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Abstract14

In this article, we simulate and evaluate the operational challenges of non-autonomous ride-15

pooling systems through driver shifts and breaks and compare their capacity and efficiency to16

automated on-demand services. We introduce shift and break schedules and a new hub return17

logic to perform the respective tasks at different types of vehicle hubs. This way, currently oper-18

ating on-demand services are modelled more realistically and the efficiency gains of such services19

through autonomous vehicles are quantified.20

The results suggest that operational challenges substantially limit the ride-pooling capacity in21

terms of served rides with a given number of vehicles. While results largely depend on the chosen22

shift plan, the presented operational factors should be considered for the assessment of current23

operational real-world services. The contribution of this study is threefold - from a technical24

perspective, it is shown that the explicit simulation of operational constraints of current services25

is crucial to assess ride-pooling services. From a policy perspective, the study shows the poten-26

tial of future autonomous services in direct comparison with non-autonomous services. Lastly,27

the paper adds to the literature a realistic ride-pooling simulation use case based on observed28

real-world demand and shift data.29

30

Keywords: ride-sharing, pooled on-demand mobility, MATSim, electric vehicles, operations31

research32
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1 Introduction33

Over the past years, research interest has evolved around new mobility options such as ride-hailing34

and -pooling. Several app-based dynamic ride-pooling services such such as UberPool1, GrabShare2,35

Clevershuttle3 or MOIA4 have been introduced and promise to reduce traffic volumes and resources36

consumed in urban areas, as several car trips can be bundled and replaced by a single pooled trip.37

Although several simulation studies have shown the great potential of pooled mobility services to38

reduce vehicle fleets and vehicle kilometers traveled (VKT) in urban environments, ride-pooling ser-39

vices are not yet widely available. One reason for this are the high operating costs of large-scale40

ride-pooling services, especially for non-autonomous fleets where labor costs lead to high service41

costs (Bösch et al., 2018). This makes operators and transit planners all the more hopeful that42

autonomous vehicles can reduce costs and increase ridership and service coverage. Under these con-43

ditions, large-scale ride-pooling systems have a large potential to provide a reliable and convenient44

mobility service that is more sustainable than the current urban transport system.45

46

While even experts during the initial euphoria predicted a very early introduction of autonomous47

vehicles around the year 2020 (in which the New York Times published an article titled "This Was48

Supposed to Be the Year Driverless Cars Went Mainstream", (Metz and Griffith, 2020)), current49

(public) voices on the introduction of autonomous vehicles seem more conservative, as can be seen50

in various statements (Gessner, 2020; Valdes-Dapena, 2021; Hagon, 2019; Bubbers, 2019; Blouin,51

2021). In a study on future implementations of fully autonomous services, Kannan and Lasky52

(2020) concluded that "fully autonomous vehicles are several decades away". The authors base this53

on shortcomings of current artificial intelligence (AI) technologies and difficulties in designing and54

testing fully autonomous vehicles. Leonard et al. (2020) claim that widespread autonomous driving55

will take at least a decade. Similarly, Litman (2017) predicts that fully autonomous vehicles will56

only be introduced in the 2030s or 2040s with limited performance and at high prices. Shladover57

(2016) even goes as far as saying that level 5 autonomous driving might even need until around 207558

to become fully available. The ride-hailing provider Uber recently shifted focus from autonomous59

taxis to easier-to-implement autonomous trucks because of financial and legal challenges (Metz and60

Conger, 2020). MOIA’s latest timeline doesn’t call for autonomous vehicles to be introduced until61

2025 (MOIA, 2021). Then, the first level 4 autonomous vehicles are to be deployed on test sections.62

This will still require drivers who can intervene in an emergency.63

64

As such, current ride-hailing and -pooling companies are likely to continue their service with non-65

autonomous vehicles and drivers for at least a few more years. This includes operational challenges66

such as driver shifts and breaks that have to be taken into account for a more realistic modeling67

perspective of current services. In this study, we present an extension to an existing ride-pooling68

extension in the simulation framework MATSim (Horni et al., 2016) to reflect the impact of human69

driver shifts and resulting operational trips toward break or hub facilities. In addition, we have70

adapted the existing MATSim extension for electric vehicles (EVs) to include charging procedures71

during the operational breaks.72

73

Using the new extension, we assess the impact of operational challenges faced by on-demand74

mobility services in a world of non-autonomous vehicles and compare them to a fully autonomous75

1https://www.uber.com/de/de/ride/uberpool/
2https://www.grab.com/sg/transport/share/
3https://www.clevershuttle.de/
4https://www.moia.io/
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system. This way, on-demand mobility operators, public authorities and transport researchers are76

able to reassess the introduction of large-scale ride-pooling services, which in the past have been77

evaluated mainly with simplified assumptions regarding operational complexity.78

2 Related ride-pooling studies79

In order to assess operational challenges, fleet and user behavior or implications on the transport80

system of a new on-demand mobility system, a common approach is to simulate the proposed ser-81

vice within a transport model. The minimum requirement for such simulations is a street network,82

demand and supply and an assignment logic that matches requests and vehicles. In recent years,83

numerous such simulation studies have been conducted in the field of on-demand mobility, often84

also described as Autonomous Mobility on-Demand (AMoD) or Shared Autonomous Vehicle (SAV)85

systems. A broad overview of these simulation studies has been provided by Pernestål and Kristof-86

fersson (2019) and Jing et al. (2020), who reviewed 26 and 44 simulation studies of (autonomous)87

on-demand services, respectively. While many of these studies deal with unpooled systems, we focus88

on ride-pooling systems here.89

2.1 Demand and supply characteristics90

Table 1 provides an overview of a few selected ride-pooling simulation studies assessing different91

demand and supply characteristics. We classify the studies into four demand categories with toy92

demand being the least and historical on-demand requests being the most realistic representation93

of real-world ride-pooling systems. The supply categories Static fleet and Pseudo shifts show if94

temporal limitations of vehicles were taken into account.95

Table 1: Demand and supply characteristics in existing ride-pooling studies.

