
ETH Library

Developing and Evaluating
Power Models of Heterogeneous
Computer Systems

Master Thesis

Author(s):
Martsenko, Kristina

Publication date:
2021

Permanent link:
https://doi.org/10.3929/ethz-b-000488930

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000488930
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Master’s Thesis Nr. 314

Systems Group, Department of Computer Science, ETH Zurich

Developing and Evaluating Power Models of Heterogeneous Computer Systems

by

Kristina Martšenko

Supervised by

Dr. Michael Giardino
Dr. David Cock

Prof. Timothy Roscoe

September 2020 – March 2021





Abstract

As computational demands in the data center increase, so does the preva-
lence of heterogeneous systems that offload part of the application workload
onto a secondary coprocessor. Recently FPGA based systems have become
particularly popular due to their energy efficiency and reconfigurability. A
central problem in such systems is the task of optimally splitting an appli-
cation between the CPU and FPGA, which should maximize performance
and minimize power consumption. This dictates the need for performance
and power models of the system.

Enzian is a new and open CPU-FPGA research platform, which among other
things can measure the power of each system component separately. In this
thesis we study the power consumption of three Enzian components: CPU,
memory and FPGA. We develop simple but accurate analytical energy mod-
els for the CPU and memory using hardware performance counters, and we
study how properties of an FPGA design affect FPGA power consumption.
This constitutes the first study on the power consumption of Enzian and
takes a step towards the development of whole system power models for
Enzian and heterogeneous systems in general.

1



Acknowledgements

I would like to thank Dr. Michael Giardino for supervising this thesis, for
many discussions and helpful advice during the course of the thesis, and
for providing the original research idea and the FPGA benchmark used in
the thesis. I would also like to thank Dr. David Cock and Prof. Timothy
Roscoe for helpful discussions and advice, for providing access to the Enzian
platform, and for the opportunity to write my thesis in the ETH Systems
Group. Finally, I would like to thank other members of the Systems Group
for help with Enzian and its power management software.

2



Contents

1 Introduction 7

2 Related Work 9
2.1 CPU Power Models . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Memory Power Models . . . . . . . . . . . . . . . . . . . . . . 10
2.3 FPGA Power Models . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Heterogeneous System Power Models . . . . . . . . . . . . . . 12

3 Background 13
3.1 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Power Measurement . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Performance Counters . . . . . . . . . . . . . . . . . . . . . . 14
3.4 FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . 15

4 Enzian Platform 17
4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Power Measurement . . . . . . . . . . . . . . . . . . . . . . . 17

5 CPU Power Model 19
5.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1.1 Choice of Benchmarks . . . . . . . . . . . . . . . . . . 20
5.1.2 Benchmark Configuration . . . . . . . . . . . . . . . . 20

5.2 Performance Counters . . . . . . . . . . . . . . . . . . . . . . 21
5.2.1 Event Types . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.2 Counter Configuration . . . . . . . . . . . . . . . . . . 22

5.3 Power Measurements . . . . . . . . . . . . . . . . . . . . . . . 23
5.3.1 Voltage and Current Monitors . . . . . . . . . . . . . 23
5.3.2 Synchronization with performance counters . . . . . . 24

5.4 Time Series Analysis . . . . . . . . . . . . . . . . . . . . . . . 24
5.5 Power and Energy Models . . . . . . . . . . . . . . . . . . . . 28

5.5.1 Average Power Model . . . . . . . . . . . . . . . . . . 28
5.5.2 Energy Model . . . . . . . . . . . . . . . . . . . . . . . 29

3



6 Memory Power Model 31
6.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1.1 Choice of Benchmarks . . . . . . . . . . . . . . . . . . 31
6.1.2 Benchmark Configuration . . . . . . . . . . . . . . . . 32

6.2 Performance Counters . . . . . . . . . . . . . . . . . . . . . . 32
6.2.1 Event Types . . . . . . . . . . . . . . . . . . . . . . . 32
6.2.2 Counter Configuration . . . . . . . . . . . . . . . . . . 32

6.3 Power Measurements . . . . . . . . . . . . . . . . . . . . . . . 32
6.3.1 Voltage and Current Monitors . . . . . . . . . . . . . 33
6.3.2 Synchronization with performance counters . . . . . . 33

6.4 Time Series Analysis . . . . . . . . . . . . . . . . . . . . . . . 34
6.5 Power and Energy Models . . . . . . . . . . . . . . . . . . . . 37

6.5.1 Average Power Model . . . . . . . . . . . . . . . . . . 37
6.5.2 Energy Model . . . . . . . . . . . . . . . . . . . . . . . 38

7 FPGA Power Model 40
7.1 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.2 Power Measurements . . . . . . . . . . . . . . . . . . . . . . . 42
7.3 Effects of Utilization and Clock Frequency . . . . . . . . . . . 42

7.3.1 Utilization . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.3.2 Clock Frequency . . . . . . . . . . . . . . . . . . . . . 42
7.3.3 Combined Power Model . . . . . . . . . . . . . . . . . 44
7.3.4 Comparison to Vivado Estimates . . . . . . . . . . . . 44

8 Future Work 46
8.1 CPU and Memory Power Model Improvements . . . . . . . . 46
8.2 FPGA Power Model Improvements . . . . . . . . . . . . . . . 46
8.3 Models of Other System Components . . . . . . . . . . . . . . 47
8.4 Composite Power Model . . . . . . . . . . . . . . . . . . . . . 47

9 Conclusion 48

References 50

A CPU Time Series 55

B Memory Time Series 58

4



List of Figures

4.1 Enzian architecture . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1 Synchronization of CPU and BMC measurements . . . . . . . 24
5.2 IPC and CPU power use of blackscholes over time . . . . . . 26
5.3 IPC and CPU power use of facesim over time . . . . . . . . . 26
5.4 IPC and CPU power use of swaptions over time . . . . . . . . 27
5.5 IPC and CPU power use of streamcluster over time . . . . . . 27
5.6 Model of average CPU power based on IPC . . . . . . . . . . 29
5.7 CPU energy model based on the number of (a) cycles or (b)

instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1 Cache misses and memory power use of blackscholes over time 35
6.2 Cache misses and memory power use of facesim over time . . 35
6.3 Cache misses and memory power use of fluidanimate over time 36
6.4 Cache misses and memory power use of streamcluster over time 36
6.5 Model of average memory power based on average LLC misses

per second . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.6 Memory energy model based on the number of (a) cycles or

(b) LLC misses . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.1 Effects of utilization and clock frequency on total FPGA power
use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.2 Comparison of Vivado power estimates with real power use . 45

A.1 IPC and CPU power use of bodytrack over time . . . . . . . . 55
A.2 IPC and CPU power use of canneal over time . . . . . . . . . 56
A.3 IPC and CPU power use of dedup over time . . . . . . . . . . 56
A.4 IPC and CPU power use of fluidanimate over time . . . . . . 57
A.5 IPC and CPU power use of vips over time . . . . . . . . . . . 57

B.1 Cache misses and memory power use of bodytrack over time . 58
B.2 Cache misses and memory power use of canneal over time . . 59
B.3 Cache misses and memory power use of dedup over time . . . 59
B.4 Cache misses and memory power use of swaptions over time . 60
B.5 Cache misses and memory power use of vips over time . . . . 60

5



List of Tables

5.1 Some PARSEC benchmarks and their approximate runtimes
on Enzian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 A subset of ThunderX performance counter event types . . . 22

6.1 A subset of ThunderX event types related to memory accesses 33

7.1 Number of FPGA LUTs and flip-flops used by the benchmark 41

6



Chapter 1

Introduction

Cloud computing is increasingly used for processing large datasets, which
requires increasing amounts of computational power. As improvements in
the performance of conventional computers have slowed, new heterogeneous
computing architectures have emerged. These include systems with GPUs
(graphics processing units), FPGAs (field-programmable gate arrays) and
ASIC (application-specific integrated circuit) coprocessors. FPGAs are par-
ticularly promising due to their high power efficiency and reconfigurabil-
ity. In recent years a number of CPU-FPGA systems have been devel-
oped. These include systems with a PCIe connection between the CPU
and FPGA (for example Microsoft Catapult, Amazon F1), as well as sys-
tems with shared memory and a coherent interconnect (for example Intel
Xeon+FPGA, IBM CAPI) [13].

Recently a new research CPU-FPGA platform called Enzian has been devel-
oped [2]. Enzian is a coherent shared memory computer combining a Cavium
ThunderX 48-core Arm CPU with a Xilinx Ultrascale+ FPGA. It is an open
platform designed for computer systems software research [25].

An important problem for CPU-FPGA platforms is how to allocate work
between the CPU and FPGA. Recent work has explored work scheduling
from multiple perspectives, such as offloading database operations to the
FPGA [2] or sharing the FPGA between multiple applications [38].

Scheduling decisions are driven by considerations such as performance and
power consumption. In this thesis we focus on power consumption, as power
efficiency has in recent years become an increasingly important issue in cloud
data centers [42]. In order to make good scheduling decisions, a power model
of the system is needed. In an effort to study power modeling of CPU-FPGA
systems, we begin by developing a power model for Enzian. One possible
way to do this is to first create power models of each hardware component

7



in the system and then combine them. In this thesis we focus on developing
power models for the Enzian CPU, memory and FPGA.

Our main contributions are as follows.

• The first study on the power consumption of Enzian. This includes a
demonstration of the per-component power measurement capabilities
of Enzian and their potential for future research.

• A study of the correlations between hardware performance counters
on a 64-bit Arm CPU and the power consumption of the CPU and
DDR4 memory. This includes simple yet highly accurate analytical
energy models for the Enzian CPU and memory.

• A study of FPGA power consumption based on utilization and clock
frequency. This includes an accurate analytical power model for very
simple FPGA designs.

The rest of this thesis is structured as follows. Chapter 2 discusses the re-
lated work that has been done on power models and places our work in con-
text. Chapter 3 covers the background concepts necessary for understanding
our work. Chapter 4 provides an overview of the Enzian platform. Chap-
ters 5, 6 and 7 present our methodology and results on the power modeling
of the CPU, memory and FPGA, respectively. Chapter 8 describes possible
future research directions. Chapter 9 concludes the thesis.

8



Chapter 2

Related Work

This chapter provides an overview of power models that have been developed
in the literature. While our focus is on heterogeneous systems, we first look
at models for each system component separately (CPU, memory, FPGA)
and then conclude by looking at whole system models.

2.1 CPU Power Models

The central processing unit (CPU) has been found to consume more power
than any other component in a data center server [4]. The ability to estimate
CPU power consumption has many uses, such as energy aware scheduling,
dynamic voltage and frequency scaling (DVFS), or taking advantage of low
power states [22, 5].

