. Using these insights, we step into the real world and use DeePC for the
control of a Menzi Muck M545 12 t walking excavator. It is the first time, that DeePC is successfully
applied to a strongly nonlinear real world mechanical system of such dimensions. After serving a
proof of concept, we process an experimental study, and investigate DeePC’s performance on the
real world machine in terms of tracking accuracy and robustness.
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Nomenclature

Symbols
ϕ angle [rad]
ϑ angle [rad]
B behaviour of a system [−]
H Hankel matrix [−]
L dynamical system [−]
λg penalty on norm of decision vector [−]
λy penalty on norm of slack variable [−]
λu penalty on norm of input slew rate [−]
λa penalty on norm of acceleration [−]
a acceleration [ms2 ]
A system matrix [−]
B input matrix [−]
C output matrix [−]
d damping [Nm · s]
D feedthrough matrix [−]
F external force [N ]
gz gravitational constant [N/kg]
g decision vector [−]
K Kinetic Energy [J ]
L Lagrange function [−]
m mass [kg]
M mass [kg]
N prediction horizon [−]
l length [m]
Q output cost matrix [−]
R input cost matrix [−]
Rf Rayleigh dissipation function [−]
t time [s]
T trajectory length [Nm]
u input vector [−]
U input matrix [−]
V Potential Energy [J ]
x state vector [−]
y output vector [−]
Y output matrix [−]
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Indicies
a accelerations
avg average
cos cosinus
d discretized
delay delay
f future
g decision vector
ini initial
ISE initial state estimation
max maximum
obj objective
p past
prec precision
sin sinus
solve solve
tr tracking reference
u inputs
y outputs

Acronyms and Abbreviations
2DOF two degrees of freedom
4DOF four degrees of freedom
DeePC Data-enabled predictive Control
ETH Eidgenössische Technische Hochschule
HEAP Hydraulic Excavator for an Autonomous Purpose
LQG Linear Quadratic Gaussian
LQR Linear Quadratic Regulation
LTI Linear time-invariant
MPC Model Predictive Control
RL Reinforcement Learning



Chapter 1

Introduction

This chapter introduces the motivation for the research about Data-enabled Predictive Control
(DeePC). Furthermore, the problem statement provides a collection of unsolved research questions
related to DeePC and its application to nonlinear systems. Following up on the problem statement,
the last sub-chapter highlights the contributions achieved within the scope of this thesis.

1.1 Motivation
In the recent decade, the topics of automation and big data are ubiquitous. Autonomous vehicles
change the way we experience mobility [19], highly automated manufacturing processes reach new
levels of productivity [54], and almost unlimited connectivity leads to never before seen amounts
of data [18]. In the context of control engineering, this means that systems become more complex.
At the same time, the increased availability and accessibility of data is an additional asset for the
development of control algorithms [32]. As a consequence of these two trends, the control com-
munity gets more and more involved in the development of data-driven approaches. Data-driven
approaches allow independence from parametric models, which is particularly beneficial when first-
principle models are not obtainable or model derivation is too time-consuming and costly due to
system complexity [20].
In 2019, a research group around F. Dörfler and J. Lygeros at the Automatic Control Laboratory
of ETH Zürich presented the novel DeePC algorithm. As illustrated in [7], [8], and [21], DeePC
appears to be a promising data-driven solution to several challenges, including the task of reference
tracking. Reference tracking is a fundamental task in control engineering and spans a wide range
of applications like unmanned aerial vehicle control [43], precision manufacturing [60], as well as
intelligent construction sites [37] [45] [56].
Motivated by the environment of industry 4.0 and automated construction sites, this thesis inves-
tigates the performance of DeePC for the task of reference tracking on the use cases of a simulated
2-link robotic arm, as well as a real world Menzi Muck M545 12 t excavator.
Within this thesis, we first introduce the experimental setup in Chapter 2. Consecutively, in Chap-
ter 3, we outline representative examples for model-based and data-driven control approaches in
the context of robotic reference tracking. Referring to this literature review, we bring DeePC into
line with the current state of the art. Focusing on DeePC, in Chapter 4, we explain the mathemat-
ical preliminaries, introduce the DeePC algorithm, and apply it to the simulation of a linearized
system. In Chapter 5, we enter the nonlinear domain and refer to a simulation of a two-link robotic
arm and a 12 t excavator, in order to derive heuristics for the hyperparameters of DeepC when
applied to nonlinear systems. Using the insights from simulation, we then apply DeePC to a real
world excavator. It is the first time that DeePC is used to control a mechanical system of such
dimensions. Hence, in Chapter 6, we provide a proof of concept for the application of DeePC to
strongly nonlinear mechanical systems. In the end, Chapter 7 summarizes the contents of this
thesis, concludes on the key findings, and provides ideas for future research related to DeePC.

1



Chapter 1. Introduction 2

1.2 Problem Statement
The DeePC algorithm is based on mathematical preliminaries, which are valid for linear time-
invariant (LTI) systems. Besides others, DeePC refers to the so-called Fundamental Lemma,
which states that the behaviour of a LTI system can be fully described by data trajectories.
Hence, DeePC sets up on this Lemma and is able to represent an algorithm, which is purely based
on data and independent of any parametric system model. While providing certain guarantees
for LTI systems, challenges emerge when being confronted with nonlinear systems. As it is not
possible to refer back to the underlying concepts, there are several open points about DeePC
and its behaviour when being applied to nonlinear systems. In the nonlinear domain, it is not
finally clarified how data collection influences the behaviour of the DeePC algorithm and how to
quantify the suitability of data for the purposes of the DeePC algorithm. Furthermore, DeePC
introduces several hyperparameters used for, e.g., regularization. These hyperparameters need
further investigation in order to outline their influence on the algorithm and their relation amongst
each other, particularly for DeePC being applied to real world systems. For real world systems,
the impact of nonlinearity becomes crucial. Additionally to the nonlinearity, it needs clarification
on how well the DeePC algorithm copes with noise, time delays and other real world symptoms.
Hence, a proof of concept for DeePC applied to a strongly nonlinear system is necessary.

1.3 Contribution
Within this thesis, we outline the evolution of the DeePC algorithm from a simulated LTI system
to a real-world application on a strongly nonlinear system. On the journey to controlling a real
world 12 t excavator by DeePC, the three main contributions within this thesis are:

• We confirm feasibility of applying DeePC to strongly nonlinear real world systems, by pro-
viding a proof of concept built on the use case of a Menzi Muck M545 excavator. It is the
first time that DeePC is successfully applied to a mechanical real world machine of such
dimensions and complexity.

• By incorporating a DeePC controller to the M545 excavator, we grant access to an ideal
testing environment for future research. Being able to take recourse to a real world system
might be a major advantage for the further development of the still young DeePC algorithm.

• We use simulations to derive heuristics for the hyperparameters of DeePC, and confirm these
heuristics on the real machine by processing an experimental study. Furthermore, we provide
a routine for efficient hyperparameter tuning.

By serving the proof of concept for a real nonlinear system, we path the way for testing DeePC on
further real world systems. Additionally, we can refer to the experimental study in order to assess
DeePC’s capabilities when facing noise and time delays.



Chapter 2

Experimental Setup

This chapter introduces the experimental setup of this thesis consisting of a 2-link robotic arm
and a Menzi Muck M545 excavator. We develop a python-embedded simulation of a 2-link robotic
arm, which is then used in two versions. First, a linearized version of the 2-link helps to investigate
DeePC when applied to a basic linear system. Second, since the 2-link can be interpreted as a
simplification of the M545 excavator arm, a nonlinear version is used as an ideal starting point for
investigations in the nonlinear domain.
Compared to the 2-link, the Menzi Muck M545 excavator is a drastically more complex system. For
the M545, two high-fidelity simulations are provided, as well as the physical real world machine.
The physical excavator ultimately serves as an exemplary proof of concept for the application of
DeePC on a strongly nonlinear mechanical system.

2.1 2-Link Robotic Arm
For the purpose of initial investigations we refer to the example of a 2-link robotic arm. This setup
allows us to derive a linearized version of it and is well-described in literature, which makes it an
ideal starting point for our experiments. The simulation of the robotic arm developed within the
scope of this thesis consists of two links and two damped joints. The user can apply a torque to
each joint individually. Figure 2.1 illustrates the system schematically, while equations (2.1) - (2.4)
describe the kinematics of the system.

Figure 2.1: Schematic illustration of the two-link robotic arm.

x1 = l1 · sin(ϑ) (2.1)

x2 = x1 + l2 · sin(ϕ) (2.2)

y1 = −l1 · cos(ϑ) (2.3)

3



Chapter 2. Experimental Setup 4

y2 = y1 − l2 · cos(ϕ) (2.4)

The trigonometric functions are linearized via Taylor series approximation under the assumption
of small angles [48] and described by equations (2.5) - (2.9).

sin(ϑ) = ϑ (2.5)

sin(ϕ) = ϕ (2.6)

cos(ϑ) = 1− ϑ2/2 (2.7)

cos(ϕ) = 1− ϕ2/2 (2.8)

cos(ϕ− ϑ) = 1− (ϕ2 − ϑ2)/2 ≈ 1 (2.9)

For the derivation of the equations describing the linearized 2-link we use the Euler-Lagrangian-
Method extended by an additional term representing the Rayleigh dissipation function. The La-
grangian term L is defined as the difference of kinetic energyK and potential energy V as illustrated
in (2.10). A distinction between the two degrees of freedom ϑ and ϕ leads to one differential equa-
tion each, defined in (2.11) and (2.12), where Rf represents the Rayleigh dissipation function and
F is an external force.

L = K − V (2.10)

d

dt

(
∂L

∂ϑ̇

)
− ∂L

∂ϑ
+
∂Rf

∂ϑ̇
= Fϑ (2.11)

d

dt

(
∂L

∂ϕ̇

)
− ∂L

∂ϕ
+
∂Rf

∂ϕ̇
= Fϕ (2.12)

The system’s kinetic and potential energy as well as the Rayleigh dissipation function are defined
in (2.13) - (2.16).

K =
1

2
(Ml21ϑ̇

2 +m2l
2
1ϕ̇

2) +m2l1l2ϕ̇ϑ̇ (2.13)

V = Mgzl1
ϑ2

2
+m2gzl2

ϕ2

2
(2.14)

Rf =
1

2
(d1ϑ̇

2 + d2ϕ̇
2) (2.15)

M = m1 +m2 (2.16)

The previously introduced equations followed by mathematical operations allow the derivation of
the system’s second-order differential equations of motion, (2.17) and (2.18), describing the two
degrees of freedom ϑ and ϕ.

ϑ̈ =
m2

m1

gz
l1
ϕ+

d2
m1l1l2

ϕ̇− 1

m1l1l2
Fϕ −

Mgz
m1l1

ϑ− d1
m1l21

ϑ̇+
1

m1l21
Fϑ (2.17)

ϕ̈ =
M

m1

gz
l2
ϑ+

d1
m1l1l2

ϑ̇− 1

m1l1l2
Fϑ −

Mgz
m1l2

ϕ− Md2
m1m2l22

ϕ̇+
M

m1m2l22
Fϕ (2.18)

Using equations (2.17) and (2.18), we can now represent the linearized 2-link (point of linearization:
ϑ = 0, ϕ = 0) as continuous time-invariant state-space representation of the form

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(2.19)
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where

x(t) =


ϑ(t)

ϑ̇(t)
ϕ(t)
ϕ̇(t)

 , u(t) =

(
Fϑ(t)
Fϕ(t)

)
, (2.20)

A =


0 1 0 0

−Mgz
m1l1

− d1

m1l21

m2gz
m1l1

d2

m1l1l2

0 0 0 1
Mgz
m1l2

d1

m1l1l2
−Mgz

m1l2
− Md2

m1m2l22

 , (2.21)

B =


0 0
1

m1l21
− 1

m1l1l2

0 0
− 1

m1l1l2
M

m1m2l22

 , (2.22)

C =

[
1 0
0 1

]
, (2.23)

D =

[
0 0
0 0

]
. (2.24)

Finally, by discretizing the state-space representation and the related matrices, we derive the
discrete time-invariant state-space representation of the form

x(k + 1) = Adx(k) +Bdu(k)

y(t) = Cdx(k) +Ddu(k)
(2.25)

which is then implemented and used for the simulation of the linearized 2-link robotic arm.

