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A B S T R A C T

The recent aspirations for a more sustainable energy system and a reduction
of energy-related CO2 emissions have triggered a change of paradigm in power
distribution grids, often encouraged by national and supranational policies.
Traditionally considered a passive black-box component of power systems,
the distribution grid currently undergoes a rapid transformation and sees the
emergence of new types of loads (e.g., electric vehicles, electric heating systems,
electric water heaters) as well as distributed energy resources (e.g., small
wind turbines, solar photovoltaic systems, battery energy storage systems).
Their integration requires increased reliability, efficiency, and adaptability of
distribution systems, which inevitably relies on more visibility. Consequently,
advanced electricity sensor elements are massively rolled out in distribution
grids down to the end-users. The gains in transparency and controllability
offered by the advanced metering infrastructure open up a wide range of
new opportunities discussed extensively in the literature. Nevertheless, the
research community is usually not granted access to real-world data due
to understandable privacy concerns. It must depend on simplifications and
synthetic data that often do not reflect the more complex reality and might
lead to biased conclusions. On the sole basis of real-world data, this thesis
intends to highlight which are the assumptions that can realistically be taken
in the development and validation of data-based studies and applications. It
also suggests various processes and methods to effectively leverage the actual
potential of the advanced metering infrastructure and address some of the
current challenges in grid operation and planning. This work primarily focuses
on the low-voltage level, which is still rarely considered in the state-of-the-art
literature. Data preparation, big data visualization, pseudo-measurement
synthesis, distribution system state estimation, load disaggregation, and short-
term forecasting are among the investigated topics. In that respect, the thesis
hopes to bridge some of the gaps between the relatively conservative practices
in the power industry and the various advanced data-based applications
proposed in the literature.
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R É S U M É

Les récentes aspirations à un système énergétique plus durable et à une réduc-
tion des émissions de CO2 liées à la production énergétique ont provoqués un
changement de paradigme dans le réseau de distribution électrique, souvent
encouragé par des politiques nationales et supranationales. Traditionnelle-
ment considéré comme un élément passif du système électrique, le réseau
de distribution subit actuellement une transformation rapide. De nouveaux
acteurs émergent, tels que les véhicules électriques, les systèmes de chauffage
électrique, ou les chauffe-eau électriques, mais aussi de nouvelles ressources
énergétiques à petite échelle comme les éoliennes domestiques, les panneaux
solaires photovoltaïques, ou les batteries domestiques. Leur intégration né-
cessite une fiabilité, une efficacité et une adaptabilité accrues des réseaux de
distribution, ce qui nécessite inévitablement une plus grande visibilité. Par
conséquent, des compteurs électriques communicants de nouvelle génération
sont massivement déployés dans les réseaux de distribution jusqu’aux utilisa-
teurs finaux. Les gains en transparence et en contrôlabilité offerts par cette
infrastructure de mesurage avancée ouvrent un large éventail de nouvelles
opportunités qui sont largement discutées dans la littérature. Néanmoins, la
communauté scientifique n’a généralement pas accès aux données réelles en
raison de préoccupations compréhensibles en matière de confidentialité. Elle
doit donc s’appuyer sur des simplifications et des données synthétiques qui,
souvent, ne reflètent pas la réalité plus complexe et peuvent conduire à des
conclusions biaisées. Sur la seule base de données réelles, cette thèse vise à
mettre en évidence les hypothèses qui peuvent être prises de manière réaliste
dans le développement et la validation des études et des applications se
nourrissant de données. Elle suggère également divers processus et méthodes
permettant d’exploiter efficacement le potentiel réel de l’infrastructure de
mesurage avancée et de relever certains des défis actuels en matière de gestion
et de planification des réseaux de distributions. Ce travail se concentre tout
particulièrement sur le réseau basse tension, auquel sont connectés la majorité
des utilisateurs finaux, et qui est encore rarement pris en compte dans la
littérature actuelle. La préparation des données, leur visualisation, la création
de données synthétiques, l’estimation de l’état du réseau de distribution, la
désagrégation de profils de charge et les prévisions à court terme font partie
des sujets étudiés. À cet égard, la thèse espère combler une partie du fossé qui
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peut être observé entre les pratiques relativement conservatrices de l’industrie
électrique et les diverses applications avancées proposées dans la littérature
sur la base des données.
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1
I N T R O D U C T I O N

1.1 background and motivation

The last decade has experienced a rapid worldwide roll-out of new advanced
sensor elements, especially so-called smart meters, in electrical distribution
grids. This development is often triggered by national and sometimes supra-
national policies. For example, the Swiss Energy Strategy 2050 considers
smart electricity meters as a key component of the future smart grid in
Switzerland [1]. At the European level, the European Parliament expected
the replacement of at least 80% of conventional electricity meters with smart
electronic meters by 2020 wherever it was cost-effective [2]. Concretely, smart
meters enable accurate high-resolution measurements on both the spatial
scale (i.e., down to the end-consumer level) and the temporal scale (i.e.,
within the range of seconds to minutes) for parts of the distribution grid for
which only spatially aggregated measurements (e.g., at the substation level)
have been previously available. At first glance, the main motivation of power
utilities to install smart electricity meters is the more efficient integration of
billing data into the existing billing system by avoiding manual data gathering.
Nevertheless, such large-scale digitalization, including end-consumers and
producers, is additionally an excellent opportunity for a better operation and
planning of distribution grids.
Traditionally, Distribution System Operators (DSOs) were used to mon-

itor and operate their system on a medium-voltage level for aggregation
of end-users, while the low-voltage grid was considered as a black box. Its
infrastructure was usually over-dimensioned to cope with the worst-case
scenarios according to the respective load. However, the recent and necessary
transition towards a more sustainable energy system translates into the ap-
pearance of new electric loads like charging stations for electric vehicles and
electric heat pumps, but also Distributed Energy Resources (DERs) such as
rooftop Photovoltaic (PV) systems and battery storage units. On the one
hand, these new elements connected at the low-voltage level put the system
infrastructure under pressure, which implies new challenges for DSOs in terms
of grid operation, notably for voltage control and congestion management.
On the other hand, they are associated with certain flexibility that can be

1
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potentially leveraged for a more cost-efficient distribution grid operation and
planning than the classical grid reinforcement measures. The distribution
grid is not considered as a passive unobservable load anymore but tends to be
an active component of the power system. This inevitably relies on a better
comprehension of the low-voltage level. The previously unattainable degree
of detail provided by the Advanced Metering Infrastructure (AMI) effectively
allows for enhanced visibility and controllability if, and only if, power utilities
possess suitable methods and tools for data processing, modeling, analysis,
and visualization.

Consequently, the power system research community performs a multitude
of data-based studies and suggests a large variety of data-based approaches
to deal with the operation and planning challenges of active distribution
grids [3–5]. Among others, various visualization, topology estimation, grid
modeling, and state estimation techniques are suggested to increase the
visibility and transparency in distribution grids [6–8]. Traditionally applied
at the transmission level, load forecasting also becomes popular in distri-
bution grids [9, 10]. In addition, load profiling, customer characterization,
load disaggregation, and demand response schemes are proposed in the cur-
rent literature as the basis for a more cost-effective grid operation [11–13].
Furthermore, privacy-preserving techniques and transactive energy systems
which directly profit the end-users are emerging topics [14, 15].

Nevertheless, a large gap appears between state-of-the-art practices in
the power industry and the various data-based applications proposed in
the literature, where the overwhelming majority remains at the conceptual
stage. On the one hand, the power industry is particularly conservative
and tends to principally trust well-known and time-tested solutions (e.g.,
grid reinforcement). More importantly, system operators generally lack the
expertise to properly make use of the gathered data and are certainly not
aware of their full potential that is unfortunately largely under-exploited. On
the other hand, data-based approaches proposed in the literature too often
rely on unrealistic assumptions and can not be directly applied to real-world
systems, especially:

• Full system observability, usually assuming a complete smart meter
penetration and a perfect knowledge of the grid structure, is a pre-
requisite of many optimization and control schemes, which is totally
impractical.

• AMIs data are always prone to inaccuracies, anomalies, and missing
values which often prevent the direct application of proposed data-based
approaches and inevitably impact their efficiency.
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• A majority of models are inspired by the practices at the transmission
level, especially in state estimation and forecasting. Their application
to distribution grids, characterized by different properties and notably
a much higher inherent uncertainty, is questionable.

• Load disaggregation techniques and demand response schemes often
rely on measurements at the device level and/or of very high frequency
which are usually not available in current distribution grids.

• The large majority of case studies are based on synthetic data and on
simplistic test grids which do not reflect the much more complex reality
of distribution grids.

This thesis aims to bridge some of the gaps which currently prevent power
utilities and their customers from making use of the full potential of actual
measurement data in distribution grids. For that purpose, the entire work
is solely based on real-world data, and case studies are designed to be as
realistic as possible. The characteristics, the potential, and the limitations of
AMI data are comprehensively analyzed. In that respect, different data-based
approaches are proposed to bypass the limitations of current metering systems
while addressing some challenges faced by distribution system operators,
energy providers, and aggregators. It must be noticed that the proposed work
only focuses on applications relying on data with a sampling frequency of
one minute or lower. Applications requiring higher resolution data are out of
the scope of this thesis.

1.2 contributions

This work focuses on the use of data at the low-voltage level for grid operation
and planning purposes. Specifically, the main contributions of this thesis are:

• Exclusive usage of real-world measurement data and grid models in
the presented case studies, and discussion on the realism of data-based
approaches and analyses proposed in the literature.

• Comprehensive description of the necessary preparation process for
AMI data.

• Special focus on the visualization and interpretability of a large amount
of AMI data.

• Analysis of the impact of temporal resolution and spatial aggregation
on the characteristics of load profiles in distribution grids.
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• Design of an approach for the synthesis of active power profiles with
realistic properties at both the individual and the aggregate level.

• Discussion on reactive power pseudo-measurements and generation of
synthetic reactive power profiles.

• Exhaustive sensitivity analysis of the principal dimensions influencing
the data-based modeling of distribution grids down to the low-voltage
level.

• Consideration of multiple properties (e.g., point-wise error, statisti-
cal properties) in the performance evaluation of state estimation and
forecasting algorithms.

• Unsupervised detection and disaggregation of cold appliance and water
heater loads based on standard smart meter data (i.e., at a temporal
resolution between 1 and 30 minutes).

• Discussion on the adequacy of traditional deterministic load forecasting
algorithms and standard evaluation metrics in low-voltage grids.

• Hour-ahead probabilistic forecasting of the state (i.e., net power con-
sumption, power flow, voltage) of low-voltage grids.

• Design of a preventive voltage control scheme at the low-voltage level
on the basis of quantile forecasts.

1.3 thesis outline

The thesis is organized into three parts. The first part introduces the notion
of data in distribution grids, elaborates on their potential usage, and gives
insight into their characteristics and their interpretation in different contexts.
The second part details how AMI data can be leveraged to model distribution
grids, especially at the low-voltage level. The third part proposes different
data-based applications for low-voltage grids. The content of each part is
divided into the following chapters:

Part I

• Chapter 2 discusses the digital transformation and its implications
in electric distribution grids. The Advanced Metering Infrastructure
(AMI) is presented, which relies on the installation of advanced metering



1.3 thesis outline 5

devices such as the popular smart meter and the design of appropriate
communication networks and data management systems. An overview
of the roll-out of smart meters in Switzerland, in Europe, and in the
World is given. Such digitalization gives rise to new applications but
also brings new challenges which are reviewed in this chapter. In this
context, an increasing number of start-up companies emerge to leverage
in practice the large amount of data produced in distribution grids.

• Chapter 3 first describes multiple real-world data sets leveraged for
the purpose of this thesis, illustrating the diversity of data available in
distribution grids. In the second part, the focus is given to the necessary
preparation process of AMI data to ensure a certain quality before their
use for further analysis.

• Chapter 4 highlights the utility of unsupervised learning and of visu-
alization to enhance the comprehension of large AMI data sets. In fact,
the potential of such big data cannot be identified without appropriate
data mining techniques for complexity reduction. A suitable representa-
tion of the extracted information provides power system engineers with
valuable intuition in their decision-making process. As a case study, this
chapter focuses on the k-means clustering algorithm and its application
to smart meter data gathered over an entire city.

• Chapter 5 analyzes the alteration of load profiles at the distribution
grid level with respect to the temporal resolution and spatial aggregation.
Although rarely properly considered in the literature, both temporal and
spatial dimensions can highly influence the conclusions of data-based
studies, especially at low aggregation levels.

Part II

• Chapter 6 focuses on the creation of power profiles for end-consumers
in low-voltage grids. The synthesis of pseudo-measurements at this level
is indispensable to obtain an observable system and cope with the lack
of direct measurements. A novel approach is proposed for the generation
of active power profiles which are consistent at an aggregate level but
also ensures realistic properties at the level of individual consumers.
Rarely considered in the literature, the synthesis of reactive power is also
thoroughly addressed. Besides, a methodology is developed to optimally
allocate synthetic load profiles to actual non-metered consumers in a
given distribution system.
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• Chapter 7 studies the influence of the AMI design and of the re-
lated modeling of pseudo-measurements on the outcome of distribution
system state estimation, especially at the low-voltage level. A compre-
hensive sensitivity analysis is carried out that accounts for the type, the
penetration level, and the placement of metering devices that compose
state-of-the-art AMIs. The different techniques developed in Chapter 6
for the synthesis of power pseudo-measurements are also considered
and compared against traditionally used approaches.

Part III

• Chapter 8 suggests novel approaches for the detection and disag-
gregation of cold appliance and water heater loads. In contrast to
non-intrusive load monitoring techniques generally suggested in the
literature, the proposed approaches are unsupervised and only rely on
commonly available smart meter measurement data with a temporal
resolution between 1 and 30 minutes. These domestic appliances are
characterized by a non-negligible flexibility potential such that an ac-
curate estimation of their power demand at each instant shall notably
contribute to more efficient demand response schemes.

• Chapter 9 elaborates on the application of short-term forecasting
in low-voltage grids. The high volatility and low predictability of the
load at this level challenge deterministic forecasting algorithms and
question the suitability of commonly used evaluation metrics. In con-
trast, probabilistic approaches allow for a certain quantification of the
large uncertainty inherent to low-voltage systems. In this chapter, quan-
tile forecasting is leveraged to estimate the near-future system state
in a probabilistic way. Resulting quantile forecasts are subsequently
integrated into the design of preventive voltage control schemes.

Finally,Chapter 10 summarizes the key findings of this thesis and suggests
directions for future work.

1.4 publications

Part of the work presented in this thesis has been reported in the following
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D ATA I N D I S T R I B U T I O N G R I D S





2
D I G I TA L I Z AT I O N O F
D I S T R I B U T I O N G R I D S

This chapter provides an overview of the digital transformation and its impli-
cations in electric distribution grids. This digital transformation is fostered
and facilitated by the roll-out of advanced metering devices and the design of
appropriate communication networks and data management system, which
constitutes the advanced metering infrastructure. Smart meters are the most
popular advanced metering devices and are being largely installed at the final
electricity consumers. This large-scale roll-out gives rise to new applications
but also brings new challenges which are largely discussed in recent litera-
ture. Furthermore, an increasing number of start-up companies emerge in
the energy sector to leverage in practice the large amount of data produced in
distribution grids.

2.1 introduction

Digitalization or digital transformation can be defined as the use of digital
technologies and the acquisition of digital skills to change a business model and
provide new revenues and value-producing opportunities [16, 17]. The concept
of digitalization has definitely revolutionized our daily life environment which
tends to become always “smarter”. The wide range of applications of a
smartphone or in a smart home is the most apparent example. In that
respect, observers state that we are currently experiencing a Fourth Industrial
Revolution (also called Industry 4.0) [18]. Among others, rapid technology
breakthroughs in the fields of Artificial Intelligence (AI), robotics, and Internet
of Things (IoT) allow for a large-scale self-monitoring and automation of
industrial processes with high gains in efficiency. This digital revolution
transforms industrial sectors as diverse as manufacturing, medicine, biology,
transportation, or even agriculture.

In this context, the energy sector is no exception. Reliability, efficiency, and
adaptability requirements are transforming the gas, heat, and electric power
systems into smart energy networks [20]. As illustrated in Figure 2.1, the
notion of Smart Grid (SG) is particularly popular in the electric power sector.

13



14 digitalization of distribution grids

Figure 2.1: Representation of a smart grid with its typical components such as
distributed generation, rooftop solar pannels, electric vehicles, and
smart meters at the distribution and consumption side [19].

This notion mainly refers to the large-scale installation of high-resolution
sensors with communication capabilities. Traditionally, only the large power
plants, the transmission grid, and the substations have been monitored
and controlled, notably to ensure voltage and frequency stability, whereas
the distribution grid was seen as a black box. The power was known to
flow from the large power plants to the end consumers in the distribution
grid. In addition, the distribution grid infrastructure has usually been over-
dimensioned to cope with any unexpectedly high load. There was no need
to monitor the state of distribution grids. However, the recent aspirations
for a more sustainable energy supply and a reduction of energy-related CO2
emissions lead to the decommissioning of large fossil fuel power stations.
Distributed Energy Resources such as small wind turbines, solar Photovoltaic
(PV) systems, and Battery Energy Storage Systems (BESSs) are being
installed to compensate for the drop in energy supply from the transmission
grid. Concurrently, consumers become prosumers, generate part of their power
consumption, and acquire Electric Vehicles (EVs), electric heating systems,
and electric water heaters, which additional loads that put the low-voltage
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grid under stress. The direction and magnitude of power flows are not anymore
foreseeable. This introduces new paradigms in the operation and planning
of distribution grids, where more efficiency, flexibility, and intelligence are
generally required. The monitoring of distribution grids down to the end
consumers becomes inevitable such that power utilities have initiated a large
roll-out of high-resolution measurement devices since the beginning of the
21st century. This trend started in the commercial and industrial sectors and
continues in the residential sector.
The smart metering system is an electronic system capable of measuring

electricity fed into the grid, consumed from the grid, or flowing through
the power lines [21]. There is a large variety of smart measurement devices,
notably depending on the measured quantities and sampling frequency. The
most common type of smart measurement devices are so-called Smart Meters
(SMs) which are installed at end consumers. The capabilities of smart me-
ters are also very diverse, but all devices basically record power values at a
frequency spanning from one minute to one hour. In contrast to the conven-
tional meters whose readings are manual and on-site, smart meter data are
transmitted automatically to the responsible power utility, which facilitates
the billing process. In addition, smart meters allow for better tracking of
customers relocating. Moreover, the connection of customers to electricity
can be automatically interrupted via smart meters in case of non-payment.
While these are the primary interests of replacing traditional meters with
smart meters, a smart metering system opens up a wide range of new business
opportunities. On the one hand, end customers can obtain accurate feedback
on their consumption and potentially adapt their consumption habits to
save energy and lower their electricity bill, e.g., by shifting some of their
consumption to lower price periods. On the other hand, system operators can
leverage this source of information to better monitor the power flows in their
grid and reduce the costs for grid operation and planning. Advanced smart
meters are additionally equipped with control functionalities that allow for
certain management of the customer’s flexible energy resources. In addition
to smart sensors and devices, a reliable and secure communication network
and data management system are necessary to build the Advanced Metering
Infrastructure (AMI) [4, 22].

“Big Data” are traditionally characterized by the so-called five V’s, i.e.,
their volume, variety, velocity, veracity, and value. These characteristics also
apply to data in distribution grids [24]. First, although it lies far below the
massive data sets processed by Big Tech companies like the GAFAM (i.e.,
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Figure 2.2: Typical smart grid data volume growth (Terabytes) for a utility
with one million customers [23].

Google, Amazon, Facebook, Apple, and Microsoft), the growing volume of
data in a smart distribution grid is within the range of Terabytes, as illustrated
by Figure 2.2 for a population of one million customers [23]. This requires
a dedicated data management system and appropriate data analysis and
machine learning tools, commonly based on distributed or cloud computing
services.
Second, there is a great variety in the type and the source of the data.

Single-phase or three-phase measurement time series of typical electric quan-
tities such as the current, voltage, active and reactive power, and power
factor form the majority of the data. These measurements mainly come from
residential, commercial, and industrial consumers, PV and storage systems,
transformers, and cable distribution cabinets. More and more individual
electric devices, especially with some flexibility potential like water heaters,
heat pumps, and EVs, are metered. Further quantities are thus being mea-
sured, e.g., battery State-of-Charge (SoC), battery charge and discharge rate,
water temperature, room temperature. The metering devices generally differ
among the sources, each having its own standards in terms of communication,
sampling resolution, precision, and data formatting. In addition, the AMI inte-
grates information about the distribution grid from a Geographic Information
System (GIS), where the network topology, line and transformer parameters,
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status of switches, capacity of production and storage units, nominal power
of consumers, as well as their geographic coordinates are stored. Exogenous
data like weather measurements and forecasts, characteristics of customers,
or energy market information, indispensable for a cost-efficient grid operation,
add up to the variety of data.
Third, regarding their velocity, smart meter data can still not be defined

as problematic. The databases of power utility are commonly updated once a
day with the measurement data of the previous day. Generally, smart meters
are characterized by an output frequency much lower than the measure-
ment frequency which is typically in the kHz range. Even in cases where
the updates are done in (quasi-)real-time, the output resolution of smart
meters usually spans from one minute to one hour. This can be handled by
power utilities and does not necessarily require the use of online processing
algorithms. Nevertheless, Phasor Measurement Units (PMUs), which are stan-
dard devices in transmission grids, might also become popular in distribution
grids [25, 26]. They provide ultra-high-resolution measurements of voltage
phase angle and could potentially be used for diagnosis (e.g., unintentional
island detection, state estimation, fault location, and oscillation detection)
and control (e.g., protective relaying, Volt-Var optimization, and microgrid
coordination) applications in distribution grids [27]. Being characterized by
an output rate between 10 and 60 Hz, the roll-out of so-called micro-PMUs
in low-voltage grids would be a real challenge for power utilities in terms of
data synchronization and integration into the AMI. However, their currently
high cost compared to the potential benefits hinders a large development in
distribution grids.

Fourth, the veracity of data in distribution grids is a non-negligible aspect.
All data sets are subject to noise, unintentional anomalies, unrealistic values,
missing values, or missing timestamps due to a failure of the sensors, in the
communication system, or in the database. A consistent data cleansing is
primordial before further using the information for potential applications. In
addition, energy theft, also referred to as Non-Technical Loss (NTL), costs
billions of dollars annually on a national level to energy providers [28]. The
most common methods are meter tampering (i.e., the meter is hacked to
block or slow the accumulation of consumption statistics), meter bypassing,
meter switching, tapping on low-voltage lines, etc. NTLs can be detected and
limited by combining different AMI data sources [29].
Finally, the value of AMI data goes far beyond the sole simplification of

the billing process and detection of energy theft. State Estimation (SE), load
forecasting, customer characterization, Demand Response implementation,



18 digitalization of distribution grids

connection verification, or outage management are some of the applications
of smart meter data analytics [4]. Besides these five main V’s, the authors
in [30] mention additional Big Data characteristics that apply to data in
distribution grids, e.g., validity, variability, vulnerability, visualization. These
different aspects will also be handled over the course of this thesis.

The rest of this chapter is structured as follows. Section 2.2 characterizes
the advanced metering infrastructure and, more specifically, the design of
smart devices, communication networks, and data management systems.
Section 2.3 presents the roll-out of smart meters in Switzerland, in Europe,
and in the World. Section 2.4 details the main applications and challenges of
smart meter data. Section 2.5 lists a few Swiss companies which facilitate the
digital transformation of distribution grids. Finally, Section 2.6 summarizes
the main aspects and sets the basis for this thesis.

2.2 advanced metering infrastructure

In the case of a smart electric grid, Advanced Metering Infrastructure (AMI)
is an integrated system of smart meters, communications networks, and data
management systems that enables two-way communication between utilities
and customers [31]. Smart meters and diverse advanced metering devices
are used to monitor and control appliances at consumers’ premises [20].
In addition, these metering devices send the collected information to the
utility servers and receive operational commands from the operation center.
This requires highly reliable and secure communication networks [22, 32].
Finally, the collected information is stored in a data management system to
be processed and analyzed for billing purposes but also for more advanced
applications. These three sub-systems of AMI are detailed in the following
subsections.

2.2.1 Smart Meters

For decades, conventional electromechanical meters were the main type
of device for measuring electricity flows. They are designed to count the
number of revolutions of an electrically conductive metal disc that rotates at
speed proportional to the power passing through the meter [33]. Measured
data are usually displayed on an analog counter, and readings have to be
manually recorded [20]. Electromechanical meters do not contain any further
functionality. In order to facilitate the billing process and the tracking of
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customers relocating or switching to another energy provider, conventional
meters have initially been replaced by Automated Meter Reading (AMR)
devices. Mainly installed at industrial customers in the first instance, these
devices allow for automatic and unidirectional communication of electricity
consumption and production readings from the customer to the system
operator and/or energy provider. The AMR data are typically sent once a
month to ensure accurate billing.
Recently, the development of smart grids with increasing deployment of

distributed energy resources and the need for supply and demand control at
the customers’ side inevitably requires the installation of advanced metering
devices with bidirectional communication capability. Commonly called smart
meters, they are electronic devices based on digital micro-technology. They
rely on voltage and current sensors and do contain moving parts any more [34].
They record electricity quantities at fixed time intervals, typically between
one minute and one hour, and transmit this information to the corresponding
power utility in required time slots, typically once a day at night or sometimes
even in near real-time. Modern smart electricity meters are open structures
built in a modular way such that the main functions like metering and
communication can be supplemented in a later stage by other modules with
additional functions. In-Home Display (IHD) is an important module that
allows customers to monitor their energy usage or production and obtain
energy-saving feedback from power utilities [22]. Consumers can even be
notified via IHD of an upcoming peak consumption event and be encouraged
to temporarily reduce their own consumption. Nevertheless, IHDs contribute
significantly to the total cost of smart meters and tend to be replaced
by mobile applications. In addition, smart meters can be equipped with
multiple communication modules. For example, the Home Area Network
(HAN) transceiver enables to exchange information (e.g., receive sub-metering
data and send control signals) with other electronic devices at home, whereas
the GSM/GPRS module allows for communication with the outside [35].
Although smart electricity meters are normally supplied by the grid, an
independent energy source (i.e., battery) can serve as a backup in case of a
power outage.

2.2.2 Communication Networks

Figure 2.3 summarizes the different communication networks of which the
AMI consists. First, in some customers’ premises, Home Area Network (HAN)
connects the main smart meter, which acts as an access point, with multiple
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Figure 2.3: Overview of AMI communication networks [36].

smart devices such as energy storage (e.g., home battery) and generation
(e.g., PV panel) units, EV charging installation, electric heat pump or water
heater [22]. The data flow is instantaneous, the amount of data transferred
is limited, and the network capacity should be extendable to new smart
devices and a higher data rate. Given such requirements and considering
the short distances between smart devices, low-power wireless technologies
with low bandwidth (e.g., 10 to 100 Kbps per smart device) are currently
the dominant solutions for HANs. In this case, the most common wireless
technologies are WiFi, Bluetooth, ZigBee, Z-Wave, and 6LoWPAN [37–39].
Wired communication technologies such as Ethernet and HomePlug (i.e.,
technology that uses the existing home electrical wiring to communicate) are
also being used. Based on HAN, a Home Energy Management System (HEMS)
can monitor and manage electricity generation, storage, and consumption in
a smart house [40].
Second, all smart meters in a specific area or neighborhood transmit

their information to a Data Concentrator Unit (DCU). It is a gateway that
facilitates bidirectional communication by relaying smart meter data to the
data management system and passing on control commands from the system
operator to smart meters [36]. DCUs are usually optimally placed in the
LV grid, either in cable distribution cabinets1, fixed on electricity poles, or

1 Cable distribution cabinets are boxes installed at the LV level containing protection devices
and where power lines are split.
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even on a building, to reach all smart meters with a limited number of units
and to meet the requirements in terms of delay and throughput [41]. The
communication system between DCUs and smarts meters is called Field Area
Network (FAN) or Neighborhood Area Network (NAN) and can have either a
centralized or meshed topology [42–44]. NAN is typically based on small range
coverage network technologies with a larger bandwidth than for HAN. Both
wireless and wired technologies are suitable, such as Wireless Sensor Network
(WSN) (i.e., smart meters act as a relay for other neighboring smart meters),
Wireless Local Area Network (WLAN), Wireless Mesh Networks (WMN),
Digital Subscriber Line (DSL), Power Line Carrier (PLC) communication,
Broadband over Power Line (BPL), and even optic fiber cable. PLC has
been the most implemented technology, especially in remote locations with
low wireless coverage, since it directly uses the already existing grid [22].
Nevertheless, its low bandwidth (i.e., around 20 Kbps) is a disadvantage
for a growing volume of data transferred such that broadband technologies
are currently being preferred. In addition, the emergence of the 5G network
infrastructure is seen as a very promising avenue for both HAN and NAN in
order to ensure high reliability, high security, low power consumption, and
high interoperability with an increasing number of devices [45].
Finally, Wide Area Network (WAN) allows DCUs, substations, power

generation stations, and transformers to communicate with the utility’s IT
systems. In terms of technology, high data rate (i.e., up to 1 Gbps) and large
coverage range (i.e., up to 100 km) are key requirements. For those reasons,
WAN is mainly based on fiber optic, WiMAX, cellular communication (e.g.,
GPRS/UMTS/LTE), or more recently Long Range WAN (LoRaWAN) [44,
46]. The Head-End System (HES) acts as a hardware and software interface
between the collection of AMI sensor data and the utility’s IT systems.

2.2.3 Meter Data Management System

The Meter Data Management System (MDMS) is a system designed for
long-term storage, management, and processing of smart meter data gathered
by the HES [22]. Although its design largely varies among utilities based
on their specific needs, the MDMS generally performs validation, cleansing,
and analysis of smart metering data to support billing and decision-making
processes. Moreover, MDMS interacts with multiple other IT systems such
as the Consumer Information System (CIS), Outage Management System
(OMS), Geographic Information System (GIS), and Demand Response Man-
agement System (DRMS) [47]. The CIS takes care of the relationship between
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utility and customers, and typically includes utility websites and the billing
system whose efficiency is enhanced by the use of smart meter data. The
OMS is responsible for the detection, location, and diagnosis of failures in
distribution grids, as well as for the management and scheduling of restoration
efforts. In this context, smart meters provide information that allows for
faster and more precise fault location and diagnosis, and can alert customers
regarding the restoration status [48]. Furthermore, smart meter data can be
merged with traditional GIS data to comprehensively visualize the spatial
distribution of consumption and production in the grid. Connectivity errors
in GIS models can also be detected and corrected by leveraging smart meter
data [49]. Finally, the DRMS largely profits from consumption data at the
customer level in order to design specific demand response solutions [50].

2.3 roll-out of smart electricity meters

The roll-out of smart energy meters is considered an essential component
of the energy transition and enables better monitoring and control of the
energy systems. While the term “smart meter” can refer to electricity, gas,
heat, and even water meters, this section only focuses on smart electricity
meters, unless otherwise specified. The roll-out of smart electricity meters
consists of replacing conventional meters with “smarter” electronic devices
which primarily have the function of automatic remote reading [20]. Whereas
some power utilities opted for an early installation of smart meters within the
frame of pilot projects, the roll-out strategy is generally decided on the state
level according to a Cost-Benefit Analysis (CBA). Its outcome largely differs
across countries, which leads to very diverse smart meter penetration levels.
In the following subsections, the roll-out of smart meters in Switzerland,
Europe, and worldwide is detailed.

2.3.1 Situation in Switzerland

The national roll-out of smart meters in Switzerland is part of the Energy
Strategy 2050 (ES2050) which has been designed by the Federal Council
and Parliament, and approved by popular vote in 2017 [1]. ES2050 defines
the scope of the Swiss energy roadmap until 2050. It includes measures
for increasing energy efficiency, measures for the development of renewable
energies, a ban on the construction of new nuclear power plants, and measures
to speed up the modification and renovation of the electricity networks. In
addition, Switzerland must no longer emit greenhouse gases that cannot be
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absorbed by natural and technical means (i.e., net zero emissions target)
by 2050. Parliament also approved the development and operation of eight
Swiss Competence Centres for Energy Research (SCCER), which guarantees
additional funding and capacities in the field of applied energy research for
Swiss universities [51].

Within the scope of ES2050, a new Federal Energy Act entered into force
in January 2018, which specifies that 80% of the electricity meters must be
smart meters by the end of 2027 [52]. The remaining 20% of meters can
be used as long as they are functional. The decision on full smart meter
roll-out arises out of a CBA carried out in 2015 on behalf of the Swiss Federal
Office of Energy [53]. In brief, net costs (accounting for cost savings due to
automatic meter readings) of 830 million Swiss francs must be expected for
the setup and operation of the smart metering infrastructure between 2015
and 2035. These net costs are offset by electricity savings for end customers
and savings in the business processes of electricity supply companies of 1’260
to 1’680 million Swiss francs. The nationwide roll-out of smart meters should
therefore generate a quantifiable total net benefit of 430 to 850 million Swiss
francs between 2015 and 2035. According to the Federal Energy Act, smart
meter data with a resolution of 15 minutes or more must be handled in a
pseudonymized way (i.e., personally identifiable information is replaced by
pseudonyms) by DSOs, aside from its use for electricity billing. The use of
pseudonymized smart meter data without explicit consent of the customers
is nevertheless limited to measurement and control, implementation of tariff
systems, secure and cost-efficient grid operation, setup of grid balancing, and
grid planning. In addition, smart meter data can only be transmitted to third
parties if they are pseudonymized or properly aggregated. If needed, the use
of smart meter data with a higher resolution than 15 minutes is only allowed
with the explicit consent of the customers. In any case, smart meter data
must be deleted after 12 months unless they are still essential for billing or
they are fully anonymized.
Most of the Swiss DSOs currently base their smart meter roll-out on the

Federal Energy Act. For example, EWZ plans the replacement of 270’000
electricity meters from 2021 on in the City of Zurich for an estimated cost of
194.2 million Swiss francs [54]. However, a minority of DSOs have already
initiated a large installation of smart meters before the approval of ES2050.
Among others, this is the case of IWB that started the roll-out in the City of
Basel in 2013 and already reached a 50% penetration in 2017 with almost
60’000 smart meters installed [55]. At this time, IWB was the DSO with the
largest smart meter roll-out in all German-speaking countries. Similarly, EKZ
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also initiated their roll-out in 2013 in the canton of Zurich, and currently
counts more than 150’000 smart meters in its network [56].

2.3.2 Situation in the European Union

Based on the directive 2009/72/EC of the European Parliament, at least 80%
of conventional electricity meters should be replaced with smart electronic
meters by 2020 whenever it is cost-effective [2]. For that purpose, EU Member
States have been required to carry out a long-term CBA. As long as the CBA
is negative, European states must perform a new CBA at least every four years.
Once the result is positive, they must ensure the implementation of smart
metering under EU energy market legislation within seven years [57]. In a first
survey released in 2014 and benchmarking smart metering deployment in EU-
27, the CBA of 13 states resulted in being positive, whereas the remaining
states had still not conducted a CBA or have shown an inconclusive or
negative CBA [58]. On this basis, Member States committed to rolling out
close to 200 million smart electricity meters by 2020, which corresponds to
72% of European consumers. However, a second review released in early 2020
reveals a large discrepancy between planning and realisation [59].
Figure 2.4 illustrates the revised CBA results as of July 2018 for the de-

ployment of smart electricity meters in EU-28. In addition, the target period
expected by the Member States to achieve an 80% smart meter penetration is
shown in Figure 2.5. In January 2018, 99 million (i.e., 34%) of all electricity
customers in the EU-28 were equipped with a smart meter. Based on the
observed rate of deployment in 2017, the authors in [59] estimate that about
24 million additional smart meters should be installed by 2020. This would
correspond to a 43% penetration level, which is far below the initial expec-
tations of 72%. The main reason for this gap is an insufficient regulatory
framework at the level of the Member States, which does not fully ensure
interoperability, data protection and security standards, or organizational
effectiveness [60]. Other explanations are to be found in late approval of
roll-out plans, political and/or financial instability, delays in starting the
deployment, or technical and/or non-technical setbacks [61]. In fact, the
situation largely differs among European states.

Among the states with positive CBA, Sweden was the first state to finish
its deployment in 2009, followed by Italy in 2011, Finland in 2013, and
Estonia in 2017. Currently, Sweden and Italy are even starting the roll-out
of second-generation smart meters to replace the first generation which has
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Figure 2.4: Cost-Benefit Analysis for the deployment of smart electricity meters
to at least 80% of all customers by 2020 (as of July 2018) [59].

a technical and regulatory lifetime of about 15 years. In contrast to the
first generation, this second wave must also comply with the requirements
of the European Commission (EC) which recommends an output temporal
resolution of 15 minutes [62, 63].
Although they did not conduct a CBA, Malta and Spain have directly

chosen to go for full smart metering coverage, which has been reached in
2014 and 2018, respectively.

In France, all electricity meters are gradually being replaced by smart
meters since 2015. Already 15.3 million (i.e., 44%) Linky meters have been
installed by December 2018 and the total deployment of 35 million units is
expected to last until 2021 [64].

Great Britain is far behind its schedule of full coverage by the end of 2020.
Only 11.8 million smart electricity meters out of 28.6 million domestic and
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Figure 2.5: Overview of target period for the completion of a roll-out of smart
electricity meters to at least 80% of all customers (as of 2018) [59].

non-domestic metering points (i.e., 41%) have been installed by June 2020 [65].
Among currently installed smart meters, 2 million devices must nevertheless
be operated in traditional mode since suppliers are unable to operate them in
smart mode or the meters cannot communicate via the Wide Area Network
(WAN) at the point of reporting. Therefore, the government of Great Britain
pushed back the deadline by four years to reach a penetration of at least 85%
by 2024 [66]. It should be noted that energy suppliers must offer a smart
meter to all UK customers, but customers can refuse their installation. In
addition, the COVID-19 pandemic has a significant downwards impact on
the number of new smart meter installations, which already threatens the
latest roll-out target [67].

In Portugal, after being initially inconclusive, the second CBA conducted
in 2015 turned out to be positive. A legal framework was only published in
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2019, but the largest DSO already decided to deploy smart meters through
large pilot projects. This led to 1.9 million (i.e., 31%) smart meters installed
by the end of 2018 and aim to full coverage by 2025 [68].
Belgium commissioned region-specific CBAs and the outcome was in-

conclusive for Flanders, negative for Brussels, and had mixed results for
Wallonia [61]. Therefore, there is no legally bounding target at the national
level, but each region establishes its own roll-out strategy.

In Germany, the nationwide CBA carried out by Ernst & Young turned out
to be negative. Therefore, the German authorities opted for a selective and
step-wise roll-out based on the “Gesetz zur Digitalisierung der Energiewende”
which came into force in August 2016 [69]. From 2017, all customers with
consumption higher than 10’000 kWh per year must replace their traditional
meter with a smart meter [70, 71]. From 2020, this annual consumption
threshold is lowered to 6’000 kWh per year and producers with an installed
capacity of at least 7 kWh must also be equipped with a smart meter. This
corresponds to approximately 15% of all metering points. Private households
with an electric vehicle, a heat pump, or PV panels might be concerned, but
for most households (average electricity consumption of 3’500 kWh per year),
smart meters are optional and only the installation of a modern measuring
device (i.e., digital meter) is mandatory. The installation of modern and
smart meters is staggered step by step until 2032 according to electricity
consumption or generation capacity.
Finally, a few other countries, such as the Czech Republic or Bulgaria,

simply do not plan a mandatory national roll-out after a negative CBA.
Nevertheless, some DSOs still decided to progressively deploy smart meters
in their network, especially when traditional meters reach the end of their
technical lifetime [72, 73].

2.3.3 Situation in the World

Globally, IoT Analytics estimated an average smart meter penetration (elec-
tricity, water, and gas) of 14% in 2019 [74]. The consulting company also
predicts a number of installed smart meters surpassing the 1 billion mark by
2021. Europe and North America are leading in terms of penetration rate,
but Asia Pacific is clearly leading by overall volume. The rest of the world is
at an early stage with low institutional support.
More precisely, North America was the first region in the world to move

beyond traditional energy metering in the 1980s through the widespread intro-
duction of Automated Meter Reading (AMR) devices. Nowadays, intelligent
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grids and smart meters are becoming an integral part of the development of
smart cities. In 2019, the United States counted almost 95 million AMI smart
electric meters, covering 60% of the 157 million electricity customers [75].
They are mainly installed at residential customers (88%), followed by commer-
cial (11.4%) and industrial (0.5%) customers. Nevertheless, the smart meter
adoption rate varies significantly among states. For example, Washington DC
and Nevada are close to full penetration, whereas other states such as New
Mexico or Utah barely reach 10% penetration. In Canada, over 82% of the
meters are classified as smart meters in December 2018 [76]. This large-scale
roll-out serves as the basis for a variety of smart grid projects going from
distributed energy resource management to distribution grid monitoring and
automation [77].

Asia-Pacific (mainly China, Japan, South Korea, India, Australia, and New
Zealand) constitutes the world’s largest and fastest-growing meter market
with an estimated installed base of 618.8 million smart electricity meters in
2018 and annual demand in the range of 110–200 million units, where China
accounts for about 70% of the volume [78]. The region is nevertheless highly
fragmented in terms of the progress of smart metering deployments, and
three general groups can be distinguished. China and New Zealand have more
or less completed their first wave deployments of smart electricity meters.
Second wave deployments are already underway in China and are soon to
begin in New Zealand. South Korea and Japan are in the midst of their
nationwide deployments and are scheduled to be fully deployed by 2020 and
2024, respectively. The third group consists of Australia and India which
are in the early phases of smart meter deployments. The state of Victoria
is, though, an exception with a large-scale roll-out already completed in
2013, i.e., 2.8 million smart meters covering 93% of households and small
businesses [74]. In total, the penetration of smart meters in the Asia-Pacific
region was 67% in 2018 and is expected to grow to 94% in 2024. This growth
should primarily be driven by ambitious governmental targets in India to
reach nationwide coverage within the next few years [78].

In Africa, Latin America, or the Middle East, the smart meter roll-out in a
majority of countries is either still in a pilot stage or has not started yet [74].
In general, the main barrier to the adoption of smart meters in these regions
is the lack of funding and government initiatives that have played a major role
in the development of smart metering in other regions with larger penetration.
In addition, inadequate infrastructure, based on obsolete technologies and
often covering only urban areas, makes the deployment of smart meters still
prohibitive for many utilities. Among African and Middle East countries,
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major implementations occur in Nigeria, South Africa, Egypt, United Arab
Emirates, Saudi Arabia, and Qatar. In Latin America, Uruguay and Costa
Rica are positioning to become the first countries with total coverage, which
is expected by 2023 and 2024, respectively [79, 80]. Mexican utilities already
achieved 10% penetration in 2019, with a longstanding goal of 30 million
smart meters (i.e., 79%) by 2025 [81]. Chile is close to catching up with
Mexico in terms of penetration and expects a complete roll-out by 2026.
Finally, in Brazil, there is no nationwide roll-out plan and the deployment
of smart meters is mainly restricted to pilot smart grid projects initiated by
power distribution companies, especially in the region of São Paulo [82].

2.4 smart meter data applications and challenges

The availability of measurement data with high spatial (i.e., up to the end
customers) and temporal (i.e., between one minute and one hour) resolution
opens up a large set of opportunities for customers, electricity providers, and
system operators. Recent advances in Machine Learning (ML) also help to
deal with the massive amount of data gathered in distribution grids. Both
supervised (e.g., linear/ridge regression, logistic regression, support vector
machine, non-parametric regression, and decision tree) and unsupervised (e.g.,
principal components analysis, anomaly detection, and k-mean clustering)
algorithms find applications in power distribution grids [83]. In addition,
Artificial Neural Networks (ANNs), Deep Learning (DL), and Reinforcement
Learning (RL) methods are becoming highly popular, especially applied to
forecasting [10, 84].
In this context, smart data analytics becomes an important topic for all

stakeholders in smart grids [4]. First, customers can better monitor and
manage their energy consumption with the aim of reducing their electricity
bills. In addition, prosumers can potentially trade their electricity production
or share their DERs directly with other prosumers in the close neighborhood,
which is known as transactive energy or Peer-to-Peer energy trading. Second,
energy providers and aggregators can leverage smart meter data to design
suitable price schemes, offer personal services, detect electricity theft, and
better predict future demand. Third, DSOs benefit from high-resolution
measurement data, which allows for higher transparency and visibility down
to the LV grid. Distribution grid operation and planning can become more
cost-efficient, notably with the design and implementation of appropriate
Demand Response (DR) programs. Nevertheless, raw measurement data
inevitably contain errors, noise, and missing values. As detailed in Chapter 3,
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consistent data preparation and cleaning is a necessary prerequisite before
any further application. In addition, challenges in terms of data security and
privacy protection arise, which needs to be addressed in order to guarantee
the acceptance of customers for the use and analysis of personal information.
Although most power utilities do not provide smart meter data to the scientific
community for obvious privacy reasons, the release of a few open load data
sets boosted the research on smart meter data analytics. A non-exhaustive
list of open smart meter data sets is available in [4]. The following subsections
explain in more detail some of the most relevant applications and challenges of
measurement data in distribution grids, especially at the LV level, discussed
in the literature.

2.4.1 Detection of Non-Technical Losses

Electricity theft is a serious issue in both developing and developed countries,
which does not only induce revenue losses for energy providers but also
jeopardize the distribution grid operation by underestimating the demand.
For example, it has been estimated that electricity fraud is responsible for
annual losses of up to 6 billion dollars in the United States and 4.5 billion
dollars in India [85, 86]. Traditionally, Non-Technical Losses (NTLs) have
mainly been caused by purely physical system manipulations such as the
alteration of meter accuracy, bypassing of utility meters, or tapping of LV
lines [87]. Although the introduction of smart electronic meters prevents
physical meter tampering to some extent, the AMI becomes vulnerable to
cyber-attacks. Electricity fraud in a smart grid can thus occur at all AMI
levels, from the smart meter itself to the meter data management system as
well as the communication systems.

Accounting for the large saving potential, the detection and location of
energy theft became among the first concrete applications of smart meter
data analytics, although it has been investigated long before the roll-out of
smart meters via other means. An extensive literature on non-hardware
electricity theft detection is available, especially based on smart meter
data [88–90]. Fraud detection models can be categorized into four types:
supervised classifiers, unsupervised approaches, state-based approaches, and
game-theory-based approaches. Supervised classification algorithms such as
Linear Regression (LR), Support Vector Machine (SVM), ANN, and Deci-
sion Tree (DT) ensemble are trained to distinguish normal from abnormal
consumption patterns [29, 91–95], while addressing the challenge of imbal-
ance data (i.e., abnormal consumers are usually much scarcer than normal
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consumers). Nevertheless, they require a large volume of labeled data, which
is difficult to obtain. Alternatively, unsupervised anomaly detection, usu-
ally based on classical clustering algorithms or Gaussian Mixture Models
(GMMs), enables to group consumers and isolate fraudulent users according
to their behavior without the need for labeled data [96–98]. Fraudulent users
with similar load profiles as normal consumers might however slip under the
radar. Both supervised and unsupervised algorithms can be enhanced by the
integration of exogenous data like the location or socio-economic information,
although it may raise privacy concerns. Furthermore, state-based approaches
leverage information from the grid such as voltage, current, and power flow
measurements as input to a state estimation algorithm. Consumption data
which are inconsistent with the estimated grid state are thus considered as
abnormal [87, 99, 100]. Nevertheless, state estimation techniques require the
network topology and a sufficiently large number of various and redundant
measurements to obtain an observable system, which is rarely the case in low-
voltage grids. Finally, game-theory-based approaches model the interaction
of power utilities with benign customers and electricity thieves as a game,
where the latter lead to different Nash equilibria than benign customers [101,
102]. Such a fraud detection scheme can be particularly efficient but is based
on strong assumptions, notably regarding the type of fraud.

2.4.2 Monitoring and Situational Awareness

Traditionally, Distribution System Operators (DSOs) used to consider their
power grid, especially the LV grid, as a black box since very few and only
highly aggregated measurements (e.g., at substations) have been available.
Distribution grids have often been over-dimensioned to cope with the worst-
case scenarios. However, the emergence of new types of electrical devices
(i.e., EVs, electric water heaters, and heat pumps) and DERs creates new
challenges for DSOs, notably in terms of voltage control and management
of line and transformer loading. Hence, properly modeling and monitoring
the grid down to the lowest voltage level has become crucial in order to take
appropriate and cost-effective operational and planning decisions. In this
sense, high-resolution measurements coming from smart meters and diverse
advanced metering devices installed at end-consumers, PV systems, BESSs,
cable distribution cabinets, and distribution transformers help to achieve
better visibility and transparency [5].

First of all, proper data visualization is a primordial step in the creation of
valuable information and the extraction of knowledge from raw measurement
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data. In line with the big data challenges mentioned in the introduction,
dedicated tools should be able to gather, integrate, and display the large and
diverse amount of measurement data in an interface easily interpretable by
energy data analysts and system operators, ideally close to real-time. For
that purpose, different offline or cloud-based frameworks and dashboards are
proposed in literature [6, 103–105]. They rely on big data mining algorithms
such as simple statistical metrics (e.g., mean energy consumption, peak load
value, standard deviation, percentiles) but also ML techniques (e.g., clustering,
dimension reduction, anomaly detection, Deep Learning). Chapter 4 further
elaborates on the challenges to visualize a large volume of smart meter data
and details how clustering techniques help to decrease the data complexity and
create useful information. Moreover, distribution grid monitoring tools are
designed to provide system operators with a comprehensive spatial overview
of their system state based on measurement data and supported by GIS data
if available. Since distribution grids, including the LV level, are relatively large
and complex systems, the information can be seen on multiple aggregation
levels, going from the load and voltage profiles at substations down to the
single customers. Hence, these software tools are interactive such that the
user can zoom in or out but also click and hover on substations, lines,
transformers, distribution cabinets, and even single customers to obtain
specific and more detailed information. In addition to displaying recorded
and GIS data, such tools might also detect and correct missing or erroneous
values in the measurement data but also create synthetic load profiles to
complete the set of measurements. More information on data preparation
and realistic load profile synthesis is given in Chapters 3 and 6. On this basis,
power flow simulation can be conducted to estimate non-measured quantities.
In case of voltage band violation or component overloading, warnings and
alerts are also typically triggered, often under the form of a traffic light system
indicating the severity of the problem. Besides their monitoring function,
advanced monitoring tools allow for the creation of future scenarios (e.g.,
increase in PV or EV penetration), spot potential contingency locations, and
suggest preventive measures. Section 2.5 details more concretely different
supportive monitoring tools for DSOs designed by Swiss start-up companies
active in the design of smart grid solutions.
Furthermore, the existence of GIS information and of digital LV grid

models is still not given for many DSOs. Hence, topology learning algorithms
for distribution grids have been developed based on available measurement
data [106–108]. The Swiss start-up company depsys has implemented a model-
free topology learning algorithm based on their own LV sensors to support
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DSOs in their digitalization, as detailed in Section 2.5.2. Current trends
nevertheless indicate that an increasing number of DSOs start to digitalize
their MV and LV networks into GIS. But digital grid models are still prone
to errors such as connectivity errors or inaccurate line parameters, which
can be verified and rectified with the help of smart meter data, sometimes
combined with additional power flow measurements [109–111]. Assuming that
the network topology is known, distribution grids can be operated in different
configurations and DSOs are usually not aware of the status of switches,
which can also be identified by data-based approaches [7, 112, 113]. Topology
learning, verification, correction, and identification usually rely on graph
theory and Maximum Likelihood Estimation (MLE). The algorithms typically
leverage the fact that voltage measurements provide insight into the grid
structure and lines’ properties in the close neighborhood. Note, however, that
a substantial portion of the approaches proposed in the literature assume full
penetration of reliable smart meters, which is far to be the case in practice.

Finally, widely used in transmission grids, State Estimation (SE) is gaining
in popularity in distribution grids. Accounting for the particularities of MV
and LV grids (e.g., low x/r ratio, unbalanced conditions, radial configuration),
numerous techniques are proposed in the literature to determine the most
probable system state (i.e., bus voltage magnitudes and angles, bus active
and reactive power injections, and active and reactive power flows) based on
available measurements. Weighted Least Square (WLS), Extended Kalman
Filter (EKF), Unscented Kalman Filter (UKF), Least Absolute Value (LAV),
Forecasting-Aided State Estimation (FASE), and ML techniques are among
the most cited approaches [8, 114]. In contrast to the transmission level,
measurements are generally insufficient in distribution grids to obtain an
observable system which is a prerequisite for SE. Although smart meters
provide a large part of the necessary measurements, these are prone to errors
and full coverage is rarely achieved. Therefore, optimal sensor placement,
bad data detection, and pseudo-measurements synthesis are key topics in
Distribution System State Estimation (DSSE). In addition, distribution grid
topology is often complex with a great number of nodes but also uncertain,
as mentioned previously. Because of the observability problem and the large
uncertainties in measurement data and grid models, DSSE is still rarely
implemented in real systems. Chapters 6 and 7 specifically cover the synthesis
of realistic load profiles and the practical challenges in terms of input data
when implementing DSSE.
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2.4.3 Energy Forecasting

Energy forecasting is among the most popular field of ML applied to power
systems and mainly consists of load, solar power generation, wind power gen-
eration, and electricity price forecasting [10]. An impressively large number
of scientific publications are available, going from review papers to the adap-
tation of existing supervised algorithms or the design of new energy-focused
predictors. Load forecasting is the dominant category with about half of the
publications in energy forecasting [115, 116]. Solar power forecasting is also
highly popular since the early 2010s and the increasing share of energy pro-
duced by PV systems [117, 118]. While mainly relevant in transmission grids,
wind power forecasting has been extensively studied, and the methodology
can be adapted to load forecasting at the building level, accounting for the
highly variable nature of both types of data [119, 120]. Although not directly
linked to measurement data in distribution grids, electricity price forecasting
is fundamental in electricity markets and is expected to have an increasing
influence on the load in distribution grids, especially in the frame of DR
programs [121, 122].
The forecasting methodology highly depends on the type of data and on

the application. The type of data to predict particularly impacts the set
of input features. For example, solar power forecasting is obviously mainly
influenced by solar irradiance, whereas load forecasting profits from historical
data and temporal information. In addition, smooth profiles are typically
easier to predict and require less computational effort and less sophisticated
algorithms than highly volatile profiles. In load forecasting, the volatility and
predictability of the data are highly correlated with the aggregation level [123,
124]. Furthermore, the forecasting horizon and the class of predictors are
determined by the application. Short-term predictions (i.e., day-ahead, intra-
day, hour-ahead, intra-hour) are traditionally used for operation purposes,
whereas medium-term and long-term predictions (i.e., month-ahead, year-
ahead, and decade-ahead) serve planning objectives [125, 126]. Prediction
algorithms can be further split into deterministic and probabilistic approaches.
Deterministic or point forecasting algorithms predict a single value per
time step and aim to minimize the error with the real value. In contrast,
probabilistic algorithms provide a probability distribution, a set of quantiles or
prediction intervals per time step which inform on the uncertainty associated
with the forecast [127, 128]. Research on probabilistic energy forecasting
is principally pulled forward by wind power forecasting [119]. Based on
the principle of “wisdom of the crowd”, forecast combination and ensemble
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forecasting generally allow for more accurate predictions than individual
forecasting models, which is beneficial to both deterministic and probabilistic
approaches [129–131]. Moreover, the hierarchical structure of power systems
is totally appropriate for hierarchical time series forecasting which ensures
coherent outcomes between predictions at different hierarchy levels [132].
Especially, the sum of all individual load forecasts in a grid must be equal to
the aggregate load forecast at the feeder. Unfortunately, this knowledge is
still barely leveraged in load forecasting [133].

Research in load forecasting has mainly focused on (highly) aggregate data
at the transmission or substation level. However, the recent accessibility to
smart meter data currently boosts the studies on forecasting in distribution
grids down to the load of individual end-consumers. In their review of al-
gorithms and models used for deterministic building energy consumption,
the authors in [9] cite Artificial Neural Network (ANN), Auto-Regressive
Integrated Moving Average (ARIMA), Support Vector Machine (SVM), Case-
Based Reasoning (CBR), Fuzzy techniques, Grey theory, Moving Average
and Exponential Smoothing (MA&ES), K–Nearest Neighbor (KNN) as well
hybrid methods. A growing number of publications also focus on residential
load forecasting. Nevertheless, a majority of publications follow the same
forecasting methodology for smart meter data as for aggregate data, although
the properties vary significantly. On the one hand, the behavior of individual
consumers is particularly hard to predict such that deterministic load fore-
casting does not provide reasonable information [134]. On the other hand,
scoring functions based on the point-wise error and traditionally used for
smooth and aggregate data are not suitable for volatile smart meter data [135,
136]. Probabilistic Load Forecasting (PLF) algorithms and the corresponding
evaluation metrics are more appropriate to account for the large uncertainty
at the building or household level. The related literature is still very limited
and mainly focuses on the adaptation of deterministic models to quantile
forecasting. For example, the authors in [137] suggest the use of Quantile
Gradient Boosting Regression Tree (QGBRT), Quantile Recurrent Neural
Network (QRNN), or Quantile Long Short-Term Memory (QLSTM). Among
possible applications, short-term residential PLF can be used in the imple-
mentation of Demand Response programs and in transactive energy, whereas
long-term residential PLF can be leverage in the sizing of home batteries
and of the LV grid infrastructure. Chapter 9 is specifically dedicated to the
challenges of deterministic and probabilistic forecasting based on smart meter
data. Very rarely considered in the literature, voltage forecasting at the LV
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level is also taken into account in this thesis and leveraged for preventive
voltage control.

