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Abstract
This paper addresses the following question of neural network identifiability: Does
the input–output map realized by a feed-forward neural network with respect to a
given nonlinearity uniquely specify the network architecture, weights, and biases?
The existing literature on the subject (Sussman in Neural Netw 5(4):589–593, 1992;
Albertini et al. in Artificial neural networks for speech and vision, 1993; Fefferman
in Rev Mat Iberoam 10(3):507–555, 1994) suggests that the answer should be yes,
up to certain symmetries induced by the nonlinearity, and provided that the networks
under consideration satisfy certain “genericity conditions.” The results in Sussman
(1992) and Albertini et al. (1993) apply to networks with a single hidden layer and in
Fefferman (1994) the networks need to be fully connected. In an effort to answer the
identifiability question in greater generality, we derive necessary genericity conditions
for the identifiability of neural networks of arbitrary depth and connectivity with an
arbitrary nonlinearity. Moreover, we construct a family of nonlinearities for which
these genericity conditions areminimal, i.e., both necessary and sufficient. This family
is large enough to approximate many commonly encountered nonlinearities to within
arbitrary precision in the uniform norm.
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1 Introduction

Deep learning has become a highly successful machine learning method employed in
a wide range of applications such as optical character recognition [4], image classifi-
cation [5], and speech recognition [6]. In a typical deep learning scenario, one aims
to fit a parametric model, realized by a deep neural network, to match a set of training
data points. In order to make the ensuing discussion more concrete, we begin with the
definition of a neural network and the map it realizes under a nonlinearity.

Definition 1 (Neural network) We call an ordered sequence

N = (D0, D1, . . . , DL ; W 1, θ1, W 2, θ2, . . . , W L , θ L),

a neural network, where

– L is a positive integer, referred to as the depth of N ,
– (D0, D1, . . . , DL) is an (L + 1)-tuple of positive integers, called the layout,
– W � = (W �

jk) ∈ R
D�×D�−1 , � ∈ {1, . . . , L}, arematrices whose entries are referred

to as the network’s weights, and
– θ� = (θ�

j ) ∈ R
D� , � ∈ {1, . . . , L}, are vectors of the so-called biases.

Furthermore, we stipulate that none of the W �, � ∈ {1, . . . , L}, have an identically
zero row or an identically zero column.

Definition 2 Given a neural networkN and a nonlinear function ρ : R → R, referred
to as the nonlinearity, we define the map realized by N under ρ as the function
〈N 〉ρ : R

D0 → R
DL given by

〈N 〉ρ(x) = ρ (W L(ρ (W L−1(. . . ρ (W 1x + θ1) . . . ) + θ L−1)) + θ L), x ∈ R
D0 ,

where ρ acts on real vectors in a componentwise fashion.

The requirement that the matrices W � in Definition 1 have nonzero rows corresponds
to the absence of nodes whose contributions depend on the biases only, and are there-
fore constant as functions of the input. Similarly, columns that are identically zero
correspond to nodes whose contributions do not enter the computation at the next
layer. The map of a neural network failing this requirement can be realized by a net-
work obtained by simply removing such spurious nodes. In practical applications,
the numbers L, D0, D1, . . . , DL are typically determined through heuristic consider-
ations, whereas the coefficients W �, θ� of the affine maps x �→ W �x + θ� are learned
based on training data. For an overview of practical techniques for deep learning, see
[7]. Neural networks are often studied as mathematical objects in their own right, for
instance in approximation theory [8–11] and in control theory [12,13]. In this context,
a natural question is that of identification: Can a neural network be uniquely identi-
fied from the map it is to realize? Specifically, we will be interested in identifiability
according to the following definition.
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Definition 3 (Identifiability) Given positive integers Din and Dout , define N Din ,Dout

to be the set of all neural networks whose layouts (D0, . . . , DL) satisfy D0 = Din

and DL = Dout , but are otherwise arbitrary. Let N be a subset of N Din ,Dout , ρ a
nonlinearity, and ∼ an equivalence relation on N Din ,Dout .

(i) We say that ∼ is compatible with (N , ρ) if, for all N1,N2 ∈ N ,

N1 ∼ N2 �⇒ 〈N1〉ρ(x) = 〈N2〉ρ(x), ∀x ∈ R
Din .

(ii) We say that (N , ρ) is identifiable up to ∼ if, for all N1,N2 ∈ N ,

〈N1〉ρ(x) = 〈N2〉ρ(x), ∀x ∈ R
Din �⇒ N1 ∼ N2.

Thus, by informally saying that a neural network N1 in a certain class is identifi-
able, we mean that any neural network N2 in the same class giving rise to the same
output map, i.e., 〈N1〉ρ = 〈N2〉ρ , is necessarily equivalent to N2. The role of the
equivalence relation ∼ in the previous definition is thus to “measure the degree of
non-uniqueness,” and in particular, to accommodate symmetries within the network
that may arise either from symmetries induced by the network weights and biases
(such as the presence of clone pairs, to be introduced in Definition 5), symmetries of
the nonlinearity (e.g., tanh is odd), or both simultaneously. These abstract concepts
will be incarnated momentarily when discussing the seminal work by Fefferman [3],
and in Sect. 2 through Definitions 4 and 5, as well as in the examples leading up to
the formulation of the paper’s main results.

In [3], Fefferman showed that neural networks satisfying the following generic-
ity conditions are, indeed, uniquely determined by the map they realize under the
nonlinearity ρ = tanh, up to certain obvious isomorphisms of networks:

Assumptions 1 (Fefferman’s genericity conditions)

(i) θ�
j �= 0, for all � and j , and |θ�

j | �= |θ�
j ′ |, for all � and j, j ′ with j �= j ′.

(ii) W �
jk �= 0, for all �, j , and k, and

(iii) for all �, k and j, j ′ with j �= j ′,

W �
jk/W �

j ′k /∈
{

p/q : p, q ∈ Z, 1 ≤ q ≤ 100D2
�

}
.

More precisely, for fixed positive integers Din and Dout , Fefferman showed that
(N Din ,Dout

A1 , tanh) is identifiable up to ∼±, where N Din ,Dout
A1 is defined as the set of

all neural networks in N Din ,Dout satisfying Assumptions 1, and ∼± is defined by
stipulating that N ∼± Ñ if and only if

(i) L = L̃ and (D0, D1, . . . , DL) = (D̃0, D̃1, . . . , D̃L), and
(ii) there exists a collection of signs {ε�

j : 0 ≤ � ≤ L, 1 ≤ j ≤ D�}, ε�
j ∈ {−1,+1},

and permutations γ� : {1, . . . , D�} → {1, . . . , D�} such that

– γ� is the identity permutation and ε�
j = +1 , j ∈ {1, . . . , D�}, whenever � = 0

or � = L , and
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– for all � ∈ {1, . . . , L}, k ∈ {1, . . . , D�−1}, and j ∈ {1, . . . , D�},

W̃ �
jk = ε�

j W �
γ�( j)γ�−1(k)ε

�−1
k , and θ̃ �

j = ε�
jθγ�( j).

It canbeverified that∼± is an equivalence relationonN Din ,Dout
A1 .NetworksN , Ñ such

thatN ∼± Ñ are said to be isomorphic up to sign changes. The permutations γ� reflect
the fact that the ordering of the neurons in the hidden layers 1, . . . , L −1 is not unique,
whereas the freedom in choosing the signs ε�

j reflects that tanh is an odd function. It can
be verified that any two networks isomorphic up to sign changes give rise to the same
mapunder the tanh nonlinearity, so∼± is compatiblewith (N Din ,Dout

A1 , tanh). The crux
of Fefferman’s result therefore lies in proving the converse statement, namely that two
networks giving rise to the same map with respect to tanh are necessarily isomorphic
up to sign changes. This is effected by the insight that the depth, the layout, and the
weights and biases of a network N ∈ N Din ,Dout

A1 are encoded in the geometry of the
singularities of the analytic continuation of 〈N 〉tanh.

We note that Fefferman distilled the precise conditions of Assumptions 1 from his
proof technique, in order to define a class of neural networks that is, on the one hand,
sufficiently small to guarantee identifiability, and on the other hand, sufficiently large to
encompass “generic” networks. Indeed, if we consider the network weights and biases
(W 1, θ1, . . . , W L , θ L) as elements of the space R

D1×D0 × R
D1 × · · ·× R

DL×DL−1 ×
R

DL , then Assumptions 1 rule out only a set of measure zero. In the contemporary
practical machine learning literature, however, a network satisfying Assumptions 1
would hardly be considered generic, as Part (i) of Assumptions 1 implies that all
biases are nonzero, and Part (ii) imposes full connectivity throughout the network.

Indeed, Fefferman remarks explicitly that itwould be interesting to replaceAssump-
tions 1 with minimal hypotheses, and to study nonlinearities other than tanh. The
present paper aims to address these two issues. Characterizing the fundamental nature
of conditions necessary for identifiability with respect to a fixed nonlinearity, even a
simple one such as tanh, is likely a rather formidable task. In fact, the minimal identifi-
ability conditions may generally depend on “fine” properties of the nonlinearity under
consideration, and it is hence unclear how much insight can be obtained by having
conditions that are specific to a given nonlinearity. We will thus be interested in an
identification result with very mild conditions on the weights and biases of the neural
networks to be identified, while still accommodating a broad class of nonlinearities.

2 Contributions

We begin with two motivating examples. These lead up to the statements of our main
contributions,whose corresponding proofs are developed in the remainder of the paper.
We consider nonlinearities ρ which are not necessarily odd (as tanh), and thus need
an equivalence relation which dispenses with sign changes.

Definition 4 (Neural network isomorphism) We say that the neural networks N and
Ñ are isomorphic, and write N � Ñ , if

(i) L = L̃ and (D0, D1, . . . , DL) = (D̃0, D̃1, . . . , D̃L), and
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(ii) there exist permutations γ� : {1, . . . , D�} → {1, . . . , D�} such that

– γ� is the identity permutation for � = 0 and � = L , and
– for all � ∈ {1, . . . , L}, k ∈ {1, . . . , D�−1}, and j ∈ {1, . . . , D�},

W̃ �
jk = W �

γ�( j)γ�−1(k), and θ̃ �
j = θγ�( j).

In the remainder of the paper, wewill work exclusively with isomorphisms in the sense
of Definition 4. Note that any two isomorphic networks give rise to the same map with
respect to any nonlinearityρ, and thus� is an equivalence relation compatiblewith any
pair (N , ρ). The requirement that γ� be the identity map for � ∈ {0, L} in the previous
definition again corresponds to the fact that the inputs and the outputs of a neural
network are not generally interchangeable. Indeed, suppose that N ρ : R

2 → R
2,

N ρ(x, y) = (x, 2y) is themapof a neural networkwith respect to somenonlinearityρ.
LetN1,N2, andN3 be the networks obtained fromN by interchanging the inputs ofN ,
the outputs ofN , and both inputs and outputs, respectively. Then,N ρ

1 (x, y) = (y, 2x),
N ρ

2 (x, y) = (2y, x), and N ρ
3 (x, y) = (2x, y) are, indeed, distinct functions. We

now give an example that Fefferman uses to motivate the necessity of restricting the
class of all neural networks N Din ,Dout to a smaller class to be identifiable up to
an equivalence relation. In Fefferman’s case, the equivalence relation is ∼±, but the
example is equally pertinent to the relation �. Suppose that N is a neural network
with L ≥ 2, and �0, j1, j2 with 1 ≤ �0 ≤ L − 1 and 1 ≤ j1 < j2 ≤ D�0 are such that
θ

�0
j1

= θ
�0
j2

and W �0
j1k = W �0

j2k , for all k. Then, if Ñ is obtained from N by replacing

W �0+1
1 j1

and W �0+1
1 j2

with an arbitrary pair of numbers W̃ �0+1
1 j1

and W̃ �0+1
1 j2

such that

W �0+1
1 j1

+ W �0+1
1 j2

= W̃ �0+1
1 j1

+ W̃ �0+1
1 j2

, then 〈Ñ 〉ρ = 〈N 〉ρ , for any ρ. This example
motivates the following definition.

Definition 5 (No-clones condition) Let N be a neural network as in Definition 1. We
say thatN has a clone pair if there exist � ∈ {1, . . . , L} and j, j ′ ∈ {1, . . . , D�} with
j �= j ′ such that

(θ�
j , W �

j1, . . . , W �
j D�−1

) = (θ�
j ′, W �

j ′1, . . . , W �
j ′ D�−1

).

If N does not have a clone pair, we say that N satisfies the no-clones condition.

As the nonlinearity ρ in the example above is completely arbitrary, the no-clones
condition is necessary to have any hope of obtaining identifiability up to �. Hence,
with our program in mind, given positive integers Din and Dout , we define

N Din ,Dout
nc = {N ∈ N Din ,Dout : N satisfies the no-clones condition},

and seek nonlinearities ρ such that (N Din ,Dout
nc , ρ) is identifiable up to�. As any class

strictly containingN Din ,Dout
nc , pairedwith any nonlinearity, fails identifiability up to�,

the no-clones condition furnishes a canonical minimal assumption for identifiability
up to �. Similarly to N Din ,Dout

A1 , the class N Din ,Dout
nc , paired with any measurable

nonlinearity ρ such that lim
x→∞ ρ(x) and lim

x→−∞ ρ(x) exist and are not equal, satisfies
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the universal approximation property in the sense of Hornik [14] and Cybenko [15].
The following example demonstrates that insisting on the no-clones condition as the
only assumption on the weights, biases, and layout will necessarily come at the cost
of restricting the class of nonlinearities that allow for identifiability. Let ρ(x) =
min{1,max{0, x}} be the clipped rectified linear unit (ReLU) function. Note that

ρ

(
ρ (x) − 1

2
ρ (2x) − 1

2
ρ (2x − 1) + 0

)
= 0, for all x ∈ R.

Now, given an arbitrary neural network N = (W 1, θ1, W 2, θ2, . . . , W L , θ L) with
DL = 1 satisfying the no-clones condition, the network

N0 =
(

W 1, θ1, W 2, θ2, . . . , W L , θ L ,
(
1
2
2

)
,
( 0

0−1

)
,

(
1 − 1

2
− 1

2

)
, 0

)

also satisfies the no-clones condition, and yields the identically zero output, i.e.,N ρ
0 ≡

0. We have thus constructed an infinite collection of distinct networks satisfying the
no-clones condition and all yielding the identically zero map. The class of identically
zero output maps therefore contains networks of different depths and layouts, and
thus identifiability up to � fails. This leads to the conclusion that a uniqueness result
for neural networks with the clipped ReLU nonlinearity would need to encompass
genericity conditionsmore stringent than the no-clones condition. Nonetheless, we are
able to construct a class of real meromorphic nonlinearities σ yielding identifiability
without any assumptions on the neural networks beyond the no-clones condition, and
which is large enough to uniformly approximate any piecewise C1 nonlinearity ρ with
ρ′ ∈ BV (R), where

BV (R) =
{

f ∈ L1(R) : ‖ f ‖BV (R) := sup
ϕ∈C1

c (R)
‖ϕ‖L∞(R)≤1

∫

R

f (x)ϕ′(x)dx < ∞
}

is the space of functions of bounded variation on R.
Concretely, we have the following main result of this paper.

Theorem 1 (Uniqueness Theorem) Let Din and Dout be arbitrary positive integers.
Furthermore, let ρ be a piecewise C1 function with ρ′ ∈ BV (R) and let ε > 0. Then,
there exists a meromorphic function σ : D → C, D ⊃ R, σ(R) ⊂ R such that
‖ρ − σ‖L∞(R) < ε and (N Din ,Dout

nc , σ ) is identifiable up to �.

We note that, having fixed the input and output dimensions Din and Dout , the depths
and the layouts of the networks in N Din ,Dout

nc are completely arbitrary. Examples of
nonlinearities ρ(x) covered by Theorem 1 include many sigmoidal functions such as
the aforementioned clipped ReLU, the logistic function 1

1+e−x , the hyperbolic tan-
gent tanh(x), the inverse tangent arctan(x), the softsign function x

1+|x | , the inverse
square root unit x√

1+ax2
, the clipped identity x

max{1,|x |/a} , and the soft clipping function
1
a log 1+eax

1+ea(x−1) , where a > 0 is fixed in the last two cases. Unbounded nonlinearities
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such as the ReLU are not comprised. The nonlinearities σ for which we have iden-
tifiability, unfortunately, need to be constructed, and, at the present time, we do not
have an identification result for arbitrary given σ . Furthermore, we remark that the
statement of Theorem 1 is “not continuous” in the approximation error ε. Indeed,
while the clipped ReLU function satisfies the conditions of Theorem 1, as shown in
the example above, there exist non-isomorphic networks N0 and Ñ0 satisfying the
no-clones condition and 〈N0〉ρ(x) = 0 = 〈Ñ0〉ρ(x), for all x ∈ R

D0 , where ρ is
the clipped ReLU function. We will see that Theorem 1 is, in fact, a consequence of
the following result, which states that the maps realized by pairwise non-isomorphic
networks with DL = 1, under a nonlinearity σ according to Theorem 1, are linearly
independent functions R

D0 → R.

Theorem 2 (Linear Independence Theorem) Let Din be an arbitrary positive integer,
let ρ be a piecewise C1 function with ρ′ ∈ BV (R), and let ε > 0. Then, there exists a
meromorphic function σ : D → C, D ⊃ R, σ(R) ⊂ R such that ‖ρ − σ‖L∞(R) < ε

with the following property: Suppose that N j , j = 1, 2, . . . , n, are pairwise non-

isomorphic (in the sense of �) neural networks in N Din ,1
nc . Then, {〈N j 〉σ }n

j = 1 ∪ {1}
is a linearly independent set of functions R

D0 → R, where 1 denotes the constant
function taking on the value 1.

Remark The function 1 is included in the linearly independent set both for the sake of
greater generality of the statement, and to facilitate the proof of Theorem 2.

Unfortunately, Theorem 2 does not generalize to multiple outputs Dout > 1, as
shown by the following example: Fix an arbitrary networkN according to Definition 1
such that L ≥ 2, DL = 4, θL = 0, and N satisfies the no-clones condition. Define
U m ∈ R

2×DL−1 , m ∈ {1, 2, 3, 4}, as the submatrices of W L consisting of the rows 1
and 3, 1 and 4, 2 and 4, and 2 and 3, respectively. Furthermore, define the networks

Nm := (D0, D1, . . . , DL−1, 2; W 1, θ1, W 2, θ2, . . . , W L−1, θ L−1, U m, 0),

for m ∈ {1, 2, 3, 4}. As N satisfies the no-clones condition, the networks Nm , m ∈
{1, 2, 3, 4}, also satisfy the no-clones condition, and are pairwise non-isomorphic.