At the same time, without applying a linearization, we use the introduced equations to derive the
equations of motion for the nonlinear state-space representation of the 2-link robotic arm. For
simulation, we use the basic nonlinear state-space representation

ẋ = f(t, x(t), u(t))

y(t) = x(t)
(2.26)

where

x(t) =


ϑ(t)

ϑ̇(t)
ϕ(t)
ϕ̇(t)

 , u(t) =

(
Fϑ(t)
Fϕ(t)

)
, (2.27)

f(t, x(t), u(t)) =



ϑ̇

(m2 +m1(1− z2cos))−1 · [−m2zsinzcosϑ̇
2

+m2gzzcossin(ϕ) + d2zcosϕ̇
l1l2

− zcosFϕ

l1l2

−m2l2zsinϕ̇
2

l1
− gzMsin(ϑ)

l1
d1ϑ̇
l21

+ Fϑ

l21
]

ϕ̇

(m1 +m2(1− z2cos))−1 · [m2zsinϕ̇
2+

gzMzcossin(ϑ)
l2

+ d1zcosϑ̇
l1l2

− zcosFϑ

l1l2
+ Ml1zsinϑ̇

2

l2

− gzMsin(ϕ)
l1

− d2Mϕ̇
m2l22

+
MFϕ

m2l22
]



, (2.28)

zcos = cos(ϑ− ϕ),

zsin = sin(ϑ− ϕ).
(2.29)
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2.2 Menzi Muck M545 Excavator
The second experimental setup used within this thesis is a Menzi Muck M545 excavator provided
by Robotic Systems Lab of ETH Zurich within the HEAP [41] project. Advancing from the two-
link robotic arm, the M545 allows us to do research on a comparable system, while significantly
increasing complexity. Controlling the arm of this 12 t walking excavator serves as use case for a
proof-of-concept of the DeePC control algorithm on a strongly nonlinear mechanical system.
The arm of the M545 has four joints. Three of them (boom, dipper, shovel) are revolute joints,

while the telescope joint is a linear one. For controlling the arm, we apply velocity inputs at each
joint, which are then converted to valve set points by an additional low-level controller (see Section
6.1). We use a coordinate system oriented on the cabin for our research. Figure 2.2 shows the
excavator and illustrates the links as well as the coordinate system.
Besides the non-linearity, a time delay between control command and actuation due to the hy-
draulics of the system represents a further challenge when controlling the M545. Depending on
operating point and moving direction, the time delay can be up to 0.7 s [11]. Additionally, one
further point to take into account when applying DeePC to the M545, is the increased dimension
of the system. As a standard industrial robot is able to operate a load of roughly 150 kg, the M545
can handle a load of 3000 kg [25]. This highlights the scale of the occurring torques and moments of
inertia when operating this system and outlines the importance of an accurate and smooth control.
The M545 allows us to test several different setups by freezing joints. For the experiments within
this thesis, we mostly control boom and dipper joint for the task of reference tracking, and fix the
shovel and telescope joints. Nevertheless, we use the shovel and telescope joints to derive different
versions of the system by varying the fixed shovel angle and telescope stroke, respectively.
A major help on the way to applying DeePC on the M545 are two high-fidelity simulations of
the excavator. The simulations are based on RaiSim/RaiSimPY (see Appendix A) and are a very
accurate representation of the real-world system. Their main difference is, besides the program-
ming language, the way of controlling the excavator arm. For the python-embedded simulation we
control the joint torques. In contrast, we use the joint velocities as control inputs in the C++-
embedded simulation. Both simulations provide an ideal testing environment, providing insights
not only on tracking accuracy, but system oscillations as well as joint, contact and wheel forces.
Despite their very advanced maturity level, the simulations do not cover the hydraulics-caused
time-delay between command and actuation of the real machine. Therefore, the influence of the
time-delay cannot be evaluated by means of simulation and needs to be investigated on the real

Boom

Dipper

Telescope

Shovel

Figure 2.2: Menzi Muck M545 12 t walking excavator
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Figure 2.3: High-fidelity simulation of the M545. The arrows indicate the wheel forces and therefore
provide a good indication for system oscillations due to to inappropriate sequences of control inputs.

machine. Figure 2.3 illustrates the simulated M545 excavator. For the the implementation of
DeePC, we measure the following data of the excavator:

• Generalized angles of boom, dipper, telescope, and shovel joint

• x-, and z-coordinate of the shovel contact point

• Inputs at boom, dipper, telescope, and shovel joint in the form of torque or velocity commands



Chapter 3

State of the Art

This chapter provides insights on control approaches used for the task of reference tracking and
robotic pose estimation. To structure the vast amount of literature, we distinguish between model-
based and data-driven approaches. We illustrate both approaches by an exemplary control frame-
work each. We highlight Model Predictive Control (MPC) for model-based approaches and choose
Reinforcement Learning (RL) as an representative for data-driven approaches. We refer to these
two methods, since literature outlines them as suitable methods for the task of reference tracking
on the 2-link robotic arm as well as on the M545 excavator. Furthermore, we use the insights from
the literature review to bring DeePC into line with the current state of the art.

3.1 From model-based to data-driven: Control Approaches
for Reference Tracking and robotic Pose Estimation

The tasks of reference tracking and pose estimation are traditional challenges in control engineering.
With the rise of robotics [47], these two tasks were moved to the spotlight of control engineering
and gained massive attention. Hence, the control community proposes a large amount of solutions,
covering rather traditional model-based approaches, as well as new data-driven methods. In the
following section, we outline their application to robotics on the example of MPC and RL, and
illustrate the most relevant advantages as well as disadvantages of the two frameworks.

Model-based Approaches

As an example for model-based approaches, we highlight Model Predictive Control. It is a widely
celebrated algorithm for the task of reference tracking. The opportunity to include safety con-
straints in control design is a major reason for the popularity of MPC. Furthermore, MPC is a
popular choice as it allows to be adjusted more easily for robustness and carries over most of its
attractions to nonlinear systems [17]. An introduction to nonlinear MPC is provided in [15]. No
matter if linear or nonlinear MPC, at the core of the MPC algorithm, there is an optimization
problem (see Equation (4.2)).
As already indicated by the name Model Predictive Control, the MPC optimization problem relies
on a parametric system model. This model is commonly expressed by a state-space representation
based on the system matrix A, the input matrix B, the output matrix C, and the feedthrough
matrix D. Introducing the receding horizon principle [31], we can formulate the standard MPC
algorithm.

8
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Algorithm 1: MPC (Algorithm 1 in [7])
Input: A, B, C, D, reference trajectory r, past input/output data (u, y), constraint sets U
and Y, weighting matrices Q and R.
1) Generate state estimate x0 = x̃(t0) based on past input/output data.
2) Solve optimization problem (4.2) for (u∗0, ..., u

∗
N−1).

3) Apply input (u(t), ..., u(t+ s)) = (u∗0, ..., u
∗
s) for some s ≤ N − 1.

4) Set t to t+ s and update past input/output measurements.
5) Return to 1).

While the ability of including safety constraints is a major advantage, MPC’s dependency on a
precise model representing the system is a huge drawback. The model is needed to solve the
optimization problem stated in Equation (4.2), as well as, if there is no exact measurement of
the state, for the initial state estimate x0 = x̃(t0). Most commonly, the need for a model in the
context of MPC is covered through system identification [50], which allows to synthesize a model
based on offline observations of the system. In the context of more and more complex systems and
applications, this can become a very challenging, time-intense and therefore costly procedure [16],
which motivates research into the direction of less model-dependent control approaches.
Revisiting the idea of system identification, we direct the reader to [29] [39] [30] in order to illustrate
that there are several variations of system identification and plenty of opportunities for combining
it with control frameworks different than MPC. However, all of these approaches fall back to
a parametric system model, which might be worth avoiding due to the above outlined reasons.
Furthermore, besides the major drawback of dependency on a parametric model, non-parametric
learning approaches like Gaussian Processes show the ability to outperform parametric models like
illustrated in [44].

Data-driven Approaches

We present reinforcement learning as an example for data-driven approaches. Nowadays, RL is
a popular non-parametric learning approach. In general, it is a framework for the problem of
learning from interaction in order to achieve a goal [53]. In this framework, there is the so-called
agent, which learns and decides about certain control actions. The agent itself interacts with the
environment, which basically represents everything outside the agent. Together, their ongoing
interaction is defined by the agent taking actions and the environment providing feedback. This
means that the environment gives back a so-called reward to the agent based on a reward function
at each discrete time step. While considering the state of the environment, the agent takes an
action according to a control policy. The control policy represents a mapping from states to
probabilities for selecting certain actions. It is updated with the purpose of serving the agent’s
ultimate goal, which is maximizing the reward given by the environment. Figure 3.1 illustrates a
general representation of the basic idea behind reinforcement learning.
Note, that this is, in terms of the outcome, exactly the opposite of what we aimed for with MPC.

Figure 3.1: Agent-environment interaction in reinforcement learning [53]
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While MPC minimizes costs defined by a cost function, reinforcement learning aims to maximize
the reward as a result of a reward function. The essential underlying difference is, that MPC decides
about its control actions based on a parametric system model, while RL chooses its control actions
based on a learned, data-driven and model-free control policy. When setting up a reinforcement
learning algorithm, major topics of interest include but are not limited to exploration-exploitation-
balance, Markov-Decision-Processes, Temporal-Difference Learning, as well as on-/offline policy
approximation. A comprehensive explanation is provided in [53].
Focusing on the application of reinforcement learning to robotics, [28] highlights that most of the
challenges of reinforcement learning are particularly present when applied to a robotics setup. By
processing an extensive survey, the authors of [28] give an excellent overview and state the most
dominant robotics-related challenges of reinforcement learning as follows:

• Dimensionality: In 1957, in [4], Bellman established the curse of dimensionality when facing
an exponential explosion of states and actions after exploring optimal control in discrete
high-dimensional spaces. In relation to reinforcement learning this means, that the amount
of data and computation grows exponentially when dimensions increase. This is quite a
problem for robotics, since most of nowadays robotic applications deal with a high number of
dimensions (consider the example of, e.g., human-like actuation [59]). As this is recognised
as a major issue, there are several proposals for handling high dimensionality by means
of, e.g., adaptive discretization [5], function approximation [53], as well as macro actions
[3]. Nevertheless, it becomes clear, that when applying reinforcement learning to robotics it
either needs consideration of some non-trivial extensions or a massive amount of data.

• Quality and quantity of real-world samples: When collecting data of the real-world robotic
application, safe exploration is a major aspect [38]. Furthermore, reproducibility is a dif-
ficult task as experimental and environmental settings can change with the supervisor not
having any influence (e.g. wind conditions). Besides that, most learning tasks need human
supervision. Additionally, varying noise levels, delays in sensing and actuation, as well as a
lack of full state information at all times lead to uncertainty and therefore decrease efficiency
of the data collection. As a consequence, collecting real-world samples is complex, time-
consuming, and costly, which makes sample efficiency, describing the ability of an algorithm
to provide reasonable performance with a reduced amount of data, an essential characteristic
of reinforcement learning algorithms [28].