Demand
Toy demand Static synthetic de-

mand
Synthetic demand
based on mode
choice model

Historical ride-
pooling/taxi re-
quests

S
u
p
p
ly

Static fleet Fagnant and Kockel-
man (2014)*
Zhang et al. (2015)
Farhan and Chen
(2018)

Merlin (2017)
Fagnant and Kock-
elman (2018)
Engelhardt et al.
(2019)
Loeb and Kockel-
man (2019)
Vosooghi et al.
(2020)
Ruch et al. (2020)
Zwick et al. (2021a)

Hörl (2017)
Martinez and Viegas
(2017)
Vosooghi et al.
(2019a)
Gurumurthy et al.
(2020)
Wilkes et al. (2021)
Kaddoura and
Schlenther (2021)
Zwick et al. (2021a)

Alonso-Mora et al.
(2017)
Ruch et al. (2020)
Zwick and Axhausen
(2020a)

Pseudo-shifts Martinez et al.
(2015)
Bischoff et al. (2017)
Lokhandwala and
Cai (2018)
Zwick and Axhausen
(2020b)
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In the majority of the existing ride-pooling simulation studies, a static vehicle fleet is employed,96

meaning that the number of employed vehicles is constant throughout the simulation. Vehicles are97

assumed to operate autonomously and are constantly available to transport passengers or to re-98

balance to areas with high expected demand. In some of the listed studies the impact of varying99

fleet sizes is investigated in different scenarios but during one simulation run the fleet size is static.100

Some simulation studies evaluated the on-demand systems using example scenarios with artificially101

generated demand (Fagnant and Kockelman, 2014; Zhang et al., 2015; Farhan and Chen, 2018) in102

toy scenarios. In recent years, more and more studies were conducted in real-world scenarios taking103

demand from synthetic populations in transport models. Demand was defined either by a certain104

proportion of previous trips being made with ride-pooling or by a mode-choice model. We found105

by far most studies in these two categories, which seems to be plausible given the availability of106

data. Still, the spatio-temporal distribution of demand can differ from real-world on-demand mo-107

bility services and it therefor provides additional realism if historical taxi or ride-pooling requests108

are used as an input for the simulation. Alonso-Mora et al. (2017) and Ruch et al. (2020) used109

open taxi data from New York City and San Francisco, whereas Zwick and Axhausen (2020a) used110

demand data from the ride-pooling operator MOIA in Hamburg that also serves as a data source here.111

112

Less studies taking into account shift times of drivers were found. Bischoff et al. (2017) used113

historical taxi demand and supply from Berlin, and Zwick and Axhausen (2020b) used historical114

demand and shift plans of MOIA in Hamburg to assign a service time to each simulated vehicle with115

begin and end times according to the data. While the temporal distribution of vehicles approximate116

the real-world systems, there are no operational duties for shift breaks or hub returns at an end of a117

shift taken into account. The same accounts for a study of Martinez et al. (2015) who extracted taxi118

demand from a mobility survey and employed shared taxis with drivers weighing up the benefits of119

cruising or heading to a taxi rank to find new customers. Driver shifts were modeled in that a cab120

becomes inactive as soon as the shift ends and returns either to the cab company or, in the case of an121

independent cab, to a randomly chosen network node. The model did not include an actual dynamic122

traffic assignment and assumed fixed travel times. Lokhandwala and Cai (2018) modeled taxi shifts123

in New York City based on aggregated vehicle availability data. They compared the system with124

driver shifts with an autonomous service where all vehicles are active during the entire simulation125

time. They find a lower coverage of low-demand areas in the shift service due to the restricted fleet126

size since vehicles tend to stay in areas with high demand. However, operational challenges that127

come with driver shifts such as hub returns for breaks and shift changes were not modeled.128

129

Overall, we did not find any studies simulating the operational challenges of hub returns for130

breaks and shift changes for on-demand mobility services.131

2.2 Electric vehicles132

Another operational challenge of mobility systems arises when electric vehicles (EVs) are used in-133

stead of internal combustion engine vehicles due to their shorter range and longer charging times134

compared to refueling. Electric vehicles were taken into account in multiple ride-pooling simulation135

studies.136

137

Vosooghi et al. (2020) assessed the impact of different charging policies and battery capacities on138

an autonomous ride-pooling fleet in MATSim (Horni et al., 2016). Vehicles are constantly operating139

and only sent to a charging facility once the state of charge (SoC) is below 20 %. The authors140

found a substantially lower performance of electric fleets with less passenger kilometers transported141

5
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and more empty vehicle kilometers travelled compared to non-electric fleets. System performance142

improvements may be achieved through rapid chargers and a battery swapping policy.143

144

Loeb and Kockelman (2019) come to a similar conclusion. They evaluated the costs of different145

pooled and shared autonomous electric vehicle (SAEV) fleets and state that "starting an SAEV146

fleet from the ground up is not financially advantageous over a traditionally-fueled SAV fleet". Main147

reasons for this conclusion are the higher costs of EVs, replacement batteries and charging stations148

and additional empty VKT in operation. Profits are found to be highest with fast-chargers and149

long-range fleets. Similar to Vosooghi et al. (2020), vehicles are only sent to charge if their SoC is150

below 5 % and they have no other operational duties.151

152

Farhan and Chen (2018) compared a long-range and a short-range pooled SAEV fleet to an153

unpooled fleet and found substantial efficiency gains through pooling with a reduced fleet size of154

roughly 50 % and 30 % less required charging stations. Long-range EVs lead to less required charging155

stations and lower waiting times.156

157

An operational optimization potential of unpooled SAEVs was studied by Iacobucci et al. (2019).158

