
Floating-Point Architectures for Energy-Efficient
Transprecision Computing

Diss. ETH No. 27611

Floating-Point Architectures
for Energy-Efficient

Transprecision Computing

A dissertation submitted to
ETH ZURICH

for the degree of
Doctor of Sciences

presented by
STEFAN MACH
MSc ETH EEIT

born September 26th, 1990
citizen of Luzern, Switzerland

accepted on the recommendation of
Prof. Dr. Luca Benini, examiner

Prof. Dr. Alberto Nannarelli, co-examiner

2021

Acknowledgments

When starting my Ph.D., I was not fully aware of what to expect from
this unique and exciting journey and what lay ahead. Little did I know
how much I would learn and be allowed to achieve during the time
that followed. Now, some four and a half years later, I have arrived
at the end of a genuinely formative experience that has helped me
grow and helped me to learn so much, also about myself. As such a
journey could never be undertaken alone, I am obliged to thank the
many wonderful people that enabled, supported, and accompanied me
through it all.

Firstly, I want to thank Luca for supervising and guiding me during
my Ph.D. studies. Having access to your vast expertise and experience,
which you use to support and guide – but also to question and challenge
your protégés is hugely valuable. I highly appreciate the unequaled
research and technical opportunities you enable for our entire institute.
Furthermore, I am infinitely grateful for the patience you have afforded
me during the more challenging parts of our shared journey. You were
always an open, honest, and caring mentor, and I thank you for that.
I would also like to thank Alberto for co-refereeing my thesis and
contributing valuable insights and feedback.

Life as a Ph.D. student can be a crazy roller coaster ride with ups
and downs where joy and struggle are often close together and rapidly
changing. I want to thank my officemates Fabian, Florian, and Coco
for an enjoyable working atmosphere and many unforgettable days
(and night shifts) together. We have endured tape-outs and deadlines
together and enjoyed many fruitful discussions, collaborations, as well
as trips to the coffee machine. I hope you will remember our time

v

vi ACKNOWLEDGMENTS

together as fondly as I will. Thank you also to Michael, who left me
his desk at the window with an expertly organized collection of pens
in its drawers.

I want to thank all my fellow “inmates” at the institute for our
frequent chats, the coffee breaks, and the overall great atmosphere. I
will fondly remember helping Daniele with his crazy drone projects.
Thank you, Nils, for taking part in an unforgettable conference trip to
Istanbul with me. But mainly, I would like to thank Gianna for being
a valued friend and picking me up when I was down.

The great people at the Microelectronics Design Center and our
IT group deserve praise for keeping our institute up and running.
I especially thank Frank for his technical support and shielding us
Ph.D. students by taking care of any administrative issues we or our
projects might encounter. What you do is insanely valuable to all of
us. Furthermore, I am convinced you are the best tour guide for cities
that are Istanbul, and I believe you managed to spoil us for any future
conference trips.

I would also like to thank everyone at the University of Bologna with
whom I have had the pleasure of meeting and collaborating. Primarily,
I want to thank Davide for his guidance and support, especially during
the early stages of my Ph.D studies. Thank you very much, Davide,
Beppe, and Antonio (whom I will include here by association), for the
valuable collaborations, your excellent hospitality, and for teaching me
the ways of the Guanciale.

I also want to thank all partners of the OPRECOMP project, which
had run parallel to my entire time as a Ph.D. student. Thanks to all of
you, we have managed to deliver the (allegedly) best-reviewed Horizon
2020 project ever.

Finally, I can hardly put into words my gratitude towards my
friends and family, who have patiently supported me at all times. I
am deeply grateful for my parents always encouraging and supporting
me to pursue what I am fascinated by. I thank my sister Martina for
always being there for me and understanding my struggles. Also, thank
you, Jan, for putting up with me in our whacky shared flat. Ultimately,
I thank Céline for her truly limitless love, support, understanding, and
patience throughout all these years.

Abstract

An era of exponentially improving computing efficiency is coming to
an end as Moore’s law falters and Dennard scaling seems to have
broken down. The power-wall obstacle fuels a push towards computing
paradigms that put energy efficiency as the ultimate figure of merit for
any hardware design. However, demand for more powerful computers
is ever-growing, as rapidly evolving workloads such as ML always
demand higher compute performance at constant or decreasing power
budgets.

Floating-point (FP) has become truly ubiquitous in most comput-
ing domains, including general-purpose processors, GPUs, embedded
systems, and ultra-low-power microcontrollers. While fixed-point arith-
metic is a well-established paradigm in embedded systems optimization
using a simplified numerical representation for real numbers, it is not
necessarily the most energy-efficient solution and is unsuitable for
many applications.

Significant advances in research have relaxed the “always maximum
precision” approach to standard FP usage and exploit approximation
more aggressively, as many algorithms are highly resilient to approxi-
mation. The emerging “transprecision computing” paradigm requires
fine-grained control over numerical precision to tease out more per-
formance and efficiency from hardware and software. Traditionally,
however, only the standard “double” and “float” formats were available
in CPUs and GPUs.

Recently, a slew of specialized FP formats and accelerators have
been introduced, featuring custom reduced-width formats as a means
of reducing hardware complexity and improving performance. A fur-

vii

viii ABSTRACT

ther optimization enabled by reduced bit widths consists of leveraging
SIMD execution to improve performance, energy efficiency, and mem-
ory footprint. Thus, there is a strong need for utmost flexibility
and customizability in FP computations to generalize transprecision
computing.

This thesis develops the concept of flexible transprecision comput-
ing for general-purpose systems by following a multi-pronged approach.
It explores extensions to the FP type system, the addition of new
types and operations to compilation toolchains, processor ISAs, and
processor cores while also developing the necessary hardware for a
fully configurable transprecision floating-point unit. These develop-
ments spawn a range of implementations spanning both the low-power
embedded and application-class high-performance domains, delivering
improvements in performance and energy efficiency across the board.

Zusammenfassung

Eine Ära exponentiell steigender Computereffizienz geht zu Ende, da
das Mooresche Gesetz ins Wanken gerät und die Dennard-Skalierung
zusammengebrochen zu sein scheint. Das Hindernis der Verlustleis-
tungsgrenze treibt einen Schub in Richtung von Computer-Paradigmen,
die Energieeffizienz als ultimative Kennzahl für jedes Hardwaredesign
setzen. Die Nachfrage nach leistungsfähigeren Computern wächst je-
doch ständig, da sich schnell entwickelnde Arbeitslasten wie ML immer
höhere Rechenleistung bei konstantem oder sinkendem Energiebudget
erfordern.

Gleitgkommazahlen sind in den meisten Bereichen der Datenverar-
beitung allgegenwärtig, einschliesslich Mehrzweckprozessoren, GPUs,
eingebetteten Systemen und Mikrocontrollern mit extrem niedrigem
Stromverbrauch. Während die Festkommaarithmetik ein gut etablier-
tes Paradigma in der Optimierung eingebetteter Systeme ist, das
eine vereinfachte numerische Darstellung für reelle Zahlen verwendet,
ist sie nicht unbedingt die energieeffizienteste Lösung und für viele
Anwendungen ungeeignet.

Bedeutende Fortschritte in der Forschung haben den “immer ma-
ximale Genauigkeit”-Ansatz bei der Nutzung von Gleitkommazah-
len gelockert und setzen Näherungsberechnung aggressiver ein, da
viele Algorithmen sehr widerstandsfähig gegen Näherung sind. Das
aufkommende “Transprecision Computing”-Paradigma erfordert eine
feinkörnige Kontrolle über die numerische Genauigkeit, um mehr
Leistung und Effizienz aus Hardware und Software herauszuholen.
Traditionell waren jedoch nur die Standardformate “double” und “float”
in CPUs und GPUs verfügbar.

ix

x ZUSAMMENFASSUNG

In jüngster Zeit wurden eine Reihe von spezialisierten Gleitkom-
maformaten und Beschleunigern eingeführt, die spezielle Formate mit
reduzierter Bitbreite verwenden, um die Komplexität der Hardware zu
reduzieren und die Leistung zu verbessern. Eine weitere Optimierung,
die durch reduzierte Bitbreiten ermöglicht wird, besteht in der Nutzung
der SIMD-Ausführung, um die Leistung, die Energieeffizienz und den
Speicherbedarf zu verbessern. Es besteht also ein grosser Bedarf an
grösstmöglicher Flexibilität und Anpassbarkeit bei Gleitkommaberech-
nungen, um Transprecision Computing zu verallgemeinern.

In dieser Arbeit wird das Konzept des flexiblen Transprecision
Computing für Mehrzwecksysteme entwickelt, indem ein mehrgleisiger
Ansatz verfolgt wird. Sie untersucht Erweiterungen des Gleitkom-
matypensystems, das Hinzufügen neuer Typen und Operationen zu
Kompilierungstoolchains, Befehlssatzarchitekturen und Prozessorker-
nen und entwickelt gleichzeitig die notwendige Hardware für eine
vollständig konfigurierbare Transprecision-Gleikommaeinheit. Diese
Entwicklungen führen zu einer Reihe von Implementierungen, welche
sowohl die Domäne der eingebetteten Systeme mit extrem niedrigem
Stromverbrauch als auch die der Hochleistungsklasse abdecken und auf
breiter Front Verbesserungen bei Leistung und Energieeffizienz liefern.

Contents

Acknowledgments v

Abstract vii

Zusammenfassung ix

1 Introduction 1
1.1 Motivation . 1
1.2 Transprecision Computing 2
1.3 Open-Source Instruction-Set Architecture 4
1.4 Outline . 6
1.5 Contributions . 7
1.6 List of Publications . 8

2 Exploring Transprecision Computing 11
2.1 Introduction . 11
2.2 Primer on Floating-Point Arithmetic 13

2.2.1 IEEE 754 Floating-Point 14
2.2.2 Considerations for FP in Hardware 18

2.3 Extensions to the FP Type System 19
2.3.1 Floating-Point Types And Programming Flow 20
2.3.2 Transprecision Floating Point Unit Prototype . 25
2.3.3 Experimental Results 27
2.3.4 Related Work 35

2.4 Alternatives to FP Arithmetics: Unum 37
2.4.1 Properties of Unums 38

xi

xii CONTENTS

2.4.2 Considerations for Unum in Hardware 40
2.5 Alternatives to FP Arithmetics: Posit 43

2.5.1 Properties of Posits 43
2.5.2 Considerations for Posit in Hardware 46

2.6 Summary and Conclusion 48

3 An Open-Source Transprecision FPU 51
3.1 Introduction . 51
3.2 Architecture . 53

3.2.1 Requirements 53
3.2.2 Building Blocks 55
3.2.3 Configuration, Parametrization, and Usage . . 60

3.3 Enabling FPnew in the RISC-V ISA 61
3.3.1 FP Formats . 61
3.3.2 Operations . 63
3.3.3 Scalar Extensions 63
3.3.4 Vectorial Extension 64
3.3.5 Auxiliary Operations Extension 65
3.3.6 Encoding . 65
3.3.7 Compiler Support 66

3.4 Programming of TP Application Kernels 68
3.4.1 Transprecision Application Case Study 68
3.4.2 Compiler Support 72

3.5 Related Work . 72
3.5.1 SIMD and TP in Commercial ISAs 72
3.5.2 Open-Source Configurable FPU Blocks 74
3.5.3 FPUs for RISC-V 75
3.5.4 Novel Arithmetics / TP FP Accelerators 75
3.5.5 Multi-Mode Arithmetic Blocks 76
3.5.6 Other uses of our TP-FPU 79

3.6 Summary and Conclusion 79

4 Transprecision FP in the Embedded Domain 81
4.1 Introduction . 81
4.2 Embedded SoC for Transprecision 83

4.2.1 System Architecture 85
4.2.2 SoC Implementation 88
4.2.3 Benchmarking 92

CONTENTS xiii

4.3 Augmenting RI5CY with FPnew 97
4.3.1 Integration . 97
4.3.2 Implementation Results 98

4.4 Embedded TP Cluster Architectures 101
4.4.1 Architecture and Implementation 104
4.4.2 Software Infrastructure 112
4.4.3 Experimental Results 114
4.4.4 Comparison with the SoA 125
4.4.5 Related Work 126

4.5 Notable Embedded Systems Using FPnew 132
4.6 Summary and Conclusion 137

5 Transprecision FP in the High-Performance Domain 139
5.1 Introduction . 139
5.2 Application-Class TP Computing 140

5.2.1 Integration . 141
5.2.2 Silicon Implementation 142
5.2.3 Implementation Results 145
5.2.4 Application Performance Study 151
5.2.5 Comparison to the State of the Art 153

5.3 Data Center Scale Embedded TP Computing 154
5.3.1 Agile Transprecision Software Development . . 154
5.3.2 XwattPilot Cloud System 155
5.3.3 Implications for HP & Embedded Co-Execution 158

5.4 Notable HP Class Systems Using FPnew 159
5.4.1 Snitch . 159
5.4.2 Ara . 159
5.4.3 European Processor Initiative 160

5.5 Summary and Conclusion 160

6 Conclusions 163
6.1 Main Results . 164
6.2 Outlook . 167

A Chip Gallery 169
A.1 Treated in This Thesis 170
A.2 Further Implementations of FPnew 174
A.3 Miscellaneous ASICs 177

xiv CONTENTS

B Acronyms 179

Bibliography 181

Curriculum Vitae 199

Chapter 1

Introduction

1.1 Motivation

Nowadays, computing advances all areas of science and engineering [1].
However, an era of exponentially improving computing efficiency, driven
mainly through CMOS technology scaling, is coming to an end as
Moore’s law falters, and Dennard scaling seems to have broken down [2,
3]. The so-called thermal- or power-wall obstacle fuels a push towards
computing paradigms that put energy efficiency as the ultimate figure
of merit for any hardware design. This trend can already be observed
in the industry [4, 5]. Higher energy efficiency will overcome the
limits of Thermal Design Power (TDP), allowing further integration
of more computational power into the same chip. Furthermore, as the
amount of heat dissipated is reduced, less power for cooling will need
to be expended, reducing one of the dominating cost factors in data
centers [6].

At the same time, the demand for more powerful computers is
ever-growing, as the High Performance Computing (HPC) commu-
nity is currently targeting exascale machines (1 Eflop/s) [7]. Rapidly
evolving workloads such as machine learning (ML) are the focus of the
computing industry and always demand higher compute performance
at constant or decreasing power budgets, ranging from the data-center
and HPC scale down to the Internet of Things (IoT) domain. For

1

2 CHAPTER 1. INTRODUCTION

domains such as big-data, ML and scientific computing, the domi-
nant HPC workloads are IEEE 754 floating-point (FP) operations.
Emerging trends, like ML, exhibit a very regular and dense compute
pattern that can be efficiently accelerated. Commercial vendors are
building specialized hardware accelerators which are solely dedicated
to accelerating the regular parts of these payloads in data centers [8, 9].

This model’s main drawback is a high specialization to the under-
lying problem, nowadays usually ML, which makes the accelerator
unsuitable for other tasks. In this environment, achieving high energy
efficiency in general numerical computations requires architectures and
circuits that are fine-tunable in precision and performance.

1.2 Transprecision Computing
The most flexible and dynamic way of performing numerical computa-
tions on modern systems is FP arithmetic. Standardized in IEEE 754,
it has become truly ubiquitous in most computing domains: from gen-
eral-purpose processors, accelerators for graphics computations (GPUs)
to HPC supercomputers, but also increasingly in high-performance
embedded systems and ultra-low-power microcontrollers. IEEE 754’s
built-in rounding modes, graceful underflow, and representations for
infinity are there to make FP arithmetic more robust and tolerant
to numerical errors [10]. Furthermore, many applications such as
scientific computing with physical and chemical simulations require
the dynamic range which FP offers and are often infeasible using other
approaches.

Floating-Point vs. Fixed-Point Computing Efficiency

While fixed-point computation, which usually uses integer data paths,
sometimes offers an efficient alternative to FP, it is not nearly as
flexible and universal. However, fixed-point arithmetic is a well-estab-
lished paradigm in embedded systems optimization since it allows a
simplified numerical representation for real numbers at high energy
efficiency [11]. Nevertheless, many applications require high precision
results characterized by a wide dynamic range (e.g., the accumulation
stage of support vectors or feed-forward inference for deep neural

1.2. TRANSPRECISION COMPUTING 3

networks). In these cases, fixed-point implementations may suffer
from numerical instability, requiring an in-depth analysis to make the
result reliable. This methodology implies additional code sections
to normalize and adjust the dynamic range avoiding saturation (e.g.,
the fixed-point implementation of linear time-invariant digital filters
described in [12]). As a result, fixed-point arithmetic is not necessarily
the most energy-efficient solution since the code requires real-time
adaptations of the dynamic range that affect performance significantly
and increase the time-to-market [11].

The adoption of single-precision FP arithmetic is a well-established
paradigm to cope with these issues for embedded low-power systems.
For example, such as ARM Cortex M4, a microcontroller unit (MCU)
architecture that is the de facto standard for FP-capable low-power
edge nodes. Combining FP and fixed-point arithmetic, depending on
the computational requirements, is the typical approach for optimizing
Cortex M4 applications. This approach’s main shortcomings are the
manual analysis for the format selection (float vs. fixed), the tuning
required for adjusting the fixed-point dynamic range, and the software
overhead to make the format conversions.

Furthermore, the usage of mixed (i.e., floating-fixed point) repre-
sentations introduces several architectural bottlenecks in managing
the pipelines and the register file, such as flushing or stalls that reduce
these approaches’ computational efficiency. Finally, at least in com-
mercial architectures, the floating-point unit (FPU) cannot be turned
off while the core executes fixed-point operations, resulting in a further
reduction of energy efficiency.

The Push for Reduced Precision Arithmetic

In recent years, significant advances in research have been made to
exploit approximation even more aggressively, aiming at relaxing the
“always maximum precision” abstraction [13, 14], mainly thanks to
the ever-growing interest in ML algorithms which are highly resilient
to approximation. For example, Temporal Convolutional Networks
(TCN) [15], Deep Learning (DL) algorithms [16], Convolutional Neural
Networks (CNN) [17], Quantized Neural Networks (QNNs) [18] all
tolerate lower precision arithmetic without losing their accuracy[19].

In this scenario, transprecision (TP) computing [20] is emerging

4 CHAPTER 1. INTRODUCTION

as a successful paradigm for embedded computing systems. This
paradigm is an evolution of approximate computing, and it aims at
tuning approximation at a fine grain during the computation progress
through hardware and software control mechanisms. In the context of
FP computations, this approach requires the availability of hardware
units providing efficient support for multiple FP formats.

FP precision modulation as required for efficient TP computing has
been limited to the standard “double” and “float” formats in CPUs
and GPUs in the past. However, a veritable “Cambrian Explosion” of
FP formats, e.g. Intel Nervana’s Flexpoint [21], Microsoft Brainwave’s
9-bit floats [22], the Google TPU’s 16-bit “bfloats” [23], or Nvidia’s
19-bit TF32, implemented in dedicated accelerators such as Tensor
Cores [24], shows that new architectures with extreme TP flexibility
are needed for FP computation, strongly driven by machine learning
algorithms and applications.

A significant optimization enabled by FP bitwidth reduction relies
on applying the single instruction multiple data (SIMD) approach on
multiple sub-word elements simultaneously and is a common feature of
such architectures [25]. These data types are known as packed-SIMD
vectors. As a clear benefit, SIMD operations act on multiple data
elements of the same size and type simultaneously, offering a theoretical
n× speed-up for n SIMD lanes. Moreover, bitwidth reduction enables
an equivalent reduction of the memory footprint, allowing to store
larger problems in the same memory amount. This approach also
enables more effective data movements, as multiple elements can be
concurrently transferred when packed into machine words.

Our goal is to create a flexible and customizable transprecision
floating-point unit (TP-FPU) architecture that can be utilized across
a wide variety of computing systems and applications, with a strong
focus on enabling energy-proportional TP computing.

1.3 Open-Source Instruction-Set
Architecture

In order to leverage such TP-enabled hardware, there must, of course,
also be support and awareness across the entire software stack. The

1.4. OUTLINE 5

Exploring
Transprecision

Computing
Chapter 2

Chapter 5

TP FP in the
High-Performance

Domain

Chapter 3

An Open-Source
Transprecision

FPU

Chapter 6

Conclusions

Chapter 4

TP FP in the
Embedded

Domain

Chapter 1

Introduction

Figure 1.1: Structure and dependencies of chapters within this thesis.

interface between hardware and software is formed by the instruction
set architecture (ISA).

RISC-V [26] is an open-source ISA which natively supports com-
putation on the common “double” and “float” formats. Furthermore,
the ISA explicitly allows non-standard extensions where architects are
free to add new functionality of their own. Lately, RISC-V has gained
traction in industry and academia due to its open and extensible nature
with growing support from hardware and software projects. In this
work, we leverage the openness and extensibility of the RISC-V ISA.

Paired with an open-source ISA, many projects now deliver open-
source hardware [27, 28, 29, 30]. Open-source hardware offers the
advantage of full access to architectures and implementation, which
can be extended, adapted, and verified by many independent contribu-
tors. Frequently, licensing is permissive and allows the creation of new
projects and products on top of high-quality, open systems backed by
a large community [31].

We use open-source RISC-V processor cores to embed and demon-
strate our work in real, complete computing systems. In turn, we also
choose to make our contributions available open-source [32] to enable
their inclusion in many different systems in the future, helping with
the dissemination of the transprecision computing paradigm.

6 CHAPTER 1. INTRODUCTION

1.4 Outline

This section provides a brief outline of this thesis. A significant
portion of the material presented herein has been previously published
in journals and conference proceedings. Figure 1.1 shows the structure
of this thesis and the dependencies between chapters.

Chapter 2 First, we investigate how the typical approach to nu-
merical computations using FP arithmetic can be improved in terms
of performance and energy efficiency. We focus on expanding the
traditional FP type system with new sub-32-bit types (SmallFloat) to
leverage the TP computing paradigm in general-purpose computing.
We develop an FP emulation software library to assist with the pre-
cision tuning of applications and leverage it to evaluate the viability
of TP computing on various applications. We contrast our choice
of FP arithmetic for TP computing by exploring alternative number
representations and their implications on hardware implementation.

Chapter 3 In a second step, we focus on supporting SmallFloat
and energy-proportional FP computing in hardware, enabling the TP
computing concept in real-world systems. We design FPnew, an open-
source transprecision floating-point unit (TP-FPU) which provides
energy-proportional hardware support for any custom FP format and
is suited for a wide variety of target systems. To enable integration into
general-purpose processor cores, we furthermore develop an extension
to the open-source RISC-V ISA which supports our sub-32-bit types
and implement it into the GCC RISC-V compiler suite.

Chapter 4 Focussing on embedded platforms, we introduce TP FP
into an open-source RISC-V processor in a single-core system on a
chip (SoC). We benchmark applications to confirm the performance
and energy efficiency gains achievable with the introduction of TP
on the processor level. Then, we scale up to introduce TP FP in an
ultra-low-power embedded multi-core processor, exploring different
architectures by sharing FPUs among multiple cores.

1.5. CONTRIBUTIONS 7

Chapter 5 Armed with an energy-proportional hardware TP-FPU,
an ISA extension, and compiler integration, we also set our sights
on implementing the unit into high-performance processor systems.
We implement FPnew into an application-class RISC-V processor and
validate the system on manufactured silicon. Lastly, we show how
field-programmable gate arrays (FPGAs) could be employed to scale
out TP computing into data centers and explore some of the many
systems that have made good use of our TP-FPU.

Chapter 6 The final chapter summarizes the findings presented in
the thesis, draws conclusions, and provides an outlook on future work.

1.5 Contributions
The key contributions of this thesis and related publications are sum-
marized below. Refer to the respective chapter or section for a detailed
introduction and treatment of the subject.

1. Evaluation and extension of the FP type system in the context
of transprecision computing. Includes the development of a
software library that enables explorations of FP formats and
an energy-efficient prototype hardware design with support for
multiple FP types. (Chapter 2, [33])

2. The design of FPnew, a highly configurable architecture for a
transprecision floating-point unit. All standard RISC-V oper-
ations are supported along with various additions. The unit
is fully open-source and thus extensible to support even more
functions. (Chapter 3, [34])

3. Extensions to the RISC-V ISA to support TP FP operations
on existing and new FP formats. Includes extensions to the
standard RISC-V GCC compiler. (Chapter 3, [35])

4. A full architecture for ultra-low-power TP computing, based on
PULPino SoC with a prototype TP-FPU integrated into the
RI5CY processor core. (Chapter 4, [36])

8 CHAPTER 1. INTRODUCTION

5. Integration of FPnew into RI5CY RISC-V core and the PULPis-
simo SoC. Based on that, the architectural design of an embedded
multi-core TP cluster and its software infrastructure. Includes
architectural design space explorations considering: the number
of cores, the number of shared FPUs, and the number of pipeline
stages in the FPUs. (Chapter 4, [34, 37])

6. Integration of FPnew into the Ariane RISC-V application-class
processor, introducing the first full TP-FPU silicon implementa-
tion in 22 nm. (Chapter 5, [34, 38])

7. Extension of the embedded TP cluster with the modifications
necessary to be deployed as co-processors within large-scale data
centers in conjunction with IBM POWER8™ host machines.
(Chapter 5, [39])

1.6 List of Publications
Most of the material covered in this thesis has been published in the
following conference and journal papers, and has been adapted for use
in Chapters 2 to 5:

[33] G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benini, “A trans-
precision floating-point platform for ultra-low power computing,” in 2018
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2018, pp. 1051–1056

[34] S. Mach, F. Schuiki, F. Zaruba, and L. Benini, “Fpnew: An open-source
multiformat floating-point unit architecture for energy-proportional trans-
precision computing,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 2020

[35] G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benini, “Design and
evaluation of smallFloat SIMD extensions to the RISC-V ISA,” in 2019
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2019, pp. 654–657

[36] S. Mach, D. Rossi, G. Tagliavini, A. Marongiu, and L. Benini, “A transpre-
cision floating-point architecture for energy-efficient embedded computing,”
in 2018 IEEE International Symposium on Circuits and Systems (ISCAS).
IEEE, 2018, pp. 1–5

1.6. LIST OF PUBLICATIONS 9

[37] F. Montagna, S. Mach, S. Benatti, A. Garofalo, G. Ottavi, L. Benini,
D. Rossi, and G. Tagliavini, “A transprecision floating-point cluster for
efficient near-sensor data analytics,” arXiv preprint arXiv:2008.12243, 2020

[38] S. Mach, F. Schuiki, F. Zaruba, and L. Benini, “A 0.80 pJ/flop, 1.24 Tflop/sW
8-to-64 bit transprecision floating-point unit for a 64 bit RISC-V processor
in 22nm FD-SOI,” in 2019 IFIP/IEEE 27th International Conference on
Very Large Scale Integration (VLSI-SoC). IEEE, 2019, pp. 95–98

[39] D. Diamantopoulos, F. Scheidegger, S. Mach, F. Schuiki, G. Haugou,
M. Schaffner, F. K. Gürkaynak, C. Hagleitner, A. C. I. Malossi, and L. Benini,
“Xwattpilot: A full-stack cloud system enabling agile development of transpre-
cision software for low-power SoCs,” in 2020 IEEE Symposium in Low-Power
and High-Speed Chips (COOL CHIPS). IEEE, 2020, pp. 1–3

The following publications with contributions by the author provide
additional evidence and insights, and are covered in part by this thesis:
[40] F. Glaser, S. Mach, A. Rahimi, F. K. Gürkaynak, Q. Huang, and L. Benini,

“An 826 Mops, 210 uW/MHz Unum ALU in 65 nm,” in 2018 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS). IEEE, 2018, pp.
1–5

[41] D. Rossi, F. Conti, M. Eggiman, S. Mach, A. Di Mauro, M. Guermandi,
G. Tagliavini, A. Pullini, I. Loi, J. Chen, E. Flamand, and L. Benini, “A 1.3
Tops/W @ 32 Gops fully integrated 10-core SoC for IoT end-nodes with 1.7
uW cognitive wake-up from MRAM-based state-retentive sleep mode,” in
2021 IEEE International Solid- State Circuits Conference (ISSCC). IEEE,
Feb. 2021

[42] F. Schuiki, F. Zaruba, S. Mach, and L. Benini, “Kosmodrom: Energy-efficient
ariane cores with transprecision FPU in 22nm,” in RISC-V Workshop Zurich,
2019

[43] F. Zaruba, F. Schuiki, S. Mach, and L. Benini, “The floating point trinity:
A multi-modal approach to extreme energyefficiency and performance,” in
2019 26th IEEE International Conference on Electronics, Circuits and
Systems (ICECS). IEEE, 2019, pp. 767–770

Further publications by the author which are not covered explicitly in
this thesis:
[44] A. Pullini, M. Gautschi, F. K. Gürkaynak, F. Glaser, S. Mach, G. Rovere,

D. Schiavone, G. Haugou, D. Palossi, A. Marongiu et al., “KISS PULPino –
updates on PULPino,” in 5th RISC-V Workshop. ETH Zürich, 2016

[45] A. Pullini, S. Mach, M. Magno, and L. Benini, “A dual processor energy-
efficient platform with multi-core accelerator for smart sensing,” in Interna-
tional Conference on Sensor Systems and Software. Springer, 2016, pp.
29–40

10 CHAPTER 1. INTRODUCTION

[46] M. Eggimann, S. Mach, M. Magno, and L. Benini, “A RISC-V based open
hardware platform for always-on wearable smart sensing,” in 2019 IEEE 8th
International Workshop on Advances in Sensors and Interfaces (IWASI).
IEEE, 2019, pp. 169–174

[47] A. Di Mauro, F. Zaruba, F. Schuiki, S. Mach, and L. Benini, “Live demon-
stration: Exploiting body-biasing for static corner trimming and maximum
energy efficiency operation in 22nm FDX technology,” in 2020 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS). IEEE, 2020, pp.
1–1

[48] H. Müller, D. Palossi, S. Mach, F. Conti, and L. Benini, “Fünfliber-drone:
A modular open-platform 18-grams autonomous nano-drone,” in Design,
Automation Test in Europe Conference Exhibition (DATE 2021), 2021, pp.
12–11

Chapter 2

Exploring
Transprecision
Computing

2.1 Introduction

In this starting chapter, we investigate how the classic approach to
numerical computations using floating-point (FP) arithmetic can be
improved upon to achieve the energy-proportional computation re-
quired for flexible TP computing. Focussing on performance and
energy efficiency, we first perform a case study on embedded systems
applications by expanding upon the commonly used FP type system.
To contrast, we furthermore explore some alternative number systems
and their implications on hardware design.

Nowadays most embedded applications involving numerical com-
putations with large dynamic range are performed using binary64
(double-precision) or binary32 (single-precision) FP formats, described
by the IEEE 754 standard [49]. In these applications, the execution
of FP operations emerges as a significant contributor to energy con-
sumption. To provide experimental evidence of this insight, we have
executed a set of FP-intensive applications on PULPino [50], an open-

11

12 CHAPTER 2. EXPLORING TP COMPUTING

source ultra-low power (ULP) microcontroller. Results show that 30%
of the energy consumption of the core is actually due to FP operations.
Moreover, an additional 20% is spent moving FP operands from data
memory to registers and vice versa.

To provide a compromise between energy cost and dynamic range,
IEEE 754 introduces a 16-bit format referred to as binary16 (half-
precision). The introduction of binary16 represents the first step to
increase the energy efficiency of FP computations. However, soft-
ware development flows for ULP systems still lack a methodology to
evaluate the effect of reduced-precision FP variables on application
requirements. In practice, programmers often use the maximum pre-
cision provided by target platforms, following the most conservative
principle: guaranteeing each elementary step’s numerical precision also
guarantees final results precision.

In recent years, significant advances in the field of approximate
computing have been made aimed at relaxing this precise-computing
abstraction [51, 52, 53, 54]. The most promising research trends are
stepping beyond the concept of approximation itself towards a novel
paradigm, transprecision computing. In TP, rather than tolerating
errors implied by imprecise HW or SW computations, systems are
explicitly designed to deliver just the required precision for interme-
diate computations. In other words, the specified constraints on the
precision of final results are always met, i.e., results are not generically
“approximated”; they match a required precision. However, intermedi-
ate operations can be moved to custom, lower-precision computation
units to save energy.

While approximate computing shows flexibility with low precision
arithmetic and aggressive bit width reduction [53], much of the appli-
cation spectrum adheres to the IEEE 754 standard for FP arithmetic
despite its possible adverse side effects. The standard formats mainly
suffer from rigid allocation of bits to their sign, exponent, and mantissa
fields. They lack robustness to rounding errors [55, 56], caused by the
implicit rounding rules defined in the standard. When a value lies in
between two representable FP values, it will be rounded, producing an
inevitable rounding error; across multiple calculations, such rounding
error can be accumulated without allowing the application a direct
observation or control over the error.

TP computing, with its aim at fine-tunable control over the preci-

2.2. PRIMER ON FLOATING-POINT ARITHMETIC 13

sion of computations, thus implies a wide range of demands that make
efficient hardware solutions that retain as much flexibility as possible
highly desirable.

The main contributions of this chapter are:

1. The introduction of a software library that enables explorations
of FP types. We present a methodology to integrate our library
with external tools for precision tuning. We also explore an
energy-efficient hardware design with support for multiple FP
types (Section 2.3).

2. A brief overview of the unum format and considerations for
implementation in hardware (Section 2.4).

3. A brief overview of the posit format and considerations for
implementation in hardware (Section 2.5).

The remainder of this chapter is organized as follows: Section 2.2
gives an overview of FP arithmetic. Section 2.3 covers the extension
of the FP type system for TP computing, and Sections 2.4 and 2.5
analyze unum and posit, respectively. The final section provides a
conclusion.

2.2 Primer on Floating-Point Arithmetic
Computer number formats are ways of representing numerical data
using a string of binary digits. For integer data, either a plain unsigned
binary encoding or the two’s complement formats are commonly used.
As accurately representing real-valued data generally is not possible
using a limited number of bits, several encodings exist to approximate
these values with different aims and trade-offs.

Fixed-point representations interpret a string of bits as binary
fractions, statically assigning a portion of bits – hence the name
fixed-point – to represent either integer or fractional components of the
number. As such, fixed-point representations are barely more complex
to handle in hardware than integers. However, the representation
suffers from a small range of representable values (called dynamic
range) and a relatively low resolution of encodable values (called
precision).

14 CHAPTER 2. EXPLORING TP COMPUTING

s exp mant
Exponent (unsigned)Sign Mantissa (unsigned binary fraction)

me1

Figure 2.1: Encoding used for IEEE 754 binary FP formats.

A more complex encoding scheme is floating-point (FP) representa-
tions, which are the most widely used method of encoding real values
in computer systems. In FP, a fractional mantissa is scaled using a
separately encoded exponent, allowing to cover a very large dynamic
range while offering reasonable precision [57].

2.2.1 IEEE 754 Floating-Point
FP arithmetic was standardized in the IEEE 754 standard. The latest
major revision of this standard, IEEE 754-2008, was published in Au-
gust 2008 and is widely used [49]. A minor revision containing mainly
clarifications was published in 2019. While the standard specifies
encodings for both binary (base-2) and decimal (base-10) FP, this
work focuses exclusively on binary formats.

Binary Encoding

The binary representation of an IEEE 754 FP value consists of three
components:

Sign (s) One sign bit to indicate a positive or negative value;
Exponent (exp) e bits representing the biased exponent;
Mantissa (mant) m bits representing the fractional mantissa.

These three components are appended to form a binary FP datum
as shown in Fig. 2.1. The numerical interpretation of this binary repre-
sentation is defined in Eq. (2.1), where (. . .)2 denotes interpretation as
an unsigned binary value. Note that the leading 1 bit of the mantissa
is not encoded in the binary representation and that the exponent
field is biased to center the dynamic range around ±1.0. All values
interpreted according to Eq. (2.1) are considered normal numbers in
IEEE 754 parlance.

2.2. PRIMER ON FLOATING-POINT ARITHMETIC 15

Table 2.1: The IEEE 754 encodings with special interpretations.

Exponent Mantissa Encoded Value
(00. . . 0)2 = 0 ±0
(00. . . 0)2 6= 0 Subnormal numbers
(11. . . 1)2 = 0 ±∞
(11. . . 1)2 6= 0 not a number (NaN)

(−1)s × 2(exp)2−BIAS × 1.(mant)2

BIAS = 2m−1 − 1
(2.1)

Special Cases

IEEE 754 defines exceptional cases in which the bit patterns are
interpreted differently, as shown in Table 2.1. A group of numbers with
small magnitude, signified by an all-zero exponent field and non-zero
mantissa, is called subnormal numbers. Their value is interpreted
according to Eq. (2.2). The difference is that the implied integer bit
of the mantissa is now 0, and the exponent is set to the minimum
normal exponent. This special handling creates a linear space of values
between ±0 and the smallest normal numbers and is referred to as
gradual underflow.

(−1)s × 21−BIAS × 0.(mant)2 (2.2)

Furthermore, a group of bit patterns is reserved to signify non-nu-
merical data called NaN. These particular values are used for invalid
operations and when the result of an operation would be mathemati-
cally undefined.