2.4.4 Demand-Side Management

Demand-Side Management (DSM) refers to the general modification of the
load. While energy efficiency measures (e.g., better building insulation, more
efficient domestic appliances) target medium- to long-term reduction of energy
consumption, Demand Response (DR) programs encourage the end-consumers
to make short-term reductions in their power demand. The main objective is
to provide ancillary services, and notably adjust the demand to intermittent
energy production (e.g., solar and wind infeed), reduce forecast errors in a
balancing group, maintain voltage within operational limits, and decrease
consumption peaks which are harmful to the distribution system infrastruc-
ture [13]. DR can be achieved by financial incentives (i.e., discouraging energy
consumption at certain hours of the day with higher prices than average)
or by direct control of certain devices whose consumption pattern can be
shifted without significant impact on the user. Thermostatically Controlled
Loads (TCLs) such as the refrigerator, space heating, Water Heater (WH),
or Heating, Ventilation, and Air Conditioning (HVAC) system are partic-
ularly appropriate for providing ancillary services thanks to their thermal
inertia [138]. The flexibility of wet appliances like washing machines, tumble
dryers, and dishwashers can also be exploited in a time window predefined by
the user, although their rather sporadic usage limits the DR potential [139].
Home batteries also serve DR purposes by acting as a buffer between the
actual consumption and the demand seen by the grid, which can additionally
be combined with privacy-preserving functions [14]. Due to its high power
and energy consumption but also flexibility potential, EV charging is recently
often considered as a key element in DR schemes [140].
In this context, smart meter data help to identify good DSM candidates,

enhance the implementation of DR programs, design efficient price schemes,
and estimate the flexibility potential of consumers. The company O-Power is
often cited as one of the first power utilities to leverage smart meter data
for that purpose. It has implemented behavioral DR in order to reduce the
overall energy consumption during the highest usage hours on peak energy
days [141]. More precisely, O-Power utilizes the competition spirit of its
customers by comparing their consumption behavior and encouraging them
to outperform similarly situated customers in terms of consumption reduction
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during critical time periods.

The information revealed by smart meter data allows aggregators and
system operators to personalize their energy efficiency measures and DR
programs in order to maximize the propensity of customers to react as
desired. More precisely, load profiling techniques allow for consumer clas-
sification according to their consumption pattern. Clustering approaches
like k-means, fuzzy clustering, hierarchical clustering, and Self-Organization
Mapping (SOM) are typically used for that purpose [11]. Feeding the clus-
tering algorithm with complete load time series is however not very efficient.
By reducing the set of features, dimensionality reduction techniques such
as PCA contribute to better clustering [142]. Manual features extraction
also enables the obtention of clusters according to the needs. For example,
consumers can be grouped by k-means clustering according to the correlation
between consumption and outside temperature, which gives insight into their
probability to possess electric temperature-sensitive devices, as explained
in Section 4.4.2. Moreover, load profiles contain socio-economic information
that can be revealed with the help of customer characterization techniques.
The authors in [143, 144] have shown that classifiers (e.g., KNN, Linear
Discriminant Analysis (LDA), SVM, AdaBoost, and Convolutional Neural
Network (CNN)) and regressors (e.g., multiple linear models) can be trained
on smart meter data to identify a large variety of personal characteristics.
For instance, the type and approximate age of the house, the floor area, the
number of bedrooms and appliances, the type of cooking facility, or even
the approximate age and the social class of the chief income earner can be
identified with relatively high accuracy. Of course, the utility of knowing
some of the cited characteristics is questionable, and privacy concerns are
inevitably raised. Note that load profiling and customer characterization
techniques are not only limited to DSM but can also serve other purposes
such as improving load forecasting or bad data detection.
Furthermore, better insight into the composition of the load is necessary,

and notably regarding the presence of low-efficiency devices that should
be replaced or of flexible appliances that could be leveraged for DR pur-
poses. Intrusive Load Monitoring (ILM) refers to the direct load recording
of specific electric appliances in a building or household, also referred to
as sub-metering [145]. Although the sensing and communication technol-
ogy is available, ILM is relatively costly, requires additional installation
and maintenance, and raises data privacy concerns, which prevents a wide-
scale implementation of ILM. Alternatively, Non-Intrusive Load Monitoring
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(NILM) uses the load profile at the building or household level to disaggre-
gate the load of individual appliances. Literature on NILM is extensive and
generally focuses on the detection of appliance-specific signatures. The NILM
algorithms can be unsupervised, mainly based on Hidden Markov Models
(HMMs), or supervised, such as Deep Learning approaches, which requires
the availability of labeled data for training [12]. Nevertheless, state-of-the-art
NILM techniques are computationally expensive and are currently not ap-
plicable on a wide scale since they rely on much higher temporal resolution
data (i.e., a sampling rate of at least 1 Hz) than the resolution offered by
currently rolled out smart meters (i.e., between one minute and one hour).
Research on load disaggregation based on standard smart meter data is still
scarce and principally targets the temperature-sensitive part of the load (e.g.,
coming from HVAC systems [146] or heat pumps [147]). Further discussion is
given in Chapter 8, where fully unsupervised disaggregation algorithms are
proposed.
Besides, the implementation of DR programs requires a good estimation

of the flexibility potential on the demand side, more precisely regarding
the duration and amplitude of possible load shifting, decrease or increase.
If available, fine-grained data at the appliance level can be used to esti-
mate their flexibility potential [148, 149]. Though, accounting for the lack
of sub-metering data, most flexibility estimation studies make use of survey
information which can only give a broad estimate at an aggregate level. Based
on a regression model between outside temperature and smart meter data
at the building level, the authors in [150] can still approximate the activity
of AC systems and quantify the expected power reduction in response to a
broadcast set-point change. Nevertheless, the actual flexibility of consumers
can generally hardly be assessed based on smart meter data due to too high
uncertainty regarding the precise functioning of flexible devices and the reac-
tion of consumers. In addition, many studies try to model the price-elasticity
of consumers [151, 152] or to design optimal Time-of-Use (ToU) or critical
peak price schemes based on measurement data [153, 154]. However, it has
been shown that consumers do not make consistently rational decisions as
expected by those models [155, 156]. Therefore, a few pilot projects have been
carried out to evaluate the actual response of consumers to DR programs.
For example, the flexibility of wet appliances (where users set a deadline for
the end of the program), EVs (where users set an expected departure time),
and Domestic Hot Water (DHW) buffers (where comforts settings define the
DR controllability range) has been quantified over 186 households in the
LINEAR project [139]. It comes out that the flexibility potential is highly
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asymmetric (i.e., the power increase surpasses the power decrease potential)
and significantly varies over the day. Similarly, a pilot study carried out in
Norway over 40 households has investigated the potential of Remote Load
Control (RLC) for WHs and the response to price signals in the use of wet
appliances via a token indicating peak hours [50].

In practice, direct load control and Time of Use (ToU) tariffs are relatively
common in the industrial sector [157]. However, despite the large flexibility
potential in the commercial and residential sectors [158, 159], DR programs for
those consumers are generally limited to simple ToU schemes, typically fixed
peak and off-peak electricity prices to reduce the difference between the peaks
and troughs of the demand profile. Nearly all advanced load management
solutions proposed in the literature for commercial and residential consumers
remain at the concept stage and are rarely put into practice for multiple
reasons. The authors in [160–162] review the different barriers to an efficient
implementation of DR programs.

First, the non-optimal behavior of consumers is considered a fundamental
limitation. Although financial motivation is a key aspect, electricity is a
relatively cheap good, and savings on customers’ electricity bills may be
insufficient to cover investments in equipment and to compensate for the
inconvenience of participating in the program [163]. A study in [164] also
found that the majority of participants in a DR program continue with their
consumption habits and everyday routines despite regular energy feedback on
their IHD. This highlights the need for proper information on the purpose and
benefits of DR programs to ensure higher customer engagement. Quantifying
the value and cost savings of DR is however associated with high uncertainty
due to the difficulty to compute the baseline demand (i.e., the load in the
absence of DR event), especially for residential consumers [165].

In addition, there is a clear lack of an appropriate market and regulatory
framework. Nowadays, market structures are still too restrictive and usually
require DR to be planned several hours ahead in addition to set high perfor-
mance standards, which is often not realisable [166]. Current regulations also
set restrictions on locational and temporal price differentiation and prevent
transparent transmission of price signals to the final consumers such that
they cannot perceive the true value of DR [167].
Finally, technological barriers are still limiting practical implementation.

On the one hand, DR is based on a reliable AMI which is still in the
roll-out phase in many distribution networks, as detailed in Section 2.2.
Sensing, communication, computation, and control technologies have proven
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their efficiency in small-scale pilot projects. Nevertheless, there is still a
substantial gap for wide-scale implementation of DR, notably in terms of
experience for larger systems, penetration level of bidirectional smart meters,
communication and computational capability, and harmonization of standards
and protocols among the large diversity of systems and devices. On the other
hand, proficiency skills in data science applied to power systems are required
to properly understand and efficiently make use of the data gathered in
distribution grids. Too many DR schemes proposed in the literature are still
based on assumptions which are not in phase with reality. For example, some
studies assume certain flexibility at an aggregate level without considering
the practical feasibility and the implication for single consumers, or rely on
perfect knowledge of the system, the demand, and the flexibility potential.

2.4.5 Transactive Energy Systems

Electricity markets traditionally perform resource allocation and pricing
based on the conventional top-down approach of power system management,
where customers and prosumers are passive receivers. But recently, so-called
transactive energy systems have been proposed to properly integrate the
increasing DER production [15]. These systems rely on a consumer-centric
and bottom-up perspective by giving the opportunity to consumers and local
producers to freely choose whom they want to exchange electricity with and
what is the price they are willing to pay and offer, respectively. The design of
such electricity markets is above all defined by the degree of decentralization
and their topology. It goes from full Peer-to-Peer (P2P) markets with purely
bilateral exchanges to community-based markets where multiple prosumers
can collaborate in a microgrid. In this context, measurement data at the
prosumer level are essential to account for the amount of power to be traded.
In some cases, smart meters even serve as an interface to the trading platform
through their in-home display.

Multiple local energy trading projects have already been successfully imple-
mented [168]. For example, Piclo is an online energy marketplace in the UK
that uses meter data, generator pricing, and consumer preference information
to match electricity demand and supply every 30 minutes [169]. Similarly,
Vandebron is an online platform in the Netherlands that allows consumers
to directly buy electricity from independent producers such as farmers who
own wind turbines in their fields [170]. In addition, blockchain technology is
getting popular for facilitating the exchange of electricity without the medi-
ation of a utility company or a financial institution [171]. In practice, LO3
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Energy launched in 2017 in Brooklin the first microgrid energy market based
on blockchain technology [172]. In Switzerland, the first blockchain-based
energy market has been designed by the start-up company Exnaton whose
activities are detailed in Section 2.5.3.

2.4.6 Customer Concerns and Data Privacy

Although smart meters offer a large set of opportunities for DSOs, aggregators,
and energy retailers, they are also a source of worry among the customers.
A serious frond against the installation of these devices is observed around
the world, notably led by the organization “Stop Smart Meters” [173]. The
organization provides support to customers who want to opt out or refuse the
installation of smart meters and carries out multiple actions such as media
outreach and street protest to discredit smart meters. It consists of many
local associations, mainly active in the United States, but also in Canada,
Mexico, Australia, New Zealand, Japan, and in European countries such as
the United Kingdom, Portugal, Austria, or Norway. In France, in contrast
to a majority of countries, customers do not have the right to refuse the
installation of the Linky smart meter. This led to multiple legal proceedings
against Enedis (i.e., the main French DSO) but also against recalcitrant
customers [174].
Campaigns against smart meters are diverse and usually refer to health,

reading accuracy, safety, and privacy concerns. First, inhabitants can be
exposed to electromagnetic fields, more precisely Radio Frequency (RF) ra-
diation, in case the smart meter is equipped with wireless communication.
While this is definitely problematic for people suffering from electromagnetic
hypersensitivity, like any exposure to electric devices, the RF radiation of
smart meters is seen as a general health issue by their detractors. According
to the American Cancer Society, it is very unlikely that living in a house
with a smart meter increases the risk of cancer [175]. Nevertheless, there is
no comprehensive long-term study regarding further health problems due to
smart meters. It should still be noted that the amount of RF radiation from
a smart meter is much lower than the radiation from a cell phone. Second,
a few cases of fire hazard supposedly caused by defective or poorly fitted
energy meters have been reported, although the operators ensure that meters
cannot explode or ignite spontaneously [176, 177]. Third, some consumers
have complained about higher electricity bills after the replacement of their
traditional meter. Indeed, the authors [178] have shown that electromagnetic
interference (e.g., caused by light dimmers or active infeed converters as used
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in PV systems) with the Rogowski coil current sensor of smart meters can lead
to inaccurate, sometimes substantially higher, readings. Recent devices are
nevertheless immune to such interference. Fourth, consumers do not directly
see the benefits of smart meters over the traditional meters and fear that the
installation cost may be indirectly passed on to them via the electricity bill.
Finally, smart meters raise data protection and privacy concerns which are
detailed in the following.

Due to the fine granularity of smart meter data, highly private information
can be revealed about the behavior and habits of the electricity consumer
with simple off-the-shell techniques, even without a priori knowledge of
its activities or prior training based on sub-metering data. In that respect,
Section 2.4.4 mentions the potential of customer characterization and NILM
techniques to detect socio-economic features and the types of equipment being
used, respectively. Occupancy profiles, lifestyle patterns, potential illnesses,
and religious practices can be inferred from fine-grained consumption data. For
example, the authors in [179] point out that hourly household consumption
data can potentially reveal if a worker is at home during sick leave and if he
got a good night’s sleep by analyzing power activities during the day and at
night, respectively. Minute- to second-resolution data can inform whether he
ate a cold or hot breakfast, left late for work, or left his child home alone. The
authors in [180] even show that audiovisual content can be detected based
on household power consumption sampled every two seconds. Although some
pieces of information are innocuous, other pieces are critical if third parties
other than power utilities, like the employer, insurance companies, or even
criminals, could have access to it. In theory, many components of the AMI
(e.g., HAN, NAN, WAN, DCU, and MDMS) are vulnerable to cyber-attacks
such as data interception and modification [181]. In addition, experiments
have shown that vulnerabilities in specific smart metering infrastructures can
be exploited by threat actors [182, 183].
According to a survey published by PwC in the US, customers attach

high importance to cybersecurity and privacy but consider energy companies
among the less trusted utilities in those fields [184]. This highlights the need
for energy companies to put cybersecurity at the forefront of their business
strategy and to build trust through action by implementing robust data
governance. Countermeasures and protective actions against cyber attacks
such as pseudonymization and encryption of meter data can already provide
a certain level of cybersecurity [185]. It is also fundamental that regulatory
standards in the roll-out of smart meters explicitly consider the benefits
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for consumers, and not only for metering companies, energy providers, and
system operators. As experimented in the Netherlands at the beginning of the
2010s, the absence of a framework or set of safeguards in the standardization
process to protect public interests can trigger a strong public resistance
against smart metering [186]. In the Dutch case, smart meter roll-out was
initially mandatory with legal consequences in case of refusal, which was
considered as an infringement of the right to privacy as protected in the
European Convention on Human Rights.

Recently, more stringent privacy protection laws, which also apply to smart
meter data, have been adopted. This is the case of the European Union’s
General Data Protection Regulation (GDPR) which classifies the data gath-
ered by smart meters as personal data that belongs to the customer [187].
Among others, GDPR stipulates that data subjects must be informed about
processing operations, can restrict them under certain conditions, and have
the right to ask for their data to be erased. In addition, privacy settings in
the development of services must be set by default to a high level. However,
there is still no clear guidelines regarding the way power companies should
deal with customers to improve their acceptance of smart meters. For that
purpose, the authors in [188] promote the role of ethics as an important driver
in smart grid programs. In a so-called ethical smart grid, customers should
be treated as collaborators, enabling a fruitful and long-lasting relationship
between utilities and customers. Requirements in terms of ethics should rely
on the concepts of parsimony and equity, and the risks of privacy breaches
might be compensated financially.

Furthermore, the level of detail provided by smart meters must be the
result of a trade-off between the benefits for power utilities and the privacy
implications for consumers. First, data granularity plays a role in the possible
detection of activities and appliance use. A higher temporal resolution allows
for more detailed information, which increases the performance of NILM
algorithms [189]. In the European Union, the granularity of smart meter data
is therefore limited to 15 minutes, which automatically prevents the detection
of most domestic appliances. Similarly, the aggregation level at which data is
transmitted and processed also determines the degree of privacy protection.
For example, the consumption data of a block of houses can be sent in an
aggregated way to the utilities in order to preserve the privacy of the single
households. Moreover, smart meter data is typically sent once a day to the
main utility servers, usually at night for technical reasons. Such time-shifting
of the data transmission prevents real-time monitoring of the consumers’
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activities. In general, it is clear that the possible applications and the asso-
ciated performance depend on the level of detail in the data. For example,
higher data resolution allows for more accurate DR program marketing, and
the availability of real-time data improves short-time forecasting.

Unfortunately, privacy implications of the algorithms based on smart meter
data and proposed in the literature are too often neglected. It is however
possible to develop privacy-preserving approaches for some applications. For
example, the authors in [190] have designed a k-means clustering algorithm
that neither discloses an individual’s private information nor leaks the com-
munity’s characteristic data. In addition, the presence of a home battery can
be leveraged to hide the household’s consumption pattern seen by the meter
using various charge and discharge schemes [191]. The authors in [14] have
even proposed an energy management method that utilizes energy storage
and local generation to simultaneously reduce energy costs and protect pri-
vacy through the minimization of information leakage. Nevertheless, other
applications are hardly compatible with proper privacy protection. The au-
thors in [192] have shown the limitations of privacy-preserving approaches
in collaborative forecasting. In this case, cooperation between different data
owners may increase the forecast performance, notably for wind and solar
power, but at the cost of a loss of privacy despite protective measures. In
the different studies, approaches, and applications presented in this thesis,
privacy implications are explicitly considered. Specifically, Chapter 5 provides
more information about the influence of temporal resolution and spatial
aggregation on the level of detail visible in AMI data. In addition, the im-
plications of temporal resolution for load disaggregation are discussed more
concretely in Chapter 8.

2.5 swiss start-up companies and smart grid solutions

A large range of new business models has arisen with the digitalization
trend observed in distribution grids, and especially the large-scale roll-out
of smart meters. Traditional power companies usually lack the expertise to
properly make use of the gathered data, and a portion of the customers
wish to actively participate in the energy transition. Hence, many start-up
companies are emerging in the energy sector. Only in Switzerland, about
250 energy start-up companies have already been created over the past ten
years in the areas of transport technologies and services, energy production,
energy-efficient technologies, storage and grid services, building technologies,
energy management and use, and energy supply services [193]. They are
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highly active in R&D projects to address practical concerns that distribution
grid operators and planners, energy retailers, and aggregators may face, but
also directly focus on the interests of consumers and prosumers. For example,
Hive Power provides a smart grid analytics platform (e.g., forecasting of
energy demand, designing of new tariff schemes, and optimal management of
energy communities and aggregated flexible loads) to energy suppliers and
grid operators [194]. Zaphiro has developed a monitoring and automation
solution to help power utilities integrate more clean energy technologies in the
electricity grids while maintaining a high quality of service for their customers
and optimizing system costs [195]. Bitblumens distributes solar power devices
in areas without a power grid and connects them to the blockchain [196].
Clemap provides energy meters that analyze through load disaggregation
techniques the energy consumption of buildings and propose energy efficiency
measures [197]. In the following subsections, three start-up companies located
in Switzerland and providing services to DSOs and/or prosumers are described
in more detail. This gives a real-world insight into current applications in the
field of smart grid solutions on the basis of measurement data in distribution
grids.

2.5.1 Adaptricity

Adaptricity is a spin-off company of ETH Zurich founded in 2014 and lo-
cated in Zurich, describing itself as a driver of SmartGrid innovation in the
German-speaking world [198]. The company took part in multiple start-up
competitions and won several national and international awards, such as the
CIRED Startup Award and the Asian Utility Award. Furthermore, it recently
got awarded by the Watt d’Or 2021, a quality seal for energy excellence given
by the Swiss Federal Office of Energy. The majority of the 60+ customers
of Adaptricity are system operators, principally in Switzerland (e.g., IWB
in the City of Basel, and EKZ and EWZ in the Canton and City of Zurich,
respectively), but also in Germany (Bayernwerk in the region of Bayern),
Austria (Netz Oberösterreich in the north of the country), and even Hong
Kong (CLP Group) and Australia (AusNet Services in Victoria).
The business model of Adaptricity is built around grid analytics tools

combining traditional grid planning practices with data-driven algorithms to
leverage measurement data available in the power distribution grid. The Adap-
tricity platform is a simulation engine with a wide variety of grid calculation
functions, and notably power flow time series simulations [199]. It basically
consists of three products, namely Adaptricity.Plan, Adaptricity.Sim, and
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Adaptricity.Mon, which are built upon the same cloud-based platform, and
Adaptricity.Connect. Adaptricity.Plan focuses on the day-to-day operations
of grid planning, such as power flow or short circuit calculations, grid rein-
forcement, or connection requests. Grid models can be easily imported using
a wide variety of different data connectors. Adaptricity.Sim delivers a detailed
analysis of the distribution grid based on time-series simulations. Different
dashboards support the visualization of simulation results under the form of
time series and statistics. The simulator is not limited to power-consuming
appliances and traditional power generators but also integrates prosumer
models, dynamic-pricing behaviors, SmartGrid applications, power-to-heat,
etc., for an in-depth insight into the distribution grid of the future. Adaptric-
ity.Mon provides comprehensive grid monitoring through the use of smart
meters and substation measurement equipment. The visualization and evalu-
ation of measurement data help the detection of operational violations and
can spot negative trends in the grid. Since all measurement data are linked to
a grid model, power flow calculations can be made for each time step, giving
accurate information about the grid’s operational state (i.e., voltages and
line loadings) completely automatically. Hence, grid operators can visualize,
simulate, and analyze their electricity grids in near real-time. This means
more efficient grid operations, which in turn leads to better integration of
Renewable Energy Sources (RESs) and fewer grid losses. In addition, Adap-
tricity.Connect allows end-customers to evaluate their connection requests
themselves, saving DSOs and their customers significant time and effort. The
preliminary calculation of RES hosting capacity per node determines which
connection node is suitable for a new RES installation. The expensive options
can be ruled out from the beginning, and the final connection request can be
implemented cost-effectively. In this case, time-series-based grid simulations
provide valuable insights for PV connection request assessment which cannot
be obtained by purely static power flow simulations [200].
Furthermore, Adaptricity offers consulting services and tailor-made solu-

tions, usually based on the Adaptricity platform. Currently, DSOs are making
decisions partially blind since they have very little visibility into LV grids.
Hence, load flow calculations based on smart meter data give insight into
the grid’s status-quo such that existing grid bottlenecks can be identified. In
addition, the Adaptricity engineers can define plausible future grid scenarios
for electric mobility and RES expansion. On this basis, detailed identification
of grid bottlenecks for all plausible future grid scenarios can be performed.
For example, the result of an LV grid stress test is illustrated in Figure 2.6.
In addition, Adaptricity makes use of Monte Carlo simulation to assess the
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Figure 2.6: Grid stress test visualized in the Adaptricity platform [198].

uncertainty inherent in future scenarios, such as the impact of electric vehicles
on the grid infrastructure [201]. Finally, investment costs (e.g., grid reinforce-
ment measures) can be estimated based on expected violations of standards.
Grid Reinforcement measures are sometimes inevitable, but Adaptricity has
shown that smart local control schemes can already substantially reduce
the number of undervoltages in highly loaded LV grids [202]. Furthermore,
Adaptricity develops interactive dashboards as stand-alone solutions or as
web applications according to customer needs and use-cases in grid operation,
planning, and asset management.

2.5.2 Depsys

Depsys is a start-up company founded in 2012 and located in Puidoux, in the
French-speaking part of Switzerland [203]. Among other prizes, the cleantech
company got awarded by the Solar Impulse Foundation and also received the
Watt D’Or. GridEye is the core platform of depsys, already used by more
than 40 grid operators mainly located in Switzerland, like Romande Energie
and IWB. Based on both hardware and software components, GridEye allows
depsys to produce and leverage high-precision, real-time data within the same
platform, which decreases the risk of data leakage and errors. On the hardware
side, field devices such as micro-PMUs are installed at key locations, usually
at the LV side of distribution transformers and at cable distribution cabinets,
for data acquisition and control. Measurements of three-phase electrical
quantities are processed by the distributed intelligence on every device such
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Figure 2.7: GridEye visualization platform of depsys [203].

that only useful data for the system operators and/or end-customers are
communicated and stored. At the heart of GridEye, the management system
is in charge of the IoT communication and data center. Finally, a variety
of software modules give insight into the operation of the grid. The grid
monitoring module provides real-time visibility into the condition of the
grid and can send warning messages ahead of critical events. The power
quality module handles supply compliance, troubleshooting, and root cause
analysis. The fault management module triggers real-time alarms in case of
interruption of supply and can rapidly determine the fault location. Temporal
profiles (e.g., transformer daily loading, voltage and current variations) and
statistics (e.g., transformer power, current, and voltage average daily or
weekly dynamics, distribution of transformer loading, distribution of currents
and voltages throughout the grid) are also visualized. In addition to the
monitoring applications of GridEye, depsys offers further services to DSOs
such as transformer aging analysis, imbalance and losses analysis, phase
discovery, and optimal energy storage sizing. Figure 2.7 gives insight into the
GridEye visualization platform.
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In contrast to the Adaptricity platform, GridEye does not work with a GIS
model of the grid, and network parameters are not known a priori. In addition,
it does not necessarily rely on a large roll-out of smart meters, but princi-
pally on the high-resolution field devices developed by depsys. In order to
compensate for the absence of a digital grid model, as is often the case at the
LV level, depsys patented a method for estimating the topology of an electric
power network using only well-placed high-resolution metering devices [204].
The method is based on the estimation of mutual current sensitivity coeffi-
cients and on an algorithm to obtain the network incidence matrix from the
estimated sensitivity coefficients. In addition, depsys patented a model-less
technique for determining mutual voltage sensitivity coefficients between a
plurality of measuring nodes in an electric power network [205]. This approach
has been successfully validated in laboratory for unbalanced LV grids [206].
The sensitivity coefficient estimation technique has then been leveraged in
a research project to automatically determine grid hosting capacity based
on measurement data. Without knowing the grid configuration, it provides
insight into the impact in a distribution grid of any new installation (e.g.,
PV system, EV charger, storage system) and of the addition or replacement
of grid components (e.g., cables, transformers). In another research project,
GridEye measurements at the LV side of distribution transformers are used to
create a digital twin of the MV side of the transformers [207]. Based on these
digital twins, depsys further developed a new state estimation framework for
real-time MV grid monitoring without the need for pseudo-measurements and
the deployment of extensive and expensive grid measurement devices [208].

2.5.3 Exnaton

Exnaton is a very recent start-up company founded in Zurich in summer
2020 after winning a starting capital from Venture Kick [209]. The three co-
founders have developed a software tool that creates local Peer-to-Peer (P2P)
energy communities for trading renewable energy in the neighborhood. Based
on the analysis of smart meter data, the software is intended to serve both
energy providers and consumers. On the one hand, an application visualizes
the electricity consumption and/or production of households, PV system
owners, and small businesses in real-time. In addition, the software allows
them to share electricity with each other. For example, a household can buy
electricity from its neighbor’s PV systems. Prices for electricity are based on
the availability of locally produced energy, which may save costs by targeted
consumption behavior. On the other hand, the software platform calculates
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transactions among electricity customers and provides energy providers with
easy-to-access billing data. New data-based revenue streams are also offered
to energy providers, which ranges from self-consumption optimization up to
the analysis of optimal sizing for PV systems.
The software platform builds on the experience and know-how gained in

the research project Quartierstrom, where the future Exnaton team members
could design and test the first local energy market of Switzerland in the frame
of their PhD studies at ETH Zurich and University of St. Gallen [210]. In this
pilot project, 35 households and two commercial entities from Walenstadt,
a small Swiss village in the canton of St. Gallen, have joined a local energy
community that allows the exchange and remuneration of electricity between
consumers, prosumers, and the local electric grid provider without interme-
diaries. The community members pay a reduced tariff for grid usage if the
electricity produced by a prosumer is sold to another community member
located on the same voltage or grid level. Although the Swiss legislation
does not currently support such novel location-grid pricing schemes, the pilot
project has proven that such pricing structure can incentivize local balancing,
i.e., locally produced energy can be consumed locally whenever possible to
avoid costs from higher grid levels. Blockchain technology is used for logging
the produced and consumed units of energy within the community [171].
Hence, both prosumers and consumers can indicate a price at which they
are willing to sell or buy locally produced solar energy without third-party
intermediaries. In addition, the pilot project has shown that the active in-
volvement of households in the P2P energy market impacts their behavior
and contributes to the energy transition [211]. Indeed, the community fosters
sustainable practices (e.g., self-consumption or load-shifting) and the local
aspects of the electricity exchange seem to drive user engagement, which
might therefore facilitate the future diffusion of DERs.

2.6 conclusion

To sum up, the electricity sector does not escape from the digitalization wave
that revolutionizes many industry areas as diverse as medicine, biology, or
manufacturing. Although the power industry is known to be particularly
conservative, the wide-scale roll-out of smart meters currently transforms
the distribution grid down to the low-voltage level which is not anymore
seen as a passive black box. Beyond the sole installation of smart meters
at customers’ premises, further advanced measurement devices might be
installed in distribution grids, e.g., at specific flexible devices, distribution
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transformers, and cable distribution cabinets. These various measurement
devices, together with suitable communication networks and data manage-
ment and storage systems, build the advanced metering infrastructure. Such
infrastructure allows for a large variety of new potential applications which
can serve all stakeholders in distribution grids, from electricity providers
and system operators to end consumers. Besides automated meter reading
which substantially simplifies billing processes, detection of non-technical
losses is among the first practical applications seen by power utilities in
regions where electricity theft is a serious issue. In addition, a widespread
installation of such sensors highly contributes to increased visibility into
distribution grids down to the LV level. Among others, measurement data are
leveraged for visualization, monitoring, topology estimation, grid modeling,
situational awareness, and state estimation purposes. Furthermore, access
to smart meter data has boosted the research on energy forecasting, and
especially load forecasting. These data can also be used for load profiling,
customer characterization, load disaggregation, and estimation of flexibility
potential, which enables the design of more cost-efficient demand response
programs. Finally, transactive energy systems are getting popular in recent
years, which profits directly the end consumers and prosumers who become
active traders of their energy on the basis of accurate measurement data.
Nevertheless, while the detection of non-technical losses, grid monitoring,

load flow simulations, and transactive energy systems are some applications
that are successfully put into practice and commercialized, above all by
start-up companies, a majority of applications are only at the conceptual
stage. Indeed, there is often a large gap between the assumptions taken in
data-based approaches proposed in the literature and the reality of measure-
ment data in distribution grids. First of all, the general assumption of full
smart meter penetration is currently unrealistic. In fact, few countries have
reached their roll-out objective of 80% smart meter coverage or higher, but
partial penetration is still the norm in most distribution grids. Depending
on the country’s CBA, this might be a transitional phase or a permanent
status. The reluctance of a minority of the population to the roll-out of
smart meters and slower installation rate because of the COVID-19 pandemic
must also be taken into account. In addition, measurement data and, if
available, digital grid models are inevitably prone to inaccuracies, anomalies,
and missing values which impact the efficiency of data-based approaches.
Many case studies presented in the literature unfortunately rely on perfect
synthetic measurement data and on simplistic test grids that do not reflect
the situation in reality. Furthermore, besides being prone to failure, com-
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munications networks and data management systems also have limitations,
notably in terms of throughput and processing capacity, respectively. This
restrains the amount of data gathered within the AMI. Among other things,
this impacts the number of measurement devices, the recorded quantities,
and the data resolution, despite the probably greater technical capacity of the
devices. Apart from smart meters and measurement devices at distribution
transformers, the number of more advanced meters such as sub-metering
devices and micro-PMUs is still marginal due to their relatively high cost
with respect to the potential benefits. Finally, the efficiency of applications
based on measurement data does not only rely on their quality and quantity
but also on the acceptance and the behavior of the data owners, i.e., end
consumers or prosumers. On the one hand, they have justified data protection
and privacy concerns. On the other hand, they rarely take the most rational
decisions when they are active stakeholders.
These various limitations obviously do not mean that measurement data,

especially from smart meters, are currently not exploitable, but that they must
be explicitly considered in the design of data-based approaches. On the one
side, distribution system operators, aggregators, and energy providers usually
lack the expertise to properly leverage a large amount of measurement data
and are sometimes even not aware of the various applications. On the other
side, the scientific power community should carry out data-based analysis on
the basis of realistic case studies and measurement setup. Hence, this thesis
intends to bridge some of the gaps which currently prevent power utilities and
their customers from making use of the full potential of actual measurement
data in distribution grids.
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D ATA S E T S A N D P R E PA R AT I O N

If 80 percent of our work is data preparation, then
ensuring data quality is the important work of a
machine learning team.

— Andrew Ng

Real-world AMI data sets serve as a starting point for the different appli-
cations and use cases presented in this thesis. They are described in the first
part of this chapter and illustrate the diversity of data available in distribution
grids. In the second part, the focus is given to the general preparation process
of AMI data. Original data are inevitably prone to errors and inconsistencies,
which requires some processing to increase data quality before their use for
further analysis. The proposed data preparation practices are mainly based
on the experience gained when processing the various real-world data sets
detailed in the first instance.

3.1 introduction

Before discussing possible applications of AMI data, it is essential to under-
stand more concretely what are AMI data. This is the purpose of this chapter
which is actually split into two main parts. In a first instance, real-world data
sets are described in the frame of three different systems in Switzerland and
in Costa Rica. They illustrate the status and diversity of measurement data
as well as other types of data available at the level of distribution grids and
of end electricity customers. It must be noted that access to such data sets is
not self-evident. In this work, the data sets are part of multiple projects in
collaboration with DSOs and entities responsible for data collection, and most
of them are subject to a Non-Disclosure Agreement (NDA). The description
of the real-world data sets and their processing is limited to non-sensitive
data that are necessary to understand the context in which this work has
been carried out.
In the second part, the preparation of AMI data is discussed. In fact,

data recorded and communicated by each measurement device is structured
according to its own standards and protocols. In a system with different types
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of measurement devices, measurement data must first be formatted into a
common data structure. From this point, standardized cleaning methods
can deal with the formatted raw data which are always prone to errors,
inconsistencies, anomalies, and data gaps. Among others, algorithms for data
wrangling, data quality diagnosis, outlier and anomaly detection, and missing
values imputation have been developed. Part of the data cleaning methods
relies on preliminary statistical analysis in order to distinguish between
normal and abnormal data instances. The preparation of measurement data
is closely linked with the preparation of so-called metadata which enable the
transformation of measurement data into meaningful information, from which
knowledge is extracted. The main data preparation steps are illustrated by
examples from the real-world data sets.

3.2 presentation of ami data sets

One of the main contributions of this work is the use of real-world data for
assessing their potential for different applications. Indeed, when stakehold-
ers in a certain power distribution system want to leverage data, they are
constrained to use data available in the corresponding AMI. However, real-
world data in distribution grids are typically confidential and rarely shared
with power system researchers. Hence, literature on data-based studies and
approaches highly relies on synthetic or simulated data which are generally
not representative of actual AMI data.

Regarding distribution grid models, many publications are based on syn-
thetic benchmark networks developed by the CIGRE Task Force C6.04.02 [212].
These grid models are integrated into the widely used pandapower library for
power grid calculation and optimization [213]. One of the main purposes of
CIGRE benchmark grids is the validation of methods for DER integration.
Figure 3.1 represents the corresponding LV benchmark network. It consists
of a subnetwork with 18 nodes and six residential consumers, a subnetwork
with one industrial consumer, and a subnetwork with 20 nodes and eight
commercial loads. More details regarding the CIGRE MV benchmark network
can be found in [214]. Alternatively, IEEE distribution test feeders are often
used as benchmarks for assessing (optimal) power flow methods, designing
equipment placement techniques, testing islanded operations, or developing
state and parameter estimation techniques [215]. These different benchmark
networks are appropriate for comparison purposes among different techniques
proposed in the literature. Nevertheless, most benchmark networks focus
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Figure 3.1: CIGRE benchmark model of low-voltage distribution network [213].

on the MV level, and their system design does not reflect the complexity
of real distribution grids that generally consist of several hundreds or even
thousands of nodes and prosumers. Limitations of currently proposed test
networks are discussed by the authors in [216]. They point out the unreal-
istically small size of test networks, the lack of time-series data, the lack
of representativeness with respect to the particular zonal characteristics of
actual networks, the absence of geographical information, and the fact that
test feeders are designed only for very specific problems. There is a clear need
for more realistic test networks or even real-world grid models.

Regarding time-series measurements, most data refer to end-users, which
raises understandable privacy concerns. In practice, they are very often
not available to third parties. Traditionally, so-called Standard Load Profiles
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(SLPs) are used to cope with the lack of actual load data. SLPs are load profiles
specific to a certain class of consumers and represent their average behavior.
Unfortunately, their shape is particularly smooth and is not representative
of the high stochasticity which is observed in real load measurements at
the LV level. Alternatively, different modeling tools have been developed
to create synthetic load profiles. For example, LoadProfileGenerator (LPG)
is a well-recognized tool for modeling residential energy consumption (i.e.,
electricity, gas, hot water, and cold water) [217, 218]. More precisely, load
curves are generated based on a full behavior simulation of the people living
in a household. The tool allows the creation of customizable residential
consumers and already includes 60 predefined German households. Such tools
can create realistic load profiles but generally only focus on residential loads.
In addition, the process for creating a good diversity of load profiles is often
time-consuming, which limits the application to large populations.
Next, the authors in [4] provide a non-exhaustive list of open load data

sets. They come from real systems and have been prepared to some extent by
the corresponding power company and notably pseudonymized for privacy-
preserving reasons. The Electricity Smart Metering Customer Behaviour
Trials conducted by the Commission for Energy Regulation in Ireland are
probably the main source of smart meter data mentioned in literature [219].
It consists of active power measurements at 30-minute resolution from more
than 5’000 Irish households and businesses. The trials were part of a CBA
of smart meters carried out between 2009 and 2010 for the purpose of a
wider national roll-out. Furthermore, Pecan Street data are a collection of
historical sub-metering data gathered in approximately 1’000 households
from various US cities [220]. Active power measurements of most relevant
home appliances are currently available over six years with a resolution be-
tween one second and one minute. Pecan Street data are particularly suitable
for NILM applications due to their high spatial and temporal resolutions.
Nevertheless, open measurement data sets are still an exception and largely
focus on smart meter data. Furthermore, they often only reflect a small
portion of the actual data in an AMI environment. They are rarely available
together with other data sets in the same system, such as the corresponding
digital grid model, other quantities than power measurements, or data at
higher aggregation levels. Finally, different statistical or ML-based approaches
which take existing smart meter data as input can be used for the synthesis
of additional data. Such approaches are described in more detail in Chapter 6.
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(a) Swiss distribution grid (b) Costa Rican distribution grid

Figure 3.2: Schematic representation of distribution grid structures.

Some effort is made to create more realistic case studies, but there is still
a large gap to achieve the level of complexity observed in real distribution
systems. The lack of representative test grids and of open real-world data
sets is a clear barrier to the research in this field, and especially to the
implementation of data-based approaches in real systems. Unfortunately,
many simplifications and assumptions are generally made regarding the input
data. This influences the credibility and applicability of data-based studies
and approaches currently proposed in the literature.
This thesis intends to point out some shortcomings in current literature

due to the absence of real-world data and case studies. Furthermore, it
demonstrates some practical possibilities to leverage AMI data for specific
applications. This is why only real-world data are used for the purpose of
this work. The following sections present the three main systems and their
corresponding data that have been leveraged. More precisely, Sections 3.2.1
and 3.2.2 introduce a distribution system in Switzerland and in Costa Rica,
respectively. The schematic structure of their network is displayed in Fig-
ures 3.2a and 3.2b, respectively. The Swiss distribution grid is similar to the
European distribution grid. Its LV part is a complex three-phase network and
can be weekly meshed, although it is usually operated radially. It also consists
of cable distribution cabinets with protection devices and circuit breakers
that allow for topology changes. In contrast, the Costa Rican distribution
grid structure is closer to the US network topology, where each MV/LV
transformer is single-phase and feeds a relatively lower number of customers
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Figure 3.3: Daily roll-out statistics of smart residential meters in the City of
Basel over 2015 and 2016, and number of additional and missing
meter data with respect to the previous day.

(e.g., up to about 100 customers). Finally, Section 3.2.3 describes a data set
of higher resolution at the end-user level.

3.2.1 Distribution System of the City of Basel

Industrielle Werke Basel (IWB) is the first prominent DSO in German-
speaking countries to initiate a large-scale installation of smart meters [55].
IWB established a roll-out strategy well before entry into force of the Federal
Energy Act that requires a smart meter penetration level of 80% by 2027. After
equipping most industrial customers with AMR devices, IWB launched in
2013 the installation of smart meters for residential and commercial customers
and reached a 50% penetration in 2017. Figure 3.3 illustrates the roll-out of
smart meters in the City of Basel in 2015 and 2016, which covers most of the
time period considered in this work. The number of active meters remains
approximately constant over 2015, and more than 6’000 meters are activated
on new year’s day. Their number slightly increases over the second year to
finally reach close to 50’000 active meters at the end of 2016. Nevertheless,
most of the measurement data are not available for one day in mid-2015,
whereas all data failed to be communicated over two days of October 2016.
The creation and interpretation of such visualization for data preparation
purposes is discussed more thoroughly in Section 3.3.2.
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Access to the large database of IWB has been provided within the frame
of the pilot project “Optimized Distribution Grid Operation by Utilization of
Smart Metering Data” led by Adaptricity and funded by the Swiss Commis-
sion for Technology and Innovation [221]. The project’s main purpose was
to investigate the potential of smart meter data in addition to traditional
measurements for distribution grid planning and operation. Generally, smart
meters bring more visibility into residential and commercial areas which
have traditionally been considered as a black box in terms of information.
Notably, smart meter measurements can be leveraged in load flow simulations
to inform about the time-varying status of voltages and power flows at the
LV level, assuming that a digital grid model is available. It must be noted
that power flow simulations in distribution grids are commonly restricted
to the MV level, where the net load of end customers is simply aggregated
at the MV/LV transformers. This project led to various reflections on the
realism of data-based modeling of LV grids, which is deeply discussed in Part
II of this thesis.

In terms of AMI measurements, single-phase active power for about 50’000
households and commercial customers has been recorded by smart meters.
Single-phase active and reactive power measurements are also available for
close to 1’000 industrial customers as well as 600 PV systems. Smart meter
data is sent once a day to the data management system of IWB, whereas
measurements of AMR devices are gathered every month. The output tem-
poral resolution of both smart meters and AMR devices is 15 minutes. In
addition, detailed three-phase measurements (e.g., voltage, frequency, cur-
rent, active and reactive power flow) at 10-minute resolution are available in
several distribution cabinets equipped with the GridEye technology of depsys.
Finally, the main three-phase electric quantities are also measured in local
substations and in a large number of distribution transformers. In terms of
communication, the distribution grid of the City of Basel was equipped with
387 Data Concentrator Units (DCUs) at the time of data preparation. In
addition, each DCU was responsible for 1 to 381 valid metering devices, with
an average of 70 devices per DCU.

Furthermore, a considerable portion of the distribution network of IWB has
been digitized as a single-phase model in NEPLAN360, a cloud solution for
grid visualization and simulation developed by NEPLAN [222]. Based on the
corresponding GIS data, Figure 3.4 visualizes the topology of a large sub-grid
together with connection points for loads and distributed generators in a
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Figure 3.4: Illustration of a digitized section from the distribution network of
the City of Basel operated by IWB.

mainly residential area of the City of Basel. The system is fed by one local
substation and consists of 14 MV/LV distribution transformers (or feeders),
28 cable distribution cabinets, 971 buses (or connection points), from which
492 buses are loaded, and 976 lines, from which 12 lines are at the MV level
(i.e., 11.7 kV). In Figure 3.4, distribution transformers and connection points
are represented by blue squares and black points, respectively. MV and LV
underground cables are represented by straight lines between both respective
buses they are connected to. Transformers are interconnected by MV lines.
For the sake of redundancy, some LV grid sections are fed by a couple of
transformers normally operated in parallel. In addition, the distribution grid
has a weakly meshed configuration at the LV level, and most distribution
cabinets consist of circuit breakers that allow for different topologies. A
connection point is always fed by only one (or a couple of) transformer(s),
which can nevertheless vary depending on the configuration of circuit breakers.
At the time of data preparation, the sub-grid connected 2610 residential,
commercial, or small consumers, 11 industrial customers, and 17 PV systems.
All commercial customers and PV systems are equipped with an advanced
metering device. However, only 962 households actually had a reliable smart
meter, which covered about 40% of the total residential load. This sub-grid
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Figure 3.5: Illustration of a LV section with corresponding loads from the
sub-grid presented in Figure 3.4.

has been chosen due to its good original data quality and availability for a
study on LV grid modeling presented in Chapter 7.

Figure 3.5 zooms in on one of the LV grid sections presented in Figure 3.4.
It is fed by one distribution transformer and consists of 198 power lines
and 196 buses (or connection points), of which 88 buses are connected to
loads and distributed generators. The feeder bus and connection points
are represented by red and blue points, respectively. Moreover, red squares
represent cable distribution cabinets which are located at the buses where
power lines are split and at the junction with other LV grid sections. At the
time of data preparation, this grid section was supplying 583 residential or
small consumers, principally Multi-Family Houses (MFHs), from which 321
consumers were metered by a reliable smart meter (i.e., 55% penetration). In
Figure 3.5, metered and non-metered consumers are aggregated by address
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and represented by yellow and green circles, respectively. The diameter of each
circle is proportional to the average power consumption. Metered consumers
corresponded to 58% of the total average power consumption. Moreover, six
metered PV systems were installed at the top of MFHs. This grid section
has been leveraged in two main studies related to pseudo-measurements
synthesis and data-based preventive voltage control, presented in Chapter 6
and Section 9.5, respectively.

3.2.2 Distribution System in Costa Rica

Compañía Nacional de Fuerza y Luz (CNFL) is one of the main DSO of
Costa Rica, providing electricity to about 500’000 customers [223]. The
power company initiated its distribution grid digitalization in 2015 and has
already installed about 200’000 smart meters and 3’000 data concentrator
units by 2020. The main reasons for setting up an AMI are the control
of non-technical losses, automated meter reading, and facilitation of billing
processes. In addition, CNFL aims at automatically connecting new customers
or disconnecting customers in case of non-payment as well as accessing energy
consumption data on a daily basis.

Figure 3.6 illustrates the distribution grid of a neighborhood operated by
CNFL in the City of San José, together with the corresponding electricity
customers. MV overhead cables are represented by blue lines, and each
consumer is displayed as a brown point. This sub-grid is characterized by a
practically full smart meter penetration. At the time of data preparation, it
connected 4634 residential loads (97.5% SM penetration), 213 commercial
loads (83.6% SM penetration), and two smart metered industrial loads. In
addition, the sub-grid consists of 134 MV/LV transformers feeding between
1 and 109 consumers each. Smart meter data consists of both active and
reactive power measurements at 15-minute resolution. Figure 3.7 displays
the active power load pattern at the substation feeding the sub-grid over
a typical week1, split by consumer type. The non-metered part represents
different loads that are not measured by smart meters, as well as line and
transformer losses. The neighborhood is mainly residential such that the
load pattern exhibits three characteristic spikes, which coincides with the
mealtime during weekdays and two consumption spikes at the weekend. PV
systems are almost nonexistent.

Measurement data of this sub-grid are used for studying the effect of spatial
aggregation in Chapter 5 and testing on a large scale the disaggregation

1 The load pattern and magnitude are relatively similar over the whole year.
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Figure 3.6: Illustration of a digitized section with corresponding loads from the
distribution network of the City of San José operated by CNFL.

approaches in Chapter 8. The network itself is digitized as a three-phase model
in openDSS, a comprehensive electric power distribution system simulator
design by the Electric Power Research Institute (EPRI) [224], but has not
been leveraged in this work. Data have been made available within the scope
of a research visit at the University of Costa Rica in the department of power
systems and electrical machines. In this thesis, this data will often be referred
to as Costa Rican smart meter data set.

3.2.3 Sub-Metering Study in Costa Rica

Between October 2018 and February 2019, a sub-metering study has been
carried out by the University of Costa Rica for Grupo ICE, a Costa Rican
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Figure 3.7: Typical weekly profile of the total consumption in the sub-grid
presented in 3.6, split into residential, commercial, and industrial
loads.

government-run service provider which also includes CNFL [225]. The main
objective of this study is to develop and test a methodology for the determina-
tion of electricity demand curves by end-use in the residential sector. For that
purpose, advanced sub-metering devices have been placed for about one week
in more than 70 Costa Rican households, as represented by Figure 3.8. They
measured the active power consumption of the main electrical appliances
with a one-minute resolution. The measurement setup allowed a maximum
of 14 channels per household.

In addition to the original study, the sub-metering data have also been used
within the scope of the research visit at the University of Costa Rica. The high
granularity both in terms of temporal resolution and of aggregation level (i.e.,
down to individual devices) is not commonplace and is of particular interest.
Specifically, these measurement data have been leveraged for assessing the
impact of time and spatial resolution and for the development and validation
of disaggregation approaches. These two pieces of work are presented in
Chapters 5 and 8, respectively.
For the purpose of this thesis, the following end-use categories have been

considered: main, water heater, lighting, refrigerator, washing machine, dryer,
jacuzzi, kitchen (e.g., oven, stove), others (e.g., rice cooker, microwave, coffee
maker, kettle, blender, toaster, television, computer, printer, router). Water
heater, refrigerator, washing machine, and dryer are treated as single cat-



3.2 presentation of ami data sets 65

Figure 3.8: Representation of periods of measurement per advanced meter in
the Costa Rican sub-metering study.

egories for their flexibility potential within the framework of possible DR
programs. The “main” category corresponds to the total household load.
The difference between the main load and the aggregation of all metered
appliances is categorized as “not measured”. In addition, it comes out from
the metadata that the refrigerator and the washing machine are sometimes
metered on the same channel as other appliances. In some cases, metadata
also indicate the presence of a non-metered dryer. This is taken into account
when setting up the categories in order to keep track of their load. After
data preparation, measurement data of 70 households are considered of good
quality.

Figure 3.9 illustrates the load profiling over one day of one of the households
under study. It appears that the water heater is responsible for substantial
power consumption spikes in the morning. The dryer accounts for the majority
of the activity in the afternoon and in the early evening. Furthermore, the
activity of non-measured appliances is visible in the main load, especially in
the early morning and in the evening. Other non-specified appliances build
the base load. Over the entire measurement period, Figure 3.11a indicates
that 60% of the energy consumption of this household comes from the water
heater and the dryer, and about 30% cannot be specifically identified. At the
level of individual households, the load is characterized by particularly high
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Figure 3.9: Load profiling of a single residential user over one day.

Figure 3.10: Load profiling of the aggregation of 70 residential users over one
week.

volatility, and its pattern greatly varies between days and between different
households depending on the devices in operation.

Although each household has not been recorded over the exact same time
period, all load profiles of good quality have been aggregated by weekday
to create Figure 3.10. This provides some intuition about load profiling at
an aggregate level. The load is still volatile, but certain trends are emerging.
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(a) Single residential user (b) Aggregation of 70 residential users

Figure 3.11: Consumption share among residential appliances in the Costa
Rican sub-metering study.

First, the main load profile follows the typical weekly pattern displayed in
Figure 3.6. In addition, water heaters tend to consume mainly in the first half
of the day with further smaller activity in the evening. Lighting is obviously
mainly active in the evening. The aggregate consumption of refrigerators
appears to be relatively constant, but a non-negligible part is metered together
with other appliances. In fact, a large share of the load cannot be assigned
to specific appliances. According to Figure 3.11b, this share amounts to 67%,
although a substantial part corresponds to the refrigerator and the washing
machine. Water heaters and refrigerators are the identified appliances with
the highest share of consumption.

3.3 data preparation

Data in distribution grids originate from a large variety of sources and rely on
very diverse specifications. On the one hand, time-series measurements largely
contribute to the total volume of data. They are generated by measurement
devices and comprise various quantities at different locations. In distribution
grids, measurement data typically come from electricity consumers (e.g.,
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residential, commercial, and industrial customers) but are also recorded at
higher aggregation levels (e.g., cable distribution cabinets, transformers, and
substations) or at the level of individual appliances (e.g., PV systems, home
batteries, EV chargers, HVAC and DHW systems). Depending on the needs,
measurement data are recorded at different temporal resolutions and accuracy
standards. In addition to purely electricity-related quantities (e.g., active and
reactive power, voltage, current), exogenous data are often of interest when
they influence electricity quantities. Specifically, meteorological measurement
and forecast data help for explaining and predicting the behavior of electric-
ity quantities. On the other hand, so-called metadata, which basically give
information about other data sets, must also be considered. Among others,
metadata inform about the characteristics of electricity consumers and pro-
ducers (e.g., consumer type, building features, billing data, installed PV and
battery capacity) and provide identification numbers (IDs) to link multiple
data sets (e.g., link meters and customers, meters and DCUs, customers and
grid buses). Finally, AMI data might also consist of digital grid models which
directly describe distribution networks (e.g., line and transformer parameters,
topology, connection points).

Real-world data sets are rarely of perfect quality. For different reasons,
raw data sets are subject to various types of errors and inconsistencies which
degrade the data quality. In the context of AMI data, common examples
of data quality issues are inconsistencies between measurement data sets,
inconsistencies with metadata, duplicate time-series measurements, gaps in
measurements, unrealistic measurement profiles, incorrect measurement signs,
incomplete or wrong list of electricity customers, etc. There is the need for a
consistent procedure that deals with the most common data quality issues.
Moreover, even if the original data is of excellent quality, the multiple data
sets in a system come from different sources with their specific structure
and standards. Further analysis and integration of the different data sets
require some formatting and standardization. The process of cleaning and
transforming raw data before its use for further applications is called data
preparation.
Literature on the preparation of AMI data is particularly scarce. This is

explained by the fact that data are essentially gathered by power companies
which simply do not reveal how the data are processed for obvious confi-
dentiality reasons. In the case of open data sources, a certain level of data
wrangling and cleaning is usually already performed upstream to facilitate
the subsequent processing for data or power system engineers. Anomalies



3.3 data preparation 69

and missing data are among the issues which might still not been addressed
in open data sets, which explains the higher number of publications on these
aspects.

Measurement data sets are generally too large to allow manual processing
and visualization of individual samples. Appropriate data manipulation tools
and capabilities are indispensable. For the purpose of this work, all pieces of
code, functions, and algorithms for data preparation have been implemented
in R, a free software environment for statistical computing and graphics [226].
This high-level language is particularly easy to learn and write, and has
been specifically designed for data manipulation. RStudio Desktop has been
chosen as Integrated Development Environment (IDE) for programming in
R [227]. The open-source software includes a console, syntax-highlighting
editor that supports direct code execution, as well as tools for plotting, history,
debugging, and workspace management. Although various data cleaning and
missing value imputation packages for R exist, these are usually too generic
and not adapted to the often more advanced needs in this work. Hence,
multiple packages, functions, and algorithms have been specifically designed
and coded to address the requirements for processing time-series data from
distribution grids. The different pieces of code still take advantage of some of
the functions in already existing packages to speed up the manipulation of
large data sets and allow for proper data visualization. The most important
dependencies of the packages created for preprocessing purposes are the
followings:

• data.table [228]: enhanced version of data.frames (i.e., standard data
structure for storing data in R) that enables faster manipulation of
large data sets

• doSNOW [229]: support for parallel computation

• dplyr [230]: grammar of data manipulation functions such as mutate,
select, filter, summarise, arrange, and group_by

• ggplot2 [231]: popular library for the creation of graphics based on The
Grammar of Graphics [232]

• lubridate [233]: set of functions to manipulate date-time objects

• plotly [234]: library for the creation of interactive, publication-quality
graphics

• reshape2 [235]: set of functions that facilitate data transformation
between wide and long formats



70 data sets and preparation

Figure 3.12: General pipeline for data preparation, transforming raw data into
clean and tidy time series and metadata.