Now, let ρ be an arbitrary nonlinearity, and write 〈N 〉ρ = ( f1, f2, f3, f4), where
fm : R

D0 → R, m ∈ {1, 2, 3, 4}. Then,

〈N1〉ρ = ( f1, f3), 〈N2〉ρ = ( f1, f4), 〈N3〉ρ = ( f2, f4), and 〈N4〉ρ = ( f2, f3),

and so

〈N1〉ρ − 〈N2〉ρ + 〈N3〉ρ − 〈N4〉ρ =
(
0 + f1 − f1 + f2 − f2
0 + f3 − f4 + f4 − f3

)
= 0.

The set {〈Nm〉ρ}4m = 1 is hence linearly dependent, showing that Theorem 2 cannot

be generalized to multiple outputs by replacing N Din ,1
nc with N Din ,Dout

nc . We now
provide a panorama of the proofs of Theorems 1 and 2. The proof of Theorem 1 is
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by way of contradiction with Theorem 2. Specifically, assume that Din , Dout , ρ, and
ε > 0 are as in the statement of Theorem 1, and let σ be a nonlinearity satisfying the
conclusion of Theorem 2 with these Din , ρ, and ε. For a network N ∈ N Din ,Dout

nc ,
we write the map 〈N 〉σ = ((〈N 〉σ )1, . . . , (〈N 〉σ )Dout

)
in terms of the coordinate

functions (〈N 〉σ ) j : R
Din → R, j ∈ {1, . . . , Dout }. Now, let N1,N2 ∈ N Din ,Dout

nc
be networks such that 〈N1〉σ (x) = 〈N2〉σ (x), for all x ∈ R

Din , and suppose by way
of contradiction that they are non-isomorphic. We construct a networkM containing
both N1 and N2 as subnetworks (a precise definition of “subnetwork” is given in
Sect. 3, Definition 9). It follows thatM contains subnetworksMm, j ∈ N Din ,1

nc with
maps satisfying 〈Mm, j 〉σ = (〈Nm〉σ ) j , for m ∈ {1, 2} and j ∈ {1, . . . , Dout }. We
then show that, as a consequence of N1 and N2 being non-isomorphic, there exists a
j ∈ {1, . . . , Dout } such that M1, j and M2, j are non-isomorphic. But then

0 · 1 + 〈M1, j 〉σ − 〈M2, j 〉σ = (〈N1〉σ ) j − (〈N2〉σ ) j = 0,

which stands in contradiction to Theorem 2. This completes the proof of Theorem 1.
The proof of Theorem 2 is significantly more involved, as it requires extensive “fine

tuning” of the function σ . Let σ : D → C be as in the statement of Theorem 2. In
addition to the properties stated in Theorem 2, the function σ we construct exhibits
the following convenient structural properties:

(1) The domainD ⊂ C of σ is the complement of an (infinite) discrete set of poles,
(2) σ is i-periodic, i.e., σ(z + i) = σ(z), for all z ∈ D, and
(3) for any network N ∈ N 1,1, the natural domain D〈N 〉σ ⊂ C of 〈N 〉σ , viewed

as a holomorphic function, is the complement of a closed countable subset of C,
and therefore a connected open set.

These three properties are all satisfied by the function tanh(π ·), and are essentially
the key insight leading to Fefferman’s identifiability result in [3], which establishes
that, under the genericity conditions stated in Assumptions 1, a neural network can
be read off from the asymptotic (as the imaginary part of the argument tends to infin-
ity) locations of the singularities of the map it realizes under the tanh nonlinearity.
The properties (1)–(3) will be key to our results as well, but instead of studying the
set of singularities of the map in its own right, our proof of Theorem 2 will proceed
by contradiction. The proof consists of three steps that we call amalgamation, input
splitting, and input anchoring, and involves the use of analytic continuation, graph-
theoretic constructions, and Kronecker’s theorem [16], the latter two of which are
novel tools in this context and signify a significant departure from Fefferman’s proof
technique in [3].Wenowbrieflydescribe the proof ofTheorem2according to the afore-
mentioned program. Suppose that N1, . . . ,Nn are pairwise non-isomorphic neural
networks satisfying the no-clones condition. For the sake of simplicity of this infor-
mal discussion, we assume that L1 = L2 = · · · = Ln , D1

0 = D2
0 = · · · = Dn

0 = 1,
and D1

L1
= D2

L2
= · · · = Dn

Ln
= 1. By way of contradiction, we suppose that there

exists a nontrivial linear combination such that λ01(x) +∑n
j=1 λ jN σ

j (x) = 0, for all
x ∈ R.

Amalgamation. In Sect. 3, we construct a neural network M ∈ N 1,n
nc , called the

amalgam of {N j }n
j = 1, containing each N j as a subnetwork. In particular, we have
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(〈M〉σ ) j = 〈N j 〉σ , for all j ∈ {1, . . . , n}. The linear dependence of {〈N j 〉σ }n
j = 1∪{1}

thus translates to

λ0 +
n∑

j=1

λ j (〈M〉σ ) j (z) = 0, (1)

for all z ∈ R. By our construction of σ , the natural domains D〈N j 〉σ = D(〈M〉σ ) j

are complements of closed countable sets, and hence, by analytic continuation, (1) is
valid for all z ∈ ⋂n

j=1D〈N j 〉σ . Now define M to be the set of all neural networks

in
⋃n

m=1N
1,m

nc with linear dependency as in (1) between the output functions and
the constant function. Note that M is non-empty, simply as M ∈ M . We then fix
a network M′ ∈ M of minimum size (the precise definition of size will be given
in the proof of Theorem 4). Write (1, DM′

1 , . . . , DM′
m ) for the layout of M′, and

let (ω1, . . . , ωDM′
1

) be the weights of the first layer of M′ (i.e., the entries of W 1

according to Definition 1). At this point, the proof splits into two cases, depending on
whether there exist j, j ′ ∈ {1, . . . , DM′

1 }, j �= j ′, such that ω j/ω j ′ is irrational.
Input splitting, the easy case. Provided there do exist such j and j ′, we use Kro-

necker’s theorem [16] and the properties (i)–(iii) of σ to construct a networkM′′ ∈ M
with layout (k, DM′

1 , . . . , DM′
m ), for some k ∈ {2, . . . , DM′

1 }, and first-layer weights
W̃ 1 ∈ R

DM′
1 ×k such that the first k rows of W̃ 1 form a k × k identity matrix.

Input anchoring. We then construct a third network N ∈ M , obtained by fixing
k − 1 of the k inputs of M′′ to specific real numbers, and “cutting out” all the parts
of the network whose contributions to the output map have become constant in the
process. The resulting network N will be a network in M of size smaller than M′,
which contradicts the minimality ofM′, and thereby completes the proof.

Input splitting, the hard case. If, however, all the ratios ω j/ω j ′ , j �= j ′ are rational,
the input splitting construction described above cannot be carried out. This problem
will be remedied by further refining our initial construction of σ . Specifically, we will
ensure that the real parts of the poles of σ form a subset of R satisfying what we call
the self-avoiding property, to be introduced in Sect. 5. This will enable an alternative
construction of a networkM′′ with at least two inputs. The resultingM′′ will, however,
not be a neural network in the sense of Definition 1, but rather a generalized network
in the sense of Definition 8, to be introduced in Sect. 3.

Input anchoring. Finally, we apply an input anchoring procedure to M′′ similar
to the one described above. Even though now M′′ is not a network in the sense of
Definition 1, the input anchoring procedure will result in a networkN ∈ M which is a
network in the sense of Definition 1, and is of smaller size thanM′, again completing
the proof by contradiction.

We conclude this section by laying out the organization of the remainder of the
paper. In Sect. 3, we develop a graph-theoretic framework needed to define amalgams
of neural networks and several other technical concepts. In Sect. 4,we state results from
complex analysis and Kronecker’s theorem needed in arguments involving analytic
continuation and input splitting, respectively. The proofs of these results are relegated
to the Appendix. In Sect. 5, we discuss the fine structural properties of the function σ
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constructed in the proof of Theorem 2. Finally, Sect. 6 contains the proofs of our two
main results.

3 Directed Acyclic Graphs, General Neural Networks, and Neural
Network Amalgams

As already mentioned, in the proof of Theorem 2 we will work with a form of neural
networks that does not fit in with Definitions 1 and 2. In order to accommodate this
notion of neural networks, and to lighten the manipulations needed to formalize the
aforementioned techniques of amalgamation and input anchoring, we introduce a
graph-theoretic framework.

We start by introducing the concept of a directed acyclic graph (DAG), commonly
encountered in the graph theory literature [17].

Definition 6 (Directed acyclic graph)

– A directed graph is an ordered pair G = (V , E) where V is a finite set of nodes,
and E ⊂ V × V is a set of directed edges.

– A directed cycle of a directed graph G is a set {v1, . . . , vk} ⊂ V such that, for
every j ∈ {1, . . . , k}, (v j , v j+1) ∈ E , where we set vk+1 := v1.

– A directed graph G is said to be a directed acyclic graph (DAG) if it has no directed
cycles.

We interpret an edge (v, ṽ) as an arrow connecting the nodes v and ṽ and pointing at
ṽ.

Definition 7 (Parent set, input nodes, and node level) Let G = (V , E) be a DAG.

– We define the parent set of a node by par(v) = {̃v : (̃v, v) ∈ E}.
– We say that v ∈ V is an input node if par(v) = ∅, and we write In(G) for the set
of input nodes.

– We define the level lv(v) of a node v ∈ V recursively as follows. If par(v) = ∅,
we set lv(v) = 0. If par(v) = {v1, v2, . . . , vk} and lv(v1), lv(v2), . . . , lv(vk) are
defined, we set lv(v) = max{lv(v1), lv(v2), . . . , lv(vk)} + 1.

Since the graph G in Definition 7 is assumed to be acyclic, the level is well defined for
all nodes of G. We are now ready to introduce our generalized definition of a neural
network.

Definition 8 A general feed-forward neural network (GFNN) is an ordered sextuple
N = (V , E, Vin, Vout ,�,), where

– G = (V , E) is a DAG, called the architecture of N ,
– Vin = In(G) is the set of inputs of N ,
– Vout ⊂ V \ Vin is the set of outputs of N ,
– � = {ωṽv ∈ R \ {0} : (v, ṽ) ∈ E} is the set of weights of N , and
–  = {θv ∈ R : v ∈ V \ Vin} is the set of biases of N .

The depth of a GFNN is defined as L(N ) = max{lv(v) : v ∈ V }.
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Fig. 1 A GFNN of depth 3 with
input nodes {u1, u2, u3} and
output nodes {w1, w2, w3}. The
node levels are indicated by the
numbers inside the circles. Note
that the output node w3 is not a
“final node,” i.e., it has outgoing
edges. As there is an edge
(u3, v) connecting nodes of
non-consecutive levels, the
network is not layered

When translating from Definition 1 to Definition 8, we will interpret a zero weight
W �

jk = 0 simply as the absence of a directed edge between the nodes concerned, hence

we do not allow the edges of a GFNN to have zero weight. If V 1 and V 2 are the sets
of nodes of GFNNs N1 and N2, respectively, and v ∈ V 1 ∩ V 2, we will say that N1
and N2 share the node v. When dealing with several networks sharing a node v, we
will write parN (v) for the parent set of v in the architecture (V , E) of N , to avoid
ambiguity. Note that the set of outputs of a GFNN can be an arbitrary subset of the
non-input nodes. In particular, Vout can include nodesw with lv(w) < L(N ). Related
to the concept of the parent set of a node is the concept of a subnetwork introduced
next.

Definition 9 (Subnetwork and ancestor subnetwork)LetN = (V , E, Vin, Vout ,�,)

be a GFNN. A subnetwork of N is a GFNN N ′ = (V ′, E ′, V ′
in, V ′

out ,�
′,′) such

that there exists a set S ⊂ V so that

(i) V ′ = {v ∈ V : v ∈ parr (u) for some r ≥ 0}, where, for a set W ⊂ V , we define
par0(W ) = W and parr (W ) =⋃s∈W parr−1(par(s)), for r ≥ 1.

(ii) E ′ = {(v, ṽ) ∈ E : v, ṽ ∈ V ′},
(iii) V ′

in = Vin ∩ V ′,
(iv) �′ = {ωṽv : (v, ṽ) ∈ E ′}, and
(v) ′ = {θv : v ∈ V ′}.

If additionally V ′
out = S, then N ′ is uniquely specified by S. In this case, we say that

N ′ is the ancestor subnetwork of S in N , and write N (S) for this network.

Definition 10 A layered feed-forward neural network (LFNN) is a GFNN satisfying
lv(̃v) = lv(v) + 1, for all (v, ṽ) ∈ E .

For an example of a GFNN that is not layered, see Fig. 1. We notice that LFNNs
correspond to neural networks as specified by Definition 1, with the nodes of level �

corresponding to the �-th network layer. Specifically, ifN = (V , E, Vin, Vout ,�,)

is a LFNN, we can label the nodes {v ∈ V : lv(v) = �} by v�
j , j = 1, . . . , D�,

and let θ�
j = θv�

j
, W �

jk = ω
v�

j v
�−1
k

when (k, j) ∈ E and W �
jk = 0 else. Apropos, this

correspondence is the reason for the indices of the weightωṽv associated with the edge
(v, ṽ) of a GFNN appearing in “reverse order.” The following definition generalizes
Definition 2 to GFNNs.
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Fig. 2 The networkN1 consists
of the elements in red and black,
andN2 consists of the elements
in blue and black. Thus,N1 and
N2 share the nodes u1, u2, and
w1, even though the functions
〈w1〉ρ,N1 and 〈w1〉ρ,N2 may
be “completely unrelated”

Definition 11 (Output maps of nodes and networks) LetN = (V , E, Vin, Vout ,�,)

be a GFNN, and let ρ : R → R be a nonlinearity. The map realized by a node v ∈ V
under ρ is the function 〈v〉ρ : R

Vin → R defined recursively as follows:

– If v ∈ Vin , set 〈v〉ρ(t) = tv , for all t = (tu)u∈Vin ∈ R
Vin .

– Otherwise set 〈v〉ρ(t) = ρ
(∑

u∈par(v) ωvu · 〈u〉ρ (t) + θv

)
, for all t ∈ R

Vin .

The map realized by N under ρ is the function 〈N 〉ρ : R
Vin → R

Vout given by
〈N 〉ρ = (〈w〉ρ)w∈Vout . When dealing with several networks we will write 〈v〉ρ,N for
the map realized by v in N , to avoid ambiguity.

We will treat nodes v ∈ V only as “handles,” and never as variables or functions. This
is relevant when dealing with several networks with shared nodes, such as depicted in
Fig. 2. On the other hand, the output map 〈v〉ρ realized by v is a function.

In the special case when the nonlinearity is holomorphic on a neighborhood of
R, the output maps realized by the nodes of a network will extend to holomorphic
functions on their natural domains, as given by the following definition.

Definition 12 (Natural domain) Let N = (V , E, Vin, Vout ,�,) be a GFNN, and
let σ : Dσ → C be a function holomorphic on an open domainDσ ⊃ R and such that
σ(R) ⊂ R. For a node v ∈ V , we define the natural domain D〈v〉σ ⊂ C

Vin and extend
the definition of the function 〈v〉σ : D〈v〉σ → C recursively as follows:
– For v ∈ Vin , let D〈v〉σ =C

Vin , and set 〈v〉σ (z) = zv , for all z = (zu)u∈Vin ∈ C
Vin .

– Otherwise, setD〈v〉σ=
{
z ∈⋂u∈par(v) D〈u〉σ :∑u∈par(v) ωvu 〈u〉σ (z) + θv ∈ Dσ

}
,

and let 〈v〉σ (z) = σ
(∑

u∈par(v) ωvu · 〈u〉σ (z) + θv

)
, for all z ∈ D〈v〉σ .

It follows that the natural domainD〈u〉σ of a node u is open, as it is the preimage of an
open set with respect to a continuous map. Moreover, the output map 〈u〉σ realized by
u is holomorphic on D〈u〉σ , as it is given explicitly by a concatenation of affine maps
and the nonlinearity σ , which are themselves holomorphic functions.

The following definition is a straightforward generalization of Definition 5.

Definition 13 (Clone pairs and the no-clones condition) Let N = (V, E,Vin, Vout ,

�,) be a GFNN.We say that the nodes v1, v2 ∈ V , v1 �= v2, are clones if par(v1) =
par(v2), θv1 = θv2 , and ∀u ∈ par(v1), ωv1u = ωv2u . We say that N satisfies the no-
clones condition (or briefly, N is clones-free), if no two nodes v1, v2 ∈ V , v1 �= v2,
are clones.
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The following definition generalizes Definition 4 to GFNNs, and introduces two
new concepts, termed extensional isomorphism and faithful isomorphism, which will
play an important technical role throughout the remainder of the paper.

Definition 14 (Extensional and faithful isomorphisms of GFFNs) Let
N 1 = (V 1, E1, Vin, V 1

out ,�
1,1) and N 2 = (V 2, E2, Vin, V 2

out ,�
2,2) be

GFNNs with the same input nodes Vin .

– We say that N 1 and N 2 are extensionally isomorphic, and write N 1 e∼ N 2, if
there exists a bijection π : V 1 → V 2, called an extensional isomorphism, such
that the following holds:

(i) π restricted to Vin is the identity map,
(ii) π(V 1

out ) = V 2
out ,

(iii) for all (v, ṽ) ∈ E1, we have ω2
π(̃v)π(v) = ω1

ṽv , and

(iv) for all v ∈ V 1 \ Vin , we have θ2π(v) = θ1v .

– We say that N 1 and N 2 are faithfully isomorphic, and write N 1 f∼ N 2, if they
are extensionally isomorphic via π : V 1 → V 2 with the following additional
property:

(v) V 1
out = V 2

out , and π restricted to V 1
out is the identity map.

In this case, we call π a faithful isomorphism.

Remark The concept of faithful isomorphisms in Definition 14 generalizes that of
isomorphisms according to Definition 4. It is easily seen that extensional isomorphism
is an equivalence relation on the set of all GFNNs with the same input nodes, whereas
faithful isomorphism is an equivalence relation on the set of all GFNNs with the same

input and output nodes. Furthermore, if N 1 e∼ N 2 via π : V 1 → V 2, then we have
〈π(v)〉ρ,N 2 = 〈v〉ρ,N 1

, for all v ∈ V 1 and any nonlinearity ρ, and if additionally

N 1 f∼ N 2, then
〈N 1
〉ρ = 〈N 2

〉ρ
.