Recent Intel processors report CPU power consumption through its Run-
ning Average Power Limit (RAPL) interface [53]. Recent AMD processors
support a similar feature called Application Power Management (APM) [15].
However, to our knowledge similar interfaces are not available on other CPU
architectures.

Many different CPU power models have been proposed in the literature.
Some make use of hardware performance counters provided by the CPU to
estimate power [5, 15]. Others use CPU utilization as a predictive met-
ric [26]. Low level tools use simulation and circuit properties to estimate
power [39]. In this thesis we focus on the use of performance counters for
power modeling.

The use of CPU performance counters to estimate power consumption was
first demonstrated by Bellosa [5]. He observed a linear relationship be-
tween the number of instructions executed per second and the power use of
the CPU. In this thesis we explore similar relationships but on a modern

9



processor with a different architecture (Arm). We also demonstrate the re-
lationships for real-world workloads rather than microbenchmarks, and we
are able to measure the CPU power in isolation, rather than whole system
power.

Performance counter based power models have been created for Intel XScale
PXA255 [16], Intel Pentium 4 [9] and Intel Core 2 Duo processors [6]. Per-
formance counters have also been used to create analytical power models
for each CPU component (such as the cache or floating point unit) [34, 6].
Recently, a toolkit was proposed that uses a learning technique to iden-
tify which performance counters correlate most with CPU power consump-
tion [15]. In this thesis we do not aim to identify the best counters, but rather
to understand and characterize the system using specific counters.

2.2 Memory Power Models

The main memory is one of the biggest consumers of power in a data center
server [4]. Memory power models are useful for modeling whole system
power [8], and could also enable power saving techniques such as dynamic
voltage and frequency scaling (DVFS) in memory [20].

In addition to CPU power, recent Intel processors also report memory power
consumption through their RAPL interface [21]. However as already men-
tioned, not all CPU architectures have similar interfaces.

Several methods exist for estimating memory power. The simplest is to use
datasheets and spreadsheet models provided by memory vendors [51]. A
more accurate method is to use simulations of the memory or entire memory
hierarchy [57, 52, 59, 51]. In this thesis we focus on memory power models
based on CPU performance counters.

Bellosa [5] was the first to demonstrate using CPU performance counters
to estimate memory power consumption. He found a linear relationship
between the number of second-level cache misses and memory power con-
sumption. In this thesis we explore similar relationships but on a modern
system with DDR4 memory (and an Arm CPU). We also demonstrate the
relationships for real-world workloads rather than microbenchmarks, and
we are able to measure the memory power in isolation, rather than whole
system power, possibly leading to more accurate estimates.

Other work has explored predicting memory power using instruction fetch
miss and data dependency events on an Intel XScale PXA255 processor [16].
Performance counters on an UltraSPARC CPU have also been used to esti-
mate energy used by memory and caches [37]. More recent work has used
cache misses, TLB misses and DMA accesses to model the power use of

10



memory [8]. In this thesis we use cache misses on an Arm processor to
model memory power consumption.

2.3 FPGA Power Models

While it is possible to complete an FPGA design and measure its power
use with physical measurements, power estimation techniques allow power
to be known early in the design process and enable power optimization
techniques [11]. For example, FPGA power models can be useful for early
design space exploration as part of HLS workflows [45].

Power is consumed by the routing fabric, logic blocks and clock network [11,
28, 23]. Power consumption can be broken down into switching power,
short-circuit power and static power [11]. Power consumption is affected
by FPGA parameters such as clock frequency, utilization, switching activity
and interconnect capacitance [1, 3]. A linear relationship has been observed
between clock frequency and dynamic power [35]. In this thesis we explore
the effects of utilization and clock frequency on the power use of a modern
FPGA.

FPGA EDA software contains functionality to estimate the power consump-
tion of a design. Both Xilinx and Intel provide spreadsheet-based tools for
early pre-RTL estimation [33, 17], as well as utilities within their EDA tools
for more accurate RTL-based estimation [32, 19]. The spreadsheets estimate
power based on design parameters input by the user, such as the number of
components (clocks, LUTs, registers, BRAM, DSP, I/O) and their proper-
ties (clock frequency, toggle rate, other features). The EDA tools provide a
power estimate based on a synthesized or placed-and-routed design, which
can be further improved with simulation or detailed activity information
input by the user. As the tools are proprietary, the exact algorithms used
are not publicly known.

In addition to production uses, EDA software estimates are often used to
assess the accuracy of new power models and FPGA tools [12, 10, 36]. Pre-
vious work has compared Xilinx software estimates with real measurements
and found that the tool significantly overestimates power [35, 43]. In this
thesis we compare Xilinx power estimates to real power measurements to
further study this.

Academic work has explored power estimation methods as alternatives to
commercial software. Common approaches use board measurements, statis-
tical models or simulations [11]. Some approaches estimate power consump-
tion using circuit-level simulations and low-level parameters [23]. Others use
simulations and device parameters extracted from FPGA vendor tools [3,
12]. Simulation-based power models also exist for evaluating new FPGA

11



architectures [49, 28]. Power models for HLS designs have also been pro-
posed [12]. This includes power models for RTL operators (e.g. adders or
multipliers) in HLS [36]. In this thesis we do not explore simulation nor
models for HLS.

Previous work presented a methodology based on physical measurements to
calibrate a power model for a specific platform [35]. This included using
a set of microbenchmarks as well as simulations and design tool informa-
tion. In this thesis we use a somewhat similar approach, in that we use
a microbenchmark to calibrate a model. However, unlike all of the above
models, we do not attempt to perform absolute power estimation, but rather
explore how design properties affect power use.

Finally, Section 2.1 describes power models for CPUs based on performance
counters. Unlike CPUs, FPGAs do not yet include performance counters,
so no counter based models exist [46]. An alternative approach would be
to predict FPGA power consumption based on execution properties (e.g.
performance counters) on another platform, such as a CPU or GPU. To our
knowledge no such models exist either [45].

2.4 Heterogeneous System Power Models

Heterogeneous systems include systems with GPUs, FPGAs, ASIC copro-
cessors, as well as asymmetric multiprocessors. As our focus is on coherent
shared memory CPU-FPGA systems like Enzian, we do not look at power
models for other kinds of systems here.

One way to create a power model for a CPU-FPGA system is to combine
models of system components. This has been done for non-heterogeneous
systems, to combine models of the CPU, memory, disk, network and other
system components [8, 24]. In this thesis we create simple power models for
three components of Enzian (CPU, memory and FPGA).

Several works have studied the performance of cache coherent CPU-FPGA
systems [14, 13]. Unfortunately we are aware of few studies on the power
consumption of such systems [27].

12



Chapter 3

Background

3.1 Power Consumption

The power consumption of a computer refers to the amount of energy it
uses per second. Power is measured in watts (W) and energy in joules (J).
The power consumption can be calculated as the product of voltage and
current:

P = IV (3.1)

Voltage is measured in volts (V) and current is measured in amperes (A).

Power consumption is made up of static power and dynamic power.

Dynamic power refers to the power used when there is circuit activity, to
charge the capacitance of gates and wires when signals change state. The
dynamic power consumption of each element can be calculated as

Pdynamic =
1

2
CVDD

2f (3.2)

where VDD is the supply voltage, C is the capacitance of the element, and
f is how many times per second the signal changes state [29].

Static power refers to the power drawn when the circuit is idle and the
signals do not change state. Static power consumption can be calculated
as

Pstatic = IDDVDD (3.3)

where VDD is the supply voltage and IDD is the leakage current [29].

The approximate energy consumed by an application can be calculated by
measuring power at regular intervals, multiplying the measured power values
with the elapsed time between measurements, and adding up the resulting
energy values.

13



3.2 Power Measurement

The power consumption of a system can be measured with an external (or
internal) power metering device. These include wattmeters, power analyzers,
and combinations of galvanometers and voltmeters [42, 46]. They can be
attached to the power supply unit (PSU) to measure the power used by the
whole system.

In addition, some server models contain dedicated power data acquisition
systems connected to their baseboard management controller (BMC) [42].
These can monitor the power of individual system components, such as CPU
or memory.

3.3 Performance Counters

Hardware performance counters are a feature in modern CPUs. They pro-
vide the user with information about activities happening in hardware, and
are intended for performance analysis of software. They were first intro-
duced in the 1990s and today are available on most CPUs. In this thesis we
refer to them as simply performance counters.

Performance counters count events occurring in the CPU and related com-
ponents. For example, they may count the number of instructions executed
or the number of times a cache was accessed. Most CPUs support tens or
hundreds of types of events, which are documented in their manuals (for ex-
ample, [18] or [41]). However, each CPU contains a fixed number of counters
which must be configured to count one type of event at a time. This limits
how many types of events can be counted at once. To count more events
than there are counters, the counters need to be multiplexed, resulting in
each event only being counted some proportion of the time.

To use performance counters, system software needs to configure them and
periodically read (sample) the counts from CPU registers. A number of
profilers exist that provide access to the counters. One of the most commonly
used tools is the Perf profiler in Linux [48].

3.4 FPGAs

A Field Programmable Gate Array (FPGA) is a reconfigurable hardware
platform. Unlike an ASIC (application-specific integrated circuit), it can
be reprogrammed with different hardware designs. FPGAs are widely used
in consumer electronics and prototyping, and have begun to be used as
accelerators aside CPUs.

An FPGA consists of an array of configurable logic blocks (CLBs). Each

14



logic block contains a number of lookup tables (LUTs) and 1-bit registers.
An N-bit register is a set of N flip-flops. The LUTs can be configured to
perform various logical functions, while the registers store values. The CLBs
are connected through configurable routing networks of wires. FPGAs also
contain clock networks for delivering clock signals, input/output elements,
digital signal processor (DSP) blocks for arithmetic functions, block RAM
(BRAM) memory, and other resources.

The design for an FPGA is created using a hardware description language
(HDL) such as SystemVerilog or VHDL. HDLs implement the register-
transfer level (RTL) abstraction. The design is then synthesized, placed and
routed to use the resources available on the FPGA. This process produces
a bitstream file with information on how to configure the LUTs, routing
network, and other parts of the FPGA. The bitstream is loaded onto the
FPGA to configure it. In recent years high-level synthesis (HLS) has become
a higher level alternative to HDLs.

The two leading FPGA manufacturers are Xilinx and Intel (formerly Altera).
They provide EDA (electronic design automation) tools for synthesizing the
FPGA bitstream, namely Vivado Design Suite from Xilinx and Intel Quartus
Prime from Intel. Vivado calls the place-and-route phase the implementation
phase.

3.5 Regression Analysis

Regression analysis is a mathematical method for finding relationships be-
tween a target quantity and a number of features that it might depend on.
The most common type of regression is linear regression, which finds the
closest linear relationship, meaning that the target is a linear combination
of the features. There are several ways to determine ‘closeness’, the most
common of which is ordinary least squares, which minimizes the sum of the
squares of the differences between the target values and the values predicted
by the linear model.