• Under-modeling and model uncertainty: One way to decrease the dependency on real-world
samples is to collect data from high-fidelity simulations. In order to build such a simulation, a
model is needed. Besides the problem that such a model is not always easy to obtain or even
not available at all, for reinforcement learning, there is also the problem of under-modelling
and model uncertainty. Particularly for unstable tasks, small variations between simulation
and real-world can lead to severe consequences [53].

• Goal specification: In robotics it is often intuitive to define the reward dependent on failure
or success with the task. Anyhow, such a binary definition of a reward function most prob-
ably leads to very poor performance. As a solution, [33] introduces the concept of reward
shaping, which gives the algorithm an idea of how close it was to a successful performance
by introducing intermediate rewards [40]. Further solutions for an efficient design of reward
functions are Inverse Reinforcement Learning proposed in [46], as well as a derivation of
complex reward functions based on policy search techniques like illustrated in [61]. All in all,
the proposed solutions highlight the relation between the complexity of the reward function
and the complexity of the learning problem, and implicate that defining the reward function
for reinforcement learning in robotics can be a tedious task [28].

Considering the applications covered within this thesis, a 2-link robotic arm and a Menzi Muck
M545 excavator (see Sections 2.1, 2.2), we would like to direct the reader to [55], [10], and [11].
In [55], a method for robust model-free reinforcement learning based on multi-objective Bayesian
Optimization is presented. The authors quantify the robustness of the policy by delay margin and
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gain margin, and illustrate their findings in a sim-to-real and a pure hardware experiment on a
Furuta pendulum. In [10], the authors introduce an algorithm called Locally Weighted Projection
Regression, which allows learning the inverse kinematics of a humanoid robot. With their new
approach they try to bypass the previously mentioned challenge of high dimensionality. Third, as
we target an application of DeePC on a M545 excavator, we recommend [11]. In this paper, the
author applies reinforcement learning to the M545 excavator in order to track a circular reference.
The experiments performed in the paper serve as an orientation for the experiments on the M545
presented within this thesis.

3.2 Placing DeePC within the State of the Art
Based on the findings presented in Section 3.1, we can now summarize the positive and nega-
tive aspects of the investigated methods. For MPC, we learned that it is advantageous to have
the opportunity to include safety constraints. At the same time, it became obvious that model-
dependency should be avoided due to increasing system complexity and the related efforts and costs.
Triggered by the rising accessibility of data [32], data-driven approaches are the logical reaction to
that challenge. For the domain of data-driven approaches we highlighted reinforcement learning.
It allows control algorithms independent of a parametric model, but reveals drawbacks related to
the needed amount of data, the quality and quantity of real-world samples, under-modeling, as
well as goal specification.
Combining the insights from our literature review, we identify an ideal controller for the task of
reference tracking, which should be defined by the following characteristics:

• The controller should be able to operate the system with minimal knowledge of the system
and not rely on a parametric system model.

• The controller should be able to respect safety constraints.

• The algorithm should have a high sample efficiency in order to reduce the needed amount of
real-world samples.

• The goal specification of the algorithm should be possible in an intuitive and easy-to-realize
manner.

As indicated in [7], the developments for DeePC start at exactly that description of an ideal con-
troller for reference tracking. Since MPC is widely used and well-established, DeePC is set up on
the basic framework of MPC. Hence, it is able to include safety constraints. Following up from
that point, it becomes the next task, to replace the system model. Since reinforcement learning
needs massive amounts of data, full state feedback, and is vulnerable to noise, the authors of [7]
work in another direction on their way to the DeePC algorithm. Starting with linear systems, they
base their algorithm on the groundbreaking work of Willems and his results on the representation
of linear systems based on time series data presented in [57]. Aligned to the idea outlined in [36],
the authors orient their perspective on behavioural systems theory. Therefore, they shift their
focus from understanding a system in the form of an underlying model to rather understanding a
system in the form of its behaviour. A next ingredient of the DeePC algorithm are the guarantees
and characteristics coming with the idea of persistency of excitation addressed in [58]. In [35],
the work of [57] and [58] is continued with a special focus on data-driven simulation and control.
Related work also includes [42], presenting concepts for optimality, stability and robustness for
data driven control, as well as [34] and [13], introducing the concepts for a data-driven Linear
Quadratic Regulator (LQR) controller and a data-driven Linear Quadratic Gaussian (LQG) con-
troller, respectively.
Evolving from the work presented in the above-cited papers, DeePC represents a control approach,
which needs only minimal system knowledge, respects safety constraints, relies on drastically less
data compared to reinforcement learning, and provides an intuitive goal definition in the form of
a cost function [7]. The following Chapter 4 states the mathematical preliminaries for DeePC and
consecutively introduces the algorithm for linear systems.



Chapter 4

Preliminaries

This chapter outlines the mathematical preliminaries of DeePC. Furthermore, it introduces the
DeePC algorithm and illustrates the application of DeePC to the simulation of a linearized 2-link.
Referring to the exemplary use case, it provides a direct comparison to MPC and confirms the
theoretical guarantees provided by the mathematical preliminaries.

4.1 Mathematical Preliminaries
In this sub-chapter we provide the mathematical preliminaries for DeePC. We start with a definition
of dynamical systems. Furthermore, we introduce the concept of persistency of excitation, which is
of essential importance for DeePC. Third, we define controllability and observability of a dynamical
system. Finally, the sub-chapter culminates with the introduction of the so-called Fundamental
Lemma.

Dynamical Systems

Before introducing the definition of a dynamical system, it is important to note that all deliberations
on the DeePC algorithm are made from the perspective of behavioural systems theory. In contrast
to traditional control theory, which is based on a parametric system representation, this change in
perspective leads to a non-parametric system representation. In other words, this means that one
is not particularly interested in a system’s explicit representation, but much more in its behaviour,
meaning the subspace of the signal space in which the trajectories of the system live.
Setting up on the idea of behavioural systems theory, [7] defines a dynamical system as 3-tuple
(Z≥0, W, B).

Definition 1. A dynamical system is defined as 3-tuple (Z≥0, W, B). Z≥0 represents the discrete-
time axis, W is a signal space, and B ⊆WZ≥0 is the behaviour of the system.

As a consequence of this definition, we now define three properties of dynamical systems:

(i) (Z≥0, W, B) is linear if W is a vector space and B is a linear subspace of WZ≥0 .

(ii) (Z≥0, W, B) is time invariant if B ⊆ σB where σ: WZ≥0 →WZ≥0 is the backward time shift
defined by (σw)(t) = w(t+ 1) and σB = {σw | w ∈ B}.

(iii) (Z≥0, W, B) is complete if B is closed in the topology of pointwise convergence.

The class of systems satisfying (i) - (iii) is denoted by Lm+p withm, p ∈ Z≥0. Due to simplicity, this
thesis denotes a dynamical system within the above defined class of systems only by its behaviour
B.
Having a look at the behaviour B of the system and remembering the importance of input/output
samples, it becomes clear that the behaviour B of the system can be defined as the product space

12
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of the two sub-behaviours Bu and By. Here, Bu = (Rm)Z≥0 represents the space of the inputs
of dimension m and By ⊆ (Rp)Z≥0 the space of the outputs of dimension p. Referencing [57],
this also means for the truncated system behaviour BT covering the trajectory of finite length T ,
that any trajectory w ∈ BT is described by input/output samples written as w = col(u, y) where
col(u, y) := (uT , yT )T .

Persistency of Excitation

Persistency of Excitation is an essential aspect for the development and application of DeePC.
Basically speaking, if a signal is persistently exciting, the signal is long and rich enough to cause
an excitation of the system, which leads to a output sequence that is representative for the system
behaviour. This means that the signal spans the whole space of all trajectories the system is able
to produce [58].
For the investigation of persistency of excitation it is necessary to introduce the concept of Hankel
matrices. An introduction to Hankel matrices and their applications to system identification is
presented in [14]. The structure of a Hankel matrix HL(u) of order L for an input signal u of
length T is given by

HL(u) =


u1 u2 . . . uT−L+1

u2 u3 . . . uT−L
...

. . . . . .
...

uL . . . . . . uT

 .
Based on the arrangement of the input signal u in the form of a Hankel matrix, [7] provides a
mathematical definition for persistency of excitation.

Definition 2. Let L, T ∈ Z≥0 such that T ≥ L. The signal u = col(u1, ..., uT ) ∈ RTm is persis-
tently exciting of order L if the Hankel matrix HL(u) is of full rank.

Note already at this early point, that it is essential to ensure persistency of excitation of the used
input signal in order to reach a sufficient performance of the DeePC algorithm.

Controllability, Observability and Lag of a System

Two further mathematical preliminaries needed for the DeePC algorithm are the terms controlla-
bility and observability.
The system characteristic of controllability is a precondition for the later introduced Fundamental
Lemma. For an illustrative explanation as well as a mathematical definition, this text refers to [7].
From the perspective of behavioural systems theory, a controllable system is described as a system
for which any two trajectories can be patched together in finite time.

Definition 3. A behavioural system B ∈ Lm+p is controllable if for every T ∈ Z≥0, w1 ∈ BT ,
w2 ∈ B there exists a w ∈ B and T

′ ∈ Z≥0 such that wt = w1
t for 1 ≤ t ≤ T and wt = w2

t−T−T ′

for t ≥ T + T
′
.

Furthermore, considering the classical input/output state representation captured in B(A,B,C,D),
for our needs, the concept of observability is essential in order to identify the lag of the system.
The lag is defined by the smallest integer ` ∈ Z≥0 such that the observability matrix O`(A,C) :=
col(C,CA, ..., CAl−1) has rank n(B). Here, n(B) represents the state dimension of a minimal
representation.
Additionally to the lag, we introduce the lower triangular Toeplitz matrix TN based on (A,B,C,D)
as

TN (A,B,C,D) =


D 0 . . . 0
CB D . . . 0
...

. . . . . .
...

CAN−2B . . . CB D

 .
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Based on the lag and the lower triangular Toeplitz matrix, [7] formulates the following lemma:

Lemma 1 (Lemma 4.1 in [7]). Let B ∈ Lm+p and B(A,B,C,D) a minimal input/output/state
representation. Let Tini, N ∈ Z≥0 with Tini ≥ `(B) and col(uini, u, yini, y) ∈ BTini+N . Then there
exists a unique xini ∈ Rn(B) such that

y = ON (A,C)xini + TN (A,B,C,D)u . (4.1)

Equation (4.1) illustrates that the state y as a result of an input sequence u is unique, if there is a
sufficiently long trajectory of system data col(uini, yini). Additionally, if A,B,C,D are given, the
initial state xini can be computed.

The Fundamental Lemma

The Fundamental Lemma based on the work of J.C. Willems and his research group is the backbone
of DeePC. Referring to the previously introduced mathematical preliminaries, [35] defines the
Fundamental Lemma as follows:

Lemma 2 (Lemma 2 in [35]). Let B ∈ Lm+p be a controllable system. Let T, t ∈ Z≥0 and
w = col(u, y) ∈ B. Assume the input signal u to be persistently exciting of order t+ n(B).
Then colspan(Ht(w)) = Bt.

In other words, for linear time-invariant systems, the Fundamental Lemma proves that it is possible
to exactly represent a system’s behaviour by data trajectories without knowledge of any model.

4.2 Introduction of the DeePC Algorithm
The DeePC algorithm is an adaptation of the widely known Model Predictive Control algorithm.
The essential difference is that DeePC is not based on a parametric model. In fact, DeePC is based
on data trajectories and relies only on little system knowledge. This section outlines the evolution
and structure of the basic DeePC algorithm conceptualized for linear systems.
We start with a review of MPC in order to introduce the DeePC algorithm beginning at its
fundamentals. As illustrated in Section 3.1, for the task of reference tracking, MPC is a popular
control framework as it allows to include safety constraints. We introduce the underlying MPC
optimization problem as

min
u,x,y

N−1∑
k=0

(‖yk − rt+k‖2Q + ‖uk‖2R)

s.t. xk+1 = Axk +Buk,∀k ∈ {0, ..., N − 1},
yk = Cxk +Duk,∀k ∈ {0, ..., N − 1},
x0 = x̂(t),

uk ∈ U ,∀k ∈ {0, ..., N − 1},where U ⊆ Rm

yk ∈ Y,∀k ∈ {0, ..., N − 1},where Y ⊆ Rp.