The following definition introduces the non-degeneracy property of a GFNN, which
corresponds to the absence of spurious nodes, i.e., nodes that do not contribute to
the map realized by the GFNN (with respect to an arbitrary nonlinearity). In the
special case of LFNNs considered in the introduction, this property corresponds to the
requirement that no matrix W � in Definition 1 has an identically zero row or column.

Definition 15 (Non-degeneracy) We say that a GFNN N = (V , E, Vin, Vout ,�,)

is non-degenerate if V = VN (Vout ), where VN (Vout ) is the set of nodes of the ancestor
subnetwork of Vout in N . Networks that are not non-degenerate are referred to as
degenerate.

Informally, a network is non-degenerate if its every node “leads up” to at least one
output. This notion is best understood with the help of examples as in Fig. 3.

We are now ready to introduce the concept of amalgams of LFNNs.
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Fig. 3 These GFNNs are degenerate owing to the presence of spurious nodes (in red) that do not affect
the map of the output node w1. Such networks obviously need to be excluded from consideration when
discussing identifiability from the map realized by the network, as its “spurious parts” cannot be inferred
from the map it realizes

Definition 16 (Amalgam of two layered neural networks) Let N1 =
(V 1, E1, Vin, V 1

out ,�
1,1) andN2 = (V 2, E2, Vin, V 2

out ,�
2,2)benon-degenerate

clones-free LFNNs with the same input set Vin .

– Let A = (VA, EA, Vin, VA
out ,�

A,A) be a non-degenerate LFNN with the
following properties:

(i) There exist injective maps π1 : V 1 → π1(V 1) ⊂ VA and π2 : V 2 →
π2(V 2) ⊂ VA such that the networksN1 andN2 are extensionally isomor-
phic to the ancestor subnetworks A(π1(V 1

out )) and A(π2(V 2
out )) via π1 and

π2, respectively.
(ii) VA = π1(V 1) ∪ π2(V 2) and VA

out = π1(V 1
out ) ∪ π2(V 2

out ).

We then say that A is a proto-amalgam of N1 and N2.
– If A is a clones-free proto-amalgam of N1 and N2, we say that A is an amalgam
of N1 and N2.

Proposition 1 Let N1 = (V 1, E1, Vin, V 1
out ,�

1,1) and N2 =
(V 2, E2, Vin, V 2

out ,�
2,2) be non-degenerate clones-free LFNNs with a shared input

set Vin. Then, there exists an amalgam A of N1 and N2. Moreover, the amalgam is
unique up to extensional isomorphisms.

As asserted in Proposition 1 (whose proof is deferred to the Appendix), an amalgam of
two given non-degenerate clones-free LFNNsN1 andN2 always exists and is unique
up to extensional isomorphisms. With slight abuse of notation, we will writeN1 ∨N2

for an arbitrary element of the equivalence class (induced by
e∼) of all the amalgams

ofN1 andN2. A concrete example of an amalgam construction is provided in Fig. 4.
Having defined the amalgam of two non-degenerate clones-free LFNNs, we define the
amalgam of any finite collection N1, . . . ,Nn of non-degenerate clones-free LFNNs
according to

n∨
k=1

Nk = N1 ∨ N2 ∨ · · · ∨ Nn := (. . . (N1 ∨ N2) ∨ . . . ) ∨ Nn .

123



Constructive Approximation (2022) 55:173–224 187

Fig. 4 Top: LFNNs N1 and N2 to be amalgamated, with their weights next to the edges and the biases
inside the nodes. Middle: A proto-amalgamN of the two LFNNs, obtained by puttingN1 andN2 “side by
side.” This network is not an amalgam ofN1 andN2, as there is a clone pair (c1, c2). Bottom: The network
N can be modified by deleting the node c2 and “grafting” its outgoing edge to c1. The resulting networkA
is now a clones-free proto-amalgam ofN1 andN2, and is thus the amalgamN1 ∨N2. For general LFNNs
N1 andN2, this “deleting and grafting” process can be repeated until there are no clone pairs left

By Definition 16,
∨n

k=1Nk is a non-degenerate clones-free LFNN. Moreover, there
exist extensional isomorphisms π j : N j → π j (N j ) ⊂ ∨n

k=1Nk , for j ∈ {1, . . . , n},
and we have

〈
π j (v)

〉ρ,
∨n

k=1 Nk = 〈v〉ρ,N j , for j ∈ {1, . . . , n}, v ∈ VN j , and any
nonlinearity ρ.

We are now in a position to prove two lemmas that form the basis for the proof
of Theorem 2. The first lemma formalizes the idea of combining multiple pairwise
non-isomorphic single-output networks with linearly dependent output maps into one
multiple-output network with linear dependency among the maps of its output nodes.

Lemma 1 Let N1,N2, . . . ,Nn be non-degenerate, clones-free LFNNs with a shared
input set Vin and the same single output node {vout }. Furthermore, assume that
no two networks N j1 ,N j2 , j1 �= j2, are extensionally isomorphic. Let ρ be a

123



188 Constructive Approximation (2022) 55:173–224

nonlinearity and suppose that 1, 〈N1〉ρ , 〈N2〉ρ , . . . , 〈Nn〉ρ are linearly dependent
as functions R

Vin → R. Then, there exists a non-degenerate clones-free LFNN
M = (VM, EM, VM

in , VM
out ,�

M,M) (obtained by modifying
∨n

k=1Nk) with
a single input node VM

in = {vin}, such that {〈w〉ρ : w ∈ VM
out } ∪ {1} is a linearly

dependent set of functions from R to R.

Proof We first create a new node vin and select an arbitrary set {ωṽvin : ṽ ∈ Vin} ⊂
R \ {0} of cardinality #Vin . Now, we enlarge eachN j to a new network Ñ j by gluing
the node vin to the set Vin through the edges {(vin, ṽ) : ṽ ∈ Vin} along with the
corresponding weights ωṽvin . The nodes v ∈ Vin are non-input nodes of the Ñ j , as
their parent sets parÑ j

(v) = {vin} are non-empty, and we set their biases θv to 0. The

node vin is now the shared single input of the networks Ñ j , j = 1, . . . , n. Note that,
as the networks N j are clones-free, and the weights ωṽvin are distinct, the networks
Ñ j are clones-free by assumption. Further, since N j , j ∈ {1, . . . , n}, are pairwise
non-isomorphic, so are the Ñ j , j ∈ {1, . . . , n}. We now construct a network M by
amalgamating Ñ j , j = 1, . . . , n, according to M = (. . . (Ñ1 ∨ Ñ2) ∨ . . . ) ∨ Ñn .

Denote by π j : V Ñ j → π j (V Ñ j ) ⊂ VM the extensional isomorphism between Ñ j

and the corresponding subnetwork of M, and let w j = π j (vout ) be the node of M
corresponding to the output node ofN j . We claim thatw j1 �= w j2 , for j1 �= j2. To see
this, take j1, j2 such that w j1 = w j2 , i.e., π j1(vout ) = π j2(vout ). Then, by Property

(i) of Definition 16, Ñ j1(vout )
e∼ Ñ j2(vout ), and therefore N j1(vout )

e∼ N j2(vout ) as
well. But N j1(vout ) = N j1 and N j2(vout ) = N j2 by the non-degeneracy assumption,

and henceN j1
e∼ N j2 . It follows that j1 = j2, asN j , j = 1, . . . , n, are assumed to be

pairwise non-isomorphic. Thus, the w j are, indeed, distinct nodes ofM, and we have
VM

out = {w1, w2, . . . , wn}. As 1, 〈N1〉ρ , 〈N2〉ρ , . . . , 〈Nn〉ρ are linearly dependent
by assumption, there exists a nonzero vector (c, λ1, λ2, . . . , λn) ∈ R

n+1 such that(
c 1 +∑n

j=1 λ j
〈N j
〉ρ) (

(tv)v∈Vin

) = 0, for all (tv)v∈Vin ∈ R
Vin . We then have

(
c 1 +

n∑
j=1

λ j
〈
w j
〉ρ,M )

(t) =
(

c 1 +
n∑

j=1

λ j
〈
π j (vout )

〉ρ,M )
(t)

=
(

c 1 +
n∑

j=1

λ j 〈vout 〉ρ, Ñ j
)
(t)

=
(

c 1 +
n∑

j=1

λ j
〈N j
〉ρ )(

(ωṽvin t)ṽ∈Vin

) = 0,

for all t ∈ R. This establishes that {〈w1〉ρ,M , 〈w2〉ρ,M , . . . , 〈wn〉ρ,M} ∪ {1} is a
linearly dependent set, soM is the desired network. ��

Before stating the next lemma, we describe the procedure of input anchoring, which
is a method for selecting and modifying a subnetwork of a non-degenerate GFNN in
a manner that preserves linear dependencies between the maps realized by the output
nodes of the original network. Concretely, let M = (VM, EM, VM

in , VM
out ,�

M,
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M) be a non-degenerate, clones-free GFNNwith input nodes VM
in = {v01, . . . , v0D0

},
D0 ≥ 2. For specificity, let w.l.o.g. v0D0

be the input node to be anchored, and let

a ∈ R be the value v0D0
is anchored to. Furthermore, let ρ be a nonlinearity. We

seek to construct a network Ma = (VMa , EMa , VMa
in , VMa

out ,�Ma ,Ma ) with

VMa
in = {v01, . . . , v0D0−1} and VMa

out = VM
out ∩ VMa satisfying the following two

properties:

(IA-1) For all w ∈ VMa
out ,

〈w〉ρ,Ma
(
t1, t2, . . . , tD0−1

) = 〈w〉ρ,M(t1, t2, . . . , tD0−1, a
)
,

for all (t1, t2, . . . , tD0−1) ∈ R
D0−1 (after identifying R

Vin with R
D0 ).

(IA-2) For all w ∈ VM
out \ VMa

out , the function R
D0−1 → R given by

(t1, t2, . . . , tD0−1) �→ 〈w〉ρ,M(t1, t2, . . . , tD0−1, a
)

is constant, and we denote its value by 〈w〉ρ,M(a).

As VMa ⊂ VM \ {v0D0
}, the network Ma will, indeed, have fewer nodes than M.

Now suppose thatMa is such a network, and suppose that {w ρ,M}w∈VM
out

is a linearly

dependent set of functions R
D0 → R. In particular, let (λw)w∈VM

out
be a nonzero set

of scalars such that

∑

w∈VM
out

λw 〈w〉ρ,M = 0.

We then have

⎛
⎜⎝

∑

w∈VM
out \VMa

out

λw 〈w〉ρ,M(a)

⎞
⎟⎠ 1 +

∑

w∈VMa
out

λw 〈w〉ρ,Ma =
∑

w∈VM
out

λw 〈w〉ρ,M = 0,

and thus {〈w〉ρ,Ma }
w∈VMa

out
∪{1} is a linearly dependent set of functionsR

D0−1 → R.
Apropos, this derivation illustrates why it is often convenient to include the constant
function 1 when dealing with linear dependencies between the outputs of GFNNs. In
the following definition, we construct a networkMa with the desired properties, and
in Fig. 5, we provide an illustration of this construction.

Definition 17 Let M = (VM, EM, VM
in , VM

out ,�
M,M) be a non-degenerate,

clones-free GFNN with input nodes VM
in = {v01, . . . , v0D0

}, D0 ≥ 2. Let a ∈ R,
and let ρ be a nonlinearity. The network obtained from M by anchoring the input
v0D0

to a is the GFNN Ma = (VMa , EMa , VMa
in , VMa

out ,�Ma ,Ma ) given by the
following:
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Fig. 5 A concrete example of anchoring the input at u4 of a networkM with input nodes {u1, u2, u3, u4}
and output nodes {w1, w2} to a real number a. The parts of M that are connected to u4, but not to any
of the remaining inputs u1, u2, u3 (dashed lines), are removed, while the rest of M constitutes Ma . To
ensure that the outputs of Ma (in this case only the node w1) obey (IA-1), we need to “propagate” the
anchored value through the removed parts ofM. This will manifest itself as a bias modification according
to (2) and (3) at some of the nodes of Ma (the only such node in this example is labeled by v)

– VMa = {v ∈ VM : {v01, . . . , v0D0−1} ∩ VM(v) �= ∅}, where M(v) denotes the
ancestor network of v,

– EMa = {(v, ṽ), v, ṽ ∈ VMa },
– VMa

in = {v01, . . . , v0D0−1}, VMa
out = VM

out ∩ VMa , and

– �Ma = {ωṽv : (v, ṽ) ∈ EMa }.
– For a node v ∈ VM \ VMa we define recursively

av =
{

a, v = v0D0

ρ
(∑

u∈parM(v)ωvuau + θv

)
, v �= v0D0

. (2)

(Note that all av are well defined, as parM(v) ⊂ VM \ VMa whenever v ∈
VM \ VMa .) Now, for v ∈ VMa let

θ̃v = θv +
∑

u∈parM(v)\VMa

ωvuau, (3)

and set Ma = {θ̃v : v ∈ VMa }.
The networkMa satisfies (IA-1) and (IA-2) by construction, and ifM is layered,

then so isMa .Moreover,Ma is non-degenerate. To see this, let v ∈ VMa be arbitrary.
Then, by non-degeneracy ofM, there exists aw ∈ VM

out such that v ∈ VM(w). Asw is

connected directly with a node in VMa , it follows that w ∈ VMa , and so w ∈ VMa
out .

Therefore, v ∈ VMa(w), and, as v was arbitrary, we obtain VMa ⊂ ⋃
w∈VMa

out

VMa(w), establishing by Definition 15 that Ma is non-degenerate. However, Ma

will not, generally, be clones-free. This is unfortunate, as our program for proving
Theorem 2 envisages maintaining the no-clones property when constructing networks
with linearly dependent outputs. However, not all is lost, as the following lemma says
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that, for nonlinearities holomorphic on a neighborhood of R, either there exists some
value of a ∈ R such that the network Ma is, indeed, clones-free, or it is possible to
modify a subnetwork ofM (different from the subnetwork giving rise toMa) to yield
a clones-free subnetworkN ofMwith input {v0D0

} and linear dependency among the
maps realized by its output nodes. This will be sufficient for our purposes.

Lemma 2 (Input anchoring) Let M = (VM, EM, VM
in , VM

out ,�
M,M) be a non-

degenerate, clones-free GFNN with input nodes VM
in = {v01, . . . , v0D0

}, D0 ≥ 2. Let
ρ : U → R be holomorphic on an open domain U ⊂ C containing R, such that
ρ(R) ⊂ R. Let Ma denote the network obtained by anchoring the input v0D0

to some
a ∈ R, according to Definition 17. Then, one of the following two statements must be
true:

(i) There exists an a ∈ R such that Ma is clones-free.
(ii) There exist a non-degenerate clones-free GFNN N = (VN , EN , {v0D0

}, VN
out ,

�N ,N ) (obtained by modifying a subnetwork of M), a real number λ0,
and nonzero real numbers (λw)w∈VN

out
, such that the function hNout := λ0 1 +∑

w∈VN
out

λwwρ,N is identically zero on R.

Proof For a pair of nodes (c1, c2) ∈ VM × VM define

E(c1, c2) = {a ∈ R : c1, c2 ∈ VMa , and c1, c2 are clones inMa}.

Suppose that (i) is false, so that, for every a ∈ R, we have a ∈ E(c1, c2) for some
(c1, c2). Then, we can write R as a finite union

R =
⋃

(c1, c2)∈VM×VM
E(c1, c2).

It follows that there exists a pair (c1, c2) such that at least one of the sets E(c1,c2)

is not discrete, i.e., it has a limit point. Fix such a pair (c1, c2). Note that we have
v0D0

∈ VM(c j ), for at least one of j = 1 or j = 2, as otherwise we would have
parMa

(c j ) = parM(c j ), for j ∈ {1, 2} and all a ∈ E(c1, c2), and thus c1, c2 would be
clones in Ma if and only if they are clones in M. But, by the no-clones property of
M, this would imply E(c1, c2) = ∅, contradicting the fact that E(c1,c2) is not discrete.
Thus, we may w.l.o.g. assume that v0D0

∈ VM(c1), which leaves us with the cases

v0D0
∈ VM(c2) and v0D0

/∈ VM(c2) that will be treated separately when needed. Define

the GFNN N = (VN , EN , {v0D0
}, VN

out ,�
N ,N ) according to the following:

– Let S = {v ∈ VM({c1,c2}) : VM
in ∩ VM(v) = {v0D0

}}, and set

VN =
{

S ∪ {c1, c2}, if v0D0
∈ VM(c2)

S ∪ {c1}, if v0D0
/∈ VM(c2)

.