Rounding Modes and Exception Flags

As FP representations attempt to map the infinitely many real values
to a limited number of available bit patterns, quantization error can be
introduced when operating on FP data. This mapping of real values
to representable FP values is shown in Fig. 2.2. In order to control

16 CHAPTER 2. EXPLORING TP COMPUTING

Figure 2.2: Mapping of real numbers to FP values. Taken from [58].

the error incurred in FP operations, the standard defines multiple
rounding modes to select from the two closest representable FP values:

To nearest, ties to even The default rounding mode where the clos-
est representable FP value is chosen, and halfway cases are
mapped to the representation with an even mantissa;

To nearest, ties away from 0 The closest representable FP value
is chosen, and halfway cases are mapped to the larger magnitude
value;

Toward zero Always chooses the value closest to 0;

Downward Always rounds towards negative infinity;

Upward Always rounds towards positive infinity.

The standard defines an exception flag for inexact results to sig-
nal whether an operation has incurred a rounding error. Note that
non-representable real values can become mapped to FP represen-
tations of the exact zero and infinity values due to rounding. To
this end, IEEE 754 includes exception flags for cases of overflow and
underflow. Furthermore, invalid operations such as division by zero
are also signaled.

2.2. PRIMER ON FLOATING-POINT ARITHMETIC 17

Table 2.2: The binary FP interchange formats defined in IEEE 754.

Format Common Name # bits e m
binary16 Half Precision 16 5 10
binary32 Single Precision 32 8 23
binary64 Double Precision 64 11 52
binary128 Quadruple Precision 128 15 112
binary256 Octuple Precision 256 19 237

Table 2.3: Dynamic range of the FP formats from Table 2.2.

Format Minimum Value Minimum Value Maximum Value
(Subnormal) (Normal)

binary16 ≈ 5.96× 10−8 ≈ 6.10× 10−5 65504
binary32 ≈ 1.40× 10−45 ≈ 1.18× 10−38 ≈ 3.40× 1038

binary64 ≈ 4.94× 10−324 ≈ 2.23× 10−308 ≈ 1.80× 10308

binary128 ≈ 6.48× 10−4966 ≈ 3.36× 10−4932 ≈ 1.19× 104932

binary256 ≈ 2.25× 10−78984 ≈ 2.48× 10−78913 ≈ 1.61× 1078913

Official Formats

The standard defines five binary interchange formats with fixed ex-
ponent and mantissa lengths as shown in Table 2.2, and the range
of the numerical values they cover is given in Table 2.3. Of these
formats, only binary32 and binary64 are considered ubiquitous in gen-
eral-purpose computing. The precision and range offered by binary64
are adequate for most problems; thus, the 64-bit format is by default
used in most high-performance and scientific computing workloads.
The larger formats find use only rarely as their increased range is
often unnecessary, and implementations suffer from drastically higher
performance and power penalties and are seldom supported in hard-
ware. Higher performance and energy efficiency are usually achieved
using the 32-bit FP format, which is sufficient for most general-pur-
pose processing tasks. The binary16 format, initially introduced for
image processing applications, lacks the dynamic range to be broadly
supported; however it has found increased use for ML inference in re-

18 CHAPTER 2. EXPLORING TP COMPUTING

cent years. Performance-constrained and low-power embedded devices
usually only support the binary32 format if FP support is present at
all.

2.2.2 Considerations for FP in Hardware
Hardware implementations of arithmetic operations on FP values
are significantly more complex than their integer counterparts, as
computations usually cannot occur directly on the bit-patterns used by
the IEEE 754 formats. Essentially, the values encoded by the FP data
first require manipulation into more suitable internal representations
before they can be processed using simple arithmetic circuits. Even
basic arithmetic operations like addition and multiplication become
significant contributors to circuit complexity when implemented in
hardware.

Operation Primitives

As FP values are essentially represented by a fractional mantissa scaled
by the exponent, the general approach uses separate data paths for
the exponent and mantissa computations.

In order to add or subtract two FP values, the mantissae must
be appropriately scaled before the corresponding bits can be added
together. As such, exponents are compared, and shifters are required
to align the mantissa bits before a regular adder circuit can be used
to compute the resulting mantissa. For multiplications, thanks to
the similarity of FP encoding to scientific notation, mantissae are
multiplied directly, and the result exponent is computed from the
argument exponents.

Rounding is necessary for all FP computations and boils down
to the choice between two consecutive FP values as the result of an
operation. Proper rounding decisions require information about the
actual (infinitely-precise) result of the computation, which usually
necessitates computing more bits of the result mantissa than just what
is needed for the representation of the FP value. Many methods exist
to obtain the rounded FP result of an operation, such as multiplexing
between the two possible results or conditionally incrementing the

2.3. EXTENSIONS TO THE FP TYPE SYSTEM 19

appropriate mantissa bits, and their use depends on the operation
carried out [57].

Intricacies of IEEE 754

Everyday computational operations such as addition and multiplica-
tion must be provided with any compliant FP implementation, as
well as comparisons amongst FP values. Additionally, conversions
between FP and integers and between different FP formats have to be
implemented. IEEE 754 furthermore mandates the fused multiply-add
(FMA) operation as a standard arithmetic operation. The FMA oper-
ation computes (a× b) + c and applies only one final rounding step to
the operation’s infinitely precise result. It is usually used to reduce the
error introduced by repeated rounding in applications that perform
many accumulation-type operations, such as matrix-multiplications or
convolutions [55].

Hardware implementations of FMA usually are the largest and most
timing-critical. The requirement for accurate rounding necessitates
keeping many more precision bits until the end of the operation, result-
ing in very wide internal data paths. Due to the significant overhead of
hardware FMA, regular addition and multiplication operations often
reuse the FMA unit to reduce additional overheads. Using hardware
FMA can improve code size and performance compared to issuing
separate multiply and add instructions.

Implementing the different rounding modes in hardware does not
incur as much overhead as the standard “round to nearest, ties to even”
rounding mode is the most complex to construct. Also, producing
exception flags alongside the operation results can usually be done
using information already available somewhere in the computation
unit’s datapath.

2.3 Extensions to the FP Type System
In this section, we propose an extended FP type system with complete
hardware support to enable TP computing on ULP embedded plat-
forms. We propose the introduction of two additional formats, namely
binary8 and binary16alt. Specifically, binary8 is a 8-bit format with

20 CHAPTER 2. EXPLORING TP COMPUTING

low precision (3-bit mantissa), while binary16alt is a 16-bit format
complementary to the IEEE 754 one and featuring a higher dynamic
range (8-bit exponent)1. To assess the benefits of this extended FP
type system, we performed a precision analysis supported by additional
considerations on the hardware design. As a first step, we designed
a C++ library to explore the effects on application behavior when
varying the dynamic range and precision of program variables. Then
we modified a set of applications representative of FP-intensive com-
putations in the embedded domain, adopting emulated FP types and
providing an interface with an external tool for precision analysis [53].

Our results show that the introduction of binary8 guarantees the
best trade-off between precision and dynamic range for applications
that match minimum precision requirements. Moreover, the introduc-
tion of binary16alt extends (up to 50%) the number of variables that
can be safety scaled from a 32-bit representation to a 16-bit one.

To provide support at the hardware level, we designed a dedicated
TP-FPU. Our design also enables vectorial operations on sub-32-bit
formats, further increasing the core’s energy efficiency and performance
and reducing data memory pressure.

Experimental results show that up to 90% of FP operations can
be safely scaled down to 8-bit or 16-bit formats. Thanks to precision
tuning and vectorization, execution time is decreased by 12%, and
memory accesses are reduced by 27% on average. As a significant
outcome, energy consumption is reduced up to 30%.

2.3.1 Floating-Point Types And Programming
Flow

Exploration Of Floating-Point Formats

Applications that operate on real-valued data most commonly use
IEEE 754-compliant FP formats [49]. Of the standard formats, bi-
nary32 and binary64 enjoy the most widespread use and are also
available on general-purpose consumer platforms. While even larger
formats are commonly used for scientific computations, reducing the

1This format has been popularized under the name bfloat16. Our implementa-
tion differs from bfloat16 insofar we always follow IEEE 754 principles regarding
subnormal and infinity values, NaN, and support all rounding modes.

2.3. EXTENSIONS TO THE FP TYPE SYSTEM 21

amount of data to process. Hence, the width of FP formats is more suit-
able for power-constrained and embedded platforms. While sub-32-bit
FP formats (also called minifloats) have been use in computer graphics
applications [59], their relevance is rising with the spread of energy-
constrained computing platforms, such as near-sensor processing nodes
and Internet-of-things endpoints. IEEE 754 formats are packed as the
sign bit, e bits for the exponent, and m bits for the significand (or
mantissa).

By choosing a specific format, programmers enforce a trade-off
between dynamic range and precision. The dynamic range is the ratio
between the largest and smallest representable values, conditioned by
e. Conversely, the precision is the number of digits of the represented
number preserved in FP representation, and it is uniquely defined by
m.

As discussed in Section 2.3.4, available tools are not flexible enough
to simulate arbitrary FP formats by tuning both precision and dynamic
range. To enable exploration of arbitrary FP types, we designed a
dedicated C++ library, called FlexFloat. This library provides a
generic FP type by defining a template class (flexfloat<e,m>) and a
set of auxiliary functions for debugging and collecting statistics.

Using FlexFloat, all FP types used in the source files can be safely
replaced with instantiations of this template class without changing
any other part of the program since class methods include operator
overloading. The template parameters include the number of bits used
for the exponent (e) and the number of bits used for the mantissa
(m), which must be specified as positive integer values. For instance,
flexfloat<7, 12> is a FP type including the sign bit, 7 bit in the
exponent field and 13 bit in the mantissa field. The FlexFloat library
also supports the encoding of subnormal numbers, infinities, and NaN
values. Arithmetic operations are performed converting the number
representation to a native type (e.g., double) and then sanitizing the
result, that is, adjusting exponent and mantissa to obtain the exact bi-
nary representation of the original type. This methodology guarantees
shorter execution times w.r.t. emulation approaches (e.g., SoftFloat),
and it also produces the same results of a dedicated hardware unit
(i.e., precise at bit level).

An automatic cast between different template instances is not al-
lowed, so standard arithmetic operations must involve variables of the

22 CHAPTER 2. EXPLORING TP COMPUTING

same instance. This design choice enables a fine-grain control on the
intermediate results since the compiler notifies an error for each opera-
tor involving a type mismatch. Consequently, programmers can choose
to match the variable types to the same template instance or insert an
explicit cast. A constructor supporting explicit conversions is provided,
and it can be used to cast a FlexFloat variable to a different tem-
plate instance (e.g., from flexfloat<e1,m1> to flexfloat<e2,m2>
). Constructors with implicit semantics are provided for standard
FP types (float, double and long double) to simplify the usage of
FP literal values. Vice versa, an automatic cast from a FlexFloat
template instance to a standard FP type is not allowed, but it can
be performed by invoking an explicit cast operator. This feature can
be used to interface sections of source code that use FlexFloat and
sections strictly bound to standard types (e.g., a call to an external
library function whose source code is not available).

The main benefits of FlexFloat are:

• It produces binaries that are fast to execute since its computa-
tions rely on native types;

• It reduces the debugging effort, as the compiler performs early
check upon template instantiation;

• It is quite intuitive to use since it provides the usual infix notation
for arithmetic operations;

• It can be easily integrated with external tools, having no specific
requirements w.r.t. the source code.

To simplify the interaction between a FlexFloat-based program and
any external tool, we designed a FlexFloat wrapper, that is a support
tool performing three steps: (i) it reads a file specifying a required
precision for each program variable, then (ii) it extracts the dynamic
range from a configuration file providing the map indexed by precision
intervals, and finally (iii) it compiles the program sources providing the
derived values for precision and dynamic range as actual parameters
in the template instantiations.

To perform an exploration of FP types, we used the Distribut-
edSearch tool introduced in Section 2.3.4. Since this tool performs
precision tuning without considering the dynamic range of variables,

2.3. EXTENSIONS TO THE FP TYPE SYSTEM 23

binary8

1 5 2

- same dynamic range as binary16

- less precision than binary16

IEEE binary16

1 5 10

- less dynamic range than binary32

- less precision than binary32

binary16alt

1 8 7

- same dynamic range as binary32

- much less precision than binary32

IEEE binary32

1 8 23

exponents mantissa

Figure 2.3: Overview of FP formats used throughout this work.

we assumed a limited set of initial hypotheses to fix the dynamic range
associated with specific intervals of precision bits. Considering our
target on ULP systems, we restricted our investigation to 8-bit and
16-bit formats.

Among potential 8-bit formats, we chose the mapping (0, 3] 7→ 5,
calling this type binary8. Thus, any variable associated with precision
between 1 and 5 bit will be provided with an exponent of 5 bit. This
format was conceived to mirror the dynamic range of binary16 variables.
Adopting this convention, conversions between binary8 and binary16
only affect precision but do not saturate for values of large magnitudes.
Additionally, operations on binary8 become very cheap in hardware
since it contains only two explicit mantissa bits.

As regards 16-bit formats, we considered the mapping correspond-
ing to binary16, that is (0, 11] 7→ 5, and an alternative mapping that
we called binary16alt, corresponding to (0, 8] 7→ 8. 8 is the number of
bits used for the exponent field in binary32, so this value is a reasonable
upper bound for any 16-bit format. Again, using the same number of
exponent bits of the binary32 format makes conversions much cheaper.
Figure 2.3 summarizes the FP formats used throughout this work.

Table 2.4 shows the results of our preliminary analysis, reporting
the total number of variables associated with each type. These values
are obtained executing DistributedSearch on our set of benchmarks
constrained with a precision of 10−1. We considered two different

24 CHAPTER 2. EXPLORING TP COMPUTING

Table 2.4: Variables classified by type type using V1 and V2 type
systems.

binary8 binary16 binary16alt binary32
V1 10 29 - 72
V2 19 10 41 41

configurations of the FP type system, namely V1 (including binary8,
binary16, binary32) and V2 (adding binary16alt to V1).

As a first consideration, binary8 is used for 17% of the variables
in the best case. This format is highly beneficial in reducing en-
ergy consumption since it simplifies circuitry complexity and enables
vectorization. It is noteworthy that supporting both 16-bit formats
contributes to decreasing the number of 32-bit variables in the program
w.r.t. the usage of a single 16-bit format. A drawback of binary16 is
that both dynamic range and precision are diminished compared to
binary32. Sometimes, this leads to saturation when converting values
with high dynamics from binary32, disqualifying the 16-bit format
from being used for TP tuning in these cases. Conversely, binary16alt
features the same dynamic range as binary32, allowing the whole range
of values to be converted - albeit with a much larger granularity. In
some cases, applications do not exploit the dynamic range provided
by binary16alt, and at the same time, they require higher precision,
so our intuition is that we need both types. A further evaluation is
provided in Section 2.3.3.

Transprecision Programming Flow

Figure 2.4 depicts the TP programming flow that we adopted through-
out this work. As a first step, application sources are modified to re-
place standard FP types with multiple instances of flexfloat<ex,mx>,
where ex and mx are variable-specific parameters. A tool for precision
tuning is invoked (step 2), and different values for ex and mx are
explored using the FlexFloat wrapper. After this tuning, program
variables are uniquely mapped to supported FP types (step 3). Using
this mapping, FlexFloat can provide statistics on the number of op-
erations and casts performed for each FP type, which is instantiated

2.3. EXTENSIONS TO THE FP TYPE SYSTEM 25

Figure 2.4: Overview of the programming flow.

(step 4). Moreover, a version of FlexFloat providing explicit template
specialization is provided to replace simulated operations with native
ones (step 5). This step requires that the target platform’s compiler
supports all the FP types provided by the mapping.

2.3.2 Transprecision Floating Point Unit
Prototype

To evaluate the potential of the FP formats introduced in Section 2.3.1,
we designed a prototype TP-FPU supporting vectorization of reduced-
precision operations. The hardware unit is built up from three types of
slices, each with a fixed width of 32-bit, 16-bit and 8-bit, respectively.
Each slice hosts operations on the FP formats that match the slice
width and conversion operations. The supported arithmetic opera-
tions are addition, subtraction, and multiplication. The conversion
operations include casts to and from integers (both signed and un-
signed) and casts among the FP formats. Moreover, the narrower
slices are replicated in order to enable sub-word parallelism inside the
unit. Thus, two 16-bit or four 8-bit FP operations can be executed
simultaneously. Following the SIMD paradigm, the proposed unit can
run scalar operations when only one slice for a given precision is active
and vectorial operation when all the slices of a given precision are
active.

The various individual operation blocks are instances of Synopsys
DesignWare FP Datapath components. As a power-saving feature, the
unit employs operand silencing to all unused operations and formats by
forcing zero to prevent transistor switching. Arithmetic operations in
binary32, as well as both 16-bit formats, are pipelined with one stage to
meet the container core’s timing requirements featuring a bandwidth of
one operation per cycle and a latency of two clock cycles. Arithmetic
operations in binary8 and all conversion operations have a one-cycle

26 CHAPTER 2. EXPLORING TP COMPUTING

O
p

e
ra

n
d

 In
p

u
ts O
p
A

O
p
B

S
l
i
c
e
3
2

FP8 ADD/SUB

FP8 MULT

S
l
i
c
e
8

S
l
i
c
e
1
6

3
2

1
6

8

3
2

R
e

s
u

lt O
u

tp
u

t

2
x

4
x

S
m
a
l
l
F
l
o
a
t
U
n
i
t

FP16 int32

FP16alt int32

FP8 int32

FP32 FP16

FP32 FP16alt

FP32 FP8

FP32 int32

FP16 int16

FP16alt int16

FP16 FP16alt

FP16 FP8

FP16alt FP8

FP8 int8

3
2

3
2

3
2

1
6

8
3
2

1
6

8

D
a
ta

 D
is

trib
u
tio

n
 a

n
d
 O

p
e
ra

n
d
 Is

o
la

tio
n

O
u
tp

u
t D

a
ta

 S
e
le

c
tio

n

FP32 ADD/SUB

FP32 MULT

FP16 ADD/SUB

FP16alt ADD/SUB

FP16 MULT

FP16alt MULT

R
e
s

F
lo

a
tin

g
-P

o
in

t / In
te

g
e
r C

o
n
v
e
rs

io
n
 U

n
it

F
lo

a
tin

g
-P

o
in

t C
o
m

p
u
ta

tio
n
a
l U

n
it

F
lo

a
tin

g
-P

o
in

t / F
lo

a
tin

g
-P

o
in

t C
o
n
v
e
rs

io
n
 U

n
it

F
lo

a
tin

g
-P

o
in

t C
o
m

p
u
ta

tio
n
a
l U

n
it w

ith
 P

ip
e
lin

e
 S

ta
g
e

Figure
2.5:

Sim
plified

block
diagram

ofthe
designed

hardw
are

unit
datapath.

C
ontrollogic

as
w
ellas

data
to

and
from

duplicated
slices

is
om

itted.

2.3. EXTENSIONS TO THE FP TYPE SYSTEM 27

latency. Area optimization of the TP-FPU and its integration into the
core will be completed as future work.

2.3.3 Experimental Results
Evaluation Methodology

Experiments have been performed on a set of applications that im-
plement key algorithms for two domains of ULP systems, near-sensor
computing, and embedded machine learning:

• JACOBI applies the Jacobi method to a 2D heat grid:

• KNN computes the k-nearest neighbors of an input value using
euclidean distance;

• PCA performs the principal component analysis;

• DWT computes the discrete wavelet transform;

• SVM is the prediction stage of a support vector machine;

• CONV implements a 5× 5 convolution kernel.

Precision tuning has been performed using the fpPrecisionTuning
toolsuite on an x86 workstation, adopting the programming flow de-
scribed in Section 2.3.1. Since sub-word vectorization is not supported
by the current FlexFloat implementation, we manually tagged vector-
izable sections in the source code. The library provides a separate
report for vectorial operations and casts. The application sources
have been compiled using the GCC compiler with a RISC-V back-end
optimized for PULPino, which supports the single-precision FP type
defined in the RISC-V instruction set architecture (ISA). Binaries have
been executed on the PULPino virtual platform, which is cycle-ac-
curate and provides detailed statistics. The virtual platform reports
the number of cycles required to execute each instruction used in the
binary file, targeting the whole program or delimited code regions.
The current version of GCC does not include a set of instructions to
handle binary16, binary16alt and binary8 formats. Since the latency
of binary16 operations is the same as binary32 ones, we have used
the binary32 type to measure the exact number of cycles required by

28 CHAPTER 2. EXPLORING TP COMPUTING

each instruction to execute. This value depends on the ability of the
compiler to schedule other classes of operations (non-FP, binary8 or
casts) to fill latency cycles and avoid stalls in the core pipeline, so it is
strictly dependent on both application and compiler back-end. Binary8
operations and FP conversions always require a single cycle, so their
contribution to execution time has been accumulated analytically.

For evaluation of the hardware architecture, the design unit was
synthesized for the UMC 65 nm technology using worst case libraries
(1.08 V, 125 ◦C). To have an accurate estimation of the power con-
sumption of the TP-FPU, we performed post-place-&-route power
simulations. The target frequency for the post-layout design was set to
350 MHz, using worst-case conditions. Results take into account the
switching activity of input and output registers, added at the unit’s
boundaries to evaluate their performance, negligible to the power of
the arithmetic units themselves. Energy costs of FP operations were
obtained through simulation of the post-layout design in all modes
of operation, again using worst-case conditions. Values provided to
the unit were generated randomly, making sure that no invalid val-
ues were generated. Namely, no NaN or infinity values were applied,
and operands were chosen sufficiently close to each other such that
operand cancellation would not occur during addition or subtraction.
For conversions, only mappable values to the target type were used
to eliminate over- and underflow, simulating normal operations on
meaningful data. We prevent operand cancellation or invalid inputs,
which would lead to significantly diminished switching activity inside
the operational units. The energy cost of each non-FP instruction
executed by the core includes core logic, instruction memory, and data
memory. Even if the TP-FPU has not been integrated into PULPino’s
core yet to collect energy measurements, we have considered the con-
tribution of moving data to/from the input and output registers of
the FPU. Furthermore, we also consider the cost of idle cycles due to
pipeline stalls (for both 16-bit and 32-bit instructions).

Precision Tuning

The table in Fig. 2.6 shows the results of the precision tuning, per-
formed for three precision requirements (signal-to-quantization-noise
ratio (SQNR) = 10−3, 10−2, 10−1). Rows correspond to applications

2.3. EXTENSIONS TO THE FP TYPE SYSTEM 29

1164 2 0 1 2 1 0 0 0 0 1165

0 2005 0 0 30001 0 0 0 0 0 0

0 5 5 0 11 13 5896 1 7 1 574

0 0 0 1 0 1 5849 0 0 0 1

11025 0 0 0 2 2 37 3 0 0 1

0 0 0 0 0 1586 1 0 0 0 0

0 1165 4 1 0 0 0 0 0 0 1165

32006 0 0 0 0 0 0 0 0 0 0

5 12 14 12 6424 4 4 0 0 37 1

0 1 0 1 0 0 5849 0 0 1 0

11025 1 2 1 2 38 0 0 0 0 1

0 0 0 0 0 1586 1 0 0 0 0

1167 3 0 0 0 0 0 0 0 0 1165

32006 0 0 0 0 0 0 0 0 0 0

6 5911 12 11 537 24 2 0 0 10 0

0 2 0 5849 0 1 0 0 0 0 0

11025 4 39 1 0 0 0 0 0 0 1

1586 0 0 0 0 0 1 0 0 0 0

Figure 2.6: Precision tuning of program variables for three precision
requirements.

30 CHAPTER 2. EXPLORING TP COMPUTING

and columns to precision bits. The reported values represent the
number of memory locations (scalar variables or array elements) re-
quiring the minimum number of bits in their column to meet precision
constraints. Color bands show the mapping between precision bits and
the FP type system introduced in Section 2.3.1.

KNN and SVM make wide use of binary8 data, while other appli-
cations do not. binary8 emerges a format that is profitable in specific
application domains, while binary16 is a good candidate for broader
use. Moreover, most of the interval [9, 11] are concentrated in column 9,
which is the minimum number of precision bits required for a binary16
type. These elements strictly require the additional precision provided
by binary16 w.r binary16alt, which means that both types are useful
in different contexts. For the same reason, there are more variables
in column 4 than in column 5, since they include all cases that do
not require a wider dynamic range w.r.t. binary8 (regardless of the
precision). Conversely, variables that require high precision usually
require more than 12 precision bits, and they are concentrated in the
last column.

Execution Time And Memory Accesses

Figure 2.7 shows a breakdown of the FP operations performed by
each application, taking into account the previous section’s precision
requirements. Pictured is a dynamic view of the FP type system
at run-time (whereas Fig. 2.6 provides a static view after precision
tuning). Each bar segment quantifies the contribution of a specific
type to the total number of FP operations, discriminating scalar and
vectorial operations.

In JACOBI and PCA, there is a significant contribution of 32-bit
operations, which is a first trait that adversely affects a potential
reduction of energy consumption. Another negative aspect is the lack
of vectorial operations, which is pathological in JACOBI. We have
not considered any advanced coding techniques (e.g., manual code
vectorization). However, we have based our analysis on off-the-shelf
versions of applications that could be further optimized to follow the
guidelines derived from our considerations.

Figure 2.8 depicts two groups of bars for each application, reporting
memory accesses and execution cycles. Values are normalized to the

2.3. EXTENSIONS TO THE FP TYPE SYSTEM 31

Figure 2.7: Breakdown of FP operations for three precision require-
ments.

32 CHAPTER 2. EXPLORING TP COMPUTING

Figure
2.8:

M
em

ory
access

and
cycles

for
three

precision
requirem

ents,norm
alized

to
binary32

baseline.

2.3. EXTENSIONS TO THE FP TYPE SYSTEM 33

binary32 version of the application, which acts as a baseline. Vectorial
memory accesses, cycles spent in vectorial operations, and cycles spent
in cast operations are highlighted differently.

As shown in the previous section, JACOBI does not perform any
vectorial operation. Moreover, the number of cycles is equivalent to
the original version since this application only uses a limited number
of binary16alt variables without exploiting vectorization. In the most
general case, the number of cycles can even exceed the baseline since
cast operations between different FP types are introduced (e.g., JA-
COBI when SQNR = 10−3). As a significant limitation, current tools
for precision tuning do not consider the cost of casts since they aim
to minimize the number of precision bits used by any variable. No
other optimization goal can be specified here. This effect is further
exacerbated in PCA, where the number of casts required after the
tuning process exceeds 10% (SQNR = 10−1) and 20% (SQNR = 10−2

and 10−3).
We can observe evident benefits in memory accesses and cycles in

other benchmarks, mainly due to vectorization, while the overhead of
cast operations is not relevant. SVM shows the maximum reduction
of memory accesses, that is 48% since 60% of FP operations are
vectorizable (for any precision requirement). On average, the execution
time is decreased by 12%, and memory accesses are reduced by 27%.
Considering JACOBI and PCA as outliers, these values turn into 17%
and 36%.

Energy Consumption

Figure 2.9 shows the energy consumption of each application, normal-
ized to the binary32 baseline. Each bar contains three contributions,
the FP operations (FP ops), the memory accesses (Memory ops), and
all the other instructions that are executed by the core (Other ops).

These numbers can be easily justified by the considerations in the
previous section. On average, JACOBI’s energy consumption is 97%
since this application makes limited use of sub-32-bit types and does not
exploit the benefits of vectorization. The energy consumption of PCA
is 7% and 8% greater than the baseline for two precision requirements
(SQNR = 10−3 and 10−2), due to the high number of casts coupled
with a predominant number of scalar operations on binary32 values.

34 CHAPTER 2. EXPLORING TP COMPUTING

Figure 2.9: Energy consumption normalized to binary32 baseline.

2.3. EXTENSIONS TO THE FP TYPE SYSTEM 35

The other applications have average energy savings of around 18%
compared to the baseline, with a maximum of 30% measured for
KNN. Considering the results of Section 2.3.3, the behavior of KNN is
related to three main characteristics, (i) it uses the binary8 type for
all program variables, (ii) it exploits vectorization, and finally (iii) it
requires a limited number of non-vectorized memory accesses.

Advanced vectorization techniques can provide tremendous benefits
whenever an application provides a relevant percentage of sub-32-bit
operations after the tuning process. We applied manual vectorization
to PCA to demonstrate this assumption, thus reducing the energy
consumption to lower values (101%, 96%, and 85%). These gains
are marked on Fig. 2.9 by labels 1, 2, and 3. Further energy savings
can only be achieved by reducing casts’ contribution by using more
intelligent tools for precision tuning.

2.3.4 Related Work
To overcome the limitations of fixed-format FP types, researchers
have proposed multiple-precision arithmetic libraries that perform
calculations on numbers with arbitrary precision. ARPREC [60] and
MPFR [61] are two widely used libraries that provide support to mul-
tiple-precision arithmetic. These libraries are mainly used in contexts
where a high dynamic range is required and higher computation time
is considered an unavoidable side-effect, such as scientific computing.
However, they are not suitable to perform explorations of sub-32-bit
FP types since they represent exponents using an entire machine word.
This approach prevents simulation of the behavior of FP types with a
reduced number of bits since tuning of dynamic range is not possible.

SoftFloat [62] is a library that implements standard IEEE 754
formats, enabling a bit-accurate emulation of the FP operations per-
formed by FP hardware units. Softfloat can be easily extended to
support additional formats, including the ones introduced in this work.
However, program executions are enormously prolonged since the li-
brary executes all the computations in software. Moreover, any change
to a FP format requires manually modifying code in several source files.
Overall, the solutions mentioned above require a complete refactoring
of the source code; in some cases, additional software layers have been
introduced to perform this task (e.g., the Boost interval arithmetic

36 CHAPTER 2. EXPLORING TP COMPUTING

library [63]).
Many research tools are available to perform automatic or semi-au-

tomatic precision tuning of program variables. In this chapter we
use DistributedSearch, a tool provided by the fpPrecisionTuning [53]
toolchain that finds a near-optimal solution. Its main configuration
parameter is the result’s precision, expressed as a value of the SQNR
that program outputs must satisfy. This tool requires a binary version
of the target program, a target output (i.e., a sequence of FP numbers
that are the exact result), and a configuration file. The configuration
file should include a list of numbers corresponding to the precision
bits used for program variables. DistributedSearch requires that the
target executable read the configuration file to tune the precision of
its variables accordingly. Also, the program must provide its output
results on the standard output. The tool runs the program multiple
times on this premise, performing a heuristic search of each variable’s
minimum precision (for a fixed input set). A second phase performs
a statistical refinement to join the precision bindings derived from
different input sets.

Other tools adopt more advanced techniques but their search space
is restricted to standard FP types (e.g., PROMISE [64] and Preci-
monious [65]), or in other cases they are limited to the analysis of
functional expressions (e.g., FPTuner [54] and PRECISA [66]). As a
final consideration, all these tools do not enable the analysis of the
dynamic range associated with a fixed-format FP type.

On the hardware side, several recent works proposed the design of
energy-efficient FPUs. Kaul et al. [67] implement a variable-precision
multiply-and-add FPU supporting vectorization. Its configurations
use an 8-bit exponent field. Each operand carries a 5-bit certainty
field, which is processed in parallel with the exponent logic, indicating
the number of bits for the mantissa. The certainty field is used
to implement automatic precision tracking, which raises precision
where it does not meet specified requirements. Considering an energy
consumption of 19.4 pJ/flop, this solution seems to perform similarly to
our hardware design. However, the memory overhead due to precision
tracking and fixed-size exponents is relevant since the memory transfers
are a significant contributor to the total energy consumption. Moreover,
applications that require 32-bit variables are very inefficient due to
repeated operations at lower precision that are performed until a final

2.4. ALTERNATIVES TO FP ARITHMETICS: UNUM 37

retry at single precision is executed.
Tong et al. [68] explore an iterative (digit-serial) multiplier that

can be used inside a FP multiplier. Their design processes 8 bit per
cycle, thus operands with up to 8-bits use one cycle, operands with up
to 16-bit use 2 cycles, and finally operands up to 24 bit use 3 cycles.
Power is reduced by 66% when using the one-cycle configuration and by
30% when using the two-cycles one. Again, single-precision operations
become slower, and memory effects are not considered.

Rzayev et al. [69] explore various sub-32-bit formats for deep learn-
ing applications. They introduce a 8-bit FP format that is identical to
binary8, showing that vectorization enables higher performance and
reduces memory energy used per operation. However, they do not
propose a mixed-precision FP type system for TP computing.

Gautschi et al. [70] propose a shared FPU adopting the logarithmic
number system (LNU), which is up to 4.1× more energy-efficient
than standard FPU in non-linear processing kernels. However, LNU
is a domain-specific approach, and not all FP operations can be
implemented.

2.4 Alternatives to FP Arithmetics:
Unum

In order to better control precision loss, the universal number (unum)
format was proposed by Gustafson [71] as an alternative and direct
competitor to IEEE 754 FP. It attempts to do so by introducing a
variable-width storage format and a flag that determines whether a
unum corresponds to an exact number or an interval between exact
unums. This flag, called ubit, hence explicitly represents when a
calculation produces a value that is not exactly representable in the
number system. In contrast to IEEE 754 FP, this information is
encoded within the value and does not rely on a separate exception
side-channel. The unum format additionally defines two fields that
make the number self-descriptive.

The unum format, so far, has been supported in various program-
ming environments, including Julia [72], Matlab [73], Python [74], J,
and Mathematica [71] languages. Initial efforts on hardware with unum

38 CHAPTER 2. EXPLORING TP COMPUTING

sign exponent fraction

1 es fs 1

ubit
es-1 fs-1

exp

size

frac

size

utag

s e f u

Figure 2.10: Encoding of the unum format, extending IEEE 754 floats
with self-descriptive fields in the utag.

support focus on early synthesis [75] of three operators (i.e., addition,
multiplication, and comparison), and FPGA implementation [76] of
four operators (i.e., addition, subtraction, multiplication, and division).
To evaluate the benefits and challenges of unum hardware design in
silicon, we have presented the first ASIC as a fully operational unum
processor capable of performing additions and subtractions as well as
format-specific functions for lossless and lossy compressions [40]. This
section presents an overview of the unum format and some critical
insights for hardware implementations we have gained from said work.

2.4.1 Properties of Unums

Binary Encoding

The unum encoding, depicted in Fig. 2.10 bears similarity to the
IEEE 754 FP representation for real numbers with its sign-exponent-
mantissa notation. The unum format extends this representation by
adding three new fields that allow for the inclusion of self-descriptive
information about the represented value. These additional fields are
summarized under the name utag.

The last two fields in the utag denote the exponent size es and
fraction size fs of the unum, making unum a variable-size format.
Hence, FP values that can be represented with a small number of
bits require fewer storage bits than a large fixed-size FP environment
thanks to the self-descriptive nature of the utag.

Since it is infeasible to allow unlimited exponent and mantissa
sizes in practice, the widths of the exponent size and fraction size
fields in the utag are fixed, defining the maximum range of possible
unum values. The chosen widths for the exponent size and fraction
size fields then define a so-called unum environment. For example,

2.4. ALTERNATIVES TO FP ARITHMETICS: UNUM 39

setting the exponent size width to 4 bits and the fraction size width
to 5 bits, the resulting environment can represent unums with up to
16 exponent and up to 32 fraction bits. Such unums are defined in
a {4,5}-environment – the maximum possible size of a unum in an
{a,b}-environment is given as maxubits = 2 + 2a + 2b + a+ b.

The first field in the utag, called the ubit, can be set to denote that
the represented value x is not an exact point on the real number line,
but rather an open interval (x, x+ ulp) with ulp being the unit in the
last place for the current unum format. Explicitly encoding that the
exact value cannot be represented in the current format sets unum
apart from regular FP representations where all encoded values are
considered exact, and approximation is entirely implicit.

For describing general intervals more than one ulp apart, two unums
can be connected to create a so-called ubound2, each denoting one
endpoint of an interval. In a ubound, each of the two ubits indicates
whether the respective endpoint is part of the interval (closed) or not
(open).

Unum Operations

Unum addition is similar to FP addition, with more complex excep-
tional cases involving infinities being dependent on both values and
bound types. The left and right bound of ubounds can be handled
independently, however.

One complexity of FP arithmetic, namely rounding, is greatly
simplified in unum. Whenever the result of an operation on two exact
values requires more precision than available in the unum environment,
the ubit is set to mark the value as inexact. When handling bounds,
the bound type of the result bound corresponds to the logical-OR of
its operand ubits.

Since the bit-pattern representation of a value is not unique within a
unum environment, there are additional unum-specific operations to be
considered. Since implementations should strive to utilize as few bits as
possible for a given value, we also define the lossless optimize operation,
calculating the representation of a ubound with the smallest number
of bits. Furthermore, Gustafson [77] specifies the unify operation that

2This definition deviates from Gustafson’s definition in [77], where the term
ubound can also denote a single unum with the ubit set.

40 CHAPTER 2. EXPLORING TP COMPUTING

attempts to merge a ubound consisting of two unums into the smallest
single unum that fully includes the interval. This operation can incur
a loss of precision, namely if the resulting inexact unum covers a larger
interval than the initial ubound.

Dynamic Behavior

In order to illustrate the dynamic behavior of unum during calculations,
axpy was run with input coefficients of rising complexity, calculating
and accumulating the result using either floats or unum environments.
The relative error change compared to a double-precision reference
and the bitwidth over the iterations are shown in Fig. 2.11.