They optimized the charge scheduling by considering historic electricity price data in Tokyo and159

also evaluated the vehicle-to-grid potential. By using two model-predictive control optimization160

algorithms in parallel, one optimizing the transport service and one optimizing charging, charging161

cost reductions of 10 % are found while service quality reduction is small.162

2.3 Contribution163

In summary, we find that existing simulation studies usually consider autonomous vehicles and do164

not explicitly account for operational constraints in non-autonomous ride-pooling services. Chal-165

lenges of EVs have been studied more frequently.166

167

In order to translate the learnings of the numerous simulation studies to today’s non-autonomous168

ride-pooling systems, we aim to consider the most relevant operational constraints that were learnt169

from the real-world ride-pooling operator MOIA. For this purpose, we are able to use historical shift170

and demand data of the service in Hamburg. This way we can investigate how well simulations171

with autonomous vehicles or pseudo shifts (i.e. vehicles may be active for limited time windows but172

without driver breaks and shift changeovers at hubs) can be used to describe current driver-based173

services by comparing against an explicit simulation of driver shifts and breaks. In addition, by174

direct comparison, this study quantifies the impact that future autonomous vehicles may have on175

quality and efficiency of ride-pooling services.176

177

Our contribution to existing ride-pooling studies is threefold:178

• We add the technical functionality to consider operational duties such as shift breaks and shift179

changes with charging processes to an existing ride-pooling simulation environment.180

• We evaluate the potential of future autonomous services in direct comparison with non-181

autonomous services that are currently in operation. This way, we also assess the comparability182

of most existing ride-pooling studies and currently operating services.183

• We complement the literature of realistic ride-pooling simulation with a simulation scenario184

based on real-world demand and shift data of the ride-pooling operator MOIA.185

6
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3 Methodology186

3.1 Simulation framework187

The simulation is carried out by the Multi-Agent Transport Simulation MATSim (Horni et al.,188

2016), which has been frequently used to study the impact of dynamic transport services (Guru-189

murthy et al., 2019; Vosooghi et al., 2019b; Kaddoura et al., 2020; Yan et al., 2020; Hörl et al., 2021).190

It is an agent-based transport simulation framework that utilizes an iterative, co-evolutionary learn-191

ing approach in which each agent tries to maximize their daily score for a given plan of activities.192

Agents obtain positive scores for performing scheduled activities (such as working) and negative193

scores for traveling or arriving late at an activity. After every iteration, agents evaluate their last194

executed plan with a resulting score. While some agents modify their plan by, e.g., choosing a new195

route or another mode of transport, the remaining agents choose from existing plans based on their196

scores. MATSim eventually leads to a stochastic user equilibrium in which no agent can unilaterally197

increase their perceived score by adapting their plan. MATSim is an open-source Java program.198

199

In our setup we use MATSim as a pure dynamic traffic-assignment model with a fixed demand.200

In addition, the demand is not represented by full activity schedules but by individual ride-pooling201

trips as observed by historic real-world MOIA ride requests. As we are only concerned with the202

ride-pooling service in this study, we ignore other modes such as private cars, public transport or203

walking and any user adaptation between iterations.204

3.2 DRT extension205

There are several MATSim extensions to simulate on-demand mobility systems (Maciejewski, 2016)206

out of which the DRT (demand responsive transit) extension developed by Bischoff et al. (2017)207

has been predominantly used in recent simulation studies. The extension handles incoming requests208

and assigns them to available vehicles in the system. When a trip request with pick-up and drop-off209

coordinates is submitted, the algorithm searches for all vehicles that can serve the request under210

consideration of a maximum wait time and maximum detour for the waiting customer and all211

customers traveling in the vehicle. The algorithm then inserts the new request into the route of the212

vehicle where the least travel delay is imposed on all on-board and planned requests along the route.213

Once selected, the assignment of a customer to a vehicle is binding. If no vehicle is found that can214

serve an incoming request, the request is rejected.215

The pre-defined constraints highly impact the DRT system performance (Bischoff et al., 2017;216

Zwick and Axhausen, 2020b). In order to ensure a good balance between service quality and sys-217

tem performance, we set the maximum wait time to 10 minutes and allow a maximum detour of218

10 minutes + 50 % of the direct ride duration. The stop duration for a pick-up or drop-off is set to219

30 seconds.220

The DRT extension comes with a rebalancing algorithm developed by Bischoff and Maciejewski221

(2020) to ensure that idle vehicles are sent to areas with high expected demand, which has shown222

to improve the system capacity in terms of acceptance rate (Zwick and Axhausen, 2020a).223

3.3 Driver shift and break implementation224

We build upon the existing (electric) DRT extension of MATSim and further extend it with a225

representation of driver shifts and breaks. Therefore, the simulation assumes the following input as226

exogenous input:227

7
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• A description of driver shifts with their start and end times as well as optionally planned228

breaks.229

• A description of hubs and possible in-field break facilities. In-field break facilities can be, for230

instance, existing parking lots at grocery stores or gas stations with optional charging plugs.231

While shift starts and ends are fixed, breaks are defined more flexibly inside a given corridor232

(earliest start time - latest end time) with a fixed duration. In our default setup, the typical break233

duration is set to 30 minutes. To Each operational facility the type hub or in-field can be assigned.234

In addition, each facility has a capacity for parked vehicles and, optionally, a number of chargers for235

electric vehicles.236

237

The basic functionality is provided by a central shift dispatcher that assigns shifts to suitable238

vehicle agents in MATSim. Vehicles can only serve ride-pooling requests as long as they have an239

active shift. Shift start and end times are accounted for in the scheduling of requests and may240

lead to the rejection of requests that would lead a driver to exceed the shift end time. Similarly,241

no requests can be served during driver breaks. Breaks have to be scheduled within their defined242

corridor. Passengers may be picked up/dropped off at the beginning/end of breaks. When a shift243

ends, a changeover period of 15 minutes has to be scheduled for the vehicle, in which no new shift244

can be started. During breaks and changeover times, electric vehicles may be charged if chargers245

are available. Idle vehicles located at hubs with no shift assigned may also be charged.246

247

Figure 1: Basic steps of the central shift dispatcher.