(4.2)

where

‖yk − rt+k‖2Q = yTk Qyk − yTk Qrt+k − rTt+kQyk + rTt+kQrt+k (4.3)

and

‖uk‖2Q = uTkRuk. (4.4)

In this optimization problem, there are the decision variables u = (u0, ..., uN−1), x = (x0, ..., xN )
and y = (y0, ..., yN−1). The estimated state x̂(t) at time step t equals x(t) if the entire state is
measured. The predicted state and output at time step t + k are denoted by xk and yk with
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t ∈ Z≥0 as the time when the optimization problem should be solved. Furthermore, N ∈ Z>0 is
the prediction horizon, U the input constraint set, Y the output constraint set, and rt+k ∈ Rp

is the reference at the time step t + k. Q and R represent the output cost matrix and control
cost matrix, respectively [7]. Revising the structure of the MPC optimization problem in (4.2), it
becomes clear, that it is based on a parametric model. In this case, the model is formulated as a
state-space representation expressed via the matrices A,B,C and D.
Such a dependency on a parametric model is exactly what DeePC wants to avoid. Therefore it
replaces the parametric state-space model by data trajectories, and in order to do so it refers to
the previously introduced Fundamental Lemma (Lemma 2 in Section 4.1). Recalling the guaran-
tees brought by the Fundamental Lemma, we know that the behaviour of a linear time-invariant
system can be exactly represented via data trajectories if the Hankel matrix of the input signal
is persistently exciting of sufficient order. Assuming an input sequence ud = col(ud1, ..., udT ) and
a output sequence yd = col(yd1 , ..., ydT ) of length T ≥ (m + 1)(TiniN + n(B)) − 1 generated by a
controllable system and collected offline, the Hankel matrix H(u) needs to have rank of at least
Tini +N +n(B), where Tini ≥ `(B). After ensuring persistency of excitation of the input signal ud
by checking HTini+N (ud) for full row rank, we can split up the collected data in past and future
data sets(

Up

Uf

)
= HTini+N (ud),

(
Yp
Yf

)
= HTini+N (yd) (4.5)

where Up and Yp consist of the first Tini block rows of HTini+N (ud) and HTini+N (yd), respectively,
while Uf and Yf consist of the last N block rows of HTini+N (ud) and HTini+N (yd), respectively.
The p-denoted past data sets are used to estimate the initial state, and the f -denoted future
data sets are used to predict the future trajectories. Recalling Lemma 2, the decision vector g is
introduced for state estimation and trajectory prediction in Lemma 3.

Lemma 3 ([8]). A trajectory col(uini, u, yini, y) belongs to BTini+N if and only if there exists
g ∈ RT−Tini−N−1 such that

Up

Yp
Uf

Yf

 g =


uini
yini
u
y

 . (4.6)

Furthermore, if Tini ≥ `(B), Equation (4.1) defined in Lemma 1 provides a unique output y based
on a unique state xini ∈ Rn(B). This means, that the initial state xini is implicitly predefined by
col(uini, yini). Additionally, when considering the results presented in [35], it can be concluded
that future trajectories departing from this initial state are predictable by including the system-
generated data Up, Yp, Uf , Yf . Since Lemma 1 allows to compute unique outputs y related to inputs
u, this means for the task of reference tracking on LTI systems, that it is also possible to compute
an input u for a targeted output y matching a reference r.
Given a prediction horizon N ∈ Z>0, a reference r = (r0, r1, ...) ∈ (Rp)Z≥0, past input/output
data col(uini, yini) ∈ BTini , an output cost matrix Q ∈ Rp×p, a control cost matrix R ∈ Rm×m,
an output constraint set Y ⊆ Rp, and an input constraint set U ⊆ Rm, we can now formulate the
DeePC optimization problem as

min
g,u,y

N−1∑
k=0

(‖yk − rt+k‖2Q + ‖uk‖2R)

s.t.


Up

Yp
Uf

Yf

 g =


uini
yini
u
y


uk ∈ U ,∀k ∈ {0, ..., N − 1},
yk ∈ Y,∀k ∈ {0, ..., N − 1}.

(4.7)
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where

‖yk − rt+k‖2Q = yTk Qyk − yTk Qrt+k − rTt+kQyk + rTt+kQrt+k (4.8)

and

‖uk‖2Q = uTkRuk. (4.9)

In this optimization problem, u and y are dependent decision variables. They rely on the fixed
data matrices Uf and Yf , respectively, as well as on the independent decision vector g. Note, that
this formulation based on measured data trajectories allows us to replace the model and state
estimation in (4.2) and hence makes the optimization problem of the DeePC algorithm completely
model-free and purely based on data.
Based on the above described relations, Coulson et al. present the DeePC algorithm for linear
systems.

Algorithm 2: DeePC (Algorithm 2 in [7])
Input: col(u, y) ∈ BT , reference trajectory r ∈ RNp, past input/output data
col(uini, yini) ∈ BTini , constraint sets U and Y, weighting matrices Q and R.
1) Solve (4.7) for g∗.
2) Compute the optimal input sequence u∗ = Ufg.
3) Apply input (u(t), ..., u(t+ s)) = (u∗0, ..., u

∗
s) for some s ≤ N − 1.

4) Set t to t+ s and update uini and yini to the Tini most recent input/output measurements.
5) Return to 1).

4.3 DeePC applied to linear Systems
For an illustration of the performance of DeePC on linear systems we use the developed simulation
setup of the linearized 2-link robotic arm described in Section 2.1. We focus on the task of reference
tracking. In particular, we would like the 2-link to start from a vertical downward position and
move to a constant position as schematically illustrated in Figure 4.1. Putting DeePC and MPC
in contrast to each other, Figure 4.2 gives a high-level overview of the two approaches. DeePC
represents the system and its behaviour via data trajectories, while MPC relies on first-principle
models or another form of parametric model. This becomes also clear when having a look at the
mathematical formulation describing the system within the optimization problem. While DeePC
proposes a data-based solution (see (4.7)), MPC relies on a linear state-space formulation referring
to the previously derived system matrices (see (4.2)). Despite these fundamental differences, both
approaches lead to an identical behaviour for LTI systems.
The data collection for the DeePC algorithm is illustrated in Figure 4.3. Note, that the inputs are
completely random and therefore the trajectories represented by the angles ϑ and ϕ don’t follow
a certain scheme either. Out of the presented 25 s of data collection, we use the first 10 s of data
to build the underlying Hankel matrices for the DeePC algorithm. The block-rows of our Hankel
matrices are of size two, since we have two angles, which are stored in the output Hankel matrix,

Initial Position Reference Position

Figure 4.1: Reference tracking task for DeePC and MPC in the simulation of the linearized 2-link
robotic arm.
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Figure 4.2: Schematic comparison of DeePC and MPC.

as well as two torques, which are stored in the input Hankel matrix. Based on the input and
output Hankel matrix we can now form the data sets Up, Yp, Uf and Yf for the formulation of the
optimization problem. Solving this optimization problem in the context of Algorithm 2 provides
the tracking performance illustrated in Figure 4.4. Furthermore, Figure 4.4 also provides the result
for MPC. Having a closer look at the performance of the two algorithms, it becomes clear, that
their control behaviour is identical. Hence, the application on the linearized 2-link confirms the
theoretical guarantees provided by the Fundamental Lemma in Section 4.1. In the next chapter,
we investigate the application of DeePC to nonlinear systems.
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Figure 4.4: Performance of DeePC and MPC for the reference tracking task on the linearized 2-
link. As guaranteed by the Fundamental Lemma, they provide identical results for the simulation
of the linearized 2-link robotic arm.
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DeePC applied to nonlinear Systems

In this chapter we apply DeePC to nonlinear systems. We state DeePC-related challenges and
their underlying reasons when operating in the nonlinear domain. We also investigate solutions
to these challenges and use the simulations of a 2-link robotic arm and a M545 excavator for an
analysis of the influence of data collection and hyperparameters.

5.1 DeePC-related nonlinear Challenges and their Solutions
When applying DeePC to nonlinear systems as opposed to LTI systems, we are facing emerging
challenges. This is rooted in the fact that the previously introduced DeePC algorithm is based
on linear systems theory. Recalling the mathematical preliminaries illustrated in Section 4.1, it
becomes clear that all guarantees provided within that chapter are strongly tied to LTI systems.
As a consequence, we need to answer the following two questions:

• How far can we transfer the linear concepts of DeePC to nonlinear systems?

• At which points do we need to add extensions or change the initial algorithm?

For answering these questions, we go through the structure of the DeePC algorithm and orient
our thoughts on the topics of system representation by data, as well as extensions to the DeePC
optimization problem.

System Representation by Data

In order to properly represent system behaviour we need an input signal that is sufficiently rich and
long enough. When dealing with LTI systems we could refer to the signal property of persistence of
excitation in order to check for such a sufficiently rich and long enough signal. By identifying the
lag of the system, which is upper-bounded by n(B) according to the Cayley-Hamilton theorem, we
could formulate a Hankel matrix of full row rank of order t+n(B). Hence, we were able to refer to the
Fundamental Lemma and let our signal cover all the trajectories possible of the investigated system.
When facing nonlinear systems, there are two conditions that change. First, we cannot refer to the
lag of the system in order to determine the minimum value of Tini. Here, we need to think about
a new way of identifying the minimum length of our initial data trajectory. Second, even if we use
our input signal to build a Hankel matrix of sufficient row rank, our nonlinear system is not globally
controllable and therefore we can not rely on the guarantees provided by the Fundamental Lemma.
Previously, when operating on linear systems, superposition principle allowed the decision vector
g to linearly combine trajectories in order to describe the system behaviour in an ideal manner.
For nonlinear systems, this does not work anymore, since linear combinations of trajectories not
necessarily represent a trajectory of the nonlinear system, which results in a major challenge for
DeePC. As a consequence, we are unable to ensure that our signal covers all system trajectories
possible. On the contrary, we must assume that we do not sufficiently, in worst case even wrongly,

19
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represent the system’s behaviour due to nonlinear system’s heavy diversions of system behaviour
depending on the operating point.
In both cases, we suggest to counteract these challenges by means of more sophisticated data
collection. Therefore, we investigate the impact of quantity and quality of data in Section 5.2.1.
On the one hand, we study the influence of Hankel matrix formation and the related parameters
T , Tini, and N . On the other hand, we introduce guidelines for the qualitative assessment of data
in the context of DeePC applied to nonlinear systems.