During phase I, only small coefficients produce results that can be
exactly represented in all evaluated formats. The size of unum results
is made up of the fixed size of the utag – 8-bit and 10-bit, respectively,
for the {3,4} and {4,5} environments – and the dynamic number of
bits needed to store the actual value.

Phase II applies large coefficients, significantly increasing the ac-
cumulated values. Unum formats start increasing in size to store the
result still accurately. Once the exact value requires more fraction
bits than available in the format, error proportional to the format-spe-
cific minimal ulp-width appears, and unum starts using ubounds to
represent the uncertainty of the results accurately.

In phase III, more error is introduced by using random floats as
coefficients, also causing {4,5}-unum’s 32 fraction bits to be insufficient
for exact results.

The ubounds used for unum results would require significantly more
storage space than floats; thus, they should stay contained within the
processing unit registers if possible. Before storing to main memory,
unify can be used to reduce storage size at the cost of increasing the
error bound. Unifying excessively, after each iteration as shown in
Fig. 2.11, causes the additional error introduced by each unification to
accumulate rapidly.

2.4.2 Considerations for Unum in Hardware
The interchange format for unums as shown in Fig. 2.10 is specified
in [77]. Unum values reside in memory in this format, using only

2.4. ALTERNATIVES TO FP ARITHMETICS: UNUM 41

10
-1

0

10
-5

10
0

Mean Rel. Error vs. float64
R

el
at

iv
e

E
rr

or
 o

ve
r

A
X

PY
 It

er
at

io
ns

0

Ph
as

e
I -

 sm
al

l c
oe

ffi
ci

en
ts

Ph
as

e
II

 -
la

rg
e

co
ef

fic
ie

nt
s

Ph
as

e
II

I -
 ra

nd
om

 fl
oa

t c
oe

ff.

10
20

30
Ite

ra
tio

n
#

016324864809611
2

Average Size [bit]

B
its

iz
e

ov
er

 A
X

PY
 It

er
at

io
ns

flo
at

32
flo

at
16

{3
,4

}-
un

um
{3

,4
}-

un
um

, u
ni

fie
d

{3
,4

}-
un

um
, a

gg
re

ss
iv

e
un

ify
{4

,5
}-

un
um

{4
,5

}-
un

um
, u

ni
fie

d
{4

,5
}-

un
um

, a
gg

re
ss

iv
e

un
ify

ov
er

flo
w

ex
ac

tly
 re

pr
es

en
ta

bl
e

Fi
gu

re
2.
11

:
R
el
at
iv
e
er
ro
r
of

ax
py

ite
ra
tio

ns
us
in
g
FP

an
d
un

um
fo
rm

at
s
(t
op

)
an

d
th
e
bi
t-
siz

e
of

th
e

re
su
lts

(b
ot
to
m
).

42 CHAPTER 2. EXPLORING TP COMPUTING

as much storage as mandated by the exponent size and fraction size
fields – which can be drastically less than using a fixed-width FP
representation. However, this departure from using uniformly sized
and aligned operands requires additional effort when handling unums
in the memory system.

Since arithmetic units and register files must be provisioned for
handling all possible unums in a given environment, this incurs a
relative hardware overhead for those unums that do not use the maxi-
mum width of the environment. Additionally, the constant overhead
for storing the utag with each value is especially noticeable in small
environments. Unpacking of unum values in the register file and the
storage of additional meta-information, called summary bits in [77],
can simplify the implementation of unum operations, especially the
handling of bounds and exceptional cases such as NaN and infinity
operands.

Comparison with IEEE 754

In the example from Fig. 2.11, there is a range where unum provides
lower memory footprints than IEEE 754 binary32 with equivalent accu-
racy, while binary16 error already grows rampant. Unified {3,4}-unums
require 7% less memory than float32 at the price of a significant error
increase similar to float16 – while remaining usable long after float16
overflows due to small range. Unified {4,5}-unums require roughly
45% more storage than single-precision values primarily due to utag
overhead – albeit at around 5× lower error and explicitly denoting
this error. Using binary32 interval arithmetic to store the error bound
would cost 39% more memory than unum in this example.

Figure 2.12 shows synthesis experiments in 65 nm, comparing dif-
ferent unum-enabled arithmetic units with an IEEE 754 compliant
FP adder with corresponding exponent and fraction sizes. A first
observation is a modest area increase (27% or 1.08 kGE with a 4 ns
period constraint) when only considering the unum adder.

However, complementing the adder with the expand and optimize
units to take advantage of on-the-fly data compression comes with
an area increase of more than 3.5×. The implemented, fully parallel
ubound adder adds roughly another factor of two while also doubling
the throughput. The second important observation is the limitation in

2.5. ALTERNATIVES TO FP ARITHMETICS: POSIT 43

T [ns]
1 2 3 4 5 6 7 8

A
 [k

G
E]

0

10

20

30

40

50

data type
ubound yes

yes
no

N/A

249
124

98
98

125
62
51
49

2
2
1
1

unum
unum

IEEE 754

expand /
optimize

bits
input

bits
output

pipeline
stages

Figure 2.12: Area and timing comparison of our ubound adder in [40]
and its sub-parts against an IEEE 754 compliant adder.

terms of the minimum clock period for the compression-enabled unum
units, even with additional pipeline stages.

2.5 Alternatives to FP Arithmetics:
Posit

Posits are the third version proposed under the name unum by
Gustafson [78]. Proponents claim that posits can be used as a
direct drop-in replacement for IEEE 754 FP numbers with more
advantageous properties than FP. These include a more extensive
dynamic range, higher accuracy, better closure, bitwise identical
results across systems, simpler hardware, and more straightforward
exception handling.

2.5.1 Properties of Posits
Posits were developed as an evolution of the unums format outlined in
Section 2.4, and intend to address the shortcomings that format brings

44 CHAPTER 2. EXPLORING TP COMPUTING

Figure 2.13: Binary representation of an n-bit Posit value with es
exponent bits [78].

Table 2.5: The binary encoding of the regime value k.

Regime (0001)2 (001)2 (01)2 (10)2 (100)2 (1000)2
k −3 −2 −1 0 1 2

in terms of implementation in hardware. Most notably, the interchange
format is no longer variable in length, although the encoding retains
some aspects of variable-length encoding.

Binary Encoding

Figure 2.13 shows the binary representation of a posit which is built
from the same components as FP numbers, plus an additional field
called the regime. The regime value k serves as an exponentiation
factor for the exponent itself, allowing posits to cover an extensive
dynamic range. It is encoded after the sign bit and has a variable size,
determined by the run-length of equal bits terminated by an opposite
bit. As in FP, the exponent field exp is fixed in length and defined
by es, but can be defined to have zero length. The mantissa (fraction)
mant occupies the remaining bits of the number if any space is left.

The encoded value of a posit is interpreted as given in Eq. (2.3).
The main difference is the additional scaling using the exponent size es
and the regime value k, which is obtained by counting the run-length
m of bits equal to the first bit r of the regime, and applying Eq. (2.4).
Some example encodings are listed in Table 2.5. The exponent is
unbiased, as centering around ±1.0 is achieved using the regime. In
case the regime starts displacing the exponent, all lower-order bits are
assumed to be 0. As in FP, the mantissa has a hidden bit, which is
always 1; thus, no subnormals exist.

2.5. ALTERNATIVES TO FP ARITHMETICS: POSIT 45

Table 2.6: Posit encodings of special cases.

Sign Remainig Bits Encoded Value
0 (00. . . 0)2 0
1 (00. . . 0)2 ±∞ / NaR

(−1)s × useedk × 2(exp)2 × 1.(mant)2

useed = 22es (2.3)

k =
{
−m if r = 0
m− 1 if r = 1 (2.4)

Special Cases

Table 2.6 shows the only two special encodings for posits, and there
are neither signed zeroes nor infinities. In contrast to FP, exceptional
computations like division by zero do not trigger an exception but will
simply result in “±∞,” which is considered not a real (NaR).

While the sign bit is used in the same way as for FP, there is one
caveat. If the sign is negative, the two’s complement of the entire
binary representation is taken and used to decode the regime, exponent,
and fraction fields. As a result, exciting properties emerge, as outlined
further in this section.

Rounding Modes

Posit knows only one rounding mode, round to nearest, ties to even,
which also serves as the default in IEEE 754. As posit values can
be encoded without any mantissa bits, rounding can also occur in
exponent bits. The midpoint of two such bit patterns corresponds to
the geometric mean of the choices.

Posits are never rounded down to zero nor rounded up to infinity, as
this would destroy all information about a result or introduce infinite
error, respectively.

46 CHAPTER 2. EXPLORING TP COMPUTING

(a) Projective reals using 3 bit.
(b) Applied posit encoding for es =
1.

Figure 2.14: A binary string of 3 bit projected onto so-called projective
reals. (a) shows the general assignment of ±1, 0, useed, and NaR. (b)
includes the numerical interpretations for es = 1. [78]

Numerical Properties

Posits can be interpreted as binary integers mapped to so-called pro-
jective reals, as shown in Section 2.5.1. This mapping is highly sym-
metrical, and reflection along the vertical and horizontal axes points
at the negated and reciprocal values, respectively. Notably, every
representable number in posit has an exactly representable reciprocal.
Consequently, the two special encodings of zero and ±∞/NaR are
reciprocals of each other.

2.5.2 Considerations for Posit in Hardware

Due to the symmetry of the “projective real” mapping, certain opera-
tions are elementary to achieve using posit. Reciprocals are obtained
by flipping the sign bit of the representation. Simultaneously, the
negation of a number corresponds to taking the two’s complement of
the representation, both of which can be performed using an integer
adder.

2.5. ALTERNATIVES TO FP ARITHMETICS: POSIT 47

Figure 2.15: AT plot of 8-bit and 16-bit FP FMA, 8-bit posit FMA
and 8-bit posit with 32-bit quire accumulation.

Comparison with IEEE 754

Proposed posit configurations follow the power-of-two format sizes
used for FP. While posit can be configured to cover a similar dynamic
range of regular FP, its creators suggest reducing the number of
exponent bits for better precision, deeming the extensive dynamic
range of binary64 already too large for practical needs [78]. We focus
on minimal configurations to evaluate posit’s potential to replace FP
for TP purposes.

While IEEE 754 mandates the FMA operation as a means of
combatting accumulation of rounding error, authors of posit propose
the use of a wide fixed-point accumulator called quire instead [78].
This concept, also known as a Kulisch-Accumulator [79], could also be
applied to FP accumulations.

We compare a 8-bit posit FMA unit and an 8-bit posit unit contain-
ing 32-bit quire functionality with IEEE 754 FMA implementations in
a 65 nm technology. The trade-offs in area and timing obtained from
synthesis are shown in Fig. 2.15. Notably, the 8-bit posit FMA requires
2× the area of the 8-bit FP FMA, with a longest path similiar to a
16-bit FMA. The stark increase in area compared to 8-bit FP stems

48 CHAPTER 2. EXPLORING TP COMPUTING

Add

Add
Add

Mult

Mult

Mult

FMA

FMA

FMA

Quire

0 pJ

2 pJ

4 pJ

6 pJ

8 pJ

10 pJ

12 pJ

14 pJ

16 pJ

18 pJ

20 pJ

Float8 Posit8 Float16

En
er

gy
 [

p
J]

Energy per Operation

Figure 2.16: Energy consumption per operation for implementations
circled in Fig. 2.15.

due to accounting for the variable lengths of the regime and mantissa
in posit, requiring an over-provisioned datapath. Furthermore, the
area and critical path are inflated by 20% when adding the quire
functionality to the posit implementation due to the quire register’s
impact.

Power measurements from simulations on a post-place-and-route
database are shown in Fig. 2.16. We note that operations on 8-bit posit
are over 200% more expensive than 8-bit FP. Quire operation slightly
reduces energy cost compared to FMA, as fixed-point accumulation
has much lower complexity than posit addition despite the higher
bit-width.

2.6 Summary and Conclusion
In this chapter we have explored the possiblities to introduce TP into
FP-based computing. Notably:

• We designed a software library, FlexFloat, in order to perform
explorations of arbitrary FP types using precision tuning frame-
works.

• We introduced an extended FP type system with two additional
FP formats, binary16alt and binary8, which are closely based on

2.6. SUMMARY AND CONCLUSION 49

IEEE 754 principles.

• We designed a first TP-capable FPU built from priprietary FP
blocks as hardware support to enable TP computing on ULP
embedded platforms.

• Experimental results show that our approach is effective in reduc-
ing energy consumption by leveraging the knobs provided by the
extended FP type system and thanks to vectorization support.
The energy consumption is reduced on average by 18%, and up
to 30% for specific applications. Simultaneously, execution time
is decreased by 12%, and memory accesses are reduced by 27%.

• We discussed two alternative number formats, unum and posits
that try to expand upon concepts from standard FP formats
from a hardware perspective to gauge their potential for use in
TP implementations.

• We show synthesis experiments to compare unum arithmetics
with their IEEE 754 counterparts. We conclude that it must
be carefully analyzed whether memory accesses are expensive
enough for the significant (de)compression overhead linked to
variable-width number formats to pay off. While unum formats
could provide a moderate memory footprint advantage (7%)
to the standard IEEE 754 binary32 and broader range than
binary16, this comes at a significant increase in datapath com-
plexity and requires special care in avoiding aggressive unification
to prevent error blow-up.

• We find that using posit hardware implementations introduces
high additional costs in both area and timing. Area, longest path,
and energy increase by over 100%, 25%, and 100%, respectively,
when comparing an 8-bit posit FMA with an FP FMA of the same
width. The reason is the need to cover the regime’s worst-case
sizes and the mantissa, significantly inflating the datapath.

We conclude that extending the FP type system with sub-32-bit
formats is a viable approach to improving performance and energy
efficiency through TP computing methods. For the time being, we shall

50 CHAPTER 2. EXPLORING TP COMPUTING

forego alternatives to traditional FP formats due to large overheads in
the circuit area, speed, and energy costs, especially for small formats.

To make further explorations more accessible, we require a more
flexible and configurable TP-FPU with a design focus on energy-propor-
tional FP computing. Besides a dedicated hardware unit, exploitation
of TP techniques will require integration of a processing system and
support at the ISA and compiler levels of the computing stack.

Chapter 3

An Open-Source
Transprecision FPU

3.1 Introduction

In the previous chapter, we have shown the promising potential of TP
computing in terms of performance and energy efficiency improvements
of applications. We achieved this by extending the FP type system with
custom types – collectively referred to as “SmallFloat” – which allow
TP-aware applications to fine-tune their precision requirements during
computation, enabling faster and more efficient execution. However,
such gains are only attainable when the hardware performing such
computations is equally fine-tunable and offers energy-proportional
execution.

Traditionally, FP precision modulation has been limited to only
two standard formats in CPUs and GPUs. However, recent research in
various domains, but strongly driven by machine learning algorithms
and applications, shows that new architectures with extreme TP
flexibility in terms of formats supported are needed for FP computation.
Thus, in this second chapter, our goal is to create a flexible and
customizable transprecision floating-point unit (TP-FPU) architecture
that can be utilized across a wide variety of computing systems and

51

52 CHAPTER 3. AN OPEN-SOURCE TRANSPRECISION FPU

applications.
In order to leverage such TP-enabled hardware, there must, of

course, also be support and awareness across the entire software stack.
An instruction set architecture (ISA) forms the interface between hard-
ware and software. RISC-V [26] is an open-source ISA which natively
supports computation on the common “double” and “float” formats.
Furthermore, the ISA explicitly allows non-standard extensions where
architects can add new instructions. Lately, RISC-V has gained trac-
tion in industry and academia due to its open and extensible nature
with growing support from hardware and software projects.

The main contributions of this chapter are:

1. The design of FPnew, a highly configurable architecture for a
transprecision floating-point unit written in SystemVerilog. All
standard RISC-V operations are supported along with various
additions such as SIMD vectors, multi-format FMA operations
or convert-and-pack functionality to dynamically create packed
vectors. The unit is fully open-source and thus extensible to
support even more functions. Unlike SOA designs, we increase
the circuit area to achieve high energy-proportionality and effi-
ciency (Section 3.2).

2. Extensions to the RISC-V ISA to support TP FP operations on
existing and new FP formats. Scalar operations are supported
by a set of ISA extensions corresponding to the new formats,
moreover the complementary “Xfvec” extension defines SIMD
sub-word parallelism for all operations in the scalar FP extensions.
Operations that do not fit these classes have been added in an
additional extension set, called “Xfaux”, which include advanced
arithmetic (average, dot-product) and expanding operations
(that take SmallFloat type operands but return a single-precision
result). We furthermore discuss the modifications to the standard
RISC-V GCC compiler, which are required to enable the adoption
of SmallFloat types (Section 3.3).

3. A case study for showcasing the programming possibilities of our
SmallFloat ISA and compiler extensions. We achieve a significant
speedup compared to an FP32 baseline without sacrificing any
precision in the result (Section 3.4).

3.2. ARCHITECTURE 53

The rest of this chapter is organized as follows: Section 3.2 describes
in-depth the requirements and architecture of the proposed TP-FPU.
Section 3.3 outlines our work on TP ISA extensions and implementation
into the GCC compiler. Section 3.4 contains a TP case study performed
on a RISC-V core system. The last sections of this chapter contrast
our work with related works and provide a concluding summary.

3.2 Architecture

FPnew is a flexible, open-source hardware IP block that adheres to
IEEE 754 standard principles, written in SystemVerilog. The aim is
to provide FP capability to a wide range of possible systems, such as
general-purpose processor cores and domain-specific accelerators.

3.2.1 Requirements

To address the needs of many possible target systems, applications, and
technologies, FPnew had configurability as one of the driving factors
during its development. The ease of integration with existing designs
and the possibility of leveraging target-specific tool flows was also a
guiding principle for the design. We present some key requirements
that we considered during the design of the unit:

FP Format Encoding

As outlined in Chapters 1 and 2, it is becoming increasingly attrac-
tive to add custom FP formats (often narrower than 32 bit) into a
wide range of systems. While many of the systems mentioned ear-
lier abandon standard compliance for custom formats in pursuit of
optimizations in performance or circuit complexity, general-purpose
processors are generally bound to adhere to the IEEE 754 standard.
As such, the TP-FPU is designed to support any number of arbitrary
FP formats (in terms of bit width) that all follow the principles for
IEEE 754-2008 binary formats, as shown in Fig. 3.1.

54 CHAPTER 3. AN OPEN-SOURCE TRANSPRECISION FPU

Figure 3.1: FP format encoding as specified by IEEE 754 and its
interpretation.

Operations

To provide a complete FPU solution, we aim at providing the general
operations mandated by IEEE 754, supporting arithmetic operations,
comparisons, and conversions. Most notably, the FMA operation that
was first included in a processor in 1990 [80] has since been added to
IEEE 754-2008 and is nowadays ubiquitously used for efficient AI and
BLAS-type kernels. It computes (a×b)+c with only one final rounding
step. We aim at natively supporting at least all FP operations specified
in the RISC-V ISA.

Furthermore, for implementations supporting more than one FP
format, conversions among all supported FP formats and integers are
required. Non-standard multi-format arithmetic is also becoming more
common, such as performing the multiplication and accumulation in
an FMA using two different formats in tensor accelerators [23, 24].

SIMD Vectors

Nowadays, most general-purpose computing platforms offer SIMD
accelerator extensions, which pack several narrow operands into a wide
datapath to increase throughput. While it is possible to construct such
a vectorized wide datapath by duplicating entire narrow FPUs into
vector lanes, operations would be limited to using the same narrow
width. Flexible conversions amongst FP types are crucial for efficient
on-the-fly precision adjustment in TP applications (see Chapter 4) and
require support for vectored data. The architecture of the TP-FPU
thus must be able to support this kind of vectorization to support
multi-format operations on SIMD vectors.

3.2. ARCHITECTURE 55

Variable Pipeline Depths

To be performant and operate at high speeds, commonly used oper-
ations inside an FPU require pipelining. However, pipeline latency
requirements for FP operations are very dependent on the system
architecture and the choice of implementation technology. While a
GPU, for example, will favor a minimum area implementation and
is capable of hiding large latencies well through its architecture, the
impact of operation latency can be far more noticeable in an embedded
general-purpose processor core (see Chapter 4).

As such, the TP-FPU must not rely on hard-coding specific pipeline
depths to support the broadest possible range of application scenarios.
As circuit complexity differs significantly depending on the opera-
tion and FP format, the number of registers shall be configurable
independently for each.

Design Tool Flow

The TP-FPU is written in the industry-standard SystemVerilog HDL
(IEEE 1800), supported by every commonly used design flow, to
ensure interoperability and accessibility. Novel hardware construction
languages such as Chisel [81] were not considered as the lack of native
tool support considerably adds complexity w.r.t. standard design and
verification flows.

Target-specific synthesis flows (e.g. for application-specific in-
tegrated circuit (ASIC) or FPGA technologies) differ in available
optimized blocks, favoring inferrable operators over direct instantia-
tion. Synthesis tools will pick optimal implementations for arithmetic
primitives such as DSP slices in FPGAs or Wallace-Tree based multi-
pliers for ASICs with high timing pressure. As available optimizations
also differ between targets, the unit is described to enable automatic
optimizations, including clock-gating and pipelining, wherever possible.

3.2.2 Building Blocks
In the following we present a general architectural description of our
TP-FPU, shown in Fig. 3.2. Concrete configurations chosen for the
integration into processor cores and the implementation in silicon are
discussed in Chapters 4 and 5.

56 CHAPTER 3. AN OPEN-SOURCE TRANSPRECISION FPU

FPU
 Top Level

D
istribution & Silencing of U

nused O
perands

O
perand Inputs

O
peration

G
roup

BlockA
D
D

M
U
L

O
peration

G
roup

BlockD
I
V

S
Q
R
T

O
peration

G
roup

Block

C
O
M
P

O
peration

G
roup

Block

C
O
N
V

Fair R
ound-R

obin Arbitration of O
utputs

R
esult & Status Flags O

utput

w
f
p
u
:
	C

onfigurable bitw
idth of the FPU

 data path
w
f
:
	
	
	Bitw

idth of a given FP form
at. Form

ats configurable at synthesis tim
e.

w
l
n
x
:
	Bitw

idth of vector lane x of m
erged slice.

O
peration G

roup Block
D

istribution & Silencing of U
nused O

perands

Fair R
ound-R

obin Arbitration of O
utputs

MSMSMS MS
MSMS

w
f
p
u

w
f
p
u

SIM
D

 D
ata Packing Exam

ple: Parallel Slice
O

ne hardw
ired slice per form

at, direct w
iring to lanes

w
f
p
u

w
f

SIM
D

 D
ata Packing Exam

ple: M
erged Slice

O
ne slice for m

ultiple form
ats, m

ultiple form
ats per lane

Form
at-dependent m

ultiplexing from
 input bits to lanes

i
n
[
2
]

i
n
[
1
]

i
n
[
0
]

i
n
[
3
]

Lane 4
Lane 3

Lane 1
Lane 2

M
aster side of the interface.

Asserts v
a
l
i
d signal to m

ake data available.
Slave side of the interface.
Asserts r

e
a
d
y signal to accept data.

C
reates back-pressure by not accepting data.

MS

Parallel
Slice

Parallel
Slice

Parallel
Slice

F
o
r
m
a
t

1
F
o
r
m
a
t

2
F
o
r
m
a
t

n

1
24
a

4
b

i
n
[
1
]

i
n
[
0
]

i
n
[
0
]

i
n
[
0
]

i
n
[
2
]

i
n
[
1
]

i
n
[
2
]

i
n
[
1
]

i
n
[
0
]

i
n
[
3
]

Lane 4
Lane 3

Lane 2
Lane 1

Parallel Slice

Silencing of U
nused Vector Lanes

Vector
Lane 1

Vector
Lane 2

w
f w

fpu

w
f

Vector
Lane k

Vector Packing (Fixed W
iring)

w
fpu

O
ne

Form
at

w
f

w
f

w
f

F
M
A

F
M
A

F
M
A

3
a

w
f

M
erged Slice

M
u
l
t
i
p
l
e

F
o
r
m
a
t
s

M
erged Slice

Vector D
isassem

bly & Lane Silencing

Vector
Lane 1

Vector
Lane 2

w
l
n
2

w
f
p
u

w
l
n
1

Vector
Lane k

Vector Assem
bly (Form

at-D
ependent)

w
f
p
u

M
ultiple

Form
ats

w
l
n
1

w
l
n
2

w
l
n
k

M
U
L
T
I

F
M
A

M
U
L
T
I

F
M
A

M
U
L
T
I

F
M
A

3
b

w
l
n
k

Figure
3.2:

D
atapath

block
diagram

ofthe
T
P-FPU

w
ith

its
underlying

levels
ofhierarchy.

It
supports

m
ultiple

FP
form

ats,and
the

datapath
w
idth

is
configurable.

3.2. ARCHITECTURE 57

FPU Top Level

At the top level of the TP-FPU (see Fig. 3.2-1), up to three FP
operands can enter the unit per clock cycle, along with control signals
that determine the type of operation as well as the format(s) involved.
One FP result leaves the unit along with the status flags raised by the
current operation according to IEEE 754-2008. The input and output
operands’ width is parametric and will henceforth be referred to as
the unit width (wfpu).

Input operands are routed towards one of four operation group
blocks, each dedicated to a class of instructions. Arbiters feed the
operation group outputs towards the output of the unit. As only one
operation group block can receive new data in any given clock cycle,
clock and datapath gating can be employed to silence unused branches
of the FPU, thereby eliminating spurious switching activity.

Operation Group Blocks

The four operation group blocks making up the TP-FPU are as follows:

• ADDMUL: addition, multiplication and FMA

• DIVSQRT : division and square root

• COMP: comparisons and bit manipulations

• CONV : conversions among FP formats, to/from integers

Each of these blocks forms an independent datapath for operations
to flow through (see Fig. 3.2-2). When multiple FP formats are
present in the unit, the blocks can host several slices that are either
implemented as format-specific (parallel) or multi-format (merged).
In the parallel case, each slice hosts a single FP format, giving the
broadest flexibility in terms of path delay and latency, as each slice
can contain its internal pipeline. While this duplication increases
the circuit area, which is cheap in scaled ASIC technologies, it offers
flexibility to implement each format efficiently. Inactive format slices
can be clock-gated and silenced. In contrast, a merged slice can lower
total area costs by sharing hardware and housing multiple formats at
reduced flexibility. Furthermore, merging may incur energy and latency

58 CHAPTER 3. AN OPEN-SOURCE TRANSPRECISION FPU

overheads due to small formats reusing the same over-dimensioned
datapath, with the same pipeline depth for all formats.

Format Slices

Format slices host the functional units which perform the operations
in which the block is specialized.

A SIMD vector datapath can be created if the format can be packed
into the unit width (wfpu ≥ 2×wf). In this case slices will host multiple
vector lanes, denoted lane[1] . . . lane[k].

In the parallel case (see Fig. 3.2-3a), the lanes are duplicate in-
stances of the same functional unit, and the number and width of lanes
are determined as given in Eq. (3.1).

kparallel =
⌊

wfpu

wf

⌋
wlane,parallel = wf

(3.1)

In the merged case (see Fig. 3.2-3b), the total number of lanes
is determined by the smallest supported format; the width of each
lane depends on the containing formats. Individual lanes within
merged slices have the peculiar property of differing in bit width (see
Eq. (3.2)), and each lane needs support for a different set of formats
(see Fig. 3.2-4b).

kmerged =

 wfpu

min
∀format∈slice

wf

wlane[i],merged = max

∀format∈slice
wf |wf≤

wfpu
i

(3.2)

As the current operation is either scalar or vectorized, either one or
several lanes are used to compute the slice’s result while unused lanes
are silenced. The merged slices in the CONV block require a more
complex data distribution and collection scheme for SIMD vectors as
input and output format widths can differ. Furthermore, it is possible
to cast two scalar FP operands and insert them as elements of vectors
for the dynamic creation of vectors at runtime. If SIMD is disabled,
there is only one lane per slice.

3.2. ARCHITECTURE 59

Functional Units

The functional units within a slice can either be fully pipelined or use
a blocking (e.g., iterative) implementation.

The ADDMUL block uses fully pipelined FMA units compliant with
IEEE 754-2008, implemented using a single-path architecture [80, 57],
providing results within 1/2 ulp. Subnormals and all rounding modes
mandated by IEEE 754 are implemented. Due to the single-path
architecture employed, support for subnormal numbers does not signifi-
cantly impact the data path; the internal exponents are widened by one
bit to treat subnormals as normal values. The default RNE rounding
mode is the most complex to implement, adding a carry chain to the
datapath. A multi-format version of the FMA unit is used in merged
slices, supporting mixed-precision operations that use multiple formats.
Namely, the multiplication is done in the source format src_fmt while
the addition is done using the destination format dst_fmt, matching
the C-style function prototype dst_fmt fma(src_fmt, src_fmt,
dst_fmt).

In the DIVSQRT block, divisions and square roots are computed
using an iterative divider. A radix-2 non-restoring division iteration is
unrolled three times. Thus, the iterative portion of the unit computes
three mantissa bits of the result value per clock cycle and is imple-
mented as a merged slice. The number of iterations performed can be
overridden to be fewer than needed for the correctly rounded result to
trade throughput for accuracy in TP computing. The COMP block’s
operational unit consists of a comparator with additional selection
and bit manipulation logic to perform comparisons, sign manipulation,
and FP classification. Lastly, the CONV block features multi-format
casting units that can convert between any two FP formats, from
integer to FP formats, and from FP to integer formats.

Unit Control Flow

While only one operation may enter the FPU per cycle, multiple
values coming from paths with different latencies may arrive at the
slice outputs in the same clock cycle. The resulting data from all
slices and blocks are merged using fair round-robin arbitration. A
simple synchronous valid-ready handshaking protocol is used within

60 CHAPTER 3. AN OPEN-SOURCE TRANSPRECISION FPU

the internal hierarchies and on the unit’s outside interface to stall the
internal pipelines.

As the unit makes heavy use of handshaking, data can traverse the
FPU without the need for a priori knowledge of operation latencies.
Fine-grained clock gating based on handshake signals can thus occur
within individual pipeline stages, silencing unused parts and “popping”
pipeline bubbles by allowing data to catch up to the stalled head of a
pipeline. Coarse-grained clock gating can be used to disable operation
groups or the entire TP-FPU if no valid data is present in the pipeline.

3.2.3 Configuration, Parametrization, and Usage

The TP-FPU offers great configurability through a SystemVerilog
package and instance parameters. In the package, any number of
custom formats can be defined containing any number of exponent
and mantissa bits, not limited to power-of-two format widths as in
traditional computing systems1. Formats are treated according to
IEEE 754-2008 (see Fig. 3.1) and support all standard rounding modes.
Operations on defined formats can be implemented as either a parallel
or a merged slice or disabled entirely by using parameters. Furthermore,
SIMD vectors can be enabled globally for all formats with wf ≤ wfpu/2,
and wfpu can be chosen much wider than the largest supported format
(e.g., for vector accelerators). Also parametric is the number of pipeline
stages for each format and operation group, with all formats of merged
slices sharing a pipeline. Retiming features of synthesis tools might
be required to optimize these registers’ placement for given target
technologies.

All TP-FPU instance parameters are fixed into hardware during
synthesis, and multiple different instances can be created from the
same FPnew RTL without modifications. All implementations in this
thesis were parametrized from the default package. As the unit is
open-source, designers are free to extract or replace functional units
or add other operation groups of their own.

1In order to meaningfully interpret bit patterns as FP values according to
IEEE 754, a format should contain at least 2 bit each of exponent and mantissa.
The SystemVerilog language does not guarantee support for signal widths above
216 bit, which is far beyond the reasonable use case of a FP format.

3.3. ENABLING FPNEW IN THE RISC-V ISA 61

3.3 Enabling FPnew in the RISC-V ISA

To enable TP computing and fully leverage our TP-FPU in general-pur-
pose processors, we require support for non-standard FP formats and
instructions within an ISA. The open-source RISC-V ISA offers ample
opportunities for extensions with custom operations, thus we have
extended the ISA with special instructions. Our RISC-V SmallFloat
extensions comprise a set of non-standard extensions to the RISC-V
ISA which enable operations on sub-32-bit FP formats.

As a base, scalar extensions are provided that match the “F” and “D”
standard FP extensions in terms of available operations. Furthermore,
optional vectorial extensions are specified which make use of SIMD
sub-word parallelism by packing multiple sub-32-bit elements into
one FP register. Lastly, we add an optional extension for auxiliary
operations, which are not available in the standard FP extensions.

3.3.1 FP Formats

In addition to the IEEE 754 binary32 and binary64 formats included
in RISC-V “F” and “D” standard extensions, respectively, we also
offer the sub-32 bit formats proposed in Chapter 2. The available FP
formats in our implementations are:

• binary64 (FP64): IEEE 754 double-precision (11, 52)

• binary32 (FP32): IEEE 754 single-precision (8, 23)

• binary16 (FP16): IEEE 754 half-precision (5, 10)

• binary16alt (FP16alt): custom half-precision (8, 7)

• binary8 (FP8): custom quarter-precision minifloat (5, 2)

Data in all these formats are treated analogously to standard RISC-V
FP formats, including the support for subnormals, NaN and the
NaN-boxing of narrow values inside wide FP registers.

62 CHAPTER 3. AN OPEN-SOURCE TRANSPRECISION FPU

Table
3.1:

Sum
m
ary

ofavailable
FP

operations
w
ith

Sm
allFloat

extensions
to

the
R
ISC

-V
ISA

.
Instruction

exam
ples

listed
for

operations
on

binary16.

Instruction
ISA

O
peration

Type
Exam

ple
Sem

antics
Extension

Scalar
A
rithm

etic
fadd.h

rd
=

rs1
+

rs2
X
f16

Scalar
C
onversions

fcvt.h.s
rd

=
(fp32)rs1

X
f16

Vector
A
rithm

etic
vfadd.h

rd[]
=

rs1[]
+

rs2[]
X
fvec

Vector
C
onversions

vfcvt.x.h
rd[]

=
(int16v)rs1[]

X
fvec

C
ast-and-Pack

vfcpk.h.s
rd[]

=
{(fp16)rs1,

(fp16)rs2}
X
fvec

Expanding
fmacex.s.h

rd
=

(fp32)(rs1
*

rs2
+

rd)
X
faux

O
ther

vfdopex.h
rd[]

=
(fp32)dotp(rs1[],rs2[])

X
faux

3.3. ENABLING FPNEW IN THE RISC-V ISA 63

3.3.2 Operations

The SmallFloat extensions have no collisions with typical RISC-V
implementations and can thus be included in any implementation with-
out loss of RISC-V standard compliance. Table 3.1 gives a summary
of available operation types with SmallFloat extensions active. We
exemplify a representative instruction for each operation type, and we
specify its semantics with a C-like pseudocode notation. For brevity,
we have limited the list to binary16 instructions, however operations
related to the other types are analogously defined by changing the
opcode suffixes (.b is used for binary8 and .ah for binary16alt). More
details are provided in the SmallFloat ISA manual [82].

The new operations can be roughly grouped into three parts, namely
scalar, vectorial, and auxiliary extensions.

3.3.3 Scalar Extensions

The scalar SmallFloat extensions provide support for the binary16
and custom binary16alt FP formats (both 16-bit wide), as well as
the custom binary8 format (8-bit wide). Each of these formats is
contained in its own respective ISA extension “Xf16”, “Xf16alt” and
“Xf8”, all of which are a repurposed version of the single-precision “F”
standard RISC-V extension. An example of scalar operation is fadd.h
in Table 3.1.

The set of operations on SmallFloat formats is equivalent to their
single-precision counterparts; thus, their encoding closely matches the
standard FP operations. A previously unused configuration of the
FP format field in the instruction word has been chosen to signify
16-bit FP types, while the patterns representing quad-precision FP
operations (128-bit) have been repurposed to now denote the 8-bit
FP type. While this poses a collision with the “Q” RISC-V standard
extension, it is highly unlikely embedded implementations targeted
towards low precision FP will also implement 128-bit floats. The
two 16-bit formats (binary16 and binary16alt) are differentiated using
unused states of the rounding-mode fields in the instruction word.

64 CHAPTER 3. AN OPEN-SOURCE TRANSPRECISION FPU

Table 3.2: FLEN, given by the widest supported floating-point format
(rows) defines the vector dimension for all narrower supported formats
(columns).

Vector length n if supported
F Xf16 Xf16alt Xf8

FL
EN

64 2 4 4 8
32 × 2 2 4
16 × × × 2

3.3.4 Vectorial Extension
The vectorial SmallFloat extension “Xfvec” is encoded in its own
encoding space, utilizing a previously unused prefix in the RISC-V
“OP” opcode. This extension defines SIMD sub-word parallelism for all
operations in the scalar FP extensions, such as the vfadd.h operation
in Table 3.1. If “Xfvec” is supported, vectorial FP operations are added
for all supported FP formats that are narrower than the width of the
FP register file (FLEN). Thus, the vectorial extension depends on some
or all the following: the “D” and “F” standard extensions as well as
the “Xf16” and “Xf16alt” SmallFloat extensions, which also defines the
format-specific vector length n as shown in Table 3.2. Notably, if the
“D” standard extension is enabled (and hence FLEN=64), vectorial
operations on single-precision FP data are also enabled with “Xfvec”.