Figure 3.12 illustrates the general preparation pipeline followed in this
work in order to prepare the various raw data sets for further analysis. The
starting point of this pipeline is raw data which basically consist of structured
and unstructured data. Structured data represents the largest volume of
data available in the AMI environment and can be further split into time-
series measurement data, which are produced by measurement devices, and
structured metadata, which mostly refer to lists of electricity customers,
buildings, devices, or connection points with their individual characteristics.
The digital model of a grid is also considered structured data. Structured data
can be stored in a database but also in files, e.g., in Comma-Separated Values
(CSV) or Extensible Markup Language (XML) files. It must be noted that
measurement data are largely generated automatically, whereas metadata are
partially created manually. Errors tend to be systematic in measurement data
in contrast to metadata. In addition, there are so-called unstructured data
that have no predefined format or organization. Such data usually consist of
different pieces of information that help data engineers to make sense of the
structured data, like readme-files, pictures, reports, side notes, etc.

Due to the large variety of data sources and formats, these raw data cannot
be directly processed following a standardized procedure. They require cus-
tomized wrangling algorithms to comply with predefined data structures and
standards, as detailed in Section 3.3.1. In the next step, formatted time series
and metadata are subject to statistical analysis for data quality diagnosis,
which is detailed in Section 3.3.2. Such statistical analysis serves as the basis
for data cleaning and filtering following a standardized procedure. This is
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explained in detail in Section 3.3.4 that addresses the detection and correction
of anomalies and inconsistencies, and the removal of data of particularly poor
quality. In addition, Section 3.3.3 defines how point outliers are detected
and treated. Furthermore, all raw data sets certainly contain missing values,
which can be handled by imputation algorithms, as detailed in Section 3.3.5.
Finally, Section 3.3.6 details how multiple clean and tidy data sets are poten-
tially compared and even merged with the aim of further improving the data
quality, consistency, and comprehensiveness. In this work, A-format refers to
the original raw data, B-format refers to standardized and formatted data
before cleaning, and C-format refers to clean and tidy data at the end of the
preparation process.

The following sections principally focus on the preparation of time series
measurement data. The preparation process is illustrated by examples taken
from the different data sets used in this work. For the sake of conciseness,
only the main issues that have been observed in AMI data sets are discussed.
In fact, the preparation and quality assessment of real-world data sets are
more exhaustive than the examples that are presented. Each data set has
its own specifications and data quality issues that require substantial effort
and resources to deal with. In data analytics, it is commonly recognized
that 80% of the work is dedicated to data preparation, whereas only the
remaining 20% focuses on actual data analysis. Special care must also be
given to the preprocessing of metadata, but the main steps are analogous
to the preparation of measurement data and are not explicitly described. In
addition, a similar process is necessary for the preparation of grid models.
Their digital version is essentially based on hand-written notes and diagrams,
and is inevitably prone to various errors. Nevertheless, the preparation process
of grid models is out of the scope of this work.

3.3.1 Data Standardization and Formatting

Standards and specifications regarding the representation of each piece of
data can significantly vary among data sets coming from different systems.
First of all, timestamps, which are associated with data points of a time series,
can be encoded in various ways and might refer to different time zones. For
the purpose of this work, timestamps are converted to Coordinated Universal
Time (UTC) and encoded according to ISO 8061, e.g., 2021-01-26T07:52:57Z.
Specific attention must be given to changes between Daylight Saving Time
(DST) and standard time. Next, missing data can typically be represented by
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Quantity Nomenclature Number of
decimal digits

Unit

Active power p_1, p_2, p_3,
p_tot, p_avg

0 W

Reactive power q_1, q_2, q_3,
q_tot, q_avg

0 Var

Voltage u_1, u_2, u_3,
u_avg

1 V

Current i_1, i_2, i_3,
i_tot, i_avg

2 A

Power factor cosphi_1, cosphi_2,
cosphi_3, cosphi_avg

2 -

Table 3.1: Specifications of most common measurement data types in B-format.

the symbols NA (not available) or NAN (not a number), but sometimes also
by a value of zero, by the repetition of the latest measured value, or by the
absence of value. Luckily, the representation of missing data within a data set
is usually consistent. In this work, missing data are encoded as NA, which is
identifiable by all data processing tools. It is also common to notice the ab-
sence of certain timestamps with respect to the assumed temporal resolution.
In any case, all recorded timestamps are ordered, and missing timestamps are
completed while the corresponding measurement values are defined as NA.
Next, the language of data, and especially metadata, essentially depends on
the region where they come from. For the sake of consistency, all languages
are translated to English in this work. Furthermore, the nomenclature of the
different quantities, the number of decimal digits, the unit of measurement
as well as the sign convention must be standardized. Table 3.1 summarizes
the specifications for the most common quantities. It must be noted that
energy values are converted into power values, which facilitates further trans-
formations, and especially modifications of the temporal resolution. In terms
of nomenclature, quantities are represented by their usual symbol followed
by the indication of the phase or whether it refers to the sum of the three
phases or to the average value. The number of decimal digits is a trade-off
between the desired accuracy with respect to measurement data in LV grids
and the storage requirements. Finally, active power and current are defined
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as positive when they are consumed, and reactive power is defined as positive
when it is inductive. Other quantities can also be represented in a similar
way, like more advanced measurements (e.g., grid frequency, total harmonic
distortion) or the binary status of devices (e.g., opening of circuit breakers,
availability of a controllable device).

In addition, very diverse layouts can be observed for raw AMI data sets
depending on their source. When stored in a database, its architecture
characterizes the data structuring and allows for a certain level of versatility.
Databases are nevertheless out of the scope of this section, and discussions on
data representations primarily focus on their storage in files. In most cases,
AMI data are represented in tabular form (i.e., with rows and columns), where
CSV and TXT files are the most common formats. In the case of time-series
measurements, original data sets may contain information stemming from
various sensors, quantities, and time steps, among others. Knowing that these
different aspects must be structured based on the two dimensions inherent
to the tabular form and possibly across multiple files, this leads to a large
variety of options.

Figure 3.13 illustrates three different layouts of measurement data in
tabular form that have been observed among the data sets presented in
Section 3.2. In the first example, each file corresponds to a month and
consists of active and reactive energy measurements from various meters and
customers. Each row contains the measurements over a full day for a specific
meter, a specific customer, and a specific quantity. In the second example,
each file corresponds to the measurements of a specific meter on a specific day.
The various quantities (e.g., voltage at phase 1, voltage at phase 2, active
power at phase 1) are displayed in different columns, whereas each row refers
to a specific time of the day. In the third example, only one quantity (e.g.,
active power) for a specific month is stored per file. Measurements of each
meter are displayed in a separate column, whereas the different time steps
of the month correspond to the different rows. All files have in common the
recording of measurement data for a limited period of time, e.g., one month
or one day. This is explained by the fact that measurement data are generally
sent on a periodic basis by advanced meters to the central data management
system. Hence, the frequency of data pooling determines the length of the
time period considered in each raw data set.
Moreover, some pieces of metadata might be included within the file of

measurement data, usually in dedicated columns, such as the customer ad-
dress and/or name, connection point to the grid, associated DCU, unit of
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Figure 3.13: Example of different original structures of AMI measurement data
sets in tabular form.



3.3 data preparation 75

measurement, etc. Alternatively, time-series measurement data can be pro-
vided together with some metadata in a tree-like structure such as the XML
format. In general, most of the metadata are still provided in separate data
sets and consist of very diverse information which must also be formatted,
filtered, and cleaned.

For the purpose of this work, the structure of raw measurement data
and metadata is standardized into the so-called B-format which has been
developed with the help of data engineers at Adaptricity. In this case, all
measurement data related to a specific meter are stored as a unique data set in
one file whose name corresponds to the meter ID. In this way, the size of each
file remains manageable and does not depend on the number of meters but only
on the number of measured quantities, temporal resolution, and total length
of the measurement period. Figure 3.14a provides an example of measurement
data in B-format when stored in a file. The first column corresponds to the
timestamps in ISO 8061 standard, whereas the following columns consist
of measurement data of different quantities according to the specifications
mentioned in Table 3.1. When it comes to processing measurements from
different meters, the multiple data sets are merged together into a modified
B-format as illustrated in Figure 3.14b. The main difference with the original
B-format is that measurements of different meters are stored across multiple
columns. This implies that all measurements must comply with the same
timestamps and might necessitate the addition of leading and trailing NA
values to some time series. The terminology of column names consists of both
a meter ID and a quantity, separated by a dot.
In R, such data sets can be converted into data tables as defined by the

data.table package, which allows for more efficient data manipulation and
speeds up data reshaping as well as the selection and filtering of subsets.
Hence, a limited time period or a subgroup of quantities or meters can be
rapidly extracted from large data sets. Specific functions have been designed
in R to support data manipulation in B-format and import or store data
from or to CSV files, respectively. Regarding metadata, only one file per
system is usually created, which contains all meter IDs in the first column
and all corresponding pieces of information in the following columns. Each
meter ID must be unique and appears both in the formatted metadata file
and as the name of the corresponding measurement data file. Preparation
of measurement data and metadata is typically carried out simultaneously
since the original data sets might consist of both types of data.
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(a) Storage in file

(b) Storage in data manipulation tool

Figure 3.14: Illustration of measurement data set in B-format.

Therefore, customized converters must be designed to ensure that the
different pieces of information follow the same standards and to format each
new raw data set into a common structure. This part of the data preparation
process is particularly time-consuming since it requires studying the assumed
conventions and understanding how the data have been originally structured
before writing new customized pieces of code and routines for data wrangling.
An additional function of these converters consists of merging new data sets
with already formatted data sets. Notably, this concerns the integration of a
new day or month of measurement data, or the addition of new electricity
customers to the existing list of customers. New measurement data sets
might require large storage capacity, especially when the number of meters
is substantial, and might be difficult to process all at once due to memory
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limitations if the preparation is performed on a single local machine. On the
one hand, converters should be able to quickly detect and discard irrelevant
pieces of information like duplicate and NA time series, redundant metadata,
or quantities that are not of interest. Exact duplicates might appear when
a meter transmits its data via multiple DCUs. When it comes to storing
measurement data of individual meters into separate files, trimming leading
and trailing NA values allows for size reduction without loss of information.
On the other hand, converters might need to split the original data set into
multiple chunks, ideally corresponding to subgroups of meters, that are then
standardized separately.

In addition, metadata or unstructured data help for the integration of new
data sets. Handling changing customer or meter IDs in subsequent data sets
is a common example. Unstructured data are particularly valuable to provide
information or explain atypical issues such as incorrect or missing IDs, large
data gaps, and abnormal measurement data. It should be noted that cus-
tomized converters are also required for digital grid models, although formats
and standards seem to be more unified in comparison with measurement
data and metadata. They are often available in XML and JSON formats
but also in formats specific to grid simulation and visualization tools like
openDSS [236] or Neplan [222]. Digital grid models might also include GIS
features that allow the visualization of its structure on a map.

3.3.2 Statistical Analysis

Standardized data preparation begins with a statistical analysis which is
carried out first at the macro-level and then at the level of individual time
series. In contrast to the pure data standardization and formatting, this stage
aims to make sense of the raw data and initiates its transformation into
valuable information.

First, roll-out statistics are performed based on the meter IDs available in
the original data sets, as illustrated by Figure 3.3 for the case of the City of
Basel. As previously mentioned, each original data set typically corresponds
to a limited period, typically one day. For each day, the total number of active
meters, as well as the number of additional and missing meters with respect
to the previous day, are calculated, which can be conveniently performed
and updated during the integration of new data sets. Among others, this
provides insight into the number of functional meters with respect to the
theoretical number of installed meters, and by extension, into the number of
defective devices. A drop in the total number of meters for a certain period
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indicates a probable data communication or storage issue. Moreover, relatively
large numbers of additional and missing meter IDs for a certain day without
substantial variation in the total number might reflect a modification of meter
IDs. Similar analysis can be performed regarding the overall proportion of
missing data per day, where a relatively high percentage for a certain period
would reflect temporary data communication or storage issues.

Due to the usually large number of samples in measurement data sets,
individual inspection and processing of each time series is not an option. Hence,
different pieces of information can be extracted, and statistical measures
can be computed to summarize each time series into key features, which
helps for data quality diagnosis. Depending on the usage, statistical measures
can typically be computed either over one year or over the entire available
measurement period. This builds metadata which are stored in a specific file
where each row refers to a different meter and quantity. Here are the main
pieces of information and statistical measures considered in this work:

• First and last timestamps with non-NA value: This informs about the
bounds of the time period with actual measurements.

• Mean and median values: Basic statistical measures that provide insight
into the central location of the data.

• Minimum and maximum values: Basic statistical measures that define
the range of recorded values.

• Number and percentage of missing values (NA): These measures obvi-
ously inform about the data quality.

• Number and percentage of zero values: In some original data sets,
missing data are encoded as zero values such that an abnormally high
percentage of zero values in a time series could reveal bad data quality.

• Average and maximum length of a sequence of missing values: Beyond
the sole percentage of missing data, this gives an indication about the
type, and by extension, about the reasons for missing data. Especially,
it indicates whether the time series contains large gaps or whether
missing data are dispersed over the measurement period. It must be
noted that leading and trailing NA values are not taken into account.

• Average and maximum length of a sequence of constant values (zero-
order hold): In some original data sets, missing data are encoded as zero-
order hold values. In other words, in the case of a gap in measurements,



3.3 data preparation 79

recorded values might be defined as equal to the last measured value
until a new actual measurement is recorded.

• Autocorrelation value with daily and weekly lags: Electrical measure-
ments tend to have a certain periodicity, particularly with a cycle of
one day and one week, which can be quantified by the autocorrelation
function at the desired lag.

• Correlation with exogenous profiles: Electrical measurements, notably
active power consumption and production, might be influenced by ex-
ogenous factors such as meteorological conditions. Hence, an unexpected
Pearson correlation coefficient of electric quantities with supposedly
influencing factors is a clue for abnormal data.

• Additional statistical measures: Depending on the usage of the data set,
further statistical measures might be needed (e.g., variance, percentile,
probability distribution).

Visualization of those features helps data analysts to make sense of time-
series measurements. For example, the detection of the first and last times-
tamps has been leveraged in Figure 3.8 to present the different periods of
measurements among the advanced meters in the Costa Rican sub-metering
study. In addition, the distribution of calculated statistical measures can be
visualized under the form of a histogram, which provides insight into the
quality of the data set. For the purpose of this section, data sets from the
City of Basel are chosen as an example. Figure 3.15 illustrates the percentage
of missing values in the active power measurements of all smart metered
residential consumers. In that respect, it comes out that the data set is gen-
erally of good quality and a large majority of time series are practically free
of missing values. The number of time series with an increasing percentage
of missing values exponentially decays. Analogously, Figure 3.16 exhibits
the Pearson’s correlation coefficient between the active power production of
PV systems and the solar irradiance measured by MeteoSwiss in the City
of Basel [237]. It must be reminded that the load convention applies to
active power measurements such that PV production is recorded as negative
data. As expected, most of the time series are highly correlated with solar
irradiance. Slightly lower correlation coefficients in absolute terms might
be explained by the effect of local shading or by the fact that solar panels
might not be directly close to the weather station, which leads to significant
discrepancies during partly cloudy days. Nevertheless, it also appears that a
few samples exhibit a clearly abnormal correlation coefficient (i.e., too close
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Figure 3.15: Histogram of the percentage of missing values in active power
measurements of residential consumers in the City of Basel.

to zero or even positive). This needs to be further investigated, notably by
visualizing the time series in question. It turns out that most abnormal time
series in this data set do not correspond to the production of PV systems. A
similar analysis is performed with all relevant statistical measures, which is
however disregarded in this section for the sake of conciseness.

3.3.3 Outlier Detection

Broadly speaking, outliers are individual data points that differ significantly
from the majority in a data set. They must be detected during the preparation
of time-series measurements since they can be a sign of bad data. In statistical
terms, a data point is defined as an outlier if it lies well above the third quartile
(i.e., 75th percentile) or well below the first quartile (i.e., 25th percentile) [238]:

yi “ outlier ðñ

$

&

%

yi ą Q3` α ¨ pQ3´Q1q or

yi ă Q1´ α ¨ pQ3´Q1q,
(3.1)

where yi is data point i in a certain data set, and Q1 and Q3 are the first and
third quartiles, respectively. The difference between Q3 and Q1 is defined as
the Interquartile Range (IQR), where the middle 50% of data points lie. α
is a factor that determines how far from the IQR a data point should be in
order to be defined as an outlier. In the literature, α is commonly set to 1.5
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Figure 3.16: Histogram of the Pearson’s correlation coefficient between the
solar irradiance and the active power production of metered PV
systems in the City of Basel.

for weak outliers and to 3 for strong outliers. When it comes to detecting
bad data in AMI measurements, the value of α must be adapted depending
on the type of data. For relatively smooth data such as the power loading of
transformers or voltage measurements, α :“ 3 is totally appropriate. However,
many AMI data are highly volatile such that α must be set to much higher
values to avoid unnecessary detection of outliers that turn out to be valid
data. In the case of active and reactive power measurements at the consumer
level, α :“ 10 is a reasonable choice. For example, Figure 3.17 illustrates
the detection of outliers in the active load profile of a residential consumer.
All outliers are in order of magnitude (i.e., MW) much greater than what is
realistically assumed for such load and indeed correspond to bad data. In such
a case, outliers are replaced by NA values which are handled together with
other NA values during the missing data imputation stage (see Section 3.3.5).

Nevertheless, it happens that data points are defined as outliers, although
they are valid measurements. This can be the case for certain individual
devices which are on standby mode most of the time and consume substantially
high power when active (e.g., Domestic Hot Water (DHW) systems, tumble
dryers, ovens). Due to the low usage rate, the IQR is particularly small, and
the activity of such devices translates into outliers. Therefore, the detection of
outliers in a time series necessitates a more thorough inspection. Depending
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Figure 3.17: Example of a time series with active power measurements where
outliers are detected (α :“ 10).

on the type of measurement, the definition of an outlier might need to be
adapted, e.g., by relying on a wider range than the IQR.

3.3.4 Anomaly Detection, Filtering and Cleaning

The detection and handling of anomalies in time series is an important step of
data preparation. Literally, the term “anomaly” is very similar to an “outlier”,
although an anomaly suggests that it differs from certain assumptions that
are made about the normal behavior of the data. Hence, its definition is
more subjective and particularly broad. As for outliers, anomalies are a
sign of bad data but do not necessarily mean bad data, such that closer
inspection is necessary. Basically, anomalies can be divided into the following
subgroups [239]:

• Point anomaly: Unique data point which is outside of the usual range
of data points in the time series.

• Abnormal sequence of data points (or collective anomaly): Sequence of
multiple data points in a time series whose joint behavior is unusual,
although each individual observation is not necessarily a point outlier.

• Abnormal time series: Entire time series whose shape or behavior
considerably varies from the majority of time series in the same data
set.
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Point anomalies are essentially point outliers as discussed in Section 3.3.3.
Here, the focus is on abnormal sequences of data points in a time series
and on abnormal time series in a data set. There is extensive literature on
anomaly detection for time series and increasing interest in the context of
AMI data. This section does not intend to provide an exhaustive literature
review but mainly to describe what are the most commonly observed anoma-
lies in AMI data and how they are handled for the purpose of this work. It
must also be specified that Anomaly Detection Techniques (ADTs) proposed
in the literature are usually too generic and cannot be blindly applied to
AMI measurement data. Especially, they might be highly volatile and do
not necessarily follow a known distribution which is often a prerequisite
for generic ADTs. In this context, domain knowledge is crucial to take into
account the data particularities and to focus on specific indicators of bad
data quality.

When it comes to detecting abnormal sequences of data points in a time
series, supervised learning algorithms such as ARIMA and PARX models,
SVRs, RNNs, LSTMs, and autoencoders are often suggested in literature [240–
242]. They basically work as forecasters and are trained to estimate the normal
behavior of the data. Hence, a sequence of actual data points is defined as
abnormal as soon as its difference with the prediction exceeds a certain
threshold. These techniques can also be adapted to online anomaly detection.
Nevertheless, the detection of anomalies highly depends on the design of
such models and on the selected threshold. In addition, their training process
is particularly time-consuming, especially accounting for the large number
and variety of time series measurements gathered in AMI. Alternatively,
clustering-based and entropy-based algorithms are proposed in literature [243,
244]. While complex anomalies due to intentional data manipulation, e.g., for
the purpose of energy theft, definitely require advanced anomaly detection
techniques, this is out of the scope of this work. From experience, it has been
noticed that anomalies are often not malicious but can still appear in very
various forms. They can originate from any stage between measurement by
advanced meters and storage in the data management system.
First, an abnormally high or low sequence of data points can already be

identified by the outlier detection approach detailed in Section 3.3.3. Next, it
happens that missing data are encoded as a sequence of constant values or
zero values, as mentioned in Section 3.3.2. Based on the statistical analysis,
relatively long sequences of constant values or an abnormally high percentage
of zero values in a time series with respect to other time series of the same
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data set are a clue of missing data. These features can be visualized similarly
to Figures 3.15 and 3.16. The threshold that distinguishes between abnormal
and normal features highly depends on the type of data. For example, in
the case of PV production, long sequences of zero values at night totally
make sense, but some production during the day should be visible, even for
cloudy days, such that the threshold can reasonably be set to one day. For
electric devices following an ON-OFF controller (e.g., DHW system, heat
pump, refrigerator), sequences of constant power values are normal, and
the threshold must be considerably larger than the usual duration of ON
and OFF periods. However, the load of residential or commercial consumers
is supposed to be volatile and such phenomena over long time periods are
abnormal. On this basis, holidays should not be detected as abnormal since
some electric appliances like the refrigerator must still work and devices on
standby mode still show some activity.

Moreover, different quantities are typically measured by advanced meters,
which tend to be interdependent or correlated. For example, active and reac-
tive power are linked by the power factor, and unusually large deviations of
this power factor over a certain period of time are an indication of anomaly.
When a sequence of data is detected as abnormal, further inspection must
be performed, ideally by visualization of the time series and by leveraging
related metadata or unstructured data. The aim is to determine whether
the anomaly is an unusual event or actually reflects bad data quality. In the
second case, abnormal data are replaced by NA values which are handled
during the missing data imputation stage. Alternatively, if an issue is at the
system level such that a substantial part of the advanced meters are affected
at the same period of time, only the portion of good quality can be retained,
assuming that this is sufficient for the subsequent analysis.

The detection of abnormal time series relies on key indicators of data
quality as mentioned in Section 3.3.2. The distribution of specific statistical
features across the data set can be visualized in the form of histograms,
and samples lying at the distribution tails might be defined as abnormal.
Nevertheless, the frontier between abnormal and normal data for cleaning
purposes is very subjective and is conditioned by the feature in question as
well as the type and the usage of data. Regarding the percentage of missing
data as illustrated in Figure 3.15, it must be considered that they are imputed
at a later stage. If the percentage is too high, the resulting imputed time
series might not reflect the behavior of the actual data faithfully. Hence,
time series with a missing data percentage higher than a certain threshold,
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typically between 1% and 10%, are discarded from the data set. The exact
threshold primarily depends on the tolerance level to modifications of the
data properties and on the care given to the imputation stage.

When considering zero values, the acceptable percentage is mainly depen-
dent on the measured quantity. While voltage time series should obviously
not contain zero values, no general assumption can be made for active power
quantities, which requires more detailed information. For example, the pres-
ence of zero values is highly unrealistic at an aggregate level (e.g., loading of
a distribution transformer) but is totally normal for single devices. For smart
meter measurements of residential or commercial consumers, the threshold is
usually set between 5% and 20%, and further visual inspection determines if
abnormal time series should be discarded. For PV production measurements,
a percentage of zero values lower than 30% or higher than 70% is gener-
ally considered abnormal, and further analysis is carried out. As previously
mentioned, the correlation with solar irradiance as well as the absence of
substantial activity at night are good indicators for the validity of PV produc-
tion time series. By experience, they should be characterized by a correlation
coefficient of at least 0.6 in absolute terms. Depending on the subsequent
usage of the data set, abnormal PV time series should be categorized as
load profiles or simply filtered out from the data set. Conversely, actual PV
production time series might be wrongly stored in a load data set, which is
detectable by an abnormally high correlation with solar irradiance. Similar
analysis can be performed with supposedly temperature-dependent loads
based on the correlation with outside temperature, as presented in [244].
In addition, voltage measurements in the same portion of a grid must be

physically correlated with each other such that a drop in the correlation
coefficient with respect to neighboring voltage measurements is an indication
of anomaly. Furthermore, the average or the sum of measured values in a
time series can be leveraged for data cleaning purposes. Sometimes, errors in
sign lead to unrealistic average values, which is fixed by replacing affected
data points by their opposite value.

Finally, the comparison of the cumulative energy measured by advanced
meters with the records used for billing purposes provides additional insight
into possible anomalies. This is illustrated by Figure 3.18 for actual smart
metered residential consumers in a one-year period. Each sample of the
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Figure 3.18: Relative difference between smart metered yearly energy consump-
tion and billed energy as provided in metadata for residential
consumers of a same neighborhood.

histogram corresponds to the relative mismatch in percentage between the
smart metered and the billed energy:

∆Ei “ 100% ¨
Emeter,i ´Ebill,i

Ebill,i
, (3.2)

where ∆Ei is the energy mismatch for consumer i, and Emeter,i and Ebill,i
are the smart metered and billed yearly energy for consumer i, respectively.
In general, the energy mismatch is close to zero but still varies between
´27% and 53.8% for specific consumers and can even exceed 1000 kWh in
absolute terms over one year. It must be noted that billing data in this
example are not determined based on smart meter measurements but on the
traditional electromechanical meters which have been still operated in parallel
to the smart metering system. Some differences come from the fact that both
systems do not systematically record the exact same load. For instance, billing
data can encompass the shared consumption (e.g., heating system) in a multi-
family building, whereas each smart meter records electricity exclusively
used by each household. Some positive mismatches are further explained
by the fact that local energy production is sometimes metered separately
from energy consumption while the electricity bill considers the net energy
consumption. In addition, a certain margin of error, which can typically reach
1%, is permitted for metering devices. Missing data in measurement time
series also lead to a lower cumulative recorded consumption than the actual
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billed energy. Nevertheless, large discrepancies are considered as anomalies
and can result from additional errors either in measurement data, in billing
data, or even in the metadata which link measurement and billing data. If
a substantial mismatch cannot be explained and fixed, the corresponding
measurement time series might be discarded from the data set.

3.3.5 Missing Data Imputation

Missing values decrease the quality of a data set. In the context of data
preparation, they must be imputed, i.e., replaced with probable values. The
reason for missing data affects the choice and the design of imputation
methods and must be clearly identified. Three mechanisms of missing data
are commonly distinguished [245]:

• Missing Completely At Random (MCAR): The probability of missing-
ness depends neither on other measured variables nor on the missing
values. In other words, missing data are perfectly unsystematic and
cannot be explained by a significant factor. For example, an accidental
data transmission failure is a cause of MCAR.

• Missing At Random (MAR): The probability of missingness depends
on available information but not on the missing data themselves. For
example, missing data are often observed in the hour between standard
time and DST.

• Missing Not At Random (MNAR): The probability of missingness
directly depends on the missing data themselves. For example, the
probability that the sensor of a PV panel fails can increase when
the PV production increases since high sensor temperature, which is
correlated to the solar irradiance, can affect its normal operation.

Based on a literature review, the authors in [246] have noticed that imputation
methods perform particularly poorly in the case of MNAR since there is no
proper reference example for possible values. Fortunately, missing values in
AMI data sets are mostly MCAR and, to a lesser extent, MAR. In other
words, missing data can typically not be explained by a known factor other
than an accidental failure of the measurement sensor, data transmission
system, or data management system.
For the purpose of this work, multiple imputation techniques have been

implemented as detailed in the following2:
2 For the sake of conciseness, variables are only defined once.
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• Zero-order hold: Each missing value of a data gap is replaced by the
last recorded value:

ỹt “ ya, (3.3)

where ỹt is the imputed value at time step t and ya is the value in the
same time series at time step a, i.e the most recent time step before t
associated to a non-NA value.

• Zero imputation: Each missing value of a data gap is replaced by a
value of zero:

ỹt “ 0, (3.4)

• Mean imputation: Each missing value of a data gap is replaced by the
mean over all recorded values in the time series:

ỹt “
1

|T |
¨
ÿ

iPT
yi, (3.5)

where yi is a non-NA value, and T is the set of all time steps associated
with non-NA values.

• Linear interpolation: Each missing value of a data gap is replaced by
linear interpolation between the most recent valid value and the next
valid value:

ỹt “ ya´1 `
yb`1 ´ ya´1
b´ a` 2 ¨ pi´ a´ 1q, (3.6)

where yb is the value at time step b, i.e the next time step after t
associated to a non-NA value. It must be noted that the values directly
preceding ya and following yb are taken as reference for the linear
interpolation. In fact, it has been observed that the values directly
surrounding a data gap (i.e., ya and yb) can be corrupt3.

• Replica from a similar day: Each missing value of a data gap is replaced
by a recorded value from a similar day at the same time:

ỹt “ yt´d, with d P D “ t˘1 day,˘2 days, . . . ,˘1 week, . . .u, (3.7)

where D is a set of time durations corresponding to various multiples of
one day or one week. The underlying idea is that many AMI time series
exhibit a one-day and/or one-week periodicity. Hence, data gaps are

3 For example, in the case of a sensor failure in the middle of a time step, the corresponding
energy/power measurement is often lower than it should be since it is recorded as the
average observed value over this time step.
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imputed by the closest complete sequence of values from another day
at the same time period or from another week on the same weekday at
the same time period.

• Average from similar days: Each missing value of a data gap is replaced
by the average over recorded values from different other similar days at
the same time:

ỹt “
1

|C|
¨
ÿ

iPC
yt´i, with C Ă D, (3.8)

where C is a finite subset of D. This is an extension of previous impu-
tation method which considers the average sequence of non-NA values
over multiple days at the same time period or over multiple weeks on
the same weekday at the same time period.

• k-Nearest Neighbor (kNN): Each missing value of a data gap is replaced
by the average over recorded values at the same time step from the k
most similar time series in the data set:

ỹt “
1
k
¨

k
ÿ

l“1
y
plq
t (3.9)

where yplqt is the value in time series plq at time step t. The measure of
similarity between two time series is based on the Root Mean Square
Error (RMSE) as defined in Equation (6.18), where time steps with
NA values have been discarded. Hot-deck imputation is a specific case
of kNN where k “ 1.

• Artificial Neural Network (ANN): This is a well-known ML algorithm
that mimics the operation of the human brain. The nnetar function in
the forecast package for R is used for imputation purposes. It trains a
feed-forward ANN model with a single hidden layer and with lagged
values of the time series as inputs. More information is given in [247].

• Adaptive Markov Chain Model (AMCM): This algorithm is designed
based on the principle of Markov Chains combined with Gaussian Mix-
ture Models (GMMs) with the aim of reproducing statistical properties
(e.g., distribution of values) of the observed time series. A detailed
description is given in Section 6.2.2.

• Status-quo: Missing data are simply preserved in the time series and
will be ignored in future analysis.
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Figure 3.19: Imputation of a four-day gap in the load profile of an industrial
consumer based on the mean, linear regression, replica from the
following week, and ANN.

All methods presented above are frequently mentioned in the literature,
with the exception of the AMCM approach as well as the replica and average
from similar days. The first four techniques are quickly implemented and
applicable but do not account for the variation in the data. Among all tech-
niques, the kNN algorithm has the advantage of considering the relationship
between different time series. As reviewed in [248], more advanced techniques
are also suggested in the literature, which goes beyond the sole application
to energy data. Especially, existing ML regression models can be adapted to
tackle missing data imputation. For example, the authors in [249] propose a
bi-directional missing data imputation scheme based on Long Short-Term
Memory (LSTM), a special type of deep ANN. Alternatively, the authors
in [250] make use of multi-objective Genetic Algorithms (GAs). However,
these more advanced techniques have not been considered in this work. First,
its focus is not the review and analysis of imputation techniques. The range
of methods that have been implemented already offer considerable diversity
for the preparation of the data sets in question. In addition, the training of
advanced regression models is relatively time-consuming, which is a barrier
to their application to large AMI data sets and often raises questions about
the interpretability of the outcome.
Figure 3.19 illustrates the behavior of some of the imputation techniques

implemented in this work on an industrial load profile with a clear one-day
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periodicity. Imputation by the mean and by linear regression are obviously
too simplistic and fail to follow the periodic load pattern. The replica ap-
proach fills in the four-day gap with a perfect copy of the same weekdays
in the following week, which seems realistic in this case. Finally, the ANN
has learned the typically periodic pattern from previous days and produces a
smooth but still meaningful load profile.

In this section, a comparison of the accuracy among different imputation
methods is deliberately not carried out for multiple reasons. First, the im-
putation accuracy of most common techniques has already been evaluated
in the literature, although this is mainly performed in a safe environment
and usually evaluated on specific types of data. Second, the performance
evaluation of imputation methods requires the artificial removal of actual
values in addition to the real missing data. Since the cause of missing AMI
data is hardly known, it is difficult to create artificially incomplete data
which are representative of real missing data. Third, the choice of a suitable
imputation method notably depends on the use that will be made of the
data set. For example, the imputation of time series used in power flow
simulations for the detection of LV grid congestions should reflect the actual
data distribution, as discussed more concretely in Chapters 6 and 7. For the
purpose of forecasting, only small data gaps of a few time steps are filled in,
typically by linear regression. Larger gaps are not imputed in order not to bias
the training and evaluation processes of the forecasting algorithm. Samples
with remaining missing values are simply ignored by the algorithm. Fourth,
the relative performance of an algorithm depends on the evaluation metric
and especially on the characteristic that this metric assesses. Literature on
missing data imputation techniques almost exclusively relies on point-wise
metrics and rarely focuses on the time dependency among data points or
on the realism of imputed data. In this regard, more details are given in
Section 9.3 in the context of forecasting evaluation.

It should be reminded that time series with relatively bad quality have been
filtered out from the data set at the anomaly detection stage. In this work,
only time series with a limited percentage of missing values are subject to the
imputation process. Different imputation methods might apply depending on
the type of data. For example, voltage or PV production measurements are
highly correlated with analogous measurements in the same system, which is
leveraged by the kNN algorithm. Conversely, load profiles at the consumer
level are relatively volatile and have little in common with each other but
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show similar behavior from one day to the next or on the same weekday.
Therefore, the imputation of missing data with recorded values of a similar
day at the same time seems reasonable.

Moreover, the function handling missing values has been designed to allow
the use of various imputation methods according to the length of the data
gap. The imputation of small gaps (e.g., up to one hour) largely benefits from
the information of the closest available values in the time series. In this sense,
linear regression and zero-order hold are considered efficient approaches. For
gaps of medium size (e.g., between one hour and one day), it is judicious
to consider the time dimension assuming that the data presents some pe-
riodicity. This is handled by the AMCM approach and the replica from a
similar day. In the specific example of PV production profiles, missing data at
night can be seamlessly replaced by zero values. Finally, special care must be
given to longer data gaps (e.g., more than one day) as their imputation can
partially impact the time series characteristics. The kNN algorithm can be
used if similarities are observed among different time series of the same type.
Alternatively, advanced imputation methods such as ANNs might be able to
grasp complex data phenomena. Nevertheless, preserving missing values is
sometimes a wise solution that does not further alter the data.

To sum up, an imputation method is primarily chosen according to the
size of the data gap, the type of data, and its adequacy to future data usage.
Secondarily, the computational cost should not be neglected. Hence, time-
consuming approaches are only considered if they offer substantial benefits
in terms of data quality.

3.3.6 Data Validation and Fusion

A data set is generally considered clean and tidy once it has been formatted
and standardized, outliers and anomalies have been fixed or filtered out, and
missing values have been imputed. Nevertheless, this does not guarantee that
the data set is free of errors and faithfully represents the reality. At this
stage, it is sometimes sensible to carry out a second statistical analysis to
first quantify how the preparation process has modified the original data
set. Second, this highlights some remaining data quality issues that may
have been overlooked or badly handled during the preparation process. In
addition, putting into perspective different data sets in the same system
is a crucial step to ensure data consistency, as mentioned previously for
the anomaly detection stage. Data fusion, which consists of integrating and
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eventually merging multiple data sources, even allows for the creation of
more information than what is provided by each individual data source.

First of all, it happens that different measurement data sets in the same
system are characterized by various temporal resolutions. When it comes
to merging these data sets, their synchronization to a common temporal
resolution is often necessary. In practice, each data set is generally converted
to the lowest available temporal resolution4. For the purpose of this work, a
function has been implemented to adapt a data set to any given temporal
resolution. Figure 3.20 illustrates the conversion process of a simple time
series from 10-minute to 15-minute resolution. First, the original time series
is transformed into an intermediary time series with a higher resolution.
Originally recorded values are simply replicated over the corresponding
periods of time. In a second step, the values of the intermediary time series
are averaged over the periods defined by the target resolution, which builds
the new time series. Formally, the conversion process can be expressed by
the following equation:

yt,new “
1

∆s
¨

t0`0.5¨∆s
ÿ

i“t0´0.5¨∆s
yi,old, with ∆s “

∆tnew
∆told

(3.10)

where yt,new is the value of the new time series (i.e., with target temporal
resolution) at time step t and yi,old is the value of the original time series
(i.e., with original temporal resolution) at time step i. Moreover, t0 is the
middle point of time step t, and ∆told and ∆tnew are the length of time steps
j and t, respectively. Finally, ∆s indicates the number of time steps that are
considered in the averaging operation. If ∆s is a non-integer rational number
(e.g., ∆s “ 15{10 “ 1.5), values at the extremity of the sequence considered
in the averaging operation are weighted according to the fractional part of
∆s. The conversion process as defined in Equation (3.10) is only valid for
non-cumulative data (e.g., power, voltage, current, temperature). In contrast,
cumulative data (e.g., energy) must initially be converted into the corre-
sponding non-cumulative data. Furthermore, some information is inevitably
lost in the conversion to lower temporal resolutions, and original time series
cannot be retrieved intact when recovering the original temporal resolution.
A decrease of the temporal resolution basically consists of smoothing the
data. Conversely, an increase in the temporal resolution is analogous to linear
regression. The impact of temporal resolution on AMI data is analyzed in

4 Please note that a lower temporal resolution means a larger time step length
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Figure 3.20: Illustration of conversion process from 10-minute to 15-minute
resolution.

more detail in Chapter 5.

Moreover, in the context of distribution grids, measurement data are
typically gathered at different aggregation levels (e.g., device level, customer
level, transformer level) which are linked with each other. This allows for
the validation of the different measurement data sets. Figure 3.21 illustrates
the aggregation of active power profiles recorded by smart meters at the
level of individual consumers and prosumers together with active power
measurements at the transformer feeding those electricity customers. Both
load profiles overlay each other and tend to exhibit similar patterns. The
mismatch time series corresponds to the difference between the transformer
profile and the aggregation. As expected, active power measurements at the
transformer level appear to generally surpass the aggregation of smart meter
measurements in the corresponding LV grid. The mismatch is nevertheless
very volatile and even shows negative values for a few time steps. On the
one hand, this comparison gives an indication of the remaining load and
production which are not measured since the roll-out of smart meters is
not complete. It must be noted that the mismatch also accounts for losses
in LV lines. On the other hand, this provides further insight into potential
data quality issues. There might still be undetected data errors, or the
preparation process might not have been performed correctly. In addition,
largely positive and negative spikes in the mismatch time series can be
explained by synchronization problems among the different measurements.
Metadata and their preparation are also prone to errors, which could lead
to the consideration of smart meter data which do not belong to the grid in
question. In any case, further investigation is required to explain unrealistic
observations (e.g., negative mismatch) and increase the data quality.
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Figure 3.21: Weekly load profile of the aggregation of smart metered consumers
in a LV grid and of the corresponding distribution transformer,
together with their mismatch.

Another example of data fusion is the integration of measurement data with
the grid structure, as illustrated by Figures 3.4 and 3.5. Such an integrated
system can only be used for further analysis if all measurement data, grid
structure data, and metadata, as well as their preparation, are of good quality.
In this case, load flow simulation and state estimation help for data validation.
This integration stage is particularly time-intensive due to the diversity of
potential error sources and the probable need for multiple iterations in
the preparation process. Among possible errors, electricity customers might
be assigned to incorrect buses, line and transformer parameters might be
inaccurate, grid structure and connections might be erroneous, or the binary
status of circuit breakers might be wrong. Good knowledge of the different
data sets, as well as good coordination with technicians responsible for data
gathering, are primordial for proper data integration and validation.

3.4 conclusion

To sum up, data in distribution grids are extremely diverse in many aspects.
First, the roll-out of advanced meters spans from a few devices at key MV
locations (e.g., substation, distribution transformers) to full smart meter
penetration at end customers’ premises (e.g., residential, commercial, and
industrial customers). Sub-metering is rarely realized on a large scale due to
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its high cost, but measurement data at the appliance level are sometimes gath-
ered in specific studies, usually for a limited period of time. It must be kept
in mind that the installation of metering devices is planned in conjunction
with the appropriate development of both communication and data storage
infrastructures. Second, although the sampling frequency of advanced meters
lies in the kHz range, their output granularity normally varies between 1 and
30 minutes, sometimes even 1 hour. This considerably influences the accuracy
and quantity of recorded data. More precisely, the temporal resolution of
smart meters is generally limited to 15 or 30 minutes as a trade-off between
accuracy and privacy, cabinet and transformer measurements are commonly
recorded every 10 to 15 minutes, and sub-metering data typically reach a
one-minute resolution (or even higher for NILM purposes). Third, the type
of measured quantities depends on the application. All metering devices
measure three-phase sinusoidal current and voltage signals at high frequency,
based on which a multitude of electrical quantities can be computed. However,
their output is usually limited to a few quantities. Notably, smart meters
always record active power, sometimes reactive power, and rarely voltage
measurements. In addition, most smart meters currently record single-phase
quantities, although power utilities start to see the need for three-phase
measurements due to the unbalanced nature of LV grids. More advanced
meters at the device level, but also at the cabinet or transformer levels, tend
to record more quantities such as currents and voltages. Fourth, metering
devices are not the only source of data in distribution grids. Metadata play
an important role in providing a context for measurement data and linking
different data sets in the same system. Furthermore, the network structure
itself gets digitized by an increasing number of DSOs, possibly with GIS data.
As traditionally performed at the transmission level, this allows for load flow
simulations and state estimation also in distribution grids down to the LV
level to obtain information about quantities that are not directly measured
(e.g., voltages and power flows). Finally, exogenous data such as weather time
series are essential to explain some behaviors observed in measurement data.

The three real-world systems presented in this chapter give an overview of
the diversity and complexity of AMI data. They also highlight the limitations
of synthetic data sets and test feeder models which are still largely used in
the literature. Hence, this thesis intends to encourage the use of real-world or
realistic data in the design of data-based approaches and in the conduction of
data-based studies. This inevitably relies on close collaboration between sci-
entists and power companies when it comes to sharing data. On the one hand,
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power system scientists benefit from real-world data to develop methods and
carry out studies that fit reality. On the other hand, power system compa-
nies, which may not have the required internal expertise, are keener to trust
scientific studies and implement some of the promising methods proposed
in the literature. This naturally raises concerns regarding data privacy and
confidentiality, which must be properly considered. Data pseudonymization
is certainly part of the solution. Deeper discussions on privacy-preserving
solutions are nevertheless out of the scope of this thesis. Besides, real-world
demonstrators such as NEST, the research and innovation building of Empa
(Swiss Federal Laboratories for Materials Science and Technology) in Düben-
dorf, Switzerland, are great initiatives to foster such collaboration between
partners from the energy sector together with the scientific community [251,
252]. They allow promising technologies and operational approaches to be
tested and validated in a real and open environment.

As detailed over the course of this thesis, real-world data definitely allow
for the creation of realistic and meaningful case studies. However, they also
come with a non-negligible drawback in terms of data quality. Due to the
multiple possible sources of error between the measurement process and
actual data storage, real measurement data are inevitably prone to anomalies,
inconsistencies, and missing values. For their use in future applications, a
preparation process is necessary to bring raw data into a formatted and
standardized form in the first stage, and to detect and fix potential signs
of bad data quality in the second stage. The customized data formatting
and standardization stage ensures a uniform data structure and consistent
conventions in terms of timestamp, missing data, language, unit, and sign.
Subsequently, the standardized data preparation stage deals with outliers,
anomalies, and data gaps. Proper statistical analysis and visualization also
help to assess the data quality. In addition, individually prepared data
sets can be compared and eventually merged to further increase the data
quality but also produce additional pieces of information. For example,
merging power measurement data sets from different aggregation levels
allows the identification of the portion of load which is not measured yet.
Such preparation process also concerns metadata and grid models which are
mainly produced manually by power engineers and are to be integrated with
measurement data.
Although data preparation can be standardized to a certain extent, the

exact methodologies used for the different cleaning steps largely depend on
the type of data and on its future application. There is clearly no predefined
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recipe that generally applies to all data sets, even though some guidelines
are suggested in the chapter. In this context, domain knowledge and ex-
perience are certainly valuable. It must be nevertheless remembered that
the preparation of data sets might slightly alter their intrinsic properties.
Moreover, not all data cleaning steps must be necessarily completed at the
end of the preparation process. Certain algorithms can handle data that
are not totally clean and tidy. For example, most SE techniques detect and
ignore bad measurement data points [253–256]. Some SE techniques are also
designed to directly leverage heterogeneous data sets with different temporal
resolutions [257, 258]. This avoids the loss of information when harmonizing
timestamps among data sets and improves SE accuracy. In addition, some
forecasting algorithms can deal with incomplete training data such that
missing values imputation is not necessary anymore [259, 260]. In any case,
decisions taken during the preparation process must be logged. It is important
to keep track of the criteria identifying a data point as an outlier and a time
series as abnormal, of the techniques used for missing data imputation, and
of the samples which are discarded or modified.

Finally, the data preparation process presented in this chapter principally
focuses on ensuring proper data quality. Nevertheless, clean and tidy data
sets are generally further transformed to fit the needs of future applications.
Often, data-based algorithms cannot directly use time series as such and
require a specific features extraction stage. Features might not only come
from measurement data but also from timestamps which reveal relevant
temporal information and from exogenous data. More information about the
actual data preparation and feature selection for each type of algorithm is
given in the corresponding sections of this thesis. Data reduction techniques
might also be necessary to lower the quantity and complexity of measurement
data.



4
S M A RT M E T E R D ATA
C L U S T E R I N G A N D
V I S U A L I Z AT I O N

This chapter highlights the utility of unsupervised learning and of visualization
to enhance the comprehension of large AMI data sets. They are considered big
data, and their potential cannot be identified without appropriate data mining
techniques. Unsupervised learning such as clustering allows for complexity
reduction in order to focus on key aspects of the big data. In addition, suitable
visualization of the points of interest provides power system engineers with
valuable intuition in their decision-making process. As a case study, this
chapter focuses on the use of the k-means clustering algorithm and leverage
smart meter data from the distribution grid of the City of Basel. Its content
is principally based on [261].

4.1 introduction

The AMI of distribution grids produces a huge amount of data. End electricity
customers are among the largest sources of AMI data, especially in the form
of time-series measurement. Such big data potentially involve very diverse
pieces of information which are difficult to understand at first glance. Data
visualization is primordial for enhancing the comprehension of large data
sets. As illustrated by Section 2.5, part of the work of smart grid companies
leveraging AMI data consists of developing intuitive visualization tools and
dashboards to obtain an at-a-glance overview. Nevertheless, the considerable
volume of measurement data prevents their visualization in their original form.
Beforehand, measurement data must be simplified into key features for the
sake of clarity. For example, statistical indicators (e.g., average consumption,
variance) can be extracted from measurement time series and displayed
under the form of a histogram. This informs on the statistical distribution of
customers with respect to a certain feature. Alternatively, deeper insights are
offered by data mining techniques such as unsupervised learning algorithms.

An unsupervised learning algorithm is a model that is trained to discover
hidden structures in a certain data set. Unlike supervised learning methods
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that classify instances or build a regression function, input features in unsu-
pervised learning are not associated with a label, i.e., the outcome cannot be
compared with a supposedly good answer. Unsupervised learning includes
various approaches such as anomaly detection, dimensionality reduction,
and clustering. Anomaly detection is part of the data preparation stage
has already been discussed in Section 3.3.4. Next, Dimensionality reduction
consists of compressing the original data while maintaining their most rele-
vant characteristics [262]. Widely used in smart grid applications, Principal
Component Analysis (PCA) is the most popular dimensionality reduction
algorithm [263, 264]. In addition to reducing data storage overhead, it also
improves data mining efficiency and is particularly helpful as a preparation
step for future data-intensive applications such as forecasting [265]. Finally,
the objective of clustering is to group together similar instances, also called
measurements or observations in the data mining literature. The clustering
outcome can be tailored to specific needs through the choice of the input
features. For example, the authors in [266] intend to characterize domestic
load profiles based on smart meter data. Similarly, the authors in [267] focus
on the behavior of residential electricity customers for better LV network
modeling and management. Alternatively, clustering of voltage measurements
allows for phase identification of smart meters [268].
Multiple algorithms are proposed in the literature to perform clustering.

Detailed in Section 4.2, k-means is probably the most popular clustering
algorithm. It is used in this chapter for its guarantee of convergence (not
necessarily to the optimum), scalability to large data sets, and ability to
provide meaningful results. Nevertheless, the number of clusters must be
chosen in advance, and the outcomes might depend on the initialization. A
large variety of alternative clustering algorithms are also commonly leveraged
for smart grid applications, especially for electrical load pattern grouping [269].
For example, hierarchical clustering is a tree-based algorithm that builds a
hierarchy of clusters [270]. The expectation-maximization algorithm creates
clusters based on statistical distributions. Some types of ANN (e.g., self-
organizing map) are also designed for clustering purposes. It must still be
noted that this chapter focuses on the manner to leverage clustering for
enhanced smart meter data comprehension and does not intend to achieve
a rigorous evaluation of the clustering performance. Hence, k-means could
typically be replaced by an alternative algorithm for the purpose of this work.

With the help of smart meter data clustering and appropriate visualization,
this chapter aims to provide useful insight into the different types of electricity
consumers at a city level. As presented in Section 2.4, this provides visibility
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into distribution grids and can serve as a basis for DR programs. The
application of clustering techniques to smart meter data for consumer profiling
purposes is common in literature. Some examples are cited in the following
sections. Proposed studies principally focus on the performance of different
clustering algorithms on smart meter data. In contrast, the main contributions
of this chapter lie in the choice of input features, in the diverse visualization
of clustering outcomes, and in their application-oriented interpretation. This
analysis is part of the project “Optimized Distribution Grid Operation by
Utilization of Smart Metering Data” in collaboration with Adaptricity [221].
It leverages smart meter data available in the City of Basel. In this case, data
are pseudonymized such that no additional information on the type or habits
of individual consumers is accessible, except the load profiles. However, the
location of each DCU and the assignment of smart meters to the respective
DCUs are known. This gives an indication of the approximate location of
each consumer across the city and is leverage for visualization purposes.

The remainder of this chapter is organized as follows. Section 4.2 provides
the necessary theoretical basis concerning the widely used k-means clustering
algorithm. Section 4.3 briefly describes the preparation of smart meter data
used in the case study and presents different types of clustering features that
can be extracted. Section 4.4 illustrates how the clustering outcome can be
visualized and interpreted. Notably, temporal and spatial representations
are detailed in Sections 4.4.1 and 4.4.2, respectively. Finally, Section 4.5
summarizes the ideas developed in this chapter and enhances the benefits of
clustering and proper visualization for power system data analysis.

4.2 k-means clustering algorithm

k-means is a popular clustering algorithm that is particularly easy to apply
and interpret. All popular numerical computing tools (e.g., R, MATLAB,
Python) contain a library with an implementation of the k-means algorithm.
Initially, features need to be extracted from a clean and tidy data set to serve
as benchmarks for the formation of clusters. The number of clusters K must
be defined beforehand and mostly depends on the clustering purpose, the
data diversity, the number of features, and the type of features. A couple of
clusters might be sufficient if the main types of loads are of interest. However,
several dozen groups enable the capture of more subtle differences amongst
the clusters and can reveal uncommon consumers. More details about the
appropriate number of clusters and the selection of suitable features for power
system analysis are provided in the following sections.
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Formally, the k-means clustering algorithm aims to partition all instances
in a data set into k clusters such that the Within-Cluster Sum of Squares
(WCSS) is minimized [271]:

WCSS “ min
S

k
ÿ

i

ÿ

xlPSi

‖xl ´ µi‖2, (4.1)

where WCSS is the sum of squares of the Euclidean distances (i.e., 2-norm
distances) of each instance to its respective centroid. S “ tS1, S2, . . . , Sku is
the set of all k clusters, xl P tx1,x2, . . . ,xnu is one of the npě kq instances,
and µi is the centroid (i.e., mean of instances) of cluster Si. Each instance is
a d-dimensional vector (i.e., with d features).
Figure 4.1 illustrates the process of k-means clustering in order to build

k “ 3 clusters based on the Fisher’s Iris data set [272]. This well-known
data set is often used in pattern recognition and statistical classification. It
consists of four features (i.e., sepal length and width, and petal length and
width) of 150 flowers belonging to three iris species. In the figure, feature
1 and 2 are the sepal length and width, respectively. All features are first
normalized according to the min-max feature scaling:

x1f “
xf ´minpxf q

maxpxf q ´minpxf q
, @f P t1, 2, . . . , du (4.2)

where xf “ px1,f ,x2,f , . . . ,xn,f q and x1f “ px11,f ,x12,f , . . . ,x1n,f q are the origi-
nal and normalized vectors of feature f , respectively. In addition, minpxf q and
maxpxf q are the minimum and maximum values of feature vector xf , respec-
tively, and d is the number of features. Next, k “ 3 data points called “cluster
centroids” are initialized. Different initialization approaches are suggested in
literature. For example, k instances in the data set can be arbitrarily picked as
the first centroids. k-means++ is another algorithm for the selection of initial
values, where only one centroid is chosen totally randomly. Subsequently, the
Euclidean norm between that first centroid and all remaining instances is
computed, which is used to define a weighted probability distribution from
which the next centroid is picked randomly. This process is repeated until
all centroids are chosen. The choice of the first centroids is crucial since it
influences the convergence of the method and the final cluster formation.
k-means++ usually outperforms random initialization. After the initialization
phase, k-means is based on an iterative process where each iteration consists
of two consecutive steps: cluster assignment and cluster update. The cluster
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Figure 4.1: Iterative process of the k-means clustering algorithm to build three
clusters out of the Fisher’s Iris data set.

assignment step allocates each instance to the nearest centroid in terms of
squared Euclidean distance:

Sptqi “

!

xl : ‖xl ´ µ
ptq
i ‖2 ď ‖xl ´ µ

ptq
j ‖2, @j P t1, . . . , ku

)

, (4.3)

where Sptqi and µptqi are cluster Si and centroid µi built at iteration t, respec-
tively1. The cluster update step moves each cluster centroid to the average
of all respective instances:

µ
pt`1q
i “

1
|Sptqi |

¨
ÿ

xlPSptqi

xl, (4.4)

1 Remaining parameters and variables are defined together with Equation (4.1).
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where all parameters and variables are defined previously. Both steps are iter-
ated until all centroids stabilize, which implies that the algorithm converges.
In the case of the Iris data set, three iterations of k-means are necessary for
convergence.
Alternatively, the k-medoids clustering algorithm selects actual instances

as cluster centroids and does not necessarily rely on the Euclidean norm as
distance metric. Furthermore, k-medians clustering is a variation of k-means
clustering, where each centroid corresponds to the median (instead of the
mean) of all instances in a cluster. Hence, clusters are optimized based on
the 1-norm distance metric (instead of the squared 2-norm distance metric).

4.3 data preparation and features extraction

This study leverages smart meter data from the distribution grid of the
City of Basel (see Section 3.2.1 for detailed information on the data set).
Good quality data are a necessary condition to obtain meaningful outcomes
from a learning algorithm in terms of accuracy and interpretability. As
mentioned in Section 3.3, data preparation is primordial and depends on
the application. In this case, only active power profiles longer than one year
and with a minimum energy consumption of 100 kWh/year are preserved. In
addition, smart meter time series showing more than 10% of missing values
or exhibiting data gaps larger than two weeks are discarded from the data set.
In terms of missing values imputation, data gaps smaller than one hour are
filled by linear interpolation. Larger data gaps are imputed by the average
from a couple of surrounding weeks. Consequently, the clean and tidy data
set consists of more than 30’000 time series with a 15-minute resolution
and a duration going from 12 to 30 months. This data set is about 16 GB
large, and its analysis is considered a Big Data problem in the context of
power systems. In addition, following meteorological time series at 15-minute
resolution from a weather station in the City of Basel are also considered:
temperature, pressure, humidity, solar radiation.