The shift dispatcher applies the following basic procedure in each time step (see Figure 1):248

8
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1. Check end of shifts249

One hour (configurable) before the end of a shift, a changeover task including a relocation to250

the nearest operational hub with enough capacity is scheduled. The remaining trips are still251

served and additional requests may be accepted if the planned shift end is not exceeded.252

2. Check assignment of shifts253

Planned shifts are assigned to suitable vehicles 30 minutes (configurable) ahead of their start254

time. Preferably, an already active vehicle that is about to end its shift and has a minimum255

state of charge (SoC) is assigned. Shifts can only be assigned to vehicles within their service256

time (i.e. their operation time in the autonomous use case). If no suitable vehicle is found,257

the shift remains in the queue and is checked again in the next time step.258

3. Check start of shifts259

The queue of assigned shifts is checked for shifts starting in the given time step. The shift260

start may be delayed by previously delayed shift ends and only starts once the assigned vehicle261

is idle.262

4. Check breaks263

All active shifts are checked whether a break corridor begins. If this is the case, the nearest264

operational facility with enough capacity is identified. The break is scheduled for the end of265

the current vehicle’s schedule. New requests along the route may be served as long as the whole266

duration of the break inside the break corridor is ensured. If required and charger capacity267

permits, the vehicle may be charged during the break. Passengers may be scheduled to be268

picked up after the end of the break.269

5. Check charging at hubs270

The dispatcher checks for all idle vehicles without shifts assigned and parked at hubs whether271

they require re-charging. If a vehicle is not planned to serve a shift until the estimated end272

of charging, a charging task is set up. This step is omitted if conventional cars with internal273

combustion engines (ICE) are simulated.274

Given this basic functionality, an illustrative timeline for a vehicle is depicted in Figure 2. For275

the scheduling of requests, additional hard constraints have been added to the DRT scheduler:276

• Passengers cannot be picked up/dropped off after a shift changeover task.277

• Passengers cannot be picked up/dropped off if the request would violate the break corridor of278

a planned upcoming break task.279

• Passengers cannot be picked up/dropped off if the request would delay the end of a shift (i.e.280

drivers should not work overtime).281

3.4 Charging behaviour282

For the shift and break optimization, we consider a service with electric vehicles. Each vehicle has283

a gross battery capacity of 77 kWh. The hubs are equipped with conventional slow chargers with284

a charging power of 7 kW, whereas the in-field break facilities are equipped with fast chargers with285

a charging power of 100 kW. The numbers are based on a real ride-pooling service (see below), but286

differ slightly.287

It is recommended to keep the vehicles’ SoC between 20 % and 80 % to decrease the batteries’288

9
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Figure 2: Illustrative implementation of driver shifts for a single DRT vehicle.

degradation and ensure efficient charging (Kostopoulos et al., 2020), leading to the following charging289

policies:290

• Vehicles are only charged if their SoC is below 80 %.291

• Vehicles are charged to up to 90 % SoC. We outreach the optimal charging limit of 80 % to292

avoid capacity shortages during high demand hours. Since the vehicle is already plugged in,293

charging it up to 90 % is no additional operational effort.294

• Vehicles can only be picked for a shift if their SoC is above 60 % to ensure that the power295

lasts for the shift.296

• Vehicles stop accepting requests if their SoC is below 15 % to avoid running out of power in297

the field.298

The electric vehicles consume energy while driving and when staying idle during a shift with299

values taken from Ohde et al. (2016). Vehicles that are idle and do not have an active shift do300

not consume energy. Since we only simulate one day, we assume a starting distribution of battery301

charging states that we obtain from the end of a previous simulation day to represent more realistic302

states of charge at the beginning of the day.303

4 Data preparation and scenario setup304

We demonstrate the application of shifts using the stop network, demand and shift data from305

Europe’s largest ride-pooling provider MOIA in Hamburg, Germany. MOIA operates since its launch306

in 2019 with up to 500 vehicles in a 300 km2 service area covering large parts of the city shown in307

Figure 3. Although the input data reflects the real-world service, it should be noted that the ride-308

pooling simulation, the used algorithms and the results only remotely resemble MOIA’s real-world309

operation.310

311

The street network is based on OpenStreetMap5 data and MOIA’s more than 10,000 virtual312

pick-up and drop-off stops are matched on it. We only simulate the ride-pooling service and thus313

observe no congestion through car traffic in the system. In order to obtain realistic travel times314

throughout the day, we use GPS-based speed data of all weekdays in November 2019 from Tom-315

Tom6 and match it to our MATSim network with the help of a map-matching algorithm described316

5www.openstreetmap.org
6www.tomtom.com

10
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Figure 3: Study and service area of the Hamburg scenario, including road network and water areas.