Adaptations of the Optimization Problem

The second part of the DeePC algorithm which we investigate is about the underlying optimization
problem. We recall Equation (4.7) and note that we have a set of hard constraints as a part of the
optimization problem, making it a constrained optimization problem. When applying DeePC to a
nonlinear system, which is possibly corrupted by noise, these hard constraints would not be feasible
at all times. Hence, following the suggestion in [7], we introduce a slack variable σ on the initial
outputs yini (see (5.1)). Slack variables are a well established method for handling inequalities in
linear programming as well as in nonlinear programming [6]. While it guarantees us feasibility of
our constraints at all times, we also need to keep down the values of σ in order to achieve a precise
as possible initial state estimation resulting from Ypg = yini + σ. In order to do so, we introduce
a penalty λy on the `1-norm of σ and consider it by including it to the cost function (see (5.1)).
A second addition to the initial DeePC algorithm suggested in [7], is a regularization of the decision
vector g. For increasing the robustness of the DeePC algorithm against uncertainty, noise, and
badly-fitted data, we introduce a penalty λg on the `1-norm of g and include it to the cost function.
Like illustrated in [27], recent applications of `1-regularization in the field of, e.g., signal processing
show a positive impact on denoising and signal recovery for incomplete measurements. Using the
Wasserstein metric, [12] illustrates performance guarantees and tractable reformulations for data-
driven distributionally robust optimization. This approach also motivates the work presented in
[8], introducing a distributionally robust and chance-constrained version of the DeePC algorithm.
Additionally, a theoretical motivation and interpretation of regularization in context of the DeePC
algorithm is provided in [22].
Considering the penalty λy on the norm of the newly introduced slack variable σ, and the penalty
λg on the norm of the decision vector g, we formulate the optimization problem JDeePC of the
so-called regularized DeePC algorithm [7] as

min
g,u,y

N−1∑
k=0

(‖yk − rt+k‖2Q + ‖uk‖2R) + λg ‖g‖1 + λy ‖σ‖1

s.t.


Up

Yp
Uf

Yf

 g =


uini
yini
u
y

+


0
σ
0
0


uk ∈ U ,∀k ∈ {0, ..., N − 1},
yk ∈ Y,∀k ∈ {0, ..., N − 1},

(5.1)

where σ ∈ RTinip and λg, λy ∈ R≥0, while the other parameters, variables and sets are identical to
(4.7). Since regularization takes up an essential role when applying DeePC to nonlinear systems,
we dedicate Section 5.2.2 to the investigation of the influence of λg and λy.

5.2 Investigations of DeePC based on Simulations
As illustrated in Chapter 5.1, there are several hyperparameters as well as increased requirements
on data collection when applying DeePC to nonlinear systems. Based on the python-embedded
simulations of the 2-link robotic arm and the M545 excavator, this chapter provides heuristics
for the influence of hyperparameters and proposes guidelines for the qualitative assessment of the
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underlying data collection.
In order to assess the performance, we refer to three metrics:

• Objective value cobj : The objective value is the summed result of the cost function in the
minimization problem

cobj =

n∑
i=1

J∗DeePC(i) (5.2)

over all simulation steps i ∈ {1, ..., n}, where n represents the total number of simulation
steps per simulation.

• Precision value cprec: The precision value is the sum over all simulation steps of the time-
related cartesian distance between simulated excavator position ŷk and reference position.
The summation is normalized by the total number of simulation steps n, leading to

cprec =

∑n
i=1 ‖ŷi − ri‖

n
, (5.3)

where ŷ and r are row vectors consisting of the horizontal x-position and vertical z-position
of the shovel contact and the horizontal x-reference and the vertical z-reference, respectively.

• Average solve time per time step tsolve,avg: The average solve time per time step is the sum of
time needed for OSQP solving the Quadratic program tsolve,i at each time step i ∈ {1, ..., n}
divided by the total number of simulation steps n of each simulation.

tsolve,avg =

∑n
i=1 tsolve,i

n
(5.4)

5.2.1 The Influence of Data Fitness
Recalling the long version of the abbreviation DeePC, which is Data-enabled Predictive Control, it
is clear that data is essential for the algorithm. As previously illustrated, the minimization problem
is not based on a model, but on data trajectories. Hence, it is essential for a successful application of
the DeePC algorithm, to be aware of the significant impact of data collection. In order to describe
the suitability of data sets for the purpose of reference tracking, we introduce the term of data
fitness, which distinguishes between quantity and quality of the data. Using the idea of data fit-
ness, we provide an orientation for the identification of well-fitted and badly-fitted data collections.

Data Quantity

The parameter T defines the quantity of data for the formulation of the DeePC algorithm. Together
with the parameters Tini and N , they determine the size and form of the Hankel matrix in which
the relevant data is stored and arranged. A good indicator for the relation of T , Tini, and N is the
ratio of the length and the width of the Hankel matrix H

hr(H) =
#cols([UT

p , Y
T
p , U

T
f , Y

T
f ]T )

#rows([UT
p , Y

T
p , U

T
f , Y

T
f ]T )

(5.5)

which we define as

hru(H(u)) =
T − (Tini +N) + 1

m(Tini +N)
(5.6)

for the inputs u ∈ Rm, and

hry(H(y)) =
T − (Tini +N) + 1

p(Tini +N)
(5.7)
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for the outputs y ∈ Rp, respectively.
Based on empirical observations, we orient our investigations on hry, while hru could be subject to
further research. Figure 5.1 illustrates the influence of hry. We observe a strong deterioration of
performance for values which implicate a smaller width than length of the Hankel matrix (hr ≤ 1)
illustrated by the graph for cprec. With an increasing hr performance imporves and reaches a sweat
spot around hr = 2.5. In general, we can assume, that more data leads to more information about
the system behaviour, and therefore results in a better performance. Nevertheless, the analysis of
cprec outlines that we should respect an appropriate balance of T and Tini + N as performance
worsens for matrices with a width much higher than their length (hry ≈ 3.5). Hence, we suggest
2 ≤ hry ≤ 2.5 as an orientation when determining the dimensions of the Hankel matrix. Since
an increasing amount of data means more mathematical operations of the algorithm, the limiting
factor in context of data quantity is most often the solve time. Again, beyond choosing the right
amount of data, it is important to choose an appropriate rate of Hankel matrix length and Hankel
matrix width. Presenting tsolve,avg over hry, the lower subplot of Figure 5.1 confirms 2 ≤ hry ≤ 2.5
as a good starting point for forming the Hankel matrix also in terms of solve time.
By choosing T and following the recommendation for hry, a rough orientation for Tini and N is
provided. The detailed values for both parameters must be chosen for each system individually.
Nevertheless, if available, it is a good help to consider system properties like damping and time
delays between input and output. Recall the following: The higher the damping of a system, the
more transient the influence of the input at time step k is on the system. Hence, it is good to have
in mind, that a less-/undamped systems needs a comparatively high value, while more damped
systems allow decreasing the size of Tini and N if necessary. Even clearer is the case for time delays
between inputs and outputs of a system like occurring in electric circuits or hydraulic applications.
If such a time delay is known, we should define Tini and N as least as long as the time delay.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.25

0.50

0.75

1.00

c
p

re
c
[m

]

Influence of hry - Precision Value

cprec

1.0 1.5 2.0 2.5 3.0 3.5 4.0
hry

500

1000

t s
o

lv
e

,
a

v
g

[m
s
]

Influence of hry - Average Solve Tim e per Tim e Step

t solve, avg

Figure 5.1: cprec and tsolve,avg over hry. The plot illustrates that one should aim for a width/length-
ratio of the output Hankel matrix of at least 1.5. More precise, also in regards to solve time,
choosing 2 ≤ hry ≤ 2.5 is recommended.
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Data Quality

Besides choosing the right quantity of data, it is also essential to use data with a high quality.
In order to enable an assessment of data quality, we provide three empirically derived qualitative
guidelines. For a better illustration, we serve a visual example for each guideline. The examples
are based on the simulation of the M545 excavator with two flexible (boom, dipper) and two frozen
joints (telescope, shovel). They use the cartesian shovel position for the task of reference tracking.
The three guidelines for choosing well-fitted data sets for DeePC are:

• Operational Coverage: It can be observed that data sets, which describe the operational area
of the tracked reference, outperform data sets, which do not cover the operational spectrum.
This is intuitive as we know that the properties of nonlinear systems highly depend on the
operating point. Furthermore, it is strongly related to the needed regularization for DeePC
(investigated in Section 5.2.2). As it becomes clear at a later point, the better we cover the
operating range, the less regularization we need. Figure 5.2 illustrates the control perfor-
mance for two simulations based on almost identical data sets and equal hyperparameters.
In example A, the reference is located in an area, which is well-covered by data collection.
This leads to a superior control performance. In example B, we move the reference to an
area, without data coverage. Note, that we refer to the simulation of the excavator and that
the spacial difference of the two references already makes a difference for the related inputs
due to the high masses and related moments of inertia of the excavator. Hence, in example
B, as DeePC needs to rely on system data, which is not primarily describing the operating
area, DeePC bases the control actions on insufficient data, which leads to reduced control
performance.

• Input Smoothness: One of the most essential challenges for the DeePC algorithm is to identify
the relation between inputs and outputs. It is obvious, that this challenge becomes easier,
the less chaotic the input signal of the underlying data collection is. A chaotic signal tends
to create its excitation by being very high-frequent, noisy and nervous (Figure 5.3, example
B). In contrast, a more suitable signal creates its excitation by an appropriately varying
frequency and magnitude as well as by combining different characteristic signals (Figure
5.3, example A, a changing offset overlapped by a sinus wave with varying frequency and
marginal noise). Figure 5.3 compares two examples based on identical hyperparameters.
Their tracking performance, in terms of precision, is comparable. Nevertheless, there is a
significant difference in terms of acceleration, which can be traced back to the applied inputs.
In Example A, there is a smooth input signal provided by data collection leading to very
small accelerations when controlling the system. In Example B, there is a jerky input signal
captured by data collection leading to drastic accelerations with much higher magnitude
compared to Example A. The comparison outlines clearly that the characteristics of the
input signal provided by data collection can be recognized in control behaviour. In favour
of a smooth tracking performance, one should prefer a signal that guarantees persistency
of excitation by methodically varying its course and characteristics instead of a signal that
creates excitation by high noise-levels and extreme frequencies.

• Trajectory Recognition: Recall, that every column of the Hankel matrix is a snippet of
the underlying data collection and that by using the Hankel matrix formation of the data,
we emphasize the timely relation of the data points. For explaining the idea of trajectory
recognition we refer to Figure 5.4. Please note that it is only a very simple schematic
illustration for purposes of better understanding. For both examples we would like to follow
the reference highlighted in green. Furthermore, both examples cover exactly the same points
best-located for doing so (highlighted in red). In example A, there is only one trajectory,
which includes all the relevant points and lets us directly recognise the reference trajectory.
In example B, in order to cover the reference, we need to combine the points of three different
trajectories, which have little in common with the reference trajectory. Intuitively, we would
always choose the trajectory of example A, which is almost identical to the reference. But
let’s consider the two following theoretic aspects to confirm this intuition. First, we already
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Figure 5.2: Comparison of the influence of operational coverage. In example A, the reference is lo-
cated in an area, which is well-described by the underlying data. The related tracking performance
is precise and smooth. In example B, the reference is located in an area without data coverage.
The tracking performance clearly deteriorates, which is expressed by inconsistent and imprecise
tracking behaviour. The hyperparameters are identical for both simulations.

mentioned that linearly combining trajectories (=̂ columns of the Hankel matrix) can cause
trouble for nonlinear systems (this is strongly related to the role of λg, see Section 5.2.2).
Hence, if possible, we prefer reducing the amount of linear combinations of trajectories.
Second, by combining the trajectories we are able to cover the locations of the data points.
But we also have to mind about the related inputs. In example B, there is a completely
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Figure 5.3: Influence of signal smoothness. In example A, a smooth input signal leads to smooth
control performance. In example B, a jerky input signal leads to high accelerations of the sys-
tem. The comparison outlines that the input signal characteristics, in terms of smoothness, are
transferred to the control behaviour.

different input-output relation as it would need for following the reference, since the upper
trajectories are rather horizontal than vertical and the lower trajectory goes vertical but has
an opposing curvature. This makes it much harder for DeePC to follow the reference and
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reference trajectory

data trajectory representing a column of the Hankel matrix

Figure 5.4: Schematic illustration of the advantage of trajectory recognition within data collection.
In example A, there is a trajectory, which is a slight deviation of the targeted reference trajectory.
Schematically, it is described by four data points highlighted in red. The identical four data points
are also present in example B, represented by a combination of three trajectories, which have
little in common with the reference trajectory. Example A is preferable due to two reasons. First,
linearly combining the trajectories of the Hankel matrix in example B does not necessarily represent
the nonlinear system. Second, despite covering the same local points, the input-output relation
describing the system behaviour is completely different for the two examples. While targeting a
vertical reference, the two upper trajectories in example B move almost horizontally, which leads
to completely different inputs compared to the ones needed for following a vertical trajectory. By
neglecting the dimension of time and only focusing on location, we can not represent the underlying
physical correlation, which is particularly insufficient for the real world application on mechanical
systems like a 12 t excavator.

the negative impact might become even worse, if we start thinking about systems with time-
delays dependent on moving direction. With the help of this simple and schematic example,
we are able to highlight how advantageous it can be if we recognize certain parts of the
reference as trajectory snippets within the collected data.