According to the type of partitioning that is of interest among consumers,
diverse features must be extracted from smart meters and weather profiles.
It is particularly important to select the right amount of information that
is representative of the diversity of consumers without overwhelming the
clustering algorithm with unnecessary data. In any case, features represent a
considerably lower amount of data with respect to the original time series.
Figure 4.2 illustrates a MATLAB-based Graphical User Interface (GUI)
and gives an overview of the variety of features that can be selected for
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Figure 4.2: Graphical user interface for the selection of clustering features.

the clustering analysis. Besides the usual statistical measures like the mean
power consumption, the standard deviation, and the maximum power value,
some more advanced features require the extraction of multiple values. For
example, a typical pattern consists of computing and normalizing the average
profile over a predefined period like a day or a week. Based on 15-minute
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resolution data, this results in the creation of 96 features for a typical daily
pattern. In addition, smart meter data provide insight into daily, weekly or
seasonal fluctuations for each single metered consumer. For example, the
power requirements of a household, an office, or a shop generally vary over the
week, especially at the weekend. In order to group consumers according to their
fluctuations over the week, multiple variations of “percentage out of the week”
can be selected. This feature represents the consumption share of a predefined
period of the week with respect to the entire week 2. Furthermore, the
autocorrelation function, ideally with a lag of one day or one week, reveals the
periodicity of power consumption profiles. Moreover, the influence of weather
variables on electricity consumption is reflected in the respective correlation
coefficient. The ability of a clustering algorithm to automatically point out
weather-sensitive loads can contribute to the decision-making process of
DSOs. Multiple features can also be combined, which gives additional value
to the clustering analysis in comparison to pure statistics. Finally, extracting
features from the entire measurement period may not be necessary. For grid
operation purposes, a good analysis tool should give DSOs the possibility to
focus on supposedly problematic hours or days. In addition, it should be able
to identify customers with the largest impact on grid operation, e.g., possibly
leading to voltage band violations or characterized by a high DR potential.

4.4 visualization of clustering outcome

In any data analysis process, proper visualization is primordial to go from
pure information to actual knowledge on which informed decisions can be
made. This section presents and discusses the outcome of different k-means
clustering processes based on two visualization approaches. On the one hand,
the temporal representation visualizes clusters according to the average daily
load pattern of their respective consumers. The difference between clusters
still depends on the feature selection. In fact, this representation focuses
on the link between a certain set of features and the temporal pattern of
consumers’ load. On the other hand, the spatial representation leverage
information about the consumer’s location. By displaying the share of each
cluster in different sections of a map, this representation highlights the
distribution of various types of consumers across a distribution grid. Even
based on the same clustering outcome, each representation focuses on distinct
aspects of the consumers’ characteristics. Moreover, both temporal and spatial

2 Similar reasoning applies for “percentage out of the day” and “percentage out of the year”.



4.4 visualization of clustering outcome 107

representations can be combined, e.g., in an interactive tool, to provide a
more comprehensive overview of the diversity of consumers.

4.4.1 Temporal representation

The temporal representation relies on normalized typical daily profiles to
visualize the different clusters. More concretely, the average daily profile is
first computed for each original load profile:

y1i “
1
N
¨
ÿ

tPI
yt, @i P t1, 2, . . . ,Du, with I “ ti, 2i, . . . ,Niu, N “

T

D
,

(4.5)
where y1i is the value of the average daily profile at time i and yt is the value
of the original time series at time t. In addition, I is the set of all time
steps referring to the same time i of the day, T is the total number of time
steps in the original time series, D is the number of time steps per day, and
N P N is the number of days in the time series. In a second phase, min-max
normalization is performed as defined for feature scaling in Equation (4.2).
Finally, normalized daily profiles are represented by cluster according to the
clustering outcome. For the sake of clarity, the average profile in each cluster
is indicated by a black curve.

In the following subsections, two different clustering processes are discussed
based on their temporal representation. First, consumers are grouped ac-
cording to their typical daily load pattern, which is also commonly proposed
in the literature. Second, consumers are clustered according to their mean
energy consumption, which highlights the correlation between the consumer
size and its typical load profile.

4.4.1.1 Typical Daily Load Pattern

The first clustering example allows for clear partitioning of consumers ac-
cording to their typical load pattern. Such clustering analysis is common in
literature. For example, the authors in [266] intend to create representative
electricity load profile classes for the domestic sector in Ireland based on
their diurnal, intra-daily, and seasonal variations. Alternatively, the authors
in [269] carry out a comprehensive performance comparison of multiple clus-
tering algorithms based on normalized representative load patterns. In [273],
representative consumption profiles are also created by clustering to serve
as the basis for the classification of new electricity customers. In contrast to
existing studies that principally analyze the clustering performance, this piece
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Figure 4.3: Clustering of normalized typical daily load profiles.

of work focuses on the entire clustering process, including the interpretation
of the clustering outcome. Although beyond the scope of this study, it is
probable that the use of alternative clustering algorithms leads to a different
partitioning.

The proposed case study directly uses the normalized typical daily profile
of each consumer as a feature. Based on smart meter data with 15-minute
granularity, 96 features are extracted from each consumer’s load profile before
being supplied to the clustering algorithm. In this specific case, visualized
data points directly correspond to the features, and the black curve represents
the cluster centroids. As a rule of thumb, the number of clusters is fixed to
25 in order to better detect unusual loads while having a sufficient amount
of consumers per cluster.
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The clustering outcome is illustrated by Figure 4.3, where the analysis
is restricted to the six most distinctive clusters. In this example, cluster 9
contains the largest number of consumers. It likely consists of households as
suggested by their average profile. Indeed, an increase in demand appears
from 6:00 on and at noon, indicating power-consuming activities like cooking.
Nevertheless, most of the demand occurs after working hours. Inhabitants
probably come back from work, turn on the lights, use cooking devices and
the dishwasher, maybe do laundry, and watch television. It must be noted
that a majority of clusters that are not shown here also exhibit similar profiles.
This suggests that most smart meters are installed at residential customers’
premises. Furthermore, offices seem to be grouped in cluster 10, considering
the characteristic drop at lunchtime and a very low consumption outside of
regular business hours. Cluster 13 mostly consists of ripple-controlled units
such as boilers that are programmed to start working based on the time of
the day. This is particularly clear at 21:00, where the electricity price switches
from high tariff to low tariff regime in Switzerland. In cluster 15, power is
mainly consumed between 8:00 and 20:00, which is indicative of the needs of
a shop or a department store where load variations during opening hours also
depend, to a limited degree, on the number of visitors. In contrast, loads in
cluster 19 have relatively constant power consumption on average. This can
be typical of 24-hour active industrial loads. Nevertheless, it must be kept
in mind that profiles represent an average over a large number of days and
do not reflect the behavior on a single day. For example, the typical daily
pattern of thermostatically controlled loads appears relatively constant due
to the averaging effect, even if their instantaneous status is either ON or OFF.
Such representation still gives insight into the daily profile of an aggregation
of multiple similar loads. Finally, load profiles in cluster 24 are characterized
by a significant peak during lunchtime and relatively higher values in the
evening (i.e., outside regular working hours). This cluster probably consists
of restaurants, cafeterias, and maybe a few households. Such analysis can
obviously be extended to an entire week, where a considerable power drop
shall be visible at the weekend for non-residential categories.

4.4.1.2 Mean Energy Consumption

In contrast to the clustering analysis commonly proposed in the literature,
features of smart meter data must not necessarily be related to the typical
load pattern. For example, the authors in [274] innovate by making use of the
variance and of the responsibility factor at different peak hours to identify
customers having a higher peak share. Further interesting analysis is the
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Figure 4.4: Typical daily profiles of smart metered loads clustered according
to their mean energy consumption.

evolution of the typical load profile according to the mean energy consumption,
as shown in Figure 4.4. In this case, there is only one feature, the mean
energy consumption. In addition, fifteen clusters are created, but only six
clusters are visualized for the sake of clarity. On average, small consumers
exhibit a typical household pattern even if their individual profile can be of
any shape. Nevertheless, the more energy is consumed, the more rectangular
the average load profile becomes, while the usual household evening peak
tends to vanish. This is explained by the higher share of commercial and
industrial loads that are mainly active during regular working hours with
fairly constant energy demand. Although not displayed, this observation is
confirmed when considering the typical weekly profile. Small consumers show
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a higher activity at the weekend, which gradually decreases with rising mean
energy consumption. In addition, the size of clusters drastically decreases
when the mean energy consumption increases, which confirms the larger share
of residential loads in the data set. Finally, the last cluster indicates that no
specific trend can be assumed for very large consumers.
Even if the clustering process relies on only one feature, it allows for

partitioning. This is an advantage over simple statistical analysis such as
one-dimensional histograms. In this sense, similarities between consumers in
a certain cluster can be inferred. Hence, a DSO can potentially get insight
into the characteristics of a customer on the sole basis of its electricity bill.
Furthermore, such unsupervised learning can easily be combined with other
features or focus on a smaller set of customers, e.g., living in the same
neighborhood. It must nevertheless be kept in mind that clustering basically
distinguishes main categories over a large set of consumers. It does not replace
a more thorough and specific analysis at the consumer level.

4.4.2 Spatial Representation

In addition to the temporal dimension, smart meter data are also charac-
terized by a location. This spatial information can be integrated into the
data mining process for better big data comprehension. Hence, this sec-
tion presents an interactive Leaflet-based visualization tool that combines
clustering outcomes with spatial information [275]. This visualization tool
implemented in JavaScript has been designed to allow IWB (i.e., DSO of the
City of Basel) to access data mining knowledge in a more intuitive way. More
concretely, clustering outcomes are displayed in the form of pie charts on the
city map based on the location of smart meters. In the case of the City of
Basel, the exact location of all smart meters has not been made available for
privacy-preserving reasons. However, the location of DCUs and the list of
corresponding smart meters are known, which is sufficiently precise to obtain
a good overview of the variety of smart metered consumers spread over the
city. It must be reminded that the AMI of the City of Basel consisted of
387 DCUs at the time of data preparation, with an average of 70 metering
devices per DCU. While DCUs represent the highest spatial resolution, the
interactive visualization tool still allows for a broader overview depending on
the zoom level. Hence, one pie chart possibly reflects information from multi-
ple DCUs in the same neighborhood at lower spatial resolution. Moreover,
the visualization tool is designed to display, among others, typical daily load
profiles by clicking on specific customers. In this sense, both temporal and
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spatial dimensions of smart meter data are visible in the same environment,
based on which k-means clustering adds a layer of understanding.
Depending on the focus of interest, different clustering features must be

selected. The following subsections detail how spatial representation enhances
the interpretation of two clustering examples. First, smart metered customers
are clustered according to their share of consumption at different periods of
the day. The second example considers the correlation of load profiles with
the outside temperature.

4.4.2.1 Intra-Daily Consumption Share

Figure 4.5 spatially represents smart metered loads clustered by their share
of energy consumption at different periods of the day. As suggested by [276],
a day is divided into five representative time periods, i.e., early morning (7:00
to 9:00), morning (9:00 to 13:00), afternoon (13:00 to 17:00), evening (17:00
to 21:00) and night (21:00 to 7:00). Hence, each clustering feature represents
the percentage of energy used in each representative time period:

sharep “ 100% ¨
ř

jPΩp yj
řT
i“1 yi

, (4.6)

where sharep is the feature associated with time period p, Ωp is the set of all
time steps within time period p, and T is the total number of time steps in
the time series. Per definition, all features sum up to 100% for each consumer.
This clustering process is analogous to the clustering example presented in
Section 4.4.1.1 at the difference that each feature does not refer to a specific
time instant but a specific time period in the day. For the sake of clarity
in the visualization tool, only five clusters are created with the k-means
algorithm. The box at the bottom right corner of Figure 4.5 summarizes the
cluster characteristics. More precisely, it includes the number of consumers
per cluster as well as the values of cluster centroids (i.e., mean feature values).
In this case, cluster 1 (red) is the smallest group with less than 5% of all
smart metered consumers and consists of “night owls” who mainly consume
overnight (i.e., 52.3% energy consumption between 21:00 and 7:00). Most
loads in cluster 1 are located in areas with a majority of apartment buildings,
like in the most easterly neighborhood of the City of Basel. Their typical
daily profile reveals that they are especially active from 22:00 on (i.e., off-
peak tariff). This gives a good indication of the buildings equipped with
electric boilers, which implies higher power flows at night in these areas. Since
these loads are price-sensitive, they are good candidates for DR programs.
Conversely, consumers in cluster 3 (yellow) are principally active during
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Figure 4.5: Spatial representation of smart metered loads clustered according
to their share of energy consumed at different periods of the day
(early morning, morning, afternoon, evening, night).

business hours and are mainly concentrated in the old city center where
shops, museums, offices, and restaurants are located. They account for 6% of
the total number of customers. The remaining three clusters encompass the
large majority of IWB’s customers. They are well spread across the entire
distribution grid. Cluster 2 (blue) is rather active between 9:00 and 19:00 and
might include offices, restaurants, and a few households. Clusters 4 (green)
and 5 (orange) seem to contain a considerable number of residential loads and
probably restaurants since the corresponding consumers are characterized by
relatively high activity in the evening.
To sum up, the interactive tool facilitates the visualization of energy

requirements in different parts of the grid and at different periods of a
typical day. A relatively high and well-distributed smart meter penetration
is nevertheless required for a representative overview of the actual situation.
By extension, this concept can be adapted to longer periods, such as a whole
year, to focus on local seasonal variations.
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4.4.2.2 Correlation with Temperature

Figure 4.6 exhibits the exact same loads as in Figure 4.5, but clustered
according to their correlation with the outside temperature. First, it must be
noticed that Swiss households are usually not equipped with air conditioners
and electrical heating systems are less common than gas-fired heating systems.
Nevertheless, IWB launched a campaign to gradually replace traditional
heating systems with electrical heating systems. By analyzing clustering
outcomes, it appears that half of the load profiles are barely influenced by
the temperature. They belong to cluster 1 (red), with an average correlation
coefficient of -0.02. They are most probably not equipped with an electrical
heating system. Cluster 3 (yellow) is the second largest group with 30% of all
customers. The load profile of its members is also negligibly correlated with
the temperature. Their slightly positive average correlation coefficient of 0.06
can simply be explained by higher consumption during the daytime, i.e., when
temperatures are naturally higher. Moreover, cluster 4 (green) is relatively
small, but corresponding loads have the largest positive correlation coefficient
(i.e., 0.27 on average). Even if these consumers have a higher electricity
demand during the daytime, they seem to be influenced by warm weather
conditions. Indeed, they are almost exclusively located in shopping areas or
at the main football stadium, where air conditioners are usually running on
hot days. Furthermore, negatively correlated consumers are divided into two
groups. First, cluster 5 (orange) consists of many customers who tend to
consume slightly more with decreasing temperature (i.e., average correlation
coefficient of -0.12), which might indicate the presence of electrical heating
systems. Almost all neighborhoods of Basel contain a small share of these
consumers to varying degrees. Second, cluster 2 (blue) shows the highest
negative correlation with temperature. On the one hand, it consists of loads
that are naturally very temperature-sensitive. On the other hand, price-
sensitive loads like boilers are also part of this cluster. In addition to a
potential impact of low temperatures, their mainly overnight consumption
contributes to the negative correlation.

Although most of the electricity customers are mainly active during periods
of the day with naturally higher temperatures, a majority of them are still
negatively correlated with the temperature. This suggests that this incidental
correlation effect is limited. Based on this clustering analysis, DSOs can first
gain insight into the grid areas that require a relatively higher electricity
supply during extreme weather conditions. In addition, clusters with higher
absolute correlation coefficients can be categorized as good candidates for DR
programs. This nevertheless assumes that temperature-sensitive consumers
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Figure 4.6: Spatial representation of smart metered loads clustered according
to their correlation with the temperature.

are equipped with boilers or HVAC systems that can offer flexibility thanks
to their thermal inertia.

4.5 conclusion

To summarize, the high spatial and temporal resolution provided by smart
meters enables a previously unattainable degree of detail in distribution grids.
Though, suitable methods are needed to lower the complexity of a large quan-
tity of data and convert it into actual knowledge easily interpretable by power
systems companies, which can eventually be integrated into decision-making
support tools. Unsupervised learning techniques, and especially clustering,
add value to smart meter data by grouping and putting into perspective
the multiple consumers. There is a large set of clustering algorithms with
various performance capabilities proposed in the literature. However, this
analysis is limited to the popular k-means algorithm and principally focuses
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on the overall clustering process. Based on more than 30’000 smart metered
consumers in the City of Basel, this chapter illustrates various clustering
processes, going from proper data preparation and features extraction to
the representation and interpretation of results. An interactive visualization
tool has also been designed for presenting clustering outcomes in an intuitive
form.
The extraction of features is the key element of a successful clustering

analysis since they define the points of similarity between power consumers in
order to build clusters. The variety of features basically depends on the points
of interest, e.g., standard statistical metrics, a combination of such metrics,
the correlation between load profiles and weather variables, and typical load
profiles. Based on the k-means algorithm, the number of clusters must be
chosen in advance, which is often a trade-off between interpretability and
the desired level of detail. Clustering outcomes can be visualized in different
ways, taking advantage of both the high temporal and spatial resolutions of
smart meter data. For example, typical load profiles focus on the behavior
over time of different categories of consumers, whereas the location of DCUs
can be leveraged to visualize their spatial distribution on a city map. While
preserving the anonymity of individual consumers, clustering of smart meter
data represented at the level of DCUs provides a more comprehensive picture
of the system than aggregate measurements, e.g., at the transformer level.
Apart from the data preparation phase, clustering is not a time-intensive

method and only requires a small amount of data in contrast to other learning
algorithms such as forecasting. In addition, such unsupervised learning does
not require data labeling which is often time-consuming. More generally,
useful knowledge can be gained from smart meter data without any further
information concerning the type of consumers and their habits. Clustering
analysis is of interest to identify the main types of consumers but also detect
more uncommon loads whose behavior might considerably differ from the
majority. As illustrated in the visualization tool, uncommon loads are located
in specific areas of the city. Good knowledge of the different types of loads and
of their share can help the DSO to cope with critical states of the distribution
grid rapidly. For example, a large concentration of temperature-sensitive
consumers in a certain neighborhood can heavily load the grid components
in case of extreme weather conditions. The extent of such an issue is not
necessarily visible on an aggregate level and can go undetected if suitable tools
for analyzing and visualizing smart meter data are not available. Furthermore,
the customer segmentation obtained by clustering can set the basis for the
implementation of dynamic pricing and DR programs. More specific analysis
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is nevertheless necessary to estimate the actual flexibility potential. In any
case, simple unsupervised methods such as clustering already offer a good
overview of smart meter data for a wide range of applications.





5
T E M P O R A L R E S O L U T I O N A N D
S PAT I A L A G G R E G AT I O N

This chapter discusses how the characteristics of load profiles in distribution
grids are altered with respect to the temporal resolution and spatial aggregation.
Based on different Costa Rican data sets, time series visualizations first
provide qualitative insights, whereas standard statistical metrics allow for
quantitative evaluation. Although rarely properly considered in data-based
studies, it appears that the effect of both temporal averaging and spatial
aggregation on load profiles is substantial, especially at low aggregation levels.
The content of this chapter is principally inspired by [277].

5.1 introduction

As presented in Chapter 4, both temporal and spatial dimensions of ad-
vanced metering devices contain valuable information. The level of detail
is nevertheless linked to the data resolution. Depending on the application,
measurements at different temporal resolutions and different aggregation
levels are required. For example, NILM algorithms traditionally work with
high-resolution measurements, i.e., with granularity in the range of seconds
(or higher) and at the end-user level. In contrast, long-term load forecasting
(e.g., for planning purposes) focuses on the main tendency such that measure-
ments at an aggregate level for typical days are sufficient. In addition to the
desired level of detail, the resolution of measurement data has implications for
data communication and storage requirements. The higher the resolution, the
larger the bandwidth of the communication system and the storage capacity.
Finally, high-resolution measurement data raise privacy concerns as discussed
in Section 2.4.6.
The output temporal resolution of advanced metering devices is a cus-

tomizable parameter that results from a trade-off between different interests
and constraints. Higher temporal granularity potentially implies more precise
information but also leads to a larger amount of data and to additional risks
in terms of customer privacy. In this regard, each country or even each DSO
relies on its standards. For example, the European Union recommends a
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granularity of 15 minutes for storing historical smart meter consumption
data [278]. Most EU states (e.g., Austria, Belgium, Germany, Greece, Hungary,
Italy, Luxembourg, Malta, Slovenia) follow this recommendation. Higher res-
olutions (i.e., 5 minutes to 1 minute) are sometimes allowed for pilot projects
and specific categories of customers, e.g., industrial consumers. In contrast,
Ireland is equipped with 30-minute resolution smart meters, whereas Croatia,
Latvia, Lithuania, Portugal, and Spain rely on 1-hour resolution smart meters.
Slovakia is an exception with a granularity of 3 minutes for smart meter
data. In addition, the examples of AMI data sets presented in Section 3.2
exhibit a temporal resolution of 10 to 15 minutes for cabinet and transformer
measurements and one minute for sub-metering data, which is common in
distribution grids.
The literature on the actual impact of temporal resolution in AMI data

is scarce and focuses on specific aspects. For example, the authors in [279]
study the effect of temporal averaging on the load profile of 8 houses recorded
at a one-minute resolution. The authors in [280] investigate the impact of
temporal resolution on the performance of multiple clustering algorithms
for residential load profiles. Besides, temporal data granularity also influ-
ences smart meter privacy. Notably, the authors in [189] have performed a
comprehensive sensitivity analysis on the possible detection of home appli-
ances. They conclude that an appliance is visible in smart meter data as
long as the time interval does not exceed half of its typical on-duration. The
temporal resolution also impacts the recorded output power of PV systems.
For example, the authors in [281] analyze how this influences the capacity
configuration of energy storage systems. In addition, the authors in [282]
show that the accuracy of spatio-temporal solar forecasting depends on the
temporal data resolution.
Furthermore, measurement data can be recorded at different aggregation

levels in distribution grids, going from single electrical appliances to the
substation level. In this context, spatial resolution refers to the number of dif-
ferent measurement points at a certain aggregation level. Measurements at low
aggregation levels (e.g., appliance, electricity user) are generally characterized
by a higher spatial resolution than measurements at higher aggregation levels
(e.g., transformer, substation). More concretely, a local substation supplies
several dozens or of distribution transformers, each distribution transformer
supplies hundreds of electricity users, and each user utilizes several dozens
of electrical appliances. At the exception of smart-meter roll-out statistics
as presented in Section 2.3, comprehensive information on the number of
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installed sub-metering devices and advanced meters at distribution cabinets
and transformers is rare.

As reviewed by [283], spatial aggregation is often leveraged for the design
of privacy-preserving schemes. For example, the authors in [284] and [285]
study the theoretical computation and communication overheads of their
proposed privacy-preserving schemes as a function of the aggregation level.
However, the influence of spatial aggregation level on the achieved privacy
itself is not quantified. Spatial aggregation is also relevant in load forecasting.
As noticed in [286], the aggregation level can substantially influence the
prediction performance. The authors in [123] have derived an empirical
scaling law that describes load forecasting accuracy at varying levels of
aggregation. Ensemble forecasting also benefits from a judicious grouping of
consumers [131]. Nevertheless, to the best of the author’s knowledge, there is
no literature on the characteristics of AMI measurements themselves with
respect to spatial aggregation. In addition, temporal and spatial dimensions
are rarely considered together.

Accordingly, this chapter studies the influence of both temporal and spatial
dimensions of AMI data on their inherent characteristics. For that purpose,
the analysis leverages both available Costa Rican data sets whose preparation
is presented in Section 5.2. Next, Section 5.3 studies the impact of temporal
resolution on the load profile of domestic appliances and residential users. The
impact of temporal resolution and spatial aggregation is then analyzed jointly
in Section 5.4. Finally, Section 5.5 summarizes the primary outcomes of the
study and points out the implications for future data-based applications.

5.2 data preparation

Generally, raw data must be prepared in a way that meets the requirements
of the subsequent data-based analysis without substantial bias of their actual
properties. For this study’s purpose, the data preparation process must
preserve the statistical properties while yielding complete time series. The
case studies are based on both Costa Rican data sets presented in Section 3.2.
Sub-metering data are valuable for their high temporal and spatial resolutions,
whereas the set of smart meter data contains a large number of examples.
Their specific preparation is detailed in the following.
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5.2.1 Costa Rican Sub-Metering Data

As presented in Section 3.2.3, the Costa Rican sub-metering data set consists
of active power load profiles of residential appliances from 70 households
recorded over about one week at a one-minute resolution. Due to the relatively
low amount of data, visual inspection appears to be the most reasonable
approach to filter out inadequate measurement time series. Load profiles of
individual appliances can be very diverse such that their authenticity would be
challenging to assess algorithmically. In this context, data filtering is generally
based on domain knowledge and notably leverages different examples of
usual appliance load profiles illustrated in [287]. In the Costa Rican sub-
metering data set, the main reason for filtering out recorded load profiles is
their unrealistic shape or power consumption level compared to the type of
device indicated in the metadata. Hence, examples are principally discarded
because of data labeling errors. In addition, the metadata indicate that the
refrigerator of some households is metered together with other appliances
in the same channel. In several cases, visual inspection nevertheless shows
that the corresponding load profile still corresponds to the sole refrigerator,
increasing the set of valid load profiles. In terms of cleaning, time series
with a share of missing values higher than 5% are discarded. Subsequently,
data gaps smaller than five minutes are filled by linear interpolation, and
larger gaps are imputed by values from a similar day in order to preserve
statistical properties. After data preparation, active power profiles of 24 water
heaters, 14 refrigerators, 16 dryers, 37 kitchen appliances, and 59 lighting
devices are available for the study. The remaining measurement time series
are aggregated by household and labeled as “others”. Moreover, the difference
between the aggregation of all individual measurements and the household’s
main load is labeled as “not measured”.

5.2.2 Costa Rican Smart Meter Data

As detailed in Section 3.2.2, the smart meter data gathered by CNFL, one
of Costa Rican DSOs, consists of several thousands of active and reactive
power profiles at the end-user level. They cover a large range of residential
and commercial consumers. A period of four months is selected for this study.
In contrast to the sub-metering data, the measurement time interval of the
smart meter data is only 15 minutes. In terms of cleaning, time series with
a share of missing values higher than 5% are discarded. In addition, data
gaps smaller than one hour are filled by linear interpolation. The values from
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a neighboring week replace the remaining data gaps. Eventually, the data
preparation phase leads to clean active and reactive power profiles for 7’349
consumers.

5.3 effect of temporal resolution

This section investigates the effect of the output temporal resolution of
advanced meters on the shape and statistical properties of load profiles. When
recording non-cumulative data (e.g., power, voltage, current, temperature) at
lower temporal resolutions than the original measurement frequency, so-called
temporal averaging occurs. This means that each recorded value consists of
the average over several initial measurement time steps. For the purpose of
this study, original load profiles are adapted to lower temporal resolutions
according to the conversion process expressed by Equation (3.10). This reflects
how measurement data would be recorded at different output resolutions.
In the following, the effect of temporal averaging is assessed on the profile
of loads at different aggregation levels. Namely, the study focuses on single
electrical appliances, individual residential users, and the aggregation of
residential users. The analysis is illustrated by data from the Costa Rican
sub-metering study characterized by an original temporal resolution of one
minute.

5.3.1 Individual Electrical Appliances

The shape of load profiles highly varies among different electrical appliances.
To get an idea of their shape and of the impact of temporal resolution, Fig-
ure 5.1 visualizes the load profile of three representative domestic appliances
at different common temporal resolutions. The first load profile belongs to a
water heater. This TCL consumes electric power to heat and maintain the
temperature in the water tank within certain limits. It is characterized by a
fixed rated power of 10 kW and a relatively long thermal inertia. Hence, power
events are relatively short. When decreasing the temporal resolution, shorter
power events are not visible anymore at the rated power due to the temporal
averaging effect. From a temporal granularity of 15 minutes on, the water
heater activity only appears over one or two time steps since the time interval
is in the same range as the average ON duration. From this point on, the
shape of the load profile is not anymore characteristic of a water heater. The
second example corresponds to the load profile of a tumble dryer. This device
is used occasionally, and its cycle typically lasts more than one hour. During
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one cycle, the power consumption varies significantly between 0 and 6 kW.
Because of the frequent changes in power consumption, its typical load shape
is already not recognizable from a temporal resolution of 5 minutes. The
dryer load profile becomes slightly smoother with further decreased temporal
granularity. Finally, the load profile of a typical refrigerator is displayed. Its
rated power lies around 130 W, where a sharp power consumption peak char-
acterizes the beginning of each cycle. In addition, a defrost cycle with 210 W
power consumption appears around midday. Similar to the water heater,
the refrigerator is a TCL with a typical ON-OFF consumption behavior.
Nevertheless, it has to maintain the cool air within much narrower limits,
and its thermal inertia is considerably lower. Hence, its duty cycle (i.e., the
fraction of a cycle in which it is ON) is only slightly lower than 50%. Since
this refrigerator has a mean ON duration of 20 minutes, its load profile is
barely affected by temporal averaging at 5-minute resolution. However, the
typical ON-OFF behavior starts disappearing at 15-minute resolution and is
not detectable at 60-minute resolution.
Overall, the load profile of individual electrical appliances appears sig-

nificantly smoother and loses its characteristics with decreasing temporal
resolution. Especially, temporal averaging impacts the maximum power val-
ues and the volatility of load profiles. Figure 5.2 quantitatively evaluates
this impact on the main types of domestic appliances in the form of box
and whisker plots. For that purpose, the maximum power value and the
Coefficient of Variation (CV) are computed over the entire measurement
period. The CV is the ratio of the standard deviation to the mean and
measures the volatility of a time series. In the plot, each data point represents
the corresponding indicator value for a certain household, a certain type
of appliance, and a certain temporal resolution. The central bar indicates
the median value, the box corresponds to the Interquartile Range (IQR),
and the ends of the whiskers refer to 1.5 ¨ IQR below and above the lower
and upper quartiles, respectively. First of all, a large variance can be seen
between different types of appliances but also within the same category. This
aspect is not the main focus of interest in this study but is nevertheless
consistent with the specifications of such appliances. Moreover, the decrease
in temporal granularity systematically leads to a significant drop in both
maximal power value and volatility. The load profile of water heaters appears
to be the most impacted by the temporal resolution, especially regarding the
maximum power value. The impact is particularly pronounced at 60-minute
resolution with an average drop of 57% and 38% with respect to 15-minute
resolution for the maximum power and the CV, respectively. To a lesser
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Figure 5.3: Load profiling of the residential user presented in 3.9 and displayed
at different temporal resolutions.

extent, similar observations can be made for dryers, refrigerators, and kitchen
devices. Conversely, lighting is marginally affected, and its load volatility
only drops by 13% on average from 1-minute to 60-minute resolution. This
is explained by the fact that lighting devices are generally used for longer
periods than the measurement time interval.

5.3.2 Individual Residential End-Users

The load profile of a household is made of the aggregation of various individual
appliances and is likely to be also impacted by the temporal resolution. This is
illustrated by Figure 5.3 for a specific residential user. As previously observed,
the high and narrow power spikes of the water heater get substantially reduced,
and the volatile behavior of the dryer gets smoothed out. At lower temporal
resolutions, it is not anymore possible to allocate particular power events
to specific electrical appliances. On the one hand, this prevents data-based
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applications (e.g., NILM techniques, estimation of flexibility) from using
all necessary pieces of information. In addition, the fact that narrow power
spikes appear considerably smaller at lower temporal resolutions is potentially
problematic. For example, this can lead to the misestimation of the actual
capacity requirements of the local electrical infrastructure. Such concern is
highlighted by the authors in [281] in the case of energy storage systems. On
the other hand, this ensures a certain level of privacy for the residential user.
As noticed in [189], practically only lighting circuits and the refrigerator are
still detectable with measurement intervals of 15 minutes. With smart meter
data at a 60-minute resolution, only the presence or absence of inhabitants is
visible.

Although not explicitly illustrated for the sake of conciseness, temporal
averaging still substantially impacts both maximum value and CV at the
user level, but to a slightly lesser extent than at the device level. On average,
the maximum power value at the user level drops by 17%, 34%, and 66%
from 1-minute to 5-minute, 15-minute, and 60-minute resolution, respectively.
Analogously, the CV drops by 10%, 24%, and 46% on average from 1-minute
to 5-minute, 15-minute, and 60-minute resolution, respectively. Furthermore,
Figure 5.4 displays the role of different domestic appliances for both key
indicators with respect to the temporal resolution. For that purpose, each
data point labeled as “w/o appliance” is based on the load profile of a certain
household where the power measurements of the appliance of interest have
been subtracted1. First of all, the water heater is the appliance that clearly
plays the most important role in the household load with respect to both
indicators. The dryer also slightly influences the maximum power value, which
is not the case of the remaining appliances due to their relatively low power
consumption. In contrast to the water heater load, power consumption from
the refrigerator as well as the kitchen and lighting devices even lower the
volatility of the household load. In addition, there is no substantial impact of
temporal resolution on the role of a certain appliance within the total load,
which is also valid for the water heater.

5.3.3 Aggregation of Residential End-Users

Figure 5.5 finally illustrates the load profiling of the aggregation of all 70
residential users from the Costa Rican sub-metering data set according to
different temporal resolutions. This typically corresponds to the loading of

1 Each data point labeled as “with appliance” has a corresponding data point labeled as
“w/o appliance” which refers to the same residential user at the same temporal resolution.
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Figure 5.5: Load profiling of the aggregation of 70 residential users displayed
at different temporal resolutions.

a small distribution transformer. At this spatial aggregation level, only the
main tendency is visible. The load of individual appliances or even of specific
categories cannot be detected, even at high temporal resolution. Nevertheless,
the measurement interval still impacts the maximum power value, which
drops by 15%, 27%, and 44% from 1-minute to 5-minute, 15-minute, and
60-minute resolution, respectively. In this case, peak power events are very
short (e.g., a few minutes) and get therefore considerably smoothed out by
temporal averaging. It must also be noted that such peak power events are
not rare and often occur during peak hours. Finally, the volatility is slightly
affected as the CV decreases by 3%, 7%, and 14% from 1-minute to 5-minute,
15-minute, and 60-minute resolution, respectively.
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Figure 5.6: Smart meter load profiles at different spatial aggregation levels,
scaled by the respective number of consumers.

5.4 combined effect of spatial and temporal dimensions

This section focuses on the effect of spatial aggregation at different tem-
poral resolutions. Spatial aggregation basically refers to the summation of
multiple profiles metered at different locations. In this study, the shape and
characteristics of individual consumers are compared with the properties
of aggregations of 10, 100, and 1’000 consumers. In a distribution grid, the
aggregation of 10 consumers is representative of the load visible at an LV
bus (e.g., load of a multi-family building). Moreover, the aggregation of 100
and 1’000 end consumers typically corresponds to the loading of an ML/LV
transformer and of a small local substation, respectively.

In order to get first insights into the sole effect of spatial aggregation,
Figure 5.6 illustrates active power load profiles over one week at different
spatial aggregation levels. They come from the Costa Rican smart meter
data set with 15-minute measurement intervals. For comparison purposes,
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profiles are scaled by the number of consumers in each aggregation level.
Randomly selected, the upper load profile apparently belongs to a residential
consumer. It is characterized by high volatility and no evident periodicity.
Each further aggregation level consists of the same consumer(s) as in the
previous level, supplemented by new examples from the smart meter data
set. The aggregation of 10 consumers partially lowers the volatility of the
resulting load profile but does not allow for the emergence of a distinctive
pattern. At higher spatial aggregation levels, the load profile gets noticeably
less volatile and more periodic. Such characteristics are well-known in the
power forecasting community. Indeed, the performance of prediction algo-
rithms significantly improves at higher aggregation levels. This aspect is
quantified and confirmed by the authors in [286]. The load profile appears
slightly smoother with an aggregation of 1’000 consumers in comparison with
100 consumers, but the main pattern is similar. In this example, it basically
tends towards the average typical residential load profile of Costa Rica, as
presented in Figure 3.7.

Furthermore, an extensive sensitivity analysis is carried out to quanti-
tatively assess the alteration of active power load profiles with respect to
both temporal resolution and spatial aggregation. More concretely, the study
considers the combinations of 1-minute, 5-minute, 15-minute, and 60-minute
measurement data together with aggregations of 1, 10, 100, and 1’000 end con-
sumers. It must be noted that the number of end consumers is relatively low
in the sub-metering data set, while Costa Rican smart meter measurements
are not recorded at 1-minute resolution. Therefore, the study is performed
on both data sets but is nevertheless restricted to the respective feasible
temporal resolutions and aggregation levels. For comparison purposes, aggre-
gate load profiles are again scaled by the respective number of consumers
in each aggregation. In order to minimize potential bias in the formation
of aggregations, individual load profiles are selected by simple random sam-
pling, which is repeated 100 times. Hence, this leads to the creation of 100
examples of aggregations, each consisting of different load profiles, for each
aggregation level. Random sampling is performed without replacement for all
cases, with the exception of the sub-metering data set with an aggregation
of 100 consumers2. For a fair comparison, the same samples per aggregation
are maintained over the various temporal resolutions. On this basis, the

2 It must be noted that there are only 70 residential users in the sub-metering data set.
Nevertheless, it appears important to also consider aggregations of 100 consumers for this
data set. The possibility of sampling more than once the same consumer within a certain
aggregation is not seen as problematic at this level, although it must be kept in mind that
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Spatial
aggregation

Temporal
resolution

Scaled
maximum
power [kW]

Coefficient
of variation

1 consumer 1 minute 9.60 2.12
1 consumer 5 minutes 8.01 1.88
1 consumer 15 minutes 6.31 | 3.67 1.58 | 1.58
1 consumer 60 minutes 3.22 | 2.31 1.11 | 1.17
10 consumers 1 minute 2.96 0.77
10 consumers 5 minutes 2.49 0.71
10 consumers 15 minutes 1.95 | 2.48 0.64 | 0.51
10 consumers 60 minutes 1.31 | 2.00 0.52 | 0.43
100 consumers 1 minute 1.56 0.49
100 consumers 5 minutes 1.37 0.47
100 consumers 15 minutes 1.15 | 1.62 0.44 | 0.29
100 consumers 60 minutes 0.90 | 1.49 0.40 | 0.28
1’000 consumers 1 minute - -
1’000 consumers 5 minutes - -
1’000 consumers 15 minutes 1.31 0.27
1’000 consumers 60 minutes 1.28 0.27

Table 5.1: Average value of the indicators of the sensitivity analysis illustrated
in Figure 5.7. Red and blue values refer to the sub-metering and
smart meter data sets, respectively.
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maximum power value and the coefficient of variation are computed for each
load profile and used as indicators.

Figure 5.7 visualizes the outcome of this sensitivity analysis. For the sake of
readability, the visualization is split into two sub-figures. Namely, Figure 5.7a
displays the characteristics of individual consumers and of aggregations
of 10 consumers, and Figure 5.7b focuses on aggregations of 10, 100, and
1’000 consumers. In addition, Table 5.1 summarizes the mean value of both
indicators over the 100 repetitions for each feasible combination of temporal
resolution and spatial aggregation level. Overall, spatial aggregation leads to
the same tendency as temporal averaging, i.e., lower scaled maximum power
values and lower coefficients of variation. The largest drop occurs between
individual loads and the aggregation of 10 consumers. For example, the scaled
maximum power value in the sub-metering data set is approximately divided
by three at all temporal resolutions. The CV is also divided by three in
both data sets when aggregating ten consumers, almost independently of the
temporal resolution. For both indicators, not only the average value but also
the variance3 among the 100 different repetitions at the same level noticeably
decreases with increasing aggregation level. Moreover, previous analysis on
the sole impact of the temporal resolution appears to be generally valid at any
spatial aggregation level. Notably, the transition from 15-minute to 60-minute
resolution causes the most significant decrease of both indicators, although
the impact gradually fades with increasing spatial aggregation level. Finally,
the influence of temporal averaging is practically null for aggregations of
1’000 consumers.

By comparing the sub-metering and smart meter data sets, the larger
variety of consumers in the latter is confirmed, especially in light of the
various outliers at low aggregation levels. With the exception of those outliers,
the scaled maximum power values in the smart meter data set appear, on
average, less sensitive to the aggregation level than in the sub-metering data
set. Such differences are explained by the fact that the smart meter data set
does not only consist of volatile residential load profiles but also of other
loads with inherently lower variability.

the diversity is limited. Conversely, aggregations of 1’000 consumers based on 70 examples
would be totally biased and are therefore not considered in the sensitivity analysis.

3 The variance is reflected in the width of the IQR.
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5.5 conclusion

To conclude, this chapter clearly demonstrates that the shape and statistical
properties of AMI load profiles are substantially impacted by the choice of the
measurement interval and by the aggregation level at which they are metered.
This generally holds true for aggregations smaller than 1’000 consumers, which
is typically the case in distribution grids. First, temporal resolution plays a
significant role when metering individual domestic appliances. Per definition,
temporal averaging does not affect the average energy consumption but
considerably influences the load shape as well as key features like the maximum
recorded power and the coefficient of variation. Hence, a decrease in temporal
resolution is generally associated with considerable loss of information for
individual appliances. The effect is even more pronounced for high power
consumption appliances (e.g., water heater, dryer) whose impact on the
overall system is non-negligible. The same observations are visible at the level
of a residential user and of an aggregation of users, but to a slightly lesser
extent. For example, the aggregation of 70 users as presented in Section 5.3.3
corresponds to the loading of a small ML/LV transformer. Even at this
aggregation level, power measurements at lower temporal resolutions fail
to account for short peak power events that might be of importance for
transformer sizing. In comparison with smart meter data, measurements at
the transformer level are not particularly critical in terms of privacy or size of
data. Hence, high-frequency data are of great interest to faithfully represent
the actual loading situation of transformers.

Furthermore, observations at individual aggregation levels are confirmed by
the sensitivity analysis. Based on two measurement data sets with different
characteristics, the analysis covers a large range of temporal resolutions and
spatial aggregation levels which are common in distribution grids. The same
general trends are observed in both data sets, where load profiles are largely
smoothed out at lower temporal resolutions and higher spatial aggregation
levels. The impact is particularly significant when aggregating ten consumers.
To a lesser extent, the maximum power value and the coefficient of variation
are gradually reduced with increasing measurement time intervals.
Despite the important role of temporal and spatial dimensions on AMI

measurements, they are rarely explicitly considered in data-based studies and
in the development of data-based algorithms at the level of distribution grids.
It is however known that peak power events can be harmful to power sys-
tems. Their proper estimation is crucial for the infrastructure’s dimensioning.
Moreover, lower volatility especially allows for better predictability, which
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is a key aspect for many data-based algorithms, e.g., forecasting models.
The modification of the inherent properties of measurement data because of
temporal averaging or spatial aggregation might lead to biased conclusions
which are not in phase with reality. Hence, the following chapters shall take
these concerns into account in AMI data-based applications. Notably, distri-
bution grid operators use to approximate the load profile of single consumers
without a smart meter based on the load measured at a higher spatial ag-
gregation level (e.g., at the feeder level). Chapter 7 thoroughly studies the
implications of such approximation for the estimation of voltages and power
flows. Furthermore, the impact of temporal granularity on the success of load
disaggregation algorithms is detailed in Chapter 8.





Part II

D ATA - B A S E D M O D E L I N G O F
D I S T R I B U T I O N G R I D S





6
P S E U D O - M E A S U R E M E N T
S Y N T H E S I S

This chapter focuses on creating active and reactive power pseudo-measurement
for end-consumers in low-voltage grids. At this level, the coverage of advanced
meters is insufficient to obtain an observable system, which necessitates the
synthesis of pseudo-measurements. In the first stage, novel load profile gen-
eration approaches for both active and reactive power are proposed based on
existing smart meter data and compared to traditional techniques. The pro-
posed approach for active power synthesis is stochastic and ensures realistic
statistical properties at the individual level, which is generally ignored in the
context of pseudo-measurement synthesis. Rarely considered in the literature,
the synthesis of reactive power is also thoroughly addressed. In the second
stage, a methodology is developed to optimally allocate synthetic load profiles
to actual non-metered consumers. On the one hand, the spatial aggregation
of all load profiles must coincide with power measurements at an aggregate
level. On the other hand, the energy contained in each allocated load profile
must match the reported energy consumption of the corresponding end-user.
All presented approaches are evaluated in different case studies using smart
meter data from Costa Rica and from the City of Basel. This chapter is
essentially based on [288].

6.1 introduction

In traditional power systems, LV grids were regarded as a black box in terms
of information. The power was known to flow from higher grid levels to the
end-consumers, and the grid infrastructure was usually over-dimensioned to
cope with the most probable contingencies. For proper operation of distri-
bution grids, it was sufficient to model only the MV level and aggregate all
loads at the MV/LV feeders. At this level, the use of standard load profiles
allowed for satisfactory representation of the system in the absence of actual
measurements. However, current DSOs face new operation and control chal-
lenges due to the increasing share of renewable energy sources, distributed
storage units, and electric vehicles. In this new paradigm, power flows are

141
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not unidirectional anymore, and the emergence of new load types provokes
previously unimaginable grid congestions and voltage instabilities in LV grids.
Efficiency is also a key aspect of a sustainable system, which requires the
development of alternative solutions to traditional grid reinforcement to cope
with contingencies. Hence, properly modeling and monitoring distribution
grids down to the lowest voltage level, instead of only relying on aggregated
data, has become more important in recent years. This step highly relies on
the information provided by smart meters at the level of end-consumers.
Nevertheless, a large majority of the DSOs have not reached a full smart

meter penetration in their system yet, as discussed in Section 2.3. For many
countries, especially in Europe, North America, and the Asia-Pacific area, the
partial availability of smart meter data is a transitory state, and a wide-scale
coverage should be achieved within the next decade. In contrast, a few states
have opted for a selective smart meter roll-out due to cost considerations and
stronger data privacy policies. Moreover, the installation of smart meters does
not necessarily imply the full availability of their data. Smart meters and the
corresponding communication infrastructure are not infallible, and a small
portion of the potential data in the system are often not exploitable. Besides,
the recording of high-resolution power measurements at the end-user level
is associated with serious privacy concerns. This considerably restricts their
usage outside the limited scope of applications defined by privacy protection
laws. In summary, although an increasing share of end-users are equipped
with smart meters, their data are still a scarce commodity in the power
system community. In any case, the amount of reliable data in LV grids is
insufficient to obtain an observable system.
The synthesis of pseudo-measurements appears as an indispensable step

towards increasing the transparency in LV grids. They allow for more robust
decision-making processes in terms of grid operation and control, but also long-
term planning. Notably, pseudo-measurements are widely used in Distribution
System State Estimation (DSSE) [114]. In fact, a robust DSSE requires
an observable system and a certain redundancy of measurements which
can only be achieved with the help of pseudo-measurements. Extensive
literature exists for that purpose, which principally focuses on active power.
Pseudo-measurements synthesis techniques have first been developed for
the transmission network before being adapted to distribution grids and
finally down to the load of individual end-users. The conception of synthetic
load profiles for end-consumers is generally inspired by the models used at
higher spatial aggregation levels, where the load is particularly smooth and
periodic. However, the load profile of individual consumers is highly volatile,
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and its shape and characteristics can considerably vary among different
consumers, as seen in Chapter 5. Unfortunately, such features are often not
reflected by state-of-the-art pseudo-measurement synthesis techniques that
are simply designed to minimize the state estimation error at the system
level. Alternatively, different load profile generators are suggested in the
literature outside the DSSE context. They usually generate very realistic load
profiles at the level of individual residential consumers. Nevertheless, there
are computationally intensive and require detailed information to faithfully
represent a certain type of end-user, which is not applicable at the level of a
distribution grid.

This chapter focuses on the synthesis of realistic pseudo-measurements at
the level of end-users while complying with aggregate information in a given
LV grid. The idea is to leverage only smart meter data and aggregate pieces
of information which are typically available in distribution grids. Section 6.2
details the methodology behind the synthesis of pseudo-measurements. Exist-
ing synthesis approaches are reviewed, and a novel approach based on Markov
Chain Models (MCMs) is proposed for the synthesis of active power profiles.
Although the use of MCMs is not new in this context, they traditionally
require a substantial amount of training data for the creation of statistically
representative load profiles. The innovation lies in the design of the transition
matrix, which inherently accounts for variations over time without excessive
training data. Besides, the section also discusses the synthesis of reactive
power, which is rarely addressed in the literature. Concretely, the relationship
under various conditions between active and reactive power consumption is
analyzed, which leads to the development of a novel reactive power synthesis
approach. Furthermore, synthetic load profiles are optimally allocated to
non-metered consumers in a distribution grid. For that purpose, different
optimization problems are solved in order to best match synthetic load pro-
files with power measurements at a spatial aggregate level, but also with the
energy requirements of each individual consumer. Section 6.3 evaluates the
effectiveness of the different approaches presented in Section 6.2. Active and
reactive power synthesis are tested on the smart meter data from the City of
Basel and from Costa Rica, respectively. Finally, the main contributions of
this chapter are summarized, and future work is outlined in Section 6.4.

6.2 methodology

This section presents the proposed methodology to synthesize active and
reactive load profiles for non-metered consumers in a distribution grid. Syn-
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Figure 6.1: Procedure for the synthesis of active and reactive power pseudo-
measurements.

thetic load profiles must make sense both at the level of individual consumers
and at an aggregate level. In terms of data availability, the methodology
relies on three main assumptions that are reasonable in current distribution
grids. First, the grid is characterized by partial smart meter penetration,
meaning that active and possibly reactive power measurements are recorded
for a portion of end-users. As argued above, partial smart meter penetration
can either be a transitory or permanent state. Second, the average energy
consumption of non-metered consumers is known. This is anyway required
for billing purposes, where traditional meters are typically read every month
or every year, depending on the local practices. Third, power measurements
are recorded at an aggregate level. This holds true in local substations for
monitoring purposes and tends to be more and more common at the level of
distribution MV/LV transformers.
Figure 6.1 summarizes the procedure followed in this chapter to create

active and reactive power pseudo-measurements. First of all, active power
profiles are synthesized as presented in Section 6.2.2, leveraging existing
smart meter data or aggregate measurements. The synthesis of reactive
power profiles is directly based on active power via the power factor, which
is addressed in Section 6.2.3. Both sections start with a literature review
before describing several synthesis techniques. Among others, a standard
approach traditionally used by DSOs and a novel and more realistic approach
are detailed for both active and reactive power synthesis. Subsequently,
Section 6.2.4 defines an innovative procedure to optimally allocate synthetic
load profiles to actual non-metered consumers while being consistent at an
aggregate level. Based on partial smart meter penetration, a power gap results
from the difference between the power profile measured at an aggregate level
(e.g., measurements of transformer loading) and the spatial aggregation of
all metered end-users’ profiles. The optimal aggregate matching procedure
starts with the selection of the most appropriate examples from a large set of
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synthetic profiles to fill the active power gap. Next, corresponding synthetic
reactive load profiles are scaled to perfectly match the reactive power gap.
Finally, selected load profiles are assigned to individual end-users according
to their reported active energy consumption.

6.2.1 Power Gap Profile

In the case of partial smart meter penetration, the load profile of individual
non-metered consumers is not known. Nevertheless, the fusion of smart
meter data with measurement data at an aggregate level (e.g., distribution
transformer, local substation) provides aggregate information about the
fraction of the load which is not metered in a distribution grid. More precisely,
an active power gap profile results from the difference between the active
power profile measured at the aggregate level and the spatial aggregation of
all metered customers’ profiles:

Pgap,t “ p1´ ρP q ¨ Pagg,t ´
n
ÿ

j“1
Pj,t, @t P t1, 2, . . . ,T u, (6.1)

where Pgap,t, Pagg,t and Pj,t are the active power values at time t of the gap
profile, at the aggregate level and of metered consumer j, respectively. The
parameter ρP models the active power losses in the distribution grid, n is the
number of consumers equipped with a smart meter, and T is the total number
of time steps under consideration. Such active power gap is illustrated in
Figure 3.7 in the case of a sub-grid in the City of San José. In this example,
the portion of the total load labeled as “non metered” primarily belongs to
non-metered consumers, but also partly comes from losses in power lines
and transformers. These losses are first given a rough average estimate (e.g.,
between 1% and 5% of the total load depending on the distribution grid
infrastructure) and can be determined precisely in a later stage by load flow
simulation or state estimation, as presented in Chapter 7.

Analogously, a gap profile also appears for reactive power:

Qgap,t “ p1´ ρQq ¨Qagg,t ´
n
ÿ

j“1
Qj,t, @t P t1, 2, . . . ,T u, (6.2)

where Qgap,t, Qagg,t and Qj,t are the reactive power values at time t of the
gap profile, at the aggregate level and of metered consumer j, respectively.
The parameter ρQ models the reactive power losses in the distribution grid.
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6.2.2 Synthesis of Active Power Profiles

The synthesis of active power profiles is a relatively well-established topic in
the power system literature. Nevertheless, the increased attention given to
distribution grids considerably boosted the need for pseudo-measurements
due to the obvious lack of actual measurements. Traditionally, two main
categories are distinguished for the synthesis of active power load profiles:
bottom-up and top-down approaches.
Bottom-up approaches rely on the modeling of single appliances. In this

case, the synthetic load profile of end-users consists of the aggregation of all
appliances’ load. The resulting load profile usually depends on the dwelling
characteristics, on the type and specifications of appliances, and possibly on
behavioral models of consumer habits. For example, LoadProfileGenerator
(LPG) is a well-recognized tool to generate residential load profiles based
on a set of predefined appliance models and on a full behavior simulation
of inhabitants [218]. Similarly, the approaches developed in [289] and [290]
transforms user activity profiles into load models based on a Markov Chain
Monte Carlo (MCMC) method and on appliance ownership statistics. Alterna-
tively, the authors in [291] accurately model the thermal, electrical behavior
of domestic appliances to capture the time-variant response of residential
consumers to changes in voltage. Bottom-up approaches create very realistic
load profiles but also have major downsides. First, existing tools only focus
on residential loads that are generally made of well-defined appliances, in
contrast to commercial and industrial loads. In addition, detailed information
on the appliances (e.g., type and number of appliances, temperature set
point), the end-users (e.g., household composition, number of inhabitants),
and the buildings (e.g., type of house, number of stories, insulation material)
is often required to faithfully model the loads in a specific system. Never-
theless, such statistical data are often not available, notably due to privacy
reasons. Furthermore, modeling the characteristics of every single appliance
and the behavior of every single end-user is computationally intensive. This
limits the generation of a good diversity of load profiles and prevents the
application to large populations.
Top-down approaches make use of actual measurement data to generate

new profiles with similar properties. They are often leveraged in the DSSE
literature, where actual measurements are not sufficient to obtain an ob-
servable system. Standard Load Profiles (SLPs) are widely used for that
purpose. An SLP corresponds to the average power consumption profile of a
specific class of end-consumer. The outcome is similar to the average profiles
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resulting from the cluster analysis presented in Section 4.4.1. For example,
the authors in [292] make use of SLPs of four typical classes in the UK to
generate active power pseudo-measurements. Since pseudo-measurements
inspired by SLPs reflect the general trend of an ensemble of consumers, their
shape is particularly smooth and periodic. Hence, they are appropriate for
approximating the load at an aggregate level. However, the authors in [293]
point out that pseudo-measurements based on Standard Load Profiles (SLPs)
are not satisfying for DSSE in LV grids where the load is highly volatile and
hardly predictable. This averaging or smoothing effect is also induced by
other approaches used for the generation of pseudo-measurements. Some ex-
amples suggested in the literature rely on Gaussian Mixture Models (GMMs),
Artificial Neural Networks (ANNs), clustering techniques, autoregressive
models, or Gradient Boosting Tree (GBT) models [292, 294–297]. Especially,
supervised algorithms are trained to minimize the point-wise error with the
original data and fail to reflect the original load distribution, similarly to SLPs.
More detailed information on this smoothing effect is given in Section 9.3.
Alternatively, Generative Adversarial Networks (GANs) are recently gaining
in popularity due to their great capacity to generate synthetic data with
similar statistical properties as real data. Notably, the authors in [298] show
that the load distribution of residential pseudo-measurements created by
GANs is faithful to reality. Nevertheless, GANs require a substantial amount
of training data and are difficult to interpret due to their black-box nature,
which is the case of most ANN-based models.