by Yang and Gidófalvi (2018). Based on these matches, the network links’ attributes are updated317

throughout the simulation to reflect current travel times based on a 60 minutes resolution. Thereby,318

each link’s freespeed has been set to the average travel time of the respective GPS data in each given319

time bin.320

321

4.1 Demand and supply data322

We draw upon recorded ride-pooling requests from MOIA to generate the demand. Requests from323

four typical weekend days have been collected between 19/09/2020 and 10/10/2020. We randomly324

sample one fourth of each day’s requests to avoid outlying extreme demand scenarios of a single325

day. All requests are combined and assumed to occur on the same simulated day. In order to avoid326

clustered requests from the same person, which would then be easily poolable in the simulation,327

we excluded all requests from a person within a time range of 30 minutes after the first request.328

Additionally, the departure time of each request is randomized by 10 minutes. In total, the dataset329

contains 24,032 requests with an average trip length of 7.3 km.330

11
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331

Similarly, we sample historic real-world MOIA shifts from these same days and obtain 476 shifts332

in total from 4:45 am to 6:30 am the next day. The time range was chosen by a) making sure to333

cover the time period from 5:00 am to 5:00 am the next day of all requests and b) to include all334

shifts that start on the given simulation day.335

336

Lastly, three hubs with chargers have been defined based on MOIA’s real-world hub locations337

(see Figure 5).338

339

4.2 Scenarios340

We compare multiple service set-ups to evaluate the impact of the operational challenges that come341

with non-autonomous ride-pooling systems. After comparing two autonomous services with the342

shift service, we have a closer look on the impacts of charging and additional hubs or in-field break343

locations.344

4.2.1 Autonomous vs. shift service345

In order to evaluate the impact of operational duties with non-autonomous ride-pooling services346

compared to autonomous ride-pooling services, we apply three different service designs as shown in347

Table 2.348

In the autonomous service, the entire vehicle fleet is available to pick up and drop off passengers

Table 2: Autonomous vs. shift services

Autonomous service Pseudo-shifts service Explicit-shifts service

Initial vehicle lo-
cation

Vehicle hub Vehicle hub Vehicle hub

Final vehicle loca-
tion

Anywhere in-field Anywhere in-field Vehicle hub

Vehicle service
times

No limitation According to shift service
times

According to shift service
times

Rebalancing Yes Yes Yes
Service breaks in
hubs

No No Yes

349

and to be rebalanced throughout the simulated day. All vehicles start their day at one of the hub350

locations but do not need to return to an operational facility. This kind of service has been predom-351

inantly investigated in existing ride-pooling simulation studies as shown in Section 2.352

353

In the pseudo shifts scenario, one autonomous vehicle is generated for each driver shift of the354

input shifts. These vehicles will have a limited service time that equals the planned shift start/end355

times. As such, it mimics a service with driver shifts but without driver breaks and shift changeover356

times including respective hub returns.357

358

In the shift service we consider the shift restrictions, a mandatory break of 30 minutes in one of359

the hubs or in-field break locations and the mandatory return to one of the hubs by the end of each360

shift. This service mimics existing non-autonomous ride-pooling systems including their operational361

12
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constraints.362

363

Figure 4 summarizes the technical setup of the vehicle fleets in the three simulation scenarios.364

Figure 4: Qualitative representation of the three service set-ups. Vehicles are only able to serve
requests when active.

4.2.2 Conventional vs. electric fleets365

After identifying the impacts of explicitly simulating shifts of the ride-pooling service, we add addi-366

tional operational constraints by employing an electric fleet with the assumptions given in Section 3.4.367

We do this after the analysis of the impact of explicit shifts to extract the individual contributions368

of these operational constraints. In addition, the existing electric version of the autonomous service369

in MATSim does not include an efficient charging strategy, as it requires all vehicles to always return370

to their depot for charging once they’re idle, thereby introducing a lot of possibly unnecessary empty371

mileage. A comparison with the implemented charging strategy for the shift service is therefore not372

feasible.373

4.2.3 Shift and break optimization374

Lastly, we investigate on the potential to optimize the electric explicit shift service with additional375

infrastructural facilities. We therefore add more hubs where drivers can do their break, start and376

end their shifts and vehicles can be charged. We incrementally add more hubs to the existing 3 hubs377

to obtain scenarios with 8, 16, 32 and 64 hubs, all equipped with 7 kW slow chargers. While the378

location of the initial three hubs is kept fixed, the location of additional hubs is selected randomly379

among all links in the network within the service area. At the same time, we ensure that each hub is380

at least 1 km away from every other hub. All additional hubs are equipped with chargers and have381

a capacity of 100 vehicles. The resulting distribution of hubs can be seen in Figure 5.382

383

Additionally, we add a new type of facility, in-field break facilities, where drivers can have their384

break and the vehicles can be charged. Still, shifts need to be started and finished at one of the385

three hubs. The in-field locations are meant to be designated areas for parking vehicles during a386

break and could represent, e.g., gas stations which have a contract with the service provider that387

permits temporary parking of a small number of vehicles. Here, the in-field break facilities will have388

the same locations as the hubs in the respective hub-increase scenarios. They are equipped with 2389

fast chargers with a power of 100 kW. The configuration of the services is shown in Table 3.390
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Figure 5: Original MOIA hubs and locations of additional, fictional hubs resulting from the random
sample. Each increase in hubs includes all locations of hubs of the scenarios with fewer hubs.

Table 3: Shift service optimization through additional infrastructural facilities.