A regression model is built based on a dataset consisting of observed features
and corresponding observed target values. If the model is built based on mul-
tiple features, it is called multiple linear regression, otherwise in case of one
feature it is simple linear regression. Other types of regression besides linear
include polynomial regression, which finds more complex relationships.

The accuracy of a regression model can be assessed using a number of met-
rics. One of the simplest is mean squared error (MSE) which calculates the
average of the squares of the differences between the target and predicted
values. A lower MSE is better, with 0 being best. The unit of MSE is the
unit of the target quantity. Another metric is the coefficient of determi-

15



nation or R2 score, which shows how much of the variance in the target
quantity is predicted by the features. The best possible score is 1, with
lower values being worse.

A number of software packages exist for performing regression analysis. In
this thesis we use the scikit-learn [47] Python library to create all regression
models.

16



Chapter 4

Enzian Platform

Enzian is a research computer built at ETH Zürich for systems software
research [25, 2]. It is intended to be a open system and available to any-
one. This chapter describes the Enzian platform and its power measurement
infrastructure.

4.1 Architecture

Enzian is a heterogeneous NUMA (non-uniform memory access) system with
a CPU and an FPGA and a cache-coherent interconnect between them.
Figure 4.1 illustrates the Enzian architecture.

The CPU in Enzian is a Marvell Cavium ThunderX-1 CN8890-NT, which
consists of 48 ARMv8.1 cores [25]. We will refer to it as simply ThunderX
in this thesis. The CPU runs at a clock frequency of 2 GHz. During the
course of this thesis Enzian did not support voltage or frequency scaling of
the CPU. The CPU has local access to 128 GiB of DDR4 SDRAM memory.
The Enzian used as part of this thesis was running the Ubuntu 18.04.4 Linux
distribution.

The FPGA is a Xilinx Virtex UltraScale+ XCVU9P. It has local access to
512 GiB of DDR4 SDRAM memory.

The interconnect supports a shared physical address space between CPU
and FPGA, similarly to the Intel Xeon+FPGA and IBM CAPI based sys-
tems [13]. Coherency is handled by the Enzian Coherence Interface (ECI).
Enzian also supports up to 480Gb/s of network bandwidth.

4.2 Power Measurement

Enzian has been designed to enable research on power consumption.

17



Figure 4.1: Enzian architecture. Reproduced from [25].

As in all systems, power is distributed to the system components over power
rails (also voltage rails) delivering different voltages. Regulators on the rails
guarantee the desired voltage. Enzian differs from most other systems in
that it has been designed with voltage and current monitors (sensors) on
most power rails in the system. This enables the power consumption of each
system component to be measured in isolation of other components. The
power consumption of the CPU, CPU DRAM, FPGA and FPGA DRAM
can all be measured separately. We make use of this functionality in this
thesis by measuring the power of the CPU, CPU DRAM and FPGA inde-
pendently.

To be specific, the voltage on the CPU and FPGA rails is monitored by
Lattice Semiconductor ispPAC-POWR1220AT8 monitors and on the DRAM
rails by Texas Instruments INA226 monitors. The current on the CPU rails
is monitored from Infineon IR3581 and Maxim MAX15301 regulators, on
the FPGA rails from Maxim MAX20751 and Maxim MAX15301 regulators,
and on the DRAM rails by Texas Instruments INA226 monitors.

Like most server-class systems, Enzian contains a baseboard management
controller (BMC). On Enzian this is a Xilinx Zynq MPSoc CPU running the
OpenBMC Linux distribution. Among other things, the BMC is responsible
for reading measurements from the voltage and current monitors. This is
accomplished by power management software running on the BMC. The soft-
ware is written in Python and uses kernel drivers for measurements.

18



Chapter 5

CPU Power Model

As described in Chapter 1, one possible first step in defining a power model
for a heterogeneous system is to define models for each of its components.
The CPU is a central component of every computing system and consumes
a significant amount of power. In this chapter we introduce a power model
for the Enzian CPU.

As we saw in Section 2.1, a number of different methods exist for estimating
the power use of an application running on a CPU. One way is to rely on
metrics about the application that correlate with power use. For example, it
has been found that some CPU performance counters are highly predictive of
power consumption. In the following sections we examine how performance
counters on the Enzian CPU correspond to its power consumption and derive
a power model based on them.

Section 5.1 describes the application workloads we use for our experiments.
Section 5.2 describes performance counters on the Enzian CPU and how we
make use of them. Section 5.3 describes how we perform power measure-
ments. Section 5.4 presents our findings on how performance metrics and
power use change during the course of an application run. Section 5.5 in-
troduces a power model based on performance counters that correlate with
power.

5.1 Benchmarks

In order to collect and compare performance counters with power measure-
ments, we need a set of benchmarks to run. In this section we describe our
choice of benchmarks and how they were run.

19



5.1.1 Choice of Benchmarks

The chosen benchmarks should be diverse, with different profiles. They
should run for a significant amount of time, to discount setup time. They
should use a significant proportion of CPU resources. For instance, the
ThunderX CPU in Enzian has 48 cores, so the benchmarks should be highly
parallel to make use of them. Ideally the benchmarks would exercise the
different performance counters that we are interested in. As such, synthetic
benchmarks tailored to the performance counters would be ideal. However,
real-world workloads would provide more realistic results.

We chose to use the PARSEC benchmark suite [7], rather than write our
own synthetic benchmarks. PARSEC is a suite of multithreaded programs
created at Princeton University in 2011 to better represent realistic parallel
workloads. It is somewhat similar to the SPEC benchmark suites [54] but
is freely available to use. The PARSEC suite consists of a diverse set of
benchmarks representing real life workloads. Table 5.1 describes some of
the benchmarks. All benchmarks are highly parallel and can be run with
many threads. The runtime of the benchmarks is on the order of minutes,
which is sufficient for our purposes. Table 5.1 shows approximate runtimes
on the Enzian CPU.

5.1.2 Benchmark Configuration

For our study we used 9 benchmarks from PARSEC version 3.0. Table 5.1
lists these benchmarks. Out of the 13 benchmarks in PARSEC, we were not
able to get the remaining 4 to either compile or run, so did not use them.
(We also did not use the SPLASH-2 HPC benchmarks or network bench-
marks present in PARSEC 3.0, although they could be interesting.) A few
changes were needed to compile PARSEC for the 64-bit Arm architecture.
Specifically, we applied a change provided by the Arm Research Starter
Kit [55] to enable 64-bit Arm atomics and to statically link the benchmarks.
In addition, a few minor fixes were needed to enable some benchmarks to
be compiled with a newer compiler and tools. The benchmarks were com-
piled with GCC version 7.5. We ran all benchmarks with the largest input
size available (called the native input set in PARSEC). All times shown in
Table 5.1 were attained with this input set.

We initially tried to run benchmarks as single-threaded, however we found
that then the power use of the 48-core CPU varied by only a few watts.
This made it difficult to compare benchmarks, given that there was also a
few watts of noise in the measurements.

Instead we ran all benchmarks with 64 threads. This applies to all re-
sults presented in the remainder of this chapter. When running benchmarks
with 64 threads, the power use of the CPU varied significantly (up to 60

20



Runtime
Benchmark Description 1 thread 64 threads

blackscholes Option pricing with Black-
Scholes Partial Differential
Equation (PDE)

6m 8s 1m 17s

bodytrack Body tracking of a person 10m 42s 0m 44s

canneal Simulated cache-aware an-
nealing to optimize routing
cost of a chip design

5m 59s 1m 14s

dedup Next-generation compression
with data deduplication

0m 58s 0m 33s

facesim Simulates the motions of a hu-
man face

32m 42s 1m 57s

fluidanimate Fluid dynamics for animation
purposes with Smoothed Par-
ticle Hydrodynamics (SPH)
method

23m 57s 1m 24s

streamcluster Online clustering of an input
stream

26m 0s 2m 40s

swaptions Pricing of a portfolio of swap-
tions

16m 39s 0m 24s

vips Image processing 7m 17s 0m 10s

Table 5.1: Some PARSEC benchmarks and their approximate runtimes on
Enzian. Benchmark descriptions are copied verbatim from the PARSEC
website [56].

watts). While the Enzian CPU has 48 cores, we could not run all bench-
marks with 48 threads as some of them only supported a power-of-2 number
of threads.

We always ran benchmarks multiple times to ensure that results were con-
sistent.

5.2 Performance Counters

In this section we describe how we use the performance counters on the
Enzian CPU.

5.2.1 Event Types

As described in Section 3.3, performance counters enable the measurement
of some aspect of a program’s execution. This takes the form of counting
CPU events of a certain type. Each CPU supports a specific set of event

21



Event# Architectural name perf name Description

0x11 CPU CYCLES cycles Number of CPU clock cy-
cles elapsed

0x08 INST RETIRED instructions Number of instructions
executed

0x0C PC WRITE RETIRED branches Number of branches taken

0x10 BR MIS PRED branch-misses Number of branches mispre-
dicted or not predicted (or
not taken)

Table 5.2: A subset of ThunderX performance counter event types. Details can be
found in the Arm architecture manual [40].

types that can be recorded. We could experiment with all of these event
types to find out which of them correlate with CPU power use. However,
there are too many, as most CPUs support tens or hundreds of event types.
Table 5.2 shows examples of some of the types of events available on the
ThunderX CPU in Enzian.

We would like to investigate events that are likely to correlate with power
consumption. A common CPU performance metric is Instructions Per Cycle
(IPC), which is the average number of instructions executed per CPU clock
cycle. It seems possible that the more instructions are executed in a given
time period, the more energy is used in that time period. Indeed it has been
shown on other systems that this is the case [5]. To see whether this is true
for the Enzian CPU, we count INST RETIRED and CPU CYCLES events
(Table 5.2) and calculate IPC from them. Of course there are many other
types of events that could correlate with power use, but here we start by
looking at IPC.

5.2.2 Counter Configuration

We collected performance event counts using the Linux Perf profiler [48]
version 4.15.17 while running benchmarks on a Ubuntu 18.04.4 system. We
used the perf stat command, either on its own for a full benchmark run
(Section 5.5), or with the --interval-print parameter for time series mea-
surements (Section 5.4).

Performance events were counted on all 48 cores. All relevant events were
counted (for example all instructions executed in both user and kernel
mode), because all of them affect power use. The ThunderX CPU has 6
performance counters [50], so up to 6 events can be monitored simultane-
ously. To avoid multiplexing the counters, we monitored up to 6 events in
a single run.