In this work, the synthesis of active power pseudo-measurements is based on
Markov Chain Models (MCMs) which are leveraged as top-down approaches.
These discrete-time stochastic processes are particularly effective at faithfully
representing the sharp spikes and high volatility of load profiles at the end-user
level. Besides, they do not necessitate an extensive amount of input data. In
the following, a method called “Standard Load Allocation” and traditionally
used by power utilities is first presented as a benchmark. Subsequently, a
traditional MCM-based approach is detailed according to state-of-the-art
literature. On this basis, the author suggests a novel version called “Adaptive
Markov Chain Model” which inherently accounts for seasonality at different
time scales without excessive computational effort. This adaptive version has
first been presented in [288].

6.2.2.1 Standard Load Allocation

The Standard Load Allocation (SLA) is a pseudo-measurement synthesis
approach that only leverages power measurements at an aggregate level
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and the average energy consumption of individual non-metered consumers.
Especially, it does not involve smart meter data. Due to its simplicity, the
approach is often used by DSOs in the absence of smart meter data and
is therefore chosen as a benchmark in this work. Developed by the authors
in [299], the SLA consists of assigning the power gap profile as defined in
Equation (6.1) to all non-metered end-users, scaled by their respective share
of energy consumption:

Pi,t “
Ei

řn0
j“1Ej

¨ Pgap,t, @i P t1, 2, . . . ,n0u, @t P t1, 2, . . . ,T u, (6.3)

where Pi,t is the active power allocated to consumer i at time t, Pgap,t is the
active power value of the gap profile at time t, and Ei is the average energy
consumption of consumer i. In addition, n0 is the number of non-metered
consumers, and T is the total number of time steps under consideration.
Since the SLA is based on measurements at a higher spatial aggregate

level, synthetic load profiles also inherit from their statistical properties,
e.g., reduced volatility compared to actual smart meter data. Statistically
speaking, the load distribution of SLA-based pseudo-measurements is similar
to the load distribution of SLPs or, to a certain extent, load profiles generated
by algorithms focusing on the point-wise error (e.g., autoregressive models,
clustering algorithms, most supervised ML approaches).

6.2.2.2 Traditional Markov Chain Model

A Markov model is particularly suitable for modeling systems where the
current state of a sequence is highly correlated to the immediately preceding
state, which is the case of load profiles. The model itself consists of a finite set
of states and transition probabilities among these states. It builds on existing
data and allows for the generation of time series with similar properties.
In the context of power measurements, a state corresponds to a range of
power consumption values as observed in the input data. In order to define
the states, different approaches are proposed in the literature. In [300], the
entire range of possible power values is divided into segments of equal length.
However, this leads to the formation of states with very few observations,
usually corresponding to higher power values for smart meter data. This
could bias the underlying distribution of high power values due to the lack of
corresponding data. Alternatively, the authors in [301] define the limits of
the states by equally splitting the cumulative probability density function.
Hence, all states contain the same number of observations but refer to power
ranges of different lengths. Notably, this leads to less granular modeling of
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higher power values. In this work, the definition of the states is based on
K-Means clustering, where the power values of the input time series are used
as training data. As a result, each cluster defines a state which corresponds
to a different range of power. This allows for a trade-off between the creation
of power ranges of the same length and states with the same number of
observations. A compromise must also be found regarding the number of
states. Although a high number is desired for a more detailed model, there
is the risk of creating an overfitted model. Indeed, more states imply fewer
input data to compute the probabilities for each transition among the states.
Once the range of each state is defined, the probability prÑs to jump

from a certain state r at time step t to another state s at time step t` 1 is
statistically derived from the input time series. This leads to the creation of
a so-called transition probability matrix of dimension ns ˆ ns, where ns is
the total number of states. Each element of this matrix reflects the relative
probability of moving from the current state to any other state, including the
current state. Rows and columns of the transition matrix refer to the current
and next state, respectively. In a first-order Markov Chain Model (MCM),
the transition probability to a certain state at time t only depends on the
state at time t´ 1. In contrast, a qth-order MCM considers the states of q
previous time steps. In this work, only the first-order MCM is implemented.
A higher-order MCM would substantially reduce the amount of data available
for the calculation of each transition probability.

An MCM is said to be time-homogeneous if the transition matrix remains
constant over time. However, it has been observed that the load distribution
of electricity end-users can significantly vary over time, especially at different
periods of the day. The authors in [302] show that a time-homogeneous MCM
fails to model the effect of the time of the day on electricity consumption
patterns. Hence, a time-inhomogeneous model is implemented, where different
states and various probability factors are defined for each time step within
a day. Assuming a 15-minute temporal resolution, this leads to a transition
matrix of dimension 96ˆ ns ˆ ns. In this case, distinct subsets from the
original set of power observations are used to calculate each probability
factor. For example, only power values measured at 10:00 within the load
range of the first state are used to calculate the probabilities of moving from
the first state at 10:00 to any other state at 10:15. Per definition, all relative
probabilities must sum to one for each row of the transition matrix (i.e., each
starting state).
Finally, the generation of a synthetic load profile using a Markov chain

occurs time step after time step by a random walk through the transition
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probability matrix. In other words, starting from a predefined state r, the
next state s is repeatedly selected according to the probability prÑs given
by the element at row r and column s in the transition matrix. By nature, a
Markov chain produces a sequence of discrete states. To obtain continuous
values in this version of the traditional MCM, each state (i.e., load range) is
further divided into a fixed number of sub-levels associated with a relative
probability that approximates the load distribution within the load range.
This can be interpreted as the creation of a density histogram for each state,
where power values are selected. Eventually, white noise is added to the
power values to make the synthetic profile more realistic. In theory, one
model allows for the creation of an infinite number of synthetic profiles with
similar transition probabilities as for the input load profile.

6.2.2.3 Adaptive Markov Chain Model

As it will be seen in Section 6.3.1, the traditional MCM cannot represent
seasonality on a medium- and long-term basis unless it is explicitly designed
for this purpose. However, such an explicit design often implies a loss of model
accuracy due to overfitting. Indeed, the more temporal distinctions are drawn
in a time-inhomogeneous model, the fewer observations are available to calcu-
late the probabilities for each specific period of time. In order to overcome this
situation, a novel approach called “Adaptive Markov Chain Model” (AMCM)
is proposed. It generalizes the concept of time-inhomogeneity without loss
of accuracy or need for additional input data. Concretely, each element of
the original ns ˆ ns transition matrix is not a real number between 0 and
1 anymore, but a logistic regression model that learns the corresponding
transition probability:

hθ pxq “ g
´

θTx
¯

, with g pzq “ 1
1` e´z , (6.4)

where hθ pxq is a logistic regression model1, x “ p1,hour,weekday,monthq
is a vector of time-related features, and θ “ pθ0, θ1, θ2, θ3q a vector of coeffi-
cients defined by the training process. In practice, the output of the logistic
regression is often set to 0 or 1 if it is lower or higher than 0.5, respectively.
This final step is however not taken in this case. Hence, depending on the
hour of the day, the weekday, and the month, the function outputs different
transition probabilities lying between zero and one. For a certain starting

1 To be precise, the element describing the transition probability from state r to s should be
defined as hθ,rÑs. Subscript r Ñ s is nevertheless discarded for the sake of simplicity.
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state r, the training process of the corresponding logistic regression model
aims to minimize the cost of prediction error:

Jrpθq “ ´
1

|Tr|
¨
ÿ

tPTr

”

yi ¨ log phθpxiqq ` p1´ yiq ¨ log p1´ hθpxiqq
ı

, (6.5)

where Jrpθq is the cost function of the logistic regression model with the set
of coefficients θ referring to the starting state r. In addition, hθ pxiq P r0, 1s is
the transition probability function (i.e., logistic regression model) evaluated
at time i, and yi P t0, 1u indicates whether the corresponding transition
actually occurs at time i. Eventually, Tr is the set of all time steps related to
state r.

So far, the training for each element of the adaptive transition matrix has
been presented as a binary logistic regression with only two possible outcomes
(i.e., either the transition occurs or not). Nevertheless, the rows and columns
of the adaptive transition matrix are linked and refer to a certain starting
and landing state in the transition process, respectively. In fact, each row can
be implemented as a multinomial logistic regression with multiple possible
outcomes (i.e., either the transition occurs to state 1, or to state 2, or to state
3, etc.). Per definition, the multinomial logistic regression model is designed
such that the whole set of probabilities forms a probability distribution.
This means that all probabilities in a certain row of the transition matrix
theoretically sum up to one for any predefined set of features. This is in line
with the definition of the transition matrix of a Markov chain.

In this way, the AMCM is able to learn from the input data and reproduce
the notion of seasonality on several time scales. Knowing that 24ˆ 7ˆ 12 “
21016 combinations of hours, weekdays and months exist, the AMCM can
also be seen as a traditional MCM whose transition matrix has a dimension
of 21016ˆnsˆns. In contrast to the traditional MCM, resulting probabilities
are nevertheless estimated based on the whole set of available data, which
mitigates the risk of overfitting. It should also be noted that this model can
be easily fine-tuned by making use of different time-related features and by
including exogenous variables (e.g., temperature).
Once a sequence of discrete states is obtained from the AMCM, the con-

version into actual power values is accomplished by means of a continuous
probability function. Instead of discrete sub-levels as presented for the tradi-
tional MCM, the probability function directly models the continuous load
distribution. Different ways of approximating a load distribution are men-
tioned in the literature, e.g., Weibull, Log-normal, Beta, Gamma, Gaussian,
and Generalized Extreme Value distributions [300, 303, 304]. However, the
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authors in [305] show that power measurements in distribution systems usu-
ally do not follow a specific probability density function. They suggest the
Gaussian Mixture Model (GMM) as the most appropriate approach to repre-
sent different types of unknown load distributions. Formally, a GMM consists
of the linear combination of several Gaussian distribution components:

GMMpyq “
K
ÿ

g“1
ωg ¨ fgpyq, with fg „ N pµg,σ2

gq, (6.6)

where GMMpyq is the GMM evaluated at value y, fgpyq is the gth Gaussian
component evaluated at value y, and ωg is a weighting factor associated with
fgpyq. In addition, K is the number of Gaussian componants, and N pµg,σ2

gq

refers to the Gaussian (or normal) distribution defined by its mean µg and
variance σ2

g . More precisely, each Gaussian components is defined as follows:

fgpyq “
1

b

2π ¨ σ2
g

e

´py´µgq
2

2σ2
g . (6.7)

The Expectation-Maximization (EM) algorithm is one of the best data-
based approaches to finding the maximum-likelihood estimate of the pa-
rameters (i.e., weight, mean, and variance) for each of the K Gaussian
components [306]. This is an iterative method that is first initialized with K
standard Gaussian components randomly placed in the data space. Next, the
following two steps are repeated until convergence:

1. Expectation: According to its location in the data space, each data point
is given a probability to belong to each of the Gaussian components.

2. Maximization: The parameters of each Gaussian component are re-
estimated to best fit all softly assigned data points (i.e., data points
weighted by their given probabilities).

The ideal number of Gaussian components can be derived from the Akaike
Information Criterion (AIC). This criterion finds a trade-off between the
complexity of a statistical model and the maximum value of its likelihood
function:

AIC “ 2 ¨ p´ 2 ¨ lnpL̂q, (6.8)

where p is the number of model parameters to estimate and L̂ is the maximum
value of the model’s likelihood function. In practice, the number of Gaussian
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components is increased until the difference betweenK andK` 1 components
is below 0.5%. More information is given in [306].
In order to generate continuous values from the discrete states in the

Markov chain, the authors in [300] propose to build a GMM on each subset
of input data related to the respective states. However, the load range of
a single state is often too narrow to properly fit a GMM, which leads to
a substantial mismatch between the input data and the load distribution
model. In this work, one GMM per hour of the day is calculated over the
entire range of power consumption. This is justified by the fact that the load
distribution highly varies over different periods of the day. Therefore, the
power value at a certain time step of the synthetic load profile is generated
by randomly sampling the hour-related GMM. Note the sampling still occurs
only within the load range defined by the state.

6.2.3 Synthesis of Reactive Power Profiles

The reactive power of a load is basically linked to its active power consumption
via the power factor:

Qt “ Pt ¨ tanparccosppftqq, (6.9)

where Qt, Pt, and pft correspond to the reactive power, active power, and
power factor at time t. A power factor value of one implies the absence of
reactive power. For a fixed active power value, note that the relationship
between the power factor and the reactive power is highly non-linear.
Reactive power pseudo-measurements are notably required in load flow

simulation and DSSE, where an observable system is required. Among others,
reactive power influences key quantities of distribution grids, such as the
voltage or the loading of grid components (e.g., distribution lines, trans-
formers). Hence, their synthesis must be properly handled in the absence of
actual measurements. Unfortunately, the literature on pseudo-measurement
synthesis largely neglects reactive power. When it is considered, reactive
power is commonly created based on active power by assuming a fixed average
power factor [292, 297]. In rare cases, reactive power is synthesized based
on the same method as for active power [293, 294]. This leads to the same
considerations as previously discussed for active power synthesis, especially
regarding the smoothing effect.
In this work, the synthesis of reactive power profiles is based on the

estimation of the power factor. Hence, active power measurements or pseudo-
measurements must be already available. Often assumed by DSOs and in
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literature, the fixed average power factor is used as a benchmark model.
As an alternative, the power factor of all consumers is modeled as being
equal to the time-variant power factor observed at an aggregate level. Finally,
an innovative approach is proposed, which considers the power factor as a
time-variant quantity that depends on different observable features at the
level of individual end-consumers. This novel approach has been partially
developed in [307] and is briefly presented in [308].

6.2.3.1 Average Power Factor

In the absence of high-resolution measurements, the power factor is tradition-
ally modeled as a time-invariant quantity. For example, its value is often set
to the average power factor value observed in the system at a higher spatial
aggregation level. Depending on the type of distribution grid, DSOs generally
estimate the average power factor between 0.95 and 0.99 inductive. Conse-
quently, each consumer without reactive power measurements is assigned
with the same average power factor:

pfi,t “ pfavg, @i P t1, 2, . . . ,n0u, @t P t1, 2, . . . ,T u, (6.10)

where pfi,t is the power factor allocated to consumer i at time t, and pfavg
is an average power factor estimated by the system operator. In addition, n0
is the number of consumers without reactive power measurements, and T is
the total number of time steps under consideration. On this basis, synthetic
reactive power profiles exhibit the exact same shape as the respective active
power profiles, scaled by tanparccosppfavgqq.

6.2.3.2 Aggregate Power Factor

Similar to the standard load allocation for active power synthesis, this second
approach relies on information at the aggregate level. More precisely, the
so-called aggregate power factor can be derived from the active and reactive
power quantities at the aggregate level and applied to all consumers without
reactive power measurements at all time steps:

pfi,t “ pfagg,t, @i P t1, 2, . . . ,n0u, @t P t1, 2, . . . ,T u, (6.11)

where pfagg,t is the power factor measured at the aggregate level at time t.
Remaining variables and parameters are defined as in Equation (6.10). Hence,
the power factor is modeled as time-variant quantity, but all consumers
exhibit the same relationship between active and reactive power.
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6.2.3.3 Adaptive Power Factor

The proposed approach accounts for the fact that the power factor is a
time-variant quantity that certainly differs across various consumers. To be
applicable, it assumes partial smart meter penetration, where both active
and reactive power quantities are recorded. In the case where smart meters
only provide active power measurements, a data set (e.g., open data set) with
active and reactive power measurements from similar consumer types should
at least be available. The idea is to gain insight into the variation of the
power factor based on available smart meter data. Subsequently, adaptive
power factors are generated and applied to the end-users where only active
power (pseudo-)measurements are available in order to synthesize reactive
power pseudo-measurements.

To begin with, Figure 6.2 illustrates reactive with respect to active power
values for four different consumers from the Costa Rican smart meter data
set2. Power measurements are distinguished by color according to the period
of the day when they have been recorded, i.e., morning (5:00-9:00), day (9:00-
17:00), evening (17:00-21:00), and night (21:00-5:00). It is undeniable that
the relationship between active and reactive power substantially varies across
different consumers. Nevertheless, some trends are visible. First, the reactive
power of small consumers (i.e., end-users with a relatively low average active
power consumption) appears at two distinct levels for the same active power
value, which is dispersed for large consumers. Besides, larger consumers are
likely to consume more reactive power for the same level of active power.
Second, power data points tend to be located in different regions of the
scatter plot depending on the measurement period within the day. Third, the
general relationship of reactive power to active power is not always linear
and tends to flatten out at higher active power levels, especially for small
consumers.
Accordingly, the power factor seems to vary in different conditions. In

fact, the power factor mainly depends on the type of appliances in use by
each consumer at each time step. As illustration, Table 6.1 summarizes the
power factor values of domestic appliances reported in [287]. The power
factor basically varies from 0.44 for a clothes dryer to 1 when pure heating
is involved. It does not only vary across different electrical appliances but
also for various modes or cycles of a specific appliance. In any case, most of
the appliances cannot be detected based on standard smart meter data, as
noticed by the authors in [189]. Nevertheless, different observable features

2 In this example, small consumers have an average power consumption of 0.42 kW and
0.93 kW, which rises to 3.82 kW and 4.17 kW for the large consumers.
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Figure 6.2: Scatter plots of reactive power with respect to active power for four
different consumers from the Costa Rican smart meter data set.

still provide some clues to estimate the power factor value. More precisely,
it comes out that the size of the consumer, the period of the day, and the
value of active power are major determinants. Indeed, smaller consumers
are probably residential end-users who do not possess the same appliances
as larger consumers like commercial end-users. Besides, different electrical
appliances with various power factors are used over the course of the day.
Furthermore, the active power value at a certain time step gives an indication
of the appliances in use and, consequently, of the corresponding reactive
power consumption.
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Appliance Power factor

Washing machines 0.55-0.59
Clothes dryer (with heating) 1
Clothes dryer (w/o heating) 0.44-0.47

Central air conditioner 0.90-0.92
Central air conditioner (fan only) 0.54-0.56

Water heater 1
Electric range / oven 0.95-0.98
Dishwasher (pre-wash) 0.62-0.65

Dishwasher (wash and dry cycles) 1
Refrigerator (normal mode) 0.989-0.999
Refrigerator (defrost cycle) 1

Table 6.1: Power factor of standard domestic appliances as reported in [287].

The suggested synthesis approach leverages these different observations
and assumptions. Based on a training set of smart meter data, the power
factor is first calculated from active and reactive power measurements for
each consumer and each time step:

pfi,t “
Pi,t

b

P 2
i,t `Q

2
i,t

, @i P t1, 2, . . . ,nSMu, @t P t1, 2, . . . ,T u, (6.12)

where pfi,t is the power factor of consumer i at time t, and Pi,t and Qi,t are
the active and reactive power values recorded at consumer i at time t. In
addition, nSM is the number of smart metered consumers (i.e., with active
and reactive power measurements), and T is the total number of time steps
under consideration. Subsequently, all calculated power factor values are
categorized according to each combination of the following determinants:

• Consumer size: Training consumers are clustered by the k-means algo-
rithm according to their average power consumption. The number of
clusters is generally low and depends on the variety of consumers.

• Period of the day: The day is split into four main periods, i.e., morning
(5:00-9:00), day (9:00-17:00), evening (17:00-21:00), and night (21:00-
5:00)
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Figure 6.3: Box and whisker plots of the power factor of 1’000 Costa Rican
consumers categorized by the consumer size, period of the day, and
active power level. Outliers are not shown for the sake of clarity.

• Active power level: For each training consumer, active power values are
clustered by the k-means algorithm into several power levels. The num-
ber of levels results from a trade-off between accuracy and robustness
of the outcome.

The variation of the power factor according to the combination of these
determinants is illustrated in Figure 6.3. The average values per combination
are summarized in Table 6.2. In this case, power measurement data come
from a random selection of 1’000 consumers in the Costa Rican smart meter
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Intra-day
period

Consumer
size

Average power factor
(from active power level 1 to 6)

Night small 0.920 | 0.921 | 0.960 | 0.977 | 0.985 | 0.991
Night average 0.934 | 0.958 | 0.970 | 0.976 | 0.980 | 0.982
Night large 0.910 | 0.943 | 0.962 | 0.970 | 0.974 | 0.975

Morning small 0.923 | 0.920 | 0.962 | 0.979 | 0.986 | 0.991
Morning average 0.945 | 0.965 | 0.973 | 0.977 | 0.980 | 0.984
Morning large 0.925 | 0.953 | 0.966 | 0.973 | 0.979 | 0.980
Day small 0.921 | 0.923 | 0.955 | 0.974 | 0.982 | 0.988
Day average 0.952 | 0.961 | 0.967 | 0.972 | 0.976 | 0.980
Day large 0.939 | 0.944 | 0.954 | 0.961 | 0.967 | 0.974

Evening small 0.940 | 0.945 | 0.965 | 0.978 | 0.985 | 0.989
Evening average 0.971 | 0.965 | 0.972 | 0.977 | 0.981 | 0.984
Evening large 0.923 | 0.946 | 0.961 | 0.969 | 0.975 | 0.979

Table 6.2: Average values of the power factors illustrated in Figure 6.3, catego-
rized by intra-day period, consumer size, and active power level.

data set3. All consumers are clustered into three groups, and six active
power levels are selected. First of all, a high variance can be seen for small
consumers and at lower active power levels. This is mainly explained by the
fact that a majority of data points belong to these categories. In addition,
most appliances consume at lower power levels but do not necessarily exhibit
the same power factor. This complicates its estimation in the absence of actual
sub-metering data. Nevertheless, it is still visible from smart meter data that
the power factor tends to increase at higher active power values. This is in
line with the flattening of reactive power values with respect to active power,
as observed in Figure 6.2. Moreover, the larger the consumer, the lower the
power factor, which is also visible in Figure 6.2. Besides, the power factor of
average and large consumers at the first active power level drops during the
night with respect to the day. For small and average consumers, an increase
is visible in the evening at lower power levels with respect to other periods
of the day. Overall, although the difference between the categories might
seem minor, it must be noted that a small variation of the power factor with

3 Data preparation is presented in 5.2.2.
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fixed active power can still lead to a significant change in reactive power, as
expressed by Equation (6.9).
Finally, the average values for each combination of the above-mentioned

determinants form a look-up table, as given by Table 6.2, from which the
power factor for a consumer without metered reactive power can be selected:

pfl “ mean
kPΛ

ppfkq , @l P Λ, (6.13)

where pfl and pfk are the power factors allocated to consumer l and measured
at the smart metered consumer k, respectively. The power factor values
considered in the averaging process must comply with the conditions of Λ.
The conditions of Λ are the features of consumer l at a certain time instant,
namely a combination of a consumer size, a period of the day, and an active
power level.

6.2.4 Optimal Aggregate Matching

This section details the selection and assignment of load profiles to actual
non-metered end-users in a distribution grid. On the one hand, synthetic
active and reactive power profiles must fill the resulting power gap between
the aggregation of all smart metered consumer’s profiles and the available
power measurements at an aggregate level (e.g., at the feeding transformer),
as defined in Equation (6.1). As a necessary condition, smart meter mea-
surements must be included in the aggregate measurements. On the other
hand, any piece of information from non-metered end-users can be leveraged
to customize the synthetic profiles. Normally, the monthly or yearly energy
consumption is available for billing purposes. Alternatively, this information
can be statistically estimated for each consumer. Consequently, the suggested
approach ensures optimal aggregate matching in both spatial and temporal
dimensions. This innovative approach has first been presented in [288] before
being adapted in [308]. Note that the standard load allocation presented
in Section 6.2.2.1 does not require this step since it is directly designed for
perfect spatial and temporal matching.

6.2.4.1 Matching with Aggregate Power Measurements

In a first stage, a set of load profiles are selected to optimally match with the
active power measurements at an aggregate level. For that purpose, at least
twice as many synthetic profiles as the number of non-metered consumers are
created based on the available smart meter data. According to a preliminary
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sensitivity analysis, this number ensures a sufficiently large pool of synthetic
load profiles. Subsequently, following binary optimization problem selects the
most appropriate profiles to fill the active power gap:

min β |Pgap ´ Psynth ¨ β| (6.14a)

s.t.
nsynth
ÿ

j“1
βj ě α ¨ n0, (6.14b)

where Pgap P RT
ě0 is the power gap profile, Psynth P R

T ¨nsynth
ě0 is a matrix

of synthetic profiles, and β P t0, 1unsynth determines whether a synthetic
profile is selected. In addition, T is the number of considered time steps,
nsynth is the total number of synthetic profiles, and n0 is the number of
non-metered consumers. Finally, α is a scaling parameter associated to n0,
which allows Constraint 6.14b to guarantee a minimum number of selected
profiles (i.e., associated with βj “ 1).

Subsequently, reactive power is directly synthesized based on the selected
active power profiles. In order to match with the reactive power gap at an
aggregate level, individual reactive power profiles are scaled as follows:

Q1synth,i “
Qgap

řm
j“1Qsynth,j

¨Qsynth,i, @i P t1, 2, . . . ,mu, (6.15)

where Q1synth,i and Qsynth,i are the scaled and original synthetic reactive
power profiles, respectively. In addition, Qgap is the reactive power gap profile
as defined in Equation (6.2), and m is the number of selected synthetic load
profiles. In contrast to active power profiles, synthetic reactive power profiles
undergo a transformation of their shape.

6.2.4.2 Matching with Individual Energy Requirements

In a second stage, selected synthetic profiles are assigned to the non-metered
consumers such that the mismatch between their reported energy consumption
and the resulting energy consumption given by the synthetic profiles is
minimized. Since generally only active power consumption is considered in
billing data, the load assignment step is solely based on active power data.
Per definition, the sum of the energy consumption values of all non-metered
consumers must be close enough to the energy resulting from the power gap
profile. A small mismatch might still be explained by an inaccurate estimation
of active power losses, by the error margin of smart meters, or by the presence
of loads in the system which are not reported (e.g., non-technical losses).
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Formally, the optimal allocation of m synthetic load profiles to n0 non-
metered consumers is based on the principle of the bin packing problem [309].
This is an iterative problem which can be represented as the successive
packing of m items of various sizes (i.e., energy consumption of synthetic
loads) into n0 different containers (i.e., energy requirement of non-metered
consumers). This problem can be solved by means of a greedy algorithm.
Beforehand, the energy consumption values of each selected synthetic profile
are sorted in descending order (i.e., E11 ě . . . ě E1m). This defines the order
in which synthetic load profiles are allocated. Besides, the (remaining) energy
requirement for each non-metered consumer is initialized at the reported
energy requirement value:

E
p0q
i “ Ei, @i P t1, 2, . . . ,n0u, (6.16)

where Ep0qi is the energy to be allocated to non-metered consumer i at the
initialization step, and Ei is the total energy requirement of non-metered
consumer i. Subsequently, each iteration step j P t1, 2, . . . ,mu assigns the
jth largest synthetic load to the non-metered consumer which will minimize
the Euclidean norm of the vector of remaining energy requirements:

i “ argmin
k

|pEpjq1 , . . . ,Epjqk , . . . ,Epjqn0 q|2, with Epjqk “ E
pj´1q
k ´E1j (6.17)

where i is the index of the consumer who gets assigned with the jth largest
synthetic load profile, Epjqk is the remaining energy requirement of consumer
k at iteration step j, and E1j is the energy consumption value of the jth
largest synthetic load.
Assuming that the number of synthetic load profiles m is approximately

equal to the number of non-metered consumers n0, one single synthetic load
profile is generally assigned to each non-metered consumer. Nevertheless,
the smallest consumers might not receive a profile, whereas the load of
large consumers might consist of the spatial aggregation of multiple profiles.
Although a small portion of non-metered consumers might be modeled with a
zero power consumption profile, this is acceptable since their actual impact on
the system is anyway limited. A constraint to ensure the assignment of at least
one profile per consumer could still be added, but at the cost of a generally
sub-optimal load assignment. Finally, note that the load profile selection
defined in Equation (6.14) and the bin-packing problem are under-constrained
problems that can have multiple feasible solutions.
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6.3 case studies

Based on different case studies, this section analyzes the performance of
the various approaches presented in Section 6.2. First, active power pseudo-
measurements are synthesized and evaluated in a sub-grid of the City of
Basel. In this case, active power measurements of smart metered end-users
and at the transformer level are available, together with the billing data of
all end-users. Second, the synthesis of reactive power profiles relies on Costa
Rican smart meter data, where both active and reactive power measurements
are recorded.

In order to quantitatively evaluate the performance of the different models,
following metrics are considered:

MAPE “ 100% ¨ 1
|Ω|

¨
ÿ

jPΩ

|
ysynth,j ´ yobs,j

yobs,j
|, (6.18a)

RMSE “
d

1
|Ω|

¨
ÿ

jPΩ

pysynth,j ´ yobs,jq2, (6.18b)

where yobs,j and yobs,j are the observed and synthetic values of element j
(e.g., time step j, consumer j), respectively. In addition, Ω is the set of all
elements, and |Ω| refers to the total number of elements. In both cases, the
lower the value, the better the accuracy.

6.3.1 Active Power Pseudo-Measurements

The performance of the three active power synthesis methods and of the
optimal aggregate matching approach is evaluated in the residential neigh-
borhood of the City of Basel illustrated in Figure 3.5. As a reminder, the
grid consisted of 6 metered PV systems and 583 end-users, of which 320
end-users (i.e.,55%) were equipped with a reliable smart meter at the time of
data preparation. For the purpose of this study, a time period of one year is
considered. Measurement data are characterized by a temporal resolution of
15 minutes. Data preparation is performed as described in Section 4.3.

Figure 6.4 illustrates the power gap in a summer day and a winter day
between the aggregated profiles of metered consumers and PV systems and
the transformer loading. Note the considerably higher consumption in winter,
especially in the evening. In addition, the transformer experiences reverse
power flows around noon, which is potentially problematic if its protection
system has not been designed accordingly. Regarding the power gap, its
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Figure 6.4: Active power gap (i.e., yellow shape) over a typical summer and a
winter day between the aggregated smart metered profiles and the
transformer loading in the residential neighborhood presented in
Figure 3.5.

shape is similar to the aggregation of the smart metered consumer profiles.
This indicates that the load profiles of non-metered consumers have similar
characteristics as the metered consumer profiles at a spatial aggregate level.
Since all consumers are located in the same neighborhood, it is also reasonable
to assume that individual metered and non-metered consumers have similar
statistical properties. Hence, the MCM-based synthesis approaches leverage
smart meter data from the same neighborhood in order to create pseudo-
measurements for non-metered end-users.
In the following, the proposed study first focuses on the properties of

individual synthetic load profiles. In this case, the MCM-based load profiles
are directly compared with the smart meter data measurements on which
they are based. According to a preliminary sensitivity analysis, the number of
states and sub-levels does not significantly influence the outcome as long as
they lie above a minimum threshold. As a trade-off between computational
complexity and accuracy at both individual and aggregate levels, the number
of states is set to 6 for the two presented MCM-based approaches, and ten
sub-levels are selected for the traditional MCM. Moreover, the benchmark
SLA relies on the aggregation of all metered consumers. In the second stage,
synthetic load profiles are allocated to actual end-users, and the performance
at a spatial and temporal aggregate level is considered. Note that SLA-based
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Figure 6.5: Illustration of metered and synthetic active power profiles on two
distinctive weekdays for a residential and a commercial consumer.

synthetic load profiles are only evaluated at the individual consumer level.
Per definition, they are perfectly consistent at an aggregate level.

6.3.1.1 Properties at the Consumer Level

First of all, Figure 6.5 allows for qualitative comparison between the actual
active power measurements of a residential and a commercial consumer and
the respective synthetic load profiles. For comparison purposes, the MCM-
based approaches are directly trained on the respective smart meter data.
It appears that the standard load allocation creates very flat and smooth
profiles which fail to reproduce the high load volatility. Conversely, both
MCM-based approaches are able to generate active power spikes of similar
magnitude as the observations. In addition, the adaptive MCM is able to
predict the absence of activity on Sunday for the commercial load, in contrast
to the traditional version. Overall, active power pseudo-measurements can
obviously not faithfully represent the load of actual consumers at each time
step. This does not depend on the specific synthesis approach but on the
information provided by the AMI system (see the introduction of Section 6.2),
which does not allow for such accurate representation. Nevertheless, pseudo-
measurement synthesis approaches must still be able to generate load profiles
that are visually realistic and statistically reflect the load distribution of
actual consumers. Accordingly, a point-wise comparison of synthetic with
metered load profiles would not make sense. Volatile synthetic data would



166 pseudo-measurement synthesis

Figure 6.6: Load distribution of the original and synthetic profiles for a specific
large consumer between 18:00 and 19:00.

be prejudiced in comparison with smooth data due to the so-called double
penalty effect, as detailed in Section 9.3. In contrast, this section focuses
on the faithful representation of the statistical properties of individual load
profiles.

A realistic distribution of power values is one of the properties that pseudo-
measurements must be able to reflect. This is illustrated in Figure 6.6 for a
large consumer. In this case, only data between 18:00 and 19:00 are considered
with the aim of assessing the ability of algorithms to adapt to variations
over the day. It appears that the standard load allocation basically generates
data with a Gaussian distribution, which is far from the original distribution
at this specific hour. Conversely, both the traditional and adaptive MCM
approaches reproduce almost perfectly the original load distribution.
Moreover, Figure 6.7 evaluates the ability of the synthesis approaches to

account for seasonality on different time scales. More precisely, each data point
corresponds to the mismatch in energy for a specific end-user in predefined
temporal conditions:

∆Ei,k “ 100% ¨
Esynth,i,k ´ESM,i,k

ESM,i,k
, @i P t1, 2, . . . ,nSMu, @k P Γ, (6.19)

where ∆Ei,k is the relative mismatch in energy of consumer i in temporal
conditions k. Esynth,i,k and ESM,i,k are the total energy consumption values
visible in the smart metered and synthetic load profiles of consumer i in
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Figure 6.7: Box and whisker plots of the mismatch in energy between metered
and synthetic data, evaluated at different seasons and types of
weekday.

temporal conditions k, respectively. In addition, nSM is the number of smart
metered consumers, and Γ is the set of all possible combinations of a season
with a type of weekday (i.e., working day or weekend). The AMCM exhibits
an average mismatch in energy very close to zero and a relatively low variance
for all seasons and types of weekday. In contrast, the energy consumption
is generally overestimated by the traditional model in summer (by 26% on
average) and slightly underestimated in winter (by 7% on average). This
comes from the fact that its training phase does not account for the seasons,
although they influence the energy consumption (i.e., higher consumption in
winter than in summer). To a lesser extent, the opposite tendency is visible for
the standard load allocation. The seasonality effect on energy consumption
appears to be stronger at an aggregate level than for the average individual
end-user. Finally, the weekend is characterized by a higher variance than
working days, but the general trends remain unchanged.

6.3.1.2 Properties at an Aggregate Level

The selection of the most suitable synthetic profiles is performed according to
Equation (6.14). The binary optimization problem is implemented and solved
in MATLAB with the help of the optimization toolbox YALMIP [310] and
the solver Gurobi [311] which can deal with mixed-integer conic problems. As
input for the optimization problem, 640 yearly load profiles are synthesized
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Figure 6.8: Evolution over one year of the average power consumption of the
original gap profile and of the aggregation of optimally selected
synthetic profiles.

based on the active power measurements of the 320 smart metered consumers.
In other words, one Markov chain model is created for each metered consumer,
which serves for the synthesis of two load profiles. Based on a temporal
resolution of 15 minutes, each yearly profile consists of 4 ¨ 24 ¨ 365 “ 251440
data points. Unfortunately, this amount of data points per profile is not
computationally tractable for the binary optimization problem within a
reasonable time. In order to lower the problem complexity, the optimization
problem only considers the average power consumption per day. Hence, matrix
Psynth in Equation (6.14) is reduced to a dimension of 365ˆ 640. Moreover,
the scaling parameter α is set to 1 in order to ensure the selection of at least
one load profile per non-metered consumer on average. In fact, this constraint
is binding for both types of synthetic input profiles, meaning that the same
number of synthetic profiles as the number of non-metered consumers are
selected. Note that the properties of the synthetic active power profiles are
not affected by the selection process.
Figure 6.8 illustrates the yearly profiles of the original active power gap

and of the aggregation of optimally selected synthetic profiles4. For the
sake of clarity, power values are averaged over each day. On average, the
power of the gap profile approximately varies from 90 kW in December to

4 As previously mentioned, the standard load allocation is already designed for a perfect
aggregate matching and is therefore not considered here.
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50 kW in June. The aggregation of AMCM-based profiles nicely reflects this
yearly seasonality, which is however not the case for the traditional version.
This is in line with the characteristics of the respective individual synthetic
profiles visible in Figure 6.7. These observations are also confirmed by the
MAPE between the original gap and the aggregations of synthetic profiles,
which amounts to 24.1% and 19.2% for the traditional and adaptive MCM,
respectively5. Finally, the optimally selected synthetic profiles are allocated to
the non-metered consumers via the bin packing problem. It appears that the
five smallest non-metered consumers are not assigned with a synthetic load
profile, whereas five other consumers eventually consist of the aggregation of
two synthetic profiles. In terms of a mismatch between the reported yearly
energy and the assigned energy, the traditional MCM and adaptive MCM lead
to a MAPE of 7.95% and 8.46%, respectively. On this aspect, the traditional
MCM slightly outperforms the adaptive version.

6.3.2 Reactive Power Pseudo-Measurements

Since smart meters in the City of Basel do not record reactive power, the
evaluation of reactive power synthesis relies on the Costa Rican smart meter
data set, where both active and reactive power quantities are recorded. For
that purpose, the three presented synthesis approaches are tested on 1’000
randomly chosen consumers over a period of four months. The adaptive
power factors are based on the look-up table presented in Table 6.2. It must
nevertheless be noted that the training consumers (i.e., used for the creation
of the look-up table) are different from the test consumers (i.e., used in the
evaluation). The average and aggregate power factors are calculated based
on the spatial aggregation of both the training and test consumers. This
represents the situation of a large distribution grid with 50% smart meter
penetration6. In this case study, the average power factor at the aggregate
level is equal to 0.967 inductive.

Figure 6.9 illustrates the synthesis of reactive power over one day for one
small and one large consumer. For comparison purposes, power values are

5 When considering only the daily average power values, the MAPE decreases to 14.4% and
4% for the traditional and adaptive MCM, respectively.

6 In a real grid, note that a small portion of active and reactive power visible at an
aggregate level is consumed (or produced) by power lines and transformers. In addition,
PV systems usually produce purely active power but are sometimes required to generate or
consume reactive power for grid support purposes. Hence, power factor values inferred at a
transformer or substation level might slightly vary from the power factor values calculated
over the aggregation of all metered consumers.
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Figure 6.9: Illustration of reactive power synthesis over one day for a small and
a large consumer, with and without scaling (i.e., spatial aggregate
matching). For better visualization, active and reactive power values
are normalized between 0 and 1.

normalized between 0 and 1. Regarding the small consumer, active power
measurements slightly oscillate at a low level over most of the day and exhibit
high values during three short periods. Only the oscillating pattern appears in
reactive power measurements. Hence, high power activities certainly belong
to purely resistive appliances. To different extents, the shape of the active
power profile is translated into reactive power pseudo-measurements by all
synthesis techniques. The average and aggregate power factors lead to a
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faithful reproduction of the shape of active power measurements. In contrast,
the adaptive version adjusts the power factor according to the conditions
such that the resulting reactive power profile is closer to the metered data.
In any case, reactive power is overestimated during active power spikes and
underestimated at low active power levels. In other words, the power factor
is underestimated by all synthesis approaches for high power levels and
overestimated for low power levels7. Besides, the spatial aggregate matching
(or scaling) does not particularly affect the small consumer. Still note that
the scaled versions of the reactive power profile created by the average
and aggregate power factors are identical. Regarding the large consumer,
reactive power measurements do not specifically follow the pattern of active
power. Without scaling, the average power factor fails to properly estimate
reactive power, which is underestimated at night and overestimated in the
evening. In contrast, both aggregate and adaptive versions adapt their power
factor over the day, which apparently leads to more realistic reactive power
pseudo-measurements. Nevertheless, the scaling process seems to improve
the correspondence of all reactive power profiles, which do not significantly
differ from each other anymore.
Furthermore, the RMSE is calculated for each consumer between the

actual reactive power measurements and the synthetic profiles. The outcome
is displayed in Figure 6.10, where each data point corresponds to the error
of a certain synthesis approach for a specific consumer. Without scaling, it
appears that the average version is outperformed by the competing methods.
For example, the median error drops by 12.1%, 17.8% with respect to the
use of aggregate and adaptive power factors, respectively. The respective
median drop even amounts to 42.4%, 14.8% for large consumers. These
data also show that the adaptive version is slightly more appropriate for
small consumers, whereas the aggregate version is clearly beneficial for large
consumers. Nevertheless, spatial aggregate matching equalizes and increases
the estimation accuracy of all approaches, especially for large consumers. By
definition, the average and aggregate power factors lead to the exact same
reactive power profiles after scaling. In this case, the adaptive version still
outperforms the competing versions for small consumers (i.e., the median
RMSE drops by 15.3%). The advantage is substantially reduced for large
consumers (i.e., the median RMSE drops by 2.7%).

7 It must be kept in mind that power factor values come from the look-up table and
result from an average over all consumers in the training data set. Hence, for other
small consumers, the power factor is probably overestimated for high power values and
underestimated for low power values.
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Figure 6.10: Box and whisker plots of the root-mean-square error between
metered and synthetic reactive power profiles, categorized by
synthesis approach and consumer size. Outliers are not shown for
the sake of clarity.

Although the spatial aggregate matching allows for better performance,
the shape of reactive power pseudo-measurements is relatively similar to the
respective active power profiles, especially for small consumers. This still
leads to substantial absolute errors. Concretely, the assumption of a time-
invariant power factor is clearly not pertinent, but its approximation based on
a look-up table or based on observations at an aggregate level is also not fully
satisfying. In fact, actual reactive power cannot be properly approximated by
an average behavior over a large set of examples. A more accurate point-wise
estimation of reactive power could be obtained by ML-based algorithms
which potentially better adapt to the characteristics of individual consumers.
Reactive power synthesis approaches could also benefit from load detection
or load disaggregation techniques, as presented in Chapter 8, which give
insight into the type of some appliances in usage based on active power
measurements.



6.4 conclusion 173

6.4 conclusion

To conclude, a comprehensive procedure to synthesize both active and reac-
tive load profiles and allocate them to individual non-metered consumers is
described in this chapter. Particular focus is given to the realistic representa-
tion of synthetic load profiles without excessive effort. Presented synthesis
approaches are only based on traditionally available information in distri-
bution grids. They rely on smart meter data and aggregate measurements
but do not necessitate sub-metering data or specific customers’ information
other than their respective average energy consumption. The chapter also
specifically addresses the compliance of individual synthetic data with aggre-
gate information in a given distribution grid. The proposed procedure and
approaches are tested in real-world residential areas which mainly consist of
households and a few commercial end-users. Adaptations might be needed
for other types of consumers, especially for industrial loads.

In terms of contribution, an adaptive Markov chain model is first proposed
for active power synthesis. Markov chain models are stochastic algorithms
inherently designed to reflect the volatility and value distribution of the
input data. By representing transition probabilities by a logistic regression
model, the adaptive version can additionally grasp the notion of seasonality or
periodicity at different time scales. This is not practicable by the traditional
version without an extensive amount of training data and the hard-coding
of the notion of seasonality. The proposed approach is also compared to the
standard load allocation. This simple method is often leveraged by DSOs
and in the literature but totally fails to reflect the statistical properties ob-
served in smart meter data. Further advanced pseudo-measurement synthesis
approaches proposed in the literature (e.g., autoregressive models, clustering
algorithms, ANNs, GBTs) are not explicitly considered in the performance
evaluation. As detailed in Section 9.3, they nevertheless lead by design to a
certain smoothing of the resulting load profile and lose part of their statistical
properties, in a similar way as the standard load allocation. Mainly designed
for the synthesis of pseudo-measurements, the adaptive Markov chain model
can also lend itself to the imputation of missing data and to forecasting highly
volatile loads, as proposed in Sections 3.3.5 and 9.3, respectively. Moreover,
Chapter 7 elaborates on the advantages of using AMCM-based synthetic
profiles and points out the risks of standard load allocation in the context of
DSSE.
Even though they are indispensable in DSSE or power flow simulations,

reactive power pseudo-measurements are generally neglected in the literature.
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Hence, the chapter also presents a close reflection on this topic via the
estimation of power factor values. In fact, reactive power consumption mainly
depends on the type of appliances in use, which is barely detectable in most
cases solely based on standard smart meter data. Some features such as
the consumer size, the period of the day, and the active power level are
nevertheless observable and contribute to a rough estimation of the time-
variant power factor for a given consumer. A proposed approach leverages
these observations from a training smart meter data set in order to build
a look-up table with average power factor values in different conditions.
Unfortunately, power factors cannot be precisely inferred based on observable
information. Especially, average power factor values do not properly represent
the large variance observed in actual data. Hence, the proposed look-up table
does not provide considerable benefits in comparison with power factor values
derived from an aggregate level. In any case, scaling individual reactive power
profiles with respect to aggregate measurements contributes to substantially
more realistic outcomes. Despite this somewhat mixed performance, the
topic definitely merits closer scrutiny. For example, additional features (e.g.,
weekday, temperature) can serve to fine-tune the power factor estimation. An
ML-based prediction algorithm can also probably better infer the relationship
between observable features and reactive power than a purely statistical
model. Besides, Chapter 8 demonstrates that some specific appliances (e.g.,
water heater, refrigerator) can still be detected in standard smart meter
data. Such knowledge should be leveraged in the synthesis of reactive power
pseudo-measurements.

Special attention is finally given to match realistic load profiles both with
measurements at a spatial aggregate level and with energy requirements of
single non-metered loads. In fact, this aspect is perfectly addressed by the
standard load allocation approach, but at the cost of highly unrealistic indi-
vidual profiles. Besides, the literature sometimes recommends scaling active
power pseudo-measurements directly with respect to aggregate measurements,
which nevertheless alters the properties of the original load profiles. In this
work, the selection and assignment of synthetic load profiles are successfully
achieved by solving a binary optimization and a bin packing problem, re-
spectively. Note that this procedure only requires a sufficiently large pool of
diverse load profiles with potentially similar statistical properties as the load
of non-metered consumers. If this is achievable with actual smart meter data
(e.g., from another grid area with similar characteristics), there is no specific
need for synthetic load profiles.
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I M PA C T O F D ATA O N
D I S T R I B U T I O N S Y S T E M S TAT E
E S T I M AT I O N

This chapter studies the influence of the AMI design and of the related model-
ing of pseudo-measurements on the outcome of state estimation in distribution
grids, especially at the low-voltage level. A comprehensive sensitivity analysis
is carried out that accounts for the type, the penetration level, and the place-
ment of metering devices that compose state-of-the-art AMIs. Special care is
also given to the synthesis of power pseudo-measurements, which substantially
impacts the estimation of peak values. Although crucial for system operators,
peak values are very often neglected in the state estimation literature. For that
purpose, the chapter relies on evaluation metrics that are not purely based
on the point-wise precision but also consider the statistical properties of the
outcome. The evaluation focuses on power injection, bus voltage, and line
loading. The sensitivity analysis is performed on an actual 971-bus grid with
the corresponding smart meter data from the City of Basel. This chapter is
based on [308].

7.1 introduction

Supported by the large-scale roll-out of Smart Meters (SMs), the digitalization
of distribution grids also reaches the Low-Voltage (LV) level, which was
traditionally seen as a black box. Current Advanced Metering Infrastructures
(AMIs) provide more and more information at the level of end-users, but also
at key points of the Low-Voltage (LV) grid (e.g., cable distribution cabinets,
MV/LV transformers). This facilitates an unprecedented variety of new
applications such as congestion management, optimal voltage regulation, and
quantification of flexible load for demand response purposes [3, 4]. However,
the quantity, quality, and type of the measured data streams can greatly vary
between different AMIs, which impacts the data-based modeling accuracy of
the corresponding distribution grids. Distribution System Operators (DSOs)
are confronted with the challenge of developing a cost-effective AMI and
properly transforming the relatively new and diverse measurement data into

175
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valuable information [114]. Especially, DSOs intend to find a trade-off between
the costs of measurement devices and their benefits.
Distribution System State Estimation (DSSE) algorithms allow for the

estimation of the most probable state of a distribution grid based on mea-
surement data, which is associated with different challenges. In order to
minimize the costs, DSOs normally possess a limited set of metering de-
vices, and the question of their optimal placement arises. For example, the
authors in [312–316] present various robust algorithms for the placement
of Phasor Measurement Units (PMUs) and/or smart meters, accounting
for the meter deployment costs, the uncertainty of distributed generation,
and topological reconfigurations. Nevertheless, a large number of metering
devices are currently already installed in distribution grids, not based on an
optimal placement approach but on immediate needs. Existing studies do
not consider the achievable modeling accuracy given a certain sub-optimal
meter placement. Besides, the observability of the system is a prerequisite
for State Estimation (SE) algorithms but is generally not achievable on the
sole basis of the actual measurement data, especially at the LV level. Hence,
pseudo-measurements are inevitably required and are traditionally designed
to minimize the SE error [296, 297, 317]. By aiming for this goal, pseudo-
measurements proposed in the current literature consist of unrealistically
smoothed out profiles, whereas more realistic but volatile synthetic data
are not an option. This problem is pointed out by the authors in [293] in
the case of standard load profiles which provide a biased image of the load
distribution in the actual distribution grid. Specifically, peak values must be
correctly represented since they define the dimensioning of the distribution
grid infrastructure and of distributed resources such as batteries.

Accordingly, this chapter provides comprehensive insights into the SE accu-
racy that can be achieved depending on the AMI design and on the approach
for pseudo-measurement synthesis, with a focus on peak power. Precisely,
a sensitivity analysis based on the Weighted Least Squares (WLS) algo-
rithm is carried out in Matlab with respect to the number, the type and the
placement of metering devices, and to the approach for pseudo-measurement
synthesis. Among others, the analysis compares the influence of active power
pseudo-measurements synthesized by the Adaptive Markov Chain Model
(AMCM) and the Standard Load Allocation (SLA), thoroughly presented in
Chapter 6. Rarely considered in the DSSE literature, the possibility to install
measurement devices at distribution cabinets is also included. In total, a
benchmark model and 144 different scenarios derived from 6 dimensions with
2 to 3 different options each are studied. It must be noted that many existing
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studies have separately assessed the influence of pseudo-measurements or
the placement of advanced metering devices within the framework of DSSE.
However, to the best of the author’s knowledge, a comprehensive sensitivity
analysis accounting for multiple influencing factors has not been presented
so far.

In addition, case studies presented in literature often rely on simple bench-
mark grids of a few dozen nodes. Solely the Medium-Voltage (MV) level
is commonly considered while the LV grid is aggregated at the MV/LV
transformer level. Such simplistic models are definitely not representative of
actual distribution grids as discussed in Section 3.2. The sensitivity analysis
proposed in this chapter leverages the network and measurement data from
the City of Basel presented in Figure 3.4. This 971-bus network is repre-
sentative of a European urban distribution system and notably comprises
a local substation feeding multiple MV/LV distribution transformers with
their corresponding LV sub-grids. Such configuration is schematically illus-
trated in Figure 3.2a. The grid contains Photovoltaic (PV) systems as well as
residential, commercial, and a few industrial end-users that are connected at
LV nodes. The main assumptions concerning the availability of measurement
data and the relevant dimensions to consider in the sensitivity analysis are
based on discussions with some of the main Swiss and Costa Rican DSOs [55,
56, 223].

The remainder of this chapter is structured as follows. Section 7.2 introduces
the Weighted Least Square (WLS) state estimation algorithm and the related
challenges in distribution grids, especially in terms of input data. Section 7.3
presents the setup of the sensitivity analysis. The section starts by specifying
the network and corresponding measurements used in the case study. Next, a
complete description of the six dimensions and the associated options is given,
and the evaluation metrics are defined. In this work, the SE performance
is not automatically assessed via the traditionally used point-wise metrics
(e.g., Root-Mean-Square Error (RMSE)). Especially, an adjusted version
of the RMSE is used to mitigate the so-called double penalty effect which
prejudices volatile data. Special focus is also given to the proper estimation
of peak values. Subsequently, Section 7.4 displays and explains the results
of the sensitivity analysis. In addition to bus voltages, the accuracy of
active and reactive power bus injections and line loadings are considered.
Moreover, the computational complexity and potential scalability of the
analysis are discussed in Section 7.5. Finally, Section 7.6 summarizes the
principal outcomes and outlines potential future work.
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7.2 distribution system state estimation

State estimation is a data-driven technique that combines different sources
of redundant measurements to find the most probable state of a system.
Observability issues require DSSE algorithms to be able to deal with a low
redundancy of measurements and to integrate a substantial amount of pseudo-
measurements [8, 114]. Although other techniques might be more suitable for
distribution grids, this study relies on the well-known WLS algorithm due to
its low computational cost, its ability to weight the measurements according
to their type, and its extensive use in the SE literature. In the following, the
DSSE algorithm and the different types of input measurements are defined.

7.2.1 Weighted Least Squares Algorithm

The optimization problem of the WLS algorithm can be formulated as follows:

x̂ “ argmin
x

pz ´ hpxqqT W pz ´ hpxqq , (7.1)

where x and x̂ are the true and estimated state vectors, respectively. In
addition, z is the measurement vector, h is a measurement function linking
the measurements to the states, W “ diagtσ´2

1 , . . . ,σ´2
m u is a weight matrix,

σi is the standard deviation of the ith measurement, and m is the total
number of measurements. The WLS algorithm assumes that the elements of
the error vector e “ z´hpxq have a Gaussian distribution and are statistically
independent. Hence, the weight associated to a certain measurement is chosen
as inversely proportional to the square of its standard deviation. Extensive
literature is available for more information on the WLS algorithm, e.g.,
in [318].

7.2.2 Measurements and Standard Deviation

The measurement vector z of the WLS algorithm basically consists of direct
measurements, pseudo-measurements, and virtual measurements. The latter
two types increase the system observability and prevent the problem from
becoming ill-conditioned. Table 7.1 summarizes the types of measurement
data that can be typically found in a distribution grid down to the LV level.
For each type of measurement data, the corresponding standard deviation
value has been tuned with respect to a grid-specific analysis, as recommended
by the authors in [319]. As previously mentioned, they define the weight given
to each measurement in the DSSE problem. Note that the standard deviation
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Quantity Category Location Standard
deviation

Power injection direct bus (full SM coverage) 0.01
Power injection pseudo bus (zero SM coverage) 1
Power injection pseudo bus (partial SM coverage) see Eq. 7.2
Power injection virtual “no-load” bus 0.001

Power flow direct feeder/transformer/cabinet 0.01
Power flow virtual “no-load” line 0.001
Power flow virtual “adjacent” line 0.01
Voltage direct feeder/transformer/cabinet 0.001
Voltage direct bus (with at least 1 SM) 0.001
Voltage pseudo bus (without SM) 0.1

Table 7.1: Types of measurements in a distribution grid. Standard deviation
values in italic are given in relative terms.

values given in italic are in relative terms (i.e., they must be multiplied with
the corresponding measurement value in the per-unit system), whereas the
standard deviation values of “no-load” buses and lines are absolute values. The
following subsections provide more information on each type of measurement
data.

7.2.2.1 Direct Measurements

Direct measurements refer to any actual measurements coming from the
AMI, either via smart meters at the end-user side or via advanced metering
devices at the feeder1, transformers, and cable distribution cabinets. More
precisely, smart meters can measure power injections and voltages, whereas
advanced metering devices measure power flows and voltages at the feeder,
transformers, and cable distribution cabinets. All measurements are converted
to the same time resolution. The standard deviation for direct measurements
is set to the expected level of noise indicated in the respective data sheets of
the measurement devices. It can typically reach up to 0.1% and 1% of the
measured value for voltage and power measurements, respectively. According

1 In this work, the feeder is referred to as the power line feeding the entire system under
consideration. It is generally connected to a local substation.
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to a preliminary study, relative weights lead to significantly better accuracy
than absolute weights for bus voltages and reactive power injections. Besides,
the impact of the chosen values for all weights on the estimation of all
quantities is negligible as long as they stay in the magnitude of 0.1% and 1%
for voltage and power measurements, respectively.