In addition to computational and comparison operations already
present in the scalar extensions, “Xfvec” adds vector-specific conversion
operations. Vectorial FP - Integer conversions will convert a vector of
packed FP values to a packed vector of integer values of the same width
(the vfcvt.x.h operation in Table 3.1), and vice versa. Vectorial FP -
FP conversions pose the challenge of mismatched vector lengths for
different FP formats. Thus instructions are also provided to convert
half of the more populous FP vector into a complete vector of a wider
format and vice versa. For example, the lower or upper two entries of
a binary8 vector (containing four entries) can be converted to a vector
of two binary16 2.

2Assuming FLEN=32 here. Analogous behavior for FLEN=64, where four
entries are converted concurrently.

3.3. ENABLING FPNEW IN THE RISC-V ISA 65

Lastly, cast-and-pack instructions were added that convert two
scalar single- or double-precision (if supported) FP operands and in-
sert them into two adjacent entries of a packed vector in the destination
register. These operations were added in addition to the vectorial
conversion instructions since “convert scalars and assemble vectors”
operations emerged as the main bottleneck of TP computing (see
Chapter 4). In Table 3.1 the vfcpk.h.s operation converts two single-
precision values to half-precision and insert them into a half-precision
vector.

3.3.5 Auxiliary Operations Extension
Finally, additional operations not included in the standard FP exten-
sions such as averaging two numbers or dot-product of vectors have
been added in their own extension set “Xfaux”. These operations have
been encoded in unused regions of the scalar or vectorial extensions,
depending on the operation’s nature.

“Xfaux” most notably includes expanding operations that take
SmallFloat type operands but return a single-precision result, making
explicit conversion instruction cycles unnecessary in many applications
where the dynamic range of operands increases over the execution.
These instructions include expanding multiplication, multiply-accu-
mulate of SmallFloats on a binary32 accumulator, as well as expand-
ing dot-products. A typical example of expanding operation is the
fmacex.s.h operation in Table 3.1, which performs a multiplication
between two half-precision operands and accumulates the result into a
single-precision register.

3.3.6 Encoding
The encoding of these new instructions was implemented as RISC-V
brown-field non-standard ISA extensions [82]. As the scalar instruc-
tions only introduce new formats, the encoding of the standard RISC-V
FP instructions is reused and adapted. We use a reserved format en-
coding to denote the FP16 format and reuse the encodings in the
quad-precision standard extension “Q” to denote FP8. We are not
targeting any RISC-V processor capable of providing 128-bit FP oper-
ations. Operations on FP16alt are encoded as FP16 with a reserved

66 CHAPTER 3. AN OPEN-SOURCE TRANSPRECISION FPU

rounding mode set in the instruction word. Vectorial extensions make
use of the vast unused space in the integer operation opcode space,
similarly to the encoding of DSP extensions realized for the RI5CY
core [50]. Auxiliary instructions are encoded either in unused FP or
integer operation opcode space, depending on whether they operate
on scalars or vectors.

3.3.7 Compiler Support
This section describes the main modifications to the baseline GCC
RISC-V compiler, which are required to support SmallFloat types.

As a preliminary step, we have extended the real interface – used
as an internal representation for all the FP types supported by the
programming language – with callback functions that enable to convert
data from the internal format to the SmallFloat one (and vice versa).
Accordingly, we have extended the RISC-V back-end to include new
machine modes which describe the size and representation of the
SmallFloat formats (scalar types and their vectorial counterparts).

We have added a new set of rules to the machine description, which
provides all the information required to perform the lowering (i) from
the middle-end (gimple) to the back-end (RTL) representation, and
(ii) from RTL expressions to assembly opcodes (see Table 3.1).

The coexistence of two FP formats with the same size (i.e., binary16
and binary16alt) has required modifications to the pass performing the
RTL lowering. It has been necessary to correlate gimple expressions
involving these types to the related back-end rules to guarantee a
correct behavior, in particular, to enable casts between binary16 and
binary16alt formats.

GCC provides a mechanism to access at the back-end level a set
of language-specific front-end hooks. We have used this mechanism
to extend the standard C/C++ type system to provide access to
the SmallFloat types by introducing a new set of keywords (float8,
float16 and float16alt). We have also augmented the set of implicit
conversion rules to integrate the new format into the C/C++ type
system fully. Each operand is automatically converted to the wider
one in an expression involving different FP types and no explicit casts.
In case of expressions using both float16 and float16alt, float16
is prioritized.

3.3. ENABLING FPNEW IN THE RISC-V ISA 67

GCC includes an automatic vectorization pass that operates on
the middle-end intermediate representation [83]. This pass analyzes
loops to replace the scalar operations with the vectorial ones reducing
the loop’s trip-count by the vectorization factor. In our work we have
extended the GCC auto-vectorizer to enable the adoption of SmallFloat
types.

• We have modified the RTL lowering pass (i) to distinguish be-
tween float16 and float16alt targets when performing a vec-
tor unpacking operation from a float8 vector and (ii) to support
vectorial casts between float16 and float16alt.

• We have introduced a virtual vector type (i.e. a one-element
vector) for single-precision operands. We enable the support
to the cast-and-pack operations, which involve a SmallFloat
vector as destination and single-precision registers as sources.
Simultaneously, introducing a vectorial machine mode prevents
the compiler from aborting the vectorization analysis for loops
that include single-precision arithmetic at an early stage.

• We have tuned the cost model provided to the auto-vectorizer by
the RISC-V back-end, intending to allow the presence of single-
precision operations when the following ones can be vectorized.
In this case, cast-and-pack operations are inserted after the sin-
gle-precision operations, which are unrolled by the vectorization
factor3.

In addition to the compiler’s automatic vectorization techniques,
programmers can manually vectorize their code. GCC supports the
definition of vectorial data types by means of a typedef declaration
coupled with a vector_size attribute; standard arithmetic opera-
tions using these types are automatically lowered into their vectorial
counterpart. Moreover we have provided a set of compiler intrinsics
which provide access to the operations that are included in the “Xfvec”
and “Xfaux” ISA extensions (see Table 3.1). An example of manual
vectorization using vectorial types and intrinsics is explained in [35].

3GCC already considered vectorization patterns involving multiple vectorial
types with different widths through unrolling and vectorial casts, but cast-and-pack
semantic was not supported.

68 CHAPTER 3. AN OPEN-SOURCE TRANSPRECISION FPU

GCC handles widening variants of addition, multiplication, and
multiply-and-add operations, whose operands have a smaller size than
results. Since these operations were supported only for integer data
types, we have extended the middle-end pass that generates interme-
diate code to consider widening expression with SmallFloat operands.
Adopting this approach, GCC can use the expanding operations of
the “Xfaux” extension without ad-hoc code modifications in the target
program. Also, in this case, we have provided intrinsics for advanced
programmers who perform fine code tuning.

3.4 Programming of Transprecision
Application Kernels

To visualize some challenges and benefits of TP applications, we
showcase a simple multi-format application kernel running on the
TP-enabled RI5CY core (see Chapter 4). Furthermore, we touch
on the considerations to make when programming for TP-enabled
platforms.

3.4.1 Transprecision Application Case Study
We consider the accumulation of element-wise products of two in-
put streams, commonly found in many applications such as signal
processing or SVM.

Approach

Figure 3.3 shows the C representation of the workload relevant for
our evaluation. The input streams reside in memory as FP16 values,
and the accumulation result uses FP16 or FP32. We use our TP ISA
extensions to obtain the assembly in Fig. 3.4 as follows:

• Fig. 3.4 a) is the FP16-only workload in Fig. 3.3 a) requiring an
ideal 3 instructions per input pair.

• Fig. 3.4 b) performs all operations on FP32 to achieve the most
precise results but requires casts in a total of 5 instructions.

3.4. PROGRAMMING OF TP APPLICATION KERNELS 69

c)

b)a)
for	(int	i	=	0;	i	<	n;	++i)
		sum	+=	a[i]	*	b[i];

for	(int	i	=	0;	i	<	n;	++i)
		sum	+=	a[i]	*	b[i];

float16	*a,	*b;
float16	sum	=	0;

float16	*a,	*b;
float			sum	=	0;

for	(int	i	=	0;	i	<	n;	++i)
		__macex_f16(sum,	a[i],	b[i]);

float16	*a,	*b;
float			sum	=	0;

Figure 3.3: Accumulation of element-wise products from two input
streams a and b. Inputs are in FP16, the result is accumulated using
FP16 in a), and using FP32 otherwise. Code c) uses compiler intrinsic
functions to invoke TP instructions.

Table 3.3: Metrics corresponding to assembly from Fig. 3.4

Bits Rel. Error of Result vs. Rel. Energy
correct Exact Exact FP16* Core System

Exact Result 37 0.0
Cast to FP16 12 1.9× 10−4 0.0
Result 3.4a) 9 2.7× 10−3 2.9× 10−3 0.60 0.63
Result 3.4b) 22 2.0× 10−7 0.0 1.00 1.00
Result 3.4 c) 19 1.6× 10−6 0.0 1.16 1.03
Result 3.4d) 19 1.6× 10−6 0.0 0.97 0.75
Result 3.4 e) 22 2.0× 10−7 0.0 0.63 0.63

* The final result is converted to FP16 and compared to the exact result
converted to FP16

70 CHAPTER 3. AN OPEN-SOURCE TRANSPRECISION FPU

lh a4, 0(t0)
lh a5, 2(t0)
lh a6, 0(t1)
lh a7, 2(t1)

lh a4, 0(t0)
lh a5, 2(t0)
lh a6, 0(t1)
lh a7, 2(t1)

Scalar FP16 Extension
All computation on FP16

Scalar FP16 Extension
All computation on FP32

fmadd.h a0, a4, a6, a0
fmadd.h a0, a5, a7, a0

fcvt.s.h a4, a4
fcvt.s.h a5, a5
fcvt.s.h a6, a6
fcvt.s.h a7, a7

fmadd.s a0, a4, a6, a0
fmadd.s a0, a5, a7, a0

Lo
ad

FP
16

FP
16

 to
 F

P3
2

FP
32

a) b)

5 instructions per data item
2 load, 1 compute, 2 convert

3 instructions per data item
2 load, 1 compute

lh a4, 0(t0)
lh a5, 2(t0)
lh a6, 0(t1)
lh a7, 2(t1)

Scalar FP16 Extension
Mult. FP16, acc. FP32

fmul.h a4, a4, a6
fmul.h a5, a5, a7

fcvt.s.h a4, a4
fcvt.s.h a5, a5

fadd.s a0, a0, a4
fadd.s a0, a0, a5

lw a4, 0(t0)

lw a6, 0(t1)

Vector FP16 Extension
Mult. FP16, acc. FP32

vfmul.h a4, a4, a6

vfcvtu.s.h a5, a4
vfcvt.s.h a4, a4

fadd.s a0, a0, a4
fadd.s a0, a0, a5

fadd.s a0, a0, a4
fadd.s a0, a0, a5

c) d)

Lo
ad

FP
16

FP
16

 to
 F

P3
2

FP
32

Auxiliary FP16 Extension
Expanding Multiply-Acc.

3 instructions per data item
2 load, 1 compute

fmacex.s.h a0, a4, a6
fmacex.s.h a0, a5, a7

lh a4, 0(t0)
lh a5, 2(t0)
lh a6, 0(t1)
lh a7, 2(t1)

e)

Lo
ad

FP
16

FP
16

 to
 F

P3
2

FP
32

5 instructions per data item
2 load, 2 compute, 1 convert

3.5 instructions per data item
1 load, 1.5 compute, 1 convert

Figure 3.4: RISC-V assembly implementations of two iterations of the
loop body in Fig. 3.3 (grey).

3.4. PROGRAMMING OF TP APPLICATION KERNELS 71

• Fig. 3.4 c) tries to save energy by performing the multiplication
in FP16 to replace the FP32 FMA with additions.

• Fig. 3.4 d) accelerates the FP16 portion of the previous code by
using SIMD in 3.5 instructions.

• Fig. 3.4 e) makes use of expanding multi-format FMA instructions
to combine computation and conversion in 3 instructions again.

The complete application repeats these actions over the entire input
data using the zero-overhead hardware loops and post-incrementing
load instructions available in RI5CY. Further manual loop unrolling
can only be used to hide instruction latency overheads due to the low
data intensity of this workload.

Performance and Energy Results

We collect the final result accuracy and energy use of these programs
in Table 3.3. Energy results have been obtained from a post-layout
simulation of the RI5CY + TP-FPU design presented in Section 4.3.2.

The accuracy of the result from Fig. 3.4a) is relatively low with
9 bit of precision correct (about three decimal digits), while the exact
result of the operation would require 37 bit of precision. Due to the
accumulation of rounding errors, the result strays far from the possibly
most accurate representation of the exact result in FP16 (12 bit correct).
The code in Fig. 3.4 b) offers 22 bit of precision but increases energy
cost by 66% and 59% on core and system level, respectively, due to
the increased execution time and higher per-instruction energy spent
on FP32 operations.

Figure 3.4 c) suffers from decreased accuracy (19 bit) and even
requires 16% more core energy (+3% system energy) w.r.t. the FP32
code, as the FP16 multiplications are energetically much more expen-
sive than the casts they replace. Compared to the FP32 case, the use
of SIMD in Fig. 3.4 d) reduces core energy by 3% and total system
energy by even 25%. In the core, the increased performance slightly
outweighs the increased FPU energy, where on the system level, the
lower number of memory operations has a significant effect.

Using the expanding multiply-accumulate operations in Fig. 3.4 e)
offers the best of both worlds: the same performance as the naïve

72 CHAPTER 3. AN OPEN-SOURCE TRANSPRECISION FPU

FP16-only version and the same precision as if performed entirely on
FP32. Converted to FP16, this yields a value 14.6×more accurate than
using FP16 only, reducing core and system power by 37% compared to
the FP32 case. These results highlight the energy savings potential of
TP computing when paired with flexible hardware implementations.

3.4.2 Compiler Support

We make the low-level TP instructions available as a set of compiler in-
trinsic functions that allow full use of the TP hardware by the compiler
and programmer. Scalar types and basic operations are transparently
handled by the compiler through the usage of the appropriate types
(float16, float16alt, float8), and operators (+, *, etc.). Vectorial
operations on custom FP formats are inferred by using GCC vector
extensions. In fact, the compiler can generate programs such as in
Fig. 3.4 d) from the code in Fig. 3.3 b).

However, operations such as the FMA and optimized access and
conversion patterns using SIMD vectors often do not cleanly map to
high-level programming language operator semantics. It is prevalent
that performance-optimized FP code requires low-level manual tuning
to make full use of the available hardware, even in non-TP code. We
can and should make use of the non-inferrable operations such as
cast-and-pack or expanding FMA through calls to intrinsics, as seen in
Fig. 3.3 c), which can produce assembly Fig. 3.4 e). The benefits and
limits of the compiler-based approach are further investigated in [35].

3.5 Related Work

3.5.1 SIMD and TP in Commercial ISAs

Intel’s x86-64 SSE/AVX extensions offer very wide SIMD operations
(up to 512 bit in AVX-512) on FP32 and FP64. They include an FP
dot-product instruction that operates on vectors of 2× FP64 or 4×
FP32, respectively, producing a scalar result. Currently, no non-stan-
dard FP formats are supported, but future CPUs with the AVX-512
extension (Cooper Lake) will include the BF16 format (FP16alt) with

3.5. RELATED WORK 73

support for cast-and-pack, as well as an expanding SIMD dot-product
on value pairs.

The ARM NEON extension optionally supports FP16 and contains
a separate register file for SIMD operations that support register fusion
through different addressing views depending on the FP format used.
The addressing mode is implicit in using formats within an instruction,
enabling very consistent handling of multi-format (expanding, shrink-
ing) operations that always operate on entire registers. This approach
contrasts with our ISA extension, which requires multiple encodings
to slice input or output vectors during vectorial conversions.

A supplement to the ARM ISA is the Scalable Vector Extension
(SVE), targeting high-performance 64-bit architectures only, providing
scaling to vector lengths far beyond 128 bit. SVE contains optional
support for BF16 as a storage format, implicitly converting all BF16
input data to FP32 when used in computations, producing FP32
results. Converting FP data to BF16 for storage is also possible.

A new ISA extension for ARM M-class processors is called MVE.
It reconfigures the FP register file to act as a bank of eight 128-bit
vector registers, each divided into four “beats” of 32 bit. While vector
instructions always operate on the entire vector register (fixed vector
length of 128 bit), implementations are free to compute one, two, or all
four beats per clock cycle – essentially allowing serializing execution on
lower-end hardware. The floating-point variant of this ISA extension
can operate on FP16 and FP32. Multi-format operations are not
supported. An execution scheme in the spirit of MVE would apply
to processors using our ISA extension with very little implementation
overhead. For a single vector instruction, emitting a sequence of four
or two SIMD FP operations recreates the behavior of a single-beat
or dual-beat system for a FP register width of 32 bit and 64 bit, re-
spectively. Furthermore, MVE also supports predication on individual
vector lanes, interleaving, and scatter-gather operations not available
in our extension.

There exists a working draft for the RISC-V “V” standard vector
extension. The “V” extension adds a separate vector register file
with Cray-style vector operation semantics and variable vector lengths.
Multiple registers can also be fused to increase the vector length
per instruction effectively. The standard vector extension includes
widening and narrowing operations that fuse registers on one end of

74 CHAPTER 3. AN OPEN-SOURCE TRANSPRECISION FPU

the operation, allowing consistent data handling without addressing
individual register portions. It supports FP16, FP32, FP64, and FP128
and widening FMA operations. They operate in the same manner
as our implementation of the fmacex operation, with the limitation
that the target format must be exactly 2× as wide as the source.
Furthermore, reduction operations for the inner sum of a vector exist.

3.5.2 Open-Source Configurable FPU Blocks

Most open-source FPU designs are implementing a fixed implemen-
tation in a specific format, targeting a specific system or technol-
ogy [84, 85]; however, there are some notable configurable works
available.

For example, FloPoCo [86] is a FP function generator targeted
mainly at FPGAs implementations, producing individual functions
as VHDL entities. FP formats are freely configurable in terms of
exponent and mantissa widths; the resulting hardware blocks are not
IEEE 754-compliant, however. Namely, infinity and NaN values are
not encoded in the FP operands themselves, and subnormals are not
supported as a trade-off for a slightly higher dynamic range present in
FloPoCo FP formats. The FMA operation is not available.

Hardfloat [87] on the other hand provides parametric FP functions
that are IEEE 754 compliant. It is a collection of hardware modules
written in Chisel with parametric FP format and includes the FMA
operator. While Chisel is not widely adopted in commercial EDA tool
flows, a generated standard Verilog version is also available. Hardfloat
internally operates on a non-standard recoded representation of FP
values. However, the operations are carried out following IEEE 754, and
conversion blocks are provided to the standard interchange encoding,
which is used in the TP-FPU.

Both of these works offer individual function blocks instead of
fully-featured FPUs. However, thanks to the hierarchical architecture
of the TP-FPU, it would be easily possible to replace its functional
units with implementations from external libraries.

3.5. RELATED WORK 75

3.5.3 FPUs for RISC-V
Some vagueness exists in IEEE 754 concerning implementation-defined
behavior, leading to problems with portability and reproducibility
of FP code across software and hardware platforms. FP behavior
can be vastly different depending on both the processor model and
compiler version used. RISC-V specifies precisely how the open points
of IEEE 754 are to be implemented, including the exact bit patterns
of NaN results and when values are rounded to avoid at least the
hardware-related issues. As such, FPUs intended for use in RISC-V
processors (such as this work) are usually consistent in their behavior.

The FPUs used in the RISC-V cores originating from UCB, Rocket
and BOOM [88, 89], are based on Hardfloat components in specific
configurations for RISC-V.

Kaiser et al. [90] have published a RISC-V-specific implementa-
tion of the FMA operations on FP64 in the same Globalfound-
ries 22FDX technology as this work. We compare our TP-FPU to
their implementation and others towards the end of this section.

3.5.4 Novel Arithmetics / TP FP Accelerators
Non-standard FP systems are becoming ever more popular in recent
years, driven mainly by the requirements of dominant machine learning
algorithms.

For example, both the Google TPU [23] and Nvidia’s Tensor
Cores [24] provide high throughput of optimized operations on re-
duced-precision FP formats for fast neural network inference. Both
offer a custom format termed bfloat16 (BF16), using the same encoding
as FP16alt in this work. The latter furthermore supports FP16 as well
as a new 19-bit FP format called TensorFloat32, which is formed from
the 19 most significant bits of an FP32 input value, producing results
in FP32. However, both architectures omit certain features mandated
in the standard, such as denormal numbers or faithful rounding, to
pursue higher throughput and lower circuit area. The uplift in perfor-
mance and efficiency on BF16 we presented is directly actionable, as
the format has been popularized for DL applications with negligible
accuracy loss [91].

Dedicated accelerators geared towards neural network training such

76 CHAPTER 3. AN OPEN-SOURCE TRANSPRECISION FPU

as NTX [92], for example, employ non-standard multiply-accumulate
circuits using fast internal fixed-point accumulation. While not com-
pliant to IEEE 754, they can offer higher precision and dynamic range
for accumulations.

FP-related number systems are also being employed, such as for ex-
ample unums [77], Posits [93], and logarithmic nubmer systems (LNSs).
Unum-based hardware implementations were proposed in [40, 75]. Fast
multiplication and transcendental functions were implemented into a
RISC-V core in [94]. Nannarelli [95] describes the design of an FPU
based on the Tunable floating-point (TFP) format, which supports a
variable number of bits for mantissa (from 4 to 24) and exponent (from
5 to 8). However, this solution does not support vectorization, which is
a crucial enabler for energy efficiency. Other works have proposed dedi-
cated FP units for reduced-precision [68, 69] and variable-precision [67]
arithmetic. In many cases, these formats’ adoption has generated some
criticisms due to the high cost of hardware implementations and the
significant effort for code refactoring.

While the focus of our TP-FPU is to provide IEEE 754-like FP
capabilities, our work could be leveraged in several orthogonal ways
to combine with these more exotic number systems. For example,
dedicated functional units for these formats could be included in the
TP-FPU as new operation groups alongside the current FP functions
to accelerate specific workloads. Furthermore, our functional unit
implementations can be utilized as a starting point to implement some
of these novel arithmetic functions. The datapath necessary for posit
arithmetic is similar to a merged functional unit with many possible
input formats. Lastly, the TP-FPU could be used as an architectural
blueprint and filled with arbitrary functional units, leveraging our
architecture’s energy proportionality.

3.5.5 Multi-Mode Arithmetic Blocks
To our knowledge, no fully-featured TP-FPUs with support for multi-
ple formats have been published so far. However, multi-mode FMA
architectures have been proposed recently, usually featuring compu-
tations on two or three FP formats [96, 97, 98, 67], or a combination
of integer and FP support [100]. Table 3.4 compares the proposed
architectures with our silicon implementation (see Chapter 5) under

3.5. RELATED WORK 77

Table 3.4: FMA comparison of this work (complete FPU) with other
standalone [multi-mode] architectures at nominal conditions.

Format L/T* Perf.† Energy Energy Efficiency
[Gflop/s] [pJ/flop] [Gflop/s W] rel.

This Work, 22 nm, 0.8 Va, 0.049 mm2 (entire FPU), 923 MHz
FP64 scalar 4/1 1.85 13.36 74.83 1.0×
FP32 scalar 3/1 1.85 4.72 211.66 2.8×
FP16 scalar 3/1 1.85 2.48 403.08 5.4×
FP16alt scalar 3/1 1.85 2.18 458.56 6.1×
FP8 scalar 3/1 1.85 1.27 786.30 10.5×
FP32 vector 3/2 3.71 5.01 199.70 2.7×
FP16 vector 3/4 7.42 2.01 497.67 6.7×
FP16alt vector 3/4 7.42 1.72 581.96 7.8×
FP8 vector 2/8 14.83 0.80 1244.78 16.6×
Kaiser et al. [90], 22 nm, 0.8 Vc, 0.019 mm2, 1.8 GHz
FP64 scalar 3/1 3.60 26.40 37.88
Manolopoulos et al. [96], 130 nm, 1.2 Vb, 0.287 mm2, 291 MHz
FP64 scalar 3/1 0.58 60.53 16.52 1.0×
FP32 vector 3/2 1.16 30.26 33.05 2.0×
Arunachalam et al. [97], 130 nm, 1.2 Vb, 0.149 mm2, 308 MHz
FP64 scalar 8/1 0.62 28.86 34.64 1.0×
FP32 vector 8/2 1.23 14.43 69.29 2.0×
Zhang et al. [98], 90 nm, 1 Vc, 0.181 mm2, 667 MHz
FP64 scalar 3/1 1.33 32.85 30.44 1.0×
FP32 vector 3/2 2.67 16.43 60.88 2.0×
FP16 vector 3/4 5.33 8.21 121.76 4.0×
Kaul et al. [67], 32 nm, 1.05 Va, 0.045 mm2, 1.45 GHz
FP32 scalar 3/1 2.90 19.4 52.00 1.0×
FP20‡ vector 3/2 5.80 10.34 96.67 1.9×
FP14‡ vector 3/4 11.60 6.2 161.11 3.1×
Pu et al. [99], 28 nm, 0.8 Va, 0.024§/0.018| mm2, 910§/1360| MHz
FP64 scalar 6/1 1.82 45.05 43.70 1.0×
FP32 scalar 6/1 2.72 18.38 110.00 2.5×

* Latency [cycle] / Throughput [operation/cycle] † 1 FMA = 2 flops
a Silicon measurements b Post-layout results
c Post-synthesis results ‡ FP20 = FP32 using only 12 bit of precision,
FP14 = FP32 using only 6 bit of precision § FP64 FMA design
| FP32 CMA design

78 CHAPTER 3. AN OPEN-SOURCE TRANSPRECISION FPU

nominal conditions. Note that results for our work measure the entire
TP-FPU energy while performing the FMA operation, not just the
FMA block in isolation as in the related works.

The RISC-V-compatible FMA unit from [90] supports only FP64
with no support for FP32 even though required by RISC-V. Synthesized
in the same 22 nm technology as our implementation, it achieves a
49% lower energy efficiency than our FPU performing the same FMA
operation.

The architectures in [96, 97, 98] focus heavily on hardware sharing
inside the FMA datapath, which forces all formats to use the same
latency, no support for scalars in smaller formats, as well as lack of
substantial energy proportionality. These architectures only achieve
directly proportional energy cost, while our energy efficiency gains
become better with smaller formats – reaching 16.6× lower energy for
operations on FP8 w.r.t. FP64 (width reduction of 8×). This efficiency
gain can again be increased by 2.3×, allowing for an over-proportional
benefit to using the narrow FP formats in our implementation rather
than a simple 2:1 trade-off by using the voltage scaling knob (see
Chapter 5).

The FMA implementation in [67] uses a vectorization scheme
where the FP32 mantissa datapath is divided by 2 or 4 employing
very fine-grained gating techniques while keeping the exponent at a
constant 8-bit width. This architecture’s use is to attempt a bulk
of FP32 computations at 4× throughput using the packed narrow
datapath, costing 3.1× less energy. By tracking uncertainty, imprecise
results are recomputed using the 2× reduced datapath before reverting
the operation in full FP32. The intermediate formats used in this unit
do not correspond to any standard IEEE 754 formats.

FPMax [99] features separate implementations of the FMA oper-
ation for FP32 and FP64 without any datapath sharing, targeting
high-speed ASICs. Comparing the energy cost of their two most ef-
ficient instances (using different internal architectures) yields energy
proportionality slightly lower than our full FPU implementation. This
result further compounds the value in offering separate datapaths
for different formats on the scale of the entire FPU. It prompts us
to explore the suitability of specific FMA architectures for different
formats in the future.

3.6. SUMMARY AND CONCLUSION 79

3.5.6 Other uses of our TP-FPU
The open-source nature of FPnew and the fact that it is written in
synthesizable SystemVerilog lower the burden of implementing FP
functionality into new systems without the need for extra IP licenses
or changes to standard design flows. FPnew or subcomponents of
it have found use under the hood of some recent works, as will be
discussed in Chapters 4 and 5.

3.6 Summary and Conclusion
An open-source, fully configurable TP-FPU is the key enabler of TP
computing in hardware. However, the software must also be made
capable of leveraging the tunability of such hardware units. Our
RISC-V ISA extensions bridge this gap to facilitate TP computing in
practice. Specifically, the findings in this chapter are:

• We have presented FPnew, a configurable open-source trans-
precision floating-point unit capable of supporting arbitrary FP
formats. It offers scalar and SIMD-vectorized variants of FP
arithmetic operations. Furthermore, it offers efficient casting
and packing operations with high energy efficiency and propor-
tionality. Notably, our architecture trades off excess circuit area
for improved energy efficiency. Our design achieves better energy
efficiency scaling than other multi-mode FMA designs thanks to
the parallel datapaths approach taken in our architecture.

• We have introduced a set of extensions for the RISC-V ISA aimed
at supporting a set of sub-32-bit FP formats. Adopting these
formats has been proven to be highly beneficial in both HPC
and embedded systems domains. We present both a complete
specification for the proposed SmallFloat extensions and the
compiler support design and implementation.

• In our case study, we showcase the programming possibilities of
our SmallFloat ISA and compiler extensions. We achieve FP32
precision without incurring any performance overhead compared
to an optimal scalar FP16 baseline, reducing system energy by
34% w.r.t. the FP32 implementation.

80 CHAPTER 3. AN OPEN-SOURCE TRANSPRECISION FPU

• Thanks to our efforts’ open-source nature, FPnew can be utilized
in many different application scenarios. In fact, it has found use
both in embedded IoT applications and high-performance vector
processing accelerators (see Chapters 4 and 5).

We conclude that we have laid a robust foundation for implement-
ing TP computing into a vast range of systems. As such, we will
target enabling TP in both embedded platforms and high-performance
computing applications.

Chapter 4

Transprecision FP in
the Embedded Domain

4.1 Introduction

In Chapter 2, we have laid the foundation for TP computing in ULP
systems by showing that precision modulation using SmallFloat formats
can bring increased performance and energy savings. Combined with
the SmallFloat ISA extensions from Chapter 3, we now have the
tools to assemble a TP-capable RISC-V system. We completed the
implementation of the TP-FPU prototype into the PULPino ULP
microcontroller that was used in Chapter 2 and evaluated the potential
of TP computing on the processor level.

We also implemented FPnew, the full TP-FPU developed in the
previous chapter, into the most up-to-date version of the SoC based on
the RI5CY core [50], called PULPissimo. We used simulations from
this implementation to perform the TP programming case study found
in the previous chapter.

Furthermore, we have built a full-blown multi-core SoC based on
a cluster of RI5CY cores with FPnew targeting high-end ULP signal
processing tasks. The implementation as an FPGA soft-IP allows for
extensive architectural exploration considering the sharing of TP-FPUs

81

82 CHAPTER 4. TP FP IN THE EMBEDDED DOMAIN

amongst several cores.
The main contributions of this chapter are:

• A full architecture for ultra-low-power TP computing, based on
the open-source PULPino SoC [27] with a TP FPU integrated
into the RI5CY processor core [50]. We support the “SmallFloat”
formats defined in Chapter 2 as well as SIMD, further increasing
the performance and energy efficiency of the SoC. We characterize
the energy consumption of the SmallFloat instructions on the
post-place & route (P&R) implementation of the proposed TP
SoC and evaluate the execution of a set of signal processing
benchmarks to assess the energy saving when tuning the precision
of the operations for pre-defined accuracy targets. The proposed
TP SoC significantly improves system performance and energy
efficiency over a traditional 32-bit FP SoC on the analyzed
applications (Section 4.2).

• Integration of FPnew (see Chapter 3) into RI5CY [50], an em-
bedded 32-bit RISC-V processor core and implementation into
the PULPissimo SoC [101]. We perform a full P&R layout in
order to perform the measurements and simulations presented
in the previous chapter (Section 4.3).

• The architectural design of a multi-core TP cluster and its soft-
ware infrastructure. A dedicated design for the FPU interconnect
enables multiple policies for FPU sharing, with the possibility
to guarantee different trade-offs. Using FPGA emulation, we
explore the design space considering different architectural con-
figurations of the TP cluster: the number of cores, the number
of FPUs and the related sharing factor, the number of pipeline
stages in the FPUs (Section 4.4).

• A vertical exploration to identify the most efficient solutions op-
timizing non-functional requirements (i.e., operating frequency,
power, and area) using post-P&R models in 22nm FDX technol-
ogy. We compare the most efficient configurations deriving from
the design space exploration with SoA solutions, considering a
broader scenario that includes high-performance and embedded
computing domains (Section 4.4).

4.2. EMBEDDED SOC FOR TRANSPRECISION 83

• Overview of an evolution of the TP cluster architecture described
above, which is currently being commercialized by second par-
ties (Section 4.5).

The remainder of this chapter is organized as follows: Section 4.2
contains the implementation and evaluation of the prototype TP-FPU
into PULPino. Section 4.3 outlines the FPnew unit’s implementa-
tion into the RI5CY core and the implementation into PULPissimo.
Section 4.4 details the architecture, implementation and evaluation
of a multi-core transprecision SoC. Section 4.5 introduces a notable
system based on the TP cluster architecture. The last section provides
a summary and conclusion of this chapter.

4.2 Embedded SoC for Transprecision
An increasing amount of deeply embedded applications such as moni-
toring and processing of vital signs, building health profiles, and audio
processing algorithms require extreme energy efficiency and complex,
highly dynamic numerical computations involving double-precision
(binary64) or single-precision (binary32) FP operations, defined by the
IEEE 754 standard. In many of these FP-intensive applications, the
execution of FP operations and the related memory transfers emerge
as the main bottleneck for energy efficiency consuming up to 50% of
the overall system power (see Chapter 2). The most traditional ap-
proach to optimizing the energy consumption of applications requiring
high dynamic range and precision in power-constrained platforms is
to shift to fixed-point implementations and adjust the dynamics and
precision of operands according to the processing chain’s requirements.
However, this approach is often highly intrusive, requiring an in-depth
understanding of the target algorithms. To trade energy for dynamic
range and precision of FP operations, we have introduced the suite of
SmallFloat formats in Chapter 2.

In this section, we present a full SoC architecture for ultra-
-low-power TP computing. The proposed hardware architecture
extends the PULPino open source SoC [102] with a TP FPU inte-
grated into the RI5CY processor core [50]. We have demonstrated
that significant energy savings can be achieved leveraging sub-32-bit

84 CHAPTER 4. TP FP IN THE EMBEDDED DOMAIN

Figure 4.1: Energy consumption of the KNN application for three
precision requirements, normalized to binary32 baseline.

FP formats on top of standard IEEE 754 binary32 and binary16. The
proposed FPU thus supports – along with binary32 and binary16 – two
non-standard formats, namely binary16alt and binary8, collectively
referred to as “SmallFloat” formats. To fully exploit the benefit of
reduced precision formats, the proposed FPU implements SIMD oper-
ations on sub-32-bit formats, further increasing the performance and
energy efficiency of the SoC. This concept is summarized in Fig. 4.1. It
shows the energy savings on a sample application (k-nearest neighbors)
achieved by shifting 32-bit FP operations to reduced precision while
constraining the precision requirements of the whole kernel with the
methodology described in Chapter 2. Note that significant energy
savings can be achieved by exploiting SIMD operations that, on top
of the lower energy cost of reduced precision instructions, also reduce
the execution time of applications leveraging data-level parallelism
(column 5 of Fig. 4.1).

We characterize the energy consumption of the SmallFloat instruc-
tions on the post-P&R implementation of the proposed TP SoC and
evaluate the execution of a set of signal processing benchmarks to
assess the energy saving when tuning the precision of the operations
for pre-defined accuracy targets. Special attention has been paid to
the design and analysis of the binary16 and binary16alt datapath (i.e.,
pipelined vs. non-pipelined), which are widely used in most of the
analyzed TP applications.

4.2. EMBEDDED SOC FOR TRANSPRECISION 85

4.2.1 System Architecture

The TP SoC proposed in this section is based on the PULPino open-
source architecture and is shown in Fig. 4.2. The processor core
implements the RISC-V instruction set architecture and is optimized
for energy-efficient digital signal processing. It includes custom exten-
sions such as hardware loops, load, and store with address pre- and
post-increment to speed-up pointer arithmetic and lightweight support
for fixed-point computations, including small SIMD instructions and
saturation instructions [50]. The SoC features 4 KiB of data memory,
4 KiB of instruction memory and a bootup ROM, tightly coupled to
the processor, as well as a standard peripheral set which includes SPI,
I2C, UART, timers and interrupt controller.

In this section we extend the PULPino SoC with a TP FPU sup-
porting vectorization of reduced-precision operations. The hardware
unit, pictured in Fig. 4.3, consists of three slices featuring a width of
32-bit, 16-bit and 8-bit, respectively, that support additions, subtrac-
tions and multiplications as well as conversion operations. Binary8
is an 8-bit format featuring 3-bit of mantissa, and 5-bit of exponent,
while binary16alt is a 16-bit format complementary to the IEEE 754
featuring 8-bit of exponent and 8-bit of mantissa. In order to enable
SIMD sub-word parallelism inside the unit, the narrower slices are
replicated such that two 16-bit or four 8-bit FP operations can execute
simultaneously. Individual operation blocks are instantiated as Synop-
sys DesignWare FP Datapath IPs. Operand isolation logic is employed
at every data path’s inputs to save inactive subunits’ dynamic power.

