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Abstract. A theory of exceptional extreme events, characterized by
their abnormal sizes compared with the rest of the distribution, is pre-
sented. Such outliers, called “dragon-kings”, have been reported in the
distribution of financial drawdowns, city-size distributions (e.g., Paris
in France and London in the UK), in material failure, epileptic seizure
intensities, and other systems. Within our theory, the large outliers are
interpreted as droplets of Bose-Einstein condensate: the appearance of
outliers is a natural consequence of the occurrence of Bose-Einstein
condensation controlled by the relative degree of attraction, or util-
ity, of the largest entities. For large populations, Zipf’s law is recov-
ered (except for the dragon-king outliers). The theory thus provides
a parsimonious description of the possible coexistence of a power law
distribution of event sizes (Zipf’s law) and dragon-king outliers.

1 Exogenous versus endogenous causes of outliers

Outliers in statistical observations are those data that appear to be markedly devi-
ating from other members of the statistical sample in which they occur [1–3]. There
are numerous examples of outliers that, generally, can be of two kinds. One type of
outliers are those that are caused by different errors. For instance, a physical ap-
paratus for taking measurements may have suffered a transient malfunction. There
may have been an error in data transmission or transcription. Outliers can arise due
to human errors or instrument errors. A sample may have been contaminated with
elements from outside the population being examined. Such erroneous outliers, due
to exogenous reasons, are not of interest, except that it is the duty of the scientist to
recognize them and remove them for a sound analysis. These outliers are not of our
concern in the present paper.

Another cause of outliers can be endogenous, due to natural deviations in pop-
ulations. It is these natural outliers whose appearance has to be understood and
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explained. Such outliers may seem to be in contradiction with the assumed theory,
calling for further investigation.
For example, a number of statistical data are known to be in good agreement

with power-law distributions. Such power-law type distributions have appeared in
different branches of statistical analysis of data [4–8] and are now referred to as the
Pareto law or the Zipf law, depending on the context and the value of the exponent.
Numerous illustrations of power laws in a variety of applications can be found in
the literature dealing with natural languages, information theory, city populations,
web access data, internet traffic, bibliometry, finance and business, ecology, biology,
genomics, earthquakes, and so on. It is impossible to list all that literature, so we
shall cite a few works, where further references can be found [9–32].
In many cases, there are however marked deviations from the power laws, exhibit-

ing large natural outliers. The number of such outliers is not high, usually there is just
a single outlier outside the main sample. As examples, we can mention the rank-size
distributions of French cities, where Paris is an outlier, of Great Britain cities, where
London is an outlier, of Brazilian cities, where São Paulo is an outlier, the distribution
of Hungarian cities, where Budapest is an outlier, also the rank-size distribution of
billionaires in certain countries (the “king” effect), and so on [33]. More examples can
be found in Ref. [34], where these endogenous outliers are named “dragon-kings”.
We stress that these endogenous dragon-kings are fundamentally different from

the concept of “black swans”[35], as explained in [34]. The concept of black swan is
essentially the same as Knightian uncertainty, i.e., a risk that is a priori unknown,
unknowable, immeasurable, not possible to calculate. Nassim Taleb thinks of a black
swan as an unpredictable extreme event of enormous impact, especially in the so-
cial sphere (private communication, February 2011). One possible incarnation of a
black swan is a tail event of a power law distribution. In contrast, the dragon-king
concept [34] stresses the fact that many extreme events are distinguishable by their
sizes or by other properties from the rest of the statistical population. Dragon-kings
are argued to result from mechanisms that are different, or that are amplified by the
cumulative effect of reinforcing positive feedbacks. As a consequence of the amplify-
ing mechanism that is specific to the dragon-king appearance, they may actually be
knowable, and they may be characterized by specific precursors. Dragon-kings thus
carry ambivalence: (i) on the one hand, they occur more often than predicted by the
extrapolation of the statistical distribution calibrated on their smaller siblings; (ii) on
the other hand, they may be forecasted probabilistically, more than the other large
events in the tail of the standard statistical distribution.
In order to capture this essential difference with “black swans”, the term “dragon-

king” was chosen as follows. First, in some countries, the king and his family own
or control a large part of the whole country wealth while, at the same time, the rest
of the population wealth is Pareto distributed. This constitutes an example of the
coexistence of a power law distribution of wealths and of a singular point, the king’s
wealth that is outside and beyond the distribution of the rest of the population. We
refer to this as the king effect. The term “dragon” describes an animal, yes, but an
animal of mystical and supernatural powers. Hence, similarly to the king, there is the
coexistence of some properties of the dragon that are common with the rest of the
animals (wings, tail, claws, etc), together with absolutely abnormal characteristics
that make the dragon apart from the rest of the animal kingdom.
This debate illustrates that the knowledge of extreme events is still very poor. The