5.2.2 The Influence of Hyperparameters
This sub-chapter provides an overview of the influence of the hyperparameters λg and λy.

λg - Robustness for DeePC

As announced in Section 5.1, we introduce the penalty λg on the norm of the decision vector g.
By penalizing the norm of the decision vector we improve the robustness of the DeePC algorithm
against nonlinearities, noise, and time delays. The higher λg is, the more selective is the algorithm
in terms of how many columns and how strongly these are prioritized for the representation of



Chapter 5. DeePC applied to nonlinear Systems 27

system behaviour mathematically modelled in
Up

Yp
Uf

Yf

 g =


uini
yini
u
y

+


0
σ
0
0

 . (5.8)

Recall, that every entry of the vector g is directly related to a column of our Hankel matrix, and
that every column of the Hankel matrix represents a data trajectory of length Tini +N out of the
underlying data collection of length T . Choosing λg comparatively low means for the algorithm
to consider more trajectories and balance their weighting for system representation. Choosing a
comparatively high λg makes the algorithm more selective, and therefore only refer to a small
number of columns in our Hankel matrix and prioritize them significantly. Figure 5.5 provides a
comparison between two different values for λg. Every bar within the figure represents the value of
an entry of the decision vector g. The values themselves are normalized by the maximum absolute
value of each data set. The extract is based on the same underlying data set and both setups have
exactly the same hyperparameters except λg. Furthermore, the reference is identical and the data
represents g for exactly the same time step of each simulation. Thanks to the direct comparison,
the previously explained influence of λg in terms of selectivity of the algorithm becomes clear.
For λg = 1, the algorithm considers almost every entry of g and balances the values. Visually
speaking, every peak is accompanied by an ascent and descent. In contrast, for λg = 4000, the
algorithm selects much less entries and prioritizes those clearly. Visually, this leads to many much
more isolated peaks in the lower subplot.
Intuitively, on the one hand, one would choose a rather low λg if there is a well-fitted data

set, little nonlinearity of the system, and low uncertainty due to, e.g., noise or time delays. On
the other hand, one would decide for a higher λg for badly-fitted data sets, strong nonlinearities,
and a signal heavily influenced by noise and other factors leading to uncertainty. It also helps
to rethink the difference between linear and nonlinear systems. As system behaviour of linear
systems follows the same principles at every operating point of the system, it is not necessary to
apply regularization, and choose for the best-fitting elements of g. On the contrary, making oneself
clear, that the system behaviour of nonlinear systems heavily depends on the operating point and
that the underlying data collection is most certainly not only covering that exact operating point,
it becomes the logical consequence to apply regularization, and select and prioritize the best-fitting
vector entries of g each representing a certain snippet of our data collection. Being aware of the
principle of λg, one can get a qualitative orientation by recalling the consequences of regularization
at the boundaries of a very low and a very high value for λg:

• If one chooses λg too low, then too much not relevant or wrong information about the system
behaviour is considered by DeePC. As a consequence, the algorithm is unable to provide a
precise representation of the system behaviour at the relevant operating point, which leads
to a poor control performance.

• If one chooses λg too high, then we might encounter over-regularization. This means that
the algorithm narrows down its understanding of system behaviour to a very limited number
of entries of g, and therefore loses the ability to confirm its understanding by considering
other trajectories within the Hankel matrix. For a good underlying data collection with an
increased chance of finding an ideal data trajectory this is not a problem. For a bad data
collection, this might have severe consequences, since the chosen data trajectories, although
being the best-fitting parts of the Hankel matrix, still represent the system behaviour wrongly
and mislead the DeePC algorithm.

Considering these two border cases, it becomes obvious that the trade-off when selecting λg is
about prioritizing the right information while using as diverse information as possible. Hence, the
ideal value of λg enables DeePC to find the most representative parts of our data collection in
terms of system behaviour, while backing up its system understanding by using as many parts of
the data collection as possible without considering misleading or wrong information.
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Figure 5.5: Comparison of the entries of the decision vector g depending on λg. Every bar represents
the normalized value of a column entry. The values are normalized by the maximum entry of each
data set (max(λg(1)) = 7.877; max(λg(4000)) = 0.548). For λg = 1, the algorithm takes into
account almost every entry and balances their values. For λg = 4000, the algorithm considers
significantly less entries and emphasises those, which leads to more isolated peaks in the view of
the lower subplot.

In order to quantify this qualitative understanding of the influence of λg, we refer to the previously
introduced precision value cprec. Figure 5.6 illustrates the metrics for different values of λg based
on a data set with moderate white measurement noise quantified by a signal-to-noise ratio η = 0.02.
For simulation, we define the noise-corrupted output ỹ as

ỹ(i) =

 ỹ1(i)
...

ỹp(i)

 =


y1(i) + η w1(i)

|w1(i)| |y1(i)|
...

yp(i) + η
wp(i)
|wp(i)| |yp(i)|

 ∀i ∈ {1, ..., n}, (5.9)

where w(i) ∼ N (~0, I) is white measurement noise and n is the total number of simulation steps.
In Figure 5.6 we notice a clear impact of the regularization, particularly in the beginning. While
encountering under-regularization for λg ≤ 100, we observe a zone of good control performance
around a sweet spot of λg ≈ 1000. By further increasing the value for λg, we approach the zone of
over-regularization, which can be anticipated starting from λg ≈ 5000. Using the insights of the
plot, at the point of selecting a value for λg, it is necessary to choose a value that is high enough
to achieve sufficient regularization, and a value that is low enough to avoid over-regularization.
Hence, it is necessary to iteratively converge to the optimal value located between the two zones.
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Figure 5.6: Precision value cprec over λg. In the left part of the figure, we observe improving
performance for increasing values of λg. Departing the zone of under-regularization at λg ≈ 100,
we note an area of good control behaviour around a sweet spot for λg ≈ 103. By further increasing
λg, we approach the zone of over-regularization, which we can anticipate starting at a value of
λg ≈ 5000.

λy - initial State Estimation

As a second hyperparameter we investigate the role of λy as penalty on the norm of the slack
variable σ. On the one hand, the slack variable σ is introduced to guarantee feasibility of our
constraints at all time. On the other hand, within the constraint formulation

Ypg = yini + σ (5.10)

it directly influences the initial state estimation of our system. Hence, while including the slack
variable for feasibility, it is necessary to choose a suitable value for λy. This keeps the value of the
slack variable to an appropriate dimension and therefore allows a precise initial state estimation.
Figure 5.7 provides two strongly related values dependent on λy. The graph related to the left
axis illustrates the course of an exemplary value of the `1-norm on the slack variable σ. For each
simulation, representing a different value of λy, we choose the value at the time step k = 75 =̂ 3.75 s.
Furthermore, all results are based on the identical data set and all hyperparameters except λy are
the same. As expected, the value of the `1-norm of σ decreases significantly when increasing
λy. Hence, for theoretical purposes, we can derive that a high λy allows a precise initial state
estimation and should therefore be favoured when selecting λy. For practical reasons, the graph
related to the right axis of the figure, presents the results for cprec. Note, that these values are
not based on exemplary time steps, but on a whole simulation with a total number of time steps
n = 350 =̂ 17.5 s each. In general, the graph aligns with the results provided for ||σ||1 by decreasing
for an increasing λy. Nevertheless, for the practical application, there is an important difference
to be noted. Focusing on the area of λy ≥ 107, we note an increase of cprec, which is equal to
an unintended loss of tracking accuracy. The observed increase of cprec is related to a negligence
of the other hyperparameters relevant for DeePC as a consequence of choosing an extremely high
value for λy. Due to the direct comparison of ||σ||1 and cprec it becomes clear, that when tuning
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Figure 5.7: The value of the `1-norm on the left axis and precision value cprec on the right axis.
It is illustrated that an increasing value for λy reduces the magnitude of the slack variable and
therefore allows a precise initial state estimation. Nevertheless, the comparison between ||σ||1 and
cprec for high values of λy highlights that λy should not be chosen endlessly high as this leads to
a decrease of tracking performance due to deprioritization of other hyperparameters.

λy, it is necessary to find a balance between a sufficiently precise initial state estimation and a
deprioritization of the other hyperparameters of the algorithm. For orientation when selecting a
value for λy, we re-state the two border cases:

• If λy is too low, the slack variable increases and DeePC is not able to get a precise initial
state estimation. As a consequence, reference tracking is poor.

• If λy is too high, we reduce the slack variable to a minimum, which is most certainly lower
than needed for a sufficient initial state estimation. Furthermore, choosing λy too high, leads
to a deprioritization of other hyperparameters. As a consequence, we pass the optimal value
for λy and tracking performance decreases.

5.2.3 Summary of Influences
Since there is a vast amount of opportunities to influence the performance and behaviour of DeePC,
Figure 5.8 summarizes the findings of the previous sub-chapters and highlights the most important
influences on the three metrics robustness, tracking performance, and computational effort.
Section 5.2.1 outlines that data collection is the basis of DeePC. Since everything is built on the
data collection, it strongly biases the control behaviour. Data fitness describes the suitability of
a data set. It distinguishes between data quantity and data quality as influencing factors. In
terms of quantity, it is possible to influence the outcome via the parameters T , Tini, and N . In
terms of quality, we observe that it is important to have a data set that describes the targeted
operating area, which is based on smooth inputs while being persistently exciting, and ideally
represents at least parts of the reference trajectory’s characteristics. Overall, the data collection
biases the performance of DeePC at an initial point and is highly related to success or failure of the
DeePC algorithm. Focusing on the hyperparameters, Figure 5.8, illustrates the impact of λg on the
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Figure 5.8: Overview of DeePC hyperparameters and their influence and relations. For achieving
high robustness, precise tracking performance, and low computational effort, it is necessary to tune
λg, λy, as well as Q and R. Furthermore, a well-fitted data collection in terms of quantity and
quality is a key ingredient for the successful application of the DeePC algorithm.

selectivity of the decision vector g and the related influence on robustness and tracking performance.
In general it states that an increased robustness of the algorithm allows more accurate tracking
performance. The tracking performance is influenced by the weighting matrices Q and R, as well
as λy. While λy influences the initial state estimation, Q and R can be used to balance precision
and input cost. The computational effort depends on tracking performance, data collection and
hyperparameter selection. Initially, when setting up DeePC, computational effort and the related
solve time are often the limiting factors for the amount of data included.