To meet the timing requirements of the SoC, 32-bit FP arithmetic
operations are pipelined with one stage. Arithmetic operations in
binary8 and all conversion operations complete in one clock cycle.
One design parameter explored in this section concerns the option
of pipelining the 16-bit arithmetic operations: Although the timing
requirements are met with both options, this parameter imposes a
trade-off between the energy cost of 16-bit FP instructions and the
number of cycles required to run applications on the system, analyzed
in Section 4.2.3.

In addition to integrating the SmallFloat unit (SFU) into the
execution stage of the RI5CY core, the decoder was extended with a
custom set of SmallFloat instructions that bear similarity to standard

86 CHAPTER 4. TP FP IN THE EMBEDDED DOMAIN

In
s

tr.
R

A
M

U
A

R
T

G
P

IO
S

P
I

M
a
s
te

r
I C

B
o

o
t

R
O

M

J
T

A
G

S
P

I
S

P
I

I C
U

A
R

T
G

P
IO

22

S
P

I
S

la
v
e

S
o

C
C

o
n

tro
l

T
im

e
r

E
v
e
n

t
U

n
it

C
o

re

in
s
tr

d
a
ta

d
e
b

u
g

F
L

L
C

o
n

tro
l

A
P

B

B
rid

g
e

D
e
b

u
g

U
n

it

A
X

I4
 In

te
rc

o
n

n
e

c
t

D
a

ta
R

A
M

Bridge

Bridge

Bridge

a
d
d
r

r
d
a
t
a

In
s
tru

c
tio

n
 In

te
rfa

c
e

d
e
b
u
g

b
u
s

D
e

b
u

g
 U

n
it

I
F

I
D

D
e

c
o

d
e

r

G
P

R
&

F
P

R

I
D

E
X

P
re

fe
tc

h

B
u

ffe
r

C
o

n
tro

lle
r

S
F

U

M
U

L
T

A
L

U

C
S

R
L

S
U

w
d
a
t
a

a
d
d
r

r
d
a
t
a

D
a
ta

 In
te

rfa
c
e

E
X

W
B

Figure
4.2:

Sim
plified

architecturaloverview
ofthe

PU
LPino

SoC
(left)

and
the

R
I5CY

core
(right).

The
new

Sm
allFloat

unit
(labelled

SFU
)
was

im
plem

ented
in

the
execution

stage
ofthe

core.

4.2. EMBEDDED SOC FOR TRANSPRECISION 87

O
p

e
ra

n
d

 I
n

p
u

tsO
p
A

O
p
B

S
l
i
c
e
3
2

FP8 ADD/SUB

FP8 MULT

S
l
i
c
e
8

S
l
i
c
e
1
6

3
2

1
6

8

3
2

R
e

s
u

lt
 O

u
tp

u
t

2
x

4
x

S
m
a
l
l
F
l
o
a
t
U
n
i
t

FP16 int32

FP16alt int32

FP8 int32

FP32 FP16

FP32 FP16alt

FP32 FP8

FP32 int32

FP16 int16

FP16alt int16

FP16 FP16alt

FP16 FP8

FP16alt FP8

FP8 int8

3
2

3
2

3
2

1
6

8
3
2

1
6

8

D
a
ta

 D
is

tr
ib

u
ti
o
n
 a

n
d
 O

p
e
ra

n
d
 I
s
o
la

ti
o
n

O
u
tp

u
t
D

a
ta

 S
e
le

c
ti
o
n

FP32 ADD/SUB

FP32 MULT

FP16 ADD/SUB

FP16alt ADD/SUB

FP16 MULT

FP16alt MULT

R
e
s

F
lo

a
ti
n
g
-P

o
in

t
/
In

te
g
e
r

C
o
n
v
e
rs

io
n
 U

n
it

F
lo

a
ti
n
g
-P

o
in

t
C

o
m

p
u
ta

ti
o
n
a
l
U

n
it

F
lo

a
ti
n
g
-P

o
in

t
/
F

lo
a
ti
n
g
-P

o
in

t
C

o
n
v
e
rs

io
n
 U

n
it

F
lo

a
ti
n
g
-P

o
in

t
C

o
m

p
u
ta

ti
o
n
a
l
U

n
it
 w

it
h
 P

ip
e
lin

e
 S

ta
g
e

Fi
gu

re
4.
3:

Sl
ic
ed

ar
ch
ite

ct
ur
e
us
ed

fo
r
th
e
Sm

al
lF
lo
at

un
it.

88 CHAPTER 4. TP FP IN THE EMBEDDED DOMAIN

RISC-V FP instructions. Binary32 operations utilize the FP register
file. However, SmallFloat values are stored in the general-purpose
register file to make them visible to the vector shuffling hardware
already present in the RI5CY core.

4.2.2 SoC Implementation
The SoC was synthesized and implemented (i.e., full layout) in the
UMC 65 nm technology with Design Compiler 2015.6 and Cadence
Innovus 15.2 using worst case libraries (slow-slow, 1.08 V, 125 ◦C)
constraining the design to match the same target frequency of the
original PULPino SoC (i.e., 350 MHz) [50]. Two versions of the SoC
were implemented, one employing pipelining only for 32-bit operators,
the other resorting to pipelining for both 32-bit and 16-bit arithmetic
operations. The system’s layout is shown in Fig. 4.4, together with a
breakdown of the different blocks’ area utilization.

The total area of the TP SoC is 0.906 mm2, with the largest con-
tributor to chip area being the data and instruction memory instances.
The SmallFloat unit – supporting various operations on four FP for-
mats – makes up a significant part of the new core, filling 47% of
the core area in the baseline configuration with single-cycle 16-bit
operations. In the pipelined scenario, the SFU shrinks to 40% of the
core area since the strong timing pressure on the 16-bit FP arithmetic
operations can be alleviated.

To provide an accurate estimation of the power consumption of the
TP SoC and characterize the system-level power consumption of both
original integer instructions and the new FP instructions, we conduced
post-P&R power simulations in the typical corner (typycal-typical,
1.20 V, 25 ◦C). To this end, the Value Change Dump (VCD) traces
of the system executing the various instructions have been generated
with Mentor Modelsim 10.5c_3 and passed to Cadence Innovus to
extract the power numbers. Figure 4.5 shows the power breakdown of
the baseline TP system in the non-pipelined configuration. In contrast,
the energy cost of pipelined and non-pipelined instructions is shown
in Table 4.1.

Figure 4.5 outlines the power consumption of the major blocks in the
system when running multiplication instructions on either intergers or
32-bit FP values. It should be noted that data memory is unused when

4.2. EMBEDDED SOC FOR TRANSPRECISION 89

C
hi
p
ar
ea

ex
cl
ud

in
g
pa

d
in
st
an

ce
s.

16
-b

it
Pi
pe

lin
ed
?

N
o

Ye
s

To
ta
l[

m
m

2]
0.
90
6

0.
87
2

R
I5
C
Y

C
or
e

13
.5
%

13
.7
%

Sm
al
lF
lo
at

U
ni
t

12
.0
%

9.
0%

D
at
a
M
em

or
y

29
.9
%

31
.1
%

In
st
r.

M
em

or
y

30
.7
%

31
.8
%

Pe
rip

h.
&

In
te
rc
.

12
.5
%

13
.1
%

FL
L

1.
3%

1.
4%

Fi
gu

re
4.
4:

Fu
ll
la
yo
ut

of
th
e
So

C
(le

ft)
,h

ig
hl
ig
ht
in
g
sig

ni
fic

an
tb

lo
ck
s.

Th
e
ar
ea

br
ea
kd

ow
n
(r
ig
ht
)s

ho
ws

bo
th

pi
pe

lin
ed

an
d
no

n-
pi
pe

lin
ed

co
nfi

gu
ra
tio

ns
.

90 CHAPTER 4. TP FP IN THE EMBEDDED DOMAIN

Table 4.1: Average energy per operation extracted from post-layout
simulation, for various instruction groups on the two configurations of
the TP SoC.

16-bit pipelined?
Format Operation Instruction No Yes

Idle Cycle nop* 62.2 pJ 62.9 pJ

int32 Data movement lw,sw* 94.4 pJ 94.6 pJ
Arithmetic add, mul* 106.4 pJ 102.4 pJ

binary32 Arithmetic f{add,mul}.s* 106.8 pJ 102.4 pJ
Conversions e.g. fcvt.w.s* 79.7 pJ 78.1 pJ

binary16

Arithmetic f{add,mul}.h† 98.8 pJ 82.0 pJ
Conversions e.g. fcvt.h.s† 74.7 pJ 74.6 pJ
Vector Arithmetic vf{add,mul}.h† 132.6 pJ 93.9 pJ
Vector Conversions e.g. vfcvt.x.h† 86.4 pJ 77.6 pJ

binary16alt

Arithmetic f{add,mul}.ah† 87.2 pJ 83.2 pJ
Conversions e.g. fcvt.ah.s† 73.5 pJ 73.7 pJ
Vector Arithmetic vf{add,mul}.ah† 108.9 pJ 92.7 pJ
Vector Conversions e.g. vfcvt.x.ah† 79.5 pJ 74.3 pJ

binary8

Arithmetic f{add,mul}.b† 74.0 pJ 75.5 pJ
Conversions e.g. fcvt.b.s† 72.5 pJ 72.8 pJ
Vector Arithmetic vf{add,mul}.b† 95.2 pJ 94.1 pJ
Vector Conversions vfcvt.x.b† 77.8 pJ 74.0 pJ

* RISC-V mnemonic † Custom SmallFloat mnemonic, based on RISC-V
mnemonic

4.2. EMBEDDED SOC FOR TRANSPRECISION 91

RI5CY Core
59%

smallFloat
Unit
1%

Data Memory
0%

Instruction
Memory

19%

Peripherals
and

Interconnect
21%

Integer multiplication mul.

RI5CY Core
36%

smallFloat
Unit
25%

Data Memory
0%

Instruction
Memory

19%

Peripherals
and

Interconnect
20%

Binary32 multiplication fmul.s.

Figure 4.5: Power distribution in the baseline SoC for multiply instruc-
tions.

executing an arithmetic instruction in isolation and thus has a negligible
impact on system power. When an integer multiplication is performed,
nearly 60% of the system power is used inside the ALU, while the
SFU is isolated and clock gated, thus only contributing insignificant
static power. During FP multiplications, the SFU consumes 25%
of the system power. The ALU power consumption is reduced by
approximately the same amount, indicating that our FP multiplier is
similar to its integer counterpart.

Table 4.1 showcases the significant energy use of data movement,
comparable to arithmetic operations themselves, and generally even
overshadows the operations on SmallFloat types in the pipelined sce-
nario. Vectorizing arithmetic operations costs up to 35% more energy
at the system level, albeit at double or quadruple throughput, depend-
ing on the format used. Furthermore, vectorization directly reduces
the number of load and store operations in the same way, drastically
reducing the energy spent on a single value during a load-execute-s-
tore cycle. The impact of added timing pressure in the non-pipelined
baseline over the pipelined configuration is visible, with an average
7% higher energy consumption, up to 40% in some cases. However,
the baseline instructions complete within a single cycle, alleviating the
need for stall cycles in difficult-to-schedule applications. Since there

92 CHAPTER 4. TP FP IN THE EMBEDDED DOMAIN

is a trade-off between the total number of cycles and energy used per
cycle, which depends on the target application’s schedule friendliness,
a set of benchmarks was run to explore this design space.

4.2.3 Benchmarking
Benchmarking of the TP SoC has been performed on a set of appli-
cations that implement algorithms for two domains of ULP systems
near-sensor computing and embedded machine learning. SmallFloat
types have been introduced in the source code using the methodology
from Chapter 2. A software library (FlexFloat) emulates arbitrary FP
types, and an external tool (fpPrecisionTuning) selects the smallest
FP type among the supported ones for each variable, meeting strict
constraints on the result accuracy. The accuracy of results is expressed
as a value of the SQNR that program outputs must satisfy. Also,
FlexFloat features a detailed run-time report on FP operations, which
provides the number of executions classified by FP type, arithmetic
operator, and class (i.e., scalar, vectorial, cast). The ANSI-C programs
have been compiled using GCC 5.2 with a RISC-V back-end optimized
for PULPino [50], featuring support for single-precision FP types as
defined in the RISC-V instruction set architecture (ISA).

As performing a broad exploration of large applications requires a
long simulation time on the RTL platform, the binaries have been exe-
cuted on the cycle-accurate PULPino virtual platform, which provides
detailed statistics. Since the current version of GCC does not include
the support for the extended instruction set needed to handle binary16,
binary16alt and binary8 formats, we have used the binary32 type
to measure the exact number of cycles required by each instruction
to execute. This value depends on the compiler’s ability to schedule
other operation classes to fill latency cycles and avoid stalls in the core
pipeline, so it is strictly dependent on the application and compiler
back-end.

To assess the trade-off between the pipelined and non-pipelined
solution for binary16 units, we have conducted an analytic exploration
varying the percentage of latency slots filled for every application.
Figure 4.6 depicts the ratio between the energy consumption of the
pipelined design (Pipelined Energy) over the energy consumption of
the non-pipelined design (Non-Pipelined Energy) for the analyzed

4.2. EMBEDDED SOC FOR TRANSPRECISION 93

Figure 4.6: Energy of applications running on the binary16 pipelined
design normalized to that of non-pipelined design when varying the
percentage of latency slots in in binary16 and binary32 operations.

Figure 4.7: Breakdown of FP operations for three precision require-
ments.

94 CHAPTER 4. TP FP IN THE EMBEDDED DOMAIN

applications. The horizontal axis reports the percentage of instruc-
tions that require a latency slot, which varies from 0% (no latency
cycles for FP instructions) to 100% (a latency cycle per pipelined
FP instruction). This experiment explores a full range of compiler
capabilities to understand the trade-off between the energy/instruction
(where pipelined is better) and the number of execution cycles (where
non-pipelined is preferable). This trend may be better explained by
examining a breakdown analysis of operation based on FP classes,
depicted in Fig. 4.7.

The energy ratio of applications that contain a high amount of
vectorial 16-bit operations w.r.t. scalar ones (DWT, SVM) grows
moderately with the number of latency slots. In these cases, the
energy savings of SIMD operation in the pipelined version are relatively
higher than in the non-pipelined case. The ratio of applications with
a predominance of binary32 or binary8 operations (JACOBI, KNN)
is nearly constant since these operations are pipelined the same way
in both designs. Finally, the ratio of applications characterized by a
relatively high scalar 16-bit workload (PCA, CONV) is mainly affected
by the number of latency slots, and their slopes are steep since scalar
operations are heavily penalized by the pipelined design. However, if
the compiler could reduce the latency slots under 70% using instruction
scheduling techniques, these adverse effects would be highly mitigated.

Compiling the baseline version of applications (which uses binary32
scalars only), we measured latency slots between 50% and 80%, so we
conclude that the pipelined design is, in general, the best solution.

Figure 4.8 depicts groups of bars for each application running on
the pipelined architecture, reporting a breakdown of the executions
cycles for three precision requirements (SQNR = 10−3, 10−2, 10−1).
The bottom contributions consider the best execution scenario with
no stalls due to latency cycles (0% latency). The gray segment on top
considers the worst case, in which each operation involving 16-bit and
32-bit FP types requires a stall (100% latency). The reported values
are normalized to the binary32 baseline version of the application, and
operation classes are highlighted with distinct patterns.

We observe performance improvements and energy savings when
using TP operations mainly due to vectorization, which allows execut-
ing multiple reduced precision operations in parallel and reduce the
number of memory accesses. Furthermore, energy is saved due to the

4.2. EMBEDDED SOC FOR TRANSPRECISION 95

Figure 4.8: Execution cycles of applications for three precision re-
quirements and assuming two latency slots conditions (0%, 100%),
normalized to binary32 baseline

reduced energy cost of reduced precision FP instructions themselves.
Any overhead is mainly caused by the cast operations required to
dynamically move from one FP format to another.

In Fig. 4.8 we see that on average, the number of cycles is decreased
by 15% and 25% for 100% and 0% latency slots, respectively. The
number of cycles reported for JACOBI and PCA is higher than the
original version as SmallFloat variables are limited to disjoint program
regions, introducing many casts. In other benchmarks, we can observe
that the overhead of cast operations is not relevant.

Figure 4.9 reports the energy consumption of each application,
normalized to the binary32 baseline. Each bar contains three contri-
butions, the FP operations (FP ops), the memory accesses (Memory
ops), and all the remaining instructions (Other ops).

These values are strictly related to the ones shown in Fig. 4.8,
and also in this figure, the contribution to energy consumption due
to stalls is shown on top (100% latency). PCA’s energy consumption
is greater than the baseline due to the high number of casts coupled
with a predominant number of scalar operations on binary32 values.

96 CHAPTER 4. TP FP IN THE EMBEDDED DOMAIN

Figure
4.9:Energy

consum
ption

ofapplicationsforthree
precision

requirem
entsand

assum
ing

two
latency

slots
conditions

(0%
,100%

),norm
alized

to
binary32

baseline

4.3. AUGMENTING RI5CY WITH FPNEW 97

The other applications have average energy savings between 14% and
18% compared to the baseline, with a maximum of 31% measured for
KNN.

4.3 Augmenting RI5CY with FPnew
RI5CY is an open-source 32-bit, four stage, in-order RISC-V
RV32IMFC processor [103]. This small core is focused on em-
bedded and DSP applications, featuring several custom non-standard
RISC-V extensions for higher performance, code density, and energy
efficiency [50]. With this core, we want to showcase non-standard TP
operations within a low-power MCU-class open-source RISC-V core,
which has gained broad industry adoption [104].

4.3.1 Integration

ISA Extension Support

RI5CY supports the RISC-V “F” standard ISA extension, which man-
dates the inclusion of 32 32-bit FP registers. The core offers the option
to omit the FP registers and host FP data within the general-purpose
register file to conserve area and reduce data movement1.

We add support for operations on FP16 and FP16alt, including
packed-SIMD vectors. By reusing the general-purpose register file for
FP values, we can leverage the SIMD shuffling functionality present in
the integer datapath through the custom DSP extensions. Support for
both cast-and-pack as well as expanding FMA is added to the core as
well.

Core Modifications

To handle these new instructions, we extend the processor’s decoder
with the appropriate instruction encodings. RISC-V requires so-called
NaN-boxing of narrow FP values where all unused higher order bits
of a FP register must be set to logic high. We extend the core’s

1At the time of writing, this extension is being considered as an official RISC-V
extension ‘Zfinx,’ but specification work is not completed.

98 CHAPTER 4. TP FP IN THE EMBEDDED DOMAIN

Table 4.2: The configuration of the TP-FPU as implemented into the
RI5CY core. The FPU width is wfpu = 32 bit.

Implementation (number of cycles, number of lanes)
Format ADDMUL DIVSQRT COMP CONV
FP32 merged (1,1) disabled (-,-) parallel (1,1) merged (1,2)
FP16 merged (1,2) disabled (-,-) parallel (1,2) merged (1,2)
FP16alt merged (1,2) disabled (-,-) parallel (1,2) merged (1,2)

load/store unit to allow for one-extending scalar narrow FP data by
modifying the preexisting sign-extension circuitry. We do not enforce
the checking of NaN-boxing in the operation units; however, we can
treat SIMD data as scalars if needed. Other than replacing RI5CY’s
FP32 FPU with the TP-FPU, the changes to the core itself are not
very substantial compared to the infrastructure already in place for
the “F” extension.

FPnew Configuration

We enable support for the above formats without adding any extra
pipeline stages, as shown in Table 4.2. Low-power MCUs target
relatively relaxed clock targets, such that FP operations can complete
within a single cycle. As XLEN = 32 and FP operations use the
general purpose register file, wfpu is set to 32 bit.

The ADDMUL block is implemented as a merged multi-format
slice to allow for multi-format operations among FP16[alt] and FP32.
The DIVSQRT block has been disabled as we do not utilize it for
our case study, demonstrating the fine-grained configurability of the
TP-FPU. The CONV block uses two 32-bit lanes in a merged slice to
enable cast-and-pack operations from two FP32 operands.

4.3.2 Implementation Results
To benchmark applications on the TP-enabled RI5CY core, we perform
a full P&R implementation of a platform containing the core. This
section presents the implementation results, while Chapter 3 contains
an application case study on the implemented design.

4.3. AUGMENTING RI5CY WITH FPNEW 99

Implementation

We make use of PULPissimo [101] to implement a complete system.
PULPissimo is a single-core SoC platform based on the RI5CY core,
including 512 kB of memory as well as many standard peripherals such
as UART, I2C, and SPI. We use our extended RI5CY core as described
in Section 4.3.1, including the single-cycle TP-FPU configuration
shown in Table 4.2.

The system has been fully synthesized, placed, and routed in Glo-
balfoundries 22FDX technology, a 22 nm FD-SOI node, using a
low-threshold 8-track cell library at low voltage. The resulting layout
of the entire SoC (sans I/O pads) is shown in Fig. 4.10. Synthesis and
P&R were performed using Synopsys Design Compiler and Cadence
Innovus, respectively, using worst-case low-voltage constraints (SSG,
0.59 V, 125 ◦C), targeting 150 MHz on the final design, with additional
20% of clock uncertainty in synthesis. Under nominal low-voltage
conditions (TT, 0.65 V, 25 ◦C), the system runs at 370 MHz. The
design’s critical path is between the memories and the core, involving
the SoC interconnect.

Impact of the TP-FPU

The total area of the RI5CY core with TP-FPU is 147 kGE, of which
the FPU occupies 69 kGE (47%), while the entire PULPissimo system
including memories is 5.1 MGE, see Fig. 4.11. The ADDMUL block
hosting the merged multi-format FMA units for all formats occupies
76% of the FPU area, while the COMP and CONV blocks use 4% and
18%, respectively.

Compared to a standard RI5CY core with support for only FP32,
area increases by 29% and static energy by 37%. The higher increase
in energy w.r.t. the added area stems from the FPU utilizing relatively
more high-drive, short-gate cells than the rest of the processor: While
the TP-FPU is not timing-critical, it uses 2.4× more 20 nm transistors
over 28 nm ones compared the rest of the core, due to the long paths
through the single-cycle unit. On the system scale, the added area
and static energy account for only 0.7% and 0.9%, respectively, due
to the impact of memories (92% and 96% of system area and leakage,
respectively).

100 CHAPTER 4. TP FP IN THE EMBEDDED DOMAIN

F
L
L

P
e
rip

h
e
ra

ls

C
o

reF
P

U

M
e
m

o
ry

Memory

Memory
M

e
m

B
a
n

k

M
e
m

B
a
n

k

M
e
m

B
a
n

k

M
e
m

B
a
n

k

M
e
m

B
a
n

k

M
a
in

 M
e
m

o
ry

 In
te

rco
n

n
e
ct

P
e
rip

h
e
ra

l In
te

rco
n

n
e
ct

R
I5

C
Y

C
o

re

E
v
e
n

t U
n

it

u
D

M
A

E
n

g
in

e

I/
O

In
tf

JT
A

GJT
A

G
U

A
R

T

S
P

I

I
2S

I
2C

S
D

IO

C
lk

/
R

st G
e
n

.

F
L
L

T
im

e
r

D
e
b

u
g

 U
n

it

Figure
4.10:

Floorplan
and

block
diagram

ofthe
PU

LPissim
o
SoC

(w
ithout

pad
fram

e)
using

R
I5C

Y
C
ore

w
ith

T
P-FPU

.

4.4. EMBEDDED TP CLUSTER ARCHITECTURES 101

Per
iph

1
4
7
 k

G
E

36%
52

ADDMUL
CONV

Rest
Int A

LU
Int M

ult

IF
Stag

e

GP R
eg

s

ID Stag
e

Rest

FPU Core

COMP

2%
2

9%
13

7%
10

12%
18

5%
7

11%
16

11%
16

7%
10 kGE

5
.1

 M
G

ERI5CY
Mem

ory

Rest

SoC
kGE

3%
147

92%
4692

3%
149

Figure 4.11: Area distribution of the PULPissimo SoC and the RI5CY
core (in kGE, 1 GE ≈ 0.199 µm2).

From an energy-per-operation point of view, it is interesting to
compare FP32 FMA instructions with the 32-bit integer multiply-ac-
cumulate (MAC) instructions available in RI5CY. Under nominal
low-voltage conditions at 370 MHz, these FP and integer instructions
consume 3.9 pJ and 1.0 pJ in their respective execution units on aver-
age. Considering the system-level energy consumption, operating on
FP32 data averages 22.2 pJ per cycle while the integer variant would
require 21.2 pJ for running a filtering kernel (see Chapter 3), achieving
equal performance. These minor system-level differences in area and
static and dynamic energy imply that FP computations are affordable
even in an MCU context.

4.4 Embedded Transprecision Cluster
Architectures

The pervasive adoption of edge computing increases the computational
demand for algorithms targeted on low-power embedded devices oper-
ating in the mW range. Besides the aggressive optimization strategies

102 CHAPTER 4. TP FP IN THE EMBEDDED DOMAIN

adopted on the algorithmic side (see Chapter 2), there is a great effort
to find the best trade-off between architectural features and com-
putational capabilities [105]. Indeed, deploying artificial intelligence
algorithms or digital signal processing (DSP) on near-sensor devices
poses several challenges to resource-constrained low-power embedded
systems.

An architectural design that aims to achieve the goals discussed
above must exploit additional features of the ULP computing domain.
A tightly coupled cluster composed of several processing elements (PEs)
enables improving the system’s computational capabilities using paral-
lel programming techniques without increasing the operating frequency.
Specialized hardware extensions allow programmers to accelerate key
parallel patterns and exploit the advantages of packed-SIMD opera-
tions. Combining these features with near-threshold computing on a
fully programmable multi-core architecture leads to a highly scalable
and versatile system suitable for a wide range of applications. The
total number of FPUs and their sharing among the cluster cores require
a careful evaluation since these aspects directly impact area and energy
efficiency. For instance, having a dedicated FPU for each core can be
detrimental if the data demand from the PEs can not be satisfied by
the memory throughput: this effect is known as the Von Neumann
bottleneck. Thus, reducing the number of FPUs and adopting a shar-
ing policy among the cores can improve overall efficiency. Another
aspect to consider is the pipelining of the FPU, which allows designers
to increase the maximum operating frequency to the cost of potential
deterioration of performance if pipeline latency cannot be completely
hidden. In this complex scenario, finding the best trade-off requires an
accurate exploration of the design space that includes the definition
of adequate metrics and an experimental assessment of kernels from
end-to-end applications.

In this section, we propose the design of a TP computing cluster
tailored for applications in the domain of low-power (1 mW to 20 mW)
near-sensor computing.

4.4. EMBEDDED TP CLUSTER ARCHITECTURES 103

SoC Interconnect

F
P
U

0
F
P
U

1
F
P
U

k
-
1

D
I
V
-

S
Q
R
T

H
ie

ra
rc

hi
ca

l I
ns

tru
ct

io
n

C
ac

he

Lo
ga

rit
hm

ic
 In

te
rc

on
ne

ct

Ev
en

t U
ni

t

R
I5

C
Y

C
o
r
e

2

R
I5

C
Y

C
o
r
e

n
-
1

Sh
ar

ed
 F

PU
 In

te
rc

on
ne

ct

D
M

A
U

ni
t

Cluster Interconnect

C
lu

st
er

 D
om

ai
n

L2
 M

em
or

y
S
R
A
M

5
1
2
k
B

So
C

 D
om

ai
n

R
I5

C
Y

F
a
b
r
i
c

C
t
l
.

Pe
rip

he
ra

ls
μD

M
A

U
ni

t

H
y
p
e
r
B
u
s

U
A
R
T

C
a
m
e
r
a

Q
S
P
I

I
2
C

TC
D

M
B
a
n
k

0

TC
D

M
B
a
n
k

1

TC
D

M
B
a
n
k

2

TC
D

M
B
a
n
k

3

TC
D

M
B
a
n
k

m
-
1

R
I5

C
Y

C
o
r
e

0

R
I5

C
Y

C
o
r
e

1

I$
I$

I$
I$

Fi
gu

re
4.
12
:
To

p-
le
ve
lv

ie
w

of
th
e
pr
op

os
ed

T
P

cl
us
te
r.

104 CHAPTER 4. TP FP IN THE EMBEDDED DOMAIN

4.4.1 Architecture and Implementation

Cluster Architecture

The cluster architecture proposed in this section is a soft IP implement-
ing a tightly coupled cluster of processors built around a parametric
number of RI5CY [50] cores. Figure 4.12 shows the top-level design of
the TP cluster.

The cores fetch instructions from a 2-level shared instruction cache
optimized for performance and energy efficiency when running SIMD
workloads typical of near-sensor data analytics applications. To en-
able the single-cycle exchange of data among cores, they share a
multi-banked Tightly-Coupled Data Memory (TCDM) behaving as
a scratchpad memory (i.e., there is no data caching mechanism to
avoid coherency and control overheads). The TCDM enables the cores
to share data through a word-level interleaved, single-cycle latency
logarithmic interconnect, allowing the execution of data-parallel pro-
gramming models such as OpenMP. A dedicated hardware block (Event
Unit) provides low-overhead support for fine-grained parallelism. It
accelerates the execution patterns typical of data-parallel programming
models (e.g., thread dispatching, barriers, and critical regions) and
enables the adoption of power-saving policies when cores are idle [106].

Outside the cluster, at the SoC level, the architecture features
one more memory hierarchy level, composed of a 15-cycle latency
multi-banked scratchpad memory used to serve the core data bus, the
instruction cache refills, and the cluster DMA. We base the explorations
performed in this section on a set of cluster configurations with 8 and
16 cores. The L2 memory comprises 512 kB, the TCDM is 64 kB for
the 8-core configurations and 128 kB for the 16-core ones. The cluster
cores are connected to multiple FPU instances, whose number and
interconnect are a central part of our exploration. Unlike the standard
configuration for the RI5CY core, the proposed cluster does not employ
core-private FPUs. Instead, a set of FPUs is shared among all cores in
the cluster, using an interconnect which enables various mappings of
cores to available FPUs. The following section provides insights into
the FPU subsystem proposed in this section.

4.4. EMBEDDED TP CLUSTER ARCHITECTURES 105

Tag

Operand Inputs

Operation
Group
Block

COMP

Operation
Group
Block

CONV

Result Output

32

32

Vector Disassembly

32

32

Vector Assembly

16

16

Vector
Lane 2

32

Vector
Lane 1
MULTI
FMA
FP32
FP16

FP16alt

MULTI
FMA
FP16

FP16alt

Pa
ra

m
et

ric
 P

ip
el

in
e

0-
2

R
eg

is
te

rs

Fair Round-Robin Arbitration of Outputs

32

Fair Arbitration

FPU 1

Fair Arbitration

FPU 0

Fair Arbitration

FPU 2

Fair Arbitration

Core 0 Core 7Core 3Core 6Core 2Core 5Core 1Core 4

Distribution & Silencing of Unused Operands

ADD
MUL

Operation
Group
Block

FPU 3

FPU Top Level

Tag Tag Tag

FPU 3

In
te

rc
on

ne
ct

C
lu

st
er

Sh
ar

ed
 F

PU
s

Figure 4.13: FPU sharing for the 8-core, 4-FPU configuration.

FPU and Interconnect

The cluster exploits configurations of FPnew (see Chapter 3) as FPU
instances in our evaluation. FPnew is a parametric FPU architecture
that supports multiple FP formats, SIMD vectors, and the insertion of
any number of pipeline stages. Figure 4.13 (bottom) shows an architec-
tural overview of a single shared FPU instance. The IP supports the
standard IEEE 754 formats, binary32 (float) and binary16 (float16),
as well as bfloat16. Some operations such as multiplication and FMA
can also be performed as multi-format operations, taking the product
of two 16-bit operands but returning a 32-bit single-precision result.

106 CHAPTER 4. TP FP IN THE EMBEDDED DOMAIN

Such multi-format operations help many near-sensor data analytics
applications accumulate data in a higher-precision variable to avoid
overflows or precision loss. To make full use of the 32-bit data path,
we enable packed-SIMD operations for the 16-bit types, boosting the
execution performance when using 16-bit data types. Division and
square root operations are disabled in the FPU instances as these
operations reside in stand-alone blocks (DIV-SQRT), which are shared
separately. The DIV-SQRT units feature a fixed latency of 11, 7, and
6 cycles for float, float16, and bfloat16, respectively. Moreover, since
DIV-SQRT is designed as an iterative block, back-to-back pipelined
operations are impossible when using these units.

The individual FPU instances are linked to one or more cores
through a logarithmic tree interconnect, allowing to share one FPU
among multiple cores in a fully transparent way from a software
perspective. On the core side, the interconnect interface replaces
the FPU in the execution stage, mimicking a core-private unit. The
FPU instances connect to the cores through an auxiliary processing
unit (APU) interface, featuring a ready/valid handshake and support
tagging of all in-flight operations, requiring no modification to be
shared.

In the proposed design, we employ a partial interconnect with
a static mapping of FPUs to cores, such that a core (or a group of
cores) will always access the same physical FPU instance. It arbitrates
cases of simultaneous accesses to the FPU by using a fair round-robin
policy and propagating the ready signal to only one core, stalling other
competing cores. As such, the fact that FPUs are shared is transparent
to both the core and FPU instances.

Moreover, we use a connection scheme with interleaved allocation
to reduce access contentions on the FPUs in unbalanced workloads.
For example, in a configuration featuring eight cores and four FPUs,
units 0, 1, 2, 3 are shared among cores 0&4, 1&5, 2&6, and 3&7,
respectively, as shown in Fig. 4.13 (top). This approach reduces the
area and timing overhead compared to a monolithic, fully connected
crossbar, which puts significant pressure on the paths from the cores
to the first pipeline stage of the FPU, severely limiting the cluster’s
operating frequency and jeopardizing energy efficiency.

Our connection scheme provides an almost optimal allocation (only
up to 1% overhead in performance has been measured against a fully

4.4. EMBEDDED TP CLUSTER ARCHITECTURES 107

connected crossbar), avoiding contentions on the shared units also
when the number of workers in parallel sections is smaller than the
number of cores.

In the remainder of the section, we present a design space explo-
ration of the proposed TP cluster, modifying the key configuration
parameters presented previously in this section, namely the pipeline
stages and sharing factor. The former’s rationale lies in the fact that
in most near sensor-data analytics applications, the density of FPU
instructions is smaller than 50%, hence employing a private, per core
FPU may form a bottleneck for area and energy. On the other hand,
the pipelining of the FPU provides a powerful knob to tune the per-
formance and energy efficiency of the TP cluster. If the number of
cores and FPUs is equal (1/1 sharing factor), the system effectively
degenerates into a core-private scenario, and the interconnect disap-
pears from the design. In all the considered configurations, a single
DIV-SQRT unit is shared among all cores. Finally, the proposed
exploration involves designs of 8-core and 16-core clusters with supply
voltages ranging from 0.65 V to 0.8 V to explore the whole design space
in between energy-efficient and high-performance solutions.

Implementation

This section presents the physical implementation results and related
explorations of the proposed cluster. Table 4.3 describes the 18 differ-
ent configurations, given by the combination of the three architectural
parameters (number of cores, number of FPUs, and number of FPU
pipeline stages), as described in the previous section. The various
configurations of the clusters have been synthesized using Synopsys
Design Compiler 2019.12, using LVT libraries from 22nm FDX tech-
nology from Global Foundries. Physical implementation has been
performed with Cadence Innovus v19.10-p002_1, using both 0.65 V
near-threshold (NT) and 0.8 V super-threshold (ST) corners. We con-
sidered all permutations of operating conditions for signoff: fast and
slow process transistors, 125◦C and −40◦C temperatures, ±10% of the
voltage supply, as well as optimistic and pessimistic parasitics. Power
analysis has been performed with Synopsys PrimeTime 2019.12 using
the nominal corners at 0.65 V and 0.8 V, extracting value change dump
(VCD) traces through parasitic-annotated post-layout simulation of

108 CHAPTER 4. TP FP IN THE EMBEDDED DOMAIN

Table 4.3: Description of the architectural configurations of the pro-
posed TP cluster that compose the design space. Cluster (8-16-cores),
FP units (2-16), and pipeline stages (0-2).

Mnemonic Cluster FP units Pipeline Stages
8c2f0p 8-cores 2 0
8c2f1p 8-cores 2 1
8c2f2p 8-cores 2 2
8c4f0p 8-cores 4 0
8c4f1p 8-cores 4 1
8c4f2p 8-cores 4 2
8c8f0p 8-cores 8 0
8c8f1p 8-cores 8 1
8c8f2p 8-cores 8 2

16c4f0p 16-cores 4 0
16c4f1p 16-cores 4 1
16c4f2p 16-cores 4 2
16c8f0p 16-cores 8 0
16c8f1p 16-cores 8 1
16c8f2p 16-cores 8 2
16c16f0p 16-cores 16 0
16c16f1p 16-cores 16 1
16c16f2p 16-cores 16 2

4.4. EMBEDDED TP CLUSTER ARCHITECTURES 109

Figure 4.14: Minimum, maximum, and median values of the frequencies
for all the configurations of the TP cluster, divided in NT and ST
voltage corners.

a 32-bit FP matrix multiplication performed using Mentor Modelsim
2008.06. Each configuration has been synthesized and implemented at
its maximum operating frequency. In contrast, power consumption has
been analyzed at the same operating frequency for all configurations
(100 MHz) to guarantee a fair comparison.