– EN = {(v, ṽ), v, ṽ ∈ VN },
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– VN
out = {c1, c2} ∩ VN ,

– �N = {ωṽv : (v, ṽ) ∈ EN },
– choose a number r ∈ R \ ({θv − θc1 : v ∈ S} ∪ {θv − θc2 : v ∈ S}), and set

θc1 = θc1+r , θc2 = θc2+r , and θv = θv , for v ∈ S. DefineN = {θv : v ∈ VN }.
Informally, the so-constructed networkN consists of the parts ofM propagating the
input at v0D0

to c1 and c2 (and it might happen that this input does not reach c2, in

which case this node is not included in VN ), and the biases θc1 and θc2 are chosen so
as to ensure thatN has no clone pair (v, ṽ)with v ∈ {c1, c2} and ṽ ∈ S. Thus, in order
to show thatN is clones-free, it suffices to establish that c1 and c2 are not clones inN
(note that c1 and c2 can be clones inN only in the case v0D0

∈ VM(c2)), as any clone
pair (v, ṽ) with v, ṽ ∈ S would also be a clone pair in M. By way of contradiction,
assume that c1 and c2 are clones in N , i.e.,

parM(c1) ∩ VN = parM(c2) ∩ VN

θc1 + r = θc2 + r , and

(ωc1u)u∈parM(c1)∩VN = (ωc2u)u∈parM(c2)∩VN . (4)

As the construction of N does not depend on a, we can fix an arbitrary a ∈ E(c1, c2),
and the condition that c1 and c2 are clones inMa then implies

parM(c1) \ VN = parM(c2) \ VN ,

θc1 +
∑

u∈parM(c1)∩VN
ωc1uau = θc2 +

∑

u∈parM(c2)∩VN
ωc2uau, and

(ωc1u)u∈parM(c1)\VN = (ωc2u)u∈parM(c2)\VN , (5)

where the real numbers au are defined according to (2). This, together with (4), yields

parM(c1) = parM(c2),

θc1 = θc2 , and

(ωc1u)u∈parM(c1) = (ωc2u)u∈parM(c2), (6)

which would say that c1 and c2 are clones in M and hence stands in contradiction
to the no-clones property of M. This establishes the no-clones property of N . The
non-degeneracy of N follows by its construction. Now, by adding r to both sides of
(5) and applying ρ, we find

〈c1〉ρ,N (a) =
{

〈c2〉ρ,N (a), if v0D0
∈ VM(c2)

ρ(θc2 + r) 1(a), if v0D0
/∈ VM(c2)

, (7)

for all a ∈ E(c1, c2) (note that parM(c2) ∩ VN = ∅ in the case v0D0
/∈ VM(c2), and so

the sum on the right-hand side of (5) evaluates to 0 in this case). As ρ is holomorphic
on an open neighborhood of R and ρ(R) ⊂ R, we also have that 〈c1〉ρ,N , 〈c2〉ρ,N
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are holomorphic on a neighborhood of R. Further, since E(c1,c2) has a limit point, it
follows by the identity theorem [18, Thm. 10.18] that (7) holds for all a ∈ R. We have
hence shown that Statement (ii) is valid with this N , and

λ0 = 0, λc1 = 1, λc2 = −1, if v0D0
∈ VM(c2), or

λ0 = −ρ (θc2 + r), λc1 = 1, if v0D0
/∈ VM(c2).

��

4 Auxiliary Results from Complex Analysis and Kronecker’s Theorem

We state the remaining auxiliary results needed in the proof of our main statements.
Since these results are relatively simple consequences of standard results in complex
analysis and of Kronecker’s theorem, their proofs are relegated to the Appendix.

Recall the definition of the natural domain D〈u〉σ of the map realized by a GFNN
node u with respect to a holomorphic nonlinearity as given in Definition 12.

In the proof of Theorem 2, it will be crucial that D〈u〉σ be connected for all nodes
u of a certain GFNN with a single input. The following lemma establishes this fact.

Lemma 3 Let N = (V , E, {vin}, Vout ,�,) be a GFNN, and let σ : Dσ → C be a
meromorphic function on C with its set of poles given by P ⊂ C \ R. Furthermore,
suppose that σ(R) ⊂ R. Then, for every u ∈ V , we have D〈u〉σ = C \ Eu, where
Eu ⊂ C is a closed countable subset of C \ R. In particular, we have that D〈u〉σ is an
open connected set with D〈u〉σ ⊃ R.

In the following, we write D◦
k (a, δ) := {(z1, . . . , zk) ∈ C

k : |z j − a j | < δ,∀ j} for
the open polydisc of radius δ > 0, centered at a = (a1, . . . , ak) ∈ C

k . Further, for a
set S ⊂ C

k , we write cl(S) for the closure of S in C
k .

Lemma 4 Let F : U → C be holomorphic on a connected open domain U ⊂ C
k

containing R
k . Let a = (a1, . . . , ak) ∈ R

k and δ > 0 be given, and let

T = {(a1 + i z1, . . . , ak + i zk) : z j ∈ (−δ, δ), j = 1, . . . , k}.

Suppose that D◦
k (a, δ) ⊂ U , and F(z) = 0, for all z ∈ T . Then, F = 0 identically on

U .

Lemma 5 Let t∗ ∈ C, a = (a1, . . . , ak) ∈ R
k , and δ > 0, and let F : U → C be

holomorphic on a connected open domain U ⊂ C
1+k containing {t∗} × R

k . Define
the set

T = {(t∗, a1 + i z1, . . . , ak + i zk) : z j ∈ (−δ, δ), j = 1, . . . , k},

and suppose that D◦
1+k(a, δ) ⊂ U . If there exists a set T̃ ⊂ C

1+k such that T̃ ⊂
(C \ {t∗}) × C

k , cl(T̃ ) ⊃ T , and F |T̃ ≡ 0, then F |U ≡ 0.
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Fig. 6 The line � : t �→ (α1t, α2t) + Z
2, t ∈ R, depicted in the fundamental cell [− 1

2 , 1
2 ) × [− 1

2 , 1
2 ) of

the torus T 2 = {(x1, x2) + Z
2 : (x1, x2) ∈ R

2}, with (α1, α2) = (1, 1.4) (left), and (α1, α2) = (1,
√
2)

(right)

We will now elaborate on the tools needed in the proof of Theorem 2. The material
touches upon the theory of Lie groups and representation theory, and will be presented
in a self-contained fashion, only assuming familiarity with finitely generated abelian
groups and basic point-set topology. We write T d = R

d/Z
d for the d-dimensional

torus considered as a compact abelian topological group. For a finite set of real numbers
{α j }d

j = 1, we let 〈α1, . . . , αd〉Q denote the span of {α j }d
j = 1 in the vector space R over

the scalar field Q, and we write dim〈α1, . . . , αd〉Q for its dimension. We will need the
following lemma, which is an easy consequence of Kronecker’s theorem [16]. For the
sake of completeness, we provide an elementary proof from first principles.

Lemma 6 ([16] Kronecker) Let d ∈ N and let {α j }d
j = 1 be an arbitrary set of nonzero

real numbers with k = dim〈α1, . . . , αd〉Q. Define the following subset of T d:

M = cl{(α1t, α2t, . . . , αd t) + Z
d : t ∈ R},

where cl denotes the closure in T d . Then, M is isomorphic to a k-dimensional torus
as a Lie group, i.e., there exists a � : M → R

k/Z
k that is both a homeomorphism

(between M and R
k/Z

k as topological spaces) and a homomorphism (between M and
R

k/Z
k as abelian groups).

When d = 2, Lemma 6 simply says that the line � : t �→ (α1t, α2t)+Z
2, t ∈ R, either

exhibits discrete periodic behavior and is thus homeomorphic to a 1-dimensional torus,
which is the case if k = 1, i.e., α1/α2 is rational, or otherwise, if k = 2, i.e., when
α1/α2 is irrational, � is dense in the whole square, and so its closure is a 2-dimensional
torus, namely R

2/Z
2 itself. This is illustrated in Fig. 6. When d ≥ 3, the situation

can be more complicated, as illustrated in Fig. 7. Specifically, the torus M obtained
as the closure of the line � : t �→ (α1t, . . . , αd t) + Z

d , t ∈ R, may not occupy
the entirety of R

d/Z
d . In this case, Lemma 6 provides the precise dimension of M ,
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Fig. 7 The line t �→ (α1t, α2t, α3t), t ∈ R, depicted in the fundamental cell [− 1
2 , 1

2 )3 of the torus

T 3 = {(x1, x2, x3) + Z
3 : (x1, x2, x3) ∈ R

3}, with (α1, α2, α3) =
(
2
5 ,− 4

5 , 3
2

)
(left), and (α1, α2, α3) =(

1,
√
2, 1

2 + √
2
)

(right). Note that in a neighborhood of 0 (marked in red), � is dense in a k-dimensional

subspace of R
3, with k = dim

〈
2
5 , − 4

5 , 3
2

〉
Q

= 1 (left), and k = dim
〈
1,

√
2, 1

2 + √
2
〉
Q

= 2 (right)

Fig. 8 Input splitting, case k ≥ 2. Left: A neural networkM′, assumed to be a minimal element ofMmin ,
with D1 = 5. Right: The corresponding neural networkM′′, assuming k = 3. Note that, as the first k rows

of Q form a k × k identity matrix, we have (u j , v
1
p) ∈ EM′′ ⇐⇒ p = j , for all j, p ∈ {1, . . . , k}. The

function F in (24) and (25) corresponds to the map realized by the shared part (in red) ofM′ andM′′

namely k = dim〈α1, . . . , αd〉Q. For the purpose of proving Theorem 2, it will suffice
to consider the behavior of � in a neighborhood of the point 0+Z

d ∈ T d . Concretely,
if Q ∈ Q

d×k is the matrix representing α1, . . . , αd in the basis {α1, . . . , αk}, the
following lemma states that, in a neighborhood of 0, � visits points arbitrarily close to
the k-dimensional subspace of R

d spanned by the columns of Q.

Lemma 7 Suppose that {α j }d
j = 1 are nonzero real numbers, and let k = dim〈α1, . . . ,

αd〉Q. Furthermore, assume that {α j }k
j = 1 is a basis for 〈α1, . . . , αd〉Q over Q, and let

Q = (Q pj ) ∈ Q
d×k be the matrix such that (α1, . . . , αd) = Q · (α1, . . . , αk). Then,

there exists an open set C ⊂ R
k with 0 ∈ C, such that, for every s = (s1, . . . , sk) ∈ C,
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there are sequences (tn,s)n∈N ⊂ R and (rn,s)n∈N = (rn,s
1 , . . . , rn,s

k )n∈N ⊂ C with the
following properties:

(i) (α1tn,s, α2tn,s, . . . , αd tn,s)+Z
d = Q ·(α1rn,s

1 , . . . , αkrn,s
k )+Z

d , for all n ∈ N,
(ii) |tn,s| → ∞ as n → ∞,
(iii) rn,s → s in R

k , as n → ∞.

5 Imaginary Period and the Self-Avoiding Property

We say that a holomorphic function f : D → C is i-periodic if f (z + i) = f (z), for
all z ∈ D. An example of such a function is the scaled hyperbolic tangent function
tanh(π ·). More generally, for an arbitrary discrete set S ⊂ R, and arbitrary C ∈ R

and real sequence {cs}s∈S ∈ �1(S), the function σ = C +∑s∈S cs tanh(π( · − s))
is also i-periodic, and in particular, the set of its poles P has the structure P =⋃

n∈Z

(
S + (n + 1

2

)
i
)
. We now introduce a property defined for discrete subsets of

R, which will, when applied to the set S, be the final technical ingredient in the proof
of our main results.

Definition 18 (Self-avoiding set) Let S ⊂ R be a discrete set. We say that S is self-
avoiding if, for every finite collection of distinct pairs {(ω j , θ j )}m

j = 1 ⊂ (2Z+1)×R,
there exist a j∗ ∈ {1, . . . , m} and a t∗ such that

t∗ ∈ S − θ j∗

ω j∗

∖ ⋃
j �= j∗

S − θ j

ω j
.

Remark In other words, a set S is self-avoiding if the union of a finite number of
distinct copies of S obtained by translating and scaling by an odd integer contains a
real number which is an element of exactly one of the copies.

Proposition 2 Let S = {sk : k ∈ Z}, sk − sk−1 > 0, ∀k ∈ Z , be an infinite discrete
set such that {sk − sk−1 : k ∈ Z} is rationally independent. Then, S is self-avoiding.

Proof We use the shorthand notation Sω,θ = S−θ
ω

. Suppose by way of contradiction
that A ⊂ (2Z + 1) × R, #A ≥ 2, is a set of pairs such that, for every (ω, θ) ∈ A and
every t ∈ Sω,θ , there exists a pair (ω′, θ ′) ∈ A \ {(ω, θ)} such that t ∈ Sω′,θ ′ . Fix a
pair (ω1, θ1) ∈ A. We then have, by assumption,

Sω1,θ1 =
⋃

(ω′, θ ′)∈A\{(ω1,θ1)}
Sω1, θ1 ∩ Sω′,θ ′ .

Since S is infinite, there exists a (ω2, θ2) ∈ A\{(ω1, θ1)} such that #(Sω1,θ1 ∩Sω2,θ2) ≥
3. Pick an arbitrary subset {t1 < t2 < t3} ⊂ Sω1,θ1 ∩ Sω2,θ2 and note that there exist
k11, k12, k13 ∈ Z and k21, k22, k23 ∈ Z such that

t j =
sk1j

− θ1

ω1
=

sk2j
− θ2

ω2
, for j = 1, 2, 3. (8)
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Moreover, for r = 1, 2, we have kr
1 < kr

2 < kr
3 if ωr > 0 and kr

1 > kr
2 > kr

3 if ωr < 0.
Define the index sets

K r
j =
{

{kr
j + 1, kr

j + 2, . . . , kr
j+1}, if ωr > 0

{kr
j+1 + 1, kr

j+1 + 2, . . . , kr
j }, if ωr < 0

, for j = 1, 2, r = 1, 2.

For brevity, write ak = sk − sk−1, ∀k ∈ Z. We then have

(t2 − t1, t3 − t2) =
⎛
⎜⎝ 1

|ω1|
∑

k∈K 1
1

ak ,
1

|ω1|
∑

k∈K 1
2

ak

⎞
⎟⎠ =
⎛
⎜⎝ 1

|ω2|
∑

k∈K 2
1

ak ,
1

|ω2|
∑

k∈K 2
2

ak

⎞
⎟⎠ .

(9)

Now, since {ak : k ∈ Z} is rationally independent and |ω1|, |ω2| ∈ Z, (9) implies
|ω1| = |ω2| and K 1

j = K 2
j , for j = 1, 2. In particular, K 1

j = K 2
j , for j = 1, 2, implies

sgn(ω1) = sgn(ω2), so we have ω1 = ω2. Then, from the definition of K r
j , it follows

that k1j = k2j , for j = 1, 2, 3. We thus obtain from (8) that θ1 = θ2, contradicting
(ω1, θ1) �= (ω2, θ2). Therefore, our initial assumption was false, so we deduce that S
must be self-avoiding. ��

The following proposition formalizes the notion that nonlinearities σ of the form
considered at the beginning of the chapter are dense in the set of sigmoidal nonlinear-
ities, even after imposing the additional constraint that S be self-avoiding.

Proposition 3 Let ρ be a piecewise C1 nonlinearity with ρ′ ∈ BV (R) ∩ L1(R).
Then, for every ε > 0, there exist a discrete self-avoiding set S ⊂ R, a sequence
{cs}s∈S ∈ �1(S) with cs �= 0, for all s ∈ S, and real numbers α > 0 and C, such that
the function σ given by

σ = C +
∑
s∈S

cs tanh(α(· − s))

satisfies ‖σ − ρ‖L∞(R) < ε.

Proof First note that

ρ(−∞) = lim
x→−∞ ρ(x) = ρ(0) −

∫ 0

−∞
ρ′(y)dy

is awell-defined real number, asρ′ ∈ L1(R). Let H denote theHeaviside step function.
We now have, for all x ∈ R,

ρ(x) = ρ(−∞) +
∫

R

ρ′(y)H(x − y)dy.
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Denote hα = 1
2 (1 + tanh(α · )) and consider the function ρα defined by

ρα(x) = ρ(−∞) +
∫

R

ρ′(y)hα(x − y)dy, x ∈ R. (10)

We then have

sup
x∈R

|ρ(x) − ρα(x)| = sup
x∈R

∣∣∣∣
∫

R

ρ′(y) [H(x − y) − hα(x − y)] dy

∣∣∣∣

= sup
x∈R

∣∣∣∣
∫

R

ρ′(x − y) [H(y) − hα(y)] dy

∣∣∣∣
≤ ‖ρ′‖L∞(R)‖H − hα‖L1(R).

Now note that ‖ρ′‖L∞(R) < ∞ as ρ′ ∈ BV (R), and ‖H − hα‖L1(R) → 0 as α → ∞
by dominated convergence, so there exists α > 0 such that ‖ρ − ρα‖L∞(R) < ε

3 .
Let b : Z → N be a bijection, and β ∈ (0, 1) a parameter to be specified. Define
the infinite discrete set Sβ = {sβ

k := β(k + π−b(k)) : k ∈ Z} ⊂ R. Then, since
π is transcendental, Proposition 2 implies that Sβ is self-avoiding. Now, since ρ′
is integrable on R and piecewise continuous, and hα is bounded and continuous,
we have that ρ′ · hα(x − ·) is integrable on R and piecewise continuous. Hence, as
mesh(Sβ) := supk∈Z |sβ

k − sβ
k−1| → 0 for β → 0, we have the following convergence

of Riemann sums

∑

k∈Z

(sβ
k − sβ

k−1)ρ
′(sβ

k )hα(x − sβ
k ) →

∫

R

ρ′(y)hα(x − y)dy as β → 0, for all x ∈ R.

Therefore, ρ(−∞)+∑k∈Z
(sβ

k −sβ
k−1)ρ

′(sβ
k )hα(·−sβ

k ) → ρα pointwise. To upgrade
this to convergence in ‖ · ‖L∞(R), we proceed as follows. By the mean value theorem,

for any x ∈ R and β > 0, there exist yβ,x
k ∈ [sβ

k−1, sβ
k ] such that

∫ sβ
k

sβ
k−1

ρ′(y)hα(x − y)dy = (sβ
k − sβ

k−1)ρ
′(yβ,x

k )hα(x − yβ,x
k ).

We can therefore write

sup
x∈R

∣∣∣∣∣
∑
k∈Z

(sβ
k − sβ

k−1)ρ
′(sβ

k )hα(x − sβ
k ) −
∫

R

ρ′(y)hα(x − y)dy

∣∣∣∣∣

= sup
x∈R

∣∣∣∣∣
∑
k∈Z

(sβ
k − sβ

k−1)
[
ρ′(sβ

k )hα(x − sβ
k ) − ρ′(yβ,x

k )hα(x − yβ,x
k )
]∣∣∣∣∣

≤ mesh(Sβ) · sup
x∈R

∑
k∈Z

∣∣∣ρ′(sβ
k )hα(x − sβ

k ) − ρ′(yβ,x
k )hα(x − yβ,x

k )

∣∣∣
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≤ mesh(Sβ) · sup
x∈R

‖ρ′ · hα(x − ·)‖BV (R)

≤ mesh(Sβ)
(‖ρ′‖L∞(R)‖hα‖BV (R) + ‖hα‖L∞(R)‖ρ′‖BV (R)

)
. (11)

Since ρ′ ∈ BV (R) by assumption, and hα ∈ BV (R) by definition, the quantities in the
parentheses are all finite. As they are moreover independent of β, and mesh(Sβ) → 0
for β → 0, we can pick a β > 0 such that

∥∥∥∥∥
∑
k∈Z

(sβ
k − sβ

k−1)ρ
′(sβ

k )hα(· − sβ
k ) − ρα + ρ(−∞)

∥∥∥∥∥
L∞(R)

<
ε

3
, (12)

where we used (10) to replace
∫

R
ρ′(y)hα(x − y)dy in (11) with ρα −ρ(−∞). Finally,

let {ds}s∈Sβ be an arbitrary sequence of real numbers such thatmesh(Sβ)
∑

k∈Z
|d

sβ
k
| <

ε
3 and, for each s ∈ Sβ , ds = 0 if and only if ρ′(s) �= 0. We then have

∥∥∥∥∥
∑
k∈Z

(sβ
k − sβ

k−1)dsβ
k

hα(· − sβ
k )

∥∥∥∥∥
L∞(R)

≤ mesh(Sβ)
∑
k∈Z

|d
sβ
k
| · ‖hα‖L∞(R) <

ε

3
.