causes for such endogenous outliers are not always clear. However, we may mention
that, in the theory of phase transitions, there are several so-called droplet models
exhibiting the appearance of large critical clusters, essentially overpassing the sizes
of all other droplets [36–41]. The occurrence of such extreme clusters can happen in
different types of interacting statistical systems, such as condensed matter [36–41],
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Fig. 1. Scheme of the Bose-Einstein condensation of trapped atoms.

gravitating matter [42], quark-hadron matter [43,44], as well as in social phenomena,
e.g., in the clustering of citizens into cities [45].
Some authors connect the existence of the phenomenon of extreme-cluster forma-

tion with the Bose-Einstein condensation. This phenomenon is well known in physics
and intensively studied both theoretically and experimentally, as can be inferred from
the recent reviews [46–53]. The possibility of mapping different other effects to the
Bose-Einstein condensation has also been discussed. Among these effects, it is possi-
ble to mention the functioning of memory [54–56], traffic jams [57], wealth distribu-
tion [58], network evolution [59], and ecological dominance [60].
In the present paper, we advance a new approach for treating statistical data of

complex systems. The appearance of large natural outliers is explained as due to the
Bose-Einstein condensation. The approach is rather simple and general and can be
applied to different data samples.

2 Definitions and assumptions of model

2.1 Qualitative analogy between Bose-Einstein condensation of atoms and
emergence of an outlier in the distribution of city sizes

Before addressing the mathematical basis of the approach we suggest, let us give the
intuition for why the Bose-Einstein condensation can be connected to the problem
of characterizing statistical outliers. For this purpose, let us recall in a few words
what is the essence of the phenomenon of Bose-Einstein condensation. In the present
context, the most convenient setup is the condensation of trapped atoms, for which
the energy spectrum is discrete, contrary to the uniform case, where the spectrum is
continuous.
Suppose that a system of many atoms is confined in a trapping potential, with a

discrete energy spectrum characterized by the level energies ε1, ε2, . . . , εn, . . . . Atoms
are distributed over these energy levels, so as to achieve the minimal free energy
for the system. At sufficiently low temperature, a great number of atoms pile down
in the lowest energy level, as shown in Fig. 1. This concentration of atoms in the
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lowest level is the Bose-Einstein condensation. While the lowest level corresponds to
the minimal energy, not all atoms are able to occupy it, and there are always atoms
on other higher energy levels. This corresponds to the condensate depletion that is
caused by two reasons: temperature fluctuations and repulsive atomic interactions.
In the presence of the Bose condensate, the distribution of atoms over energy levels
cannot be given by a single function, but the condensate has to be separated out from
the distribution of the rest of the atoms. Consequently, the condensate is nothing but
a statistical outlier.
A similar phenomenon occurs in a statistical system of agents that can occupy

different “levels” corresponding to different ranks, such as the inhabitants of differ-
ent cities. And each given country is finite, similarly to a finite system of trapped
atoms. Discrete energy levels are analogous to separate cities. People tend to live
in those cities that are the most convenient and profitable for them. Usually, the
best opportunities are provided by the largest cities classified by the lowest ranks,
within a rank-ordering classification. Thus, the largest city can become an outlier,
if a Bose-Einstein condensation occurs. And similarly to the case of atoms, not all
people can gather in a single city because of various disturbing factors and individual
competitive interactions. The concentration of people in the largest city is equivalent
to the Bose condensation. Then, the distribution of inhabitants over all cities can
describe all the cities at the exception of the city-outlier that has to be separated
from the distribution, in the same way as it is done for a Bose-condensed system
of atoms.
The Bose-Einstein condensation of atoms results from the Bose statistics that is

at the origin of correlations between atom occupancies over the population of avail-
able energy levels. Analogously, the correlations among people are realized by the
exchange of information. The choice of cities and the evaluation of their suitability,
or fitness, or attractiveness, is always done on the basis of the information available to
decision makers. The information exchange between people plays the role of quantum
correlations for atoms.
Information processing, of course, requires time and can depend on the geometric

location of participants, similarly to the processes of atomic interactions. The time
scaled involved in information exchange is much shorter than the typical lifetime of
a country. This is in analogy with the smallness of the atomic interaction time as
compared with the lifetime of a trapped system. Therefore, it is admissible to invoke
an equilibrium description, where the short time-dependent processes are averaged
out. As a result, such an equilibrium description does not depend on time and on the
spatial location of participants.
In order to summarize the analogies between the Bose-Einstein condensation

of trapped atoms and the condensation of inhabitants in cities, we give below a
dictionary connecting these phenomena.