22



For time series measurements (Section 5.4), we recorded event counts every
20 milliseconds. Initially we tried recording them at longer intervals, such
as every 1000 ms or 100 ms. For three of the benchmarks (blackscholes,
canneal, and swaptions) we found that 1000 ms was enough, as the event
counts changed slower than every 1000 ms, so it was possible to accurately
match power measurements to event counts. However, for the remaining six
benchmarks, we found that a shorter interval of 20 ms was necessary in order
to capture the frequently changing phases of the benchmark, in particular
when performing time series measurements. The interval could have been
reduced further to be lower than 20 ms (down to 2 ms), but we chose 20 ms
to remain consistent with chosen power measurement interval, which could
not be reduced (Section 5.3.1).

5.3 Power Measurements

To study how CPU performance counter events relate to CPU power use,
we need to be able to measure the CPU power consumption. This section
describes how we perform power measurements and how we synchronize the
measurements with performance counters.

5.3.1 Voltage and Current Monitors

As described in Section 4.2, Enzian has separate power measurement devices
on each component of the system. This means we can measure the CPU
power directly, without deriving it from whole system power.

The CPU is powered by 3 power rails: VDD CORE providing 0.964 V,
0V9 VDD OCT providing 0.9 V, and 1V5 VDD OCT providing 1.5 V. All
of the rails have voltage and current monitors. From voltage and current
measurements we can calculate power use at specific timepoints, and from
these we can calculate total energy used across the run of the application
(Section 3.1). As we found the voltage on the rails to be nearly constant
(and this is the purpose of voltage regulators), we only read the current
monitors.

Monitors were read every 20 milliseconds. Initially we tried reading them at
longer intervals, such as every 1000 ms or 100 ms. Similarly to performance
counter events (Section 5.2.2), we found that for three of the benchmarks
1000 ms was enough, as the power use changed slower than every 1000 ms.
However, for the remaining six benchmarks, a shorter interval of 20 ms was
necessary to capture the frequently changing phases (and power use) of the
benchmark.

For some of the benchmarks, it may have been beneficial to reduce the
measurement interval even further below 20 ms. Unfortunately this was not

23



possible, as performing reads of the monitors required a certain amount of
time. In particular, reading all three CPU current monitors required at least
15 ms. It’s worth noting that this is likely to be a limitation in the hardware
design of Enzian. A different design might enable the monitors to be read
faster, for example by having separate hardware buses for the monitors, thus
enabling more frequent power measurements.

5.3.2 Synchronization with performance counters

As described in Section 4.2, power measurements on Enzian are performed
from the BMC. In the meantime, CPU performance counters must be read
on the CPU. We want to see how the CPU events at some timepoint affect
the CPU power use at that timepoint. This means that we need a mechanism
to synchronize the data collected from the BMC and CPU. The easiest way
to do this is by using timestamps.

As our measurements are performed every 20 ms, we need the time on the
CPU and BMC to be accurate to at least that granularity. In our experi-
mental setup, we use the widely used Network Time Protocol (NTP) to keep
time on the CPU and BMC synchronized. We set up a local NTP server
to increase accuracy. NTP has been found to be accurate to less than a
millisecond in local networks [44], so is sufficient for our use case. Figure 5.1
illustrates our setup.

Local NTP server

Enzian

PC

CPU

BMC

Record performance
counters with
timestamps

Measure power
consumption with
timestamps

Send counter values
and timestamps

Process data

Synchronize
timestamps

Update time

Update time

Send power
measurements and
timestamps

Figure 5.1: Synchronization of CPU and BMC measurements

5.4 Time Series Analysis

This section presents our experimental results on how the IPC and power
consumption of the chosen benchmarks change over time. Section 5.5 will

24



present a model based on all benchmarks, but here we look at each bench-
mark’s profile individually. This can provide an intuitive understanding of
what is happening during the execution of the benchmarks.

Figures 5.2 to 5.5 show our results for 4 of the 9 benchmarks. The plots
for the remaining 5 benchmarks are mostly similar, and can be found in
Appendix A.

Each plot shows time series measurements with datapoints 20 ms apart. The
x-axis shows the runtime of each benchmark, while the y-axis shows both
the IPC and CPU power consumption. (Note that the runtimes as well as
the y-axis ranges differ between benchmarks.)

IPC is calculated by dividing total instructions executed on all 48 cores of
the CPU by total clock cycles executed by all 48 cores. Therefore it is the
average per-core IPC.

For each benchmark, two plots are shown. One is the entire run of the
benchmark, while the other (‘zoomed’) is a smaller time window extracted
from the same run, showing the very short execution phases of some of the
benchmarks. (Note that the length of the displayed time window differs
between benchmarks.)

From the plots we can see that CPU power consumption varies between
about 70 and 130 watts. Meanwhile, the average IPC of a core varies between
0 and 0.7.

For 8 benchmarks out of 9, there is a strong correlation between IPC and
CPU power use, similar to the blackscholes and facesim benchmarks shown
here. This suggests that IPC would likely make a good predictor of power
use. In Section 5.5 we will derive a model of power use based on IPC.

An exception is the streamcluster benchmark, where IPC and power seem
to correlate less. It is not clear why this is, but it is possible that IPC is not
measured frequently enough to capture the very short phases of the bench-
mark. As power is a snapshot from a single timepoint, but IPC represents
all events in a time window, it is possible that shorter IPC windows would
display spikes similar to power. As explained in Section 5.2.2, we could not
reduce the sampling period below 20 ms.

It is also visible that in the case of some benchmarks, such as blackscholes or
swaptions, power use gradually increases over a few seconds or even tens of
seconds after IPC sharply increases and remains high. This could potentially
be explained by a gradual increase in temperature, which in turn would cause
an increase in current flow and therefore power.

25



0 20 40 60 80

Time (seconds)

0.0

0.2

0.4

IP
C

blackscholes

50 52 54 56 58 60 62 64

Time (seconds)

0.0

0.2

0.4

IP
C

blackscholes (zoomed)

80

100

C
P

U
p

ow
er

(w
at

ts
)

80

100

C
P

U
p

ow
er

(w
at

ts
)

Figure 5.2: IPC and CPU power use of blackscholes over time

0 20 40 60 80 100 120

Time (seconds)

0.0

0.2

0.4

IP
C

facesim

60 61 62 63 64 65

Time (seconds)

0.0

0.2

0.4

IP
C

facesim (zoomed)

80

100

120

C
P

U
p

ow
er

(w
at

ts
)

80

100

120

C
P

U
p

ow
er

(w
at

ts
)

Figure 5.3: IPC and CPU power use of facesim over time

26



0 5 10 15 20 25

Time (seconds)

0.00

0.25

0.50

IP
C

swaptions

15 16 17 18 19 20

Time (seconds)

0.00

0.25

0.50

IP
C

swaptions (zoomed)

75

100

125

C
P

U
p

ow
er

(w
at

ts
)

75

100

125

C
P

U
p

ow
er

(w
at

ts
)

Figure 5.4: IPC and CPU power use of swaptions over time

0 25 50 75 100 125 150

Time (seconds)

0.0

0.2

0.4

IP
C

streamcluster

31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0

Time (seconds)

0.0

0.2

0.4

IP
C

streamcluster (zoomed)

80

100
C

P
U

p
ow

er
(w

at
ts

)

80

100

C
P

U
p

ow
er

(w
at

ts
)

Figure 5.5: IPC and CPU power use of streamcluster over time

27



5.5 Power and Energy Models

We would like to create a model that could be used to predict the power
consumption and energy used by an application based on recorded perfor-
mance event counts. From time series measurements we have seen that IPC
appears to correlate well with CPU power use. We can therefore create a
CPU power model based on IPC and test how well it predicts power use of
an application.

We create a simple model using all of our benchmarks. The model is based
on aggregate measurements from a complete run of a benchmark, rather
than individual timepoints like in the previous section. For example, we use
the total number of instructions executed by a benchmark, or the total IPC
across all timepoints. Similarly, we use total energy used by a benchmark, or
average power use across timepoints. (Individual timepoints could be used
as further datapoints, but we do not do that here.)

We use ordinary least squares multiple linear regression to construct the
models. The MSE and R2 scores reported here are based on a test set
randomly selected by scikit-learn, where the training set consisted of 6 dat-
apoints and the test set of 3 datapoints. As there are only 9 datapoints (one
for each benchmark), the R2 scores varied somewhat.

Note that we are interested in the relative change in power depending on
IPC. We do not attempt to estimate the absolute CPU power use, but rather
assume that baseline power is measured and see how IPC affects it.

We create separate models for the average power use and the total energy
used by an application.

5.5.1 Average Power Model

It can be useful to predict the average power consumption of an application
based on its IPC. Here IPC refers to total executed instructions divided by
total elapsed cycles during the application run.

Figure 5.6 shows the relationship between IPC and average CPU power use
obtained from our benchmarks. The line shows the fitted linear model,
which is

PCPU = IPC × 89.57 + 77.65 (W )

This model suggests that the baseline power used by the processor is 77.65
watts, while an additional instruction executed in every cycle would use an
additional 89.57 watts of power.

For this model we obtain an MSE of 7.55 and an R2 score of 0.98, which
indicates high accuracy (although this is limited by the very small sample

28



0.0 0.2 0.4 0.6
IPC

80

100

120

A
ve

ra
ge

C
P

U
p

ow
er

(W
)

Figure 5.6: Model of average CPU power based on IPC

0.0 0.5 1.0 1.5
Cycles ×1013

0

5000

10000

15000

C
P

U
en

er
gy

(J
)

(a) Cycles

0 2 4
Instructions ×1012

5000

10000

15000

C
P

U
en

er
gy

(J
)

(b) Instructions

Figure 5.7: CPU energy model based on the number of (a) cycles or (b)
instructions

size).

5.5.2 Energy Model

In addition to the average power consumption, it would be useful to know
the total energy consumed by the whole application run.

For an energy model, using IPC does not make sense as it does not take
into account the runtime of the application. The longer a program runs, the
more energy it consumes. The runtime can be factored in by counting the
number of cycles elapsed.

Figure 5.7a shows the relationship between total energy consumption and
total cycles elapsed. The model obtains an MSE of 854203.04 and an R2

score of 0.36, indicating that cycles alone are not very predictive of energy
consumed.

Another option is to look at the total number of instructions executed. A

29



model based only on the number of instructions is of course even worse, as
it does not take the runtime into account. The model in Figure 5.7b has an
MSE of 9384570.08 and an R2 score of -6.00.

We can however factor in both the number of cycles and instructions, to
create the following energy model:

ECPU = Ncycles × 7.87× 10−10 + Ninstructions × 1.06× 10−9 − 41.61 (J)

where Ncycles is the total number of cycles elapsed and Ninstructions is the
total number of instructions executed by the application. According to this
model, each cycle consumes 0.787 nanojoules of energy, and each instruc-
tion 1.06 nanojoules. The intercept (-41.61) is near 0, as expected, since
executing for 0 cycles should consume no energy.