5.2.4 Procedure for Hyperparameter Tuning
The previous chapters outline that the hyperparameter tuning is of significant importance for the
success of DeePC. With every application to a new system and the related change of underlying
data, it is necessary to re-tune the hyperparameters. Due to the high number of influencing factors
and their relations, this can be a time-consuming task. In order to decrease the effort and the time
needed for hyperparameter tuning, Figure 6.1 presents a procedure for finding the right setup.
In the beginning it is necessary to define the minimum tracking precision ptr, the maximum solve
time per time step tsolve,max, the maximum number of iterations nmax, as well as the minimum
precision for the initial state estimation pISE and the allowed deviation ηISE from that value. If
there is knowledge about a time delay tdelay between inputs and outputs, Tini and N are set to
that value. If there is no information available, we recommend a starting value of 1 s. Depending
on the choice for Tini and N , T is determined via the output Hankel ratio hry = 2.5. The first
hyperparameter to be set is λy. A good starting point is λy = 105. We use the value of ||σ||1
to investigate the impact of λy and to adjust its value. Once we find a suitable value for λy
(||σ||1 ≤ pISE), the next hyperparameter is λg. Iteratively finding a value located between the
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area of under- and over-regularization, we always take into account the impact of λg on λy. This is
necessary to ensure the right balance and not to unintentionally sacrifice the initial state estimation
for robustness. With λg and λy selected, we can now check for the solving time needed. If the
solve time with the current setup is lower than 75% of the maximum allowed solve time, it is
reasonable to increase the amount of data. The value of of 75% is based on experience but can be
chosen differently depending on possible knowledge of the impact of the setup on solve time. If
we reach the upper threshold of solve time, we can now start fine tuning the algorithm. This can
be done via weighting matrices Q and R. If it is not possible to achieve the targeted precision by
adjustment of the weighting matrices, and the hyperparameter values reach numerically difficult
dimensions, one option is input and output scaling. By scaling the data, we free up new reserves for
adjusting the values. A second option, which is not explicitly illustrated in Figure 6.1, is choosing
a more aggressive value for λg. Recall the influence of λg illustrated in Section 5.2.2. If one can
not reach the precision and solve time targets within the defined amount of maximum iterations
nmax, a solution is to chose a different underlying data collection and, if possible, to soften the
requirements.
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Chapter 6

DeePC on a M545 Excavator

In this chapter we outline the implementation of DeePC on a real-world M545 excavator (presented
in Section 2.2) and the results of an experimental study. Applying DeePC to the M545 is an
ambitious and exciting task, since DeePC has never before been applied to a real world mechanical
system of such dimensions. As a consequence, the work presented in this chapter serves as proof
of concept for the feasibility of successful application of DeePC to strongly nonlinear mechanical
systems. Furthermore, it allows an investigation of the following questions:

• How representative are the heuristics from simulation and how helpful are they when setting
up DeePC on a real-world machine?

• How flexibly and intuitively can we adjust DeePC to system-specific requirements?

• How robust is DeePC against real machine noise and incomplete measurements?

• How well can the algorithm handle time delays between sensing and actuation, e.g., caused
by hydraulics?

6.1 Implementation of DeePC
This section outlines the control architecture of the M545 and how DeePC is integrated into it.
Furthermore, it introduces system-specific extensions of the DeePC algorithm.

Control Architecture

The provided M545 excavator is regularly used for experimental purposes and therefore offers an
interface for the integration of the DeePC controller. The so-called high-level controller organizes
all operations and connected controllers, and hence allows us to incorporate a C++-version of
DeePC. The data sets for the DeePC controller are collected offline. To do so, we manually run
the excavator and use a signal logger to store the data. In general, we operate the system based
on a sampling rate of 20Hz. Out of the overall data collection, we select the best-fitting extracts
of length T following the guidelines presented in Section 5.2.1. Consecutively we arrange the
data in the form of Hankel matrices and derive the matrices Up, Yp, Uf and Yf , which concludes
the offline procedure. Going online with the controller, DeePC starts tracking the reference r
and therefore predicts the optimal inputs for the excavator arm. The inputs provided by DeePC
are velocity commands for each joint. Hence, it is necessary to interpose the so-called low-level
controller between DeePC controller and excavator arm. It maps the velocity commands to valve
set points, which can then be applied to the hydraulic valves. The mapping of the low-level
controller is empirically tuned. Referring to the valve set points, we can now control the excavator.
The control loop is closed by the high-level controller, which updates and provides the necessary
information about shovel position, joint angles, and reference to the DeePC controller at each time
step.
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Figure 6.1: Integration of DeePC into the control architecture of the M545.

System-specific Extensions of DeePC

Due to the hydraulically actuated legs of the M545, the system can be interpreted as being mounted
on four springs. As a consequence, the system is very vulnerable to oscillations. The main source
for possible oscillations is the movement of the excavator arm. Hence, in order to avoid critical
oscillations, it is necessary to apply very smooth control sequences. As previously outlined in
Section 5.2.1, the control inputs can be biased by data collection. Nevertheless, in order to influence
the control behaviour independent of data collection, we extend the cost function of the DeePC
algorithm by two terms.
First, we add a penalty λu on the norm of the slew rate ∆uk of the inputs, which we define as

∆uk = uk − uini(Tini) , for k = 0,

∆uk = uk − uk−1 ,∀k ∈ Z+
(6.1)

with uk ∈ Rm as the input at time step k. We choose || · ||∞ as norm type, in order to penalize
the maximum element of the input slew rate vector.
Second, we add a penalty λa on the norm of the output accelerations ak for directly suppressing
high accelerations. We express ak via finite difference scheme as the discrete derivative of second
order

∆ak =
yk+1 − 2yk + yini(Tini)

∆t2
, for k = 0,

∆ak =
yk+1 − 2yk + yk−1

∆t2
,∀k ∈ Z+,

(6.2)

with yk ∈ Rp as the output at time step k and ∆t as the sampling rate. Similar to the slew rate,
we choose || · ||∞ in order to penalize the maximum acceleration.
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Figure 6.2: FFT for different setups of λu and λa based on simulation. The figure outlines that
the excitation can be reduced in the critical area of 1 Hz - 2 Hz, which is highlighted in red.

We can now formulate the minimization problem used for controlling the M545 as follows

min
g,u,y

N∑
k=1

(‖yk − rk‖2Q + ‖uk‖2R + λa ‖ak‖∞ + λu ‖∆uk‖∞) + λg ‖g‖1 + λy ‖σ‖1

s.t.


Up

Yp
Uf

Yf

 g =


uini
yini
u
y

+


0
σ
0
0


∆ak =

yk+1 − 2yk + yini(Tini)

∆t2
, for k = 0,

∆ak =
yk+1 − 2yk + yk−1)

∆t2
,∀k ∈ Z+,

∆uk = uk − uini(Tini), for k = 0,

∆uk = uk − uk−1,∀k ∈ Z+,

uk ∈ U ,∀k ∈ {0, ..., N − 1},whereU ⊆ Rm,

yk ∈ Y,∀k ∈ {0, ..., N − 1},whereY ⊆ Rp.

(6.3)

The most critical frequencies for the excitation of the excavator are located between 1Hz and 2Hz.
We use the newly introduced hyperparameters to reduce the occurrence of these frequencies. Based
on the results of a simulation, Figure 6.2 illustrates the impact on the joint as well as the shovel
accelerations by means of a Fast-Fourier-Transformation (FFT). It provides a direct comparison
of a setup with λu = λa = 0 and a setup with λu = λa = 100. It is shown that λu and λa help to
reduce the excitation by reducing the occurrence of particularly critical frequencies.
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6.2 Proof of Concept and Experimental Study
After describing the implementation of the DeePC controller on the M545, we can now present
the proof of concept. We provide results for a setup with two activated joints (boom, dipper) and
four activated joints (boom, dipper, telescope, shovel). Beyond operating a system of 12 t and the
related moments of inertia, this means forces in the dimension of 100 kN and a maximum reach of
almost 10m of the excavator arm.

For both setups of the excavator arm, we are able to provide stable control behaviour with DeePC.

There are several findings coming with this success, which we elaborate on the following pages. In
particular, we investigate system representation and reveal the question about online adaptability,
examine the role of Tini for robustness, and confirm and specify the heuristics from simulation.
Furthermore, we derive opportunities for improvement based on the observed strengths and weak-
nesses during the experiments.

In order to give a first impression of the system, we provide an example of data collection and
control performance for a setup with four degrees of freedom (4DOF). Figure 6.3 illustrates the
data collection. The upper subplot shows the operating range in cartesian coordinates referenced
to the cabin of the excavator. In this example we illustrate a comparatively small extract with
roughly a width of 1m and a height of 1.5m. We can identify characteristic trajectories of the
individual joints as parts of the overall trajectory. Highlighted in red, A marks a movement of
the telescope. The straight horizontal trajectory is connected to the input marked in the lowest
subplot. Similar, B highlights a change of the shovel angle. While boom and dipper already
allow a very flexible and smooth trajectory, the additional shovel joint enables particularly tight
radii. In this example, and for most of our experiments, the data collection is of length T = 450,
which corresponds to a time span of 22.5 s due to the underlying sampling rate of 20Hz. Besides
the advanced kinematics, a very important difference compared to the setup with two degrees of
freedom (2DOF), is the fact, that there is the same amount of time steps while having twice the
amount of joints and therefore inputs. This leads to less information exclusively referred back
to the individual joint, which on the opposite leads to more information being the result of a
superposition of movements of many joints. Intuitively, as we recall that all of DeePC’s knowledge
about the system behaviour is stored in the Hankel matrices, which are of same width for both
setups, this simple relation highlights that the task for 4DOF is much more difficult than the task
for 2DOF. A more quantitative illustration is related to the Hankel matrix ratio hr introduced
in Section 5.2.1. For both setups, the Hankel matrices are of the same width, but for 4DOF of
twice the height, leading to a reduced Hankel matrix ratio. Nevertheless, note, that this metric
only takes into account the dimensional aspects and not the aspects related to the superposition
of movements, which we assume as a major influence, too.
Figure 6.4 illustrates the control performance resulting of the data collection presented in Figure
6.3. The upper subplot presents a smooth trajectory of the excavator shovel based on 4DOF.
Nevertheless, we must recognize that the tracking precision is not satisfactory. A very positive
aspect can be gathered from the inputs. While they are oscillating in the beginning, they are
dampened by DeePC, which leads to a very smooth trajectory. It is also notable that despite the
large radius of 0.75m, which leads to a reference that could be easily tracked by boom joint and
dipper joint only, the tracking is based on all four joints including telescope and shovel.
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Figure 6.3: Data collection for four a arm setup with four degrees of freedom. While boom and
dipper already cover a wide area, the shovel joint enables particularly tight radii and the telescope
stroke allows an extended operating range.

Horizontal Position - x [m]

Figure 6.4: Tracking performance for a setup with 4 DOF. DeePC provides a very smooth trajec-
tory, but lacks precision for this exemplary setup.
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System Representation

The above described tracking performance is a result of system representation. The excavator
setup with 2 DOF, like used in Figure 6.5, is an ideal environment to test the degree of reflection
of underlying data. Using only boom and dipper joint for the task of reference tracking, we can
fix the telescope and the shovel. Figure 6.5 illustrates a tracking performance which presents
itself with a rotation of roughly 25◦ compared to the reference trajectory. The interesting point
is that two different system setups were used for this plot. For data collection, the fixed shovel
angle is ≈ 0◦. For tracking, the fixed shovel angle is ≈ 45◦. Hence we are controlling a system,
which is different than the system the Hankel matrices are actually describing. The plot illustrates
that DeePC re-models the system kinematics and highlights the importance of a correct system
representation. Furthermore, it reveals the question about online adaptability of DeePC, which is
a topic at a later point in this chapter.

Boom
Dipper

Shovel
shovel angle for control

shovel angle for collection

�exible

�xed

Figure 6.5: Trajectory plot for 2DOF and a schematic illustration of the system setup for data
collection compared to the system setup when controlling the excavator. The data collection is
based on a setup with a fixed shovel angle of 0◦, while the tracking is based on a setup with a fixed
shovel angle of 45◦. The difference of setups is clearly recognizable in the tracking performance
and reveals the question about online adaptability.