Figures 4.14 to 4.16 show the frequency, the area, and the power
consumption of the cluster configurations analyzed in this work at
100 MHz. This frequency supports a power consumption in the range
of 2 mW to 4 mW. In Fig. 4.14, we report the minimum, maximum,
and median values of the frequencies obtained varying the number
of FPUs. When considering single-cycle latency FPUs, we note that
the entire system’s operating frequency suffers profoundly. The long
paths starting from the ID/EX registers of the core towards the FPUs
and then back to the EX/WB registers form a considerable bottleneck
for operating frequency. On the other hand, the absence of pipeline
registers makes this solution relatively small and low-power. When
moving to single-stage pipeline solutions, we note a very significant
increase in the operating frequency when using NT cells (almost 50%).
In contrast, the performance increase using ST cells is more limited

110 CHAPTER 4. TP FP IN THE EMBEDDED DOMAIN

8c2f0p8c4f0p8c8f0p8c2f1p8c4f1p8c8f1p8c2f2p8c4f2p8c8f2p16c4f0p16c8f0p

16c16f0p16c4f1p16c8f1p

16c16f1p16c4f2p16c8f2p

16c16f2p
0

0
.2

5

0
.5

0

0
.7

5

1
.0

0

1
.2

5

1
.5

0

1
.7

5

2
.0

0

2
.2

5

2
.5

0

Area [mm
2
]

O
T

H
E

R

T
C

D
M

IN
T

E
R

C
.

E
V

E
N

T
 U

N
IT

D
M

A

I$C
O

R
E

S

F
P

U

Figure
4.15:

Totalarea
ofallthe

configurations
in

the
design

space
ofthe

T
P

cluster.

4.4. EMBEDDED TP CLUSTER ARCHITECTURES 111

8c
2f

0p

8c
4f

0p

8c
8f

0p

8c
2f

1p

8c
4f

1p

8c
8f

1p

8c
2f

2p

8c
4f

2p

8c
8f

2p 16
c4

f0
p 16

c8
f0

p

16
c1

6f
0p 16

c4
f1

p 16
c8

f1
p

16
c1

6f
1p 16

c4
f2

p 16
c8

f2
p

16
c1

6f
2p

0

1
.2

5

2
.5

0

3
.7

5

5
.0

0

6
.2

5

7
.5

0

8
.7

5

1
0

.0
0

1
1

.2
5

1
2

.5
0

1
3

.7
5

1
5

.0
0

Power@100MHz [mW]

O
T

H
E

R

T
C

D
M

IN
T

E
R

C
.

E
V

E
N

T
 U

N
IT

D
M

A

I$ C
O

R
E

S

F
P

U

Fi
gu

re
4.
16

:
To

ta
lp

ow
er

co
ns
um

pt
io
n
(a
t

10
0M

H
z)

of
al
lt
he

co
nfi

gu
ra
tio

ns
in

th
e
de
sig

n
sp
ac
e
of

th
e

T
P

cl
us
te
r.

112 CHAPTER 4. TP FP IN THE EMBEDDED DOMAIN

since the design already hits a structurally critical path from the TCDM
SRAMs (featuring wide-voltage range but low-performance in ST) to
the core through the logarithmic interconnect. We can observe an
increase in power and area in all configurations featuring one pipeline
stage due to the extra stage’s additional overhead. When adding a
second pipeline stage to the FPUs, we can see another slight increase
of frequency in all configurations. We also encounter structurally
critical paths using NT through the interconnect control paths to the
instruction cache in these configurations. Although the area increases
for all configurations, with two pipeline stages, the power consumption
decreases thanks to the smaller timing pressure on the FPU.

Considering the sharing factor, we note that the FPU interconnect
only negligibly impacts the frequency and that the area linearly in-
creases when moving from 1/4 to 1/1 sharing for all configurations. On
the other hand, when moving from 1/4 to 1/2 sharing factor, the power
increases significantly due to high FPU utilization. When moving from
1/2 to 1/1 sharing, we note that the power consumption decreases
in almost all cases. This effect occurs because even if we consider a
highly intensive benchmark (e.g., matrix multiplication), the FP inten-
sity around 50% leads to underutilization of the available resources,
causing reduced power consumption. Additionally, the 1/1 configura-
tion removes the interconnect, which relaxes the paths through the
FPU, further reducing power consumption. Finally, if we consider the
scaling of the number of cores, we can notice that most of the power
components scale linearly with the number of cores (i.e., core power,
TCDM power, and FPU power). On the other hand, other components
such as the interconnect and the instruction cache scale superlinearly,
indicating a smaller efficiency for the 16-core configuration. Moreover,
the operating frequency of the 16-core cluster decreases compared to
the one using eight cores. This effect is due to the longer path through
the interconnects. Finally, we can notice that the area increases less
than linearly due to some blocks not being duplicated, such as the
DMA, the event unit, and the shared banks of the I$.

4.4.2 Software Infrastructure
The full exploitation of the TP cluster requires a comprehensive open-
source software infrastructure, the basis of which has already been

4.4. EMBEDDED TP CLUSTER ARCHITECTURES 113

introduced in Chapter 3.

Compiler Back-End

In addition to the middle-end passes described in the previous chapter,
we further extended the compiler at the back-end level to support
a parametric number of FPU pipeline stages. This parameter sub-
stantially impacts the instruction scheduling algorithm: Imprecise
modeling of the FPU instruction latency may introduce stalls due to
data dependencies with the result. We have modified the FPU pipeline
description to include the hardware functional units and introduce a
command-line option to specify the number of stages in the target
configuration. Based on this option, the model specifies different la-
tency and reservation delays for the functional units involved in FP
operations.

Finally, we specified a set of platform-specific parameters for the
instruction scheduling algorithm. The GCC algorithm uses a heuristic
function to estimate the relative costs of operations; this value enables
the choice of the best assembly sequence in case of multiple alternatives
in the lowering process.

Parallel Programming Model

The architectural template of the TP cluster promotes a Single-Pro-
gram Multiple-Data (SPMD) parallel paradigm. This paradigm is
supported by a hardware abstraction layer (HAL), which allows mini-
mal access to the platform features. The HAL provides information
such as the core’s identifier that can be used to organize the parallel
workload for both data and task parallelism.

In this programming model, all the cores of the cluster follow the
same execution flow unless the programmer explicitly indicates that a
specific region should be executed by a subset of the cores, splitting
the cores’ workload concurrently on different data. Inter-core synchro-
nization barriers are explicitly indicated to ensure the correctness of
the results. Our architecture features dedicated hardware support that
allows optimizing synchronization construct like barriers or critical
sections.

114 CHAPTER 4. TP FP IN THE EMBEDDED DOMAIN

The HAL provides the basic primitives to support high-level paral-
lel programming models such as OpenMP. These models can provide
a more intuitive interface at the cost of higher overhead, particularly
when considering fine-grained workloads [107]. However, our explo-
ration is focused on finding the maximum performance that we can
obtain from real applications without considering a multi-layer software
stack.

4.4.3 Experimental Results

Experimental Set-Up

The experiments have been performed on a hardware emulator imple-
mented on a Xilinx UltraScale+ VCU118 FPGA board. The emula-
tion on the FPGA provides cycle-accurate results, with a significant
speed-up of the experiments compared to an RTL-equivalent simula-
tion. A set of non-intrusive per-core performance counters included in
the hardware design record the number of executed instructions and
cycles spent in different states (total, active, L2/TCDM memory stalls,
TCDM contention, FPU stall, FPU contention, FPU write-back stall,
instruction cache miss). We have generated all the bitstreams for all
the configurations reported in Table 4.3. After loading a bitstream on
the FPGA, we load and run application binaries using OpenOCD and
GDB interfaces. The same interface is used to load a program binary
in the L2 memory, start the program execution, and finally read the
performance counters from an emulated terminal. The values of power
consumption used to calculate the efficiency have been derived from
an annotated post-layout simulation, as described in Section 4.4.1.

Benchmarks

To evaluate the different configurations of the proposed TP cluster
architecture, we analyzed eight benchmarks commonly used in the
near-sensor processing applications for filtering, feature extraction,
classification, and essential linear algebra functions. Table 4.4 illus-
trates the target benchmarks associated with their domains (i.e., audio
processing, image processing, ExG biosignal processing). The Finite
Impulse Response (FIR) and Infinite Impulse Response (IIR) are digi-

4.4. EMBEDDED TP CLUSTER ARCHITECTURES 115

Table 4.4: Main application domains (Domains), FP intensity (FP
I.), and memory intensity (M. I.) for scalar and vector variants of the
benchmarks.

Scalar Vector
Apps Domains FP I. M. I. FP I. M. I.
CONV Audio, Image, ExG 0.33 0.67 0.28 0.29
DWT Audio, Image, ExG 0.29 0.59 0.21 0.57
FFT Audio, Image, ExG 0.32 0.52 0.26 0.38
FIR Audio, Image, ExG 0.32 0.65 0.32 0.48
IIR Audio, Image, ExG 0.19 0.55 0.17 0.33
KMEANS ExG 0.55 0.36 0.44 0.30
MATMUL Audio, Image, ExG 0.28 0.58 0.27 0.41
SVM ExG 0.27 0.53 0.21 0.52

tal filters with various data acquisition and analysis applications. The
Discrete Wavelet Transform (DWT) is a standard kernel used for
feature extraction, which decomposes a signal into a different level of
frequency resolutions through a bank of Low Pass (LPF) and High Pass
Filters (HPF), capturing both temporal and frequency information.

The Fast Fourier Transform (FFT) is a mathematical method
that transforms a signal from the time domain to the frequency do-
main. There are several variants of this algorithm; in this section,
we consider the decimation-in-frequency radix-2 variant. We consider
a state-of-the-art supervised classifier, the Support Vector Machine
(SVM), widely used in near-sensor applications [108]. We also include
another classifier named K-Means, an unsupervised ML algorithm able
to infer an unknown outcome from input vectors. The last two kernels
are basic linear algebra subprograms (BLAS) commonly used in DSP:
matrix multiplication (MATMUL) and convolution (CONV), which is
the most computing-intensive kernel in convolutional neural network
(CNN) workloads.

We have implemented different variants of each kernel, using scalar
(float) and vector (2 × float16, 2 × bfloat16) data types. There is
no significant difference in execution time and energy consumption
between float16 and bfloat16 vectors when considering the design of
the FPU; in the following experiments, we report a single value for

116 CHAPTER 4. TP FP IN THE EMBEDDED DOMAIN

Table
4.5:

Perform
ance

[G
flop

/s],energy
effi

ciency
[G

flop
/sW

],and
area

effi
ciency

[G
flop

/sm
m

2]execut-
ing

the
benchm

arks
on

the
8-cores

configurations.
Perform

ance
and

area
effi

ciency
are

com
puted

at0.8V
,

energy
effi

ciency
at

0
.65V

.
T
he

last
group

oflines
reports

norm
alized

average
values.

A
box

around
the

m
etric

value
highlights

the
best

configuration
for

each
benchm

ark.

Scalar
V
ector

8c2f0p
8c2f1p

8c2f2p
8c4f0p

8c4f1p
8c4f2p

8c8f0p
8c8f1p

8c8f2p
8c2f0p

8c2f1p
8c2f2p

8c4f0p
8c4f1p

8c4f2p
8c8f0p

8c8f1p
8c8f2p

P
E
R
F

1,16
1,62

1,74
1,43

1,94
1,97

1,52
2,04

1,96
1,91

2,57
2,19

2,04
2,89

2,36
2,32

2,98
2,35

E
.
E
F
F

72
66

72
82

76
83

91
83

81
119

105
91

117
113

100
139

121
97

CONV

A
.
E
F
F

1,5
1,8

2,0
1,8

2,0
2,1

1,6
1,9

1,9
2,5

2,9
2,5

2,6
3,0

2,5
2,5

2,8
2,2

P
E
R
F

0,54
0,73

0,77
0,70

0,87
0,86

0,75
0,95

0,85
0,83

1,12
1,18

0,89
1,17

1,19
0,92

1,21
1,16

E
.
E
F
F

33
30

32
40

34
36

45
39

35
51

46
49

51
46

50
55

49
48

DWT

A
.
E
F
F

0,7
0,8

0,9
0,9

0,9
0,9

0,8
0,9

0,8
1,1

1,3
1,3

1,1
1,2

1,3
1,0

1,1
1,1

P
E
R
F

0,67
0,91

0,97
0,92

1,23
1,21

1,02
1,37

1,27
1,21

1,56
1,54

1,49
1,83

1,66
1,60

1,98
1,63

E
.
E
F
F

42
37

40
52

48
51

61
56

52
75

64
64

85
72

70
96

80
67

FFT

A
.
E
F
F

0,9
1,0

1,1
1,2

1,3
1,3

1,1
1,3

1,2
1,6

1,8
1,7

1,9
1,9

1,8
1,7

1,9
1,5

P
E
R
F

1,21
1,54

1,40
1,49

1,76
1,48

1,62
1,88

1,47
2,24

3,03
2,76

2,54
3,38

2,86
2,70

3,57
2,79

E
.
E
F
F

75
63

58
85

69
63

97
76

61
139

124
114

145
132

121
162

145
115

FIR

A
.
E
F
F

1,6
1,7

1,6
1,9

1,8
1,6

1,7
1,8

1,4
3,0

3,4
3,1

3,2
3,5

3,1
2,9

3,3
2,6

P
E
R
F

0,61
0,82

0,86
0,70

0,90
0,91

0,74
0,94

0,91
1,06

1,40
1,46

1,15
1,49

1,49
1,19

1,55
1,48

E
.
E
F
F

38
33

35
40

35
39

45
38

37
66

57
60

65
58

63
72

63
61

IIR

A
.
E
F
F

0,8
0,9

1,0
0,9

0,9
1,0

0,8
0,9

0,9
1,4

1,6
1,6

1,4
1,5

1,6
1,3

1,5
1,4

P
E
R
F

0,75
1,02

1,05
1,15

1,49
1,30

1,34
1,68

1,30
1,21

1,64
1,72

1,68
2,13

2,06
1,88

2,33
2,10

E
.
E
F
F

47
42

43
66

58
55

80
68

53
75

67
71

96
83

87
113

94
86

K-M.

A
.
E
F
F

1,0
1,1

1,2
1,4

1,5
1,4

1,4
1,6

1,2
1,6

1,9
1,9

2,1
2,2

2,2
2,0

2,2
2,0

P
E
R
F

1,06
1,54

1,51
1,28

1,74
1,61

1,35
1,81

1,61
2,10

2,77
2,68

2,36
3,16

2,77
2,46

3,32
2,71

E
.
E
F
F

66
63

62
73

68
68

81
73

66
130

113
111

135
123

117
148

135
111

MAT.

A
.
E
F
F

1,4
1,7

1,7
1,6

1,8
1,7

1,4
1,7

1,5
2,8

3,1
3,0

3,0
3,2

3,0
2,6

3,1
2,6

P
E
R
F

0,53
0,69

0,69
0,59

0,74
0,71

0,62
0,77

0,70
0,63

0,85
0,82

0,68
0,89

0,83
0,69

0,91
0,81

E
.
E
F
F

33
28

29
34

29
30

37
31

29
39

35
34

39
35

35
42

37
33

SVM

A
.
E
F
F

0,7
0,8

0,8
0,7

0,8
0,8

0,7
0,7

0,7
0,8

1,0
0,9

0,9
0,9

0,9
0,7

0,9
0,8

P
E
R
F

0,00
0,24

0,26
0,16

0,40
0,35

0,23
0,48

0,35
0,40

0,76
0,73

0,54
0,92

0,80
0,62

1,00
0,78

E
.
E
F
F

0,13
0,01

0,04
0,27

0,12
0,16

0,43
0,24

0,13
0,73

0,54
0,52

0,79
0,62

0,62
1,00

0,76
0,56

NAVG

A
.
E
F
F

0,03
0,20

0,23
0,24

0,30
0,29

0,12
0,27

0,14
0,66

0,91
0,87

0,80
0,94

0,86
0,61

0,85
0,61

4.4. EMBEDDED TP CLUSTER ARCHITECTURES 117

Ta
bl
e
4.
6:

Pe
rf
or
m
an

ce
[G

flo
p/

s],
en

er
gy

effi
ci
en
cy

[G
flo

p/
sW

],
an

d
ar
ea

effi
ci
en
cy

[G
flo

p/
sm

m
2]

ex
e-

cu
tin

g
th
e
be

nc
hm

ar
ks

on
th
e
16
-c
or
es

co
nfi

gu
ra
tio

ns
.
Pe

rf
or
m
an

ce
an

d
ar
ea

effi
ci
en

cy
ar
e
co
m
pu

te
d

at
0.

8V
,e

ne
rg
y
effi

ci
en

cy
at

0.
65

V
.
T
he

la
st

gr
ou

p
of

lin
es

re
po

rt
s
no

rm
al
iz
ed

av
er
ag
e
va
lu
es
.
A

bo
x

ar
ou

nd
th
e
m
et
ric

va
lu
e
hi
gh

lig
ht
s
th
e
be

st
co
nfi

gu
ra
tio

n
fo
r
ea
ch

be
nc
hm

ar
k.

Sc
al
ar

V
ec
to
r

16
c4
f0
p

16
c4
f1
p

16
c4
f2
p

16
c8
f0
p

16
c8
f1
p

16
c8
f2
p

16
c1
6f
0p

16
c1
6f
1p

16
c1
6f
2p

16
c4
f0
p

16
c4
f1
p

16
c4
f2
p

16
c8
f0
p

16
c8
f1
p

16
c8
f2
p

16
c1
6f
0p

16
c1
6f
1p

16
c1
6f
2p

P
E
R
F

2,
19

2,
80

2,
93

2,
61

3,
10

3,
14

2,
71

3,
37

3,
26

3,
51

4,
28

3,
63

3,
69

4,
54

3,
74

4,
00

4,
78

3,
87

E
.
E
F
F

77
69

72
84

75
73

94
79

78
12
3

10
6

89
11
8

11
0

87
14
0

11
3

92

CONV

A
.
E
F
F

1,
5

1,
8

2,
0

1,
7

1,
8

1,
9

1,
7

1,
8

1,
8

2,
5

2,
7

2,
5

2,
5

2,
7

2,
2

2,
5

2,
5

2,
2

P
E
R
F

0,
74

0,
91

0,
95

0,
87

0,
98

0,
97

0,
89

1,
06

1,
00

0,
88

1,
07

1,
10

0,
94

1,
05

1,
06

0,
94

1,
11

1,
08

E
.
E
F
F

26
22

23
28

24
23

31
25

24
31

26
27

30
26

25
33

26
26

DWT

A
.
E
F
F

0,
5

0,
6

0,
6

0,
6

0,
6

0,
6

0,
5

0,
6

0,
6

0,
6

0,
7

0,
8

0,
6

0,
6

0,
6

0,
6

0,
6

0,
6

P
E
R
F

1,
21

1,
51

1,
56

1,
52

1,
78

1,
81

1,
60

1,
99

1,
90

2,
13

2,
54

2,
50

2,
25

2,
62

2,
53

2,
22

2,
74

2,
58

E
.
E
F
F

42
37

38
49

43
42

56
47

45
74

62
61

72
63

59
78

64
62

FFT

A
.
E
F
F

0,
8

1,
0

1,
1

1,
0

1,
0

1,
1

1,
0

1,
1

1,
1

1,
5

1,
6

1,
7

1,
5

1,
5

1,
5

1,
4

1,
5

1,
5

P
E
R
F

2,
29

2,
66

2,
38

2,
71

2,
86

2,
39

2,
85

3,
08

2,
47

4,
17

5,
19

4,
62

4,
62

5,
38

4,
54

4,
79

5,
92

4,
62

E
.
E
F
F

80
66

59
87

69
56

99
73

59
14
6

12
8

11
4

14
8

13
0

10
6

16
7

13
9

11
0

FIR

A
.
E
F
F

1,
6

1,
7

1,
6

1,
8

1,
7

1,
4

1,
8

1,
6

1,
4

2,
9

3,
3

3,
2

3,
1

3,
1

2,
7

3,
0

3,
1

2,
6

P
E
R
F

0,
78

0,
95

0,
99

0,
81

0,
93

0,
95

0,
81

0,
98

0,
97

1,
37

1,
69

1,
73

1,
42

1,
62

1,
65

1,
41

1,
71

1,
68

E
.
E
F
F

27
23

24
26

23
22

28
23

23
48

42
42

46
39

39
49

40
40

IIR

A
.
E
F
F

0,
5

0,
6

0,
7

0,
5

0,
5

0,
6

0,
5

0,
5

0,
5

1,
0

1,
1

1,
2

1,
0

0,
9

1,
0

0,
9

0,
9

0,
9

P
E
R
F

1,
14

1,
39

1,
39

1,
28

1,
45

1,
35

1,
25

1,
50

1,
40

1,
72

2,
11

2,
13

1,
95

2,
28

2,
22

1,
93

2,
43

2,
29

E
.
E
F
F

40
34

34
41

35
32

43
35

33
60

52
52

63
55

52
67

57
54

K-M.

A
.
E
F
F

0,
8

0,
9

1,
0

0,
9

0,
8

0,
8

0,
8

0,
8

0,
8

1,
2

1,
3

1,
5

1,
3

1,
3

1,
3

1,
2

1,
3

1,
3

P
E
R
F

1,
96

2,
57

2,
41

2,
23

2,
65

2,
41

2,
30

2,
86

2,
50

3,
98

4,
83

4,
57

4,
34

5,
14

4,
48

4,
42

5,
47

4,
57

E
.
E
F
F

68
63

59
72

64
56

80
67

60
13
9

11
9

11
3

13
9

12
5

10
4

15
4

12
9

10
9

MAT.

A
.
E
F
F

1,
4

1,
6

1,
6

1,
5

1,
5

1,
4

1,
4

1,
5

1,
4

2,
8

3,
0

3,
1

2,
9

3,
0

2,
7

2,
7

2,
9

2,
6

P
E
R
F

0,
90

1,
07

1,
06

0,
99

1,
11

1,
07

1,
00

1,
19

1,
09

1,
14

1,
40

1,
39

1,
21

1,
38

1,
33

1,
21

1,
47

1,
36

E
.
E
F
F

31
26

26
32

27
25

35
28

26
40

34
34

39
34

31
42

35
32

SVM

A
.
E
F
F

0,
6

0,
7

0,
7

0,
7

0,
6

0,
6

0,
6

0,
6

0,
6

0,
8

0,
9

1,
0

0,
8

0,
8

0,
8

0,
7

0,
8

0,
8

P
E
R
F

0,
00

0,
23

0,
24

0,
15

0,
31

0,
27

0,
17

0,
41

0,
31

0,
51

0,
84

0,
80

0,
62

0,
88

0,
77

0,
64

1,
00

0,
81

E
.
E
F
F

0,
22

0,
05

0,
06

0,
28

0,
10

0,
02

0,
43

0,
15

0,
08

0,
85

0,
58

0,
54

0,
82

0,
59

0,
43

1,
00

0,
64

0,
50

NAVG

A
.
E
F
F

0,
03

0,
17

0,
29

0,
16

0,
15

0,
14

0,
08

0,
12

0,
10

0,
67

0,
87

0,
97

0,
73

0,
76

0,
67

0,
61

0,
69

0,
60

118 CHAPTER 4. TP FP IN THE EMBEDDED DOMAIN

both configurations.
Each variant accepts a parameter representing the number of cores

available in the current configuration to exploit the parallelism pro-
vided by the TP cluster. The source code includes a form of parametric
parallelism based on the number of available cores and the core id,
using the low-overhead HAL interface described in Section 4.4.2. We
exploited data parallelism at the loop level with static scheduling of the
iterations on the available cores. This policy guarantees maximum bal-
ancing with a limited overhead related to the computation of per-core
iteration boundaries. Whenever feasible, we apply data parallelism to
the benchmarks’ outer loops (CONV, FIR, MATMUL). In other cases,
data parallelism is applied to single stages of the algorithm, separated
by a synchronization barrier (DWT, FFT, KMEANS, SVM); except
for FFT, these benchmarks are characterized by sequential regions
interleaved with parallel loops and executed by a single core.

A common problem of IIR filters working on a single stream is that
data dependencies limit parallelism. To alleviate this limitation, we
have adopted a technique based on a block formulation of recursive
filters tailored for vector units [109]. The algebraic transformations
required by this technique are applied off-line and do not imply any
overhead. However, the algorithm’s time complexity is higher than the
original one, and the size of the vector state (equal to the number of
taps) severely limits the exploitability of parallelism. For this reason,
the vector variant of this benchmark is the only reported case with
alternative configurations achieving the best result for energy efficiency.

Table 4.4 also reports the FP and memory intensity of the bench-
marks for scalar and vector variants. The FP intensity is computed as
the ratio between the number of FP instructions and the total number
of instructions. Analogously, the memory intensity is the number of
load/store instructions over the total number of instructions. These
numbers provide a quantitative evaluation of the pressure on the FPU
and memory subsystems. They are essential to understand the actual
FP workload in a real execution scenario.

Performance, Energy Efficiency, and Area Efficiency

We have performed extensive benchmarking considering all the bench-
mark variants and all the configurations of the TP cluster. We have

4.4. EMBEDDED TP CLUSTER ARCHITECTURES 119

Fi
gu

re
4.
17
:
Sp

ee
d-
up

s
ob

ta
in
ed

ex
ec
ut
in
g
sc
al
ar

an
d
ve
ct
or

va
ria

nt
s
on

al
lt
he

pl
at
fo
rm

co
nfi

gu
ra
tio

ns
.

Ea
ch

co
nfi

gu
ra
tio

n
re
po

rt
s
th
e
nu

m
be

r
of

av
ai
la
bl
e
co
re
s
an

d
th
e
su
pp

or
t
to

ve
ct
or
iz
at
io
n.

Ea
ch

ba
r

sh
ow

s
th
e
m
in
im

um
(d
ar
k
co
lo
r)
,m

ax
im

um
an

d
av
er
ag
e
(li
gh

t
co
lo
r)

va
lu
e.

120 CHAPTER 4. TP FP IN THE EMBEDDED DOMAIN

measured the performance [Gflop/s], the energy efficiency [Gflop/s W],
and the area efficiency [Gflop/s mm2] for each benchmark variant and
platform configuration: Table 4.5 and Table 4.6 report the result of the
experiments. Each table’s last three rows report the measures’ average
values, with normalized values ranging between 0 and 1. Computing
these metrics allows establishing the configurations that guarantee the
best performance and energy/area efficiency for the considered bench-
marks. Moreover, the tables use a color scale to visually emphasize
the worst (light color) and the best (dark) configurations.

The configuration with 16 cores, private FPUs, and one pipeline
stage provides the best performance, with a maximum of 3.37 Gflop/s
for scalars and 5.92 Gflop/s for vectors. Intuitively, using the maximum
number of cores and FPUs is beneficial for performance. An additional
pipeline stage could increase the frequency, but this is not the case
due to critical structural paths (as discussed in Section 4.4.1.

The configuration with 16 cores, private FPUs, and zero pipeline
stages is the most energy-efficient, with a maximum of 99 Gflop/s W
and 167 Gflop/s W for vectors. Using the maximum number of cores is
never detrimental to performance, mainly thanks to adopting aggressive
power-saving policies that turn off cores waiting for synchronization
events. Moreover, this configuration prevents the occurrence of FPU
stalls, which are detrimental to energy efficiency.

The configuration with 8 cores and 4 shared FPUs configured
with one pipeline stage is the most area-efficient, with a maximum
of 2.0 Gflop/s mm2 for scalars and 3.5 Gflop/s mm2 for vectors. This
configuration saves area by reducing the number of cores and the
sharing factor, but maintaining a single pipeline stage represents the
best trade-off with performance.

Parallelization and Vectorization Figure 4.17 depicts the
speed-ups from the execution of the benchmarks on the 16-core
architectures, combining the benefits deriving from parallelism and
vectorization. Each configuration of the TP cluster is denoted by the
abbreviation n-CL, where n indicates the number of cores. The suffix
VECT designates the execution of the vector variant. The baseline
to compute the speed-up is the execution on a single core with no
vectorization support. The bars show the average, maximum, and

4.4. EMBEDDED TP CLUSTER ARCHITECTURES 121

minimum values of the speed-ups executed on all the architectural
configurations.

Focusing on the parallel speed-up, we can notice that the values
reported for DWT, IIR, and K-MEANS are modest, reaching a sat-
uration point around 8. These benchmarks have a complex parallel
execution flow, requiring several synchronization barriers and regions
with sequential execution to ensure correctness, limiting the paral-
lelism. However, this effect is not detrimental to energy efficiency, as
discussed in Section 4.4.3 The rest of the kernels (CONV, FFT, FIR,
and MATMUL) demonstrate a nearly ideal speed-up.

Vectorization leads to an additional improvement of the speed-up
– between 1.3× and 2× – thanks to the beneficial effects described
in Section 1. Moreover, the improvement derived from vectorization
is higher than the parallel speed-up for some applications. When
passing from 8CL-VECT (8 cores working on vectors) to 16CL (8
cores working on scalars), this trend is more pronounced for FIR, IIR,
MATMUL KMEANS. This effect is due to the different overheads
related to parallelization and vectorization. As discussed above, IIR
and K-MEANS require several synchronization barriers and regions
with sequential execution sematic. Conversely, FIR and MATMUL are
amenable to advanced manual vectorization techniques. For instance,
the vector variant of MATMUL reaches a near-ideal improvement
vectorizing both input matrices. The efficiency is achieved by unrolling
the two inner loops, adding shuffle operations to compute the transpose,
and using a dot-product intrinsic to accumulate two products. A
similar technique is applied to FIR. On the other side, the complex
multiplication kernel required by FFT requires seven cycles for scalar
data and ten cycles for vector data; consequently, the maximum gain
from vectorization is 1.43×.

Sharing Factor Figure 4.18 reports average values of performance,
energy efficiency, and area efficiency varying the sharing factor. The
left part of the figure references 8-core configurations, the right part
16-core ones. The number of pipeline stages has been set to one for all
experiments, while the number of FPUs corresponds to sharing factors
1/4, 1/2, and 1/1, respectively.

As a general trend, performance grows when increasing the sharing

122 CHAPTER 4. TP FP IN THE EMBEDDED DOMAIN

2 FPUs (1/4) 4 FPUs (1/2) 8 FPUs (1/1) 4 FPUs (1/4) 8 FPUs (1/2) 16 FPUs (1/1)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

li
z
e

d
 A

v
e
ra

g
e

PERF. [Gflop/s] E. EFF. [Gflop/s/W] A. EFF. [Gflop/s/mm2]

16-CORES CL8-CORES CL

Figure 4.18: Performance (PERF.), energy efficiency (E. EFF.), and
area efficiency (A. EFF.) fixing one pipeline stage and varying the
number of FPUs. The values are the average of the normalized results.

0 PS 1 PS 2 PS 0 PS 1 PS 2 PS
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a
li
z
e
d

 A
v
e
ra

g
e

PERF. [Gflop/s] E. EFF. [Gflop/s/W] A. EFF. [Gflop/s/mm
2
]

8-CORES CL 16-CORES CL

Figure 4.19: Performance (PERF.), Energy efficiency (E. EFF.), and
area efficiency (A. EFF.) fixing a 1/1 sharing factor and varying the
pipeline stages (PS). The values are the average of the normalized
resultss.

4.4. EMBEDDED TP CLUSTER ARCHITECTURES 123

factor. This increment is more evident, passing from 1/4 to 1/2 in
8-core configurations, and passing from 1/2 to 1/1 in the 16-core
configurations.

The energy efficiency increases with the sharing factor. This effect
has a minor relevance for 16-core configurations because the contribu-
tion of FPUs to the total energy consumption is proportionally lower.
Conversely, the area efficiency increases by reducing the sharing factor
from 1/1 to 1/4. This trend is inverted in the transition from 1/4
to 1/2 with eight cores. This effect is related to the FP intensity of
benchmarks, which is always less than one (as expected in real appli-
cations). A 1/2 sharing factor can sustain an FP intensity up to 0.5
with no additional stalls. This value is enough for most applications’
requirements, considering that 0.31 is the average FP intensity of the
benchmarks in Table 4.4. On the 16-core configuration, the number of
FPUs to reach the same sharing factor is higher, implying a significant
increase of the area; in this case, the best area efficiency corresponds
to the minimum sharing factor (1/4).

Pipelining Figure 4.19 shows average values of performance, energy
efficiency, and area efficiency varying the number of pipeline stages.
The support for pipelining improves performance since this technique
allows for increasing the operating frequency of the TP cluster. Con-
versely, performance degrades with two pipeline stages. Even if we
can increase the operating frequency, we observe an increment in the
number of cycles due to the register file’s write port contentions. A
write-back stall may happen when a load/store post-increment opera-
tion or an integer operation arrives right after an FP operation when
configuring the FPU for two pipeline stages. For instance, when we
encounter the valid signal for the FP operation in clock cycle n, and
a load/store post-increment request in cycle n + 1, the FPU must
wait until the other instructions end before storing its results, causing
a stall for the use of the port. There are no contentions with zero
pipeline stages because there is a dedicated write port for the FPU.

In all cases, energy efficiency decreases by incrementing pipeline
stages since the design makes the logic more complex. Finally, area
efficiency follows a trend very similar to performance. The area required
to enable one-stage pipelining leads to a considerable benefit, while

124 CHAPTER 4. TP FP IN THE EMBEDDED DOMAIN

Table
4.7:

C
om

parison
w
ith

state-of-the-art
architectures

in
high-perform

ance
and

low
-power

em
bedded

dom
ain.

A
ra

[110]
H
w
acha

[111]
Snitch

[112]
A
riane

[43]
N
T
X

[43]
X
avier *

ST
M
32H

7
†M

r.W
olf

[105]

T
his

w
ork

Best
perf.

(16c16f1p)
Best

en.
eff.

(16c16f0p)
Best

area
eff.

(8c4f1p)
D
om

ain
H
igh-perf.

H
igh-perf.

H
igh-perf.

H
igh-perf.

H
igh-perf.

Em
bedded

Em
bedded

Em
bedded

Em
bedded

T
echnology

G
F
22FD

X
45nm

SO
I

G
F
22FD

X
G
F
22FD

X
G
F
22FD

X
T
SM

C
12FFN

40nm
C
M
O
S

40nm
C
M
O
S

G
F
22FD

X
V
oltage

(V
)

0.80
2

0.80
1

0.80
2

0.80
1

0.80
1

0.75
1

1.80
/
1.80

1
1.10

1
0.80

/
0.65

/
0.80

3

Frequency
(G

H
z)

1.04
0.55

1.06
0.92

1.55
1.38

0.20
/
0.48

0.45
0.37

/
0.30

/
0.43

A
rea

(m
m

2)
2.14

3.00
0.89

0.39
0.56

11.03
–

10.00
2.10

/
1.80

/
0.97

P
erform

ance
(G

flop/s)
64.80

3.44
14.38

2.04
18.27

153.00
0.03

/
0.07

1.00
2.86

/
2.30

/
1.74

E
nergy

eff.
(G

flop/s/W
)

81.60
25.00

103.84
33.02

110.05
52.39

0.44
/
0.33

4.50
26.00

/
81.00

/
23.40

A
rea

eff.
(G

flop/s/m
m

2)
30.34

1.14
25.83

5.23
32.63

13.84
–

1.70
1.50

/
0.60

/
1.78

F
P

form
ats

float
float16
bfloat16
m
inifloat

double
float

double
float

float
float16
bfloat16
m
inifloat

float ‡
float

float16
float

float
float
float16
bfloat16

P
rogram

m
ing

interface
ISA

extension
ISA

extension
ISA

extension
ISA

extension
M
em

ory-m
apped

configuration
Base

ISA
Base

ISA
Base

ISA
ISA

extension

E
xecution
m
odel

SIM
D

vector
unit

(accelerator)

SIM
T

vector-thread
unit

(accelerator)

Loop-buffers
for

tensor
stream

ing
(accelerator)

SIM
D

processor

Loop-buffers
for

tensor
stream

ing
(accelerator)

SIM
T

vector-thread
unit

(accelerator)

Processor
M
ulti-core

processor
M
ulti-core

processor

C
om

piler
support

Yes
Yes

(O
penC

L)
Partial(inline

A
SM

)
Yes

N
o

Yes
(C

U
D
A
)

Yes
Yes

Yes

*N
um

bers
extracted

from
[112].

†M
easurem

ents
taken

on
a
N
U
C
LEO

H
743ZIdevelopm

ent
board

executing
a
128×

128.
m
atrix

m
ultiplication.

1Silicon
m
easurem

ents.
2Post-layout

sim
ulation

using
typicalfrequency.

3Post-layout
sim

ulation
using

worst-case
frequency.

‡H
igher

internalaccum
ulation

precision
w
ith

float
results.

4.4. EMBEDDED TP CLUSTER ARCHITECTURES 125

a further area increase for a second stage is not equally convenient.
This trend has a minor impact on 16-core configurations since the
contribution of pipeline logic becomes negligible.