This model performs much better, obtaining an MSE of 23852.18 and an
R2 score of 0.98. (Again with the caveat that the sample size is small.)
This means that the model could be used to accurately estimate the energy
consumed by any application running on the ThunderX. Similar models
could be constructed for other CPUs. Knowing the CPU energy use could
be useful for deciding when to run an application on the CPU or when to
offload it onto an FPGA.

30



Chapter 6

Memory Power Model

In the previous chapter we defined a power model for the Enzian CPU.
In addition to the CPU, the other important component of any computer
system is its main memory. The power consumed by the memory subsystem
can be large, especially if the system contains large amounts of physical
memory (as Enzian does) and needs to process large datasets. Therefore
it is important to be able to estimate the power consumed by the memory
subsystem. In this chapter we introduce a power model for the Enzian
DRAM.

We adopt a similar approach to Chapter 5 and use CPU performance coun-
ters. We examine how performance counter events on the CPU correspond
to the power consumption of the memory and use them to derive a power
model for the memory.

As in the previous chapter, Section 6.1 describes the benchmarks, Section 6.2
the performance counters, and Section 6.3 the power measurements. Sec-
tion 6.4 examines runtime changes in power and Section 6.5 presents a power
model.

6.1 Benchmarks

We need a set of workloads to collect performance counters and memory
power measurements from.

6.1.1 Choice of Benchmarks

Our requirements for memory benchmarks are similar to those of CPU
benchmarks (Section 5.1.1). The benchmarks should be diverse and suf-
ficiently long-running. Some benchmarks should spend a large proportion
of their time accessing memory while others should be compute-bound. A

31



highly parallel benchmark would enable many concurrent memory requests,
which could increase memory power consumption.

We found that the PARSEC benchmark suite (described in Section 5.1.1)
was also suitable for modeling memory power. It is highly parallel and the
benchmarks exhibit differing memory access patterns. We used the same set
of benchmarks as for CPU modeling (listed in Table 5.1).

6.1.2 Benchmark Configuration

For the results presented in this chapter, we compiled and ran the bench-
marks in the same way as described in Section 5.1.2.

6.2 Performance Counters

In this section we describe how we choose CPU performance counters for
memory power estimation.

6.2.1 Event Types

We would like to find which CPU performance counter events (if any) are
correlated with memory power consumption. As mentioned in Section 3.3,
most CPUs support counting many types of events. While it would be
possible to study them all, it is unlikely that most of them significantly
predict memory power consumption.

Memory power is likely to increase when memory accesses are made, so the
most promising candidates are counters which count memory access opera-
tions or events. Table 6.1 lists some events of this kind that are available on
the ThunderX. Of these, memory read and write operations may result in
cache hits and not proceed to generate memory accesses. Cache miss events,
on the other hand, are likely to generate memory accesses in most cases. As
the ThunderX contains two levels of cache [58], with a unified Level 2 cache,
then misses in the Level 2 cache in particular are likely to lead to memory
accesses. We therefore start by counting the L2D CACHE REFILL events
to see how well they predict memory power use.

6.2.2 Counter Configuration

We collected performance event counts using the same tools and methodol-
ogy as described in Section 5.2.2.

6.3 Power Measurements

This section describes how we perform memory power measurements.

32



Event# Architectural name perf name Description

0x06 LD RETIRED ld retired Number of memory read
instructions executed

0x07 ST RETIRED st retired Number of memory write
instructions executed

0x13 MEM ACCESS mem access Memory read or write
operations for data

0x04 L1D CACHE cache-references Level 1 data cache ac-
cesses

0x03 L1D CACHE REFILL cache-misses Level 1 data cache misses

0x16 L2D CACHE l2d cache Level 2 unified cache
accesses

0x17 L2D CACHE REFILL l2d cache refill Level 2 unified cache
misses

0x18 L2D CACHE WB l2d cache wb Write-backs to memory
from the Level 2 unified
cache

Table 6.1: A subset of ThunderX event types related to memory accesses. Details can
be found in the Arm architecture manual [40].

6.3.1 Voltage and Current Monitors

We measure memory power similarly to CPU power (Section 5.3.1). The
memory is powered by 2 power rails: VDD DDRCPU13 providing 1.2 V,
and VDD DDRCPU24 also providing 1.2 V. Both rails are equipped with
voltage and current monitors, so the power consumed by the memory can
be measured separately from the power consumed by the rest of the system.
As the voltage was again nearly constant, we only measured current.

We measured the current every 20 milliseconds. A longer interval would
not have been ideal, as we found that, for the benchmarks we used, the
memory power use changed too frequently (similarly to CPU power use,
Section 5.3.1). It was also not possible to make the interval significantly
shorter, as reading the 2 memory current monitors required at least 12 ms.
We chose 20 ms to remain consistent with the interval chosen for CPU power
measurements.

6.3.2 Synchronization with performance counters

The memory power measurements on the BMC are synchronized with the
performance counter readings on the CPU using timestamps. Our experi-
mental setup is the same as described in Section 5.3.2 for CPU power mea-
surements.

33



6.4 Time Series Analysis

In this section we describe our results on how the cache miss rate and mem-
ory power consumption change over time during a benchmark run.

Figures 6.1 to 6.4 show our time series measurements for 4 of the 9 bench-
marks. These 4 are also representative of the plots for the other 5 bench-
marks, which can be found in Appendix B.

The plots consist of datapoints that are 20 ms apart. As in Section 5.4, both
the whole run of a benchmark as well as a ‘zoomed’ shorter time window
are shown. (Note that axis ranges differ between benchmarks.)

The y-axis shows both the cache misses as well as the memory power con-
sumption. Cache misses refer to LLC (last-level cache) misses, which are
likely to access memory. Recall from Section 6.2.1 that the last-level cache
on the ThunderX CPU is the Level 2 cache. The number of cache misses on
the plots refers to the number of misses in a 20 ms time window.

It can be seen from the plots that memory power consumption varies between
about 7 and 12 watts.

For 8 benchmarks out of 9, there is a strong correlation between the number
of last-level cache misses and memory power use, similar to what we see for
the blackscholes and facesim benchmarks here. For example, for facesim
we see that a spike in LLC misses is followed by a roughly 40% increase in
power. This means that LLC misses could be a strong predictor of memory
power use. Section 6.5 will explore creating a model based on it.

One exception is again the streamcluster benchmark, where the power use
does not seem to be related to the number of LLC misses during certain
phases. As also explained in Section 5.4 with regards to streamcluster, this
could be due to the relatively long performance counter sampling period
(20 ms), which could be hiding spikes in the LLC miss counts.

In Section 5.4 we found that the CPU power sometimes gradually increases
after a rise in IPC, which could be due to an increase in temperature. This
could be seen in the blackscholes benchmark, for example. Here we see
that DRAM power does not increase gradually after an increase in LLC
misses, but rises immediately and then remains constant. This suggests
some differences in the way CPUs and DRAM operate.

Another difference is that unlike CPU power use, which increases as soon
as IPC increases, DRAM power use increases about 25 milliseconds after
memory accesses miss in the CPU last-level cache. This can be seen in the
fluidanimate benchmark, for example, where the spikes in power lag behind
spikes in cache misses. This may be explained by memory access latency,
as it takes some time for a memory access request to reach the memory, or

34



0 20 40 60 80

Time (seconds)

0

500000

L
L

C
m

is
se

s
blackscholes

50 52 54 56 58 60 62 64

Time (seconds)

0

500000

L
L

C
m

is
se

s

blackscholes (zoomed)

7.0

7.5

8.0

D
R

A
M

p
ow

er
(w

at
ts

)

7.0

7.5

8.0

D
R

A
M

p
ow

er
(w

at
ts

)

Figure 6.1: Cache misses and memory power use of blackscholes over time

0 20 40 60 80 100 120

Time (seconds)

0

1000000

L
L

C
m

is
se

s

facesim

60 61 62 63 64 65

Time (seconds)

0

1000000

L
L

C
m

is
se

s

facesim (zoomed)

7

8

9
D

R
A

M
p

ow
er

(w
at

ts
)

7

8

9

D
R

A
M

p
ow

er
(w

at
ts

)

Figure 6.2: Cache misses and memory power use of facesim over time

35



0 20 40 60 80

Time (seconds)

0

1000000

2000000

L
L

C
m

is
se

s
fluidanimate

46.00 46.25 46.50 46.75 47.00 47.25 47.50 47.75 48.00

Time (seconds)

0

1000000

2000000

L
L

C
m

is
se

s

fluidanimate (zoomed)

8

10

12

D
R

A
M

p
ow

er
(w

at
ts

)

8

10

12

D
R

A
M

p
ow

er
(w

at
ts

)

Figure 6.3: Cache misses and memory power use of fluidanimate over time

0 25 50 75 100 125 150

Time (seconds)

0

2000000

L
L

C
m

is
se

s

streamcluster

31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0

Time (seconds)

0

2000000

L
L

C
m

is
se

s

streamcluster (zoomed)

8

10
D

R
A

M
p

ow
er

(w
at

ts
)

8

10

D
R

A
M

p
ow

er
(w

at
ts

)

Figure 6.4: Cache misses and memory power use of streamcluster over time

36



possibly other aspects of DRAM which cause power consumption to increase
later. Systems with very large amounts of physical memory might exhibit
even larger delays between accesses and power use.

6.5 Power and Energy Models

As we have seen from time series measurements, the number of last-level
cache misses seems to correlate well with memory power use. We would
therefore like to create a model based on recorded LLC misses to predict
the memory power consumption and energy use of an application.

We create the model in a similar way as the CPU power model in Section 5.5.
We use all benchmarks, and base the model on aggregate measurements
from a whole benchmark run, rather than on individual timepoints. We use
ordinary least squares multiple linear regression, with a 6–3 random split
of benchmarks for the train and test set to evaluate the model. The very
small dataset limits the reliability of the model as well as the reported MSE
and R2 scores. (Using more benchmarks or individual timepoints as further
datapoints would remove this limitation.)

We create separate models to predict average memory power use and energy.
The models are tuned for the Enzian CPU.

6.5.1 Average Power Model

We first look at predicting the average memory power consumption of an ap-
plication based on the number of times it misses in the LLC. As power refers
to energy used per second, we need a similar measure for cache misses. The
obvious choice is LLC misses per second. To calculate average LLC misses
per second, we divide total LLC misses with total elapsed seconds during
the application run (derived from total cycles and CPU frequency).

Figure 6.5 shows the relationship between average LLC misses per second
and average memory power use obtained from our benchmarks. The line
represents the fitted linear model, which is

PDRAM = NLLCMpS × 9.89× 10−7 + 7.06 (W )

where NLLCMpS is the average number of LLC misses per second.

This model implies that the static power used by the memory is 7.06 watts,
while an additional LLC miss every second would use an additional 989
nanowatts of power.

This model obtains an MSE of 0.01 and an R2 score of 0.92, indicating high
accuracy (but again limited by the small dataset size).