(13)

Now, combining the estimates (12), (13), and ‖ρ − ρα‖L∞(R) < ε
3 yields

∥∥∥∥∥ρ(−∞) +
∑
k∈Z

(sβ
k − sβ

k−1)(ρ
′(sβ

k ) + d
sβ
k
)hα(· − sβ

k ) − ρ

∥∥∥∥∥
L∞(R)

< ε,

so the claim of the proposition holds with S = Sβ , c
sβ
k

= 1
2 (s

β
k − sβ

k−1)(ρ
′(sβ

k )+ d
sβ
k
),

and C = ρ(−∞) +∑k∈Z
c

sβ
k
. ��

6 TheMain Theorems

Theorem 3 Let N1 and N2 be non-degenerate clones-free LFNNs with the same input
and output sets Vin and Vout . Let

σ = C +
∑
s∈S

cs tanh(π( · − s)),

where C ∈ R, S is a discrete self-avoiding set, and {cs}s∈S ∈ �1(S) are all nonzero
and real. Suppose that 〈N1〉σ (t) = 〈N2〉σ (t), for all t ∈ R

Vin . Then, N1 and N2 are
faithfully isomorphic.

Theorem 4 Let N j , j ∈ {1, 2, . . . , n}, be non-degenerate clones-free LFNNs with the
same input set Vin and the same single output node {vout }. Furthermore, suppose
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that no two networks N j1 , N j2 , j1 �= j2, are extensionally isomorphic. Consider the
nonlinearity

σ = C +
∑
s∈S

cs tanh(π( · − s)),

with C ∈ R, S a discrete self-avoiding set, and {cs}s∈S ∈ �1(S), where each cs is
nonzero and real. Then,

{〈N j
〉σ }n

j = 1 ∪ {1} is a linearly independent set of functions

from R
Vin to R.

Before embarking on the proofs of Theorems 3 and 4, we show how Theorems 1 and
2 follow from these two results together with Proposition 3.

Proof of Theorem 1 Let ρ be as in the statement of Theorem 1, and let ε > 0 be
arbitrary. Proposition 3 guarantees the existence of a discrete self-avoiding set S ⊂ R,
a sequence {cs}s∈S ∈ �1(S) with cs �= 0, for all s ∈ S, and real numbers α > 0 and
C , such that the function σ defined by

σ = C +
∑
s∈S

cs tanh(α(· − s))

satisfies ‖σ − ρ‖L∞(R) < ε. Now suppose that N = (V , E, Vin, Vout ,�,) and
Ñ = (Ṽ , Ẽ, Vin, Vout , �̃, ̃) are clones-free non-degenerate LFNNs with the same
input set Vin and such that 〈N 〉σ (x) = 〈Ñ 〉σ (x), for all x ∈ R

Vin . Consider the
scaled objects σα := σ

(
π
α

·), Sα = α
π

S, N α = (V , E, Vin, Vout ,
α
π
�, α

π

)
, and

Ñ α = (Ṽ , Ẽ, Vin, Vout ,
α
π
�̃, α

π
̃
)
, where α

π
� = { α

π
ω : ω ∈ �

}
, and α

π
, α

π
�̃, α

π
̃

are defined analogously. Then, 〈N α〉σα (x) = 〈N 〉σ (x) = 〈Ñ 〉σ (x) = 〈Ñ α〉σα (x), for
all x ∈ R

Vin . Moreover,

σα = C +
∑
s∈Sα

cs tanh(π(· − s)),

and Sα is a discrete self-avoiding set (as the self-avoiding property is preserved under

scaling by a nonzero real number), so by Theorem 3 we obtain N α
f∼ Ñ α , which

implies N � Ñ . ��
Proof of Theorem 2 Let ρ be as in the statement of Theorem 2, and let ε > 0 be
arbitrary. Proposition 3 guarantees the existence of a discrete self-avoiding set S ⊂ R,
a sequence {cs}s∈S ∈ �1(S) with cs �= 0, for all s ∈ S, and real numbers α > 0 and
C , such that the function σ defined by

σ = C +
∑
s∈S

cs tanh(α(· − s))

satisfies ‖σ − ρ‖L∞(R) < ε. Now suppose that N j = (V j , E j , Vin, {vout },� j , j ),
j ∈ {1, . . . , n}, are non-degenerate clones-free LFNNs such that no two N j1 , N j2 ,
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j1 �= j2, are faithfully isomorphic. As {vout } is a singleton, it follows that no two
N j1 ,N j2 , j1 �= j2, are extensionally isomorphic either. Now, define the scaled objects
σα := σ

(
π
α

·), Sα = α
π

S, and N α
j = (V j , E j , Vin, {vout }, α

π
� j , α

π
 j
)
, for j ∈

{1, . . . , n}, where α
π
� j = { α

π
ω : ω ∈ � j

}
and α

π
 j = { α

π
θ : θ ∈  j

}
. Then, theN α

j
are non-degenerate and clones-free, and no two N α

j1
, N α

j2
, j1 �= j2, are extensionally

isomorphic. Moreover,

σα = C +
∑
s∈Sα

cs tanh(π(· − s)),

and Sα is a discrete self-avoiding set, so by Theorem 4 we obtain that {〈N α
j 〉σα }n

j = 1 ∪
{1} is linearly independent. Now, suppose by way of contradiction that there is linear
dependency λ0 +∑n

j=1 λ j 〈N j 〉σ = 0 among
{〈N j
〉σ }n

j = 1 ∪ {1}. But then

λ0 +
n∑

j=1

λ j 〈N α
j 〉σα = λ0 +

n∑
j=1

λ j 〈N j 〉σ = 0,

which contradicts the linear independence of {〈N α
j 〉σα }n

j = 1 ∪ {1}. We deduce that{〈N j
〉σ }n

j = 1 ∪ {1} must be linearly independent, as desired. ��
Proof of Theorem 4 We argue by contradiction, so suppose that the statement is false.
Specifically, let N j , j ∈ {1, 2, . . . , n}, be LFNNs and σ a nonlinearity as in the
statement of the theorem, and suppose that

{〈N j
〉σ }n

j = 1 ∪ {1} is linearly depen-
dent. Then, by Lemma 1, there exists a non-degenerate clones-free LFNN M =
(VM, EM, VM

in , VM
out ,�

M,M) with a single input node VM
in = {vin}, such that

{〈w〉σ : w ∈ VM
out } ∪ {1} is a linearly dependent set of functions from R to R. LetM

denote the set of all non-degenerate clones-freeLFNNsM̃ = (V M̃, EM̃, {vin}, V M̃
out ,

�M̃,M̃) such that {〈w〉σ : w ∈ V M̃
out } ∪ {1} is linearly dependent. We then have

M �= ∅, simply asM ∈ M . Denote byMmin the set of all networks inM of mini-
mum depth, and fix a networkM′ ∈ Mmin with the minimal number of nodes among
all the networks in Mmin . The proof proceeds by constructing a network N ∈ Mmin

with a strictly smaller number of nodes thanM′, thereby deriving a contradiction and
concluding the proof. First note that linear dependence of {〈w〉σ : w ∈ VM′

out } ∪ {1}
is equivalent to the existence of a nonzero set of real numbers {λw}

w∈VM′
out

and a real

number c ∈ R such that hout : R → R, given by

hout :=
∑

w∈VM′
out

λw 〈w〉σ ,

is constant-valued, i.e., hout (t) = c, for all t ∈ R. Note that λw �= 0, for all w ∈
VM′

out , for otherwise the ancestor subnetwork M′
(
{w ∈ VM′

out , λw �= 0}
)
would be

an element of Mmin with strictly fewer nodes than M′, contradicting the minimality
of M′.
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Next, note that σ is a real meromorphic function whose set of poles is

P =
⋃
n∈Z

(
S +
(

n + 1

2

)
i

)
, (14)

and in particular, M′ and σ satisfy the assumptions of Lemma 3, and so the sets
C \D〈w〉σ are closed and countable, whereD〈w〉σ denotes the natural domain of 〈w〉σ ,
for w ∈ VM′

out . Therefore, as a linear combination of holomorphic functions, hout is a
holomorphic function on Dhout := ⋂

w∈VM′
out

D〈w〉σ . As the sets C \ D〈w〉σ are closed

and countable,C\Dhout is also closed and countable, and thereforeDhout is a connected
open set. It follows by the identity theorem [18, Thm. 10.18] that hout continues in a
unique fashion to a holomorphic function onDhout with hout (t) = c, for all t ∈ Dhout .

Set V� = {v ∈ VM′ : lv(v) = �}, for � ≥ 1. Let k = dim
〈{ωuvin : u ∈ V1}

〉
Q

and enumerate the nodes V1 = {v11, . . . , v1D1
} so that {ωv11vin

, . . . , ωv1k vin
} is a basis

for 〈ωv11vin
, . . . , ωv1D1

vin
〉Q. In the remainder of the proof, we distinguish between the

cases k ≥ 2 and k = 1.
The case k ≥ 2. Fix a real number

A ∈ [0, 1]
∖ D1⋃

p = 1

S − θv1p

ωv1pvin

, (15)

chosen so that none of 〈v1p〉σ (z) = σ(ωv1pvin
z + θv1p

), p ∈ {1, . . . , D1}, has singu-
larities along A + i R. Such a number always exists, as

⋃D1
p = 1 (S − θv1p

)/ωv1pvin
is a

discrete set. Now, write (ωv1pvin
)

D1
p = 1 = Q · (ωv1pvin

)k
p = 1, where Q = (qpj ) ∈ Q

D1×k

is a rational matrix whose first k rows form a k × k identity matrix. Let C ⊂ R
k be a

set satisfying the conclusion of Lemma 7 applied with αp = ωv1pvin
, p ∈ {1, . . . , D1}.

Given an arbitrary s = (s1, s2, . . . , sk) ∈ C , Lemma 7 yields sequences (tn,s)n∈N ⊂ R

and (rn,s)n∈N ⊂ C such that

(ωv11vin
tn,s, . . . , ωv1D1

vin
tn,s) + Z

D1 = Q ·
(
ωv11vin

rn,s
1 , . . . , ωv1k vin

rn,s
k

)
+ Z

D1 ,

(16)

|tn,s| → ∞ as n → ∞, (17)

rn,s → s in R
k, as n → ∞. (18)

We now perform a calculation that will enable us to interpret the single input variable
of M′ as a rational linear combination of k input variables of another LFNN M′′, to
be specified below. The argument will then proceed by anchoring at all but one of the
inputs of M′′. It is this last step that uses k ≥ 2 as a key assumption, as anchoring
requires at least two input nodes to be meaningful. We thus have

σ
(
ωv1pvin

(A + i tn,s) + θv1p

)
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= σ
(
ωv1pvin

A + i(ωv1pvin
tn,s + Z) + θv1p

)
(19)

= σ

⎛
⎝ωv1pvin

A + i ·
⎛
⎝

k∑
j=1

qpj ωv1j vin
rn,s

j + Z

⎞
⎠+ θv1p

⎞
⎠ (20)

= σ

⎛
⎝

k∑
j=1

qpj ωv1j vin
(A + i rn,s

j ) + θv1p

⎞
⎠ , (21)

for p ∈ {1, . . . , D1}, where in (19) we used the i-periodicity of σ , in (20) we used (16),
and in (21) we usedωv1pvin

=∑k
j=1 qpj ωv1j vin

and the i-periodicity of σ again. Owing

to (15), none of 〈v1p〉σ , p ∈ {1, . . . , D1}, has singularities along A+i R, and thus all the
quantities in (19)–(21) are well defined. The calculation just presented suggests con-
structing a new LFNN by “splitting” the input node vin ofM′ into k new input nodes.
Formally, we define an LFNN M′′ = (VM′′

, EM′′
, VM′′

in , VM′′
out ,�M′′

,M′′
) as

follows:

– VM′′
in = {u1, . . . , uk} is a set of k newly created input nodes (disjoint from VM′

),

– VM′′ := VM′′
in ∪⋃�≥1 V�,

– EM′′ := {(v, ṽ) ∈ EM′ : lv(v) ≥ 1} ∪ {(u j , v
1
p) : 1 ≤ p ≤ D1, 1 ≤ j

≤ k, qpj �= 0},
– VM′′

out := VM′
out ,

– define ωv1pu j
:= qpj ωv1j vin

, for p ∈ {1, . . . , D1}, j ∈ {1, . . . , k}, and let

�M′′ := {ωṽv ∈ �M′ : lv(v) ≥ 1} ∪ {(ωv1pu j
: 1 ≤ p ≤ D1, 1 ≤ j ≤ k, qpj �= 0},

– M′′ := M′
.

The procedure for constructing M′′ for a given M′ is illustrated in Fig. 8.
Owing to (19)–(21) and the construction of M′′, we have the following “input

splitting” relationship

〈v1p〉σ,M′
(A + i tn,s) = 〈v1p〉σ,M′′

(A + i rn,s
1 , . . . , A + i rn,s

k ), (22)

for p ∈ {1, . . . , D1}. We now show that M′′ is non-degenerate and clones-free. To
this end, first note that, for every j ∈ {1, . . . , k}, there exists a w ∈ VM′

out such that
v1j ∈ VM′(w), by non-degeneracy ofM′, and as u j ∈ par(v1j ), we have u j ∈ VM′′(w).
This establishes non-degeneracy. Next, we observe that a clone pair inM′′ would have
to consist of nodes in {v11, v12, . . . , v1D1

}, as a clone pair inM′′ consisting only of nodes
in
⋃

�≥2 V� would also be a clone pair in M′. Thus, by way of contradiction, sup-
pose that (v1p1 , v

1
p2), 1 ≤ p1 < p2 ≤ D1, is a clone pair in M′′. Then, θ1p1 = θ1p2

and ωv1p1
vin

= ∑k
j=1 qp1 j ωv1j vin

= ∑k
j=1 qp2 j ωv1j vin

= ωv1p2
vin

, so (v1p1 , v
1
p2) is a

clone pair inM′, which stands in contradiction to the no-clones property ofM′, and
hence establishes thatM′′ is clones-free. We now revisit the constant-valued function
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hout (t) = ∑
w∈VM′

out
λw 〈w〉σ,M′

(t) = c, for all t ∈ Dhout . Examining the structure

of M′, we see that, for each w ∈ VM′
out , we can write

〈w〉σ,M′
(z) = Fw

((
〈v1p〉σ,M′

(z)
)D1

p = 1

)
, for all z ∈ D〈w〉σ,M′ ,

where Fw corresponds to the map realized by the LFNN with nodes

VM′ \ {vin}, (23)

inputs {v11, . . . , v1D1
}, output {w}, and edges, weights, and biases inherited from M′.

As Fw is the map realized by a node of a GFNN according to Definition 12, it is holo-
morphic on its natural domain DFw ⊂ C

D1 containing R
D1 . We can therefore write

hout (z) = F

((
〈v1p〉σ,M′

(z)
)D1

p = 1

)
, for all z ∈ Dhout , (24)

where F : DF → C, F = ∑
w∈VM′

out
λw Fw, is holomorphic on DF :=

⋂
w∈VM′

out
DFw ⊃ R

D1 . Now, by definition of natural domain, for each w ∈ VM′′
out ,

we have

D〈w〉σ,M′′ =
⎧⎨
⎩(z1, . . . , zk) ∈

D1⋂
p = 1

D〈v1p〉σ,M′′ :
(
〈v1p〉σ,M′′

(z1, . . . , zk)
)D1

p = 1
∈ DFw

⎫⎬
⎭ ,

where the variables z1, . . . , zk correspond to the input nodes u1, . . . , uk , respectively.
Therefore, for (z1, . . . , zk) in the open domain Dh̃out

:=⋂
w∈VM′′

out
D〈w〉σ,M′′ , we can

define the function h̃out : Dh̃out
→ C according to

h̃out (z1, . . . , zk) = F

((
〈v1p〉σ,M′′

(z1, . . . , zk)
)D1

p = 1

)
. (25)

Moreover, as M′ and M′′ share the nodes in (23), as well as the associated edges,
weights, and biases, we have

〈w〉σ,M′′
(z1, . . . , zk) = Fw

((
〈v1p〉σ,M′′

(z1, . . . , zk)
)D1

p = 1

)
,

for all w ∈ VM′′
out , and thus

h̃out =
∑

w∈VM′′
out

λw 〈w〉σ,M′′
.
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Weare now in a position to show that, like hout , the function h̃out is constant-valued.
As this will be effected by an analytic continuation argument through Lemma 4,
we first need to ensure that the relevant quantities lie in Dh̃out

. To this end, as

〈v1p〉σ,M′′
(z1, . . . , zk) ∈ R, for all (z1, . . . , zk) ∈ R

k , p ∈ {1, . . . , D1}, and DF

is an open set containing R
D1 , we can choose a small enough δ > 0 so that

Dh̃out
⊃ D◦

k ((A, . . . , A), δ). Now, fix an arbitrary s = (s1, . . . , sk) in the smaller
open set C ∩ D◦

k (0, δ). We then have

(A + is1, . . . , A + isk) ∈ D◦
k ((A, . . . , A), δ) ⊂ Dh̃out

,

and since

(A + i rn,s
1 , . . . , A + i rn,s

k ) → (A + is1, . . . , A + isk),

as n → ∞, we obtain

(A + i rn,s
1 , . . . , A + i rn,s

k ) ∈ Dh̃out
,

for large enough n ∈ N. We may assume w.l.o.g. that this is true for all n ∈ N by
discarding finitely many elements of the sequence (rn,s)n∈N. Now, we use (22), (24),
and (25) to get

h̃out (A + i rn,s
1 , . . . , A + i rn,s

k ) = F

((
〈v1p〉σ,M′′

(A + i rn,s
1 , . . . , A + i rn,s

k )
)D1

p = 1

)

= F

((
〈v1p〉σ,M′

(A + i tn,s)
)D1

p = 1

)

= hout (A + i tn,s) = c, for all n ∈ N.