7.2.2.2 Pseudo-Measurements

Within the framework of DSSE, synthetic active and reactive power profiles
are specifically created to cope with the lack of direct measurements. The
literature generally assumes that the power at a certain bus is either fully
measured or fully synthetic. This is nevertheless not realistic since both
metered and non-metered consumers can be located at the same bus of an
LV grid. The determination of the associated standard deviation at a bus
with partial SM coverage is not straightforward anymore. Hence, if several
end-users are located at the same bus, their power is aggregated, and the
corresponding standard deviation is proposed to be calculated as follows:

σinj,b “ σpseudo ´ γb ¨ pσpseudo ´ σSMq, @b P B, (7.2)

where σinj,b is the relative standard deviation of the power injection at
bus b, and σpseudo and σSM are the relative standard deviations of pseudo-
measurements and SM power measurements as defined in Table 7.1, respec-
tively. In addition, γb is the share of total energy measured by smart meters
at bus b, and B is the set of all loaded buses in the system. Equation (7.2) is
justified by Figure 7.1. Based on the measurements of the case study presented
in Section 7.3.1, it illustrates the average Normalized Root Mean Square
Error (NRMSE) over all active power injections with respect to the share of
energy measured by smart meters at each bus. The RMSE is equivalent to the
standard deviation and is normalized by the mean power consumption per
bus in this case. The error value appears to be close to 100% at buses with
pure pseudo-measurements (i.e., the share of energy measured by SMs is equal
to zero) and decreases to the level of the SM measurement noise at buses
with full SM coverage. The linear approximation shown in Figure 7.1 and
corresponding to Equation (7.2) is close to the local polynomial regression.
It is therefore chosen to define the standard deviation for buses with partial
SM coverage.
Besides, the voltage value at each bus is known to be around 1 pu. This

information can be added as pseudo-measurement with a reasonably large
standard deviation of 10% whenever a direct voltage measurement is not
available.
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Figure 7.1: Average NRMSE over all bus injections in function of the share of
yearly energy measured per bus by smart meters.

7.2.2.3 Virtual Measurements

Virtual measurements are measurements that are directly derived from the
structure of the grid and enable a further increase in the redundancy of
measurements. This study first considers zero-power injections and zero-
power flows at “no-load” buses and lines, respectively. The information on
“no-load” buses generally comes from the metadata. In addition, “no-load”
lines are the lines connecting leaf2 “no-load” buses, which can be inferred
from the grid model. These virtual measurements are associated with a very
low absolute standard deviation to force the SE algorithm to give an estimate
close to zero. Alternatively, “no-load” buses and lines could be modeled as
equality constraints in the WLS formulation. This would nevertheless prevent
the detection of a misestimation of presumably zero-power quantities.

So-called “adjacent” lines also allow for an expansion of the set of virtual
measurements. An adjacent line is defined as a line connected to a metered
line via a “no-load” bus. Per definition, its power flow is very similar to
the flow of the corresponding metered line. The measurement value and the
standard deviation of adjacent lines are set to the same values as for the
corresponding metered lines.

2 A leaf bus is a bus connected to only one single line.
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7.3 setup of sensitivity analysis

This section focuses on the setup of the sensitivity analysis. It has been
designed according to discussions with several Swiss and Costa Rican DSOs.
Notably, the study assumes that advanced metering devices are installed at
the feeder, all industrial loads, and all PV systems, as it becomes standard
in modern distribution networks. However, only a portion of residential
and commercial end-users are equipped with a smart meter. The yearly (or
monthly) energy consumption of all end-users is still known to the system
operator as it is required for billing purposes. Alternatively, their average
energy consumption can be estimated based on statistical surveys. Besides,
the load flows and voltages might be measured at the MV/LV transformer
and cable distribution cabinets. Since PMUs are very rarely installed in LV
grids, their measurements are not considered in this chapter. Two strong
assumptions are finally made. First, a fully digitized and reliable network
model must be available. Although this cannot be taken for granted, it
becomes reasonable to consider that the topology and parameters of LV
grids can be digitized as explained in Section 2.4.2. In addition, current
topology verification and correction algorithms allow for satisfactory grid
model quality [109–111]. Second, defective measurement devices and faulty
measurement data are assumed to be filtered out beforehand. This necessarily
presupposes a comprehensive data preparation as presented in Section 3.3.
In any case, preliminary data cleaning cannot systematically eliminate faulty
measurements. Advanced error detection and correction steps in the SE
process should ideally be taken into account but are out of the scope of this
thesis.
In the following, Section 7.3.1 first introduces the benchmark grid model

which relies on a large real-world network with the corresponding measure-
ment data. The sensitivity analysis considers four dimensions related to the
AMI design (hardware) and two dimensions related to pseudo-measurement
synthesis (software), each with multiple options, which is detailed in Sec-
tion 7.3.2. Next, Section 7.3.2 defines the metrics used for assessing the
SE performance of the multiple scenarios with respect to the benchmark
model. Different metrics allow for the evaluation of different aspects of the
performance. Finally, the outcomes of the sensitivity analysis are illustrated
for various quantities and evaluation metrics with the help of box and whisker
plots in Section 7.4.



7.3 setup of sensitivity analysis 183

7.3.1 Benchmark Grid Model

The grid model used as a benchmark corresponds to the actual distribution
grid of an area of the City of Basel, illustrated in Figure 3.4. As a reminder,
it mainly covers a residential area and consists of 14 MV/LV transformers,
28 cable distribution cabinets, 971 buses, from which 492 buses are loaded,
and 976 lines, from which 12 lines are at the MV level. At the time of data
preparation, the grid connected 2610 residential and commercial consumers,
11 industrial customers, and 17 PV systems. It has been chosen for its good
data quality and availability, which is not common for such a large real-world
grid. Nevertheless, the GIS model of the grid, as well as the corresponding
measurements, are single-phase. Although the load in the distribution grid is
certainly unbalanced, the state estimation must rely on a single-phase setup.
More information on the actual measurements, the characteristics, and the
representativeness of the benchmark grid model is provided in the following.

7.3.1.1 Measurements

All industrial end-users and PV systems are equipped with a smart metering
device providing active and reactive measurements, which is also assumed
in the sensitivity analysis. However, only 962 residential and commercial
end-users actually had a reliable smart meter at the time of data preparation,
which covered about 40% of the total load from this sector. In order to
obtain a complete realistic benchmark model, all non-metered consumers
have been assigned with active power load profiles of existing smart metered
consumers with similar energy consumption from other areas of the City of
Basel. Reactive power consumption was unfortunately not recorded by smart
meters. Hence, reactive power measurements are synthesized according to the
adaptive Power Factor (PF) approach presented in Section 6.2.3.3. Active
and reactive power measurements from a confidential data set with similar
types of consumers have been provided by Adaptricity (see Section 2.5.1)
to serve as training data for the lookup table. For more variability, up to
5% noise is randomly added to the adaptive PF values. It is clear that this
process does not lead to reactive power measurements which are faithful
to reality. As mentioned in Section 6.3.2, this is not feasible based on the
available information. Nevertheless, the process aims to reproduce a realistic
distribution of reactive power values. Besides, the temporal resolution of all
measurement data is 15 minutes, which is standard in current distribution
grids. Note that synchronization delays due to the communication system
are not an issue at this temporal resolution.
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Figure 7.2: Component loading and voltage of the benchmark grid.

The knowledge of the power injection at each bus and of the voltage at the
feeder bus provides just enough measurements to obtain an observable system.
Hence, power flows and voltages are determined by load flow simulation with
the help of Matpower in Matlab [320]. The power losses in the system (e.g.,
over the lines and transformers) are estimated at 2% of the total load by
IWB, the DSO of the City of Basel. Finally, a uniformly distributed noise up
to ˘0.1% and ˘1% is added to the voltage and power quantities, respectively,
to mimic the accuracy of the metering devices. Finally, as input for the state
estimator, all quantities are converted to the per unit (pu) system, with a
base power value of 1 kVA.

7.3.1.2 Characteristics

Figure 7.2 illustrates the component loadings and the voltages observed
in the benchmark grid after load flow simulation. It appears that the grid
is characterized by significant capacity reserves for its current load as the
loading of all LV lines, MV lines, and transformers does not exceed 60%, 30%,
and 50% of the corresponding capacity, respectively. Similarly, the voltage
always lies within the acceptable range of 1˘ 0.05 pu.
Although the grid chosen as benchmark appears as over-dimensioned

and can perfectly withstand the levels of component loading and voltage
variations with respect to the current load, this is not necessarily valid for all
distribution grids in general. In any case, a proper analysis of the penetration
and combination of AMI measurements, as well as adequate modeling of the
different quantities in distribution grids, is crucial. Notably, the provision
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of ancillary services such as reactive power and voltage control via demand
response or a battery management system requires a good estimate of the
state of the grid. As the sensitivity analysis is carried out in relative terms
in this chapter, the outcomes are applicable to other urban distribution
grids which might not be as strong as the benchmark grid. In that case, the
peak load and voltage variations have to be accurately assessed for proper
congestion management. Furthermore, an increasing share of Distributed
Energy Resources (DERs) such as PV systems, heat pumps, and electric
vehicles characterized by high peak consumption is expected to push the
infrastructure of current distribution grids to the limits [321, 322]. Cost-
effective integration of DERs is only possible with accurate knowledge of the
grid’s state, and particularly the extreme values.

7.3.2 Dimensions

The sensitivity analysis is based on a combination of six dimensions, four of
which depend on the metering infrastructure, namely the penetration level, the
type of metering devices, their placement, and their capability (i.e., measured
quantity). The remaining two dimensions refer to the modeling of pseudo-
measurements for active and reactive power injection. Each dimension consists
of two to three options. A scenario corresponds to a given combination among
the different options. Table 7.2 lists all dimensions with their possible options,
and Figure 7.3 presents the structure of the sensitivity analysis, which leads
to a total of 144 distinct scenarios. If the AMI hardware setup generates a
redundant set of measurements, DSSE can be carried out to estimate the
most probable state of the system. In this case, the outcome depends above
all on the pseudo-measurement synthesis and on the DSSE algorithm itself.
In contrast, there is no redundancy in the absence of both smart meter
voltage measurements and measurements at the transformers and cabinets.
The sole availability of bus power injections based on SM measurements
and pseudo-measurements only allows for a load flow simulation, where the
grid state is directly given by the set of independent measurements. Detailed
information on each dimension is given in the following.

7.3.2.1 Penetration of Measurements

As typically seen in current distribution grids, different penetration levels
of smart meters are considered, going from 25% to 75% SM coverage. Full
penetration of reliable smart meters leads to an outcome extremely close to
the benchmark model. In this case, only the error margin of measurement
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Dimension Options

SM penetration 25%, 50%, 75%
Metered grid components feeder, transformers, cabinets (incremental)
Active power synthesis AMCM, SLA
Reactive power synthesis adaptive PF, average PF

SM placement random placement, strategic placement
SM capability voltage information, no voltage information

Table 7.2: Dimensions of the sensitivity analysis.

Figure 7.3: Structure of the sensitivity analysis according to the different di-
mensions and options under consideration.

devices can induce small deviations which are negligible in comparison with
a partial SM coverage where the SE errors are principally induced by pseudo-
measurements. Hence, full SM penetration is not explicitly analyzed in this
chapter. Besides, note that faulty measurements can be seen, to some extent,
as pseudo-measurements with a decrease of the actual SM penetration. As it
can be observed in Figure 7.4 at a representative bus, a higher SM penetration
obviously leads to more accurate state estimation. More than the sole impact
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Figure 7.4: Example of active power injection at a particular bus with respect
to different SM placements, SM penetrations and types of pseudo-
measurements.

of the SM penetration level, its combination with other dimensions is of
interest in this sensitivity analysis.

In addition to SM measurements, the AMI can also include measurements
taken at the feeder, at transformers, and at cable distribution cabinets. They
are labeled as grid component measurements. This study assumes that the
feeder is metered in any case and that cable distribution cabinets can be
equipped with a metering device only if transformers are also metered. Hence,
three options are examined, where transformer and cabinet measurements are
incrementally added to feeder measurements. For all metered grid components,
the voltage and all associated power flows are assumed to be recorded.

7.3.2.2 Synthesis of Pseudo-Measurements

As previously mentioned, pseudo-measurements are indispensable in DSSE
to cope with the lack of direct measurements. Presented in Section 6.2.2, the
Standard Load Allocation (SLA) and the Adaptive Markov Chain Model
(AMCM) with optimal aggregate matching are the two approaches considered
for active power pseudo-measurement synthesis. As a reminder, the AMCM
is a stochastic load profile generator, and the optimal aggregate matching
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Figure 7.5: Error distribution of active power injection (before SE) at two spe-
cific buses between multiple scenarios with random SM placement
and the benchmark model, considering different SM penetration
levels and two approaches for active power pseudo-measurement
synthesis.

consists of a load profile selection and a load profile allocation step. These are
under-constrained problems, which results in multiple feasible solutions, and
consequently, different possible power flows for a single time step. However,
only one realization per non-metered consumer is taken into account. In
the sensitivity analysis, the idea is to compare an approach traditionally
used by DSOs with an innovative method that faithfully represents the load
distribution visible in SM data. Figure 7.4 shows that spiky active power
profiles are created by the AMCM-based approach, whereas smoother profiles
result from the SLA. Furthermore, Figure 7.5 illustrates the error distribution
of active power injection at two different buses before SE. The general shape
of the distribution highly varies between the two examples, but also according
to the type of active power synthesis. For example, the error distribution at
bus 146 for a 25% SM penetration is left-skewed with SLA-based synthetic
load profiles but exhibits a Gaussian behavior with SLA-based synthetic load
profiles. The SM penetration level mainly impacts the variance of the error
distribution. Note that the large majority of pseudo-measurements proposed
in the DSSE literature have similar statistical properties as SLA-based load
profiles.
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Regarding reactive power pseudo-measurements, the average and adaptive
PF approaches as defined in Section 6.2.3 are considered. It must be reminded
that the adaptive PF approach has also been leveraged to create reactive
power injections for the benchmark model due to the absence of direct reactive
power measurements recorded by smart meters. Although the input data
for creating the respective lookup tables are different, a direct comparison
with the average PF approach might be biased. Hence, the purpose of this
analysis is not to identify which is the most suitable approach but to study the
influence of reactive power synthesis on the DSSE outcome. In addition, the
performance evaluation will not directly focus on reactive power quantities.

7.3.2.3 SM Placement and Capability

With a limited number of smart meters, DSOs face the challenge of their
placement across the grid. The basic approach consists of randomly distribut-
ing the smart meters. Alternatively, they can be wisely allocated to end-users
in order to maximize their benefits. The theoretical background of optimal
meter placement is largely investigated in the literature and is summarized
in [114]. The optimal solution inevitably depends on a certain objective, e.g.,
improving system observability [323], minimizing installation and mainte-
nance costs [324, 325], or improving the DSSE accuracy [314, 316, 326]. In
addition, the optimization problem is generally solved by heuristic search,
Genetic-Algorithm (GA), or Mixed Integer Linear Programming (MILP),
which can be computationally intensive on large real-world grids. In this
sensitivity analysis, the random SM placement is compared with the so-called
strategic placement approach. This is a simple heuristic approach where smart
meters are installed at the end-users with the highest energy consumption.
The strategic approach might be sub-optimal depending on the objective but
still provides very satisfying results and can be easily implemented knowing
the average energy consumption of each end-user.

Besides, only one representative scenario of random placement is considered.
This is justified by Figure 7.6 which compares the median error over all nodal
active power injections based on ten different random SM placements per
scenario. The error is expressed as adjusted RMSE which is defined in
Section 7.3.3.2. It appears that the variations among the different random
placements are minor, especially with respect to the strategic placement,
the penetration level, and the type of pseudo-measurement synthesis. As
an illustration, Figure 7.4 shows that the strategic placement allows for a
better estimation of the total load at this specific bus since smart meters
cover a higher share of power consumption than with random SM placement.
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Figure 7.6: Comparison of the median adjusted RMSE in active power injections
between the strategic and 10 random SM placements for different
levels of SM penetration, and different types of active power pseudo-
measurement synthesis.

Notably, a 75% penetration of strategically placed smart meters results in a
full load coverage at this specific bus (i.e., all consumers at this bus belong to
the 75% of end-users with the highest energy consumption and are assigned
with a smart meter).

Furthermore, the choice of the SM placement approach influences the
parametrization of Equation (6.14) when it comes to matching optimally
individual AMCM-based synthetic load profiles with aggregate power mea-
surements. With a random placement of smart meters, synthetic load profiles
tend to have similar statistical properties (e.g., mean energy consumption) as
the non-metered consumers. Hence, the scaling factor α in Constraint 6.14b
is set to 1 in order to guarantee the allocation of at least one synthetic profile
per non-metered consumer on average. However, the strategic SM placement
induces the synthesis of load profiles that all have a higher mean energy
consumption than the non-metered consumers3. Accordingly, α is set to a
value of 0.8 to prevent an overestimation of the total energy consumption of
non-metered consumers. In this case, this implies that approximately 20%
of the non-metered consumers (i.e., the consumers with the lowest energy
consumption) are assigned with a zero load profile.

3 It must be reminded that synthetic load profiles are generated based on the available smart
meter data in the same system.
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The last dimension considered in the sensitivity analysis refers to the
voltage measurements of smart meters. Although all smart meters have to
measure the voltage to obtain power quantities, that information is not
automatically recorded and transmitted. From the perspective of power
companies, active power is usually the main quantity of interest, and further
data require additional communication and storage capacity. Therefore, the
added value of the knowledge of voltage measurements is also studied.

7.3.3 Evaluation Metrics

Special attention must be given to the choice of the evaluation metrics.
In fact, each metric looks at the performance of a given approach from
a different perspective, which provides additional information. Different
metrics are usually complementary. As studied in Chapter 5, the load of a
single consumer or a small aggregation of consumers in distribution grids
is particularly volatile, meaning drastic changes from one time step to the
next. Spikes in active and reactive power consumption can be several dozen
times higher than the mean power consumption. Largely used in literature
for the evaluation of DSSE outcomes, the common Root-Mean-Square Error
(RMSE) seems appropriate for relatively stable signals but gives a biased and
inadequate measure of the estimation accuracy of volatile profiles. In this
work, the point-wise accuracy of power injection and power flow estimates
is evaluated via an adjusted version of the RMSE that does not directly
penalize large point-wise errors. Furthermore, the ability to properly represent
extreme values is assessed based on the notion of 95th percentile. Since the
voltage fluctuates around 1 p.u. and is not highly volatile, it is still evaluated
via the common RMSE.

7.3.3.1 Common Root-Mean-Square Error

The common RMSE is a widely used metric that considers the point-wise
error between two time series:

RMSE “ ‖y´ ŷ‖2 “

g

f

f

e

1
T
¨

T
ÿ

t“1
pyt ´ ŷtq2, (7.3)

where y “ py1, . . . , yt, . . . , yT q and ŷ “ pŷ1, . . . , ŷt, . . . , ŷT q are the true and
estimated time series, respectively, and T is the number of time steps under
consideration. The lower the RMSE, the better the estimation. The RMSE
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has the same unit as the evaluated quantity. Due to its square function, the
common RMSE penalizes more large point-wise errors.

7.3.3.2 Adjusted Root-Mean-Square Error

As detailed in Section 9.3, the common RMSE leads to the so-called double
penalty effect when comparing two volatile time series. The double penalty
effect occurs in the estimation of spikes, where the magnitude is properly
predicted, but its point in time is slightly displaced. In this case, the common
RMSE penalizes both the time step when the true spike is not estimated
and the neighboring time step associated with the wrongly estimated spike.
This phenomenon is illustrated in the top-right subplot of Figure 7.4 with
a level of 50% SM penetration. As mitigation measure, the authors in [136]
propose an adjusted error metric that allows for small, possibly discontinuous,
displacements of the estimated values in time. The adjusted error is the
solution of the following optimization problem:

RMSEω “minP P P ‖y´ P ¨ ŷ‖2, (7.4a)
s.t. Puv “ 0, @ |u´ v| ą ω, (7.4b)

where ω ě 0 is an adjustment limit, P is a permutation matrix, Puv P P
refers to the displacement of the estimated value ŷu from time step u to time
step v, and P is the complete set of restricted permutations. The optimization
function (7.4a) is similar to Equation (7.3) for the common RMSE, except that
the estimated values can be permuted across time steps in order to minimize
the resulting error. The error minimisation is a variant of the assignment
problem, a well-known combinatorial optimisation problem which can be
solved using the so-called Hungarian method. More details are provided
in [327]. The equality constraint (7.4b) ensures that each estimated value
is not displaced more than the adjustment limit ω. In fact, the adjustment
limit is incorporated into the algorithm by setting:

|yu ´ ŷv|2 “ C, if |u´ v| ą ω, (7.5)

where C is a large constant that prevents such displacement. As discussed
in [136], the value of the adjustment limit highly impacts the outcome of the
metric. If ω “ 0, the common RMSE is recovered. An increase of the value of
ω reduces the adjusted error. Nevertheless, a small error resulting from large
displacements is not necessarily indicative of a good estimation such that a
compromise has to be found. For this sensitivity analysis, ω is set to 4 hours.



7.4 results of sensitivity analysis 193

7.3.3.3 Ninety-Fifth Percentile

The 95th percentile is a threshold value below which 95% of the observations
fall. On this basis, following error metric is proposed to assess whether the
peak values of a time series are well estimated:

e95 “ ŷ95 ´ y95 (7.6)

where e95 is the proposed error metric, and ŷ95 and ŷ95 are the 95th percentile
values of the estimated and true time series, respectively. In this case, the
closer to zero, the better the estimation. A metric value lower or higher
than zero reflects an underestimation or overestimation of the peak values,
respectively.

7.4 results of sensitivity analysis

The sensitivities of active power injections, line loadings, and voltages with
respect to the six dimensions given in Section 7.3.2 are discussed in this
section. Although only the voltage and sometimes active power injections are
traditionally considered in DSSE literature, the loading of power lines and
transformers is also of high interest to DSOs, especially regarding the risk
of overloading. For each scenario, a time series simulation over one week is
carried out. Based on 15-minute resolution data, the resulting 672 time steps
cover a wide range of realistic cases and serve as a practical alternative to
Monte-Carlo simulations. The outcomes are illustrated in the form of box and
whisker plots. Each figure of this section displays the performance evaluation
of all 144 scenarios according to a specific metric and a specific quantity. In
order to represent all six dimensions in the same figure, the subplots are
organized as follows:

• the rows refer to the type of active and reactive pseudo-measurement
synthesis,

• the columns refer to the SM placement and capabilities,

• the x-axis refers to the level of SM penetration,

• the colors refer to the measurement of grid components.

This allows for a comprehensive overview of all possible combinations. In this
way, the reader can navigate vertically and/or horizontally within the figures
and directly see the impact of switching options in the pseudo-measurement
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synthesis and/or the AMI design, respectively. Each data point represents
the corresponding metric value for a single bus or line and for one scenario
over the entire considered time frame. The central bar in a box and whisker
plot indicates the median value, the box corresponds to the Interquartile
Range (IQR), and the ends of the whiskers define 1.5 ¨ IQR below and above
the lower and upper quartiles, respectively. For visualization purposes, all
outliers (i.e., values beyond the whisker ends) are discarded.

7.4.1 Power Injection

Based on the adjusted RMSE, the share of smart meters and their placement
across the grid are the main dimensions that play a role in the estimation of
active power injections, as illustrated in Figure 7.7. For example, a strategic
SM placement allows for a similar accuracy in average as a 25% higher
share of smart meters being randomly allocated. Additional grid component
measurements, as well as the voltage information of smart meters, are not
particularly beneficial in this case. In other words, the point-wise estimation
of active power injections largely depends on the direct measurement of these
active power injections and is barely influenced by the measurements of other
quantities such as active power flows at a spatial aggregate level. Furthermore,
the synthesis of active power pseudo-measurements via the AMCM approach
seems slightly worse in terms of point-wise accuracy. In fact, single (or a
small aggregation of) residential load profiles are known to be extremely hard
to estimate at each time step properly. Hence, the AMCM still produces peak
values in time periods where the actual load is generally low. This is highly
penalized by the adjusted RMSE, which is still a point-wise metric.
However, by considering the 95th percentile, Figure 7.8 confirms that the

SLA generally underestimates the consumption spikes and leads to a higher
variance in error than the AMCM-based load profiles. For example, active
power spikes suffer a median drop of 29% with a 25% penetration of randomly
allocated SMs without cabinet measurements, which is substantial. It must
also be noted that the analysis is performed with 15-minute resolution data.
As studied in Chapter 5, the drop is expected to be even more significant at
higher temporal resolutions. In comparison, the median drop is only 0.8%
when active power pseudo-measurements are synthesized by the AMCM
approach. Besides, a strategic allocation and a higher penetration of smart
meters considerably improve the estimation of peak power values. Especially,
they are almost perfectly estimated with a 75% SM penetration, independently
of the pseudo-measurement synthesis approach. A higher penetration level
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is not required for a better estimation of peak power values. Finally, the
synthesis of reactive power pseudo-measurements has essentially no impact
on the estimation of active power injections, both in terms of adjusted RMSE
and 95th percentile.

7.4.2 Component Loading

The loading of components is expressed in percentage with respect to their
maximum capacity. Due to their high capacity, the errors in loading estima-
tion are relatively low (i.e., mostly below 1%). Nevertheless, the sensitivity
analysis reveals substantial differences between the scenarios. On the one
hand, transformer loading estimation is highly enhanced by the sole addition
of a metering device at the transformers. This is obvious and not explicitly
illustrated in this chapter. On the other hand, the loading estimation of power
distribution lines depends on multiple dimensions. As shown in Figure 7.9, the
share of smart meters and their placement approach have a similar influence
as in the estimation of active power injections. This is comprehensible since
the loading of lines is mainly impacted by active power injections. Moreover,
direct measurements of power flows at the cable distribution cabinets improve
line loading estimation in general. This is not the case for direct measurements
at the level of transformers. In addition, the voltage information of smart
meters reflects the aggregate behavior of end-users in a certain neighborhood
and is also beneficial for accurate line loading estimation. Besides, the synthe-
sis approach for reactive power pseudo-measurements has a negligible impact
in comparison with other dimensions. Although not explicitly illustrated in
this section, the 95th percentile metric leads to similar results as in Figure 7.8,
but to a lesser extent. Notably, the SLA causes a median drop of 10.3% in
the magnitude of spikes in line loading with a 25% penetration of randomly
allocated smart meters without cabinet measurements. The misestimation
gradually vanishes with increasing SM penetration level.

7.4.3 Voltage

The accuracy of the voltage estimates is displayed in Figure 7.10 by means
of the common RMSE. The state estimation errors generally lie below 0.2%,
which is particularly low. This can be partially explained by the robustness
of the distribution grid under consideration and the absence of faulty mea-
surements. The voltage information of smart meters obviously leads to much
smaller errors. If only a few voltage measurements are available (e.g., at the
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feeder and at the transformers), the estimation is particularly sensitive to the
corresponding noise. In any case, voltage measurements at the distribution
cabinets result in very good accuracy for all bus voltages. They enable to do
without SM voltage measurements at the end-user level since the voltage is
locally very similar. Besides, the strategic SM allocation further improves
the voltage estimation compared to the random allocation when cabinet or
SM voltage measurements are not available. Finally, the synthesis of reactive
power does not play a role in the voltage estimation.

7.5 computational complexity and scalability

In this section, the computational complexity, scalability, and generalization of
the sensitivity analysis to other distribution systems are discussed. First of all,
it has to be emphasized that the use of real distribution grids, including the
LV level with the corresponding SM data, is extremely rare in the academic
literature in general. The pieces of work in [295, 328, 329] are among the very
few examples which rely on real systems for DSSE-related studies at the LV
level. Nevertheless, the grid used in their case study is not larger than a few
dozen buses, and the smart meter data do not always come from the same
system. The study presented in this chapter demonstrates the feasibility of
a comprehensive sensitivity analysis related to DSSE on a large real-world
distribution system with almost 1’000 buses and more than 2’600 end-users.

Although the sensitivity analysis is an offline process whose computational
time and resources are not as critical as for operational purposes, it must still
be computationally tractable. In this study, all simulations are carried out on
a 64-bit Windows server with an Intel Xeon Gold 6154 CPU at 3 GHz and
span over a period of one week with 15-minute resolution data (i.e., 672 time
steps). The synthesis of pseudo-measurements requires less than 20 MB of
data from the benchmark system to produce 700 MB of load profiles in about
5 hours for all scenarios. A large majority of the resources are used by the
AMCM approach. Furthermore, the state estimation itself lasts about one
minute per time step. It results in 90 MB of data based on less than 10 MB
of input data per scenario. Obviously, the computational complexity largely
depends on the number of scenarios, the simulation period, and the time
resolution, which can be adapted according to the DSO’s needs. This chapter
precisely considers a large variety of scenarios from which only a fraction
might be of interest to a specific DSO, depending on its AMI development
strategy. As detailed in Section 3.3, it must also be reminded that the creation
and validation of the grid model as well as the gathering, preparation, and



7.6 conclusion 201

cleaning of the measurement data and metadata is an essential prerequisite
that is considerably more time-consuming and resource-intensive than the
analysis itself.

Based on the above statements regarding the computational complexity, a
similar sensitivity analysis is perfectly scalable to larger systems (e.g., at a
city level), assuming that the grid model and measurements are already avail-
able in a clean and tidy form. The feasibility of state estimation techniques
on very large synthetic distribution grids has been proven by the authors
in [330–332]. The availability of real grid models, including the LV level,
and the preparation and integration of measurement data are the actual
bottlenecks for proper transparency down to the end-users in distribution
grids. Besides, the presented case study relies on a network that principally
supplies residential end-users. It is sufficiently large to extrapolate the out-
comes to other similar systems. Although the main tendencies of the analysis
can be generalized, the magnitude of the sensitivity results regarding power
flows and voltages still depends on the structure and robustness of the grid
under consideration as well as the type of end-users. Such a comprehensive
sensitivity analysis at a city level is not necessary, but various characteristic
sectors (e.g., residential, commercial, and industrial areas) should still be
considered to give a representative overview of the entire distribution grid.

7.6 conclusion

This chapter aims to provide realistic insights into the most relevant dimen-
sions to consider for cost-effective data-based modeling of distribution grids,
including the LV level. For that purpose, the impact of different combinations
and penetrations of state-of-the-art AMI sensors on the WLS state estimation
of a large real-world distribution grid is studied in a comprehensive sensi-
tivity analysis. The presented setup accounts for data streams that DSOs
can realistically obtain from their AMI. In the case of partial penetration
of smart meters at a certain bus, an approach is proposed to weigh the
different power measurements in the WLS formulation. Furthermore, novel
methods for synthesizing active and reactive power are compared to standard
approaches widely used by DSOs. A simple but effective strategic placement
of smart meters to the end-users with the highest energy consumption is
also compared to random SM placement. Moreover, specific grid component
measurements (i.e., at the transformers and cabinets) are taken into consid-
eration in addition to SM data. Among others, the performance evaluation
relies on an adjusted error metric that does not unfairly penalize volatile
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quantities. The representation of peak load is further assessed based on the
95th percentile.
In general, the efficiency of a certain AMI configuration and of a certain

approach for pseudo-measurement synthesis depends on the evaluation metric
and on the quantity under consideration. Obviously, a higher SM penetration
and their strategic placement substantially increase the SE accuracy in any
case. Notably, an SM penetration level higher than 75% is not justified, espe-
cially if smart meters are strategically placed. It also appears that additional
measurements at the transformers and cable distribution cabinets barely
influence the estimation of active power injections. They are nevertheless
helpful when it comes to estimating the voltage and line loading. Also, voltage
measurements given by smart meters are not particularly beneficial if distri-
bution cabinets can provide this information. Moreover, smooth synthetic
pseudo-measurements, as generally considered by DSOs and in the existing
DSSE literature, clearly underestimate the magnitude of spikes in power
injection and in line loading in case of a low SM coverage. This can be resolved
by the use of realistic load profiles, e.g., generated by the proposed AMCM
approach. They inevitably lead to a slight decrease in point-wise accuracy but
realistically reflect the load distribution in the system. Besides, a substantial
influence of the synthesis approach for reactive power pseudo-measurements
cannot be observed in the proposed setup. However, the topic of realistic
synthesis of reactive power profiles merits closer scrutiny.

To sum up, it is particularly relevant to model distribution grids down
to the LV level based on representative data. In fact, some DSOs currently
experience unexpected contingencies (e.g., congestions at peak hours, voltage
band violations) due to the misestimation of non-observable quantities in
their LV grid. Among others, this highlights the importance of proper pseudo-
measurement synthesis. Moreover, future works must definitely consider
three-phase measurements and network models since distribution grids are
typically unbalanced. It is highly probable that the level of volatility observed
in the single-phase system is somewhat reduced by the aggregation effect
over the three phases. In the same vein, the use of measurement data at
higher temporal resolution (e.g., one-minute resolution) better reflects the
actual volatility. Additional quantities such as PMU measurements might also
become standard in future distribution grids, which potentially contributes
to increasing the system observability. In any case, the use of appropriate
evaluation metrics is an essential part of the solution, which should not focus
purely on point-wise accuracy. These different aspects must be kept in mind
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and further analyzed with the increasing penetration of DERs and electric
vehicles whose stochastic nature adds even more uncertainty.

Furthermore, the WLS algorithm is probably not the most suitable ap-
proach considering the characteristics of state estimation in distribution grids.
Especially, the WLS algorithm assumes a Gaussian error distribution, which
is generally not valid in LV grids as illustrated in Figure 7.5. In addition, the
authors in [333] highlight that uncertainties in both the parameters of the
grid model and in the measurement data influence the performance of DSSE
algorithms. Hence, alternative DSSE approaches specifically designed to cope
with a large share of leverage points (i.e., measurements that significantly
influence the SE solution), pseudo-measurements, and possible faulty mea-
surements, and that can take grid model uncertainties into consideration are
more appropriate than the WLS algorithm. In this context, Extended Kalman
Filter (EKF), Unscented Kalman Filter (UKF), Least Absolute Value (LAV),
Forecasting-Aided State Estimation (FASE), and various ML techniques are
reviewed by the authors in [8, 114].
Eventually, probabilistic concepts should be preferred to deterministic

approaches in order to account for the large uncertainties induced by the
lack of direct measurements. For example, the authors in [329] propose a
promising probabilistic low-voltage state estimation using analog-search tech-
niques based on the historical data. It must be noticed that the error in
DSSE mainly originates from pseudo-measurements. Nevertheless, statisti-
cally representative pseudo-measurements provide insight into the actual
uncertainty. Notably, the proposed AMCM is a stochastic algorithm that
inherently accounts for the value distribution and the seasonality observed in
smart meter data. Hence, multiple AMCM realizations could be integrated
into a probabilistic DSSE framework to determine the state estimation un-
certainty. The principle could be similar to the estimation of the uncertainty
in wind power forecasting as detailed in [334]. Alternatively, the idea of
probabilistic state forecasting is presented in Section 9.4.
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D E T E C T I O N A N D
D I S A G G R E G AT I O N O F F L E X I B L E
R E S I D E N T I A L L O A D S

This chapter proposes novel unsupervised approaches for the detection and
disaggregation of cold appliance and water heater loads from standard smart
meter data. In a context where increased flexibility is required from the demand
side, a non-negligible potential is seen in the residential sector. For example,
cold appliances such as refrigerators are continuously active and potentially
available for demand response. Besides, electric storage water heaters are
appliances with relatively high power consumption and significant thermal
inertia. Nevertheless, the success of efficient demand response schemes via
direct load control presupposes an accurate estimate of their power demand
at each instant, not only at an aggregate level but precisely at the device
level. Although the load of single devices is rarely directly measured, a large
penetration of smart meters enables to indirectly infer this information via
load detection and disaggregation. In contrast to non-intrusive load monitor-
ing techniques generally suggested in the literature, the proposed detection
and disaggregation approaches are unsupervised and only rely on commonly
available smart meter measurement data with a temporal resolution between
1 and 30 minutes. Their applicability is demonstrated in 70 households. This
chapter is based on [335] and [336] for the disaggregation of cold appliances
and water heaters, respectively.

8.1 introduction

In future distribution grids, Demand Response (DR) is seen as an efficient way
to integrate an increasing share of intermittent Renewable Energy Sources
(RES) as the low controllability of RES can be compensated by the flexibility
potential on the demand side. In a DR scheme, some flexible loads are required
to shift or decrease their consumption. This potential can be exploited via
price signals which discourage consumption at high loading conditions and
possibly encourage consumption in periods with considerable renewable
energy production. The industrial sector already profits from such time-
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varying electricity prices. Alternatively, some electric devices could potentially
be directly controlled by system operators without impacting the comfort
of the user, which is known as Direct Load Control (DLC). The thermal
inertia of Thermostatically Controlled Load (TCLs) such as air conditioners,
space heaters, heat pumps, electric water heaters, and refrigerators offers
great flexibility, which is particularly interesting for DR applications [159].
In addition, the direct control of TCLs does not require any intervention by
the user, at the difference of domestic appliances like washing machines and
dishwashers, or even electric vehicles [50, 139]. Still largely under-exploited,
the flexibility potential in the commercial and residential sectors is non-
negligible. The authors in [158] estimate the hourly average load reduction
potential in Europe through load shedding and shifting between 20 GW and
75 GW for both residential and tertiary sectors, depending on the period
of the day and of the year. In comparison, the industrial load reduction
potential is estimated at 25 GW over the whole year.
In practice, when direct load control is required by the system operator,

DLC signals are traditionally blindly sent to all participating end-consumers
without knowing their actual flexibility potential. In fact, the flexible devices
react and temporarily reduce their consumption only at the condition that this
does not affect the end-user’s comfort. In order to design more effective DR
schemes, the consumption pattern and the availability of the individual devices
under consideration must be accurately estimated. For that purpose, multiple
approaches are proposed in the literature. Some techniques rely on typical
load profiles, associated with statistical surveys about their consumption
share in a certain population [337, 338]. Nevertheless, these techniques only
give a rough and general estimate of their consumption at an aggregate level
and cannot correctly account for the high diversity of individual electrical
devices. Besides, a large variety of model-based approaches are developed
to approximate the internal physical behavior of individual flexible devices,
notably focusing on TCLs [339–341]. Concretely, the electricity consumption
of TCLs is either ON or OFF, following a so-called bang-bang controller
which aims to keep the associated temperature within limits. Model-based
approaches are particularly convenient for designing control algorithms but
can hardly reflect the actual behavior of flexible devices in a given real system.
They require different modeling parameters (e.g., temperature limits, device
specifications, type of perturbations) which are rarely known in reality.

Recently enabled by the wide-scale roll-out of advanced metering devices,
data-based approaches provide the means for accurate quantification of the
share of flexible loads in a given distribution system down to the end-user
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level. For example, Intrusive Load Monitoring (ILM) directly provides sub-
metering data of the devices of interest, which gives perfect knowledge of
their consumption pattern. For example, the Belgian pilot project LINEAR
could estimate the flexibility potential of multiple residential appliances
based on different DR experiments and the exploitation of sub-metering
data [139]. Furthermore, the authors in [342] have leveraged sub-metering
data with a 1-minute resolution to decompose the load at an aggregate
level (i.e., 50 to 1000 houses) into seven categories of appliances. They
demonstrate that the disaggregation accuracy via an ANN is satisfactory
with only 5% of the consumers providing their sub-metering data, as long
as the aggregation level is reasonably high (i.e., at least 200 users) and the
end-users are relatively homogeneous [343]. Nevertheless, measurements of
individual appliances are currently only feasible in small-scale experiments.
On the one hand, their high installation cost inhibits the generalization
of sub-metering devices in distribution grids. On the other hand, ILM is
controversial in terms of privacy [344]. In contrast, smart metering at the
end-consumer level becomes the norm in an increasing number of distribution
systems. Hence, Non-Intrusive Load Monitoring (NILM) techniques are often
mentioned in the literature to extract the load profile of single appliances
from power measurements at the end-consumer level [345, 346]. They rely
on the detection and learning of the typical electric device’s signature, i.e.,
its unique steady- or transient-state characteristics. Often based on HMMs
or ANNs, they can be supervised (i.e., they require sub-metering data as
training data) or unsupervised [347].
However, commonly proposed NILM approaches in the literature presup-

pose a sampling rate of at least 1 Hz (or much higher for the detection of
transient-state characteristics). This is far from the standards of smart meters,
which record measurements at most with a 1-minute granularity, which is
generally insufficient to detect the device signature. The literature on load
disaggregation based on smart meter data with a sampling period of at least
one minute is extremely scarce. For example, the authors in [348] compare
the performance of four classifiers (i.e., KNN, random forest, linear SVM,
and non-linear SVM) on 1-second and 1-minute measurement data for the
event detection of 9 types of devices, including the refrigerator. Alternatively,
the authors in [349] compare the event detection performance of a Factorial
Hidden Markov Model (FHMM) and a sparse matrix processing based tech-
nique on two open data sets over a range of sampling periods from 6 seconds
to 15 minutes. The algorithms are used as multi-class classifiers for the event
detection of 5 types of devices, also including the refrigerator. Nevertheless,
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the disaggregation processes proposed in [348] and [349] require sub-metering
data in the training phase and do not focus on the load detection but on the
event detection (i.e., either ON or OFF). In any case, there is a clear lack
of disaggregation approaches based on standard smart meter data1 in the
literature.

This chapter focuses on the detection and disaggregation at the house level
of cold appliances, especially refrigerators, and electric storage water heaters
based on standard SM data without the need for sub-metering data. First,
cold appliances are often disregarded from the current load disaggregation
literature because their rated power can be up to 50 times lower than the
power of other flexible loads such as the AC unit, the water heater, or the
cloth dryer. These other loads would potentially have a higher impact in a
DR scheme [148, 287]. Nevertheless, they have the advantage of being present
in practically all houses. In the European residential sector, the authors
in [158] estimate that almost half of the load reduction can be realized by
shifting consumption of freezers and refrigerators. Moreover, the authors
in [350–352] demonstrate that effective control algorithms can theoretically
be applied to cold appliances. In fact, smart controllable refrigerators are
already commercially available [353, 354]. Second, electric storage water
heaters are among the appliances with the greatest flexibility potential and
thermal capacity [139, 287]. They are commonly the largest consumers in
a building in terms of rated power, and their ramp rate from zero to full
power is almost instantaneous. In addition, their energy storage potential is
available over several hours and can be exploited at any period of the year,
as their usage is only marginally impacted by seasonal variations [341].

The remainder of this chapter is structured as follows. Section 8.2 details
the methodology behind the detection and disaggregation processes of both
the cold appliances and the electric storage water heaters. Although the small
steady-state power variations that build the load signature are smoothed out
and not detectable at standard smart meter resolutions, some characteristics
unique to the flexible devices of interest are still perceptible. In Section 8.3,
the proposed approaches are tested and evaluated on smart meter data
from the Costa Rican sub-metering study. Note that measurement data at
the device level are not leveraged during the detection and disaggregation
processes but only used as ground truth for the evaluation. The sensitivity of
the different approaches to temporal resolutions between 1 minute and 30
minutes is analyzed. In Section 8.4, the proposed approaches are applied to

1 The notion of standard smart meter data refers to active and possibly reactive power
measurements at the level of end-users with a temporal resolution between 1 and 30
minutes, excluding sub-metering data.
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70 households in order to obtain a high-resolution estimation of the share of
flexible consumption at an aggregate level. Finally, Section 8.5 concludes the
chapter and discusses future work.

8.2 methodology

Most TCLs are influenced by the outside temperature. This is, for example,
the case of heat pumps and space heaters that are highly active in winter and
barely used in summer. This characteristic can be exploited by disaggregation
approaches to compare long periods with high and low TCL activity and
distinguish temperature-sensitive loads from the non-flexible base load [147,
340]. However, this is not applicable to cold appliances and electric water
heaters whose energy consumption is relatively constant throughout the
year. Regarding the latter, the authors in [158] mention a difference in hot
water demand of only 20% between the coldest and warmest days of the year
in Europe. Hence, the disaggregation of cold appliances and electric water
heaters should rely on different properties. In this work, a combination of
features specific to each device is actually leveraged. Notably, cold appliances
and water heaters are turned on and off almost instantaneously and consume a
nearly constant active power during ON periods. As observed in Section 5.3.1,
the rated power of cold appliances is relatively low, whereas water heaters are
among the largest power consumers in the domestic sector. Besides, electric
water heaters do not consume or produce any reactive power.

The proposed detection and disaggregation approaches leverage these
specific features, which allows the devices of interest to be distinguished from
other loads in the same house on the sole basis of standard smart meter data.
The detection of cold appliance and water heater loads are first presented
in Sections 8.2.1 and 8.2.2, respectively. The load detection approaches
rely on the power histogram of the total house load, from which the rated
power of the devices of interest can be detected. Subsequently, Sections 8.2.3
and 8.2.4 detail different approaches to isolate the respective individual
device’s load profiles. In this work, load detection is a necessary condition
before disaggregation. Note that the entire process of both the detection and
disaggregation steps are unsupervised, i.e., only power measurements at the
house level are required.
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8.2.1 Detection of Cold Appliance Load

Even if the presence of a refrigerator in a house is highly probable, this should
be confirmed by the data. The load of cold appliances such as refrigerators is
characterized by a cycle ON/OFF behavior with relatively constant rated
power. Such behavior is triggered by a local hysteresis controller which aims
to maintain the internal temperature within a certain band. The underlying
assumption for load detection is that the cyclic ON/OFF behavior translates
into two significant spikes in the power histogram of the total house load. This
is justified by the fact that cold appliances are continuously in activity, also
in the absence of other loads. In order to avoid the interference of other TCLs
in the detection process, only power values up to 1 kW are considered. On
the one hand, this limit is well above the usual residential refrigerator rated
power (i.e., maximum 200 W [287]) and also accounts for a small and base
load (e.g., sleep mode of electronic devices). On the other hand, the upper
limit lies below the rated power of other typical TCLs that might also induce
spikes in the higher portion of the total load histogram2 (e.g., minimum 2 kW
for water heaters and AC units [287]). The histogram in question consists of
50 bins with a width of 20W, which allows for precise recognition of spikes.
On this basis, a spike is defined as a bin whose two neighboring bins have
a lower frequency of power values. A cold appliance is said to be detected
if the two largest spikes are at least 25% higher than the remaining spikes.
This criterion is defined based on a preliminary study. Besides, the difference
in power between the spikes corresponds to the estimated rated power of the
cold appliance.

Figure 8.1 illustrates the total active power histogram at different temporal
resolutions of an example house with a refrigerator. Two significant spikes
are visible (i.e., at 40W and 100W), especially at higher temporal resolution.
The second spike tends to disappear with decreasing temporal resolution.
This is explained by the fact that the duration of the refrigerator’s ON period
(i.e., 34 minutes on average in this example) gets too close to the temporal
resolution and is affected by the smoothing effect detailed in Section 5.3. The
right subplots of Figure 8.1 illustrate the histogram of the exact same house,
where the refrigerator load has been subtracted. Only one significant spike
is left, supporting the assumption that two significant spikes under 1 kW
indicate the presence of a cold appliance.

2 In this chapter, the total load refers to the load at the house level.
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Figure 8.1: Active power histogram of an example house (i.e., house 6 in Ta-
ble 8.1) with and without refrigerator.

8.2.2 Detection of Water Heater Load

The active power consumption profile of water heaters is characterized by
large spikes of the same amplitude, corresponding to their rated power.
The frequency and duration of these consumption spikes depend on the hot
water demand and the thermal losses of the water tank. In general, they
occur several times a day in order to maintain the water temperature in the
tank within a certain range. Hence, the presence of electric water heaters
is assumed to be visible in the upper part of the active power histogram of
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Figure 8.2: Histogram of the total active power consumption at various tempo-
ral resolutions in an example house (i.e., house 3 in Table 8.3) with
and without a water heater.

the total house load. This is illustrated by Figure 8.2 for an example house
at various temporal resolutions. Indeed, one of the bins is associated with a
substantially higher frequency, which does not appear when the water heater
load is subtracted from the total house load. Note also that the relative
frequency of this bin diminishes with decreasing temporal resolution. This
is again due to the smoothing effect of lower temporal resolutions on smart
meter data, as detailed in Section 5.3. In order to filter out the activity of
other TCLs with lower rated power (e.g., air conditioners and refrigerators),
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only power values higher than 2 kW are considered in the histogram. In this
work, the width of the histogram bins is fixed to 200 W. A water heater is
said to be detected if the power histogram contains at least one outlier bin,
i.e., the frequency associated with at least one bin exceeds the commonly
used threshold for outliers [238]:

dbini ą“ dbinQ3 ` 1.5 ¨ pdbinQ3 ´ d
bin
Q1 q, (8.1)

where dbini is the frequency associated to bin i in the total load histogram
above 2 kW, and dbinQ1 and dbinQ3 are the first and third quartiles (i.e., 25th and
75th percentiles) among the different frequency values, respectively. At the
difference of the criterion for the detection of cold appliance loads, there is
no restriction on the number of outlier bins for the detection of water heater
loads. The rated active power of the detected water heaters is estimated
as the difference between the power of the highest outlier bin above 2 kW
and the power of the first spike in the histogram below 2 kW. The latter
corresponds to the base load. For the example house of Figure 8.2, the rated
power of 3 kW can be correctly estimated.

8.2.3 Disaggregation of Cold Appliance Load

This section proposes two disaggregation approaches for cold appliance loads,
assuming that the load detection step has been conclusive. The first approach
distinguishes time periods of different activity levels in the total house load
profile and learns the characteristics of the cold appliance from the so-called
low-activity sections. The second approach is meant as an alternative in the
case the distinction between periods of different activity levels is not feasible.
It is based on the detection of active power jumps in the total load profile.

8.2.3.1 Low-Activity-Based Approach

The first proposed approach relies on the notions of “low-activity” and “high-
activity” sections. Low-activity (LA) sections represent the portions of the
time series where only the cold appliance and a potential small base load are
active. In contrast, the activity of other loads is assumed to occur during
the high-activity sections. The main idea is to understand the pattern of the
cold appliance load in the LA sections and apply this knowledge in the HA
sections for the purpose of disaggregation. More specifically, a LA section is
defined as a time period where all values are lower than a certain threshold.
In this case, the threshold corresponds to the power value of the so-called tail
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bin of the second significant spike in the total load histogram. The tail bin
is defined as the last bin after the second significant spike whose difference
in frequency with the previous bin is negative. Indeed, the variations in the
measurements of the cold appliance’s rated power (plus a potential base load)
affect a few bins following the second significant spike, which is noticeable in
Figure 8.1. AS safeguard, the threshold is nevertheless limited to 50% higher
than the power value of the second significant spike. In addition, the cycle
duration of cold appliances is generally lower than two hours according to
Table 8.1 and the authors in [287, 355]. Hence, a minimum duration of two
hours is required to ensure the isolation of at least one full ON/OFF cycle
per LA section without the interference of other loads.
For each LA section, the disaggregated load is defined as the total load

reduced by the corresponding minimum value:

pLA
dis,t “ pLA

tot,t ´ min
jPr1,TLAs

pLA
tot,j , @t P r1,TLAs, (8.2)

where pLA
dis,t and pLA

tot,t are the disaggregated and total house load at time t of
the LA section under consideration, respectively. In addition, TLA is the total
number of time steps in this LA section. Following that, five representative
LA sections are selected. As selection criterion, the features of their ON/OFF
cycles (i.e., the power consumption and the time duration of the ON and
OFF periods) must be the closest to the corresponding median values over
all LA sections.
Subsequently, the disaggregation in each HA section is based on the dis-

aggregated load in the representative LA sections and occurs in multiple
steps:

1. The total load profile is modified in an iterative manner in order to
improve the performance of the following steps. Concretely, the power
jump (or power difference) between two consecutive time steps is limited
to the largest jump observed in the representative LA sections while
ensuring non-negative values:

init : pHA
a “ pHA

tot , (8.3a)
iter : pHA

a,t:THA
“ pHA

a,t:THA
´ δi, t “ 2, . . . ,THA, (8.3b)

with δi “

$

&

%

max
`

0, ∆pHA
a,t ´ ∆pLA

dis
˘

, if ∆pHA
a,t ě 0,

max
`

0, ∆pHA
a,t ` ∆pLA

dis
˘

, if ∆pHA
a,t ă 0,

where pHA
a and pHA

tot are the iterated and total load profiles in the
HA section under consideration, respectively. In addition, ∆pHA

a,t “
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pHA
a,t ´ p

HA
a,t´1, ∆pLA

dis is the largest absolute power difference between
two consecutive time steps in the representative LA sections, THA is
the number of time steps in this HA section, and subscript t : THA
refers to time steps t to THA of the corresponding profile.

2. Each of the representative LA section is extended (i.e., duplicated by
respecting the ON/OFF cycle features) to be longer the HA section
under consideration by at least the length of the LA section. For
example, an extended LA section should have at least 20` 6 “ 26 time
steps if the HA section and the original LA section consist of 20 and
6 time steps, respectively. Following that, The Pearson’s correlation
between the extended LA sections and the modified load in the HA
section is computed for each possible lag. The load of the extended
representative LA section with the lag leading to the highest correlation
is selected as the best-fitting model:

pHA
b “ argmax

pLA
lag

cor
´

pHA
a , pLA

lag

¯

, (8.4)

where pHA
b is an intermediate load profile and pLA

lag is an extended
representative LA section with a certain lag.

3. The disaggregated load in the HA section is defined as the minimum
at each time step between the best-fitting model and the original load:

pHA
dis,t “ min

´

pHA
b,t , pHA

tot,t

¯

, @t P r1,THAs, (8.5)

where pHA
dis,t is the disaggregated load at time t of the HA section under

consideration.

To summarize, the total disaggregated load consists of pLA
dis and pHA

dis in LA
and HA sections, respectively. The disaggregation process of a HA section
is illustrated in Figure 8.3. Based on this approach, the disaggregated load
looks like an actual cold appliance load, even in high-activity periods. Note
that this approach is not applicable if other loads are continuously active,
which prevents the isolation of LA sections.

8.2.3.2 Jump-Based Approach

In order to disaggregate the cold appliance load from any house’s load profile,
even if satisfactory LA sections are not visible, a second approach is proposed.
In this case, power variations of the disaggregated load are constrained
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Figure 8.3: Disaggregation process of a refrigerator load according to the low-
activity-based approach based on 1-minute resolution data. For
visualization purposes, power values are capped at 1500W. The
illustrated section corresponds to the squared area in Figure 8.7.

Figure 8.4: Disaggregation process of a refrigerator load according to the jump-
based approach based on 1-minute resolution data. For visualization
purposes, power values are capped at 1500W. The illustrated section
corresponds to the squared area in Figure 8.7.
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within the range of the estimated rated power of the cold appliance. The
disaggregation process is given as follows:

1. The original load profile is modified in an iterative manner such that
the jump in power between two time steps does not leave a predefined
band. This step is carried out:
a) from left to right:

init : pit
a “ ptot, (8.6a)

iter : pit
a,t:T “ pit

a,t:T ´ λi, t “ 1, . . . ,T , (8.6b)

with λi “

$

’

’

’

&

’

’

’

%

pit
a,t ´ plim, if pit

a,t ą plim

pit
a,t, if pit

a,t ă 0

0, otherwise,

where pit
a and ptot are the iterated and total load profiles, re-

spectively. In addition, T is the total number of time steps, and
subscript t : T refers to time steps t to T of the corresponding
profile. In this way, the iterated profile is contrained between the
power values of 0 W and plim which is set to the power value
of the second spike in the total load histogram plus a margin of
20 W. This margin account for small variations in the power of
the refrigerator (plus a potential base load)3.

b) from right to left:

init : pit
b “ ptot, (8.7a)

iter : pit
b,1:t “ pit

b,1:t ´ λi, t “ T , . . . , 1, (8.7b)

with λi “

$

’

’

’

&

’

’

’

%

pit
b,t ´ plim, if pit

b,t ą plim

pit
b,t, if pit

b,t ă 0

0, otherwise.

where the different variables and parameters are defined as in
Equation (1a).

2. The disaggregated load profile is finally defined as the minimum between
the profiles resulting from steps 1a and 1b at each time step:

pjump
dis,t “ min

´

pit
a,t, pit

b,t

¯

, @t P r1,T s, (8.8)

3 The exact value of plim does not significantly impact the disaggregation outcome as long
as it is not too large.
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where pjump
dis,t is the disaggregated load at time t.

The disaggregation process according to the jump-based approach is il-
lustrated in Figure 8.4. For comparison purposes, the same section as in
Figure 8.3 is selected. The shape of the final disaggregated load is highly
sensitive to the variations in the total load and particularly volatile in periods
with high activity.