37



0 500000 1000000
LLC misses per second

7.0

7.5

8.0

A
ve

ra
ge

D
R

A
M

p
ow

er
(W

)

Figure 6.5: Model of average memory power based on average LLC misses
per second

6.5.2 Energy Model

In addition to average power use of memory, it would be useful to know
how much energy is consumed by the memory during a whole application
run.

The memory consumes static energy throughout the run of a program, so
application runtime needs to be accounted for in the memory energy model.
This can be achieved by counting the number of cycles elapsed.

Figure 6.6a shows the relationship between total energy consumed by mem-
ory and total cycles elapsed, based on our benchmarks. This model obtains
an MSE of 149.43 and an R2 score of 0.99, indicating very good accuracy.
Based on this it seems that static power dominates memory energy use.
However, this could be due to our choice of benchmarks. It is possible that
the PARSEC benchmarks do not stress memory enough, leading to little en-
ergy consumed by memory accesses. One way to test this hypothesis would
be to use synthetic benchmarks with many memory accesses.

For completeness, Figure 6.6b shows the relationship between the number
of LLC misses and energy use. As it does not take runtime into account, it
is not a very good model (MSE = 8351.80, R2 score = 0.68).

We can also create a model based on both cycles an LLC misses, which gives
us

EDRAM = Ncycles × 7.40× 10−11 + NLLCM × 1.76× 10−8 + 2.59 (J)

where Ncycles is the total number of elapsed cycles and NLLCM is the total
number of LLC misses during an application run.

This model performs better than the model based on cycles alone, obtaining
an MSE of 35.50 and an R2 score of 1.00. This indicates that LLC misses

38



0.0 0.5 1.0 1.5
Cycles ×1013

0

500

1000

D
R

A
M

en
er

gy
(J

)

(a) Cycles

0.00 0.25 0.50 0.75
LLC misses ×1010

500

1000

D
R

A
M

en
er

gy
(J

)

(b) LLC misses

Figure 6.6: Memory energy model based on the number of (a) cycles or (b)
LLC misses

do have a significant effect on memory energy consumption. According to
the model, each cycle consumes 0.074 nanojoules of energy, while each LLC
miss consumes 17.6 nanojoules. The intercept (2.59) is near 0, as expected,
as running for 0 cycles should not consume any energy.

While the dataset size is small, these findings do nevertheless suggest that
counting cache misses is a reliable way to predict memory power and energy
consumption of an application. The obtained model could be used to predict
the energy used by the memory on Enzian by any application. When com-
bined with other system components, such as CPU and disk power models,
the total energy cost of an application can be calculated. On a system like
Enzian, a similar energy model could be made for the FPGA and FPGA
memory. Knowledge of the energy cost can be used for scheduling decisions,
such as which system or which parts of a system (such as CPU or FPGA)
to run an application on, or to identify high energy parts of an application
that could be optimized or offloaded to accelerators.

39



Chapter 7

FPGA Power Model

In the previous chapters we created power models for the Enzian CPU and
memory. In addition to these, the Enzian system also contains an FPGA
(Chapter 4). It is known that the power consumed by an FPGA depends
on the properties of the FPGA design that it implements (Chapter 2). In
this chapter we explore how basic properties of an FPGA design affect its
power use.

Specifically, we are interested in two properties:

• Clock frequency, which determines how many times per second an
FPGA changes state. Using a higher clock frequency results in higher
performance.

• Utilization, which measures what proportion of FPGA resources (e.g.
CLBs or registers) are used by a given FPGA design.

We first describe the benchmark we implemented for our study (Section 7.1).
We also describe how we performed the power measurements (Section 7.2).
We then present our findings on how utilization and clock frequency affect
power use, as well as a simple power model based on them (Section 7.3). As
part of this we also examine how closely FPGA vendor software is able to
predict the power use of a design (Section 7.3.4).

7.1 Benchmark

We implemented a single benchmark for our experiments. The goal was
to vary clock frequency and utilization (independently) while keeping other
factors constant.

We were interested in the utilization of the two most basic resources of an
FPGA: LUTs and registers. To achieve high utilization, the FPGA was

40



filled with pairs of D flip-flops (using registers) and inverters (using LUTs).
The flip-flops were made to invert their value on each clock edge, consum-
ing power. The FPGA was then divided into 16 equally sized regions, each
of which could be enabled or disabled independently (using the Virtual In-
put/Output core in Vivado [31]). In Section 7.3 we will see how the number
of enabled regions affects power use.

Table 7.1 shows the utilization of the whole design as well as a single region
(Baseline is explained later). As the design was not precisely calibrated
to use every single resource of the FPGA, the total utilization is less than
100%. In addition, fewer flip-flops than LUTs were used. This is because
a CLB on the chosen FPGA contains 8 LUTs and 16 flip-flops. Due to
the way the design was made, only 8 of the 16 flip-flops in any CLB were
used. Nevertheless, the benchmark covers a significant part of the FPGA
and enables the comparison of relative power changes.

LUT count LUT utilization FF count FF utilization

Baseline 97, 000 8% 128, 000 5%
Benchmark 835, 000 71% 737, 000 32%
Total 932,000 79% 865,000 37%

(a) Whole benchmark

LUT count LUT utilization FF count FF utilization

Region 52, 000 4.5% 46, 000 2%

(b) Single region

Table 7.1: Number of FPGA LUTs and flip-flops used by the benchmark.
Utilization shows the proportion used out of all FPGA resources of that
type. Precise counts varied based on clock frequency (by less than 1%), so
approximate counts are given. Numbers were obtained from Vivado based
on a fully implemented design.

Each of the 16 regions was driven by a clock signal. Initially a single clock
was used, however this caused the power supply unit (PSU) of the board
to reset, possibly due to too much power being drawn at a single instant.
Instead, 4 out-of-phase clock signals (with the same frequency) were used,
each driving 4 regions. The clock frequency could be chosen when synthe-
sizing the design. In section 7.3 we will see how the clock frequency affects
power use.

The benchmark was implemented on top of a baseline design for the Enzian
FPGA. This consisted of a Xilinx MicroBlaze core and 4 memory controllers.
None of these were used as part of the benchmark. Table 7.1a shows what
proportion of the FPGA resources were taken up by the baseline implemen-
tation.

41



The benchmark was implemented in VHDL and synthesized with the Vivado
software. The benchmark was implemented by Dr. Michael Giardino as part
of this project.

7.2 Power Measurements

The FPGA is powered by a number of voltage rails. On Enzian, several of
the rails have voltage and current monitors, as described in Section 4.2. We
measured the power on these rails. This included the FPGA internal power
(VCCINT in Xilinx documentation [30]), as well as power for BRAM, I/O,
transceivers and other components.

While using the benchmark, we observed the voltage to be almost constant,
so only current measurements were taken. Most of the current was drawn
by the internal power rail. The current on the other rails remained almost
constant and totaled less than 10 A.

7.3 Effects of Utilization and Clock Frequency

We would like to see how changes in utilization or clock frequency affect the
power consumption of an FPGA. Note that we are interested in the relative
power change. We are not aiming to estimate absolute power consumption,
as that would require knowledge of further properties of the FPGA (such as
the capacitance of various components). Here we measure the base power
use and study how utilization and clock frequency affect it.

7.3.1 Utilization

Figure 7.1 shows the results of our measurements. As we can see, power
use increases linearly with utilization. That is, using more FPGA resources
(LUTs and flip-flops) results in higher dynamic power use, and the increase is
proportional to the number of resources used. For example, with a clock fre-
quency of 150 Mhz, the power use of our design could be estimated as

P = 0.26U + 24.82 (W )

where U is the utilization percentage of the FPGA (as defined in our bench-
mark as a certain proportion of LUTs and flip-flops active on every clock
edge). Therefore, a 1% increase in utilization increases power use by 0.26 W.

7.3.2 Clock Frequency

We ran our benchmark at four clock frequencies. As we can see from Fig-
ure 7.1, a higher clock frequency results in higher power use. Dynamic
power increases roughly linearly with clock frequency, which matches what

42



0 20 40 60 80 100

Utilization (% of active regions)

0

20

40

60

80

100
P

ow
er

(W
)

600 MHz

450 MHz

300 MHz

150 MHz

Baseline

Figure 7.1: Effects of utilization and clock frequency on total FPGA power
use. The size of a region is described in Table 7.1b. The baseline implemen-
tation is described in Section 7.1.

we would expect based on Equation 3.2. For example, at 25% utilization,
the power use of our design could be estimated as

P = 0.1f + 16.52 (W )

where f is the clock frequency in MHz. This means that changing the state
of flip-flops a million more times per second uses an additional 0.1 W of
power.

Note that static power can be seen as part of the baseline implementation
power. Also note that even with no regions enabled, the power use is higher
at a higher frequency. This is likely because the clocks are still running,
even if they are not driving the logic in a region.

The maximum current limit on the internal power rail of the FPGA limited
how much current could be drawn, which is why not all regions could be
activated at 450 MHz and 600 MHz frequencies. As we can observe, it is
often not possible to use all resources of an FPGA due to power constraints.
In the case of our design for example (where we change state on every clock
edge), with a 450 MHz clock frequency we were only able to use about

43



62.5% of the resources (approximately 45% of LUTs and 20% of flip-flops),
and only 37.5% with a 600 MHz clock frequency (27% LUTs and 12% flip-
flops).

7.3.3 Combined Power Model

As we have seen, FPGA power consumption depends on both resource uti-
lization and clock frequency. We can therefore use both properties to esti-
mate the power use, if we know how each of them affect power on a given
FPGA and design, as well as the static power. In the case of our design, we
could use the following model:

P = 0.002Uf − 0.012U + 0.055f + 16.931 (W )

where f is the clock frequency in MHz and U is the utilization percentage.
As in the previous sections, utilization is defined as the proportion of active
regions, where 1% utilization corresponds to 0.71% LUTs and 0.32% flip-
flops (changing state on every clock edge) due to the design of our benchmark
(Table 7.1).

The above model obtained an MSE of 0.13 and an R2 score of 1 (using 80%
of the measurements as a training set and 20% as a test set), suggesting
very high accuracy.

Having calibrated the model to the hardware and design, it can then be
used to estimate the power consumption for any choice of utilization or
clock frequency.

7.3.4 Comparison to Vivado Estimates

In this section we look at how closely an FPGA synthesis tool estimates the
power consumption of a design. Specifically, we take a look at the Vivado
Design Suite version 2020.1 from Xilinx.

Vivado can provide a power estimate based on either a synthesized or a fully
implemented design. In order to make the estimate more accurate, the user
can set various parameters to describe the operation of the design. These
include properties of the FPGA (e.g. precise voltages, heat sink size) and the
environment (e.g. ambient temperature, airflow), activity of the components
(toggle rate and static probability) or a simulation activity file.