confining potential country territory
trapped atoms country citizens
energy levels separate cities
level number city rank
level distribution rank distribution
quantum correlations information exchange
thermal fluctuations disturbing factors
repulsive interactions competitive interactions
energy minimization utility maximization
most profitable level most profitable city
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2.2 Definitions and formulation of the model

Our approach is general, being applicable to various statistical data. For the sake of
concreteness, we illustrate it for the case of the rank-size distribution of cities in a
country. Equally, the approach is valid for the rank-frequency distribution of words
in a text, as well as for other statistical data in sociology, linguistics, economics, and
so on.
We consider the situation when the process of city formation has reached a sta-

tionary regime inside the given country [61]. This condition holds by construction
in the case of the word-frequency distribution in a given text, which is written and
therefore fixed.
Let N be the total number of persons (or households or other atomic groups)

representing the total population of a country. Or this could be the total number of
words in a text. This means that the population can be grouped into characteristic
population elements indexed by n = 1, 2, . . . , N . Or this could be the number of word
groups, each group consisting of the same word. The total number N is assumed to
be very large, N � 1. This population of N persons is distributed among C cities.
The city rank ε(n) of a city with n inhabitants is defined as the number of cities

whose population is larger than or equal to n inhabitants. This means that the rank
is related to the cumulative distribution of population over cities. The ranks are
arranged in the ascending order, so that the rank of a larger city is smaller:

ε(n1) < ε(n2) (n1 > n2) . (1)

Rank 1 corresponds to the largest city, rank 2 to the second largest city, and so on.
Our aim is to find a relation between the city rank and its characteristic population.
The relation and our derivation of the Bose-Einstein condensation phenomenon

in the distribution of cities relies on three key ingredients.

Assumption 1. The characteristic feature of an inhabitant selecting a city can
be described by the concept of utility factor w(ε), which is assumed to be a function
only of the city rank ε.

Justification. Each city has evolved during its history, in competition and
through diverse complex interactions with other cities in the country. The charac-
teristic feature of an inhabitant selecting a city can be described by the factor w(ε)
characterizing the stationarity state of the relative attraction, according to the use-
fulness for the decision maker, of each of the C cities to the diverse individuals in
the total population of N persons. The utility factor w(ε) takes the values within
the interval [0, 1]; the larger its numerical value, the more convenient and the more
attractive is the city. The factor w(ε) is a decreasing function of rank ε.

Assumption 2. The attraction factor w(ε) is taken to be an exponentially
decreasing function of rank:

w(ε) = be−βε (b > 0, β > 0). (2)

Justification. This is a natural choice, very often assumed in the biological lit-
erature dealing with fitness [62–71]. The parameter β is called the decline parameter.
The fitness factor decreases with rank, capturing the fact that a smaller city (higher
rank) is less attractive, in general, due to less opportunities for job, cultural enter-
tainments, synergies and so on [72]. The attraction of large cities is usually associated



58 The European Physical Journal Special Topics

with increasing returns to scale and economies of scale [73]. The utility function in
decision theory is also often taken in the exponential form [74,75].

Assumption 3. The probability that a city of rank ε has a population of not less
than n inhabitants is assumed to be a multiplicative function of the utility factors for
each person:

pn(ε) = aw
n(ε). (3)

Justification. This expression (3) derives from the assumption that separate
individuals make their choices independently from each other. As the overall quality
or attraction of a city for a given person is completely captured by the utility factor
w(ε), the population of a given city then results from independent choices performed
by each inhabitant, which is equivalent to taking the product of the factors w(ε).

3 Derivation of the rank-size cumulative distribution

The probability pn(ε) given by (3) has to be normalized as

N∑

n=1

pn(ε) = 1, (4)

in order to express that each city is certainly inhabited. This normalization, taking
into account that

N∑

n=1

wn � w

1− w (N � 1),

yields

a =
1− w
w
.