Base case Hub increase In-field break facility increase

Number of hubs 3 8 – 64 3
Number of in-field break facilities 0 0 4 – 64

5 Results391

Ride-pooling systems have manifold implications on an existing transport system that need to be392

considered for a comprehensive evaluation. Since we only simulate ride-pooling in this study, we do393

not directly measure inter-dependencies with other transport mode and modal shifts. However, we394

measure the average service quality of the system through the average waiting time and the average395

detour customers experience. Those are two important indicators quantifying the convenience of the396

system, which is necessary for a broad user acceptance.397

398

In addition, we quantify and evaluate the efficiency of the ride-pooling system using several399

performance indicators and compare the impact of different operational designs as well as the ride-400

pooling system to other modes of transportation. The traffic impact may be measured through the401

VKT, empty km and the share of empty km. However, these indicators do not take into account how402

many customers are transported and how well the system pools multiple travel parties. Through the403
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average occupancy, the number of passengers traveling on each vehicle kilometre is also measured.404

This indicator generally shows an efficient system but does not take into account the negative effect405

of long detours, which lead to a higher occupancy. Therefore, Liebchen et al. (2020) proposed a406

performance indicator for ride-pooling systems that takes into account the factors mean detouring,407

mean occupancy and ratio of occupied km, which we introduced as ηRP in a former study (Zwick408

et al., 2021b). Using a mathematical simplification, ηRP can be calculated through the division of409

passenger kilometers booked (PKB) by VKT. The result is also comparable to other modes like car410

or taxi.411

Two other relevant variables are the number of rides and the PKB per vehicle, which are crucial for412

the ride-pooling operator. While the number of rides indicates how large the service is in total, the413

PKB per vehicle indicates how many vehicles are necessary to transport a certain amount of trips414

depending on the average trip length. With a non-autonomous service, the operating vehicle hours415

are also crucial and evaluated here, since drivers need to be employed to maneuver the vehicles.416

5.1 Autonomous vs. shift services417

Table 4 shows the simulation results obtained by the three different scenarios defined in Section 4.2.1.418

Obviously and as expected, a service running with fully autonomous vehicles is able to serve con-419

siderably more ride requests when compared to services with constrained vehicle availability due to420

driver shifts and breaks. As such, the rejection rate increases from 1 % for the autonomous service421

to 13 % and 20 % for the pseudo-shift and explicit-shift simulations, respectively. We can therefore422

observe that, in terms of served/rejected rides, the pseudo-shift simulation is closer to the explicit423

simulation of shifts, even though a significant difference persists which would lead to a more opti-424

mistic evaluation of the service.425

426

The average wait time is substantially lower with a static fleet, which can be explained by a427

better distribution of empty vehicles throughout the entire service area. The pseudo-shift service428

shows similar patterns in terms of detours and waiting times as the explicit-shift service.429

430

In addition to the overall number of rides/requests, the efficiency ηRP may be overestimated if431

shifts are not explicitly modeled. This can be explained by the fact that the explicit consideration432

of shifts includes hub returns for vehicles that need to schedule a break or a driver changeover. This433

leads to more empty kilometers and detours, and consequently to a reduced average occupancy. Dur-434

ing these relocations, the vehicles are also less likely to serve requests that would violate the time or435

detour constraints. In addition, the actual breaks will make the vehicles unavailable for passenger436

requests. Lastly, during both, relocation and breaks, the vehicles cannot be used for strategic fleet437

rebalancing to serve anticipated demand, rendering this strategy less effective. These factors impact438

the service efficiency ηRP. In fact, it can be seen that the pseudo-shift simulation, which disregards439

hub returns and breaks, results in a more optimistic efficiency value of 1.61 when compared to the440

efficiency of 1.44 in explicit-shift simulation. The autonomous service results in the same efficiency441

as the pseudo-shift service. This means that, while considerably less rides can be served in the442

pseudo-shift scenario, these are served with a similar efficiency when compared to the autonomous443

service.444

445

Regarding vehicle hours, which is the time vehicles are actively performing a task, e.g. serving446

customers or rebalancing, the autonomous service results in the highest value with 3,763 hours. This447

is because the whole fleet can be active for the whole day and more rides are served. The pseudo-shift448

approach has the lowest value of 3,249 hours while the explicit shifts simulation, despite serving the449
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least amount of rides, results somewhere in between with a value of 3,584 hours. This can be ex-450

plained by the additional empty relocations of vehicles returning to a hub for breaks and changeover451

activities. The same pattern can be seen in the total vehicle kilometers travelled (VKT).452

453

Another important indicator is the empty kilometer share, which indicates how much of the454

vehicle kilometers are driven without (paying) customers. Again, the explicit-shift simulation leads455

to the worst results, with the highest share of 24.2 % because of hub returns. Since vehicles in the456

pseudo-shift scenario do not need to return to their hubs for breaks or at the end of their shift,457

the pseudo-shift scenario leads to a similar empty-kilometer share as the autonomous service, with458

values between 17.3 % and 18 %.459

460

Table 4: Simulation results for the autonomous, pseudo-shifts and explicit-shift services.

Autonomous service Pseudo-shifts service Explicit-shifts service
Rides 23,839 20,831 19,162
Rejections 193 3,201 4,870
Avg. detour [%] 30.2 26.8 25.9
Avg. wait time [min] 6:11 8:06 8:30
Fleet size 300 476 300
Vehicle hours [h] 3,763 3,249 3,584
VKT [x1000 km] 108.6 95.2 97.3
Empty km 19.5 16.5 23.6
Empty km share [%] 18.0 17.3 24.2
Avg. occupancy 2.10 2.04 1.81
PKB / vehicle 584 510 467
ηRP 1.61 1.61 1.44
PKB: Passenger kilometers booked excluding detours; ηRP = PKB/VKT
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c) Explicit−shifts service

Figure 6: Vehicle occupancy over the course of a simulated day for two autonomous services with
(a) a static fleet and (b) pseudo shifts and (c) for a service with explicit shifts.