4.4.4 Comparison with the SoA
Table 4.7 depicts a comparison with SoA platforms with FP support
in high-performance and embedded domains. The number of FP op-
erations has been measured by executing a single-precision matrix
multiplication on all the platforms. We have considered three configu-
rations of the TP cluster (reported in the TP column), corresponding
to the best performance, the best energy efficiency, and the best area
efficiency. Our solution outperforms a single-core Cortex core and
the Mr.Wolf multi-core cluster in all metrics in the targeted domain
of low-power embedded systems. Comparing with high performance
embedded platform, the Tegra Xavier SoC contains eight streaming
multiprocessors (SMs) composed of four execution units. Each execu-
tion unit includes 16 single-precision FPUs sharing a register file and
an instruction cache. The TP cluster is 53% better than an SM in
terms of energy efficiency. As regards performance, a single execution
unit is 13× faster.

As expected, absolute performance and area efficiency in the high-
-performance domain is higher than the TP cluster due to the higher
operating frequencies. In our design, we consider the worst-case corner
for the computation of the operating frequency. Simultaneously, the
other solutions report silicon results or typical corners, which is penal-
izing our results. Nevertheless, our solution outperforms an Ariane and
is comparable with a Hwacha vector processor. The energy efficiency
of the TP cluster is comparable with Snitch, NTX, and Ara, despite
these architectures are heavily specialized for FP intensive computa-
tions. This outcome is due to three main factors. Firstly, operating
at low voltage in near-threshold operation makes the TP cluster very
power efficient. Secondly, the best solution is not to adopt pipelining,
so it does not pay the pipeline logic’s energetic overhead. Thirdly,
the support to FMA operations increases the number of operations
performed per cycle by 2× and is highly beneficial.

Finally, compared to most energy-efficient solutions in Table 4.7, the
proposed cluster provides full compiler support and flexibility typical of

126 CHAPTER 4. TP FP IN THE EMBEDDED DOMAIN

high-level parallel programming models such as OpenMP, not requiring
programmers to use low-level accelerator-centric interfaces such as
OpenCL or memory-mapped APIs or even lower-level abstractions
(e.g., inline assembly). This support is a crucial requirement for the
wide adoption of these solutions for near-sensor computing.

4.4.5 Related Work
This section provides an overview of the current SoA. First, we consider
the main alternatives available for platform and component design.
Then, we explore the role of packed-SIMD and vector units in embedded
platforms, as they are central to our discussion. We also discuss
software-based approaches since they represent a platform-agnostic
alternative to our solution. Finally, we provide an overview of both
low-power and high-end embedded systems that provide FP support
because these architectures provide us a baseline to compare our
results.

Non-IEEE 754 Floating-Point Formats

In recent years, researchers have started to explore custom formats
that are alternative to the IEEE 754 standard ones and their closer
derivatives (e.g., bfloat16). Gautschi et al. [70] propose an FPU based
on the logarithmic number system (LNU), which is up to 4.1× more
energy-efficient than standard FPUs in non-linear processing kernels.
Universal numbers (unums) [77] adopt a variable-width representation
based on interval arithmetic to guarantee that the result contains the
exact solution (see Chapter 2). The variable width provided by unum
enables to scale up precision in scientific computing applications [113],
but hardware implementations not suitable for the area and energy
constraints of the embedded computing domain. A recent version of
the unum specification, known as unum type III or posit [93], proposes
a solution to the hardware overhead issue. In [40] we introduce a posit
arithmetic unit supporting additions and subtractions, coupled with
dedicated compression units to reduce the memory footprint.

We mention these solutions as they represent a viable alternative
to reduce energy consumption in our target domain. However, we have
not included these hardware components in the TP cluster design for

4.4. EMBEDDED TP CLUSTER ARCHITECTURES 127

two main reasons. First, current hardware implementations are char-
acterized by high overhead compared to actual benefits (in Chapter 2,
we estimate a reduction of memory footprint around 7%). Second,
their adoption requires a significant effort in code refactoring.

Transprecision Computing Building Blocks

The choice of an energy-efficient and TP-enabled FPU design is a
crucial enabler for this work. In literature, there are several designs of
FPUs that enable TP operations. For instance, Kaul et al. [67] describe
a variable-precision fused multiply-and-add (FMA) unit with vector
support (1, 2, or 4 ways). Their design considers 8 bit for the exponents
and 24 bit for the mantissa. Moreover, a 5-bit certainty field tracks
the number of accurate mantissa bits; computations that do not fulfill
the application’s accuracy constraints are recomputed with increased
precision. The energy consumption for a 32 nm CMOS implementation
is 19.4 pJ/flop, even though the overhead due to precision tracking
and fixed-size exponents increases the total energy consumption at
the application level. Moreover, if maximum precision is required,
applications become very inefficient due to the need for repeated
operations performed at a lower precision.

Nannarelli [95] describes the design of an FPU based on the Tun-
able floating-point (TFP) format, which supports a variable number of
bits for mantissa (from 4 to 24) and exponent (from 5 to 8). However,
this solution does not support vectorization, which is a crucial enabler
for energy efficiency. Jaiswal et al. [114] present a pipelined design of
two FP adders that support multiple precision configurations. The
results are promising in terms of area and energy efficiency, but this
solution does not support additional FP operations. Hardfloat [88] is
an open-source library (written in Chisel) that contains parameterized
blocks for FMA operations, conversions between integer and FP num-
bers, and conversions among different FP formats. This library offers
individual function blocks instead of a fully-featured FPU, missing
unit-level optimizations at the current development stage. Zhang et
al. [98] present a multiple-precision FP FMA with vector support Their
work aims at minimizing the area overhead, but the hardware sharing
inside the datapath constrains all formats to use the same latency.
Moreover, the FPU does not provide any support for scalars in smaller

128 CHAPTER 4. TP FP IN THE EMBEDDED DOMAIN

formats.
FPnew (see Chapter 3) is an open-source TP-FPU capable of

supporting a wide range of standard (double, float, and float16) and
custom (bfloat16 and 8-bit minifloat) FP formats. FPnew supports
both scalar and packed-SIMD operations, and the experimental results
shown in Chapter 3 assess that this design outperforms all its competi-
tors in terms of area and energy efficiency. We have integrated this
FPU in our architecture, Section 4.4.1 describes its design and integra-
tion aspects in further detail. FPNew includes a DIVSQRT module to
compute divisions and square roots using an iterative non-restoring
divider, similar to the design presented in [115].

Packed-SIMD Support And Vector Units

Intel initially introduced Packed-SIMD extensions for FP computations
with the MMX and SSE ISAs. ARM later introduced the NEON
extension, which supports up to 128-bit single-precision FP operations,
which has been evaluated as a better solution than the Intel counterpart
in low-power embedded platforms [116]. In this context, heterogeneous
architectures have also provided support for packed-SIMD instructions
featuring a DSP accelerator, such as Texas Instruments Keystone
II [117]. Considering the impact of packed-SIMD instructions on the
processing capabilities of DSP platforms, the RISC-V consortium is
working on a dedicated ISA extension [118].

Variable-length vector units have been initially introduced on the
CRAY-1 architecture [119], and today they are a well-established
solution in high-end computer systems. The ARM Scalable Vector
Extension (SVE) [120] is a vector extension introduces as a SIMD
instruction set for the AArch64 architecture. The SVE specification
allows system designers to choose a vector register length between
128 and 2,48 bit to satisfy different constraints. The programming
model is vector-length agnostic; there is no need to recompile the
source code or use compiler intrinsics to change the vector length.
The A64FX chip by Fujitsu in TSMC 7nm technology implements the
SVE extension, including 48 cores with support for 512-bit vectors and
reaching peak performance of 2.7 Tflop/s [121]. This chip has been
used in Fugaku, which entered the TOP500 list in June 2020 as the
fastest supercomputer globally.

4.4. EMBEDDED TP CLUSTER ARCHITECTURES 129

The current working draft for the RISC-V “V” vector exten-
sion [122] defines a variable-length register file with vector operation
semantics. This extension supports FP16, FP32, FP64, and FP128
types and includes widening FMA operations to support mixed-preci-
sion computations (e.g., multiplying two FP16 registers and adding
the result to an FP32 register). ARA [110] and Hwacha [111] are
two embodiments of this provisional standard. ARA includes an
RV64 core and a 64-bit vector unit based on the version 0.5 draft of
the RISC-V vector extension. Hwacha is based on the vector-fetch
paradigm and is composed of an array of single-issue, in-order RISC-V
Rocket cores [111]. In general, these solutions’ area and power con-
sumption are too high for low-power, MCU-class processing systems.
This observation is the main reason why vector semantics in ULP
embedded systems are typically supported by providing packed-SIMD
instructions.

Software-Based TP Approaches

Besides approaches involving custom HW design to enable mixed-pre-
cision operations, several researchers have proposed multiple-precision
arithmetic libraries that extend the IEEE 754 formats to perform FP
computations with arbitrary precision. This solution allows application
designers to overcome the limitations of fixed-format FP types without
dedicated hardware support. ARPREC [60] and GNU MPFR [61]
provide APIs to handle multiple formats characterized by a fixed-size
exponent (a machine word) and an arbitrary size mantissa (multiples
of a machine word). Arb [123] is a C library for arbitrary-precision
interval arithmetic using the midpoint-radius representation that out-
performs non-interval solutions such as MPFR in some applications.
These libraries are widely used in contexts requiring a high dynamic
range and are characterized by relaxed constraints on computation
time and energy consumption (e.g., scientific computing on data center
nodes). To speed up the library execution time, Lefèvre [124] presents
a new algorithm to speed up the sum of arbitrary-precision FP num-
ber using the MPRF internal representation, However, the approach
based on software emulation is not a viable solution for energy-efficient
embedded systems. Both time and energy efficiency are negatively
affected by at least an order of magnitude compared with solutions

130 CHAPTER 4. TP FP IN THE EMBEDDED DOMAIN

based on dedicated hardware.
Anderson et al. [125] propose a software approach for the reduced-

precision representation of FP data. They define a set of non-standard
FP multibyte formats (flytes) that can be converted to the next larger
hardware type to perform arithmetic computations. The exponent
is set to the maximum bitwidth of the containing type to minimize
the conversion overhead. The adoption of the vector units available
on general-purpose processors (e.g., Intel Haswell) or high-end accel-
erators (e.g., Intel Xeon Phi) allows the software library to coalesce
memory accesses and then amortize the conversion overhead.

Low-Power Parallel Architectures for FP Computing

Coarse Grain Reconfigurable Architectures (CGRAs) recently emerged
as a promising solution for the near-sensor processing domain. CGRAs
are systolic arrays containing a large number of processing elements
with a low-latency routing interconnect. MuTARe [126] is a CGRA
working in the near-threshold voltage regime to achieve low energy.
This solution improves by 29% the energy efficiency of a heterogeneous
platform based on the ARM big.LITTLE platform. However, MuTARe
targets high-end embedded systems and does not provide FP support.
Transpire [127] is a CGRA architecture with FP support. The authors
state an improvement of around 10× in performance and energy ef-
ficiency compared with a RISC-V core extended with packed-SIMD
vectorization. These benefits are limited to specific algorithms since
the design of CGRAs enables programmers to exploit different combina-
tions of data-level and pipeline-based parallelism. However, near-sensor
processing includes a wide variety of algorithms presenting complex
access patterns that cannot be efficiently implemented on CGRAs.

Mr.Wolf [105] is a multi-core programmable processor implemented
in CMOS 40nm technology. The platform includes a tiny (12 Kgates)
RISC-V core accelerated by a powerful 8-core cluster of RI5CY
cores [50] sharing two single-precision FPUs. The limited number of
FPUs provided by this architecture represents a severe limitation to
the maximum FP intensity that applications may expose. A primary
contribution of our work consists of finding the best trade-off between
the number of cores and the number of available FPUs, yet considering
strict area and power constraints, and exploiting TP units to improve

4.4. EMBEDDED TP CLUSTER ARCHITECTURES 131

performance and execution efficiency. In Section 4.4.4, we include
Mr.Wolf in our comparison with SoA platforms.

Helium [128] is an extension of the Armv8.1-M architecture tar-
geting low-power MCU-class computing systems. The ISA extension
includes a set of scalar and vector instructions supporting fixed-point
(8-bit, 16-bit, and 32-bit) and FP (float and float16, optionally double)
formats. These instructions are beneficial for a wide range of near-sen-
sor applications, from machine learning to DSP. The Cortex-M55 [129]
core includes the Helium extension, but chips based on this IP are not
yet available on the market to perform a comparison with our solution.

High-End Embedded Systems for FP Computing

The most widely used commercial architectures for compute-intensive
FP workloads are GP-GPUs. With the growth of emerging applications
such as training of neural networks, they have also started to support
reduced precision FP formats such as brain-float and binary16. Indeed,
training algorithms for deep neural networks such as backpropagation
are naturally robust to errors. These features of modern GPUs have
also been exploited in other application domains, such as machine
learning [130] and linear algebra [131], demonstrating significant bene-
fits for performance and efficiency. NVidia Pascal has been the first
GPU supporting 16-bit FP formats. NVidia Pascal features SIMD
float16 operations that can be executed using a single paired-operation
instruction. Furthermore, the new Volta micro-architecture further
extends support to reduced precision types featuring mixed-precision
multiply-and-add instructions.

Other research works targeting neural network training and FP
intensive workloads leverage more specialized architectures. Neu-
rostream [132] is a streaming memory-mapped co-processor targeting
inference and training of deep neural networks in near-memory comput-
ing systems. This design removes the register-file bottleneck of SIMD
architectures accessing the memory exploiting programmable hardware
loops and address generators, enabling execution efficiency close to
one MAC per cycle. Neurostream achieves an average performance of
240 Gflop/s within a power-budget of 2.5 W. The architecture has been
further improved in [133], with a 2.7× energy efficiency improvement
over GPGPUs at 4.4× less silicon area, delivering 1.2 Tflop/s. The

132 CHAPTER 4. TP FP IN THE EMBEDDED DOMAIN

latter architecture has been implemented in 22nm FDX in Kosmod-
rom [43]. The chip includes two Ariane cores and one NTX accelerator.
Kosmodrom achieves an energy efficiency of 260 Gflop/s W and a
28 Gflop/s performance within a 6.2 mW to 400 mW power envelope.

In [112], the memory-mapped control has been replaced by a tiny
general-purpose processor meant to drive double-precision FPUs, im-
proving the efficiency and flexibility of previous approaches. This
architecture introduces two ISA extensions to reduce the pressure on
the core: the stream semantic registers (SSR) and the FP repetition
instruction (FREP). SSRs allow the core to implicitly encode memory
accesses as register reads/writes, removing a significant number of
explicit memory instructions. The FREP extension decouples the
FP and integer pipeline by sequencing instructions from a micro-loop
buffer. The evaluation on an octa-core cluster in 22 nm technology
reports a 5× multi-core speed-up and a 3.5× gain in energy efficiency.

The architectures discussed in this section target the domain of
servers and high-end embedded systems, and presenting further details
is beyond our work’s scope. However, the comparison with these
solutions provides valuable insight and is discussed in Section 4.4.4.

4.5 Notable Embedded Systems Using
FPnew

The Internet-of-Things requires end-nodes with ultra-low-power al-
ways-on capability for a long battery lifetime, as well as high perfor-
mance, energy efficiency, and extreme flexibility to deal with com-
plex and fast-evolving near-sensor analytics algorithms (NSAAs). We
present Vega, an always-on IoT end-node SoC capable of scaling
from a 1.7 µW fully retentive cognitive sleep mode up to 32.2 Gop/s
(at 49.4 mW) peak performance on NSAAs, including mobile DNN
inference, exploiting 1.6 MB of state-retentive SRAM, and 4 MB of
non-volatile MRAM. To meet the performance and flexibility require-
ments of NSAAs, the SoC features 10 RISC-V cores: one core for SoC
and IO management and a 9-core cluster supporting multi-precision
SIMD integer and FP computation. Two programmable ML accelera-
tors boost energy efficiency in sleep and active state, respectively.

4.5. NOTABLE EMBEDDED SYSTEMS USING FPNEW 133

Figure 4.20: Vega SoC architecture and power domains.

134 CHAPTER 4. TP FP IN THE EMBEDDED DOMAIN

The Vega system is an evolution of the TP cluster architecture
presented in the previous section. As shown in Fig. 4.20, the SoC
consists of two main switchable power domains (SoC and cluster), plus
an always-on domain operating from 0.6 V to 0.8 V supplied by two
commercial off-the-shelf on-chip regulators (buck converter plus LDO)
from 3.6 V (VBAT). Two body-bias generators are included for process
compensation of SoC and cluster domains. A Power Management
Unit (PMU), clocked by a 1 MHz internal ring oscillator, manages
transitions between the power states of the SoC.

The SoC Domain is an advanced MCU featuring a RISC-V proces-
sor named Fabric Controller (FC) and several peripherals, including
a 1.6 Gbit/s DDR interface supporting external IoT DRAMs such as
Cypress Semiconductor’s HyperRAM (Fig. 4.20). The cluster, built
around nine 70 kGE 4-pipeline stage RISC-V cores, is turned on and
adjusted to the required frequency when applications running on the
FC offload computation-intensive kernels. The cores share data on
a 128 kB shared multi-banked L1 memory through a 1-cycle latency
logarithmic interconnect. The cluster L1 memory can serve 16 parallel
memory requests with <10% contention rate even on data-intensive
kernels, delivering up to 28.8 GB/s at 450 MHz. The program cache is
hierarchical: 512 B private per-core plus 4 kB of 2-cycle latency shared
cache to maximize efficiency with data-parallel code.

The RISC-V cores feature extensions (RVC32IMF-Xpulp) for
NSAAs, such as hardware loops, post-incremented LD/ST, SIMD such
as dot products operating on narrow 16-bit and 8-bit data types. The
cores share four instances of FPnew as shown in Fig. 4.21, supporting
FP32, FP16, and bfloat16 operations.

Fine-grained parallel thread dispatching is accelerated by a dedi-
cated hardware event unit, which manages clock gating of idle cores
waiting for synchronization and enables resuming execution in 2 cycles.
ISA extensions coupled with parallelism and optimized memory hier-
archy deliver a MAC/cycle performance 62× better than a baseline
RISC-V ISA running on a single-core, similar to [134]. The clus-
ter delivers up to 15.6 8-bit Gop/s and up to 614 Gop/s W, and up
to 3.3 Gflop/s and 129 Gflop/s W, on GP processors, demonstrating
leading-edge performance on a wide range of NSAA (Fig. 4.22).

Figure 4.23 shows a die micrograph, highlighting system compo-
nents included in the measurements. More details about this imple-

4.5. NOTABLE EMBEDDED SYSTEMS USING FPNEW 135

RISCV

Core 8

Fair Arbitration of Outputs

Input Distribution & Silencing

Operation

ADD
Group

MUL

Operation

COM-
Group

PARE

Operation

CON-
Group

VERT

Vector Disassembly

Lane 2Lane 1

MULTI
FMA

Vector Reassembly

MULTI
FMA

FP32/16
bfloat16

FP16
bfloat16

FPU
Shared

0

Tag?

RISCV

Core 4

RISCV

Core 0

Arbitration

Tag? Tag? Tag?

FPU
Shared

1
FPU

Shared

2

RISCV

Core 5

RISCV

Core 1

Arbitration

RISCV

Core 6

RISCV

Core 2

Arbitration

RISCV

Core 7

RISCV

Core 3

Arbitration

FPU
Shared

3

Figure 4.21: Architecture of the shared multi-precision FPU and its
integration in the 9-core cluster.

136 CHAPTER 4. TP FP IN THE EMBEDDED DOMAIN

Figure 4.22: Performance of integer matrix multiplication exploiting
Xpulp Extensions, software parallelism on 8 cores, SIMD parallelism
on 16-bit and 8-bit datatypes, HWCE. Similar performance gains can
be achieved on FP kernels when applicable.

Figure 4.23: Chip micrograph and specifications.

4.6. SUMMARY AND CONCLUSION 137

mentation can be found in [41].
GreenWaves Technologies have announced their GAP9 proces-

sor [135], a commercial IoT application processor based on this design
and containing FPnew to enable sub-32-bit TP FP computation.

4.6 Summary and Conclusion
Our work on TP hardware and making such hardware usable in systems
has led to the implementation of several embedded-class SoC platforms.
The main findings of this chapter are:

• We have presented an SoC for ULP TP computing, extending
the PULPino microcontroller architecture with the TP-FPU pro-
totype from Chapter 2 within the RI5CY processor core. Energy
efficiency and performance of the SoC are increased by imple-
menting SIMD operations on sub-32-bit formats. The results
of our exploration show that the introduction of a SmallFloat
unit improves system performance by 15% to 25% and the en-
ergy efficiency by 14% to 18% for 100% and 0% latency slots,
respectively, on the analyzed applications when allowing the
target precision to be relaxed by 10% compared to a traditional
binary32 baseline.

• We have added FPnew into the RI5CY core, using our TP
RISC-V ISA extension, both developed in the last chapter and
implemented the core into the PULPissimo microcontroller. Com-
pared to a standard PULPissimo system with support for only
FP32, area increases by 0.7% and static energy by 0.9%, due
to the significant impact of memories (92% and 96% of system
area and leakage, respectively). Considering the system-level
energy consumption, operating on FP32 data proves to be very
affordable and averages 22.2 pJ per cycle. In comparison, the
integer variant would require 21.2 pJ for running a filtering kernel
(see Chapter 3), achieving equal performance.

• We have described the design of a TP cluster for near-sensor
computing, performing a design space exploration on an FPGA
emulator varying the number of cores, the number of FPUs,

138 CHAPTER 4. TP FP IN THE EMBEDDED DOMAIN

and the pipeline stages. A set of experiments on near-sensor
algorithms and an analysis on post-P&R models have allowed us
to identify the most efficient configurations. Our experimental
results show that the configuration with 16 cores and private
FPUs configured with one pipeline stage provides the best perfor-
mance (5.92 Gflop/s). The one with 16 cores and private FPUs
configured with zero pipeline stages is the most energy-efficient
(167 Gflop/s W), while the configuration with eight cores and
four shared FPUs configured with one pipeline stage is the most
area-efficient (3.5 Gflop/s mm2). Finally, the energy efficiency of
the TP cluster outperforms all the other solutions that provide
FP support in the area of embedded computing.

• We have outlined Vega, an evolution of the TP cluster for al-
ways-on embedded IoT SoC. With respect to fully programmable
IoT end-nodes [134, 105], the proposed SoC delivers more than
1.3× - 2× better performance and 3.2× - 4.3× better efficiency
on NPAA workloads. On non-DNN, NSAA workloads, our SoC
achieves 10× and 2.5× higher performance and energy efficiency,
respectively, and the design is being commercialized.

We conclude that our efforts have created ample opportunities
to push for ever-higher energy efficiency in embedded systems while
simultaneously improving their performance. Thanks to the openness
and formidable flexibility of our TP-FPU, exploration and construction
of new energy-efficient embedded systems with solid FP capabilities is
more feasible than ever.

Chapter 5

Transprecision FP in
the High-Performance
Domain

5.1 Introduction
After focussing on implementing our TP technology into embedded
and ULP systems, we now focus on energy-efficient, high-performance
application-class processors and beyond.

In this chapter, we demonstrate the first fully functional silicon
implementation of a complete open-source TP-FPU inside a RISC-V
application-class core in a 22 nm process. The taped-out architecture
supports a wide range of data formats including IEEE 754 double
(FP64), single (FP32), and half-precision floats (FP16), as well as 16-bit
bfloats (FP16alt) and a custom 8-bit format (FP8). Furthermore, there
is full support for SIMD vectorization and vectorial conversions and
data packing.

We further discuss other applications that have made use of our
work on TP FP, made possible by our work’s open-source nature.

The main contributions of this chapter are:
• Integration of FPnew (see Chapter 3) into Ariane [136], a 64-bit

139

140 CHAPTER 5. TP FP IN THE HIGH-PERF. DOMAIN

application-class RISC-V processor core and subsequent silicon
implementation in Globalfoundries 22FDX. The manufac-
tured silicon’s energy and performance measurements confirm
our architecture’s substantial energy proportionality and lead-
ing-edge energy efficiency. We perform a detailed breakdown
of per-instruction energy cost, vectorization gains, and evaluate
the voltage/frequency scaling and body biasing impact on the
manufactured silicon. Our design surpasses the SOA of published
FPU designs in both flexibility and efficiency (Section 5.2).

• Application case study that performs parts of a CNN inference
pass on the manufactured silicon, confirming our approach’s
performance and energy efficiency gains on the processor level. A
comparison with commercial application-class processors shows
the superior effciency of our design (Section 5.2).

• Extension of the embedded TP cluster so that it can be used as a
simulator on FPGAs and deployed in data centers for cloud-based
development of TP software. We find that our implementation
can also be used as a full co-processor to the high-performance
server by leveraging heterogenous TP computing.

The remainder of this chapter is structured as follows: Section 5.2
contains the integration of FPnew into the Ariane core, the implemen-
tation in silicon, and subsequent analysis. Section 5.3 implements the
embedded TP cluster as an emulator into cloud computing environ-
ments. Section 5.4 introduces some notable systems that make use of
our TP-FPU. The last section provides a summary and conclusion of
this chapter.

5.2 Application-Class Transprecision
Computing

In order to evaluate TP computing in the high-performance gener-
al-purpose processing domain, we integrate FPnew (see Chapter 3) into
the Ariane processor. Ariane is an open-source 64-bit, six stage, par-
tially in-order RISC-V RV64GC processor [137]. It has full hardware

5.2. APPLICATION-CLASS TP COMPUTING 141

support for running an operating system as well as private instruction
and data caches. To speed up sequential code, it features a return
address stack, a branch history table, and a branch target buffer [136].
We aim at bringing a full TP computing system to silicon with this
core, with support for energy-proportional computation supporting
many formats.

5.2.1 Integration
ISA Extension Support

Ariane supports the RISC-V “F” and “D” standard ISA extensions,
which makes the FP register file of the core 64-bit wide. We add
support for FP16, FP16alt, and FP8 and SIMD operations for all these
formats, including FP32. While we support the flexible cast-and-pack
operations, this version of the core is not equipped with expanding
FMA operations.

Core Modifications

We replace the core’s FPU with our design, extend the processor’s
decoder with the new operations, and the load/store circuitry of the
core to also allow for one-extending narrower FP data for proper
NaN-boxing. These additional core control circuitry changes are not
timing-critical, and their cost is negligible concerning the rest of the
core resources.

FPU Configuration

We configure the TP-FPU to include the aforementioned formats and
add format-specific pipeline depths as shown in Table 5.1. The number
of pipeline registers is set so that the processor core can achieve a
clock frequency of roughly 1 GHz. wfpu is set to the FP register file
width of 64 bit, hence there are no SIMD vectors for the FP64 format.

We choose a parallel implementation of the ADDMUL block to vary
the latency of operations on different formats and not incur unnecessary
energy and latency overheads for narrow FP formats. Latency is
format-dependent for DIVSQRT due to the iterative nature of the
divider hardware used and not available on SIMD data to conserve area.

142 CHAPTER 5. TP FP IN THE HIGH-PERF. DOMAIN

Table 5.1: The configuration of the TP-FPU as implemented into the
Ariane core. The FPU width is wfpu = 64 bit.

Implementation (number of cycles, number of lanes)
Format ADDMUL DIVSQRT COMP CONV
FP64 parallel (4,1) merged (21,1*) parallel (1,1) merged (2,2*)
FP32 parallel (3,2) merged (11,0) parallel (1,2) merged (2,0)
FP16 parallel (3,4) merged (7,0) parallel (1,4) merged (2,2*)
FP16alt parallel (3,4) merged (6,0) parallel (1,4) merged (2,0)
FP8 parallel (2,8) merged (4,0) parallel (1,8) merged (2,4)
* Merged lane with support for all formats of equal width and narrower.

Three mantissa bits are produced every clock cycle in addition to a
constant three cycles for pre-/post-processing. Divisions take between
4 (FP8) and 21 (FP64) cycles, which is acceptable due to the relative
rarity of divide and square-root operations in performance-optimized
code. Conversions are again implemented using a merged slice, where
two lanes are 64 bit wide for cast-and-pack operations using two FP64
values. Additionally, there are two and four 16-bit and 8-bit lanes,
respectively, to cover all possible conversions.

5.2.2 Silicon Implementation
We implement a complete test system called Kosmodrom with the
TP-enabled Ariane core in Globalfoundries 22FDX, and perform a
detailed analysis of the per-operation energy efficiency of FP instruc-
tions.

Architecture

Kosmodrom contains three different processing engines, each tuned to
tackle a particular set of FP problems. Two application-class RISC-V
Ariane cores [136] take care of the general-purpose payload, and a
dedicated accelerator, network training accelerator (NTX) [133], is
explicitly designed for data-oblivious kernels such as Deep Neural
Network training, scientific computing stencils, and general linear
algebra workloads. The units share 1.25 MiB of L2 memory via a
64 bit Advanced eXtensible Interface (AXI) bus and a set of peripherals

5.2. APPLICATION-CLASS TP COMPUTING 143

Fi
gu

re
5.
1:

D
ie

m
ic
ro
gr
ap

h
an

d
bl
oc
k
di
ag

ra
m

of
en
tir

e
K
os
m
od

ro
m

ch
ip

sh
ow

in
g
th
e
pl
ac
em

en
t
of

th
e

tw
o
A
ria

ne
co
re

m
ac
ro
s
w
ith

T
P-

FP
U
.

144 CHAPTER 5. TP FP IN THE HIGH-PERF. DOMAIN

such as debug infrastructure, on-chip body bias (BB) generator and a
Universal Asynchronous Receiver Transmitter (UART). The high-level
floorplan of the chip and a block diagram are depicted in Fig. 5.1.
Each core and the NTX can be individually clocked and powered.

The Ariane cores are general-purpose (RV64GC) 64 bit, 6-stage,
in-order issue, out-of-order execute RISC-V cores. Each core contains
16 KiB of instruction cache and 32 KiB of data cache and an instance
of FPnew (see Chapter 3). We support five FP formats with dedicated
datapaths for each one, leveraging the format-specific latencies shown
in Table 5.1. The TP-FPU offers all standard RISC-V FP operations
on the five formats, as well as SIMD operations for formats narrower
than 64 bit.

On Kosmodrom, we provide two different flavors of the same core
implemented in different cell libraries and tuned for different operating
conditions:

Ariane High Performance (AHP) Tuned for high-performance
application. The L1 caches are implemented from single-ported, high-
-performance static random-access memories (SRAMs) and the stan-
dard-cells used are 8-track, low, and super-low threshold voltage tran-
sistors with gate lengths of 20 nm, 24 nm and 28 nm. The nominal
supply voltage is 0.8 V.

Ariane Low Power (ALP) Tuned for light, single-threaded appli-
cations. L1 caches are implemented from single-ported, low power
SRAMs and the standard-cells used are 7.5-track, low power, low and
super-low threshold voltage transistors with gate lengths of 28 nm,
32 nm and 36 nm. The nominal supply voltage is 0.5 V.

Silicon Implementation

The synthesis was performed on the design using Synopsys Design
Compiler 2017.09. We will solely focus on the high-performance core
for the subsequent performance and efficiency analysis, as the cores can
be individually clocked and powered. In synthesis, a 1 GHz worst-case
constraint (SSG, 0.72 V, 125 ◦C) with a 20% clock uncertainty was set.
We use automated clock gate insertion extensively during synthesis
(> 96% of FPU registers are gated). Ungated registers comprise

5.2. APPLICATION-CLASS TP COMPUTING 145

7
4

2
 k

G
E

7%
53

5%
40

4%
29

3%
24

3%
23

6%
47

3%
19

4%
33

4%
29

4%
32

11%
79

10%
75

33%
247

kGE

FP64 FP32
FP16

FP16alt

FP8 Conv.
Div.

Rest
FP Regs

GP Regs

Fro
ntend

Scoreb.

LSU
Rest

FPU Core

Figure 5.2: Area distribution of the entire Ariane RISC-V core, ex-
cluding cache memories (in kGE, 1 GE ≈ 0.199 µm2).

only the handshaking tokens and the finite-state machine controlling
division and square root. The pipeline registers’ locations in the
entire FPU were optimized using the synthesis tool’s register retiming
functionality.

Placement and routing are done in Cadence Innovus 17.11 with
a 1 GHz constraint in a Multi-Mode Multi-Corner flow that includes
all temperature and mask misalignment corners, eight in total. As part
of corner trimming evaluations, we assume forward biasing voltage
in the worst and typical corners to relax pressure on critical paths
to reduce leakage. The finalized backend design reaches 0.96 GHz
under worst-case conditions (SSG, 0.72 V, ±0.8 V bias, −40/125 ◦C),
1.29 GHz under nominal conditions (TT, 0.8 V, ±0.45 V bias, 25 ◦C),
and 1.76 GHz assuming best case conditions (FFG, 0.88 V, 0 V bias,
−40/125 ◦C).

We have also performed a substantial exploration of logic cell mixes
(threshold voltage and transistor length) to maximize energy efficiency.
The design contains 74% LVT and 26% SLVT cells; and 86% 28 nm,
8% 24 nm, and 6% 20 nm transistors.

5.2.3 Implementation Results
Static Impact of the TP-FPU

The total area of the Ariane core with TP-FPU is 742 kGE (1.4 MGE
including caches). The area breakdown is shown in Fig. 5.2. The total
size of the FPU is 247 kGE, of which 160 kGE make up the various
FMA units, 13 kGE are comparison and bit manipulation circuitry,

146 CHAPTER 5. TP FP IN THE HIGH-PERF. DOMAIN

19 kGE for the iterative divider and square root unit, and 47 kGE are
spent on the conversion units. Compared to a complete Ariane core
(including caches) with support for only scalar FP32 and FP64 (“F”
and “D” extensions), area and static energy are increased by 9.3% and
11.1%, respectively. The added area and energy cost in the processor
are moderate, considering that FP operations on three new formats
were added, along with SIMD support, which improves FP operation
throughput by up to 8× when using FP8 vectors.

Silicon Measurements

Evaluation Methodology We extract a detailed breakdown of
energy consumption within the FPU by stressing individual operations
using Ariane synthetic applications. Each instruction is fed with
randomly distributed normal FP values constrained so that operations
do not encounter overflow, creating a worst-case scenario for power
dissipation by providing high switching activity inside the datapath
of the TP-FPU. Measurements are taken with full pipelines and the
FPU operating at peak performance to provide a fair comparison.

Silicon measurements of the core and memory power consumption
are done with the processor and FPU performing a matrix-matrix
multiplication. Using a calibrated post-place-and-route simulation
with complete hierarchical visibility allows us to determine individual
hardware blocks’ relative energy cost contribution. Post-layout power
simulations are performed using typical corner libraries at nominal
conditions (TT, VDD = 0.8 V, 25 ◦C). Silicon measurements are
performed under unbiased nominal (0.8 V, 0 V bias, 25 ◦C) conditions
where 923 MHz are reached, unless noted otherwise. The impact
of voltage scaling on performance and energy efficiency is obtained
through measurements of the manufactured silicon.

FPU Instruction Energy Efficiency and Performance The
top of Fig. 5.3 shows the average per-instruction1 energy cost within
the FPU for arithmetic scalar operations. The energy proportionality
of smaller formats is especially pronounced in the ADDMUL block
due to the multiplier’s high impact (first three groups of bars). For

1One FPU instruction may perform multiple flops on multiple data items.

5.2. APPLICATION-CLASS TP COMPUTING 147

 0
 5

 10
 15
 20
 25
 30

fm
a
d

d
.d

fm
a
d

d
.s

fm
a
d

d
.h

fm
a
d

d
.a

h
fm

a
d

d
.b

fm
u
l.d

fm
u
l.s

fm
u
l.h

fm
u
l.a

h
fm

u
l.b

fa
d

d
.d

fa
d

d
.s

fa
d

d
.h

fa
d

d
.a

h
fa

d
d

.b

fl
e
.d

fl
e
.s

fl
e
.h

fl
e
.a

h
fl
e
.b

v
fm

a
c.s

v
fm

a
c.h

v
fm

a
c.a

h
v
fm

a
c.b

v
fm

u
l.s

v
fm

u
l.h

v
fm

u
l.a

h
v
fm

u
l.b

v
fa

d
d

.s
v
fa

d
d

.h
v
fa

d
d

.a
h

v
fa

d
d

.b

v
fl
e
.s

v
fl
e
.h

v
fl
e
.a

h
v
fl
e
.b

Scalar Vector

E
n
e
rg

y
/O

p
.

[p
J]

0
2
4
6
8

10
12
14

fcvt.d
.s

fcvt.s.h
fcvt.d

.h
fcvt.d

.b
fcvt.h

.b

fcvt.s.d
fcvt.h

.d
fcvt.b

.d
fcvt.h

.s
fcvt.b

.h

fcvt.w
.d

fcvt.w
.s

fcvt.w
.h

fcvt.w
.a

h
fcvt.w

.b

fcvt.d
.w

fcvt.s.w
fcvt.h

.w
fcvt.a

h
.w

fcvt.b
.w

vfcvt.s.h
vfcvt.h

.b

vfcvt.h
.s

vfcvt.b
.h

vfcp
ka

.s.d
vfcp

ka
.h

.d
vfcp

ka
.b

.d

vfcvt.x.s
vfcvt.x.h
vfcvt.x.a

h
vfcvt.x.b

vfcvt.s.x
vfcvt.h

.x
vfcvt.b

.x

Scalar Vector

E
n
e
rg

y/
O

p
.
[p

J]

Figure 5.3: FPU energy cost per instruction for the fully pipelined
scalar operations (top left), vectorial operations (top right), grouped by
FMA, multiply, add, and comparison; and scalar conversion operations
(bottom left) and vectorial conversion operations (bottom right).