We were not able to set all of these parameters due to lack of information,
which limits the accuracy of the estimates. We modified the toggle rate of
the LUTs and registers, based on knowledge of our benchmark. Toggle rate
refers to how frequently the component changes state, for example a toggle
rate of 100% means that on average it changes once per clock edge, while

44



0 1/16 1/8 1/4 1/2 1

Utilization

0

50

100

P
ow

er
(W

)
150 MHz

Real

Estimate

0 1/16 1/8 1/4 1/2 1

Utilization

0

50

100

P
ow

er
(W

)

300 MHz

Real

Estimate

0 1/16 1/8 1/4 1/2 1

Utilization

0

50

100

P
ow

er
(W

)

450 MHz

Real

Estimate

0 1/16 1/8 1/4 1/2 1

Utilization

0

50

100

P
ow

er
(W

)

600 MHz

Real

Estimate

Figure 7.2: Comparison of Vivado power estimates with real power use

25% means that on average it changes once per 4 clock edges [32]. We set
the toggle rate based on how many regions were enabled. For example, if 8
regions (out of 16) were enabled, we set the rate to a little under 50% (taking
into account that the baseline implementation was also not active).

Figure 7.2 shows how Vivado power estimates compare to real power mea-
surements. Estimates were taken based on a fully implemented design.

We see that Vivado underestimates the power use at low utilization but
overestimates it at high utilization. In addition, the error is greater at larger
clock frequencies. In the worst cases it underestimates by 59% (29.8 W), and
overestimates by 97% (49.5 W). It is not clear why this is, but it suggests
that some parameter in the design is not being taken into account or we
have not specified it properly.

Previous work has found that Vivado consistently overestimates power use
(Chapter 2), but here we find that it can also underestimate. In addition
we see that the error can be quite large. This suggests that real power
measurements should always be preferred, and relying on tool estimates
may lead to wrong decisions (e.g. at early algorithm design stages).

45



Chapter 8

Future Work

This chapter discusses possible future research directions in power model-
ing.

8.1 CPU and Memory Power Model Improvements

There are several possible ways in which the developed CPU and memory
power models could be improved.

As mentioned in Chapters 5 and 6, the small dataset limits the reliability
of the models. This could be improved by evaluating the models on further
benchmarks, such as the SPLASH-2 HPC benchmarks or memory-intensive
benchmarks like STREAM. The datapoints of the time series measurements
could also be used.

Additional types of performance events could be evaluated for correlations
with power use. These could include the memory access events listed in Ta-
ble 6.1 or events used in related work (Chapter 2) such as stall cycles.

The effect of other parameters could also be investigated, such as CPU
temperature, and the model improved with them.

8.2 FPGA Power Model Improvements

As we only studied two basic properties of an FPGA design, there are many
others to study, such as switching activity. In addition, further benchmarks
could be written to stress specific components of the FPGA, such as BRAM
or I/O, especially since Enzian has separate power monitors on each FPGA
power rail, and the rails power different components of the FPGA, so the
power use of each component could be measured separately.

46



An ambitious goal would be to explore ways to estimate the power consump-
tion of an FPGA design based on CPU performance counter recordings of
the same application.

8.3 Models of Other System Components

As a step towards a full system model, power models of other system com-
ponents could be developed. This includes common components such as
the disk or network interface. More interestingly, the power consumption
of Enzian-specific components could be investigated. The DRAM mem-
ory of the FPGA could be benchmarked, and relationships found between
the bandwidth used and the power consumed. The CPU-FPGA coherent
interconnect could be exercised by passing large amounts of data through
it, possibly through FPGA filters and DRAM, and the power consumption
measured.

8.4 Composite Power Model

The power models developed in this thesis could be combined into a compos-
ite power model. This model could then be evaluated with workloads that
exercise the whole Enzian system. At present no such workloads are avail-
able, but in the future they could, for example, include database or streaming
applications that offload parts of their computation to the FPGA.

47



Chapter 9

Conclusion

In this thesis we have studied the power consumption of the CPU, memory
and FPGA of Enzian and developed power models for them.

We performed and examined time series measurements of power consump-
tion and hardware performance counters for a range of benchmarks, which
provided insights into the correlations between performance events and power.
We found IPC to correlate well with CPU power consumption and LLC
misses to correlate well with memory power consumption. We developed
analytical power and energy models for the ThunderX CPU based on IPC
and for the DDR4 memory based on LLC misses. While simple, the models
proved to be highly accurate for estimating the power and energy consump-
tion of an application.

We studied how the utilization of LUTs and flip-flops and the clock frequency
of an FPGA design affect its power use. We used this to develop an accurate
analytical power model for very simple FPGA designs. We also examined
the accuracy of Xilinx Vivado power estimates.

We have performed the first study on the power consumption of Enzian.
As part of this, we identified limitations in the sampling frequency of the
power measurement devices, which can be improved in future revisions of
Enzian.

This study demonstrates the utility of the per-component power measure-
ment devices available on Enzian. This motivates future research on power
consumption on Enzian, which will be able to make use of the devices for
detailed analyses on how the power consumption of each component is af-
fected by different workloads or different divisions of work between the CPU
and FPGA.

Having models of system components is a step towards creating a whole sys-

48



tem power model for Enzian. From there, similar models can be created for
other heterogeneous systems. Having an accurate power model will enable
better work allocation policies and power savings in CPU-FPGA systems in
data centers and elsewhere.

49



References

[1] Nabil Abdelli et al. “High-level power estimation of fpga”. In: 2007
IEEE International Symposium on Industrial Electronics. IEEE. 2007,
pp. 925–930.

[2] Gustavo Alonso et al. “Tackling Hardware/Software co-design from a
database perspective.” In: CIDR. 2020.

[3] Jason Helge Anderson and Farid N Najm. “Power estimation tech-
niques for FPGAs”. In: IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems 12.10 (2004), pp. 1015–1027.

[4] Luiz André Barroso and Urs Hölzle. “The datacenter as a computer:
An introduction to the design of warehouse-scale machines”. In: Syn-
thesis lectures on computer architecture 4.1 (2009), pp. 1–108.

[5] Frank Bellosa. “The benefits of event: driven energy accounting in
power-sensitive systems”. In: Proceedings of the 9th workshop on ACM
SIGOPS European workshop: beyond the PC: new challenges for the
operating system. 2000, pp. 37–42.

[6] Ramon Bertran et al. “Decomposable and responsive power models
for multicore processors using performance counters”. In: Proceedings
of the 24th ACM International Conference on Supercomputing. 2010,
pp. 147–158.

[7] Christian Bienia. “Benchmarking Modern Multiprocessors”. PhD the-
sis. Princeton University, Jan. 2011.

[8] William Lloyd Bircher and Lizy K John. “Complete system power es-
timation using processor performance events”. In: IEEE Transactions
on Computers 61.4 (2011), pp. 563–577.

[9] William Lloyd Bircher et al. “Runtime identification of microprocessor
energy saving opportunities”. In: Proceedings of the 2005 international
symposium on Low power electronics and design. 2005, pp. 275–280.

[10] Andrew Canis et al. “LegUp: high-level synthesis for FPGA-based pro-
cessor/accelerator systems”. In: Proceedings of the 19th ACM/SIGDA
international symposium on Field programmable gate arrays. 2011,
pp. 33–36.

[11] Deming Chen, Jason Cong, and Peichan Pan. FPGA design automa-
tion: A survey. Vol. 2. Now Publishers Inc, 2006.

50



[12] Deming Chen et al. “High-level power estimation and low-power design
space exploration for FPGAs”. In: 2007 Asia and South Pacific Design
Automation Conference. IEEE. 2007, pp. 529–534.

[13] Young-Kyu Choi et al. “In-depth analysis on microarchitectures of
modern heterogeneous CPU-FPGA platforms”. In: ACM Transac-
tions on Reconfigurable Technology and Systems (TRETS) 12.1 (2019),
pp. 1–20.

[14] Young-kyu Choi et al. “A quantitative analysis on microarchitectures
of modern CPU-FPGA platforms”. In: Proceedings of the 53rd Annual
Design Automation Conference. 2016, pp. 1–6.

[15] Maxime Colmant et al. “The next 700 CPU power models”. In: Journal
of Systems and Software 144 (2018), pp. 382–396.

[16] Gilberto Contreras and Margaret Martonosi. “Power prediction for
Intel XScale/spl reg/processors using performance monitoring unit
events”. In: ISLPED’05. Proceedings of the 2005 International Sym-
posium on Low Power Electronics and Design, 2005. IEEE. 2005,
pp. 221–226.

[17] Intel Corporation. Early Power Estimator for Intel Stratix 10 FPGAs
User Guide (UG-20069). July 25, 2019.

[18] Intel Corporation. Intel 64 and IA32 Architectures Performance Mon-
itoring Events (335279-001). December, 2017.

[19] Intel Corporation. Intel Quartus Prime Standard Edition User Guide:
Power Analysis and Optimization (UG-20184). December 7, 2020.

[20] Howard David et al. “Memory power management via dynamic volt-
age/frequency scaling”. In: Proceedings of the 8th ACM international
conference on Autonomic computing. 2011, pp. 31–40.

[21] Howard David et al. “RAPL: Memory power estimation and capping”.
In: 2010 ACM/IEEE International Symposium on Low-Power Elec-
tronics and Design (ISLPED). IEEE. 2010, pp. 189–194.

[22] Miyuru Dayarathna, Yonggang Wen, and Rui Fan. “Data center en-
ergy consumption modeling: A survey”. In: IEEE Communications
Surveys & Tutorials 18.1 (2015), pp. 732–794.

[23] Vijay Degalahal and Tim Tuan. “Methodology for high level estima-
tion of FPGA power consumption”. In: Proceedings of the 2005 Asia
and South Pacific Design Automation Conference. 2005, pp. 657–660.

[24] Dimitris Economou et al. “Full-system power analysis and modeling
for server environments”. In: International Symposium on Computer
Architecture (IEEE). 2006.

[25] Enzian. url: http://enzian.systems/ (visited on 03/21/2021).
[26] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. “Power

provisioning for a warehouse-sized computer”. In: ACM SIGARCH
computer architecture news 35.2 (2007), pp. 13–23.

[27] Heiner Giefers, Raphael Polig, and Christoph Hagleitner. “Accelerat-
ing arithmetic kernels with coherent attached FPGA coprocessors”. In:

51

http://enzian.systems/


2015 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE. 2015, pp. 1072–1077.

[28] Jeffrey B Goeders and Steven JE Wilton. “VersaPower: Power estima-
tion for diverse FPGA architectures”. In: 2012 International Confer-
ence on Field-Programmable Technology. IEEE. 2012, pp. 229–234.

[29] David Harris and Sarah Harris. Digital design and computer architec-
ture. Morgan Kaufmann, 2010.

[30] Xilinx Inc. Virtex UltraScale+ FPGA Data Sheet: DC and AC Switch-
ing Characteristics. December 8, 2020.