Define the set

T = {(A + i rn,s
1 , . . . , A + i rn,s

k ) : s ∈ C ∩ D◦
k (0, δ), n ∈ N}

and note that cl(T ) ⊃ ((A, . . . , A) + (i C) ∩ D◦
k (0, δ)

)
, so it follows byLemma4 that

h̃out − c ≡ 0 everywhere in a neighborhood ofR
k , and thus, in particular, h̃out |Rk ≡ c.

We now repeatedly apply Lemma 2 toM′′, anchoring successively each of the inputs
u1, . . . , uk−1. Observe that we will never find ourselves in the circumstance (ii) of
Lemma 2, as this would mean that we have obtained a network N ∈ Mmin with a
strictly smaller number of nodes thanM′. Moreover, as the first k rows of Q form an
identity matrix, we have

(v1p, u j ) ∈ EM′′ ⇐⇒ qpj �= 0 ⇐⇒ p = j,

for all p, j ∈ {1, . . . , k}. Therefore, for each j ∈ {1, . . . , k}, the node v1j will be
removed when anchoring the input u j . A concrete example of this input anchoring
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Fig. 9 Input anchoring. Left: The neural network M′′ as in Fig. 8. Right: Anchoring the inputs of M′′ at
the nodes u1, u2, . . . , uk−1 results in the removal of the nodes v11 , v12 , . . . , v1k−1 (and possibly some other
nodes deeper in the network). As k ≥ 2, the resulting networkN has fewer nodes than the original network
M′

procedure in the case k ≥ 2 is shown schematically in Fig. 9. Thus, having anchored
the nodes u1, u2, . . . , uk−1 to appropriate real numbers a1, . . . , ak−1, we will be left
with a non-degenerate clones-free LFNNN = (VN , EN , {uk}, VN

out ,�
N ,N ) such

that the function hNout :=∑w∈VN
out

λw 〈w〉σ,N satisfies

hNout (t) = h̃out (a1, . . . , ak−1, t)−
∑

w∈VM′′
out \VN

out

λw 〈w〉σ,M′′
(a1, . . . , ak−1, t), ∀t ∈ R.

(26)

We have shown that the first term on the right-hand side of (26) evaluates identically to
c.Moreover, as input anchoring yields networks satisfying (IA-2), the values 〈w〉σ,M′′

,
for w ∈ VM′′

out \ VN
out , are constant with respect to the input at uk . Therefore, the value

of the sum on the right-hand side of (26) is independent of t , that is, hNout ≡ cN , for
some cN ∈ R. As λw �= 0, for w ∈ VM′′

out , it follows that {〈w〉σ,N : w ∈ VN
out } ∪ {1}

is linearly dependent. We have thus shown that the network N is in Mmin . As N
has strictly fewer nodes than M′, we have established the desired contradiction and
proved the theorem for k ≥ 2.

The case k = 1. We have dim〈ωv11vin
, . . . , ωv1D1

vin
〉Q = 1, so we can write

ωv1j vin
= N j a, where a ∈ R and N j ∈ Z, for j = 1, . . . , D1. Moreover, by replacing

a with 2�a and all N j with N j/2� for an appropriate integer �, we may assume w.l.o.g.
that at least one of the N j is odd. We make the following crucial observation. For all
j = 1, . . . , D1 and t ∈ R, we have

〈v1j 〉σ,M′
(

t + i

2a

)
= σ

(
N j a t + θv1j

+ N j i

2

)

=
⎧
⎨
⎩

C +∑s∈S cs tanh(π(N j a t + θv1j
− s)), N j even

C +∑s∈S cs coth(π(N j a t + θv1j
− s)), N j odd

. (27)
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We see that, along the line R + i
2a , the functions 〈v1j 〉σ,M′

are real-valued, for
all j = 1, . . . , D1, and, provided that N j is odd, they have poles at the points

1
a

[ S−θ
v1j

N j
+ i

2

]
. As S is self-avoiding, and at least one of the N j is odd, there exist a

j∗ ∈ {1, . . . , D1} and a t∗ ∈ R + i
2a such that 〈v1j∗〉σ,M′

has a pole at t∗, and all the

other 〈v1j 〉σ,M′
, j ∈ {1, . . . , D1} \ { j∗}, are analytic and real-valued at t∗. Let ε > 0

be such that 〈v1j 〉σ,M′
, j ∈ {1, . . . , D1} \ { j∗}, are analytic on an open set containing

the closed disk D(t∗, ε), and such that 〈v1j∗〉σ,M′
is analytic on the punctured disk

D(t∗, ε) \ {t∗}. Before embarking on the construction of N in the case k = 1, we
verify the following auxiliary statement:

Claim 1 We have L(M′) ≥ 2 and {̃v ∈ V2 : (v1j∗ , ṽ) ∈ EM′ } �= ∅.

Proof of Claim 1 We first show that L(M′) ≥ 2. To this end, suppose by way of
contradiction that L(M′) = 1. Then, VM′

out = V1 by non-degeneracy, so the function
hout =∑

w∈VM′
out

λw 〈w〉σ,M′
can be written as

hout (t) = λv1j∗
〈v1j∗〉σ,M′

(t) + g(t), (28)

where g is analytic in an open neighborhood of t∗. But 〈v1j∗〉σ,M′
has a pole at t∗, and

so hout has a pole at t∗, which stands in contradiction to hout ≡ c, and thus establishes
L(M′) ≥ 2.

Next, by way of contradiction assume that {̃v ∈ V2 : (v1j∗ , ṽ) ∈ EM′ } = ∅. Then,

by non-degeneracy ofM′, we have v1j∗ ∈ VM′
out , and 〈w〉σ,M′

, for w ∈ VM′
out \ {v1j∗},

are real holomorphic functions of
(〈v1j 〉σ,M′)

j∈{1,...,D1}\{ j∗}. Now, as 〈v1j 〉σ,M′
, j ∈

{1, . . . , D1} \ { j∗}, are analytic and real-valued at t∗, the function hout can again be
written in the form (28) with g analytic in an open neighborhood of t∗. This again
contradicts hout ≡ c, and thus {̃v ∈ V2 : (v1j∗ , ṽ) ∈ EM′ } �= ∅, establishing the

claim. We can therefore enumerate the nodes V2 = {v21, . . . , v2d , v2d+1, . . . , v
2
D2

} so
that

– v1j∗ ∈⋂p ≤ d par({v2p}) \⋃p > d par({v2p}), and
– {ωv21v

1
j∗

, . . . , ωv2
k̄
v1j∗

} is a basis for 〈ωv21v
1
j∗

, . . . , ωv2dv1j∗
〉Q.

In particular, we have k̄ = dim〈ωv21v
1
j∗

, . . . , ωv2dv1j∗
〉Q. We will apply a similar input

splitting procedure as in the case k ≥ 2, but this timewith the nodes v1j∗ and v21, . . . , v
2
d

taking on the roles of vin and v11, . . . , v
1
D1
. Specifically, we will use the pole of

〈v1j∗〉σ,M′
at t∗ to obtain sequences (tn,s)n∈N and (rn,s)n∈N according to Lemma 7,

that is to say, we will “split the non-input node” v1j∗ of M′ into input nodes of the

new networkM′′ to be constructed. We remark that the outputs of v21, . . . , v
2
d depend

on 〈v1j∗〉σ,M′
, which, in turn, is a function of the input variables. This “extra level of

separation” will cause the construction of M′′ to be more involved in the case k = 1
than it was in the case k ≥ 2.
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In order to motivate the construction of M′′ in the case k = 1, we will carry out a
calculation analogous to (19)–(21). We begin by determining a B ∈ R such that none
of the functions

〈v2p〉σ,M′
(z) = σ

(
ωv2pv1j∗

〈v1j∗〉σ,M′
(z) + f p(z) + θv2p

)
, z ∈ Dv2p

, (29)

for p ∈ {1, . . . , d}, have singularities in the setLB := {z ∈ D(t∗, ε) : 〈v1j∗〉σ,M′
(z) ∈

B+i R}, where the functions f p : D f p → C, for p ∈ {1, . . . , d}, are defined according
to

f p(z) =
∑

j∈{1,...,D1}\{ j∗}
ωv2pv1j

〈v1j 〉σ,M′
(z), z ∈ D f p . (30)

When D1 = 1, the functions f p are all identically zero. For given p ∈ {1, . . . , d},
z ∈ LB is a singularity of 〈v2p〉σ,M′

if and only if z is an element of D(t∗, ε) such
that

〈v1j∗〉σ,M′
(z) ∈ (B + iR) ∩

P − f p(z) − θv2p

ωv2pv1j∗
,

where P is the set of poles of σ , expressed in terms of S by (14). But

P − f p(z) − θv2p

ωv2pv1j∗
⊂

S − Re[ f p(D(t∗, ε))] − θv2p

ωv2pv1j∗
+ iR,

for all z ∈ D(t∗, ε), so it suffices to ensure that

B /∈
d⋃

p = 1

S − Re[ f p(D(t∗, ε))] − θ2
v2p

ωv2pv1j∗
. (31)

Next, let

η(ε) = sup
1≤ p ≤ d

sup
z∈D(t∗,ε)

| f p(z) − f p(t
∗)|

and note that, as f p, p = 1, . . . , d, are continuous in a neighborhood of t∗, we have
η(ε) → 0 as ε → 0. Let Leb denote the Lebesgue measure on R. We then have

Leb

⎧⎨
⎩[0, 1] ∩

d⋃
p = 1

S − Re[ f p(D(t∗, ε))] − θ2
v2p

ωv2pv1j∗

⎫⎬
⎭

≤
d∑

p = 1

2η(ε)

|ωv2pv1j∗
| · #
⎧
⎨
⎩[0, 1] ∩

S − θ2
v2p

ωv2pv1j∗

⎫
⎬
⎭ < 1
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for small enough values of ε. Therefore, by choosing a sufficiently small ε, we can
ensure that there exists a B ∈ [0, 1] such that (31) holds, as desired. Now, write
(ωv2pv1j∗

)d
p = 1 = Q̄ · (ωv2pv1j∗

)k̄
p = 1, where Q̄ = (q̄pj )p, j ∈ Q

d×k̄ is a rational matrix

whose first k̄ rows form a k̄ × k̄ identity matrix. Let C ⊂ R
k̄ be a set satisfying the

conclusion of Lemma 7 applied with αp = ωv2pv1j∗
, p = 1, . . . , k̄.

Given an arbitrary s = (s1, s2, . . . , sk̄) ∈ C , Lemma7yields sequences (tn,s)n∈N ⊂
R, (rn,s)n∈N ⊂ C such that

(ωv21v
1
j∗

tn,s, . . . , ωv2dv1j∗
tn,s)+Z

d = Q̄ ·
(
ωv21v

1
j∗

rn,s
1 , . . . , ωv2

k̄
v1j∗

rn,s
k̄

)
+Z

d , ∀n ∈ N,

(32)

|tn,s| → ∞ as n → ∞, (33)

rn,s → s as n → ∞. (34)

As 〈v1j∗〉σ,M′
is analytic on the punctured disk D(t∗, ε) \ {t∗} and its singularity at

t∗ is a pole, it follows that the reciprocal 1/〈v1j∗〉σ,M′
is holomorphic on D(t∗, ε)

with a zero at t∗. Thus, by the complex open mapping theorem [18, Thm. 10.32]
applied to 1/〈v1j∗〉σ,M′

, there exists a δ > 0 such that, for every y ∈ D(0, δ), there

is a zy ∈ D(t∗, ε) with 1/〈v1j∗〉σ,M′
(zy) = y. Now, since |tn,s| → ∞, we also have

|B + i tn,s| → ∞, so it follows that there exists a sequence (zn,s)n∈N in D(t∗, ε)\{t∗}
with zn,s → t∗, such that 〈v1j∗〉σ,M′

(zn,s) = B + i tn,s (a finite number of elements
of the sequence (tn,s)n∈N may need to be discarded to ensure that (zn,s)n∈N is, indeed,
contained in D(t∗, ε) \ {t∗}). Now, for p ∈ {1, . . . , d}, compute

σ
(
ωv2pv1j∗

〈v1j∗〉σ,M′
(zn,s) + f p(z

n,s) + θv2p

)

= σ
(
ωv2pv1j∗

(B + i tn,s) + f p(z
n,s) + θv2p

)
(35)

= σ
(
ωv2pv1j∗

B + i(ωv2pv1j∗
tn,s + Z) + f p(z

n,s) + θv2p

)
(36)

= σ

⎛
⎝ωv2pv1j∗

B + i ·
⎛
⎝

k̄∑
j=1

q̄pj ωv2j v
1
j∗

rn,s
j + Z

⎞
⎠+ f p(z

n,s) + θv2p

⎞
⎠ (37)

= σ

⎛
⎝

k̄∑
j=1

q̄pj ωv2j v
1
j∗

(B + i rn,s
j ) + f p(z

n,s) + θv2p

⎞
⎠ , (38)

where in (35) we used the definition of zn,s, in (36) we used the i-periodicity of σ , in

(37)we used (32), and in (38)we usedωv2pv1j∗
=∑k̄

j=1 q̄pj ωv2j v
1
j∗
and the i-periodicity

of σ again. As B was chosen so that the functions (29) do not have singularities in
LB , all the quantities in the calculation (35)–(38) are well defined.

Motivated by (35)–(38), we construct a GFNNM′′ = (VM′′
, EM′′

, VM′′
in , VM′′

out ,

�M′′
,M′′

) as follows
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Fig. 10 Input splitting, case k = 1. Left: A neural network M′, assumed to be a minimal element of M ,
with D1 = 3, D2 = 6, and d = 4. Right: The corresponding network M′′, assuming j∗ = 1 and k̄ = 2.
The function H in (42) and (43) corresponds to the map realized by the shared part (in red) ofM′ andM′′

– First, k̄ new nodes are created and enumerated as {u1, . . . , uk̄}. Now, if D1 > 1,
then let VM′′

in = {vin, u1, . . . , uk̄}, and if D1 = 1, set VM′′
in = {u1, . . . , uk̄}.

– VM′′ := VM′′
in ∪ (V1 \ {v1j∗}) ∪⋃�≥2 V�.

– EM′′ := {(v, ṽ) ∈ EM : lv(v) ≥ 2} ∪ {(v1j , v2p) : j ∈ {1, . . . , D1} \ { j∗},
p ∈ {1, . . . , D2}}∪ {(u j , v

2
p) : p ∈ {1, . . . , d}, j ∈ {1, . . . , k̄}, q̄pj �= 0},

– VM′′
out := VM′

out \ {v1j∗},
– define ωv2pu j

:= q̄pj ωv2j v
1
1
, for p = 1, . . . , d, j = 1, . . . , k̄, and let

�M′′ := {ωṽv ∈ �M′ : lv(v) ≥ 2} ∪ {ωv2pv1j
: j ∈ {1, . . . , D1} \ { j∗}, p ∈

{1, . . . , D2}}∪{ωv2pu j
: p ∈ {1, . . . , d}, j ∈ {1, . . . , k̄}, q̄pj �= 0},

– let M′′ := {θv ∈ M′ : lv(v) ≥ 2} ∪ {θv1j
: j ∈ {1, . . . , D1} \ { j∗}}.

The construction ofM′′ for a concreteM′ is illustrated in Fig. 10. Note thatM′′ is not
layered in the case D1 > 1, due to the presence of the node vin . Owing to (35)–(38)
and the construction of M′′, we have the following “input splitting” relationship:

〈v2p〉σ,M′
(zn,s) =

{
〈v2p〉σ,M′′

(zn,s, B + i rn,s
1 , . . . , B + i rn,s

k̄
), if D1 > 1

〈v2p〉σ,M′′
(B + i rn,s

1 , . . . , B + i rn,s
k̄

), if D1 = 1
,

(39)

for p ∈ {1, . . . , d}. We next show that M′′ is non-degenerate and clones-free. To
establish non-degeneracy, it suffices to show VM′′

in ⊂ ⋃
w∈VM′′

out
VM′′(w). First note

that, in both cases D1 = 1 and D1 > 1, for a given j ∈ {1, . . . , k̄}, there exists a
w ∈ VM′

out \ {v1j∗} such that v2j ∈ VM′(w), by non-degeneracy of M′. It follows that
v2j ∈ VM′′(w) and thus u j ∈ VM′′(w). As j was arbitrary, we have {u1, . . . , uk̄} ⊂⋃

w∈VM′′
out

VM′′(w), which establishes non-degeneracy ofM′′ in the case D1 = 1. For

D1 > 1, we need to additionally show that vin ∈ VM′′(w). To this end, note that there
exist an m∗ ∈ {1, . . . , D1}\ { j∗} and aw ∈ VM′

out \{v1j∗} such that v1m∗ ∈ VM′(w), and
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so vin ∈ VM′′(w), as desired. The clones-free property of M′′ follows by the same
argument as in the case k ≥ 2.

Once again, we revisit the function hout (t) = ∑
w∈VM′

out
λw 〈w〉σ,M′

(t) = c, for
all t ∈ Dhout , and proceed in a similar fashion as in the case k ≥ 2. This time, however,
the output sets VM′

out and VM′′
out may differ by the node v1j∗ . This is a nuisance that will

be dealt with below in Claim 2, but in the meantime, it is convenient to introduce the
“truncated” linear dependency function

htr :=
∑

w∈VM′
out \{v1j∗ }

λw 〈w〉σ,M′
, (40)

and proceed exactly as in the case k ≥ 2. By examining the structure of M′, we see
that, for each w ∈ VM′

out \ {v1j∗}, we can write

〈w〉σ,M′
(z) = Hw

((
〈v2p〉σ,M′

(z)
)d

p = 1
,

(
〈v1j 〉σ,M′

(z)
)

j∈{1,...,D1}\{ j∗}

)
, ∀z ∈ D〈w〉σ,M′ ,

where Hw : DHw → C corresponds to the map realized by the GFNN with nodes

VM \ {vin, v1j∗}, (41)

inputs {v2p}d
p = 1∪{v1j } j∈{1,...,D1}\{ j∗}, single output {w}, and edges, weights, and biases

inherited fromM′. The function Hw : DHw → C is holomorphic on its natural domain
DHw ⊂ C

d+(D1−1) containing R
d+(D1−1). We can therefore write

htr (z) = H

((
〈v2p〉σ,M′

(z)
)d

p = 1
,
(
〈v1j 〉σ,M′

(z)
)

j∈{1,...,D1}\{ j∗}

)
, ∀z ∈ Dhout ,

(42)

where H : DH → C, H = ∑
w∈VM′

out \{v1j∗ } λw Hw, is holomorphic on DH =
⋂

w∈VM′
out \{v1j∗ } DHw ⊃ R

d+(D1−1).