The Role of Tini for Robustness

Section 5.2.1 and Section 5.2.2 use simulations to outline the importance of an accurate initial
state estimation. Strongly related to the initial state estimation is the parameter Tini since it
defines the length of the past data sets Up and Yp. Figure 6.6 provides data points based on
the excavator real world experiments. For the two data points with Tini = 10 and Tini = 15 we
observe very poor control behaviour. Meanwhile, when increasing Tini, starting from a value of
Tini = 25, we recognize stable and appealing performance. This is once more a confirmation for
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Figure 6.6: Tini significantly influences control performance. Furthermore, when referring the
results back to the simulation of the linearized and nonlinear systems, it underlines, that it is
necessary to increase Tini with increasing uncertainty of the system

the recommendation of choosing Tini as large as possible when dealing with nonlinear systems.
Inspecting the results for the real world experiment, it is also interesting to recall the context
of uncertainty including nonlinearity, noise and time-delays. For the linearized system, we could
define a lower threshold for the minimum size of Tini referring to the lag of the system. Back then,
the value of Tini had a sufficient character. When changing to the nonlinear domain that character
of Tini changes from sufficient to necessary. Instead of setting up on a sufficiently large lower
boundary, we now necessarily need to choose Tini as large as possible in order to establish a chance
for good control performance. Also consider the development when moving from simulation to the
real machine. On the one hand, in simulation, setups with Tini = 10 lead to promising results.
On the other hand, for the real machine, we experience very poor performance for the same value.
Recalling that the simulation does not consider the time-delays, and the real machine might be even
more nonlinear at some points, this observation is nothing unexpected. Much more it confirms,
that an increase of Tini robustifies the DeePC algorithm and is necessary when approaching systems
related to higher uncertainty.

Heuristics for Hyperparameters

In Section 5.2.2 we investigate the influence of λg and λy on the DeePC algorithm. Despite,
representing a major guidance for simulation purposes, we could not know in advance, if they can
be transferred to the real world application. We can clarify this point by the results presented in
the two following graphs.
Figure 6.7 is the real-world-equivalent to Figure 5.6 based on simulation. Comparing the two
plots, we can partly confirm the simulation-based characteristic course of the control performance
dependent on λg. Nevertheless we need to point out three major differences:

• An improvement of control performance starts at a higher value of λg. When operating the
real world machine, we need a more aggressive regularization. For too low values of λg, we
observe no control behaviour leading to the excavator falling down to the ground.
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Figure 6.7: Influence of λg. With a regularization of λg ≤ 300 we do not recognize any intention
of controlling the system which leads to the excavator falling to the ground. With a stronger
regularization expressed by a higher value for λg, we observe an imporving control performance
with a sweet spot for λg = 1100. Further increasing the value to λg = 4000 leads to a deterioration
of control performance due to over-regularization.

• The real world machine is more sensitive for over-regularization. Compared to the simulation,
where we only mentioned, but did not encounter the problem of over-regularization, we can
observe a deterioration of control performance for too high values.

• As a consequence of the more aggressive regularization needed and the earlier appearance of
over-regularization, the sweet spot surrounding the optimal λg becomes tighter and therefore
a more precise determination of λg is necessary.

The results for λy on the M545, presented in Figure 6.8, confirm the heuristic from simulation
(see Figure 5.7). Nevertheless, a higher value is needed for achieving a positive impact, while
considering a loss of performance for too high values. Hence, similar to λg, one must determine
the value of λy more precise than in simulation.
Summarizing the insights on the hyperparameters, we can confirm the heuristics from simulation
and refer to them as orientation for hyperparameter tuning. Nevertheless, we need to be aware, that
finding the right hyperparameter setup becomes a more delicate balance when approaching real
systems, which can be traced back to an increase of nonlinearity, noise, and time-delays between
sensing and actuation.
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Figure 6.8: Influence of λy. When choosing λy = 105, we face an imprecise initial state estimation
and therefore a poor control performance. With increasing λy we experience a better initial state
estimation which leads to a better control performance. For λy ≥ 109, control performance worsens
due to deprioritization of the other hyperparameters.

Tracking Performance

For assessing the tracking performance, we refer to cprec, which quantifies the average distance be-
tween shovel contact point and reference point per time step. Furthermore, we state the maximum
error emax between shovel contact point and reference point per experiment. For 2DOF we can
present a setup achieving cprec = 0.1881 m and a maximum error of emax = 0.3702 m. The corre-
sponding tracking performance is illustrated in Figure 6.9. The best setup within the experimental
series for 4DOF has an average distance per time step of cprec = 0.8404 m and a maximal error
of emax = 1.166 m. When facing these values, it is necessary to note that all experiments had the
goal to highlight the relation of hyperparamters, and not to achieve an optimal tracking accuracy.
Hence, there are several opportunities for improvement of precision with many of them related to
the points suggested in the following paragraph.

Opportunities based on experimental Insights

Based on the insights from the first application of DeePC on a strongly nonlinear mechanical
system we propose ideas and starting points for the further development of the algorithm.

• We outline at several points that the part of data collection is crucial. We present a guideline
consisting of three aspects. For future applications it is crucial to quantify and automate the
process of data scanning. This would be a huge benefit, particularly for the workflow in the
context of a real world machine. A first starting point could be a restriction to joint-based
applications.

• On the one hand, in Section 6.1 we show how to adapt the DeePC algorithm via the cost
function to counteract oscillations. This extension helps us when bringing DeePC to the real
machine, but must be done offline. On the other hand, we outline the characteristic control
behaviour depending on the underlying data set. While showing robustness against system
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2

Figure 6.9: The most precise control performance for 2DOF within the experimental series. cprec =
0.1881 m, emax = 0.3702 m.

deviations, DeePC also shows that it cannot adjust to minor system deviations online. Hence,
an approach allowing online updates of the Hankel matrices would be very promising for the
feature of domain adaptability. Within the experimental series we tried to implement such
an adaptive method, but were not successful due to not-achieving real-time capability.

• Reducing the solve time in general is a large potential for DeePC. Within this thesis we
refer to basic methods for the mathematical operations. Applying some more sophisticated
approaches could most certainly reduce the solve time and therefore generate a potential for
including more data, which could be turned into an improvement of performance.

• We outline in the paragraphs above that the heuristics from simulation can be transferred to
the real world application. This creates two opportunities. First, with the confirmed heuris-
tics, it is possible to refer to the workflow for hyperparameter tuning presented in Section
5.2.4, and work into the direction of an automated hyperparameter tuning. Second, coupled
to a method for the quantification of data fitness, one could use the heuristics for an adaptive
hyperparameter scheme. This would allow to balance the hyperparameters depending on the
situation and the available data and therefore contribute to the efficiency of DeePC.



Chapter 7

Conclusion

We start this thesis with an illustration of the experimental setup (Chapter 2) consisting of a sim-
ulated 2-link robotic arm and a Menzi Muck M545 12 t excavator. In the state of the art (Chapter
3), we investigate common control frameworks for the task of reference tracking. We distinguish
between model-based and data-driven approaches and outline the advantages and drawbacks of one
representative each. Consecutively, we use the insights from the literature review to bring DeePC
in line with the current state of the art. Based on the mathematical preliminaries, we introduce
DeePC and apply it to a linear system in Chapter 4. Entering the nonlinear domain, we refer to
a simulation of a 2-link robotic arm and two high-fidelity simulations of the excavator, in order
to investigate and illustrate the influence of hyperparameters, as well as the importance of data
collection. Based on the simulations, we derive heuristics for the hyperparameters and introduce
a routine for efficient tuning (Chapter 5). In Chapter 6, we then present the proof of concept
for DeePC applied to a strongly nonlinear real world system. We confirm the hyperparameter
heuristics from simulation and illustrate that we can use DeePC to control the M545 excavator
with two and four degrees of freedom. Key findings resulting of this thesis are:

• It is possible to control strongly nonlinear mechanical real world systems with DeePC.

• Data collection is crucial, particularly for real world applications with increased noise levels
and/or time-delays. An objective and quantifying method is definitely needed.

• The hyperparameter heuristics from simulation are confirmed by the real world experiments
and can be used as an orientation. Nevertheless, we note that tuning the hyperparameters
becomes a more delicate balance, which asks for a more precise determination of the individual
optimal values.

As subjects for future research we recommend three topics. First, as already mentioned, it would
be a major advantage to have a method that objectively quantifies data fitness. This would speed
up the workflow, which is particularly important for real world applications, and eliminate the
dependency on an individual’s experience with data evaluation. Second, we suggest investigations
in the direction of adaptive Hankel matrices. This would possibly give DeePC a feature similar
to domain adaptability. Furthermore, in combination with a evaluation method for data fitness,
one could adjust the Hankel matrices in order to provide an as accurate as possible system rep-
resentation. Third, as the hyperparameter heuristics are confirmed on the real machine, it could
be worth working into the direction of adaptive hyperparameters based on the heuristics. This
could possibly increase the efficiency and performance of DeePC, while reducing the computational
effort.
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Appendix A

Technical Preliminaries

For our research in context of the DeePC algorithm, we rely on several technical resources including
RaiSim, OSQP, and CVXPY.

RaiSim - Simulating physical Environments

The M545 simulation (introduced in Section 2.2) is built on RaiSim. RaiSim is a closed-source
physics engine, allowing cross-platform projects in the domain of robotics and AI [24]. Within
this thesis, we use the underlying C++-version of RaiSim, as well as the python-based version
RaisimPY. Besides others, the advantages of RaiSim are speed [26], accuracy [23] [49], simplicity,
as well as a minimum number of dependencies. In general, all resources of the M545 simulation
are managed in a world environment. The RaiSim server then serializes the world environment
and streams data to clients via tcp/ip. A visualization of the world environment is possible via
RaiSimUnity. In simulation, the M545 is built as an articulated system, which allows access to
several system characteristics like body type, as well as interactions with the environment like
setting external forces.

OSQP - Solving Quadratic Programs

OSQP (Operator Splitting Quadratic Program) is a package that provides a numerical optimization
method for solving convex quadratic programs. OSQP solves the QP of the form:

min
x

1

2
xTPx+ qTx

s.t. l ≤ Ax ≥ u
(A.1)

where x ∈ Rn is the optimization variable, while the objective function is defined by the positive
semi-definite Matrix P ∈ Sn+ and vector q ∈ Rn. The matrix A ∈ Rmxn and the vectors l and u
define the linear constraints such that li ∈ R ∪ {− inf} and ui ∈ R ∪ {+ inf} for all i ∈ {i, ...,m}
[51].
OSQP is based on the ADMM algorithm, which allows fast computation as well as infeasibility
detection [1]. Furthermore, additional features like polishing for high-precision solutions, adaptive
ρ-step-size for fast convergence, as well as warm-start for increased efficiency are available. An
illustration of code generation is provided in [2].

CVXPY - Formulating Minimization Problems in Python

As parts of the system simulations used within this thesis are based on Python, we use CVXPY
to re-formulate the quadratic program at the core of the DeePC algorithm. CVXPY is a python-
embedded modeling language which allows the expression of minimization problems in a mathe-
matically natural way [9]. Perfectly matching our purposes, CVXPY also provides an interface to
OSQP and supports all the previously introduced OSQP-related features [52].
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Appendix B

Access to Video Material

We provide two videos of DeePC applied to the M545. The first video shows the M545 with 2
degrees of freedom tracking a circular reference. It can be accessed via:

• https://polybox.ethz.ch/index.php/s/KMDSrVXq18gEVYV

The second video shows the M545 using all 4 degrees of freedom to the track a circular reference.
It can be accessed via:

• https://polybox.ethz.ch/index.php/s/T3s23fWfbvPDXac

In the case of any technical issues, please contact the author via e-mail:
felix.wegner@rwth-aachen.de
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