Figure 6 shows the vehicle occupancy throughout the simulated day. The highest occupancy461

is observed with the autonomous service, which is not surprising given that all vehicles operate462

throughout the day. Substantially more relocation drives are executed compared to the shift ser-463

vices, which leads to a well-distributed fleet in the service area a lower average wait time compared464

to the shift services. With the pseudo-shift service we observe a similar occupancy but a lower465

first evening peak, for which more shifts would be required to serve the entire demand. During466
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the second evening peak, many vehicles are either idle or relocating, which indicates a slight over-467

supply of shifts. In the explicit-shift service we observe a similar occupancy as with pseudo-shifts.468

However, vehicles cannot transport passengers throughout their service times but relocations take469

place to bring drivers to one of the three vehicle hubs for breaks or shift ends. In Section 5.3 we470

analyze the potential to reduce these hub drives by providing more break and hub facilities in the city.471

472

An overview of the sampled shifts including breaks in the explicit-shift scenario can be seen in473

Figure 7. It becomes obvious that most shifts are active in the late evening/night hours, with a474

peak of almost 300 simultaneously active shifts. However, it is also clear that with the given shift475

plan, the high demand of the first peak shortly before 8:00 pm (see autonomous service in Figure 6)476

cannot be fully served.477

Figure 7: Shift histogram showing the number of shifts and breaks starting/ending/being active in
each 5-minute time bin.

5.2 Impact of charging restrictions478

Next, the simulations with battery electric vehicles and the charging behaviour defined in Section479

3.4 are analyzed. Since the assumptions of Section 3.4 restrict shift assignment to undercharged480

vehicles and require vehicles below a certain SoC to recharge at operational facilities, less vehicles481

are available to operate at certain times of the day. The results shown in Table 5 show a decrease by482

8 % of the number of vehicle hours when vehicles are electric and consequently 8 % less requests are483

served and less passenger km are covered per vehicle and day. The service efficiency, however, is not484

affected negatively and the average occupancy and the introduced efficiency indicator ηRP slightly485

increase, while the empty km share decreases.486

487

Figure 8 presents individual vehicles’ state of charge as well as charger occupancy throughout488

the simulation. It can be seen that vehicles do not fall below roughly 30 % of battery capacity, which489

suggests that no vehicle runs out of battery nor has to decline any requests because of an empty490

battery once on shift. The charging breaks and shift changeovers clearly stick out as little bumps491

in the charging profiles. In terms of charger occupancy, it can be seen that occupancy increases492
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Table 5: Simulation results for the conventional and the electric shift service.

Explicit shifts – conventional Explicit shifts – electric
Rides 19,162 17,561
Rejections 4,870 6,471
Avg. detour [%] 25.9 25.3
Avg. wait time [min] 8:30 8:46
Fleet size 300 300
Vehicle hours [h] 3,584 3,307
VKT [x1000 km] 97.3 88.9
Empty km [x1000 km] 23.6 20.9
Empty km share [%] 24.2 23.5
Avg. occupancy 1.81 1.82
PKB / vehicle 467 430
ηRP 1.44 1.45
PKB: Passenger kilometers booked excluding detours; ηRP = PKB/VKT

during times when many shifts end or pause. The occupancy is not perfectly periodic because of the493

shortcoming of simulating a single day only, which excludes shifts that started late on the previous494

day and start early on the next day. In addition, the simulated day is a Saturday, which sticks out495

in terms of demand compared to the rest of the week.496

Figure 8: State of charge of individual ride-pooling vehicles (left) and charger occupation at hubs
(right) across a simulation day.

5.3 Shift and break optimization497

5.3.1 Hub facility increase498

In a next step, we increase the number of hubs in the service area to evaluate the potential to499

increase service capacity and efficiency through operational facilities. The results of these scenarios500

are summarized in Table 6. It can be seen that the overall number of rides and rejections as well501

as detours and wait times do not change substantially. However, the total number of VKT and the502

(share of) empty kilometers decrease with an increasing number of hubs, which can be explained503

by the fact that vehicles require shorter relocations for breaks and shift changeovers as hubs are504

on average nearer to their current location when scheduling operational stops. Consequently, the505

average occupancy and efficiency ηRP of the system improves from 1.82 to 1.88 and from 1.45 to506
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1.50 respectively. The effects diminish with an increasing number of hubs as can be seen in Figure 9,507

which indicates a kind of saturation effect. The overall impact of an increased number of hubs on508

the ride-pooling service is, therefore, limited.509

Table 6: Impact of hub increase.

3 hubs 8 hubs 16 hubs 32 hubs 64 hubs
Rides 17,561 18,015 17,984 17,761 17,901
Rejections 6,471 6,017 6,048 6,271 6,131
Avg. detour [%] 25.3 25.5 25.4 25.3 25.6
Avg. wait time [min] 8:46 8:41 8:44 8:47 8:42
Vehicle hours 3,307 3,320 3,307 3,274 3,294
VKT [x1000 km] 88.9 89.3 88.8 87.9 88.4
Empty km 20.9 20.0 20.0 19.3 19.2
Empty km share [%] 23.5 22.4 22.5 22.0 21.7
Avg. occupancy 1.82 1.86 1.86 1.87 1.88
PKB / vehicle 430 440 438 437 441
ηRP 1.45 1.48 1.48 1.49 1.50
PKB: Passenger kilometers booked excluding detours; ηRP = PKB/VKT