Now, by definition of natural domain, for each w ∈ VM′′
out , the natural domain

D〈w〉σ,M′′ is the set of all z ∈⋂d
p=1D〈v2p〉σ,M′′ ∩⋂ j �= j∗ D〈v1j 〉σ,M′′ such that

((
〈v2p〉σ,M′′

(z)
)d

p = 1
,
(
〈v1j 〉σ,M′′

(z)
)

j∈{1,...,D1}\{ j∗}

)
∈ DHw ,

where the variable z = (z0, z1, . . . , zk̄) corresponds to the input nodes vin, u1, . . . , uk̄ ,
in the case D1 > 1, and z = (z1, . . . , zk̄) corresponds to the input nodes u1, . . . , uk̄ ,
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in the case D1 = 1. Therefore, for z in the open domainDh̃out
:=⋂

w∈VM′′
out

D〈w〉σ,M′′ ,

we can define the function h̃out : Dh̃out
→ C according to

h̃out (z) = H

((
〈v2p〉σ,M′′

(z)
)d

p = 1
,
(
〈v1j 〉σ,M′′

(z)
)

j∈{1,...,D1}\{ j∗}

)
. (43)

Moreover, as M′ and M′′ share the nodes in (41), as well as the associated edges,
weights, and biases, we have

〈w〉σ,M′′
(z) = Hw

((
〈v2p〉σ,M′′

(z)
)d

p = 1
,
(
〈v1j 〉σ,M′′

(z)
)

j∈{1,...,D1}\{ j∗}

)

for all w ∈ VM′′
out , and thus

h̃out =
∑

w∈VM′′
out

λw 〈w〉σ,M′′
.

At this point, we verify another auxiliary claim, which states that htr and hout are
always, in fact, the same function, and therefore h̃out ≡ c follows by a similar argument
as in the case k ≥ 2.

Claim 2 Recall that t∗ ∈ R + i
2a is such that 〈v1j∗〉σ,M′

has a pole at t∗, and all the

other 〈v1j 〉σ,M′
, j ∈ {1, . . . , D1} \ { j∗}, are analytic and real-valued at t∗. Further

recall the open set C ⊂ R
k̄ containing 0. We have {t∗}×R

k̄ ⊂ Dh̃out
and h̃out |Rk̄+1 ≡ c,

in the case D1 > 1, and R
k̄ ⊂ Dh̃out

and h̃out |Rk̄ ≡ c, in the case D1 = 1. Moreover,

in both cases we have v1j∗ /∈ VM′
out .

Proof of Claim 2 First assume that D1 > 1. To show that {t∗} × R
k̄ ⊂ Dh̃out

,

first observe that, for j ∈ {1, . . . , D1} \ { j∗} and (z1, . . . , zk̄) ∈ R
k̄ , we have

〈v1j 〉σ,M′′
(t∗, z1, . . . , zk̄) = 〈v1j 〉σ,M′

(t∗), which, by (27), is a real number. By (30),
this further implies f p(t∗) ∈ R, for p = 1, . . . , d. Therefore,

〈v2p〉σ,M′′
(t∗, z1, . . . , zk̄) = σ

⎛
⎝

k̄∑
j=1

q̄pj ωv2j v
1
j∗

z j + f p(t
∗) + θv2p

⎞
⎠ ∈ R,

for p ∈ {1, . . . , d} and (z1, . . . , zk̄) ∈ R
k̄ . As R

d+(D1−1) ⊂ DH , we deduce that

((
〈v2p〉σ,M′′

(z)
)d

p = 1
,
(
〈v1j 〉σ,M′′

(z)
)

j∈{1,...,D1}\{ j∗}

)
∈ DH , for all z ∈ {t∗} × R

k̄ .

This establishes {t∗} × R
k̄ ⊂ Dh̃out

. We proceed to showing h̃out |Rk̄+1 ≡ c. As Dh̃out

is open, it follows that Dh̃out
⊃ U , for some connected open U ⊂ C

1+k̄ containing
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{t∗}× R
k̄ . Choose a small enough δ > 0 so that U ⊃ D◦

1(t
∗, δ)× D◦̄

k
((B, . . . , B), δ).

Now, fix an arbitrary s = (s1, . . . , sk̄) in the smaller open set C ∩ D◦̄
k
(0, δ). We then

have

(t∗, B + is1, . . . , B + isk̄) ∈ D◦
1(t

∗, δ) × D◦̄
k
((B, . . . , B), δ) ⊂ U ⊂ Dh̃out

,

and since

(zn,s, B + i rn,s
1 , . . . , B + i rn,s

k̄
) → (t∗, B + is1, . . . , B + isk̄),

as n → ∞, we obtain

(zn,s, B + i rn,s
1 , . . . , B + i rn,s

k̄
) ∈ Dh̃out

,

for large enough n ∈ N. We may again assume w.l.o.g. that this is true for all n ∈ N

by discarding finitely many elements of the sequences (zn,s)n∈N and (rn,s)n∈N. Now,
we use (39), (42), and (43) to get

h̃out (z
n,s, B + i rn,s

1 , . . . , B + i rn,s
k̄

) = htr (z
n,s), ∀n ∈ N, (44)

for all s ∈ C ∩ D◦̄
k
(0, δ). We are now ready to show that v1j∗ /∈ VM′

out (still in the

case D1 > 1). To this end, suppose by way of contradiction that v1j∗ ∈ VM′
out and set

s = 0. Note that h̃out (t∗, B, . . . , B) is a well-defined (finite) complex number, simply
as (t∗, B, . . . , B) ∈ {t∗} × R

k̄ ⊂ Dh̃out
. Thus, by (40) and (44), we have

〈v1j∗〉σ,M′
(zn,0) = c − hout (z

n,0) + 〈v1j∗〉σ,M′
(zn,0)

= c − htr (z
n,0)

= c − h̃out (z
n,0, B + i rn,0

1 , . . . , B + i rn,0
k̄

)

→ c − h̃out (t
∗, B, . . . , B)

as n → ∞, which contradicts the fact that 〈v1j∗〉σ,M′
has a pole at t∗. This establishes

v1j∗ /∈ VM′
out . As a consequence we further have htr = hout , and so (44) reads

h̃out (z
n,s, B + i rn,s

1 , . . . , B + i rn,s
k̄

) = hout (z
n,s) = c, ∀n ∈ N,

for all s ∈ C ∩ D◦̄
k
(0, δ). Now, define the set

T̃ = {(zn,s, B + i rn,s
1 , . . . , B + i rn,s

k̄
) : s ∈ C ∩ D◦̄

k
(0, δ), n ∈ N}.
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Fig. 11 Input anchoring. Left: The neural networkM′′ as in Fig. 10. Note thatM′′ is not layered, but every
network obtained fromM′′ by anchoring all but one of its input nodes is layered.Right:Anchoring the inputs
ofM′′ at the nodes vin , u1, u2, . . . , uk̄−1 yields a layered neural network N with L(N ) = L(M) − 1

Note that T̃ satisfies

T̃ ⊂ (D(t∗, ε) \ {t∗}) × C
k̄ and

cl(T̃ ) ⊃ {t∗} ×
(
(B, . . . , B) + (i C) ∩ D◦̄

k
(0, δ)

)
,

so by Lemma 5, it follows that h̃out − c ≡ 0 everywhere in an open neighborhood
of R

k̄+1, and thus h̃out |Rk̄+1 ≡ c in particular. This establishes Claim 2 in the case

D1 > 1. It remains to prove the claim for D1 = 1. Showing that R
k̄ ⊂ Dh̃out

is fully

analogous to showing {t∗} × R
k̄ ⊂ Dh̃out

in the case D1 > 1. We can hence proceed
to establishing h̃out |Rk̄ ≡ c. To this end, we first note that there is a connected open

set U and a δ > 0 such that R
k̄ ⊂ U ⊂ Dh̃out

and D◦̄
k
((B, . . . , B), δ) ⊂ U , and we

similarly obtain

(B + i rn,s
1 , . . . , B + i rn,s

k̄
) ∈ Dh̃out

,

for all n ∈ N and s ∈ C ∩ D◦̄
k
(0, δ). Again, showing v1j∗ /∈ VM′

out now proceeds in a
manner entirely analogous to the case D1 > 1, as does obtaining the identity

h̃out (B + i rn,s
1 , . . . , B + i rn,s

k̄
) = hout (z

n,s) = c, ∀n ∈ N,

for all s ∈ C ∩ D◦̄
k
(0, δ). Now, define the set

T = {(B + i rn,s
1 , . . . , B + i rn,s

k̄
) : s ∈ C ∩ D◦̄

k
(0, δ), n ∈ N}.

Note that T satisfies cl(T ) ⊃
(
(B, . . . , B) + (i C) ∩ D◦̄

k
(0, δ)

)
, so, by Lemma 4, we

have h̃out ≡ c everywhere in an open neighborhood of R
k̄ , which concludes the proof

of Claim 2.
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Finally, it remains to apply an input anchoring procedure to M′′, which will con-
clude the proof in a manner similar to the case k ≥ 2. Specifically, we use Lemma 2
to successively eliminate inputs ofM′′, starting with vin (if present), and proceeding
with u1, . . . , uk̄−1. If D1 > 1, the networkM′′ is not layered (unlike in the case k ≥ 2
and the case k = 1, D1 = 1). However, every network obtained fromM′′ by anchor-
ing all but one of the input nodes {vin, u1, . . . , uk̄} is layered. This means that, when
anchoring vin , we do not find ourselves in the circumstance (ii) of Lemma 2, as this
would mean we have obtained a network N ∈ Mmin with strictly fewer nodes than
M. Thus, after having anchored vin , we are left with a layered network with inputs
u1, . . . , uk̄ . At this point, we proceed completely analogously to the case k ≥ 2 by
successively eliminating the inputs u1, . . . , uk̄−1. We are left with a non-degenerate
clones-free LFNN N = (VN , EN , {uk̄}, VN

out ,�
N ,N ) and a vector of real con-

stants a (specifically, a ∈ R
k̄ in the case D1 > 1, and a ∈ R

k̄−1 in the case D1 = 1),
such that the function hNout :=∑w∈VN

out
λw 〈w〉σ,N satisfies

hNout (t) = h̃out (a, t) −
∑

w∈VM′′
out \VN

out

λw 〈w〉σ,M′′
(a, t) , ∀t ∈ R. (45)

A concrete example of this input anchoring procedure in the case k ≥ 2 is shown
schematically in Fig. 11. By Claim 2, the first term on the right-hand side of (45)
evaluates identically to c. Moreover, as input anchoring yields networks satisfying
(IA-2), the values of the functions 〈w〉σ,M′′

, for w ∈ VM′′
out \ VN

out , do not depend on
the input at uk̄ . Therefore, hNout ≡ cN , for some cN ∈ R. We have thus shown that
the network N is in M . But L(N ) = L(M) − 1, which stands in contradiction to
the minimality of depth of the elements of Mmin , and therefore completes the proof
of the theorem. ��
Proof of Theorem 3 Let N j = (V j , E j , Vin, Vout ,�

j , j ), j ∈ {1, 2}, be networks
as in the theorem statement. Let N = N1 ∨ N2 be their amalgam and π j : VN j →
π j (VN j ) ⊂ VN the extensional isomorphisms between N j and the corresponding
subnetworks of N , for j ∈ {1, 2}. We start by claiming that π1(w) = π2(w), for all
w ∈ Vout . Indeed, suppose to the contrary that we have π1(w

′) �= π2(w
′), for some

w′ ∈ Vout , and denote w j = π j (w
′), j ∈ {1, 2}. Since w1 �= w2, it follows that

N (w1) andN (w2) are not extensionally isomorphic, for otherwise w1 and w2 would
be clones, contradicting the no-clones condition for N . Now,

〈N (w1)〉σ (t) − 〈N (w2)〉σ (t) = 〈w′〉σ,N1(t) − 〈w′〉σ,N2(t) = 0, for all t ∈ R
Vin ,

by assumption. But this contradicts the conclusion of Theorem 4, and thus establishes
π1(w) = π2(w), for all w ∈ Vout . By non-degeneracy ofN1, for every v ∈ V 1, there
exists a w ∈ Vout such that v ∈ VN1(w). Then, π1(v) ∈ VN (π1(w)) = VN (π2(w)) =
π2(VN2(w)) ⊂ π2(V 2). Similarly, for every v ∈ V 2, we have π2(v) ∈ π1(V 1). Thus,
the function ψ : V 1 → V 2 given by ψ = π−1

2 ◦ π1 is well defined. This function is
invertible with inverse π−1

1 ◦ π2, so it is a bijection. Therefore, ψ is an extensional
isomorphism betweenN1 andN2, by virtue of being a composition of two extensional
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isomorphisms. Moreover, we have ψ(w) = π−1
2 (π1(w)) = w, for all w ∈ Vout , so ψ

restricted to Vout is the identity map, and thus ψ is a faithful isomorphism. ��
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Appendix: Proofs of Auxiliary Results

Proof of Proposition 1 FixN1 andN2 as in the statement of the proposition. We begin
by establishing the existence of a corresponding amalgamA. LetA denote the set of
all proto-amalgams of N1 and N2. To see that A is non-empty, consider the LFNN
N = (VN , EN , Vin, VN

out ,�
N ,N ) specified as follows:

– Let S be a set of cardinality #(V 1 \ Vin) + #(V 2 \ Vin) disjoint from Vin , and
set VN := Vin ∪ S. Furthermore, let π N

j : V j → π N
j (V j ) ⊂ VN be injective

functions such that π N
j (v) = v, for v ∈ Vin , j ∈ {1, 2}, and π N

1 (V 1 \ Vin) ∩
π N
2 (V 2 \ Vin) = ∅, but otherwise arbitrary.

– EN :=⋃ j=1,2{(π N
j (v), π N

j (̃v)) : v, ṽ ∈ V j , (v, ṽ) ∈ E j }.
– VN

out := πN
1 (V 1

out ) ∪ πN
2 (V 2

out ).
– For j ∈ {1, 2} and v, ṽ ∈ V j such that (v, ṽ) ∈ E j , let ωπ N

j (̃v)π N
j (v) = ωṽv , and

set �N := {ωvu : (u, v) ∈ EN }.
– For j = 1, 2 and v ∈ V j \ Vin , let θπ N

j (v) = θv , and set N :=
{
θu : u ∈ VN \ Vin

}
.

Informally, the network N is obtained by putting N1 and N2 “side by side,” sharing
only the input nodes Vin . As N1 and N2 are non-degenerate, so is N . Moreover,
Properties (i) and (ii) of Definition 16 hold for N with π N

j : V j → π j (V j ) ⊂ VN ,
for j = 1, 2.

Thus, N is a proto-amalgam of N1 and N2, and so A �= ∅. Now, let A =
(VA, EA, VA

in , VA
out ,�

A,A) ∈ A be a network with the least possible number of
nodes among all the networks inA , and let π j : V j → π j (V j ) ⊂ VA, for j ∈ {1, 2},
be extensional isomorphisms between N j and the appropriate subnetworks of A. We
now show that A is clones-free. To this end, suppose by way of contradiction that
c1, c2 ∈ VA are clones. As N1 is clones-free, c1, c2 cannot both be in π1(V 1), for
otherwise π−1

1 (c1) and π−1
1 (c2) would be clones in N1. By the same token, c1, c2

cannot both be in π2(V 2). Thus, we may write w.l.o.g. c1 = π1(v1) and c2 = π2(v2),
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for some v1 ∈ V 1 and v2 ∈ V 2. Now, let Ã be the network obtained fromA bymaking
the following alterations:

– For every edge (c2, v) ∈ EA, where v ∈ VA, introduce a new edge (c1, v) together
with the associated weight ωvc2 , and delete the edge (c2, v).

– Delete the edges (v, c2) ∈ EA, as well as the node c2.
– If c2 was a node in π2(V 2

out ), then add c1 to the set V Ã
out .

The network Ã is a proto-amalgam of N1 and N2 via the extensional isomorphisms
π̃1 = π1 and

π̃2(v) =
{

π2(v), v ∈ V 2 \ {π−1
2 (c2)}

c1, v = π−1
2 (c2)

, for v ∈ VN2 .

But Ã has strictly fewer nodes than A, which contradicts the minimality of A, and
thereby establishes that A is clones-free, and hence A is an amalgam of N1 and
N2, completing the proof of existence. To establish uniqueness—up to extensional
isomorphisms—of the amalgam, suppose thatA andA′ are both amalgams ofN1 and
N2 via extensional isomorphisms π j : V j → π j (V j ) ⊂ VA, π ′

j : V j → π ′
j (V j ) ⊂

VA′
, for j ∈ {1, 2}. We first show that

(π ′
1 ◦ π−1

1 )(v) = (π ′
2 ◦ π−1

2 )(v), for all v ∈ π1(V1) ∩ π2(V2), (46)

by induction on lvA(v). If v ∈ Vin , then (46) holds trivially as the restrictions of
the maps π j , π j

′, for j ∈ {1, 2}, to the set Vin , both equal the identity map idVin .
Now, let L ≥ 1 and suppose that (46) holds for all u ∈ π1(V1) ∩ π2(V2) with
lvA(u) < L . Let v ∈ π1(V1) ∩ π2(V2) with lvA(v) = L , but otherwise arbitrary,
and write w j = (π ′

j ◦ π−1
j )(v), for j = 1, 2. By Property (i) of Definition 16

for the amalgam A, we have N1
e∼ A(π1(V 1

out )) and N2
e∼ A(π2(V 2

out )), and so

N1

(
π−1
1 (v)

)
e∼ A(v) and N2

(
π−1
2 (v)

)
e∼ A(v) by appropriately restricting π1

and π2. Similarly, N1
(
(π ′

1)
−1(w1)

) e∼ A′(w1) and N2
(
(π ′

2)
−1(w2)

) e∼ A′(w2). But

(π ′
j )

−1(w j ) = π−1
j (v), and so N j

(
(π ′

j )
−1(w j )

)
= N j

(
π−1

j (v)
)
, for j ∈ {1, 2}.

Therefore, A′(w1)
e∼ A(v) and A′(w2)

e∼ A(v) via π1 ◦ (π ′
1)

−1 and π2 ◦ (π ′
2)

−1,
respectively. Now, as A′ is an amalgam, it is clones-free, and thus we deduce that
w1 = w2, for otherwise w1 and w2 would be clones in A′. This establishes (46).