8.2.4 Disaggregation of Water Heater Load

The proposed disaggregation method for the water heater load leverages
active power measurements in the first step and, if available, reactive power
measurements in the second step. The core idea of the disaggregation process
relies on the detection of large jumps in the power profiles. This concept
is illustrated in Figure 8.5 for an example house with 10-minute resolution
data. The first subplot represents the total active power profile of the house,
from which upward and downward jumps in the same range as the estimated
rated power are identified. In the second subplot, upward and downward
jumps are translated into values of 1 and -1, respectively. Note that the
transition between the ON and OFF status of a water heater takes place
almost instantaneously, which is much faster than the temporal resolution of
the data. Due to the temporal averaging effect, the power value measured for
the water heater at the time step when the transition occurs appears to be a
weighted average between zero and the rated power. Hence, a jump considers
the difference in power over three consecutive time steps. If available, the
same procedure is applied to the reactive power profile, as illustrated in
the third and fourth subplots of Figure 8.5. In order to account for small
variations, the threshold for the identification of large jumps in active power
is set 10% below the rated power estimated from the total active power
histogram as presented in Sec. 8.2.2. Analogously, the threshold for large
reactive power jumps is set 10% below the most frequent absolute reactive
power value observed in the histogram (bin width of 20 Var) of the total
reactive power4.
In a further stage, the identified jumps in the total active power profile

are cleaned up to ensure an alternation of upward and downward jumps.
Hence, the ON periods of the water heater are defined between upward and
downward jumps, and the OFF periods are defined between downward and
upward jumps. Moreover, only ON periods with a duration lower than 2

4 The exact value of the power thresholds only marginally impacts the disaggregation
outcome as long as they are slightly lower than the estimated rated powers.
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hours are retained, which is a realistic upper limit for typical water heaters
according to Tables 8.2 and 8.3, and to the authors in [287]. The resulting
active load of the water heater is zero during OFF periods and is equal to
the minimum between the estimated rated power and the total active power
during ON periods:

pWH
t “

$

&

%

0, if t P OFF period,

min
`

p̂WH, ptot
t

˘

, if t P ON period,
@t P r1,T s, (8.9)

where pWH
t is the estimated active power of the water heater at time t, p̂WH

is the estimated rated power of the water heater, ptot
t is the active power of

the total house at time t, and T is the number of time steps. As illustrated
in the fifth subplot of Figure 8.5, only part of the visible spikes in total
active power are associated with the water heater activities. The remaining
spikes either have a too low maximum power, last longer than two hours, or
require more than two time steps to reach their maximum. According to the
proposed disaggregation approach, they likely correspond to the activity of
other electric devices.
Finally, reactive power measurements can be leveraged to enhance the

precision of the disaggregation process. Indeed, electric water heaters are
purely resistive devices (i.e., consuming only active power), in contrast to
most other electric devices which are usually equipped with induction motors.
This is confirmed by Table 6.1. Hence, the simultaneous detection of a jump
in both active and reactive power profiles certainly reflects the activity of an
inductive (or capacitive) electric device and cannot be attributed to a water
heater. In this way, the initial guess for the water heater power profile can be
further enhanced. More precisely, wrongly estimated ON periods are filtered
out by the processing of reactive power measurements. The comparison of
the two last subplots of Figure 8.5 indicates that two ON periods are filtered
out. They correspond to the activity of another electric device with a similar
active power level but also reactive power consumption.

8.3 performance evaluation

The performance of the proposed detection and disaggregation approaches
is evaluated on real-world data sets with sub-metering. In the following,
Section 8.3.1 presents the data sets, and Section 8.3.1 defines the two types
of evaluation metrics used in this study. The evaluation itself is given in
Sections 8.2.3 and 8.2.4 for the cold appliances and water heaters, respectively.
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8.3.1 Data Set

The measurement data for testing the proposed load disaggregation approach
for cold appliances are obtained from the Costa Rican sub-metering study
presented in Section 3.2.3. Out of the 70 houses under consideration, 14
examples consist of clean and reliable active power measurements of both
the total load and the refrigerator load are available. The remaining houses
probably also possess a refrigerator, but the power consumption has not been
recorded separately, or the data quality is not sufficient. The preparation of
the sub-metering data set is detailed in Section 5.2.1. Table 8.1 details the
specifications of the refrigerators in question. Especially, their rated power is
relatively low in comparison with other domestic appliances, ranging from
100 W to 200 W. Nevertheless, refrigerators consume between 11% and 51%
of the total household energy consumption, which is non-negligible in terms
of flexibility potential. Note also an average ON duration between 11 and 38
minutes, which influences the disaggregation ability.
Moreover, 24 good-quality load profiles of water heaters have been indi-

vidually recorded in the Costa Rican sub-metering study. Their features
are summarized in Table 8.2. Although water heaters consume power dur-
ing a relatively short period, they represent 25% on average of the total
house’s energy consumption due to their relatively high rated power. The
duration of their ON periods largely varies across the different examples,
which impacts the success of the disaggregation approach. Unfortunately, only
active power has been recorded in this data set. To the best of the author’s
knowledge, no data set with active and reactive power measurements of both
the total house load and the water heater load is publicly available. In order
to evaluate the benefit of reactive power for disaggregation purposes, own
power measurements have been conducted over two to four weeks in three
different households of the City of San José, Costa Rica. Table 8.3 details
the specifications of the water heaters in each house, which is consistent with
the features of the 24 previously mentioned water heaters.
All measurement data are originally recorded with 1-minute granularity.

In order to reflect lower temporal resolutions, power values are appropriately
modified according to Equation (3.10). Typical SM resolutions of 5, 10, 15,
and 30 minutes are taken into account. As noted in Chapter 5, some countries
opted for a temporal resolution of 60 minutes that is however not considered
in this case study. In fact, the resulting residential load profiles get particularly
smooth, which hinders the detection and the proper disaggregation of the
cold appliance and water heater loads.
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House Rated
power [W]

Mean ON | OFF
duration [min]

Share of
energy [%]

1 100 38 | 24 13
2 135 16 | 25 24
3 115 25 | 54 16
4 150 18 | 25 11
5 115 20 | 44 15
6 100 34 | 59 14
7 120 20 | 45 15
8 120 21 | 57 18
9 150 27 | 41 14
10 160 11 | 20 20
11 140 16 | 43 45
12 150 17 | 19 20
13 150 17 | 19 25
14 200 14 | 37 51

Table 8.1: Specifications of 14 refrigerators in the Costa Rican sub-metering
data set.

Measure Rated
power [kW]

Mean ON | OFF
duration [min]

Share of
energy [%]

Average 4.8 8.7 | 384 25
Standard deviation 2.1 5.9 | 270 13.6

Minimum 2.9 3.1 | 87.6 7
Maximum 10.3 32.1 | 1396 63

Table 8.2: Statistics over 24 water heaters in the Costa Rican sub-metering
data set.

8.3.2 Evaluation Metrics

The performance of the disaggregation approaches is evaluated based on
two different types of metrics. On the one hand, error metrics focus on the
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House Rated
power [kW]

Mean ON | OFF
duration [min]

Share of
energy [%]

1 6 26 | 628 27
2 6 4 | 385 17
3 3 30 | 410 29

Table 8.3: Specifications of 3 water heaters used in the evaluation.

point-wise mismatch between the true and the estimated power values. On
the other hand, classification metrics assess whether the ON and OFF periods
of the load are estimated at the correct time steps.

8.3.2.1 Error Metrics

Commonly used in the forecasting and disaggregation literature, the Mean
Error (ME), the Mean Absolute Error (MAE), and the Normalized Mean
Absolute Error (NMAE) consider the point-wise difference between two time
series. They are defined as follows:

ME “ 1
T
¨

T
ÿ

t“1
pŷt ´ ytq , (8.10a)

MAE “ 1
T
¨

T
ÿ

t“1
|ŷt ´ yt|, (8.10b)

NMAE “ 100% ¨ 1
T ¨ yr

¨

T
ÿ

t“1
|ŷt ´ yt|, (8.10c)

where yt and ŷt are the true and estimated values at time t, respectively. In
addition, yr is the actual rated value of the device under consideration, and
T is the total number of time steps. While the ME makes the distinction
between an overestimation and an underestimation of the actual values, the
MAE gives the estimation error in absolute terms. Besides, the NMAE allows
for fair comparison between multiple houses and devices of various sizes. For
the error metrics, values close to zero indicate a good performance.

8.3.2.2 Classification Metrics

The disaggregation of a TCL can also be seen as the estimation of ON
(positive) and OFF (negative) events at each time step, regardless of the
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Figure 8.6: Typical confusion matrix used as basis for classification metrics.

power magnitude. In this study, the load of the device of interest at a certain
time step is considered as a positive event when it exceeds one third of
the actual rated power, and as negative event otherwise. On this basis,
disaggregation models can be evaluated like a classification problem. Hence,
following classification metrics are considered:

precision “ true positives
true positives` false positives , (8.11a)

recall “ true positives
true positives` false negatives , (8.11b)

F1-score “ 2 ¨ precision ¨ recall
precision` recall , (8.11c)

where true positives are correctly estimated ON events, false positives are
incorrectly estimated ON events, and false negatives are incorrectly estimated
OFF events. Together with the true negatives (i.e., correctly estimated OFF
events), their numbers build a so-called confusion matrix which is illustrated
in Figure 8.6. On this basis, the precision is the ratio of correctly estimated
ON events over all estimated ON events, the recall is the ratio of correctly
estimated ON events over all actual ON events, and the F1-score is the
harmonic mean between the precision and the recall. For the classification
metrics, the higher the value, the better the performance.

8.3.3 Disaggregation of Cold Appliance Load

In order to get a first intuition of the disaggregated refrigerator load, Fig-
ure 8.7 illustrates the outcomes of both disaggregation approaches at different
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temporal resolutions for an example house. The disaggregation process in the
squared areas is detailed in Figures 8.3 and 8.4 for low-activity-based and
jump-based approaches, respectively. The shape of the true refrigerator load
is highly affected when the temporal resolution decreases. The temporal aver-
aging effect is all the more visible from a resolution of 15 minutes on, which is
close to the mean duration of the refrigerator’s ON and OFF periods (i.e., 16
and 25 minutes). The success of both disaggregations appears to suffer from
a drop in temporal granularity. Nevertheless, the disaggregated load in LA
sections matches remarkably with the true refrigerator load at high resolution.
Whenever other loads are present, the jump-based approach estimates only
a small portion of the refrigerator load. In contrast, the low-activity-based
approach reproduces the cyclic behavior but sometimes misestimates the
duration of the ON and OFF periods or the exact time of occurrence.
In a second step, the disaggregation performance is assessed over the 14

examples of houses with sub-metered refrigerator load5. Table 8.4 gives the
number of houses for which disaggregation is possible. Since the jump-based
approach can always be applied as long as a refrigerator load has been
detected, the corresponding numbers also reflect the numbers of successful
load detection6. The low-activity-based approach additionally requires the
presence of LA periods of sufficient quality to be applied. Hence, the ratio of
successful disaggregations is generally lower than for the competing approach.
Moreover, the temporal resolution impacts the load detection ratio, which
drops from 100% at a 1-minute resolution to 64% at a 30-minute resolution.
Concerning the actual disaggregation performance, the mean error in

Figure 8.8 indicates that the jump-based approach is more conservative
and generally underestimates the refrigerator load. In contrast, the low-
activity-based approach exhibits an average mean error close to zero. The
two other error metrics show that the performance of the low-activity-based
approach is relatively independent of the temporal resolution. Conversely,
the jump-based approach experiences a drop in performance with decreasing
temporal resolution. A larger variance in accuracy is also visible across the
multiple examples. On average, the low-activity-based approach outperforms
the jump-based approach from a 15-minute resolution on. Depending on the
resolution and the example in question, the mean absolute error ranges from

5 Remember that sub-metering data are not required in the disaggregation process but are
only exploited for evaluation purposes.

6 Note that the performance of the load detection approach is not assessed via the typical
classification metrics since there is no guarantee of the absence of a refrigerator in the
remaining households of the Costa Rican sub-metering study. Hence, a confusion matrix
cannot be built.
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Temporal
resolution

Jump-based
approach

Low-activity-based
approach

1 minute 14/14 (100%) 10/14 (71%)
5 minutes 13/14 (93%) 9/14 (64%)
10 minutes 13/14 (93%) 11/14 (79%)
15 minutes 13/14 (93%) 9/14 (64%)
30 minutes 9/14 (64%) 8/14 (57%)

Table 8.4: Number of successful disaggregations of refrigerator load according
to the temporal resolution and the disaggregation approach.

Figure 8.8: Performance evaluation of the refrigerator load disaggregation based
on error metrics.

14 W 68 W with an average of 31 W. This corresponds to 7.5% to 55% with
an average of 26% of the respective refrigerators’ rated power (i.e., NMAE).
Finally, Figure 8.9 indicates that both the precision and the recall are

negatively affected by a decreasing temporal resolution. The drop in perfor-
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Figure 8.9: Performance evaluation of the refrigerator load disaggregation based
on classification metrics.

mance can be explained by the misestimation of the actual refrigerator’s rated
power and the disappearance of the typical ON/OFF cycles. The jump-based
approach is more precise than the low-activity-based approach but tends to
miss more actual ON events from a 10-minute resolution on. The average
F1-score goes from 68% and 75% at a 1-minute resolution to 58% and 59% at
a 30-minute resolution for the low-activity-based and jump-based approaches,
respectively. Although it is difficult to compare the performance on different
data sets, still note that the average F1-score of the best-performing super-
vised classifier proposed in [349] amounts to 62% 32% and 20% at 1-, 5-,
and 15-minute resolutions, respectively. Even if they are not supervised, the
low-activity-based and jump-based approaches solely focus on the specific
features of cold appliances, which leads to a very satisfying disaggregation
performance accounting for the large uncertainty during periods of high
activity.
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8.3.4 Disaggregation of Water Heater Load

The disaggregation of the water heater load is evaluated in a similar manner.
First, Figure 8.10 allows for an intuitive interpretation of the outcome. The
true and estimated water heater load profiles are illustrated over the first three
days of Figure 8.5. In addition to the water heater with a rated power of 6 kW,
another electric device consumes active power with a similar magnitude, which
challenges the water heater disaggregation process. As repeatedly observed,
the temporal resolution impacts the shape of the total load profile and also
alters the disaggregation of the water heater load. In this example, the water
heater load cannot be detected anymore from At a 1-minute resolution,
all water heater events are correctly detected, but the proposed approach
misclassifies some events of the other large load which shows similar features as
the water heater (false positive). The misclassification is however mitigated by
the processing of reactive power measurements. At lower temporal resolutions,
the magnitude of the narrow and successive consumption spikes induced by
the other large load is partially reduced below the detection threshold related
to the water heater (e.g., on Monday and Tuesday evening). This contributes
to eliminating some false positives observed at a 1-minute resolution. At a
10-minute resolution, the proposed approach still detects water heater events
with a long duration but misses narrower water heater events due to the
smoothing effect (e.g., on Monday afternoon). In this case, the use of reactive
power measurements also allows the proposed approach to dispose of a false
positive on Wednesday afternoon.
Figures 8.11 and 8.12 illustrate the disaggregation performance for the

three water heaters specified in Table 8.3. First, note that the water heater
is not detected in house 1 with 15-minute data and in house 2 with 10- and
15-minute data. As previously explained, this is directly linked to the ON
duration of the water heaters, which determines if the observed rated power
is affected by the temporal averaging effect. Although the water heater of
house 2 is still detected at a 5-minute resolution, the smoothing effect already
impacts a considerable part of the ON periods that cannot be identified
anymore, which translates into a substantial drop in precision and an increase
of the absolute error metrics.

Furthermore, the presence of highly volatile loads with a similar (or higher)
power amplitude as the water heater in houses 2 and 3 explains the relatively
lower precision and higher error at 1-minute resolution. This is partially
mitigated by the processing of reactive power measurements and is smoothed
out at lower temporal resolutions. More generally, leveraging reactive power
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Figure 8.11: Performance evaluation of the water heater load disaggregation
based on error metrics, accounting for the use of reactive power.

Figure 8.12: Performance evaluation of the water heater load disaggregation
based on classification metrics, accounting for the use of reactive
power.
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(a) Error metrics (b) Classification metrics

Figure 8.13: Performance evaluation of the water heater load disaggregation
on the Costa Rican sub-metering data set.

measurements during the disaggregation process typically increases the dis-
aggregation precision but sometimes at the cost of a slightly lower recall.
Indeed, in rare cases, the water heater is switched ON or OFF at the exact
same time as another load with reactive power consumption. Consequently,
by leveraging reactive power, the algorithm wrongly considers the jump in
active power as a false positive.
In order to obtain a more representative picture of the disaggregation

accuracy, the analysis is also performed on the 24 households with good-
quality water heater load profiles from the sub-metering data set, however
with the possibility to exploit reactive power. First of all, the load detection
steps succeed for 20, 16, 10, 8, and 4 examples based on data with tempo-
ral resolutions of 1, 5, 10, 15, and 30 minutes, respectively. Figures 8.13a
and 8.13b also confirm the high impact of the temporal averaging effect on
the general performance. The mean error indicates a slight underestimation
of the load at lower resolutions. A relatively large variance across the different
examples appears in terms of point-wise error. The precision and the recall
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are drastically impacted from a resolution of 10 minutes and 30 minutes
on, respectively. In general, note the excellent performance at a 1-minute
resolution with median values of 41 W and 0.9% for the MAE and the NMAE,
respectively. In terms of classification error, 1-minute resolution data allow
for a mean precision, recall, and F1-score of 0.89, 0.86, and 0.85, respectively.

8.4 share of flexible loads at an aggregate level

Finally, the proposed detection and disaggregation approaches are applied to
all 70 households in the Costa Rican sub-metering data set with a 1-minute
resolution. In this study, the load of cold appliances is disaggregated via the
jump-based approach since it is not restricted by the availability of low-activity
sections. In addition, the water heater disaggregation approach relies only on
active power measurement. It comes out that 49 water heaters and 65 cold
appliances are detected and disaggregated, which seems sensible. In a minority
of houses, it is however probable that the intense activity of other electric
devices blurs the observation and detection of the appliances of interest. Note
that the accuracy of the proposed approaches cannot be evaluated because
of the lack of appropriate sub-metering data for all households. Nevertheless,
this study first proves their scalability. In this case, the aggregated load is in
the same order of magnitude as the load fed by a small MV/LV transformer.
Since the approaches do not imply any machine learning and are purely based
on data analytics, the time complexity and the computational resources are
not a limiting factor to their application at the level of an entire distribution
grid. On average, the disaggregation of each example in this case study lasts a
couple of seconds. Furthermore, the high-resolution disaggregation of flexible
loads provides precious insight into the demand response potential inherent
to a given grid.

The top subplots of Figure 8.14 illustrate the average daily aggregate load
profile of the disaggregated appliances on weekdays and at the weekend. Cold
appliances are characterized by a relatively constant load of about 3 kW. In
contrast, the aggregated water heater load exhibits a large variation over
the day, where most of the consumption is concentrated in the morning.
On weekdays, the water heater consumption peak occurs between 6:00 and
7:00, which corresponds to the time period when inhabitants are mostly
expected to use hot water (e.g., shower, breakfast). At the weekend, this peak
is displaced to the late morning. In both cases, the water heater consumption
peak coincides with the total consumption peak. The share of the respective
flexible loads with respect to the total load is illustrated in the bottom
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Figure 8.14: Average power consumption and share of disaggregated cold ap-
pliances and water heaters in the aggregation of the 70 household
loads from the Costa Rican sub-metering data set, categorized by
weekday and weekend.

subplots of Figure 8.14. Not surprisingly, the share of cold appliances reaches
its maximum (i.e., 28%) at night, when the total load is at its minimum. The
aggregated load of water heaters tends to follow the total load shape such
that their contribution to the total load is somewhat spread over the day.
Independently from the type of day, their consumption share reaches up to
35% in the early morning.

8.5 conclusion

To summarize, this chapter presents multiple novel unsupervised approaches
to detect and disaggregate the consumption profile of flexible TCLs from
standard smart meter data. To the best of the author’s knowledge, this has
never been proposed in the literature for cold appliance and storage water
heater loads. In fact, traditional NILM approaches make use of measurement
data at temporal resolutions within the range of seconds and sometimes of
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sub-metering data, whose availability is an exception in common distribution
grids. The proposed approaches only require power measurements with a
typical resolution between 1 and 30 minutes gathered at the residential end-
consumer level. It must nevertheless be noted that the success of detection and
disaggregation approaches is negatively impacted by the temporal averaging
effect occurring at lower resolutions.
Both load detection approaches rely on the total active power histogram,

where the rated power of the device of interest is estimated. Subsequently,
two different disaggregation algorithms are developed for cold appliances.
Evaluated on 14 Costa Rican households with sub-metering data, a conser-
vative jump-based approach performs particularly well at higher temporal
resolutions. At 1- and 5-minute resolutions, it achieves an average NMAE
of 21% and 22% (normalized by the rated power) and an average precision
of 86% and 85%, respectively. The alternative approach learns the shape of
the cold appliance load in so-called low-activity time periods without the
interference of other devices and leads to the disaggregation of realistic load
patterns in time periods of high activity. This low-activity-based approach
appears to be less sensitive to the temporal resolution of the measurement
data. Regarding the water heater, the proposed disaggregation algorithm
detects the presence of large jumps in the total active power profile. It per-
forms especially well at higher resolutions. Evaluated on 24 Costa Rican
households with sub-metering data, the disaggregation approach achieves
an average NMAE of 0.9% and 1.2%, and an average precision of 88% and
84% with temporal resolutions of 1 and 5 minutes, respectively. If available,
reactive power measurements can enhance the precision of the disaggregation
by eliminating false positives. The algorithm tends to be conservative, which
is reflected by a generally higher precision than recall and a mean error
slightly lower than zero.
Due to their relatively low computational complexity, the proposed ap-

proaches can easily be implemented on a wider scale. Notably, their appli-
cation in a smart metered section of an LV grid enables to quantify the
share of consumption coming from flexible devices with a high temporal and
spatial resolution. In the presented case study with 70 households, it appears
that cold appliances and water heaters account for a substantial portion of
the total load. During the early morning consumption peak, water heaters
are responsible for an estimated 35% of the total load. Even if their rated
power is relatively low, refrigerators are continuously in activity and still
contribute to an estimated 12% of the total load on average. This reflects
a substantial flexibility potential for DR schemes which can be greatly en-
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hanced by accurate estimation of the load profiles of individual devices. It
must nevertheless be noted that cold appliances and water heaters cannot
be entirely and permanently exploited for DR purposes. Hence, the share
of their load does not directly reflect the actual flexibility potential. Future
work shall focus on data-based flexibility estimation. This could rely on
the data-based modeling of the internal bang-bang controller as proposed
in [356] for the disaggregation of heat pump loads. Eventually, the design of
online disaggregation algorithms based on real-time SM data streams would
definitely support the operation of active distribution grids.
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D E T E R M I N I S T I C A N D
P R O B A B I L I S T I C S H O RT - T E R M
F O R E C A S T I N G

Prediction is very difficult, especially if it’s about
the future.

— Nils Bohr

This chapter elaborates on the application of short-term forecasting in
low-voltage grids. Short-term load forecasting becomes popular at this level
due to the availability of smart meter measurements. Nevertheless, corre-
sponding load profiles are characterized by much higher volatility and lower
predictability than the load at higher spatial aggregation levels. In this context,
traditional deterministic forecasting algorithms and standard metrics, which
focus on point-wise accuracy, seem inadequate. In contrast, probabilistic ap-
proaches allow for a certain quantification of the large uncertainty inherent
to low-voltage systems. Quantile forecasting can be leveraged to estimate in
a probabilistic way the near-future system state, including bus voltages and
line power flows. Among others, such short-term probabilistic state forecast-
ing benefits the design of preventive voltage control schemes. This chapter
discusses these different aspects in detail. It is based on [134] and [357] for
the deterministic and probabilistic parts, respectively.

9.1 introduction

As repeatedly mentioned over the course of this thesis, the digitalization of
distribution grids opens up a large variety of new opportunities in terms of
grid transparency to support operation and planning processes. For example,
the authors in [4] review a large set of domains that are boosted by the
wide-scale roll-out of smart meters. They mention the efficient integration
of Distributed Energy Resources (DERs) and the management of flexible
loads via demand response strategies as promising applications of smart
meter data analytics. In fact, the success of these processes inevitably relies
on good predictions, not only at an aggregate level but also down to the

239
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end-consumer level. Hence, an increasing number of deterministic models
have been designed and proposed in the literature for load forecasting at
the level of end-users or small aggregations of consumers [286, 358–363]. In
the large majority of cases, they are not more than an adaptation of widely
known algorithms traditionally applied at the transmission level and in wind
forecasting, e.g., autoregressive models, artificial neural networks, regression
trees, support vector regressions, k-nearest neighbors, fuzzy techniques, and
hybrid methods [9]. The selection of appropriate features appears to be
particularly relevant. Although some algorithms might be more efficient, it
seems clear that the performance significantly drops in comparison with load
forecasting at the substation or transmission level [123]. The behavior of
individual end-users is inherently harder to predict than their aggregation. In
addition, the actual definition of a good prediction at low aggregation levels
is not straightforward anymore due to the high load volatility. The authors
in [136, 364] question the validity of standard evaluation metrics (e.g., mean
absolute percentage error, root mean square error) which purely rely on the
point-wise accuracy. In this context, the general application and evaluation of
deterministic forecasting algorithms in Low-Voltage (LV) grids merits closer
scrutiny.

Besides deterministic algorithms, probabilistic forecasting approaches are
gaining popularity in power systems since they account for the uncertainty
related to a given quantity. Nevertheless, their application to distribution
grids, and especially to the LV level, is particularly scarce and exclusively
focuses on PV production and load forecasting. For example, the authors
in [365] propose a quantile version of Convolutional Neural Network (CNN)
for the day-ahead and intra-day prediction of aggregations of 10 consumers.
Besides, the authors in [137] demonstrate the superiority of a proposed
pinball loss guided Long-Short-Term Memory (LSTM) approach over the
quantile versions of Regression Neural Network (RNN) and Gradient Boosting
Regression Tree (GBRT) for the 30-minute-ahead probabilistic forecasting
of individual loads. In addition to the traditional load, the increasing share
of Photovoltaic (PV) systems and Electric Vehicles (EVs) adds uncertainty
in current distribution grids and introduces new operational challenges to
DSOs. On the one hand, PV systems synchronously inject active power into
the LV grid according to the volatile solar irradiance, which can considerably
increase the voltage in the system. Moreover, reverse power flows can damage
the current transformer infrastructure that is traditionally not designed for
such cases. On the other hand, EVs represent large stochastic loads which
increase the loading of the system and potentially decrease the voltage during
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the charging phase. Since DSOs are responsible for the safe operation of
their network by avoiding voltage band violations or line overloadings, it
also becomes crucial to properly observe and foresee voltages and power
flows down to the low-voltage level. Hence, this chapter investigates the
short-term probabilistic prediction of the state (i.e., power injections, power
flows, voltages) of low-voltage grids for operation purposes. To the best of
the author’s knowledge, this has never been proposed in the literature.
Furthermore, a focus has recently been given to control schemes that ex-

plicitly consider uncertainty in their design [366–368]. This appears inevitable
to cope with the volatile and hardly predictable nature of loads and DERs in
distribution grids. Such design is based on stochastic programming, robust
optimization or chance-constrained Optimal Power Flow (OPF) [369–371].
However, proposed approaches generally assume a given error distribution
and overlook the large variations in uncertainty over both temporal and
spatial dimensions of a system. As presented in Section 9.4, the inherent
uncertainty in the state of distribution grids can still be estimated at high
temporal and spatial resolutions with reasonable accuracy, even at the LV
level. In addition, in contrast to the transmission level, a large majority of
control schemes presented in the literature for the distribution grid level
rely on corrective measures. This is also the case for voltage control, where
the proposed optimal control mechanisms are triggered in reaction to the
observation of voltage band violations. The author strongly believes that the
preventive estimation of such grid constraint violations together with the
design of preventive control measures allow for more cost-efficient distribution
grid operation. Consequently, this chapter promotes the use of short-term
quantile forecasts for preventive voltage control. Concretely, quantile forecasts
of different quantities are directly integrated into a two-stage OPF control
scheme. It aims to optimally estimate in advance the required PV power
curtailment in order to maintain the near-future voltages within limits and
hence avoid more expensive curtailment in real-time.
The remainder of this chapter is structured as follows. Section 9.2 first

elaborates on the forecasting workflow followed in this work, especially
focusing on the training phase. Next, Section 9.3 discusses the application of
deterministic load forecasting algorithms and their evaluation at the level
of an LV grid. It analyzes the statistical properties of the deterministic
predictions and points out the shortcomings of traditionally used algorithms
and evaluation metrics. Subsequently, the notion of short-term probabilistic
state forecasting is detailed in Section 9.4. Two different quantile forecasting
algorithms are developed, and their performance is evaluated for different
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levels of PV and EV penetration. Section 9.5 proposes a preventive voltage
control scheme that explicitly accounts for uncertainty by integrating quantile
forecasts into the corresponding optimization problem. The advantages of
quantile forecasts over point forecasts are demonstrated considering different
imbalance prices. The main outcomes are finally summarized in Section 9.6
which also introduces various avenues for future work.

9.2 forecasting workflow

In this work, the development of both deterministic and probabilistic fore-
casting algorithms follows a well-defined workflow which is illustrated in
Figure 9.1. The workflow is inspired by common practices among the forecast-
ing community. However, note that the purpose of this chapter is definitely
not the development of the best possible forecasting model. In any case,
the performance of an algorithm depends on the data set on which it has
been tested. As noted by the authors in [128], the notion of universally best
technique does not make sense. In fact, this chapter principally focuses on
the application of short-term forecasting in distribution grids. Special care is
nevertheless given to the design, training, and tuning of the different forecast-
ing algorithms introduced in the following sections. The author is confident
that the presented workflow enables a robust design of these algorithms.

First of all, the entire data set is split into a training set and a test set. The
training set is used to select the best model of a given forecasting algorithm,
which refers to two main aspects: feature selection and hyper-parameter
tuning. On the one hand, a forecasting algorithm is rarely fed with the
original data but requires a reduced set of specific data called features. The
most relevant features are normally selected based on domain knowledge.
Multiple combinations of the most relevant features must nevertheless be
tested to fine-tune the model. On the other hand, most algorithms contain
so-called hyper-parameters which must be defined before the actual learning
phase1. For example, the number of hidden layers and neurons, the activation
function, the learning rate for gradient descent, and the regularization term
are typical hyper-parameters of a neural network. Hyper-parameter tuning
can be carried out under the form of a grid search. First, multiple possible
values are selected for each hyper-parameter. Second, the performance of
the algorithm is evaluated for all combinations of hyper-parameter values.
Hence, the model selection phase consists of a feature selection step and a

1 At the difference of hyper-parameters, model parameters are defined during the learning
phase.
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Figure 9.1: Workflow followed in this work for the design of a forecasting
algorithm.

hyper-parameter tuning step, where multiple combinations must be tested.
For that purpose, the original training set is further split into an actual
training set and a validation set. The training phase (or learning phase) fits
the parameters (e.g., weights) of the model in order to best match the input
features with the output (i.e., value to predict). Subsequently, all trained
models are evaluated on the validation set, and the model leading to the best
accuracy is selected.

Alternatively, model selection can be performed according to the so-called
k-fold cross-validation. This procedure mitigates the risks of overfitting,
i.e., the selection of a model which is too specific to the training data and fails
to generalize to previously unseen data. Concretely, the original training set
is split into k subsets, where k´ 1 subsets are used as the actual training set,
and the remaining subset is used as the validation set. This process is iterated
k times, where each subset is used once as the validation set. Eventually,
the best model corresponds to the model associated with the set of features
and hyper-parameter values leading to the best average accuracy over the k
validation sets.

On a side note, it is commonly known that the selection of features has
a stronger influence on the model performance than the choice of hyper-
parameter values. Hence, for each cross-validation iteration, the feature
selection step is performed in the first stage, using common hyper-parameter
values proposed in the literature. Hyper-parameter tuning is performed in
the second stage based on the previously selected features to further fine-tune
the model. In theory, feature selection and hyper-parameter tuning could be
performed simultaneously by adding the multiple combinations of features
to the grid search. In practice, this leads to an explosion of the number of
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grid-search combinations, which is particularly time-consuming and does not
bring substantial benefit.

The different algorithms presented in this work are applied to a multitude
of profiles. In order to reduce the computational cost, a unique model per
algorithm is selected based on a subset of profiles. More precisely, the unique
model consists of the set of features and hyper-parameter values leading to
the best average accuracy over the subset of profiles. Next, each algorithm
is trained on the entire original training set of every single profile. Each
trained algorithm is finally evaluated on the test set. The test set enables
the comparison of the performance of multiple algorithms. It is important
that the data from the test set have not been used in the training process in
order not to bias the performance evaluation.

9.3 inadequacy of standard deterministic approaches

As a motivation for this section, Figure 9.2 illustrates the 15-minute resolution
profile of an aggregation of multiple loads and of a single consumer over one
week, together with 24-hour-ahead deterministic forecasts performed by an
Adaptive Markov Chain Model (AMCM) and by Support Vector Regression
(SVR). More information on the algorithms is given in Section 9.3.1. As
already studied in Chapter 5, the single consumer exhibits sharp and hardly
predictable consumption peaks. In contrast, the aggregated profile is typical
of the measurements at an MV/LV transformer level where the high volatility
of individual consumers is partially smoothed out. Visually, both algorithms
produce predictions similar to the measurements of the aggregation even
though the prediction based on the AMCM is somewhat more volatile.
However, the predictions for the single consumer are substantially different.
The SVR algorithm produces a very smooth profile which is not characteristic
of the volatility observed in the measurements. All consumption peaks are
not reflected by the SVR. In terms of point-wise accuracy, it achieves a Mean
Absolute Percentage Error (MAPE) of 37%. Conversely, the AMCM-based
forecast is a spiky profile. For this particular consumer, the algorithm is able
to reproduce a similar load behavior at the weekend but wrongly predicts
high activity on Monday afternoon. Although the AMCM seems to give
a visually more realistic forecast than the SVR algorithm, it achieves a
MAPE of 73%, i.e., twice higher than the SVR accuracy. These observations
motivate a deeper investigation of the weaknesses and strengths of various
load forecasting algorithms and require a more exhaustive evaluation of their
performance.
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Figure 9.2: Measurements and associated predictions based on the AMCM and
SVR algorithms for two representative load profiles.

Consequently, four load forecasting algorithms with different characteristics
are first presented in Section 9.3.1. Next, Section 9.3.2 introduces different
metrics to evaluate the forecast performance. Besides standard point-wise
metrics, the ramp score and the adjusted error are alternative metrics for
the evaluation of volatile profiles, which are proposed by the authors in [364]
and [136], respectively. Additionally, the statistical properties of load forecasts
are analyzed. Section 9.3.4 finally evaluates the performance of the four
presented forecasting algorithms on a large data set according to the different
introduced metrics. The analysis focuses on 24-hour-ahead predictions. More
precisely, forecasting is performed at each time step on a rolling basis with a
horizon of 24 hours2 [10].

2 Note that day-ahead forecasting would be the most intuitive approach under the conditions
that SM measurement data are traditionally sent once a day to the main utility server. In
other words, day-ahead forecasts are issued at a certain point in the day for all time steps
of the next day. Nevertheless, such an approach might lead to a decreasing performance
over the day due to the increasing prediction horizon, which is not desired in this work.
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9.3.1 Forecasting Algorithms

For the purpose of this work, the four following forecasting algorithms are
considered: Persistence method, Auto-Regressive Moving Average model with
eXogenous inputs (ARMAX), AMCM, and SVR. Except for the AMCM algo-
rithm, these different approaches are extensively used in the literature on time
series forecasting. This set of forecasters can obviously be extended to a much
larger variety of additional algorithms, notably more advanced approaches.
The authors in [4] and [9] review the algorithms generally used in the load
forecasting literature and for the short-term prediction of building energy
consumption, respectively. In addition, the authors in [372] comprehensively
presents and compare seven popular load forecasting algorithms applied to the
building level and point out the difficulty of predicting individual residential
loads. Nevertheless, this study does not focus on the forecasting algorithms
themselves but on the characteristics of their predictions, which can already
be properly covered by the four selected algorithms. On the one hand, the
ARMAX and SVR algorithms are designed to minimize the point-wise error
between the measurements and the forecasts at each time step and output
relatively smooth profiles. Although they are structurally very different, they
both achieve good accuracy on smooth measurement profiles but perform
poorly on volatile loads such as single households [123]. Similar characteristics
can be observed with linear regression models, gradient boosting trees, neural
networks, and deep neural networks, although the former appear to better
grasp the inherent uncertainty of load profiles at the end-user level [373,
374]. On the other hand, the persistence model and the AMCM intend to
keep the original statistical properties, but at the detriment of the point-wise
accuracy. The most suitable features and hyper-parameters for the ARMAX,
AMCM, and SVR algorithms have been selected by grid search with k-fold
cross-validation on a training set covering up to 2 years of data.

9.3.1.1 Persistence Method

The persistence model is a simple method that does not require any learning.
It is often used as a benchmark and assumes that the value to forecast is
equal to the last observable value:

ŷt “ yt´H , (9.1)

where ŷt and yt´H are the predicted and true values at time t and t´H,
respectively. In addition, H corresponds to the forecasting horizon, which
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is equal to 24 hours (i.e., 96 time steps with 15-minute resolution) in the
context of this study.

9.3.1.2 Auto-Regressive Moving Average Model with Exogenous Inputs

The ARMAX model decomposes a time series into an Auto-Regressive (AR)
and a Moving Average (MA) part, and can integrate exogenous variables.
It is widely used by utility providers because of their relatively fast and
easy implementation with suitable accuracy on highly aggregated data. The
ARMAX model used in this study is given by:

yt “

p
ÿ

i“1
ψi ¨ yt´i `

q
ÿ

j“1
θj ¨ εt´j

`

N
ÿ

n“1

”

α ¨ sin
´2π ¨ n ¨ t

m

¯

` β ¨ cos
´2π ¨ n ¨ t

m

¯ı

` εt, (9.2)

where yt is the value of time series y at time t, and εt is the white noise
error at time step t. In addition, p and q are the orders of the AR and
MA components, and ψi and θj are the parameters of the AR and MA
components, respectively. Finally, N is the order of Fourier terms, α and β
are the parameters of the Fourier decomposition, and m is the number of
time steps per period. For smart meter data, it is reasonable to fix the period
to one day, which gives m :“ 96 with a temporal granularity of 15 minutes.
After grid search, the remaining hyper-parameters are set to p :“ 1, q :“ 1,
and N :“ 8. The model is trained on the most recent observations spanning
over one week.
ARMAX models can be extended with an integral component when a

certain trend is observed in the time series. This is however not the case for
smart meter data in the short time frame of a few days. Besides, the standard
Auto-Regressive Moving Average (ARMA) model fails to capture the long
seasonal periods in smart meter data, even with considerably large AR and
MA orders. Hence, the authors in [375] recommend decomposing the time
series into its first Fourier terms and integrate them as exogenous inputs in
the model.

9.3.1.3 Adaptive Markov Chain Model

The AMCM is an algorithm based on Markov chains and presented in
Section 6.2.2.3, suggested for the synthesis of realistic load profiles at the
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end-user level. As a reminder, the elements of a traditional Markov transition
matrix are real numbers indicating the probability to go from one state at
time t to another state at time t` 1. The core concept of the AMCM is
to substitute each transition value with a logistic regression function which
accounts for calendar features in the calculation of transition probabilities.
Hence, the algorithm is designed to reproduce the statistical properties of
the training data, especially the periodicity and probability distribution of
consumption values. For the sake of this study, the original algorithm is
adapted for prediction purposes by adding weather and historical values to
the set of features. Hence, each element of the adaptive transition matrix is
given by:

hθ pxtq “ g
´

θT
t xt

¯

, with g pzq “ 1
1` e´z , (9.3)

where xt is a vector of calendar features, weather data, and historical obser-
vations with respect to time t. More precisely, calendar features are one-hot
encoded categorical variables that correspond to the hour, the weekday, and
the month at time t. Weather data are the temperature and irradiation values
at time t. Historical observations refer to the observed consumption values
at times t´ i, i P tH,H ` 1,H ` 2,W ,W ` 1,W ` 2u, where H and W are
the number of time steps in 1 day and 1 week, respectively. The choice of
all features results from the feature selection process in the training phase.
Finally, θt is a vector of coefficients defined by the training process. The
algorithm is trained over a period of two years.

9.3.1.4 Support Vector Regression

The SVR model is the regression version of the popular Support Vector
Machine (SVM). The SVM algorithm is commonly used for supervised
classification problems. It aims to separate input data based on certain
characteristics using a virtual boundary, also called hyper-plane, as a delimiter
between two classes. The objective of the SVM algorithm is to draw this
hyper-plane with the widest possible margin. The data points which are
the closest to the hyper-plane and consequently influence its position and
orientation are called support vectors. Instead of separating the input data,
the SVR version intends to pass the most precise hyper-plane through the
data, converting the support vector margin into the smallest possible error



9.3 inadequacy of standard deterministic approaches 249

margin, ideally containing all the data points. Formally, this consists of
solving a convex optimization problem which is commonly written as:

min
w,ξ,ξ˚

1
2 ¨w

ᵀw`C
T
ÿ

t“1
pξt ` ξ

˚
t q, (9.4a)

s.t. wᵀφpxtq ´ yt ě ε` ξt, (9.4b)
yt ´w

ᵀφpxtq ě ε` ξ˚t , (9.4c)
ξt, ξ˚t , ε ě 0, C ą 0, @t P t1, ...,T u, (9.4d)
kpxi,xjq “ φpxiq

ᵀφpxjq, (9.4e)

where xt is a vector of input features at time t and yt is the predicted value
at time t. In addition, w is a vector of weights related to the input features,
C is a parameter that balances the importance of both terms in the objective
function, ε defines the margin of insensitive loss, and T is the total number of
time steps in the training set. Next, ξt and ξ˚t are slack variables introduced
to ensure feasibility. Finally, kpxi,xjq is a chosen kernel function and φpxiq
is the corresponding feature map. Kernel functions are also described as
efficient inner products. With the help of the feature map, the features are
mapped into an inner product space induced by the kernel function. In this
new space, the computation occurs in a more efficient manner. The goal is
to find a function that stays within a ε-margin from the predicted values y,
but also exhibits flatness. The first requirement is met through minimization
of the so-called ε-insensitive loss. The second requirement is reflected in the
l2-regularization of the weights. There is an extensive literature on the SVR
algorithm and more information can be found in [376–378].
The SVR algorithm has proven to perform particularly well in the short-

term load forecasting literature [9, 362]. For the purpose of this study, a
training period of 1 year appears to be sufficient. Similar features as for the
AMCM-based approach are used. The SVR model comes from the scikit-learn
python library and is based on the Radial Basis Function (RBF) kernel. After
hyper-parameter tuning, C and ε are set to 1000 and 1, respectively.

9.3.2 Deterministic Evaluation Metrics

In the load forecasting literature, algorithms are generally assessed via point-
wise metrics which compare the true and predicted value at each time step [9].
This is the case of standard metrics such as the Mean Absolute Percentage
Error (MAPE) and the Normalized Root Mean Square Error (NRMSE).
Alternatively, the authors in [136] suggest the use of an adjusted error metric
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load type algorithm MAPE NRMSE
adjusted
NRMSE
(2h | 4h)

ramp
score

aggregation AMCM 13% 17% 11% | 10% 4.5%
aggregation SVR 8.2% 12% 9.2% | 8.8% 1.9%

single consumer AMCM 73% 147% 102% | 93% 3.4%
single consumer SVR 37% 113% 108% | 106% 1.9%

Table 9.1: Performance evaluation of the forecasts of the two representative
load profiles illustrated in Figure 9.2.

that mitigates the double penalty effect induced by standard point-wise
metrics. Besides, the ramp score is suggested by the authors in [364] to assess
the prediction accuracy of ramp events, which is of particular interest in
solar forecasting. These various metrics are defined in the following. Their
application to the different predictions of Figure 9.2 are presented in Table 9.1.
Note that this section proposes a non-exhaustive list of metrics for comparing
two time series, but other metrics (e.g., based on Dynamic Time Warping
(DTW) [379]) might also be suitable.

9.3.2.1 Standard Point-Wise Metrics

The MAPE and the NRMSE are among the most common metrics for the
evaluation of deterministic forecasts. They are defined as:

MAPE “ 100%
T

¨

T
ÿ

t“1
|
yt ´ ŷt
yt

|, (9.5a)

NRMSE “ 100%
ȳ

¨

g

f

f

e

1
T
¨

T
ÿ

t“1
pyt ´ ŷtq2 “

100%
ȳ

¨ ‖y´ ŷ‖2, (9.5b)

where yt and ŷt are the true and predicted values at time t, respectively. In
addition, ȳ is the mean value over all observations, and T is the number of
time steps. The lower the error metric value, the better the forecast accuracy.
Since they are given in percent, the MAPE and NRMSE allow for comparison
of the forecast accuracy not only between different algorithms on a same
profile, but also between different profiles. By definition, large deviations are
penalized to a greater extent by the NRMSE than by the MAPE.
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As shown in Table 9.1, standard point-wise metrics penalize the AMCM-
based approach which creates profiles with high volatility and seem to favor
the smooth predictions of the SVR algorithm. This is the case for the
illustrated small consumer. Although they might be of realistic magnitude,
the power spikes created by the AMCM-based approach do not exactly match
in time with the observed spikes in the actual load profile. This leads to the
so-called “double penalty effect” in the performance evaluation via commonly
used metrics. In fact, these point-wise metrics highly penalize the volatile
forecasts both at the time steps when the true spike is not predicted and at
the time steps with wrongly predicted spikes.

9.3.2.2 Adjusted Error Metric

In order to mitigate the double penalty effect, the authors in [136] propose
an adjusted error measure that allows for small, possibly discontinuous,
displacements of the predicted values in time. The principle of the adjusted
error metric has already been described in Section 7.3.3.2 for the Root
Mean Square Error (RMSE). For comparison purposes between different load
profiles, this work makes use of the adjusted NRMSE which is defined as:

NRMSEω “min
PPP

100%
ȳ

¨ ‖y´ P ¨ ŷ‖2, (9.6a)

s.t. Puv “ 0, @ |u´ v| ą ω, (9.6b)

where ω ě 0 is an adjustment limit, P is a permutation matrix, Puv P P
refers to the displacement of the estimated value ŷu from time step u to time
step v, and P is the complete set of restricted permutations. In this sense, a
good load forecasting algorithm is able to accurately predict consumption
values within a time window of ˘ω time steps. According to the adjusted
NRMSE, Table 9.1 shows that the AMCM-based approach outperforms the
SVR algorithm for the small consumer in question, which contrasts with the
evaluation via the standard point-wise metrics. The relative difference in
accuracy is even stronger when ω is set to 4 hours instead of 2 hours. At the
aggregate level, even if the difference in performance is reduced, the SVR
forecast is still more accurate.

9.3.2.3 Ramp Score

The prediction of sudden and significant changes in load might be of particular
interest. For that purpose, the authors in [364] propose the ramp score,
which evaluates the ability to predict significant ramp events. This score
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Figure 9.3: Principle of the swinging door algorithm with ε :“ 0.4 and resulting
extracted ramps.

is principally used in the solar forecasting literature. It is based on the
swinging door algorithm suggested in [380] for data compression purposes.
As illustrated in Figure 9.3, this algorithm performs a piece-wise linear
approximation of a profile over multiple time steps and requires a sensitivity
parameter ε that controls the significance of the resulting ramps (i.e., width
of the door). As preparation for the ramp score, the swinging door algorithm
is applied to the true and predicted profiles, and the slope magnitude of
the resulting piecewise linear approximations is extracted at each time step.
Consequently, the ramp score is defined as:

ramp score “ 1
T
¨

T
ÿ

t“1
|slopepytq ´ slopepŷtq|, (9.7)

where yt and ŷt are the true and predicted values at time t, respectively.
In addition, ‘slope’ refers to the slope of the ramp defined by the swinging
door algorithm, and T is the number of time steps. The lower the score, the
better the ramp forecast accuracy. For comparison purposes, the true profiles
are scaled by min-max normalization between zero and one, and the same
scaling is applied to predicted values. In Table 9.1, ε is set to 0.1, which
approximately leads to ten times fewer detected ramps than the number of
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Figure 9.4: Various statistical properties of the load profiles and respective
predictions presented in Figure 9.2. The skewness and kurtosis
values are scaled by the respective values calculated over the mea-
surements.

time steps. It appears that the ramp score is in line with standard metrics,
notably for the single consumer.

9.3.3 Statistical Properties

In addition to the consideration of various evaluation metrics, this work
also studies the statistical properties of the forecasts in comparison with the
measured time series. In the following, the trend and the seasonality, the
skewness and the kurtosis, the Coefficient of Variation (CV), the autocorrela-
tion, and the correlation with weather variables are introduced. Figure 9.4
visualizes the statistical properties of the AMCM and SVR predictions visible
in Figure 9.2, in comparison with the measured load profiles.
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9.3.3.1 Trend and Seasonality

A time series can be decomposed into three additive components as follows:

y “ Ty ` Sy ` Iy, (9.8)

where y is the original time series, and Ty, Sy, and Iy refer to the trend,
seasonal, and irregular components, respectively. The trend is defined as
the centered moving average with a fixed time window which is set to one
week in this study. The seasonality is calculated as the average profile over
a fixed time period which is also set to one week. The irregular component
is commonly referred to as noise. In order to quantify the level of trend
and seasonality in a given time series, the authors in [381] suggest following
measures:

trend “ 1´ varpIyq
varpy´ Tyq

, (9.9a)

seasonality “ 1´ varpIyq
varpy´ Syq

, (9.9b)

where ‘var’ refers to the variance of the corresponding time series. As illus-
trated in Figure 9.4, the original profiles of the two representative loads barely
exhibit a trend. This is partially captured by both forecasting algorithms,
although the SVR algorithm slightly overestimates the trend. Furthermore,
they both properly reflect the high level of seasonality observed in the aggre-
gated load, but the SVR algorithm largely overestimates the seasonal effect
in the behavior of the single consumer.

9.3.3.2 Skewness and Kurtosis

The skewness and kurtosis describe the shape of the probability distribution
of a time series. While the skewness measures the asymmetry around the
mean of the probability distribution, the kurtosis refers to the sharpness of
its peak. They are given by:

skewness “ 1
T ¨ σ3 ¨

T
ÿ

t“1
pyt ´ ȳq

3, (9.10a)

kurtosis “ 1
T ¨ σ4 ¨

T
ÿ

t“1
pyt ´ ȳq

4, (9.10b)
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where σ is the standard deviation of time series y3. A distribution skewed
to the left has a negative value of skewness, and vice versa. A normal (or
Gaussian) distribution has a skewness value of zero and a kurtosis value of
three, whereas a higher kurtosis reflects a sharp distribution peak. Smart
meter data are normally positively skewed and exhibit a high kurtosis, which
is representative of values that are principally concentrated close to the mean
with a few high spikes. In order to stay within the range of the other metrics
under consideration, the skewness and kurtosis values displayed in Figure 9.4
are scaled by the respective values calculated for the measured load profiles.
Both algorithms underestimate the skewness of the two load profiles, which
is even more pronounced for the SVR algorithm. The latter also clearly fails
to represent the typically high kurtosis of the single consumer.

9.3.3.3 Coefficient of Variation

The Coefficient of Variation (CV) is defined as the ratio between the mean
and the standard deviation and can be interpreted as the volatility of a profile.
This quantity is also shown in Figure 9.4. While the low volatility of the
aggregated load is perfectly recognized by both algorithms, the high volatility
of the single consumer is largely underestimated by the SVR algorithm.

9.3.3.4 Autocorrelation

The autocorrelation represents the Pearson’s correlation of a time series with
a delayed copy of this same time series. Figure 9.4 illustrates this value for
the different load profiles under consideration with a lag of one time step,
one hour, one day, and one week. The high autocorrelation of the aggregated
measured profile is well respected by the prediction algorithms. However,
unlike the AMCM, the SVR algorithm overestimates this quantity for the
single consumer. The mismatch even rises with increasing lag.

9.3.3.5 Correlation Coefficient

Finally, the Pearson’s correlation coefficient with the profiles of tempera-
ture and solar irradiance is considered and illustrated in Figure 9.4. The
correlation with weather data is barely perceptible for the single consumer,
which increases at the aggregation level. In any case, these properties are
well captured by both algorithms.

3 Remaining variables and parameters are defined in the preceding equations.
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9.3.4 Performance Evaluation

The preliminary analysis on the representative load profiles from Figure 9.2
indicates that the SVR algorithm outperforms the AMCM-based approach at
the aggregate level with respect to all evaluation metrics under consideration.
Both studied algorithms also properly reflect a large majority of statistical
properties for the aggregated load. Nevertheless, mixed results appear for load
forecasting at the end-user level. While the standard point-wise metrics and
the ramp score still suggest better performance for the SVR algorithm, the
adjusted error metric points out its limits and recognizes the more realistic
forecasting outcome of the AMCM-based approach. In terms of statistical
properties, the AMCM-based approach definitely depicts a more faithful
representation of reality. In fact, each metric characterizes a different facet
of the forecasts, and, according to the metric, the respective performance of
different prediction algorithms can substantially vary.

9.3.4.1 Case Study

In order to draw more solid conclusions, the analysis is extended to a statis-
tically significant data set of 1’000 load profiles, where the four algorithms
presented in Section 9.3.1 are evaluated. Concretely, the data set used for
training and testing the algorithms consists of residential and commercial
load profiles with a temporal resolution of 15 minutes coming from the distri-
bution grid of the City of Basel. The data set is described in Section 3.2.1
and its preparation is detailed in Section 4.3. Out of a total of 20’000 smart
meter profiles, 1000 aggregations of 1 to 30 randomly chosen individual
consumers are created. This typically represents the load visible at the nodes
of low-voltage grids, which is characterized by high volatility and low pre-
dictability. Moreover, weather data are provided by a meteorological station
of MeteoSwiss in the City of Basel [237]. Due to the absence of weather
forecasts, it is important to notice that the actual weather quantities at
the time of prediction are used in this study. This assumption of a perfect
weather forecast is definitely wrong in reality. Nevertheless, it is not expected
to significantly affect the outcome of this study, especially since all algorithms
have access to the same information in theory.

9.3.4.2 Results

All algorithms are evaluated over a period of one full year, obviously different
from the training and validation periods. Figure 9.5 first illustrates the
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Figure 9.5: Performance evaluation of different forecasting algorithms based on
the MAPE, NRMSE, and two variants of the adjusted NRMSE.

accuracy of the prediction algorithms with respect to the standard MAPE
and NRMSE, as well as the adjusted NRMSE with an adjustment limit set to
2 hours and 4 hours. Better point-wise accuracy is confirmed by both standard
metrics for the ARMAX model and especially the SVR algorithm, which
are designed for that purpose. Nevertheless, standard metrics give a biased
image of the load forecasting accuracy at low aggregation levels, where the
double penalty effect can be suspected. By allowing slight time displacements
of the predicted values before evaluation, the adjusted NRMSE shows that
all algorithms finally exhibit very similar accuracy on the large data set. The
SVR algorithm is still slightly more effective when the adjustment limit is set
to 2 hours, which stays in line with the standard NRMSE but leads to the
same accuracy as the competing algorithms with a 4-hour adjustment limit.
In fact, all algorithms are not capable to correctly approximate the peaks in
consumption within a suitable time window. This confirms the difficulty of
any standard point forecasting algorithm to predict volatile loads and reveals
their limits.

In Figure 9.6, the ramp score is shown for ε values of 0.05 and 0.1. A lower
ε value leads to a higher number of detected ramps and a generally higher
score. It appears as if the ARMAX and SVR models better approximate
significant ramps, but this is again due to the double penalty effect which
is transmitted to the ramp profiles. In fact, the ramp score is still a point-
wise comparison of significant changes in load whose exact time is hardly
predictable by any 24-hour-ahead forecasting algorithm. Due to the high load
volatility, the ramp score also gives a biased image of the forecasting accuracy.



258 deterministic and probabilistic short-term forecasting

Figure 9.6: Performance evaluation of different forecasting algorithms based on
two variants of the ramp score.

Figure 9.7: Performance evaluation of different forecasting algorithms based on
the relative difference in the trend, seasonality, and autocorrelation
with a lag of 1 day.

Finally, the forecasting algorithms are evaluated from the perspective
of statistical properties. The respective metrics are defined as the relative
difference between the statistical value of the forecast and the statistical
value of the measurement:

metricstat “ 100% ¨ χ̂´ χ
χ

, (9.11)

where χ and χ̂ are the statistical values of the measurement and the forecast,
respectively. On this basis, Figure 9.7 first considers the trend, seasonality,
and autocorrelation with a lag of 1 day. By definition, the persistence method
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Figure 9.8: Performance evaluation of different forecasting algorithms based on
the relative difference in the skewness, kurtosis, and coefficient of
variation.

perfectly grasps all statistical properties. The seasonality and autocorrelation
are also particularly well preserved by the AMCM-based approach, which
seems to somewhat underestimate the trend in terms of relative difference.
In contrast, all three properties are overestimated by the ARMAX and the
SVR algorithm. It must nevertheless be noted that the trend, seasonality,
and autocorrelation values for the measurements are especially low such that
the relative difference metric should be interpreted with caution. Besides,
the relative difference in skewness, kurtosis, and coefficient of variation is
displayed in Figure 9.8. While these properties are accurately reflected by
the AMCM-based forecasts, they are substantially underestimated by the
ARMAX and the SVR algorithm.