5.3.2 In-field break facility increase510

Similarly to the increase of hubs, we increase the number of in-field break facilities in which vehicles511

may stop for breaks and charging. Each facility is equipped with two 100 kW chargers to also512

assess the impact of fast chargers. The results of these scenarios are summarized in table 7. The513

empty kilometer share does reduce with increasing number of in-field locations, however the impact514

is even lower than for the scenarios with an increased number of hubs. Up to eight in-field locations,515

the impacts are virtually zero and even in the 64 in-field locations scenario, the empty kilometer516

share merely reduces by 0.4 percentage points when compared to the base case. Different from517

the previous scenario, the number of rides increases and the rejection rate drops to 18.8 % for the518

64-in-field facilities scenario. This can be explained largely by the fact that the in-field chargers519

are defined with fast chargers, which considerably reduce the impact caused by the implemented520

charging restrictions. It should also be noted that the number of served rides is even higher than521

the number of rides in the conventional vehicles scenario shown in table 5. This improvement is522

largely driven by the number of in-field locations that reduce distances for hub returns. The given523

changes in indicators lead to small increases in the efficiency ηRP. In summary, the proposed in-field524

locations may improve the system in marginal amounts in terms of efficiency, while also increasing525

the number of served rides.526

Figure 9 shows the evolution of multiple system performance indicators with an increasing num-527

ber of hubs (yellow) and in-field break facilities. With an increasing number of hubs we observe528

that the number of rides and the PKB per vehicle stagnate, whereas the empty km share drops and529

the efficiency indicator ηRP increases substantially. A different pattern is observed for an increasing530

number of in-field break facilities. Here, the total number of rides and the PKB per vehicle increase,531

meaning that the service capacity increases. In contrast, there is only a slight decrease of the empty532

km share and a slight increase of ηRP.533

On the one hand, the differing effects can be explained through the fast chargers in in-field break534

facilities, which lead to more vehicles being available for the service. On the other hand, hubs not535

only reduce (empty) travel distances to break facilities, but also to hubs at the end of a shift and536

thus reducing the share of empty VKT and increasing ηRP.537

19



PREPRINT

Table 7: Impact of in-field break facilities increase.

3 Hubs +
0 in-field 4 in-field 8 in-field 16 in-field 32 in-field 64 in-field

Rides 17,561 17,826 18,441 18,554 19,198 19,525
Rejections 6,471 6,206 5,591 5,478 4,834 4,507
Avg. detour [%] 25.3 25.3 25.4 25.9 26.2 26.2
Avg. wait time [min] 8:46 8:44 8:38 8:33 8:27 8:24
Vehicle hours 3,307 3,348 3,434 3,451 3,542 3,566
VKT [x1000 km] 88.9 90.1 92.9 93.3 95.6 96.5
Empty km 20.9 21.2 21.9 21.6 22.0 22.3
Empty km share [%] 23.5 23.5 23.5 23.1 23.1 23.1
Avg. occupancy 1.81 1.82 1.83 1.84 1.86 1.86
PKB / vehicle 430 436 451 454 469 475
ηRP 1.45 1.45 1.46 1.46 1.47 1.48
PKB: Passenger kilometers booked excluding detours; ηRP = PKB/VKT

6 Discussion and conclusion538

The application of shifts in the existing ride-pooling extension of MATSim can help to study existing539

services more realistically and to account for operational challenges. At the same time, we show540

the potential of current services to operate an even more efficient and resource-saving service with541

autonomous vehicles. The example scenario with real-world requests and driver shifts applied here542

shows that operational challenges have major impacts on the number of served rides and efficiency.543

Due to multiple fictional parameters such as battery size, energy consumption, in-field break fa-544

cilities or charging infrastructure, the simulation results are not directly comparable with MOIA’s545

real-world service.546

547

It is evident that existing simulation studies of ride-pooling, while providing valuable insights,548

tend to underestimate the required number of vehicles and kilometers traveled to transport a given549

number of customers when applied to current operating services. The results reported here do not550

only show the importance of explicitly modeling operational challenges but also quantify the impact551

of future autonomous applications. It becomes apparent that service efficiency and the number552

of served rides increases considerably. Given the demand and supply of a real-world ride-pooling553

service, we observe that with autonomous vehicles 24 % more requests can be served and the share554

of empty km decreases from 24.2 % to 18 % compared to the current service set-up with shifts.555

In comparison, the conventional taxi fleet of Hamburg had a share of empty km of 53.4 % in 2016556

(BWVI Hamburg, 2017), showing that the current ride-pooling system already adds value to the557

transport system. As operation costs of autonomous vehicles are expected to be lower than for558

current services, for which drivers have to be paid, it is clear that future autonomous fleets may559

yield a high economic potential for service providers.560

561

We present updates to current existing ride-pooling simulations to improve realism of results.562

However, the shown approach still comes with limitations or unsolved questions. One issue is that563

shifts do not necessarily end where they started and the starting location of the shift is only decided564

at the time of vehicle assignment (i.e., 30 minutes before the start of shift), which may impose other565

operational challenges of driver (re-)allocation. Another limitation is that the decision of where to566

start a break is solely based on the distance to the nearest operational facility. However, in some567

cases it could be that it is worth driving to a more distant facility to anticipate higher demand after568
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Figure 9: Service results with increased number of hubs (yellow) and in-field break locations (black).

the break.569

Given the newly developed extension, a future use case could be the investigation of optimizing570

shifts throughout iterations in MATSim. Similar to the co-evolutionary approach in MATSim, shifts571

could be optimized using a genetic algorithm as has been shown by Li and Kwan (2003); Kwan et al.572

(1999); Ramli et al. (2013); Kwan et al. (2001); Dias et al. (2002). An interesting feature would573

be that shifts co-evolve with ride-pooling demand - i.e., shifts adapt to current demand, and user574

adaptation of agents can in return lead to adaption of shifts.575
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