Therefore, the probability pn(ε) defined by (3) acquires the form

pn(ε) = [1− w(ε)]wn−1(ε). (5)

The characteristic population of a city of rank ε is defined as the expectation value

n(ε) =

N∑

n=1

npn(ε). (6)

This, in view of the equality

N∑

n=1

nwn � w

(1− w)2 (N � 1),

gives the expression

n(ε) =
1

1− w(ε) . (7)

Expression (7) is valid for any type of attraction factor w(ε). Generally, the latter
could be taken in different forms, but here we employ the expression (2).
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With the form (2) of the attraction factor, the characteristic population (7)
becomes

n(ε) =
e−βε

eβε − b . (8)

Introducing the notation

μ ≡ 1
β
ln b (9)

reduces Eq. (8) to

n(ε) =
eβ(ε−μ)

eβ(ε−μ) − 1 . (10)

This has the form of the typical Bose-Einstein function describing the population
distribution, with the nominator playing the role of a degeneracy factor, the rank ε
playing the role of energy, and μ playing the role of a chemical potential.
Inverting Eq. (10) gives the rank of a given city

ε(n) = μ+
1

β
ln

(
n

n− 1
)

(11)

as a function of its characteristic population size n. A priori, the rank cannot be
smaller than one for all population sizes n larger than one:

ε(n) ≥ 1 (n > 1). (12)

In this way, Eq. (10) gives the expectation value of the population size for a city of
rank ε. Here the rank is fixed. Equation (11), conversely, defines the rank for the given
characteristic population size. Recall that n(ε) is a cumulative distribution, hence its
sum over the ranks does not define the total country population.
The formal definition of a city is a disputed and complex issue, that we do not

address here. Let us just mention that cities have more than one inhabitant, being
relatively large and permanent settlements, with administrative, legal, or historical
status based on local law. Thus, there should be in general one more restriction on
the rank, when the lowest characteristic population is fixed by some number m, so
that all C cities have populations not smaller than this minimal number m. Then the
boundary condition follows:

ε(m) = C, (13)

which defines the chemical potential

μ = C − 1
β
ln

(
m

m− 1
)
. (14)

Expression (11) retrieves a variant of Zipf’s law for the largest cities. Indeed, taking
n� 1 allows one to expand the logarithm and obtain

ε(n) = μ+
1

β
· 1
n

(n� 1), (15)

relating the city rank to the inverse of the population size. The only difference with
the standard formulation of Zipf’s law is the term μ that gives a small correction.
Since n(ε), by definition, is positive, then μ should be smaller than the minimal ε
equal to one. Hence μ < 1.
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4 Bose-Einstein condensation into dragon-king cities

It turns out that the distributions (10) and (15) are not the whole story. Indeed, the
boundary condition (13) may sometimes disagree with the population distribution
(10). The occurrence of such a disagreement signifies the appearance of an anom-
aly, that we term a “dragon-king” city [34], which is equivalent to Bose-Einstein
condensation.
To demonstrate how this happens, let us consider the population of the most

inhabited city of rank one

N1 ≡ n(1) = eβ(1−μ)

eβ(1−μ) − 1 . (16)

By its definition, this is a finite positive number, which requires that μ be smaller
than one,

μ < 1 (0 < N1 <∞). (17)

The latter implies that the decline parameter β has to be limited by the inequality

β < βc (μ < 1), (18)

where the critical value is defined by

βc ≡ 1

C − 1 ln
(
m

m− 1
)
. (19)

When condition (18) holds true, the boundary condition (13) is compatible with the
population distribution (10). Therefore, the rank-size distribution of cities follows
formula (11) with μ given by equality (14).
However, when β becomes larger than the critical value βc, the boundary condition

(13) becomes incompatible with the population distribution (10). A large value of β
implies a relatively much stronger attraction to the first rank compared with the
higher ranks. It is therefore expected that the largest city, rank 1, plays a special role.
Indeed, considering that the largest city of rank 1 is an outlier of the distribution of all
other cities, that we refer to as a dragon-king, we should exclude it from the statistics
described by distribution (11). The remaining cities continue to be described by this
distribution. The situation is completely analogous to the Bose-Einstein condensation,
where the role of the dragon-king is played by the Bose condensate. In that sense, the
dragon-king represents a condensate droplet, with its inhabitants playing the role of
condensate particles.
In general, it is possible that several largest cities could be outliers (dragon-kings)

of the distribution of city sizes and thus should be excluded from the description
offered by formula (11). In physics, this would correspond to the occurrence of gran-
ular condensate consisting of several grains, or droplets, of condensed particles in the
surrounding of uncondensed matter [52,76]. For instance, if k cities are dragon-kings,
then for the population n(k) to be a positive number, μ has to be smaller than k,
hence the decline parameter β has to be constrained by the inequality