[31] Xilinx Inc. Virtual Input/Output v3.0 LogiCORE IP Product Guide.
April 4, 2018.

[32] Xilinx Inc. Vivado Design Suite User Guide: Power Analysis and Op-
timization (UG907 v2020.2). November 24, 2020.

[33] Xilinx Inc. Xilinx Power Estimator User Guide (UG440 v2020.2). De-
cember 4, 2020.

[34] Canturk Isci and Margaret Martonosi. “Runtime power monitoring in
high-end processors: Methodology and empirical data”. In: Proceed-
ings. 36th Annual IEEE/ACM International Symposium on Microar-
chitecture, 2003. MICRO-36. IEEE. 2003, pp. 93–104.

[35] Ruzica Jevtic and Carlos Carreras. “Power measurement methodology
for FPGA devices”. In: IEEE Transactions on Instrumentation and
Measurement 60.1 (2010), pp. 237–247.

[36] Tianyi Jiang, Xiaoyong Tang, and Prith Banerjee. “Macro-models for
high-level area and power estimation on fpgas”. In: International Jour-
nal of Simulation and Process Modelling 2.1-2 (2006), pp. 12–19.

[37] Ismail Kadayif et al. “vEC: virtual energy counters”. In: Proceedings
of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering. 2001, pp. 28–31.

[38] Dario Korolija, Timothy Roscoe, and Gustavo Alonso. “Do {OS} ab-
stractions make sense on FPGAs?” In: 14th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 20). 2020,
pp. 991–1010.

[39] Sheng Li et al. “McPAT: An integrated power, area, and timing mod-
eling framework for multicore and manycore architectures”. In: Pro-
ceedings of the 42nd Annual IEEE/ACM International Symposium on
Microarchitecture. 2009, pp. 469–480.

[40] Arm Limited. Arm Architecture Reference Manual. Armv8, for Armv8-
A architecture profile. DDI 0487F.c. 2020.

[41] Arm Limited. Arm Cortex-A76 Core Revision r3p0 Technical Refer-
ence Manual. 2018.

[42] Weiwei Lin et al. “A Taxonomy and Survey of Power Models and
Power Modeling for Cloud Servers”. In: ACM Computing Surveys
(CSUR) 53.5 (2020), pp. 1–41.

52



[43] Dimitrios Meidanis, Konstantinos Georgopoulos, and Ioannis Papaef-
stathiou. “FPGA power consumption measurements and estimations
under different implementation parameters”. In: 2011 International
Conference on Field-Programmable Technology. IEEE. 2011, pp. 1–6.

[44] NTP FAQ. How does it work? 5.1.3.1. How accurate will my Clock be?
url: http://www.ntp.org/ntpfaq/NTP-s-algo.htm#Q-ACCURATE-
CLOCK (visited on 03/14/2021).

[45] Kenneth O’Neal and Philip Brisk. “Predictive modeling for cpu, gpu,
and fpga performance and power consumption: A survey”. In: 2018
IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE.
2018, pp. 763–768.

[46] Kenneth O’brien et al. “A survey of power and energy predictive mod-
els in HPC systems and applications”. In: ACM Computing Surveys
(CSUR) 50.3 (2017), pp. 1–38.

[47] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In:
Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[48] perf: Linux profiling with performance counters. url: https://perf.
wiki.kernel.org (visited on 10/16/2020).

[49] Kara KW Poon, Steven JE Wilton, and Andy Yan. “A detailed power
model for field-programmable gate arrays”. In: ACM Transactions
on Design Automation of Electronic Systems (TODAES) 10.2 (2005),
pp. 279–302.

[50] Miloš Puzović et al. “Quantifying energy use in dense shared memory
HPC node”. In: 2016 4th International Workshop on Energy Efficient
Supercomputing (E2SC). IEEE. 2016, pp. 16–23.

[51] Freeman Rawson and I Austin. “Mempower: A simple memory power
analysis tool set”. In: IBM Austin Research Laboratory 3 (2004).

[52] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. “DRAMSim2:
A cycle accurate memory system simulator”. In: IEEE computer ar-
chitecture letters 10.1 (2011), pp. 16–19.

[53] Efraim Rotem et al. “Power-management architecture of the intel mi-
croarchitecture code-named sandy bridge”. In: Ieee micro 32.2 (2012),
pp. 20–27.

[54] SPEC Benchmarks. url: https://www.spec.org/benchmarks.html
(visited on 03/09/2021).

[55] The Arm Research Starter Kit: System Modeling using gem5. url:
https://github.com/arm-university/arm-gem5-rsk (visited on
03/08/2021).

[56] The PARSEC Benchmark Suite: Overview. url: https://parsec.
cs.princeton.edu/overview.htm (visited on 03/09/2021).

[57] Shyamkumar Thoziyoor et al. “A comprehensive memory modeling
tool and its application to the design and analysis of future memory
hierarchies”. In: ACM SIGARCH Computer Architecture News 36.3
(2008), pp. 51–62.

53

http://www.ntp.org/ntpfaq/NTP-s-algo.htm#Q-ACCURATE-CLOCK
http://www.ntp.org/ntpfaq/NTP-s-algo.htm#Q-ACCURATE-CLOCK
https://perf.wiki.kernel.org
https://perf.wiki.kernel.org
https://www.spec.org/benchmarks.html
https://github.com/arm-university/arm-gem5-rsk
https://parsec.cs.princeton.edu/overview.htm
https://parsec.cs.princeton.edu/overview.htm


[58] ThunderX CN8890 - Cavium - WikiChip. url: https://en.wikichip.
org/wiki/cavium/thunderx/cn8890 (visited on 03/17/2021).

[59] David Wang et al. “Dramsim: a memory system simulator”. In: ACM
SIGARCH Computer Architecture News 33.4 (2005), pp. 100–107.

54

https://en.wikichip.org/wiki/cavium/thunderx/cn8890
https://en.wikichip.org/wiki/cavium/thunderx/cn8890


Appendix A

CPU Time Series

This appendix lists the remaining 5 plots not shown in Section 5.4. These
plots show the time series measurements of IPC and CPU power use for 5
PARSEC benchmarks.

0 10 20 30 40 50

Time (seconds)

0.0

0.2

IP
C

bodytrack

20.00 20.25 20.50 20.75 21.00 21.25 21.50 21.75 22.00

Time (seconds)

0.0

0.2

IP
C

bodytrack (zoomed)

80

100

C
P

U
p

ow
er

(w
at

ts
)

80

100

C
P

U
p

ow
er

(w
at

ts
)

Figure A.1: IPC and CPU power use of bodytrack over time

55



0 20 40 60

Time (seconds)

0.00

0.05

IP
C

canneal

60 61 62 63 64 65

Time (seconds)

0.00

0.05

IP
C

canneal (zoomed)

80

90

C
P

U
p

ow
er

(w
at

ts
)

80

90

C
P

U
p

ow
er

(w
at

ts
)

Figure A.2: IPC and CPU power use of canneal over time

0 10 20 30 40

Time (seconds)

0.00

0.25

0.50

IP
C

dedup

17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0

Time (seconds)

0.00

0.25

0.50

IP
C

dedup (zoomed)

80

100
C

P
U

p
ow

er
(w

at
ts

)

80

100

C
P

U
p

ow
er

(w
at

ts
)

Figure A.3: IPC and CPU power use of dedup over time

56



0 20 40 60 80

Time (seconds)

0.0

0.2

0.4

IP
C

fluidanimate

46.00 46.25 46.50 46.75 47.00 47.25 47.50 47.75 48.00

Time (seconds)

0.0

0.2

0.4

IP
C

fluidanimate (zoomed)

80

100

120

C
P

U
p

ow
er

(w
at

ts
)

80

100

120

C
P

U
p

ow
er

(w
at

ts
)

Figure A.4: IPC and CPU power use of fluidanimate over time

0 5 10 15 20

Time (seconds)

0.00

0.25

0.50

IP
C

vips

9 10 11 12 13 14 15

Time (seconds)

0.00

0.25

0.50

IP
C

vips (zoomed)

80

100

120
C

P
U

p
ow

er
(w

at
ts

)

80

100

120

C
P

U
p

ow
er

(w
at

ts
)

Figure A.5: IPC and CPU power use of vips over time

57



Appendix B

Memory Time Series

This appendix lists the remaining 5 plots not shown in Section 6.4. These
plots show the time series measurements of last-level cache misses and
DRAM power use for 5 PARSEC benchmarks.

0 10 20 30 40 50

Time (seconds)

0

50000

100000

L
L

C
m

is
se

s

bodytrack

20.00 20.25 20.50 20.75 21.00 21.25 21.50 21.75 22.00

Time (seconds)

0

50000

100000

L
L

C
m

is
se

s

bodytrack (zoomed)

7.0

7.1

7.2

D
R

A
M

p
ow

er
(w

at
ts

)

7.0

7.1

7.2

D
R

A
M

p
ow

er
(w

at
ts

)

Figure B.1: Cache misses and memory power use of bodytrack over time

58



0 20 40 60

Time (seconds)

0

2000000

L
L

C
m

is
se

s
canneal

60 61 62 63 64 65

Time (seconds)

0

2000000

L
L

C
m

is
se

s

canneal (zoomed)

8

10

D
R

A
M

p
ow

er
(w

at
ts

)

8

10

D
R

A
M

p
ow

er
(w

at
ts

)

Figure B.2: Cache misses and memory power use of canneal over time

0 10 20 30 40

Time (seconds)

0

200000

400000

L
L

C
m

is
se

s

dedup

17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0

Time (seconds)

0

200000

400000

L
L

C
m

is
se

s

dedup (zoomed)

7.0

7.5

D
R

A
M

p
ow

er
(w

at
ts

)

7.0

7.5

D
R

A
M

p
ow

er
(w

at
ts

)

Figure B.3: Cache misses and memory power use of dedup over time

59



0 5 10 15 20 25

Time (seconds)

0

10000

20000

L
L

C
m

is
se

s
swaptions

15 16 17 18 19 20

Time (seconds)

0

10000

20000

L
L

C
m

is
se

s

swaptions (zoomed)

6.96

6.98

7.00

D
R

A
M

p
ow

er
(w

at
ts

)

6.96

6.98

7.00

D
R

A
M

p
ow

er
(w

at
ts

)

Figure B.4: Cache misses and memory power use of swaptions over time

0 5 10 15 20

Time (seconds)

0

1000000

2000000

L
L

C
m

is
se

s

vips

9 10 11 12 13 14 15

Time (seconds)

0

1000000

2000000

L
L

C
m

is
se

s

vips (zoomed)

7

8

9
D

R
A

M
p

ow
er

(w
at

ts
)

7

8

9

D
R

A
M

p
ow

er
(w

at
ts

)

Figure B.5: Cache misses and memory power use of vips over time

60