9.3.4.3 Discussion

To sum up, the forecasting literature almost exclusively relies on standard
metrics such as the MAPE or RMSE for the evaluation of deterministic load
forecasts. However, these metrics only focus on one specific aspect, the point-
wise error, which can be problematic at the level of end-consumers with highly
volatile load profiles. In fact, point-wise error metrics favor very smooth and
unrealistic predictions while doubly penalizing volatile forecasts. Such double
penalty effect could be mitigated with the help of the adjusted error metric
presented in [136]. In addition, this analysis highlights a considerable gap
between the outcome of traditional prediction algorithms and more volatile
forecasts. On the one hand, traditional prediction algorithms purely seek
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point-wise accuracy at the detriment of statistical properties. On the other
hand, volatile forecasts exhibit good statistical properties but have a limited
consideration of the time dimension. In any case, aside from the notion of pure
point-wise accuracy, advanced deterministic algorithms cannot outperform
the very simple persistence method. This also holds true for the proposed
AMCM algorithm that is designed to learn the time periods with statistically
higher activity. In fact, the behavior of residential and commercial end-users
is too uncertain to give a unique, accurate estimate of their load at each time
step.

In this context, the actual usefulness of deterministic load forecasting at the
level of end-users or low-voltage nodes is questionable. It must be noted that
the proposed analysis focuses on 24-hour-ahead forecasting. It is reasonable to
expect that the forecasting accuracy shall increase with decreasing forecasting
horizon. For example, the authors in [124] observe a slight drop of the NRMSE
at the level of single consumers when the forecasting horizon is reduced to one
hour and, to a lesser extent, two hours. At horizons larger than two hours, the
most recent observations are however not especially valuable anymore such
that the prediction error remains relatively constant, independently from the
horizon. This phenomenon is also observed by the authors in [358]. In any
case, the load uncertainty at this level is so high that point forecasts can only
provide incomplete information. Hence, a comprehensive load forecasting
approach at the level of low-voltage grid nodes must inevitably quantify
this uncertainty. This is the case of probabilistic forecasting algorithms, as
presented and exploited in the next section.

9.4 short-term probabilistic state forecasting

The main idea of this section is the development of a so-called short-term
probabilistic state forecaster that estimates the near-future state uncertainty
in LV grids.h In fact, probabilistic forecasting algorithms enable a compre-
hensive prediction by covering the entire uncertainty range. They generally
do not assume any error distribution and can update their prediction in real-
time [128]. For example, the authors in [137, 382] present novel regression
neural network and Long Short-Term Memory (LSTM) algorithms for quan-
tile load forecasting with promising results. However, the literature mainly
focuses on load forecasting and largely disregards the direct prediction of
other quantities such as the voltage and line loading. As repeatedly mentioned
over the course of this thesis, the knowledge of the system state at the LV
level is all the more relevant for a cost-efficient operation of distribution
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grids. To the best of the author’s knowledge, the probabilistic forecasting of
voltages and power flows at the level of an LV grid has never been presented
in the literature.

Consequently, a quantile neural network and a novel probabilistic version
of the k-Nearest Neighbor algorithm are designed in this section to predict
the net power consumptions, power flows, and bus voltage magnitudes at
the LV level. The forecasting algorithms are described in Section 9.4.1. As
presented in Section 9.4.2.1, the case study relies on an LV section of the
distribution grid of the City of Basel and considers multiple levels of PV
and EV penetration. The probabilistic forecasting performance is evaluated
in Section 9.4.2. This analysis also quantifies the added value of real-time
instead of time-delayed SM measurements and of an additional feature that
indicates at which points in time the EVs are charging.

9.4.1 Methodology

This section details the methodology behind probabilistic forecasting. For
the purpose of this work, probabilistic forecasting is represented by quantile
forecasts. In the following, a quantile Neural Network (NN) and a quantile
K-Nearest Neighbor (KNN) are defined, after briefly presenting the concept
and setup of quantile forecasting.

9.4.1.1 Concept and Setup of Quantile Forecasting

In deterministic forecasting (or point forecasting), the algorithm outputs only
one value which is the most probable value on the basis of the input features.
More concretely, the predicted value is the value that shall lead to the lowest
error in comparison with the true value. In fact, predictions are never perfect
but are associated with a certain uncertainty, which can be represented by
a probability distribution of the possible forecast values. In this context,
quantile forecasting refers to the prediction of a given quantity at various
quantiles of this probability distribution. The training process consists of
minimizing the pinball loss function, which creates separate forecasts for the
different quantiles:

Jq “
1
N

N
ÿ

n“1

$

&

%

pyn ´ ŷq,nq q if yn ě ŷq,n,

pŷq,n ´ ynq p1´ qq if yn ă ŷq,n,
(9.12)

where Jq is the pinball loss function for quantile q, yn is the target value of
sample n, ŷq,n is the predicted value for quantile q of sample n, and N is the
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number of samples in the training set. The loss function is asymmetric such
that for any quantile higher than the 50%-quantile, forecasting errors due to
underestimation of the target value get penalized more than the errors due
to overestimation, and vice-versa. Note that the 50%-quantile corresponds to
the usual point forecast.

The quantile forecasting workflow is carried out as described in Section 9.2.
In the same system, different quantities and quantiles are correlated and
could be predicted simultaneously. However, a preliminary study suggests
that the use of one single ML model per grid component, per quantity, and
per quantile is more efficient in terms of computation time and accuracy, as
long as the most influencing quantities belong to the feature set.

9.4.1.2 Quantile Neural Network

An Artificial Neural Network (ANN), also referred to as Neural Network
(NN), is a mathematical model that is designed to approximate any non-linear
function. Its working principle is inspired by the structure of the human brain.
The model is basically a weighted linear combination of neurons organized in
layers, where each neuron is a non-linear function. A classical neural network
comprises an input layer, one or multiple hidden layers, and an output layer.
The number of neurons in the input layer is given by the number of features.
The neurons of the input layer are connected to the neurons of the first
hidden layer. The number of hidden layers and the number of neurons within
these hidden layers are hyper-parameters of the model and are set during the
model selection phase. The neurons of the last hidden layer are connected
to the neurons of the output layer. In a regression problem, the number of
neurons in the output layer is determined by the number of target values to
be predicted. In this case, the proposed model only consists of one output
neuron that refers to a given grid component, a given quantity, and a given
quantile. Formally, hidden layers are defined as follows:

ap1q “ gpΘp1q ¨

«

1
x

ff

q, (9.13a)

apjq “ gpΘpjq ¨

«

1
apj´1q

ff

q, (9.13b)

where gp.q is an activation function, apjq is a vector of activation functions
in layer j, Θpjq is a matrix of weights for the transition between layer j ´ 1
and layer j, and x is a vector of input features. Note that each layer contains
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a bias term of value 1. There are different possibilities for the choice of
the activation function. The Rectified Linear Unit (RELU) function and the
Exponential Linear Unit (ELU) function count as the most popular activation
functions in the literature and are given as follows:

RELUpzq “ maxp0, zq, (9.14a)

ELUpzq “

$

&

%

z if z ě 0,

ez ´ 1 if z ă 0,
(9.14b)

where z is a real number. The ELU function is a modification of the RELU
function which uses the exponential function to process the input value
instead of setting it to zero for negative values. During the training process,
the weights of the neural network are adjusted in order to minimize the pinball
loss function defined in Equation (9.12). Normally, the cost function also
includes a regularization term which prevents the algorithm from overfitting.
The factor associated with the regularization term is an hyper-parameter to
be tuned. The drop-out of a certain share of randomly chosen neurons during
the training process is another way to avoid overfitting. There is extensive
literature on ANNs, notably regarding different variants and their training
via backpropagation. This is however out of the scope of this thesis. More
information can be found in [383, 384].

Depending on the outcome of the hyper-parameter tuning, the ANN models
have following structure: 4 hidden layers with 200 neurons per layer, or 6
hidden layers with trapezoidal shape (i.e., nf , 2nf , 3nf , 2nf , nf , and nf {2
neurons per respective layer, with nf indicating the number of input features).
Both ELU or RELU activation functions are taken into account during the
hyper-parameter tuning phase. In addition, l2-regularization and a drop-out
rate between 0% and 10% are considered to prevent overfitting.

9.4.1.3 Quantile K-Nearest Neighbor

Figure 9.9 illustrates the underlying idea of the KNN algorithm used for
quantile forecasting, assuming a forecasting horizon of one time step. As
starting point, the current state defined by a set of features can be observed.
Consequently, the algorithm assumes that if a similar grid state has been
observed at a certain point in the past, the current target value of a given
quantity is similar to the target value after the similar state found in the
past. In this work, the similarity measure is based on the weighted Minkowski
distance:

dt,m “ ‖pwminkqᵀ pxm ´ xtq‖p, @m P Mt, (9.15)
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Figure 9.9: Principle of the KNN algorithm used for quantile forecasting.

where xm and xt are the feature vectors of past sample at time m and
of current sample (i.e., at time t), respectively. In addition, wmink is a
vector of weights, Mt is the set of past samples according to current time
t, and p P t1, 2u is a hyper-parameter defining the norm. Hence, dt,m is
the Minkowski distance between the past system state defined by xm and
the current system state defined by xt. The Minkowski weights are set
according to the importance of the corresponding features, which is given by
Lasso cross-validation in this work. After calculating all Minkowski distances
(i.e., @m P Mt), the corresponding target values of the k states showing
the smallest distances (i.e., k nearest neighbors) are linearly combined to
generate a point forecast:

ŷt “
k
ÿ

i“1
wknn
i ¨ yknn

i (9.16)

where ŷt and yknn
i are the predicted value issued at time t and the target value

associated to state i, respectively. In addition, wknn
i is the weight associated

to state i, and k ď |Mt| is the number of nearest neighbors. The k nearest
neighbors are sorted from the closest neighbor to the furthest neighbor.
At this stage, a suitable number of neighbors as well as optimal KNN

weights must still be defined. For that purpose, ten small optimization
problems for k P t5, 10, . . . , 50u are solved over the training set:

Jknn “ min
wknn

1
N

N
ÿ

n“1
|pwknnqᵀyknn

n ´ yn|, (9.17a)

s.t. wknn
i ě 0, @i P t0, . . . , ku, (9.17b)

where yn is the target value of sample n, and yknn
n is a vector of targets of

the k nearest neighbors of sample n, including a bias term of 1. In addition,
wknn is a vector of weights, and N is the number of samples in the training
set. The cost function (9.17a) is based on the Mean Absolute Error (MAE)
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function, which allows point forecasts. Constraint (9.17b) guarantees that all
neighbors and the bias term do not contribute negatively to the result of the
linear combination.

Optimization problem (9.17) is a proposed extension to the standard KNN
algorithm such that quantile forecasts can be obtained by replacing the MAE
function with the pinball loss function. Concretely, the optimization problem
behind the proposed quantile KNN is structured as follows:

Jknn,q “ min
wknn

1
N

N
ÿ

n“1

$

&

%

ppwknnqᵀyknn
n ´ ynq ¨ q if yn ě pwknnqᵀyknn

n ,

ppwknnqᵀyknn
n ´ ynq ¨ p1´ qq if yn ă pwknnqᵀyknn

n ,
(9.18a)

s.t. wknn
i ě 0, @i P t0, . . . , ku. (9.18b)

9.4.2 Performance Evaluation

The performance of both aforementioned quantile forecasting algorithms is
evaluated in a real-world LV grid. The analysis also considers multiple levels
of PV and EV penetration, which is expected to add even more uncertainty
in the future. The concept of short-term probabilistic state forecasting refers
to the prediction of the net active and reactive power consumption Pcons
and Qcons, active and reactive power flow Pflow and Qflow, and bus voltage
magnitude V with a forecasting horizon of one hour. The set of input features
is specific to each quantity. The forecasting accuracy is assessed via the the
notions of reliability and sharpness.

9.4.2.1 Case Study

The proposed case study is based on the residential LV grid presented in
Figure 3.5, which is part of the distribution grid of the City of Basel. As a
reminder, only 55% of the end-users were equipped with a smart meter at the
time of data preparation. The yearly energy consumption being known for the
remaining end-consumers, they are assigned power profiles of smart metered
consumers with similar consumption located in other residential areas of Basel.
In addition, reactive power pseudo-measurements are created according to
the adaptive power factor approach detailed in Section 6.2.3.3. Since reactive
power injections are synthetic data, the performance evaluation principally
focuses on the other quantities. Together with the voltage measurement at the
transformer, an observable grid can be achieved. As detailed in the following,
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PV production and EV consumption profiles are further added to the base
load in order to assess their impact on the grid state uncertainty.
Concretely, a situation where up to 60% of the houses are covered with

photovoltaic panels is simulated. For that purpose, the power output profiles of
116 actual PV systems spread in the entire City of Basel are first selected and
normalized by their maximal power value. Second, they are suitably allocated
to the houses in the case study based on a tool developed by UVEK [385]
and Energie Schweiz [386] which assesses the solar potential of any Swiss
rooftop. Furthermore, weather data are provided by a meteorological station
of MeteoSwiss in the City of Basel [237]. Due to the absence of weather
forecasts, this work assumes a perfect weather forecast, which is a strong
assumption. In reality, the uncertainty with respect to PV injection is expected
to increase because of inevitable weather forecast errors. Accounting for the
fact that this work focuses on hour-ahead forecasting, the presence of large
weather forecast errors should nevertheless be limited.

The consumption profiles of EV chargers are derived from the open data
set of the “My Electric Avenue” project [387]. In this project, the driving and
charging patterns of more than 200 Nissan Leaf vehicles have been recorded
in the United Kingdom over 18 months. After data cleaning and filtering, 180
charging profiles at 3.7 kW nominal power are extracted, which corresponds
to 30% of the households in the considered grid. Since future home chargers
are expected to work mainly between 7.4 kW and 11.1 kW [388], the charging
power is scaled up while the charging time is accordingly reduced in order
to keep the same energy consumption. Electric vehicles associated with a
7.4 kW charger are modeled with the same energy consumption as Nissan
Leaf vehicles, whereas EVs with a 11.1 kW charger are assumed to consume
similarly as the Audi e-tron or Tesla models, and their energy consumption
is multiplied by 1.8 [389]. Finally, charging profiles are allocated to the grid
buses according to the algorithm presented in [390] which creates EV clusters.
In fact, the algorithm reflects the social effect of increased willingness to
purchase an EV when the neighbors also drive an EV.

All aforementioned measurement data are adjusted to a temporal resolution
of 15 minutes and limited to a period of one year. In order to represent
different DER penetration levels, multiple data sets are created by adding
an increasing number of the EV power consumption and PV production
profiles to the initial load profiles. This is summarized in Table 9.2 which
also indicates the share of houses whose rooftop is equipped with PV panels
and the share of households in possession of an EV. In addition, the share
of 11.1 kW chargers is increased with the DER penetration to simulate a
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Data set Number of PVs
(share of houses)

Number of EVs
(share of households)

Share of
11.1 kW chargers

DSB 0 0 -
DS1 39 (20%) 60 (10%) 50%
DS2 77 (40%) 120 (20%) 62.5%
DS3 116 (60%) 180 (30%) 75%

Table 9.2: Overview of the different DER modified data sets used in the case
study.

Figure 9.10: Weeks of the data set split into training set, validation set, and
test set.

probable decrease of the price gap between 7.4 kW and 11.1 kW chargers.
Subsequently, all bus voltages and power line flows are determined by load
flow simulations to complete the system state of the four penetration scenarios.
Finally, the four data sets are split into training, validation, and test sets
according to Figure 9.10. This partitioning accounts for the seasonal behavior
of measurements while still yielding continuous test sets.

9.4.2.2 Feature Set

Tables 9.3 and 9.4 summarize the basic sets of input features for bus quantities
(i.e., active and reactive net power consumptions, and voltage magnitudes)
and line quantities (i.e., active and reactive power flows), respectively. Note
that the forecast of a certain quantity also leverages measurements of other
quantities to profit from their physical coupling in the grid. For example, the
prediction of power line flows benefits from the knowledge of voltages at both
ends. All continuous features are scaled by min-max normalization between
zero and one, and all categorical variables (i.e., calendar features) are one-hot
encoded. One-hot encoding transforms each categorical variable into a vector
of binary variables, which ensures that higher values are not considered as
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Category Features Time delay

Online V , Pcons and Qcons -
Recent V , Pcons and Qcons 1 hour and 2 hours

Historical V , Pcons and Qcons 1 day and 2 days
Weather temperature and solar irradiance -
Calendar hour, weekday and holiday flag -

Table 9.3: Basic feature set for the probabilistic prediction of bus quantities.

Category Features Time delay

Online V1, V2, Pflow and Qflow -
Recent V1, V2, Pflow and Qflow 1 hour and 2 hours

Historical V1, V2, Pflow and Qflow 1 day and 2 days
Weather temperature and solar irradiance -
Calendar hour, weekday and holiday flag -

Table 9.4: Basic feature set for the probabilistic prediction of line quantities.

more important by the forecasting algorithm. Furthermore, Lasso regression
and Principal Component Analysis (PCA) have been tested to reduce the
feature set dimension. None of the methods appears to be conclusive for the
quantile NN in terms of forecast accuracy. However, the Lasso regression
enables a reduction of a few percent of the prediction error induced by the
quantile KNN regarding the voltage magnitude and active power quantities.

This study investigates the added value of real-time SM data compared to
only time-delayed SM data. In the latter case, only day-ahead SM measure-
ments up to midnight are assumed to be accessible. Hence, online and recent
features are not available, but the historical feature set is further enhanced
by neighboring values around the corresponding values one and two days
in the past. This ensures a sufficient number of grid measurements in the
feature set. Moreover, the impact of knowing the starting time and duration
of EV charging events is also assessed. In practice, this could be inferred
from the GPS location and the state of charge of the vehicle4. In this case,
a binary EV charging feature is added to the buses associated with an EV
charger and to all lines connected to those buses.

4 This raises obvious privacy concerns but is out of the scope of this study.
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9.4.2.3 Probabilistic Evaluation Metrics

The performance of probabilistic forecasting algorithms is evaluated according
to their ability to properly estimate the prediction uncertainty, as proposed
by the authors in [391]. Concretely, two quantile forecasts build a certain
Prediction Interval (PI) associated with a certain confidence level. For exam-
ple, quantile forecasts with q “ 0.1 and q “ 0.9 build a PI with 80% nominal
confidence. On this basis, the notions of reliability (REL), Average Coverage
Error (ACE), and Average Interval Score (AIS) are defined as follows [391]:

RELpBQq “
100%
T

T
ÿ

t“1
1ŷt,50´Q{2ďytďŷt,50`Q{2 , (9.19a)

ACEpBQq “ RELpBQq ´Q, (9.19b)

AISpBQq “
T
ÿ

t“1

´

ŷt,50`Q{2 ´ ŷt,50´Q{2

¯

, (9.19c)

where BQ is the predefined PI (or quantile band), yt is the target value at
time step t, and ŷt,50´Q{2 and ŷt,50`Q{2 are the quantile forecasts defining
the lower and upper bounds of BQ at time t, respectively. In addition, 1z
is the indicator function under condition z, Q is the nominal confidence
of BQ, and T is the number of time steps in the test set. The reliability
represents the percentage of targets that can be effectively captured within
the predefined PI. The ACE evaluates whether the reliability is in line with
the PI nominal confidence (i.e., Q). The AIS is a measure of the sharpness
(or width) of the PI. In this context, a good quantile forecast implies both
a good sharpness (i.e., narrow PI) and good reliability (i.e., close to the PI
nominal confidence). In other words, the forecasting algorithm aims for a low
AIS while keeping the ACE close to zero. If the ACE is positive (or negative),
the PI encompasses too many (or too few) target values. Note that the widely
used ranked probability score, known as the probabilistic counterpart of the
RMSE, is not considered in this study. It cannot correctly capture the poor
performance of quantile forecasts when they all overestimate the target value.

9.4.2.4 Results

In this section, the outcome of the aforementioned quantile forecasting algo-
rithms is evaluated in different conditions, notably accounting for different
levels of EV and PV penetration. Time-series visualization offers a first qual-
itative insight into the probabilistic forecasting performance. In the second
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stage, the ACE and AIS allow for quantitative assessment of the reliability
and sharpness of the PIs. The evaluation focuses on power flow and bus
voltage forecasts which are relevant quantities for DSOs.

Figure 9.11 shows the resulting quantile forecasts of the NN for active
power consumption over three days at a specific bus with PV panels and EVs
in the DER penetration scenario DS3. First of all, the large PV injection
during the first day and the EV consumption in the first two evenings are
noticeable. Most uncertainty appears to come from car charging events such
that the additional car charging feature allows for a drastic drop in the
forecast uncertainty. The availability of online SM measurements helps to
forecast the volatile base household loads and to reduce the uncertainty
associated with the PV injection. It also enables the detection of EV charging
events with a one-hour time delay if the car charging feature is not provided.
Furthermore, Figure 9.12 illustrates the quantile forecasts based on both

algorithms for active power flow on a specific line over the same three days.
Whereas the load of EVs, charging at different time periods, is moderate, the
simultaneous power injection of multiple PV systems is clearly visible. The
NN algorithm can reasonably forecast the power flow and properly detect
the periods with higher uncertainty, even without online SM measurements.
However, the KNN algorithm produces very narrow prediction intervals which
fail to encompass the target values, except during high PV injection time.
This phenomenon is observed for each forecast where the difference between
the minimum and maximum target values is relatively large. The reason lies
in the nature of the KNN algorithm, where the quantile predictions are linear
combinations of previous target values. Since the optimal weights defined
by Equation (9.18) are applied to all time steps, the prediction intervals get
narrower when the target values get closer to zero.

Concerning voltage magnitude forecasts, Figure 9.13 compares the outcome
of the NN and KNN algorithms with and without online SM measurements,
again in the highest DER penetration scenario over the same three days. All
variants are relatively accurate. The shape of the voltage profile is barely
impacted by the EV load. In contrast, voltage values largely exceed the
overvoltage limit during sunny days, whereas the detection of an overvoltage
depends on the considered quantile on cloudy days. In this case, the accuracy
of the quantile forecasts is determinant when used by voltage control strate-
gies as presented in Section 9.5. While still being reliable, the KNN algorithm
tends to produce narrower prediction intervals than the NN. Reactive power
quantities are not explicitly visualized since they do not come from direct
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measurements. Nevertheless, they appear particularly volatile in this case
study, which makes them hardly predictable.

Figures 9.14 and 9.15 evaluate the reliability and sharpness, respectively,
of both considered algorithms for line power flows. The outcome focuses
on prediction intervals with nominal confidence levels of 50% and 80%. It
is presented under the form of box and whisker plots, where each data
point represents the metric for a single line or a single bus. The central bar
indicates the median value, the small red square is the mean value, the box
corresponds to the Interquartile Range (IQR), and the ends of the whiskers
define 1.5ˆ IQR below and above the lower and upper quartiles, respectively.
First of all, substantial differences appear between both prediction algorithms.
As noticed in Figure 9.12, the prediction intervals obtained by the KNN
algorithm are narrower, which leads to a lower AIS in comparison with
the NN algorithm. By definition, the AIS increases with larger PI nominal
confidence levels. However, the excellent sharpness of the KNN comes at
the cost of poor reliability. In this case, the algorithm creates too narrow
prediction intervals that miss the target values much more often than defined
by the nominal confidence level, which is not acceptable. In contrast, the
NN exhibits excellent reliability and appears well suited for probabilistic
power forecasting. Furthermore, the AIS for the NN algorithm increases
with rising PV and EV penetration. This indicates that DERs bring more
uncertainty to the system. Note also that both metrics are barely impacted
by the availability of online SM measurements and by the car feature. Similar
outcomes can be observed for the prediction of net active power consumption
and are therefore not explicitly analyzed in this section.

Finally, the performance of quantile voltage forecasts is illustrated by Fig-
ures 9.16 and 9.17. Both algorithms are characterized by excellent reliability
(i.e., ACE close to zero) on average, although the variance among different
buses is more significant for the NN algorithm, especially for PIs with 50%
nominal confidence. In terms of sharpness, a substantial increase of the AIS
is visible from 50% to 80% nominal confidence levels. A somewhat lower
score can also be seen for the KNN in comparison with the NN algorithm.
Since all voltage values lie in the same range (i.e., around 1 pu), the narrower
prediction intervals produced by the KNN algorithm still properly envelop
the target values. Based on the linear combination of similar grid states,
the KNN algorithm is appropriate for probabilistic voltage forecasting, in
contrast to power forecasting. Moreover, online SM measurements allow for
slightly narrower prediction intervals.
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Figure 9.14: Average coverage error of the quantile forecasts of active power
flow for all lines and time steps in the test set. Prediction intervals
with 50% and 80% nominal confidence are considered. 5

9.5 preventive voltage control under uncertainty

As shown by the results in Section 9.4.2.4, overvoltages around noon due to
large and simultaneous PV injections are expected to be a major problem
in future LV grids. Reactive power control and active power curtailment are
the main control measures to mitigate the impact of PV injection on the
system [392]. Reactive power control is a cost-effective means to regulate the
voltage, but its forecast is associated with considerably large uncertainty. In
order to demonstrate the added value of quantile forecasts, this work relies
on active power curtailment to keep the voltages below an upper limit. PV
active power curtailment simultaneously reduces potential line overloadings.

In that respect, this section presents an approach that aims to optimize the
physical DSO position on the intra-day market. Concretely, if an overvoltage
can be estimated one hour ahead, an optimization problem computes the

5 Note that the red fill characterizing the NN is barely visible due to the narrow IQRs.
6 Note that the green fill characterizing the KNN is barely visible due to the narrow IQRs.
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Figure 9.15: Average interval score of the quantile forecasts of active power
flow for all lines and time steps in the test set. Prediction intervals
with 50% and 80% nominal confidence are considered.

Figure 9.16: Average coverage error of the quantile forecasts of voltage mag-
nitude for all buses and time steps in the test set. Prediction
intervals with 50% and 80% nominal confidence are considered. 6

optimal level of PV curtailment with respect to the future estimated state in
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Figure 9.17: Average interval score of the quantile forecasts of voltage mag-
nitude for all buses and time steps in the test set. Prediction
intervals with 50% and 80% nominal confidence are considered.

order to comply with the voltage constraints. In this case, it is assumed that
the DSO must only compensate the owners of the curtailed PV systems based
on the corresponding market price. If an overvoltage is not (fully) eliminated
in advance, the DSO has to further curtail PV energy in real-time, which
is penalized by a higher imbalance price [393]. This results in a trade-off
between the risk of curtailing too much energy in advance and facing a higher
price for potential adjustments in real-time. In this section, a pure real-time
optimization strategy is compared with control strategies based on point and
quantile forecasts. While still widely used in the literature on the control of
active distribution grids, perfect forecasts are unrealistic and therefore not
considered in this study. Section 9.5.1 presents the different optimization
strategies, which are subsequently compared in a real-world case study in
Section 9.5.2.

9.5.1 Methodology

The different optimization problems for voltage control in an LV grid are
designed as AC-OPF problems. They are only solved in case an overvoltage
is observed or predicted, where the upper voltage limit is set to 1.05 pu. The
optimization variables are the level of PV active power curtailment for each
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PV system. In addition, the grid topology is assumed to be perfectly known,
the loads and PV systems are assumed to be voltage-independent, and the
transformer voltage is assumed to be maintained after the optimization. In
the following, a benchmark real-time optimization strategy, an optimization
strategy using point forecasts, and an optimization strategy using quantile
forecasts are defined. These are referred to as SB , S50, and Sq, respectively.
Each of the latter two optimization strategies consists of two subsequent
optimization problems. The first optimization problem is solved one hour
before actual PV curtailment, whereas the second optimization problem
occurs in real-time, if necessary.

9.5.1.1 Benchmark Real-Time Optimization Strategy

In the benchmark strategy SB , PV curtailment is applied in real-time for
each time step subject to an overvoltage, i.e.,

max
kPΨB

Vk ą 1.05, (9.20)

where Vk is the voltage magnitude at bus k, and ΨB is the set of all buses.
In this case, PV curtailment is associated with a high imbalance price and

the optimization problem is defined as:

min
P curt
nPV

ÿ

ΨPV

1
4 ¨Cib ¨ P

curt
nPV , (9.21a)

s.t. 0 ď P curt
nPV ď P prod

nPV , @nPV P ΨPV, (9.21b)

Pk `
ÿ

ΨPV,k

P curt
nPV `

ÿ

mPΩk

Pkm “ 0, @k P ΨB, (9.21c)

Pkm “ pVkq
2 ¨ gkm (9.21d)

´ Vk ¨ Vm ¨ pgkm ¨ cospθkmq ` bkm ¨ sinpθkmqq, @k,m P ΨB,

Qk `
ÿ

mPΩk

Qkm “ 0, @k P ΨB, (9.21e)

Qkm “ ´pVkq
2 ¨ bkm (9.21f)

` Vk ¨ Vm ¨ pbkm ¨ cospθkmq ´ gkm ¨ sinpθkmqq, @k,m P ΨB,
0.95 ď Vk ď 1.05, @k P ΨB, (9.21g)
V1 “ V meas

1 , (9.21h)
θ1 “ 0, (9.21i)

where P curt
nPV and P prod

nPV are the curtailed power and the production potential
of PV system nPV, respectively. Pk and Qk are the net active and reactive
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power consumptions before curtailment at bus k, respectively. Pkm and Qkm
are the active and reactive power flows from bus k to bus m, respectively,
and V meas

1 is the voltage magnitude measured at the slack bus. Parameters
gkm and bkm are the line conductance and susceptance from bus k to bus
m, θkm is the voltage angle difference between bus k and bus m, and θk is
the voltage angle at bus k. ΨPV is the set of all PV systems in the network,
ΨPV,k is the set of all PV systems connected to bus k, Ωk is the set of all
power lines connected to bus k, and Cib is the imbalance price of curtailed
PV energy. The cost function (9.21a) defines the total curtailment cost at
the time step under consideration7. Constraint (9.21b) limits the PV power
curtailment between 0 and the total potential PV production. The active and
reactive node balances as well as the AC power flow equations are defined in
(9.21c)–(9.21f). Constraint (9.21g) ensures that the voltage stays within the
predefined limits of 1˘ 5% pu, and constraints (9.21h) and (9.21i) set the
voltage magnitude and angle reference at the slack bus, respectively.

9.5.1.2 Optimization Strategy using Point Forecasts

Assuming that point forecasts (i.e., 50%-quantile forecasts) are available,
strategy S50 is used for each time step where an overvoltage is forecasted one
hour ahead, i.e.,

max
kPΨB

V̂50,k ą 1.05, (9.22)

where V̂50,k is the point forecast of the voltage magnitude at bus k.
In a first stage, point forecasts of the net power consumptions are integrated

into the following optimization problem:

min
P curtHA
nPV

ÿ

ΨPV

1
4 ¨Cm ¨ P

curtHA
nPV , (9.23a)

s.t. 0 ď P curtHA
nPV ď P̂ prod

nPV , @nPV P ΨPV, (9.23b)

P̂50,k `
ÿ

ΨPV,k

P curtHA
nPV `

ÿ

mPΩk

Pkm “ 0, @k P ΨB, (9.23c)

Pkm “ pVkq
2 ¨ gkm (9.23d)

´ Vk ¨ Vm ¨ pgkm ¨ cospθkmq ` bkm ¨ sinpθkmqq, @k,m P ΨB,

Q̂50,k `
ÿ

mPΩk

Qkm “ 0, @k P ΨB, (9.23e)

Qkm “ ´pVkq
2 ¨ bkm (9.23f)

7 Factor 1
4 accounts for a temporal resolution of 15 minutes.
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` Vk ¨ Vm ¨ pbkm ¨ cospθkmq ´ gkm ¨ sinpθkmqq, @k,m P ΨB,
0.95 ď Vk ď 1.05, @k P ΨB, (9.23g)
V1 “ V̂50,1, (9.23h)
θ1 “ 0, (9.23i)

where P̂ prod
nPV is the point forecast of the potential power production of PV

system nPV, and P curtHA
nPV is the hour-ahead curtailed power of PV system

nPV. P̂50,k and Q̂50,k are point forecasts of the active and reactive power
consumption at bus k, respectively, and Cm is the market price of curtailed
PV energy8. Note that separate point forecasts are performed for the potential
power production of each PV system. This optimization problem is similar
to Problem (9.21) of the benchmark strategy SB at the exception that hour-
ahead point forecasts replace the realizations and that the marginal cost
associated with PV curtailment is the market price which is lower than the
imbalance price. At this stage, the DSO enforces PV curtailment for the time
step under consideration as defined by the optimization problem.
In a second stage, the PV power injection is further adjusted in real-

time whenever remaining overvoltages are observed. Concretely, a similar
optimization problem as Problem (9.21) of the benchmark strategy SB is
solved whenever Condition (9.20) is satisfied. Nevertheless, the decisions made
one hour before must be included by replacing Equations (9.21b) and (9.21c)
with the following constraints:

0 ď P curt
nPV ď P prod

nPV ´ P curtHA
nPV , @nPV P ΨPV, (9.24a)

Pk `
ÿ

ΨPV,k

P curtHA
nPV `

ÿ

ΨPV,k

P curt
nPV `

ÿ

mPΩk

Pkm “ 0, @k P ΨB. (9.24b)

9.5.1.3 Optimization Strategy using Quantile Forecasts

In a first stage, strategy Sq leverages quantile voltage forecasts to minimize
the cost of overvoltages. For this purpose, the voltage uncertainty is defined
as the difference between the quantile forecast and the point forecast:

dV̂q,k “ V̂q,k ´ V̂50,k, @q P p0, 100q, @k P ΨB, (9.25)

where dV̂q,k and V̂q,k are the voltage uncertainty and the point forecast of
the voltage for quantile q at bus k, respectively. The curtailment strategy is
applied at each time step for which the following condition holds:

max
kPΨB

V̂q,k ą 1.05. (9.26)

8 Remaining variables and parameters are defined in Problem (9.21)
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The first-stage optimization problem of strategy Sq only differs from Prob-
lem (9.23) of strategy S50 in the formulation of the voltage limit defined
by Equation (9.23g) and the slack bus voltage defined by Equation (9.23h),
which must be replaced with the following constraints:

0.95 ď Vk ` dV̂q,k ď 1.05, @k P ΨB, (9.27a)
V1 “ V̂50,1 ´ dV̂q,1. (9.27b)

Note that the voltage forecasts are only included in the form of the uncertainty
of the quantile, whereas the resulting voltages are determined by optimization.
In addition, only point forecasts of the power consumption are used in order
not to mix the uncertainties from different forecasting sources.

In a second stage, potentially remaining overvoltages detected in real-time
are handled by the same second-stage optimization as for strategy S50.

9.5.2 Results and Discussion

The different voltage control strategies are applied to the case study defined
in Section 9.4.2.1 for scenario DS3 which simulates a PV and EV penetration
of 60% and 30%, respectively. The quantile forecasting algorithms showing
the best performance in Section 9.4.2.4 are used for the different forecasts,
which corresponds to the NN and the proposed KNN algorithm for power
and voltage quantities, respectively. In any case, online SM measurements
and the car charging feature are used. Note that power line flows are not
directly given since they are implicitly calculated by the OPF problems.
In addition, an average ACE « ´6% is observed for the 50%-quantile

voltage forecasts at the time steps where an overvoltage is predicted, which
indicates that the point forecasts tend to overestimate more than underesti-
mate the voltage at these time steps. This gives the incentive to relax the
voltage limit to the 44%-quantile in strategy Sq. Alternatively, due to a lower
market price than imbalance price, the DSO might want to remove as much
overvoltage as possible at the first stage and even accept superfluous PV
curtailment. This would justify the use of a higher quantile in strategy Sq,
which is set to 62.5% in this case study.

Moreover, since the results are evaluated on a Swiss grid, the market price
Cm for electrical energy is set to 40 e/MWh which roughly corresponds to
the average Swiss spot market price [394]. Subsequently, the Swiss imbalance
price is defined as [393]:

Cib “ 1.1 ¨ p1.2 ¨Cm ` pibq, (9.28)
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Figure 9.18: Intermediate voltage point forecasts and final voltage realizations
resulting from strategy S44 at a selected time step.

where Cm and Cib are the market and imbalance prices for the curtailed
PV energy in e/MWh, respectively, and pib is an imbalance penalty equal
to 10 e/MWh. Considering the increasing share of volatile DERs in future
distribution grids, imbalances are expected to increase, which could lead to
an increase of the imbalance price with respect to the market price. Hence, a
future situation where the imbalance price would be doubled is also considered.

First of all, Figure 9.18 gives insight into the functioning of S44 for a
given time instance. More precisely, Subplot A1 illustrates the initial voltage
forecast and the predicted voltage result applying the first-stage optimization
for the 50%-quantile and for all buses in the network. Since this strategy
reduces the overvoltages only to the 44%-quantile, there are still remaining
overvoltages predicted for the 50%-quantile at a few buses. Subsequently,
Subplot B1 shows the predicted voltages after the first-stage optimization
and the actual voltage realizations after applying the real-time optimization.
The real-time optimization is designed to adjust the curtailment strategy
in order to guarantee that all voltages are below the overvoltage limit. At
this specific time instance, it nevertheless appears that all the voltages are
already way below the limit after applying the first-stage strategy, even
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Curtailed energy and cost SB S50 S44 S62.5

HA energy curtailment [MWh] 0.0 22.3 21.6 23.7
RT energy curtailment [MWh] 22.3 2.1 2.4 1.5
Total energy curtailment [MWh] 22.3 24.4 24 25.2
Total cost in current situation [e] 1422 1022 1017 1044
Total cost in future situation [e] 2843 1154 1172 1142

Table 9.5: Optimization results for different voltage control strategies in current
and potentially future price situations, considering the curtailed
energy and the associated cost.

though there were reduced only to the 44%-quantile9. Consequently, no
real-time adjustment is required. Due to the tendency of the point forecast
to overestimate overvoltages, strategy S44 exactly profits of such scenarios
where the overvoltage can be completely eliminated at the hour-ahead stage
by curtailing less energy than the point forecast would have predicted.

Finally, Table 9.5 compares the different strategies for both price situations
in terms of curtailed energy and cost. The total cost consists of the cost of
the Hour-Ahead (HA) and of the Real-Time (RT) curtailments for a period
of 10 weeks evenly distributed over a year, as shown in Figure 9.10. Although
the forecast-based strategies curtail in total more PV energy than the pure
real-time optimization because of the prediction errors, they allow for a clear
reduction of the total cost. For example, strategy S50 increases by 4.9% the
amount of curtailed PV energy with respect to the benchmark strategy but
reduces by 28.1% and even 59.4% the final cost based on the current and
future price situations, respectively. In the current price situation, S44 is
the most cost-efficient strategy, where the total cost further drops by 0.5%
with respect to S50. Since the imbalance price is only about 50% higher than
the market price and the point forecast tends to overestimate the voltage
in overvoltage situations, it is preferable to enable some more remaining
overvoltages that are handled in real-time. Conversely, if the imbalance price
increases, it gets profitable to accept more and even too much curtailment
in the first stage. This is shown by the lowest total cost for strategy S62.5,
i.e., ´1% with respect to S50. Note that the actual value of the market and
imbalance prices influences only the total cost, not the optimal curtailment.

9 If there were any remaining overvoltages after the first-stage optimization, at least one
voltage would be right at the voltage limit after the real-time optimization.
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Based on Table 9.5, saving potentials might seem relatively low. Neverthe-
less, this is only the outcome for a small residential neighborhood with 583
consumers over ten weeks. Extrapolated to the whole city of Basel with about
100’000 households [395] for a time period of one year, IWB could potentially
save about 360’000 e when applying preventive instead of corrective volt-
age control10. This yearly saving potential even amounts to approximately
1’500’000 e in case of a doubling of the imbalance price.

9.6 conclusion

Different aspects related to short-term forecasting in LV grids are covered in
this chapter. First, the inadequacy of standard deterministic algorithms and
evaluation metrics is demonstrated for 24-hour-ahead load forecasting on the
basis of 1000 load profiles. At this level, the load is known to be particularly
difficult to predict. In terms of evaluation, the standard point-wise metrics
and the ramp score give a biased image of the forecasting accuracy for volatile
loads due to the double penalty effect, which favors smooth predictions. In
contrast, the adjusted error metric rewards the prediction of consumption
spikes even with slight displacements in time and mitigates the double penalty
effect. Nevertheless, all considered algorithms fail to outperform the simple
persistence model according to this adjusted error metric. Besides, traditional
deterministic algorithms do not reflect the statistical properties of original
load profiles, which has been studied for the ARMAX and SVR models.
To different extents, the observations can be generalized to all algorithms
focusing on the point-wise accuracy. Nonetheless, the performance evaluation
of a forecasting algorithm basically depends on the final application. For
example, in the context of voltage control, the point-wise accuracy and the
statistical properties of load forecasts are not of high importance as long as
the voltage remains within acceptable limits. In this case, the performance
evaluation of a load forecast should consider the number of resulting voltage
violations. Moreover, although rarely considered in the forecasting literature,
the voltage is associated with a relatively lower uncertainty such that its
deterministic prediction still provides valuable information. This is confirmed
in the proposed preventive voltage control scheme, where the strategy based
on point forecasts achieves substantial cost savings in comparison with a
purely corrective approach.

10 Note that the purpose of this extrapolation is only to obtain a rough order of magnitude
for saving potentials at a city level. It is nevertheless clear that a specific neighborhood
cannot representatively reflect the situation at a city level.
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Although deterministic forecasting appears convenient in specific cases, LV
grids are still subject to large uncertainty that cannot be comprehensively
predicted by a single estimate. This uncertainty comes from the traditional
load, but also increasingly from PV systems and EV chargers which addition-
ally put the grid infrastructure and its safe operation under pressure. In that
respect, probabilistic forecasting approaches seem more appropriate than
deterministic algorithms. In this chapter, quantile forecasting is leveraged
for predicting the hour-ahead grid state, including net power consumptions,
power flows, and voltages. Concretely, a quantile neural network is compared
with a proposed quantile version of the KNN algorithm. Characterized by
relatively high uncertainty, the former is more effective for power quantities,
while the latter better estimates voltages. The evaluation is based on the
reliability and the sharpness of prediction intervals. The case study also
considers various levels of PV and EV penetration, which noticeably impacts
the level of uncertainty. The presence of online SM measurements and the
knowledge about the EV charging behavior (i.e., starting time and duration)
slightly improve the prediction performance.

Finally, point and quantile forecasts are integrated into preventive voltage
control schemes via PV power curtailment. The proposed AC-OPF approaches
assume that the level of active power curtailment can be decided in advance
at a lower cost, however associated with a certain forecast error. While
the preventive control schemes are definitely more cost-efficient than their
corrective counterpart, the case study shows that quantile forecasts can reduce
the costs even further compared to point forecasts. The exact quantiles to
consider and the corresponding cost reduction depend on the price difference
between hour-ahead and real-time curtailment. Future work should investigate
the optimal quantiles that maximize the cost reduction depending on the
price situation. Different quantiles could also be integrated into the same
optimization problem and even directly contribute to the cost function
instead of acting on the voltage limit constraint. The performance of the
suggested control scheme should also be compared with other probabilistic
approaches such as stochastic or chance-constrained optimization, where
the grid quantities are seen as random variables with a certain probability
distribution. In addition, alternative means to control voltages such as reactive
power control, online tap changing of transformers, the use of the EV flexibility,
and demand response should be considered. The presented OPF approach
could also be adapted to congestion management, demand-side management,
or any application subject to uncertainty and that can benefit from short-term
forecasts.
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To summarize, this chapter basically encourages the use of actual short-term
forecasts for the operation of distribution grids, notably via preventive control.
On the one hand, perfect forecasts are absolutely not realistic, accounting
for the large uncertainty inherent to distribution grids. On the other hand,
the assumption of a predefined probability distribution of the quantities of
interest, which would not depend on temporal and spatial dimensions, is
reductive. While point forecasts can be valuable in certain cases, the use
of probabilistic forecasts should be preferred. Nevertheless, the principal
challenge remains in their effective integration into operational schemes,
which definitely merits further consideration.



10
C O N C L U S I O N S A N D O U T L O O K

This chapter summarizes the content of this thesis in Section 10.1, draws
the main conclusions in Section 10.2, and suggests various avenues for future
work in Section 10.3.

10.1 summary

Although the Advanced Metering Infrastructure (AMI) is still under develop-
ment in most distribution grids, the generated data already offers excellent
opportunities for power utilities and their customers. Beyond the undeniable
practical aspect of automated meter reading, smart meters, but also a wide
variety of advanced sensors (e.g., installed at cable distribution cabinets,
MV/LV transformers, local substations) enhance the visibility and control-
lability of the system down to the low-voltage grid. All these sensors are
supported by appropriate communication networks and data storage sys-
tems. The detection of non-technical losses, better monitoring and situational
awareness, energy forecasting, demand-side management, or the creation
of transactive energy systems are among the most recurrent applications
suggested in the literature. There is nevertheless a large gap between the
possibilities offered by the AMI, even when complying with the development
objectives, and the general assumptions taken in the literature. Notably, the
roll-out targets do not necessarily aim for a full smart meter coverage, the
availability of digital grid models is not self-evident, especially at the low-
voltage level, and the diverse sets of data and metadata are always prone to
errors, inaccuracies, and missing values. Moreover, the output granularity and
the recorded quantities of advanced meters are limited to keep the amount of
generated data under control. Sub-metering is also rarely realized on a large
scale due to its high cost. Besides, end-consumers cannot be considered as
rational entities when they are given the possibility to be active participants
in the system. More importantly, data protection and privacy concerns pre-
vent the implementation of intrusive applications. This crucial aspect also
highly limits data and information sharing between power utilities and the
research community, which obligates the latter to use synthetic data and rely
on case studies which are sometimes far from reality. Having the chance to

287
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rely solely on real-world data, the work proposed in this thesis intends to
highlight which are the assumptions and simplifications that can realistically
be taken in the development and validation of data-based approaches. It also
suggests various processes and methods to effectively leverage the realistic
possibilities offered by AMIs and address some of the current challenges in
grid operation and planning.

First of all, appropriate preparation of data is a primordial step before their
use in future applications. The proposed data preparation pipeline brings raw
data into a formatted and standardized form in the first stage and detects
and fixes potential signs of bad data quality in the second stage. The process
can be standardized to a certain extent, but the exact methodologies used
for the different cleaning steps largely depend on the type of data and on
its future application. It must also be kept in mind that 80% of the time
and resources required for a certain data-based process are used by data
preparation, whereas the actual analysis only accounts for the remaining
20%.

Furthermore, the high spatial and temporal resolutions provided by smart
meters enable a previously unattainable degree of detail in distribution grids
but also lead to the generation of so-called big data that cannot be directly
integrated into decision-making processes. A good overview of measurement
data at the end-user level necessarily entails a certain complexity reduction
and proper visualization at a large-scale level. Unsupervised learning tech-
niques, and especially clustering, add value to smart meter data by grouping
and putting into perspective the multiple pieces of information. The extrac-
tion of features defines the focus of the analysis, which can go much beyond
the sole clustering of end-consumers based on the shape of their load profile.
The spatial dimension of smart meters can also be leveraged to visualize the
clustering outcomes.
Besides, the temporal averaging effect of low temporal resolutions and

spatial aggregation substantially impact the properties of load profiles in
distribution grids, which is not the case in transmission networks. Among
others, the volatility and peak values of consumption data are considerably
reduced, even at the level of distribution transformers. Such alteration of the
original load properties must be considered in data-based models.

In addition, the design of control strategies or the study of future scenarios
(e.g., increased penetration of DERs) in a specific grid inevitably relies on
time series simulations in a certain model of that grid. Their conclusions
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are influenced by the quality and representativeness of this model. Direct
measurements provide some information on the characteristics of the grid but
are insufficient to obtain a complete and observable system, especially at the
LV level. This requires pseudo-measurements which could consist of synthetic
load profiles. An adaptation of traditional Markov chain models is proposed
for the synthesis of active power profiles based on existing smart meter data.
A binary optimization and a bin packing problem are further developed to
select the most suitable load profiles for a given system and allocate them to
non-metered end-users, respectively. Both approaches especially take care of
not altering the properties of the original load profiles. The adaptive Markov
chain model clearly outperforms the standard load allocation to reflect the
properties of individual consumers, notably in terms of peak values. By
integrating the notion of seasonality and periodicity at different time scales
in its design, the adaptive model also outperforms its traditional counterpart
at an aggregate level. Reactive power pseudo-measurements are generally
neglected in the literature. A synthesis approach is suggested in this work on
the basis of actual smart meter data. Nevertheless, the synthesis approach at
the individual level does not seem to be important as long as the individual
reactive power profiles are scaled to match with aggregate measurements.
Moreover, this work includes a comprehensive sensitivity analysis of the

main dimensions influencing the state estimation of distribution grids, in-
cluding the LV level. The analysis accounts for the synthesis of pseudo-
measurements, but also the penetration and type of direct measurements,
and the placement of smart meters. It appears that a smart meter penetration
of 75% already leads to a satisfying modeling accuracy. At lower smart meter
coverage, the type of active power pseudo-measurements is relevant, espe-
cially for the estimation of peak values which are underestimated by standard
load profiles. The synthesis approach for reactive power does not seem to
influence the state estimation outcome, although this merits closer scrutiny.
Besides, the strategic placement of smart meters to the largest consumers
approximately leads to the same accuracy as randomly placed meters with
a 25% higher penetration. Furthermore, the estimation of power flows and
voltages clearly benefits from the installation of advanced metering devices
at distribution cabinets and transformers.

Eventually, the thesis discusses different data-based applications in low-
voltage grids and proposes novel methods based on typically available measure-
ment data to address some operational challenges. First, various approaches
to detect and disaggregate the consumption profile of cold appliances and
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storage water heaters are developed. These domestic devices are characterized
by a non-negligible flexibility potential, and their operation is not controlled
by end-users, which makes them perfect candidates for demand response
purposes via direct load control. In this context, the estimation of their power
with a relatively high spatial (i.e., at the device level) and temporal (i.e., sam-
pling period of 1 to 30 minutes) resolutions potentially allows power utilities
to design more effective demand response schemes. The general availability
of sub-metering data is nevertheless not realistic due to cost and privacy
reasons. Hence, multiple unsupervised approaches based on standard smart
meter data are successfully developed. Such approaches leveraging data with
a sampling period between 1 and 30 minutes are very rarely proposed in
the literature and are totally novel for cold appliances and water heaters,
to the best of the authors’ knowledge. It must be noted that a decrease in
the temporal resolution strongly affects the disaggregation performance. In
the presented case study with a set of 70 households, the disaggregated cold
appliances and water heaters account for more than 40% of the peak load,
which prefigures the potential for demand response.

Furthermore, the application of short-term forecasting is investigated in
low-voltage grids. First, standard deterministic algorithms and evaluation
metrics for 24-hour-ahead load forecasting appear inadequate due to the high
volatility and low predictability. The double penalty effect is also pointed out
for point-wise metrics. According to an adjusted error metric, none of the
considered algorithms is able to clearly outperform the simple persistence
model. In addition, the statistical properties of the outcome of traditional
algorithms are far from reality. Probabilistic forecasting approaches are gener-
ally better suited by additionally estimating the uncertainty associated with
the point forecast. Quantile forecasting algorithms are therefore applied to
the hour-ahead prediction of the LV grid’s state (i.e., net power consumption,
power flow, voltage). A quantile version of the KNN algorithm is proposed,
which outperforms the competing NN for voltage forecasting. Generally, the
uncertainty increases with rising EV and PV penetration. Finally, the point
and quantile forecasts are integrated into preventive voltage control schemes
based on PV power curtailment with promising results.

10.2 conclusions

The main conclusions and findings of this thesis are summarized as follows:

• The use of real-world data for distribution grid applications definitely
allows for the design of more realistic approaches and case studies
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and partially bridges the gap with the current scientific literature.
For that purpose, closer collaboration between power companies and
the scientific community is an absolute prerequisite, without however
neglecting data privacy concerns.

• Data preparation is a crucial and non-negligible preliminary step before
performing any analysis based on real-world measurements. In fact,
there is no one-size-fits-all solution due to the large variety of data
sources, and some experience and domain knowledge is inevitably
required. The exact formatting and cleaning methodologies primarily
depend on the type of data, the application, and the computational
resources. In any case, the preparation process influences the subsequent
data-based analysis and should be specified together with the analysis
setup.

• Accounting for the variety of end-users in distribution grids, simple
unsupervised methods (e.g., clustering) and appropriate visualization at
the overall system level already offer a good overview of the smart meter
data potential for a wide range of applications. Clustering analysis is of
interest to identify the main types of consumers but also detect specific
groups of loads whose behavior might be of particular interest and
merits closer scrutiny. For example, focusing on the correlation of the
load with temperature, combined with the spatial dimension of smart
meters, can indicate sections of the grid that are potentially sensitive
to demand response.

• The temporal averaging effect and spatial aggregation substantially alter
the inherent properties of load profiles in distribution grids, which might
lead to biased conclusions if there are not explicitly considered in the
data-based processes. This concerns models which are impacted by the
data volatility (e.g., load disaggregation, forecasting) and approaches
that rely on aggregate data for the modeling of data at lower aggregation
levels (e.g., pseudo-measurement synthesis).

• The creation of synthetic data is often inspired by proven approaches
at the transmission level, but their application to distribution grids
is unrealistic, notably due to the highly volatile nature of the load.
Hence, an adaptive Markov chain model is proposed for the generation
of realistic active power profiles based on smart meter data. It is
designed to integrate any features of interest (e.g., statistical properties,
temporal dimensions, correlation with exogenous variables) without
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an extensive amount of training data and computational resources. It
can be leveraged for pseudo-measurement synthesis, missing values
imputation, and load forecasting.

• The sole use of point-wise evaluation metrics gives a biased image of the
performance of most approaches developed for distribution grids applica-
tions (e.g., pseudo-measurement synthesis, state estimation, short-term
forecasting). In fact, they unfairly favor smooth outcomes, which is
not representative of the volatile nature of the load, especially at the
low-voltage level. The performance evaluation should integrate alter-
native metrics such as the presented adjusted error, consider multiple
other aspects such as the representation of peak values and statistical
properties, and above all adapt to the application.

• An overwhelming majority of non-intrusive load monitoring techniques
either rely on sub-metering data or require a sampling frequency of at
least 1 Hz. These assumptions generally do not hold true in current
low-voltage grids. However, the disaggregation of cold appliance and
water heater loads with decent accuracy on the sole basis of standard
smart meter data is still possible.

• The application of deterministic load forecasting algorithms in low-
voltage systems is questionable, especially with a horizon further than
the following time step (e.g., day-ahead or 24-hour-ahead predictions).
In fact, the deterministic outcome generally appears much smoother
than the measured load profile. In contrast, quantile forecasting algo-
rithms can properly account for the uncertainty associated with the
state of LV grids.

• The use of point and quantile forecasts in preventive voltage control
schemes allows for considerable cost savings in comparison with purely
corrective measures, even accounting for forecast errors.

10.3 outlook

There are various avenues for future work and possibilities to extend the
topics addressed in this thesis. In the following, the most important questions
that remain unanswered or require further investigation are pointed out:

• The temporal averaging effect studied in Chapter 5 is expected to affect
the dimensioning of grid components and the detection of voltage band
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violations and overloadings. A deeper analysis of its impact could be
performed, e.g., in the framework of the sensitivity analysis of Chapter 7
and for short-term forecasting applications as presented in Chapter 9.

• The synthesis approach proposed in Chapter 6 for reactive power shows
a somewhat mixed performance. The use of ML-based algorithms and
disaggregation techniques, as well as additional features, should lead to
a more representative outcome.

• The added value of more advanced metering devices such as micro-
PMUs at the LV level, but also additional measured quantities such as
the current could be evaluated in the sensitivity analysis of Chapter 7.

• In Chapter 7, the WLS algorithm assumes a Gaussian error distribution,
which is generally not valid in LV grids. Alternative algorithms should
be tested. Accounting for the large uncertainty induced by the lack
of direct measurements, the concept of probabilistic state estimation
merits closer scrutiny.

• Since distribution grids are typically unbalanced, the case studies should
consider three-phase measurements and three-phase digital grid models,
especially in the state estimation of Chapter 7, and the state forecasting
and voltage control schemes of Chapter 9.

• This is a strong assumption to consider the grid model as perfectly
known, notably in Chapters 7 and 9. Similarly to the measurement
data, the inevitable inaccuracies and errors in the grid model must be
properly handled.

• Chapter 9 demonstrates that a rising penetration of PVs and EVs in a
low-voltage system increases the uncertainty and negatively impacts its
state forecasting accuracy. This influence should also be investigated in
other domains, such as the sensitivity analysis of Chapter 7.

• The detection and disaggregation approaches presented in Chapter 8
could be adapted to additional flexible loads (e.g., heat pumps) and
to online versions. Moreover, beyond the sole estimation of the in-
stantaneous power of these devices, the data-based estimation of their
flexibility potential at the device level could greatly benefit demand
response schemes.

• The AC-OPF scheme proposed in Chapter 9 for preventive voltage
control should be further developed and compared against state-of-the-
art stochastic or chance-constraint optimization. More generally, deeper
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investigation is required for the effective integration of probabilistic
forecasts in preventive control schemes for grid operation purposes.
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