β <
1

C − k ln
(
m

m− 1
)
. (20)

In that case, a series of condensation transitions would arise, with the condensation
of the largest city, then of the second largest one, and so on as the decline factor β
increases through the succession of the critical values, corresponding to a larger and
larger mismatch between the attraction factors of large cities and smaller ones.
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For the convenience of presenting the formulas, let us introduce the parameter
that can be called the effective temperature

T ≡ βc
β
. (21)

This parameter quantifies the level of noise causing the dispersion of the country
inhabitants among different cities. Then the rank-size distribution (11) takes the
form

ε(n) = μ+
T

βc
ln

(
n

n− 1
)
, (22)

with the chemical potential

μ = C − (C − 1)T. (23)

For high temperature T > 1, one has μ < 1, and there is no condensation. The value
Tc = 1 is the critical point of the starting condensation, where μ = 1. Below this
temperature T < 1, the largest city of rank 1 falls out of the data sample, becoming a
dragon-king, with other cities remaining uncondensed and described by the rank-size
distribution (11).
With these notations, the generalized Zipf’s law, obtained for large n, reads as

ε � μ+
(
T

βc

)
1

n
(n� 1 & μ < 1), (24)

relating the rank ε of a given city to its population size n. In this way, our model
not only gives the interpretation of outliers in the distribution of city sizes as Bose-
condensed droplets, but it also provides a possible mechanism for the Zipf’s law.

5 Discussion

We have suggested a novel approach for deriving rank-size distributions. First, we
obtain the Zipf law that has been well documented for a variety of statistical data.
Secondly, according to this approach, the appearance of outliers of the distributions,
that we have referred to as “dragon-kings” [34], is equivalent to the Bose-Einstein
condensation. The objects of the first ranks, such as the largest cities, when becoming
outliers, are similar to Bose-condensed droplets. For concreteness, we followed the
interpretation related to the rank-size distribution of cities. But the approach can
be applied for interpreting the appearance of outliers of other nature, e.g., in the
rank-frequency distribution of words in different texts.
In physics, the Bose-Einstein condensation is a collective coherent phenomenon.

The same interpretation applies to our derivation through the three assumptions
underlying our model, which are set to capture the collective organization of cities over
their historical development. Consequently, the appearance of dragon-kings can also
be understood as the result of collective effects resulting in the coherent accumulation
of agents in these outliers. The Bose condensation is a phase transition. Hence, we
propose that the occurrence of “dragon-kings” [34] is also a kind of a phase transition.
Other related mechanisms for the formation of dragon-kings are also associated with
phase transitions. Let us mention generalized percolation transition, where the infinite
cluster plays the role of the outlier or dragon-king. Another example is that of the
synchronization between moving objects, like oscillators [77], which can give rise to
the coexistence of a power law distribution of event sizes and of dragon-kings [78–80].
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When dealing with statistical data, there are phenomenological recipes that allow
one to suspect the presence of outliers [1–3]. The simplest hint that the object of rank
1 is an outliers is when

n(1)− n(2)� n(2)− n(3). (25)

In the approach we suggest, the procedure would be as follows. For the given numbers
m (of a minimum city size) and C (number of cities in the country) characterizing
the considered statistical set, one should fit the function ε(n) to the given data, thus,
defining the parameter T . One should compare the fittings with and without the
object suspected to be an outlier. Comparing these fittings and the related values
of T and μ, one could conclude, in line with the above theory, whether there is
condensation or not. Condensation should correspond to the low temperature T < 1.
The suggested method of describing outliers applies to the sets of given data, such

as city sizes or word frequencies. One could ask the question whether the method could
be transferred to systems with time evolution, such as stock market data accompanied
by crashes? The principal answer to this question is yes, provided the whole set of data
is given. Omitting details, the idea for using the method to temporal data would be as
follows. Let a database of time series be given, where one can define the drawdowns,
occurring at different times and quantified by some index. And let n be the value
measuring the fall of the index from some previous peak value. Suppose ε(n) is the
number of drawdowns whose fall index is larger than n. This ε(n) plays the role of the
drawdown rank. Then we may follow the general consideration described above. The
largest drawdown becomes an outlier when condensation occurs. Then this condensed
outlier represents a market crash.
The aim of the present paper has been the development of a general theory. So,

here we limit ourselves by the principal points. Applications to particular examples
involve discussions of technical problems of fitting methods, which is out of the scope
of the present paper. Different applications will be treated in separate publications.
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