Now define ψ : VA → VA′
according to

ψ(v) =
{

(π ′
1 ◦ π−1

1 )(v), v ∈ π1(V1)

(π ′
2 ◦ π−1

2 )(v), v ∈ π2(V2)
. (47)

It follows by (46) that this definition is consistent, in the sense that the two cases in
(47) yield the same value for ψ(v) when v ∈ π1(V1) ∩ π2(V2). Now, Properties (i)
and (ii) of Definition 14 for ψ follow, so ψ is an extensional isomorphism betweenA
and A′, finishing the proof. ��
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Proof of Lemma 3 Denote byDσ = C\ P the domain of holomorphy of σ .We proceed
by induction on lv(u). In the base case lv(u) = 0, i.e., u = vin , the claim is trivially
true with Eu = ∅. Now suppose that lv(u) ≥ 1, and assume the statement holds for
all v ∈ V with lv(v) < lv(u), i.e., D〈v〉σ = C \ Ev , where Ev are closed countable
subsets of C \ R. Set Eu = C \ D〈u〉σ . We will show that Eu is a closed countable
subset of C \ R. To this end, first note that S := ⋃v∈par(u) Ev is a closed countable
subset of C \ R, and thus C \ S is an open connected set containing R. We claim that
if z∗ is a limit point of Eu \ S, then z∗ ∈ S. Suppose otherwise, i.e., there exist a
sequence (zn)n∈N of distinct elements of Eu \ S, and a point z∗ ∈ C \ S, such that
zn → z∗. Define the function f : C \ S → C, f (z) = ∑v∈par(u) ωuv 〈v〉σ (z) + θu .
As the functions 〈v〉σ are holomorphic on D〈v〉σ , they are, in particular, continuous,
and so f is continuous. Therefore, f (zn) → f (z∗) as n → ∞. As

zn ∈ Eu \ S =
⋂

v∈par(u)

D〈v〉σ
∖ D〈u〉σ ,

it follows by definition of natural domain that f (zn) ∈ P , for all n ∈ N. Moreover,
since P is discrete, we deduce that there exists a point p∗ ∈ P such that f (zn) = p∗,
for all sufficiently large n ∈ N. Now, since C \ S is connected and f is holomorphic,
it follows that f (z) = p∗, for all z ∈ C \ S. But 0 ∈ R ⊂ C \ S, which thus implies
p∗ = f (0) = ∑v∈par(u) ωuv 〈v〉σ (0) + θu ∈ R, contradicting P ⊂ C \ R. This
completes the proof that any limit point of Eu \ S is contained in S. Now define the

sets E N
u := {z ∈ Eu : |z| ≤ N , d(z, S) ≥ 1/N

}
, for N ∈ N, where d denotes the

Euclidean distance in C. We see that E N
u is finite, for each N ∈ N, for otherwise there

would exist a sequence (zn)n∈N of distinct elements of E N
u converging to a point z∗ ∈

C. But then, by the claim above, we have z∗ ∈ S, which contradicts d(zn, S) ≥ 1/N ,
for all n ∈ N. We deduce that Eu = S ∪⋃N∈N

E N
u is a closed countable set, and

therefore D〈u〉σ = C \ Eu is an open connected set. To see that D〈u〉σ ⊃ R, note that,
for z ∈ R, we have z ∈ C \ S = ⋂v∈par(u) D〈v〉σ , and f (z) ∈ R ⊂ Dσ , so z ∈ D〈u〉σ .
��

Proof of Lemma 4 Let a, δ, and T be as in the statement of the lemma, such that
D◦

k (a, δ) ⊂ U and F |T ≡ 0. Then, the function Fa := F( · + a) is holomorphic on
U − a, and Fa|T −a ≡ 0. Thus, as F |U ≡ 0 if and only if Fa|U−a ≡ 0, it suffices to
prove the result for a = 0. Let T0 := T , Tk := D◦

k (0, δ), and, for r = 1, . . . , k − 1,
define the sets

Tr = {(i z1, . . . , i zk−r , sk−r+1, . . . , sk) : z j ∈ (−δ, δ),∀ j; s j ∈ D◦
1(0, δ),∀ j}.

Note that Tr ⊂ D◦
k (0, δ) ⊂ U , for r ∈ {0, . . . , k}. We establish by induction over

r that F |Tr ≡ 0, r ∈ {0, . . . , k}. The base case F |T0 ≡ 0 holds by assumption. So
suppose that F |Tr ≡ 0, for some r ∈ {0, . . . , k − 1}. If 0 ≤ r < k − 1, fix arbitrary
z j ∈ (−δ, δ), for j ∈ {1, . . . , k − r − 1}. Similarly, if 0 < r ≤ k − 1, fix arbitrary
s j ∈ D◦

1(0, δ), for j ∈ {k − r + 1, . . . , k}. Consider the function G : D◦
1(0, δ) → C
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defined by

G(z) =

⎧⎪⎨
⎪⎩

F(i z1, . . . , i zk−1, i z), if r = 0

F(i z1, . . . , i zk−r−1, i z, sk−r+1, . . . , sk), if 1 ≤ r < k − 1

F(i z, s2, . . . , sk), if r = k − 1

.

Note that G is holomorphic, and G|(−δ,δ) ≡ 0 by the induction hypothesis. Since the
zero set of a nonzero holomorphic function in one variable does not have a limit point
in the domain, we deduce that G|D◦

1(0,δ)
≡ 0. But z j and s j were arbitrary, so we

have F |Tr+1 ≡ 0. We have thus shown that F is identically zero on an open subset
Tk = D◦

k (0, δ) of its connected domain U , and so, by the multivariate identity theorem
[19, 1.2.12], it must be identically zero on U . ��
Proof of Lemma 5 Let t∗, a, δ, T , and T̃ be as in the statement of the lemma, such
that D◦

k (a, δ) ⊂ U , T̃ ⊂ (C \ {t∗}) × C
k , cl(T̃ ) ⊃ T , and F |T̃ ≡ 0, and denote

V := D◦
1+k(a, δ). The function F(t∗, a) = F( · +(t∗, a)) is holomorphic onU−(t∗, a),

and the sets

T(t∗, a) := T − (t∗, a) = {(0, i z1, . . . , i zk) : z j ∈ (−δ, δ), j = 1, . . . , k}

and T̃(t∗, a) := T̃ − (t∗, a) satisfy T̃(t∗, a) ⊂ (C \ {0}) × C
k , cl(T̃(t∗, a)) ⊃ T(t∗, a),

and F(t∗, a)|T̃(t∗, a) ≡ 0. Therefore, as F |U ≡ 0 if and only if F(t∗, a)|U−(t∗, a) ≡ 0,
and (t∗, a) was arbitrary, it suffices to prove the result for (t∗, a) = (0, 0). Assume
by way of contradiction that F |V is not identically 0. Then, by inspection of the
power series expansion of F in the open neighborhood V of (0, 0), we obtain that
there exists a maximal p ∈ N0 such that z−p

0 F(z0, z1, . . . , zk) is holomorphic in V .
Write G(z0, z1, . . . , zk) = z−p

0 F(z0, z1, . . . , zk), with G : V → C holomorphic
and not identically 0. Now, due to T̃ ⊂ (C \ {0}) × C

k , we have z0 �= 0, for every
(z0, z1, . . . , zk) ∈ T̃ . Moreover, as F |T̃ ≡ 0, we have G(z0, z1, . . . , zk) = z−p

0 ·
0 = 0, for all (z0, z1, . . . , zk) ∈ T̃ . Now, since G is continuous and cl(T̃ ) ⊃ T
by assumption, it follows that G(0, z1, . . . , zk) = 0, for all (0, z1, . . . , zk) ∈ T . The
mapping (z1, . . . , zk) �→ G(0, z1, . . . , zk) is holomorphic on D◦

k (0, δ) and identically
zero on the set

{(i z1, . . . , i zk) : z j ∈ (−δ, δ), j = 1, . . . , k},

and so, by Lemma 4, we obtain G(0, z1, . . . , zk) = 0, for all (0, z1, . . . , zk) ∈ V .
By inspection of the power series expansion of G in V , we find that G must have the
form G(z0, z1, . . . , zk) = z0

∂G
∂z0

(z0, z1, . . . , zk). As the function ∂G
∂z0

is holomorphic

in V , we have that z−(p+1)
0 F(z0, . . . , zk) = ∂G

∂z0
(z0, . . . , zk) is holomorphic in V ,

contradicting the maximality of p. Our hypothesis that F |V is not identically zero
must hence be false, i.e., we have F |V ≡ 0. Finally, by the multivariate identity
theorem [19, 1.2.12], we deduce that F |U ≡ 0. ��
Proof of Lemma 6 First note that M is the closure of a one-parameter subgroup of
T d = R

d/Z
d . Since T d is compact and abelian, so is M .Moreover, M is connected (as
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the closure of a connected set), and so, by [20, Theorem 11.2], it is itself isomorphic to
a torus. It remains to determine its dimension. A character on a compact abelian group
G is a continuous group homomorphism χ : G → S1, where S1 = {z ∈ C : |z| = 1}
is the multiplicative circle group, and we denote by Ĝ the set of all characters on G.
We claim that

M =
⋂

χ∈T̂ d

M⊂ker(χ)

ker(χ). (48)

The inclusion of M in the right-hand side is clear, so we only need to show the reverse
inclusion. Note that, since M is closed, T d/M is a Lie group.Wewill rewrite the right-
hand side of (48) by establishing a bijective correspondence between the characters
χ : T d → S1 such that M ⊂ ker(χ), and the characters f : T d/M → S1. To this
end, let π : T d → T d/M be the projection map, and suppose that χ : T d → S1

is a character such that M ⊂ ker(χ). Then, χ factors according to χ = f ◦ π , for
some continuous homomorphism f : T d/M → S1, in other words, f is a character
on T d/M . Conversely, for any such f we have that f ◦ π is a character χ on T d with
M ⊂ ker(χ). Therefore, it suffices to show that

⋂

f ∈̂T d/M

ker( f ) = {0}. (49)

Indeed, if this is the case, then

M = π−1({0}) =
⋂

f ∈̂T d/M

π−1(ker( f )) ⊃
⋂

f ∈̂T d/M

ker( f ◦ π) =
⋂

χ∈T̂ d

M⊂ker(χ)

ker(χ),

as desired. We thus proceed to establishing (49). First note that, as T d is compact,
connected, and abelian, then so is T d/M , and thus by [20, Theorem 11.2] we have
that T d/M is isomorphic (as a Lie group) to the torus T r of some dimension r ≥ 0.
Now suppose that (u1, u2, . . . , ur ) ∈ T r is such that f (u1, u2, . . . , ur ) = 1, for all
characters f : T r → S1. Our goal is to show that u j = 0 mod Z, for all j = 1, . . . , r .
For a given j ∈ {1, . . . , r}, let f j (t1, t2, . . . , tr ) = e2π i t j . Since f j : T r → S1 is a
character, we have 1 = f j (u1, . . . , ur ) = e2π iu j , and thus u j = 0 mod Z. Since this
holds for all j , we have (49), and therefore also (48). Note that any character on T d

has the form

χm(t1, t2, . . . , td) = e2π i(m1t1+m2t2+ ... +md td ), for (t1, . . . , td) ∈ T d , (50)

where m = (m1, m2, . . . , md) ∈ Z
d (this is easily seen for d = 1, and follows by

induction for other values of d). Now, for any character χm : T d → S1 such that
M ⊂ ker(χm), we have

1 = χm(α1t, α2t, . . . , αd t) = e2π i(m1α1+m2α2+ ... +mdαd )t , for all t ∈ R,
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by definition of M , which is equivalent to

m1α1 + m2α2 + · · · + mdαd = 0.

It follows immediately that Z = {m ∈ Z
d : χm ∈ T̂ d , M ⊂ ker(χ)} is a free

abelian group of dimension r = n − k, where k = dim〈α1, . . . , αd〉Q. We can thus
pick a basis {m1, . . . ,mr } for Z , and then, for any character χm with m ∈ Z , we
have χm = χ

n1
m1 . . . χ

nr
mr , for some n1, . . . , nr ∈ Z

r . Therefore, M is the kernel of the
continuous surjective homomorphism � : T n → Sr given by � = (χm1 , . . . , χmr ),
and hence its dimension is n − r = k, as desired. ��
Proof of Lemma 7 Define the following subsets of T d :

M = {(α1t, α2t, . . . , αd t) + Z
d : t ∈ R},

MR = {(α1t, α2t, . . . , αd t) + Z
d : t ∈ R \ [−R, R]}, for R > 0, and

M ′ = {Q · (u1, . . . , uk) + Z
d : u1, . . . , uk ∈ R},

as well as the map � : R
k → T d

�(u1, . . . , uk) = Q · (u1, . . . , uk) + Z
d

=
⎛
⎝u1, . . . , uk,

k∑
j=1

qk+1, j u j , . . . ,

k∑
j=1

qd, j u j

⎞
⎠+ Z

d .

Let K = ker�, and note that M ′ is the image of �. Further, note that K is an abelian
group, and a subgroup ofZ

k . For j = 1, . . . , k, let N j ∈ Z be such that qpj N j ∈ Z, for
all p = 1, . . . , d. Let e j ∈ R

k be the vector with N j in the j-th entry, and 0 in all the
other entries. Then,�(e j ) = 0+Z

d , for all j = 1, . . . , k, so E := {e1, . . . , ek} ⊂ K .
Moreover, E is a basis for R

k , so K is a lattice of rank k. Therefore, M ′ and R
k/K

are isomorphic as groups via the induced map

�̃ : R
k/K → M ′, u + K �→ Q · u.

Since �̃ is a continuous bijection, R
k/K is compact, and T d is Hausdorff, it follows

that the map �̃ is, in fact, a Lie group isomorphism (when M ′ is equipped with the
subspace topology inherited from T d ). In particular, M ′ is a torus of dimension k. Let
{b1, . . . , bk} be a basis for K , and let

B =
{

c1b1 + · · · + ckbk : c1, . . . , ck ∈
[

− 1

2
,
1

2

)}
⊂ R

k

be a fundamental domain of the lattice K . Then, for any u ∈ R
k we canwrite u = b+k

with b ∈ B and k ∈ K . We will prove the lemma with

C = {(u1/α1, . . . , uk/αk) : (u1, . . . , uk) ∈ int(B)} ,
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where int(B) denotes the interior of B. Note that C is open and 0 ∈ C . For t ∈ R, we
have

(α1t, α2t, . . . , αd t) + Z
d =
⎛
⎝α1t, . . . , αk t,

k∑
j=1

qk+1, jα j t, . . . ,
k∑

j=1

qd, jα j t

⎞
⎠+ Z

d

= Q · (α1t, α2t, . . . , αk t) + Z
d ∈ M ′,

(51)

and so M ⊂ M ′. Moreover, by Lemma 6 we have that cl(M) is a torus of dimension
k, so we deduce cl(M) = M ′. We next establish that cl(MR) = M ′, for every R > 0.
To this end, we distinguish between the cases k = 1 and k ≥ 2.

The case k = 1. Let (α1t, α2t, . . . , αd t) + Z
d , t ∈ R, be an arbitrary element of

M . As dim〈α1, . . . , αd〉Q = k = 1, there exist a ∈ R \ {0} and m1, . . . , md ∈ Z such
that (α1, α2, . . . , αd) = (am1, am2, . . . , amd). Now let n ∈ Z be an integer such that
t + n/a /∈ [−R, R]. Then,

(α1t, α2t, . . . , αd t) + Z
d = (α1t, α2t, . . . , αd t) + (nm1, nm2, . . . , nmd) + Z

d

=
(
α1

(
t + n

a

)
, α2

(
t + n

a

)
, . . . , αd

(
t + n

a

))
+ Z

d ∈ MR .

Therefore, MR = M , and so cl(MR) = cl(M) = M ′.
The case k ≥ 2. First note that

L R := M \ MR = {(α1t, α2t, . . . , αd t) + Z
d : t ∈ [−R, R]}

is the image of [−R, R] ⊂ R under a continuous bijective map from R to T d . Since
[−R, R] ⊂ R is compact and T d is Hausdorff, it follows by [21, Cor. 15.1.7] that
L R is homeomorphic to [−R, R]. In particular, L R is a 1-dimensional submanifold
of M with boundary. Now, by general properties of the closure, we have cl(MR) =
cl(M \ L R) ⊃ cl(M) \ cl(L R) = M ′ \ L R . Therefore, as M ′ has dimension k > 1
and L R has dimension 1, we have cl(MR) = cl(cl(MR)) ⊃ cl(M ′ \ L R) = M ′. On
the other hand, cl(MR) ⊂ cl(M) = M ′, and thus cl(MR) = M ′, as desired. Now fix
some s = (u1/α1, . . . , uk/αk) ∈ C , where u = (u1, . . . , uk) ∈ int(B). Since MR is
dense in M ′, for every R > 0, there exists a sequence (tn,s)n∈N in R with |tn,s| → ∞
such that

(α1tn,s, α2tn,s, . . . , αd tn,s) + Z
d → Q · u + Z

d . (52)

As M ⊂ M ′, there exists a sequence (̃un,s)n∈N such that

(α1tn,s, α2tn,s, . . . , αd tn,s) + Z
d = Q · ũn,s + Z

d , (53)

for all n ∈ N. With this, (52) reads

Q · ũn,s + Z
d → Q · u + Z

d ,
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and after applying the isomorphism �̃−1, we obtain ũn,s + K → u + K as n → ∞.
Now, for each n ∈ N, let un,s = (un,s

1 , . . . , un,s
k ) ∈ B be such that un,s − ũn,s ∈ K .

Then, we have un,s + K → u + K as n → ∞. Since u ∈ int(B), there exists an
n0 ∈ N such that un,s ∈ int(B), for n ≥ n0. By discarding the first n0 terms of the
sequences (tn,s)n∈N and (̃un,s)n∈N, we may assume w.l.o.g. that n0 = 0. It follows
that un,s → u as n → ∞. Now define rn,s = (un,s

1 /α1, . . . , un,s
k /αk). We then have

rn,s ∈ C , rn,s → s, and (53) yields

(α1tn,s, α2tn,s, . . . , αd tn,s)+Z
d =�(̃un,s)=�(un,s)= Q ·(α1rn,s

1 , . . . , αkrn,s
k )+Z

d ,

as desired. ��
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