148 CHAPTER 5. TP FP IN THE HIGH-PERF. DOMAIN

example, the FP64 FMA fmadd.d consumes 26.7 pJ, while performing
the same operation on FP32 requires 65% less energy. Reducing the
FP format width further costs 48%, 54%, and 49% of energy compared
to the next-larger format for FP16, FP16alt, and FP8, respectively.
FP16alt instead of FP16 is energetically 12% cheaper due to the
smaller mantissa multiplier needed for FP16. Similarly, reducing
the FP format width leads to relative energy gains compared to the
next-larger format of 65%, 47%, 52%, 47% for FP multiplication, 53%,
47%, 57%, 47% for FP addition, and 38%, 34%, 35%, 22% for FP
comparisons using FP32, FP16, FP16alt, and FP8, respectively. As
such, scalar operations on smaller formats are energetically at least
directly proportionally advantageous.

Intuition would suggest that SIMD instructions on all formats
would require very similar amounts of energy due to the full utilization
of the 64-bit datapath. However, we find that vectorial operations are
also progressively energy-proportional, amplifying the energy savings
even further. Starting from an energy cost of 20.0 pJ for an FP32
SIMD FMA vfmac.s, the per-instruction energy gains to the next-larger
format for FP16, FP16alt, and FP8 are 20%, 31%, and 20%. Similarly,
they are 21%, 32%, and 21% for multiplication, 20%, 31%, and 19%
for addition, and 14%, 23%, and 8% for comparisons. Despite the
full datapath utilization, packed operations using more narrow FP
formats offer super-proportional energy gains while simultaneously
increasing the throughput per instruction. This favorable scaling is
owed to the separation in execution units for the individual formats
where idle slices are clock-gated, which would be harder to attain
using a conventional shared-datapath approach. By accounting for the
increased throughput, the per-datum energy gains to the next larger
format become 60%, 66%, and 58%, for the SIMD FMA, which is
better than direct proportionality.

Conversion instructions that share a merged slice for all formats in
the architecture’s CONV block are examples of less pronounced energy
scaling. The bottom of Fig. 5.3 shows the average per-instruction
energy consumption of conversions on scalars and vectors. Energy
consumption of instructions is influenced by both the source and
destination formats in use.

For scalar FP-FP casts, converting to a larger format is energetically
cheaper as only part of the input data toggles, padding most of the

5.2. APPLICATION-CLASS TP COMPUTING 149

output mantissa with constant zeroes. Casts to a smaller format are
more expensive as the wide input value causes dynamic switching
within the conversion unit to produce the output. To contrast with
the scaling results obtained above, we compare conversions where both
the input and output formats are halved, such as fcvt.s.d, fcvt.h.s,
and fcvt.b.h. Starting from 7.0 pJ for the FP64/FP32 cast, we find
a reduction in energy of merely 30% and 35% when halving the format
widths. Compared to the energy scaling results from above, the scaling
is worse due to using one merged unit where unused portions of the
datapath are much harder to turn off.

For SIMD vectors, the effect of per-instruction energy proportional-
ity is visible again; going from the FP32/FP16 cast to the FP16/FP8
cast is 9.5% cheaper. While not as significant as for vectorial FMA,
this gain is due to the additional vector lanes for casting small formats
being narrower and supporting fewer formats.

The flexible cast-and-pack instructions allow the conversion of two
FP64 values and pack them into two destination vector elements for
only roughly 30% more energy than performing one scalar conversion
from FP64 to the target format. It should be noted that two scalar casts
and an additional packing operation, which is not directly available in
the ISA, would be required without this functionality.

Measuring scalar FP-integer conversions where the integer width
is fixed also shows the relatively small relative gains, up to only 25%
for FP16alt/int32 vs. FP32/int32 conversions, much worse than direct
proportionality. Vectorial FP-integer casts operate on integers of the
same width as the FP format. Here, the impact of sharing vectorial
lanes with other formats can make SIMD cast instructions on many
narrow values cost more energy than on the larger formats. This
impact diminishes per-datum energy scaling compared to the parallel
slices, such as in the FP8/int8 cast.

Under nominal conditions, our TP-FPU thus achieves scalar FMA
in 2.5 pJ to 26.7 pJ, SIMD FMA in 1.6 pJ to 10.0 pJ per data item,
over our supported formats. FP-FP casts cost 7.0 pJ to 26.7 pJ for
scalar, and 2.2 pJ to 4.9 pJ for vectorial data, respectively. Our ap-
proach of dividing the unit into parallel slices has proven to effectively
achieve high energy proportionality on scalar and SIMD data. At the
silicon’s measured nominal frequency of 923 MHz this corresponds to
a performance and energy efficiency of 1.85 Gflop/s to 14.83 Gflop/s

150 CHAPTER 5. TP FP IN THE HIGH-PERF. DOMAIN

 0
 0

.5
 1
 1

.5
 2
 2

.5
 3
 3

.5

 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Pe
rf

o
rm

a
n
ce

 [
G
fl
o
p
/s

]

Supply Voltage VDD [V]

Performance
Efficiency

 0 0.5 1 1.5 2 2.5 3 3.5

 40
 60
 80
 100
 120
 140
 160
 180

E
ffi

ci
e
n
cy

 [
G
fl
o
p
/s

W
]

Performance [Gflop/s]

Tradeoff

Figure 5.4: Compute performance and energy efficiency of FP64 FMA
versus supply voltage (left), trade-off between compute performance
and energy efficiency, achieved by adjusting supply voltage and oper-
ating frequency. Measured on manufactured silicon.

and 75 Gflop/s W to 1245 Gflop/s W for the FMA across formats.

Impact of Voltage Scaling Figure 5.4 shows the impact of volt-
age and frequency scaling on the manufactured silicon. We measure
the highest possible frequency and corresponding power consump-
tion for supply voltages between 0.425 V and 1.2 V. We observe peak
compute and efficiency numbers of 3.17 Gflop/s and 178 Gflop/s W
for FP64, 6.33 Gflop/s and 473 Gflop/s W for FP32, 12.67 Gflop/s and
1.18 Tflop/s W for FP16, 12.67 Gflop/s and 1.38 Tflop/s W for FP16alt,
and 25.33 Gflop/s and 2.95 Tflop/s W for FP8.

Core-Level Energy Efficiency As the TP-FPU is merely one part
of the entire processor system, we now briefly consider the energy
spent during operations within the entire core. Figure 5.5 shows the
processor blocks’ per-data energy consumption performing various
operations in the Ariane core. During an FP64 FMA - energetically
the most expensive FP operation - the FPU accounts for 39% of
the total Ariane core energy, with energy consumption of memory
operations being comparable with that of the FP64 FMA. Although,
thanks to formidable energy proportionality, the FP8 FMA consumes
10.5× less FPU energy than the same operation on FP64, overall

5.2. APPLICATION-CLASS TP COMPUTING 151

Average Energy per Data Item [pJ]

In
st

ru
ct

io
n

[R
IS

C
-V

 M
ne

m
on

ic
] fld

mul

fmadd.d

fmadd.s

fmadd.b

vfmac.s

vfmac.b

0 10 20 30 40 50 60 70

Rest of the Core
Instruction Cache
Data Cache
Load/Store Unit
GP Register File
FP Register File
Integer ALU
Transprecision FPU

Figure 5.5: Energy cost per data item of operations in the entire
Ariane core.

core energy consumption is decreased by only 38%. For small and
embedded applications, scalar FPU-level energy savings might be
sufficient. However, they are not enough to bring maximum savings in
energy efficiency through TP in application-class cores such as Ariane
due to the relatively large core-side overheads.

Employing SIMD vectorization mitigates this core overhead’s im-
pact on the energy cost per item strongly. For example, the FP8 FMA
requires another 6.2× less total core energy when executed as part of
a vectorial FMA.

5.2.4 Application Performance Study
Reduced-precision formats are increasingly utilized in ML/DL do-
mains, with FP16alt (bfloat16) being able to deliver almost identical
accuracy to standard FP32 approaches in inference [19] and even train-
ing [91, 138]. Thus, we have performed measurements of TP-enabled
convolutions, which make up most operations in these workloads on
the silicon implementation of AHP in Kosmodrom.

On Ariane, we execute convolutions as performed in the layers of
GoogLeNet [139], namely with a 3× 3 patch size using images sizes of
56×56 from 64 input/output channels. Convolutions such as these are
the most prominent and intensive workload in DL applications; hence
convolutional performance will directly translate into classification

152 CHAPTER 5. TP FP IN THE HIGH-PERF. DOMAIN

Table 5.2: 3 × 3-convolutions with 56 × 56 × 64 outputs for deep
learning in FP32, bfloat16, and FP8 performed on the AHP core in
Kosmodrom.

Format Execution Time Power Energy Efficiency
[Mcycle] speedup [mW] diff. [conv/sW] rel.

FP32 304.3 51.26 59.17 1.00×
bfloat16 153.4 1.98 49.96 −2.54% 120.45 2.04×
FP8 77.9 3.91 49.76 −2.92% 238.02 4.02×

performance. The baseline implementation of the convolution on FP32
runs for over 304 Mcycle, and the resulting measurements are given in
Table 5.2. Since the FPU datapath in Ariane is 64 bit wide, we use
SIMD vectorization to parallelize the workload across input channels,
always considering two channels concurrently. With bfloat16 and FP8,
the parallelization is further increased to 4 and 8, respectively, leading
to overall convolution speed-ups of 1.98 and 3.91.

The speed-up is not ideal as branching overheads, mispredictions,
and output updates become relatively more noticeable with fewer
innermost iterations. System power is slightly reduced by going to
ever-narrower FP formats despite the entire datapath being in use,
thanks to the energy-proportional operation of the TP-FPU. Finally,
reduction of FP precision greatly benefits overall convolutional energy
efficiency, with convolutions on bfloat16 being super-linearly energy-
efficient compared to the speed-up achieved – again enabled by the
energy-proportional architecture of FPnew.

As bfloat16 has become a viable choice for use in both DL classifi-
cation and training [19, 91] and convolutions make up most layers in
DCNNs, these results will directly translate into energy efficiency and
performance gains on DL workloads on the system. Furthermore, we
can offer multi-precision inference at no additional hardware cost by
running the convolutions of different layers using any of the available
five FP formats implemented in the system. FPnew thus also serves as
an ideal evaluation and implementation platform for such applications.

5.2. APPLICATION-CLASS TP COMPUTING 153

Table 5.3: Key metric comparison between Ariane cores on Kosmodrom
and other processors. Performance based on 32-bit flops.

AHP ALP Cortex Rocket Tesla Xeon
[us] [us] A53[140] 64b[111] V100§ 8180§

Node/VDD 22/0.45 22/0.45 16/0.8 40/0.65 12/1.0 14/0.9

32-bit floats
Energy Eff.† 93 ‖ 98 ‖ 38.7 ∗ 16.7 ¶ 122 21.9
Area Eff.‡ 7.5 5.2 8.7 ∗ 7.3 ¶ 20.5 3.57

64-bit floats
Energy Eff.† 41 44 19.4 ∗ 16.7 ¶ 61 11.0
Area Eff.‡ 3.75 2.6 4.4 ∗ 7.3 ¶ 10.3 1.79
†Gflop/s W; ‡Gflop/s mm2 (node-scaled); § our estimates;
∗ assuming NEON; ¶ no SIMD ‖ extrapolated from 64 bit

5.2.5 Comparison to the State of the Art

Unit-Level Comparison

FPnew achieves industry-leading energy efficiency and energy-propor-
tionality amongst multi-format FPUs, even if the entire TP-FPU is
compared against stand-alone FMA units. This comparison has been
performed in Chapter 3, using data obtained from silicon measurements
of Kosmodrom (see Section 5.2.3).

Core-Level Comparison

In Table 5.3 we compare our TP-enabled Ariane cores to leading
industry-strength architectures such as the ARM Cortex A53 [140]
and another RISC-V open-source core called Rocket [111].

For both the AHP and the ALP we achieve higher FP energy-effi-
ciencies. The area efficiency is slightly worse compared to Rocket as
we include 32 KiB data cache compared to Rocket’s 16 KiB data cache.
The area difference between ALP and AHP is an artifact of the less
mature cell library used for implementation of the ALP (2261 cells
available vs. 7224 in the more mature AHP). Similarly, the energy
efficiency of the ALP is penalized as the increased area also implies
more considerable total leakage power and reduces the efficiency at

154 CHAPTER 5. TP FP IN THE HIGH-PERF. DOMAIN

low voltages. We expect a much more evident energy efficiency offset
in favor of the ALP at lower voltage in future versions of the 7.5-track
library, providing similar amounts of library cells for implementation.

Furthermore, we include a Tesla V100 GPU and an Intel Xeon 8180
processor in the comparison. While we trail behind the GPU in terms
of energy efficiency, it is manufactured in 12 nm while we utilize 22 nm
FDX. This gap may close further when accounting for technology
scaling. Notably, our system is the only one of the ones listed which
exhibits super-linear energy-efficiency gains when comparing 32-bit
with 64-bit FP operations.

5.3 Data Center Scale Embedded
Transprecision Computing

While the title of this section might seem contradictory, a side-effect
of our work on the XwattPilot system enables the use of embedded
TP clusters (see Chapter 4) in a high-performance data center setting.
The ultimate target of the XwattPilot system consists of improving the
speed and energy consumption of the development of TP applications
for embedded systems themselves. This section gives an overview of
the XwattPilot system, focusing on the interaction between high-per-
formance servers with our embedded TP clusters, made possible by
leveraging open-source ecosystems. Refer to [39] for more in-depth
information about intended use of this system.

5.3.1 Agile Transprecision Software Development
Energy efficiency is one of the most challenging design objectives
of modern SoCs as the era of performance benefits attributed to
technology node scaling is coming to an end. Typical power-aware
design techniques, such as dynamic frequency and voltage scaling, are
constrained by stochastic process variation effects as technology strides
into the deep-submicron regime [141]. Transprecision computing is
a promising form of heterogeneity in processors because it enables
instructions to be executed with smaller bit widths, thus directly
impacting the area and power dissipation of the corresponding circuit
logic. However, developing TP software for such processors assumes a

5.3. DATA CENTER SCALE EMBEDDED TP COMPUTING 155

Figure 5.6: XwattPilot conceptual system leverages cloud services and
FPGAs to increase low-power software productivity.

customized toolchain that spans the support of TP-enabled devices to
include application support, i.e., compilers and libraries. This induced
development time creates a productivity gap that has stimulated the
development of new methodologies to enable the completion of TP
software on schedule and within the power budget.

We propose that cloud technology be adopted to support the
development of TP software in an agile way, inspired by the positive
disruption of the Hardware Agile Manifesto [142]. As depicted in
Fig. 5.6, the processes of customizing the development environment,
bringing up the TP device, and evaluating the energy efficiency of an
application are all maintained by a cloud infrastructure that allows
multiple users to access shared services remotely.

5.3.2 XwattPilot Cloud System
The proposed system allows users to conduct research on TP comput-
ing by employing PULP [143], i.e. the first silicon-proven processor
featuring TP extensions (see Chapter 4 and Section 5.2). XwattPilot
offers the development and evaluation of TP software as a service on

156 CHAPTER 5. TP FP IN THE HIGH-PERF. DOMAIN

Figure 5.7: PULP cluster consists of a DMA unit, a TCDM, and one
or more RISC-V processor cores extended with TP instructions.

the cloud, using PULP FPGA. PULP FPGA acts as a physical device
emulator, where TP software can be executed on a complete PULP
SoC overlaid on an FPGA device, thus delivering accurate execution
cycles and power figures.

The basic computational engine present on the FPGA shown in
Fig. 5.7 is a cluster with a configurable number of cores that imple-
ment the RISC-V ISA and support TP extensions, c.f. Chapter 4. A
configurable number of such clusters can be assembled to instantiate a
complete SoC as shown in Fig. 5.8. Off-cluster level-2 (L2) memory and
peripheral accesses are managed by a tightly coupled DMA through an
AXI4-compliant interconnect. We designed an adapter to PULP’s AXI
bus connecting to the host’s main bus to enable external access through
cloud services. XwattPilot is currently based on OpenPOWER sys-
tems, which include POWER™-based processors and allow coherent
access to their bus, using CAPI™ technology. Hence our system has
the unique advantage of making the POWER memory space visible in
the PULP memory map as shown in Fig. 5.9, giving any component
attached to the interconnect of PULP access to the host memory as if

5.3. DATA CENTER SCALE EMBEDDED TP COMPUTING 157

Figure 5.8: XwattPilot hardware is realized on an heterogenous node
composed of a POWER™-powered system and FPGA cards used to
host tranprecision PULP SoCs.

Figure 5.9: POWER™-PULP memory map scheme for PULP-FPGA.

158 CHAPTER 5. TP FP IN THE HIGH-PERF. DOMAIN

it were a local memory. As such, bring-up time is significantly reduced,
and PULP is accessible through any services running on the host, such
as cloud services, for our particular requirement.

The programming model exploiting the POWER–PULP interface
relies on code sections within POWER8 host code mapped to PULP
cores. The handler for the overall offloading is maintained through a
descriptor called “job”. Jobs from POWER8 are added to a “Work
Element Descriptor” (WED) FIFO-supported logic, where PULP can
fetch them. PULP is awakened by an interrupt when a new job is
available. The PULP RISC-V cores and the cluster peripherals are
32-bits wide. The DMA engine inside a PULP cluster is extended to
support 64 bit (Fig. 5.9), and it transfers data between TCDM and L2.
The intended purpose of the POWER–PULP interface presented here
is the ability to test TP software on PULP cores quickly, managed by
control software running on the host through cloud services. PULP
FPGA is offered as a service by XwattPilot, which ports the WED
interface to both C++ and VHDL for FPGA, respectively.

XwattPilot is built on an OpenStack cloud computing platform,
deployed as infrastructure-as-a-service (IaaS) in public and private
clouds where virtual servers and other resources are available to users.
The user can instantiate multiple containerized services to test TP
software on PULP FPGA.

5.3.3 Implications for High-Performance &
Embedded Co-Execution

While meant as an emulation platform for embedded TP SoCs
which leverages cloud infrastructure and efficient software devel-
opment methodologies, our implementation can also be used as a
co-processor. Both the POWER8 host and the PULP-based device
have full access to each other’s memory space, both systems can
co-operate on heterogeneously computing tasks in the data center.
While currently implemented as an FPGA emulator, the device could
just as well consist of a hardened embedded multi-cluster TP SoC
on an add-in card connected over PCIe. From this perspective, the
current system is an emulator for a potential embedded system used
as an accelerator/co-processor to high-performance computers in data
centers.

5.4. NOTABLE HP CLASS SYSTEMS USING FPNEW 159

5.4 Notable High-Performance Class
Systems Using FPnew

Thanks to our efforts’ open-source nature, several other projects have
adopted FPnew, parts thereof, our ISA extensions, or entire systems for
their purposes, furthering the reach of TP computing in the process. In
the following, we provide an overview of a selection of notable projects
using our work.

5.4.1 Snitch

Snitch [112] is a tiny open-source [144] pseudo dual-issue 32-bit RISC-V
processor paired with a powerful double-precision FPU. The goal of the
system is to achieve high area and energy efficiency through reducing
and simplifying as much as possible the non-computational integer
core area while including a very powerful FPU and keeping it fed
with data. Furthermore, integer and FP instruction streams are quasi
decoupled, allowing latency hiding through overlapping execution.

Snitch employs an instance of FPnew to provide FP64 and FP32
compute capabilities. It implements the SSR [145] and FREP [112]
ISA extensions that offer operand streaming and hardware-loops to
the FPU, achieving speed-ups of 6.45× and energy-efficiency gains of
2× over state of the art.

5.4.2 Ara

Ara [110] is a scalable RISC-V in-order vector processor implementing
the 0.5 draft version of the RISC-V “V” extension. Its main goals are
providing a parametric and scalable architectural template for vector
processors while remaining energy-efficient throughout.

Ara uses FPnew instances to perform efficient matrix operations
on up to 16 64-bit vector lanes. It achieves 2.5× the energy efficiency
than the Ariane [136] RISC-V application-class core (see Section 5.2)
and performs only 3% below the theoretically achievable ideally scaled
peak performance.

160 CHAPTER 5. TP FP IN THE HIGH-PERF. DOMAIN

5.4.3 European Processor Initiative
The European Processor Initiative (EPI) project is an ongoing en-
deavor by the European Commission whose aim is to design and
implement a new family of low-power European processors for ex-
treme-scale computing, high-performance Big-Data, and a range of
emerging applications [146, 147].

Much of the FP hardware found in the EPI project is based on the
open-source FPnew design. Examples include the “VaRiable Precision
Processor” (VRP), “stencil/tensor accelerator” (STX) accelerators,
and vector processor lanes general-purpose cores. Thanks to our
work’s permissive license, users of FPnew are not bound to declare or
publish their derivative designs, facilitating adoption in a wide range
of domains.

5.5 Summary and Conclusion

Our work on energy-proportional and flexible TP hardware and the
open-source nature of our contributions has led to the adoption of
FPnew in a slew of different systems. The main findings of this chapter
are:

• We have implemented FPnew (see Chapter 3) as part of a RISC-V
application-class processor into the first full TP-FPU silicon
implementation with support for five FP formats, in Global-
foundries 22FDX. Adaptive voltage and frequency scaling al-
lows for energy efficiencies up to 2.95 Tflop/s W and compute
performance up to 25.33 Gflop/s for 8×FP8 SIMD operation.
The cost in the additional area (9.3%) and static energy (11.1%)
in the processor are tolerable in light of the significant gains in
performance and efficiency possible with the TP-FPU. Our de-
sign greatly outmatches commercial application-class processors
on the energy efficiency and proportionality front, thanks to the
parallel datapaths approach taken in our architecture.

• We have extended the embedded TP cluster from the last chapter
with the modifications necessary to be deployed as a co-processor

5.5. SUMMARY AND CONCLUSION 161

within large-scale data centers. Leveraging open-source frame-
works, we have implemented the infrastructure to develop and
run embedded TP applications in a cloud environment. Our
implementation also works as a stand-alone accelerator to the
POWER8 host machines. Thus, the FPGA emulation platform,
or a hardened version featuring multi-cluster embedded ASICs
with the appropriate connection infrastructure, could be lever-
aged to pursue heterogeneous TP computing in the cloud.

• We have outlined several notable works that have made of the
work developed within this thesis to push the envelope of en-
ergy-proportional TP computing into new directions, including
vector processors, data-streaming processors, and dedicated ac-
celerators.

We have provided tangible evidence of our FP architecture’s superb
energy proportionality in a silicon-proven, fully functioning applica-
tion-class processor. Furthermore, our work’s broad adoption in other
projects is a testament to the benefits that our work’s flexibility and
openness provide.

Chapter 6

Conclusions

This thesis has investigated floating-point architectures for energy-ef-
ficient transprecision computing for both embedded and high-perfor-
mance domains. An initial exploration beyond the confines of IEEE 754
FP formats has shown the tremendous potential that comes from a
more fine-grained FP type system. Notably, many applications can
benefit from the availability of more reduced-precision types than
available in the standard, as long as these types can be handled by
hardware in a more performant and energy-efficient way. Thus, we
developed an arbitrary-precision emulation library for exploration and
a configurable open-source hardware FPU to capitalize on the tremen-
dous potential that TP offers. With the following specification and
implementation of instruction set architecture extensions and compiler
support, the ingredients necessary for implanting TP computing into
a vast array of systems were complete. The result is a landscape of
computing architectures ranging from ultra-low power IoT nodes and
embedded SoCs to application class processors and high-performance
vector accelerators, all leveraging the benefits of the TP-FPU design
in one way or another.

The remainder of this chapter summarizes this thesis’ primary
results and offers possible opportunities for future work.

163

164 CHAPTER 6. CONCLUSIONS

6.1 Main Results

Extension of the Rigid FP Type System

A key limitation to energy savings in FP computations is the conser-
vative use of the rigid IEEE 754 FP type system. More specifically,
rarely more than one or two machine precision levels, namely binary64
and binary32 are available in standard general-purpose computing
systems. Furthermore, programmers usually choose to perform all
computations in the highest available precision out of convenience and
to minimize potential inaccuracies in application results. However, this
over-provisioning is not always warranted as many applications are
tolerant to smaller precision and range than allotted by the standard
formats, especially in intermediate computation steps, which leads to
inefficiencies in terms of performance and energy consumption. To
leverage transprecision (TP) as a means of recuperating these losses,
the levels of precision available in a computing system must be more
fine-grained and behave favorably in terms of performance and energy
efficiency.

We have developed a software emulation library for arbitrary-pre-
cision FP types and used it to analyze various workloads typical in
embedded near-sensor applications. Consequently, we have introduced
an extended “SmallFloat” type system consisting of the IEEE 754
binary32 (FP32) and binary16 (FP16) types, as well as custom bi-
nary16alt (FP16alt) and bianry8 (FP8) types that follow the standard
principles. Having transformed the applications to make use of the
new types and modeling a prototype FPU with support for these types,
we observe an energy reduction potential of 18% on average and up to
30% for specific applications, over the FP32 baseline. Simultaneously,
execution time is decreased by 12%, and memory accesses are reduced
by 27%.

Open-Source Transprecision Floating-Point Unit

Convinced of the benefits of the extended FP type system approach
we have found, we set out to implement a proper TP-FPU in hardware.
As we have realized, being able to explore various custom FP types
and architectural configurations is immensely valuable. As such, full

6.1. MAIN RESULTS 165

configurability in terms of formats was required, ruling out the use of
already available IEEE 754 FP blocks. Furthermore, as the hardware
unit’s constraints are entirely dependent on its intended field of appli-
cation and target technology, we needed to avoid vendor-specific IP
blocks or reliance on one technology. Hence, a configurable design with
control over architectural parameters was necessary. Extra features
such as SIMD vectorization would be indispensable for achieving high
performance and energy-efficiency of computations. Since the many
requirements we had for this unit already made it so that we were not
burdened by proprietary IP blocks, choosing an open-source model for
the hardware we develop was a natural choice.

We have developed FPnew, a highly configurable open-source trans-
precision floating-point unit capable of supporting arbitrary FP formats
following IEEE 754 principles. It offers FP arithmetic and efficient
casting and packing operations, in both scalar and SIMD variants,
with high energy efficiency and proportionality. Notably, the architec-
ture trades off excess circuit area for improved energy efficiency. Our
design achieves better energy efficiency scaling than other multi-mode
FMA designs thanks to the parallel datapaths approach taken in our
architecture.

Transprecision Floating-Point Extensions

TP operations must be made available to the programmer conveniently
and effectively to use hardware TP-FPUs in a processing system. As
we are primarily targeting programmable general-purpose RISC-V
processor cores, extensions to the instruction set architecture were
necessary.

We have introduced a set of extensions for the RISC-V ISA support-
ing the set of SmallFloat FP types formats discussed above. Adopting
these formats has been proven to be highly beneficial in both HPC
and embedded systems domains. We propose a complete specification
for the proposed SmallFloat extensions and design and implement
the compiler support in the standard RISC-V GCC compiler. On
a test system using the new extensions, we achieve FP32 precision
without incurring any performance overhead compared to an optimal
scalar FP16 baseline, reducing system energy by 34% w.r.t. the FP32
implementation.

166 CHAPTER 6. CONCLUSIONS

Transprecision in Low-Power Embedded Platforms

Armed with a fully configurable TP-FPU and matching ISA extensions,
we start leveraging energy-proportional TP computing in embedded
systems. We have added FPnew into the RI5CY RISC-V core and
implemented the core into the PULPissimo microcontroller. Compared
to a standard PULPissimo system with support for only FP32, area
increases by 0.7% and static energy by 0.9%. On a system level,
operating on FP32 data proves to be very affordable and averages
1.05× the energy cost of the 32-bit integer variant, achieving equal
performance. Furthermore, we have described the design of a multi-core
TP cluster for near-sensor computing, performing extensive design
space explorations. For example, a 16-core, 16-FPU configuration
provides the best performance and energy-efficiency of 5.92 Gflop/s
and 167 Gflop/s W, respectively, while an 8-core, 4-FPU configuration
is most area-efficient with 3.5 Gflop/s mm2. The energy efficiency of
the TP cluster outperforms all the other solutions that provide FP
support in the area of embedded computing.

Our architecture found further use in an ultra-low power always-on
IoT embedded platform, targeting commercialization of the TP plat-
form we have built using FPnew.

Transprecision in Application-Class Processor Cores

We also aim at high-performance processors, implementing FPnew as
part of the Ariane RISC-V core, creating the first full TP-FPU silicon
implementation with support for five FP formats (FP64, FP32, FP16,
FP16alt, FP8), in Globalfoundries 22FDX. Adaptive voltage and
frequency scaling allows for energy efficiencies up to 2.95 Tflop/s W and
compute performance up to 25.33 Gflop/s for 8×FP8 SIMD operation.
The cost in the additional area (9.3%) and static energy (11.1%) in the
processor are tolerable in light of the significant gains in performance
and efficiency possible with the TP-FPU. Our design dramatically
outmatches commercial application-class processors on the energy
efficiency and proportionality front, thanks to the parallel datapaths
approach taken in our architecture.

Other projects have started utilizing FPnew for their FP purposes,
as its openness and configurability offer an ideal starting point for

6.2. OUTLOOK 167

implementing both TP and traditional FP computing systems.

6.2 Outlook
This thesis has focused on providing an excellent base for transprecision
computing by adhering to many principles of IEEE 754, reducing the
burden for entry as much as possible by not abandoning tried-and-true
computing principles altogether. This consistency paired with openness
was undoubtedly a key to the adoption of FPnew. However, we also
see the appeal of more radical proposals for FP-like arithmetic, many
of them try to specifically address the inefficiencies and shortcomings
of IEEE 754 FP.

The following are assorted ideas for possible extensions and evolu-
tions of the work presented in this thesis.

Extend Architecture for More Extremely Constrained Tar-
gets While we consciously have not tried conserving circuit area to
pursue higher energy efficiency, this decision makes FPnew unsuitable
for extremely resource-constrained targets. Keeping such platforms
in mind, extending FPnew to offer more unit types besides the (both
rather large) parallel and merged configurations would further broaden
the project’s appeal. For example, we could offer minimum-area itera-
tive computation units for specific formats and operations.

Offer Non-FP Types Alongside Standard Behavior The
framework of FPnew’s architecture with strong specialization and
silencing of execution blocks is not limited to standard FP. Exploring
and including alternative number formats such as LNS, unum, posit,
tunable FP (TFP), amongst many others, could further benefit the
TP computing ecosystem.

Hardware Generators The choice of SystemVerilog for the imple-
mentation of FPnew has guaranteed compatibility with tried-and-true
hardware development flows. However, we have certainly been strain-
ing the configurability and customization level that should be done
through a hardware description language alone, leading to somewhat

168 CHAPTER 6. CONCLUSIONS

bloated and unsightly code. While we do not necessarily advocate for
high-level synthesis, the middle ground of employing a suitable script-
ing tool to generate a more precise and systematic HDL representation
of a specific configuration would streamline and improve the usability
of FPnew.

Heterogeneous Platform with Tranprecision We have shown
an initial way of combining an HPC cloud computer with embedded
devices that follow a TP paradigm. Experimentation with various
systems of vastly different compute capabilities, ISAs, or programming
models pose an exciting field of study.

Hands-Off Transprecision Computing The instrumentation and
transformation of applications for TP functionality was still a manual
process in this work. More intelligent and automated ways of managing
TP within the software, compilers, and hardware blocks themselves
deserve additional exploration, which would lower the barrier to entry
for adoption of TP computing significantly.

Appendix A

Chip Gallery

This appendix lists all chips that have been fabricated and are related
to this thesis. A complete, up-to-date list of chips with the author’s
involvement can be found online at: http://asic.ethz.ch/authors/
Stefan_Mach.html.

169

http://asic.ethz.ch/authors/Stefan_Mach.html
http://asic.ethz.ch/authors/Stefan_Mach.html

170 APPENDIX A. CHIP GALLERY

A.1 Treated in This Thesis

Name Kosmodrom

Designers Stefan Mach, Fabian Schuiki, Florian Zaruba
Application / Publication Application CPU / Research Project [34, 43]
Technology / Package GF22FDX / QFN56
Dimensions 3000 µm × 3000 µm
Voltage 0.8 V
Clock 1300 MHz

Kosmodrom is a direct collaboration with Globalfoundries for evaluat-
ing different library options of the GF22FDX process using a realistic
benchmark. For this purpose, there are two 64-bit RISC-V-based Ari-
ane cores with TP-FPUs. Both cores support 5 FP formats, including
SIMD support for all sub-64-bit formats.

A.1. TREATED IN THIS THESIS 171

Name Baikonur

Designers Stefan Mach, Fabian Schuiki, Florian Zaruba
Application / Publication Application CPU / Research Project [148]
Technology / Package GF22FDX / QFN56
Dimensions 3000 µm × 3000 µm
Voltage 0.8 V
Clock 1000 MHz

Baikonur continues our direct collaboration with Globalfoundries.
The two Ariane cores return with fixes and updates to the TP-FPU
blocks. Furthermore, there is a many-core architecture consisting
of 3 clusters, each containing 8 Snitch cores. Snitch cores are small
32bit RISC-V (RV32IMAFD) cores with a tiny integer unit but a very
powerful vectorizable 64-bit FPU and extensions for stream processing.
All FP functionality in the design is provided by implementations of
FPnew.

172 APPENDIX A. CHIP GALLERY

Name Vega

Designers Stefan Mach, Davide Rossi, Francesco Conti,
Manuel Eggimann, Alfio Di Mauro, Marco
Guermandi, Giuseppe Tagliavini, Antonio
Pullini, Igor Loi, Jie Chen, Eric Flamand

Application / Publication IoT End-Node SoC / Industrial [41]
Technology / Package GF22FDX / BGA169
Dimensions 4000 µm × 3000 µm
Voltage 0.5 V to 0.8 V
Clock 450 MHz

Vega is an always-on IoT end-node SoC capable of scaling from
a 1.7 µW fully retentive cognitive sleep mode up to 32.2 Gop/s (at
49.4 mW) peak performance on NSAAs, including mobile DNN infer-
ence. The SoC features 10 RISC-V cores: one core for SoC and IO
management and a 9-core cluster supporting multi-precision SIMD
integer and FP computation, paired with two ML accelerators.

A.1. TREATED IN THIS THESIS 173

Name Unum

Designers Lucas Mayrhofer, David Oelen, Michael
Gautschi, Florian Glaser, Florian Scheidegger
Michael Schaffner

Application / Publication Number Systems / Student Project [40]
Technology / Package UMC65 / QFN40
Dimensions 1252 µm × 1252 µm
Voltage 1.2 V
Clock 400 MHz

This chip implements the unum number format developed by Dr.
John Gustafson. The chip contains an ALU that accepts two unum
numbers with a tag that has 4bit exponent and 5bit mantissa (unum45),
comprising a ubound. It can add/subtract these numbers and calculate
an optimized bound for the result.

174 APPENDIX A. CHIP GALLERY

A.2 Further Implementations of FPnew

Name Urania

Designers Andreas Kurth, Wolfgang Roenninger, Oscar
F. Castaneda, Christian Weis, Jan Lappas,
Chirag Sudarshan, Beat Muheim

Application / Publication Heterogeneous Computing / Research Project
Technology / Package UMC65 / QFN64
Dimensions 4000 µm × 4000 µm
Voltage 1.2 V
Clock 100 MHz

Urania is the first ASIC implementation of a multi-cluster RISC-V
architecture for the HERO project. It contains a 64-bit Ariane core
and two clusters of four RI5CY cores, each with individual TP-FPUs.

A.2. FURTHER IMPLEMENTATIONS OF FPNEW 175

Name Billywig

Designers Florian Zaruba, Fabian Schuiki, Beat Muheim
Application / Publication HPC / Research Project [112]
Technology / Package UMC65 / QFN40
Dimensions 2626 µm × 1252 µm
Voltage 1.2 V
Clock 350 MHz

Billywig is a RISC-V-based multicore system for processing regular
data structures. It contains four ultra-small RV32IMAFD Snitch cores
with custom extensions to improve stream processing. This small core
is then paired with a fairly large 64-bit FPU (with 64 64-bit registers),
which can be used as a single 64-bit FPU or 2× 32-bit FPUs in parallel.
The instruction extensions can be used to program stream processing
allowing the FPU to process data directly from memory, giving the
core a pseudo-dual-issue capability. While the FPU is active, the
integer core can continue to execute code, in particular, to update the
configuration of the streaming subsystem.

176 APPENDIX A. CHIP GALLERY

Name Thestral

Designers Fabian Schuiki, Florian Zaruba, Thomas
Benz, Paul Scheffler, Wolfgang Roenninger

Application / Publication FP Power Management / Research Project
Technology / Package GF22FDX / QFN40
Dimensions 1250 µm × 1250 µm
Voltage 0.8 V
Clock 650 MHz

Thestral contains architectural improvements to Snitch and exten-
sive power gating infrastructure. Notable changes compared to the
system in Baikonur are 20 different power domains (each FPU/IPU,
as well as the cluster, can be individually powered down), and dou-
ble-pumped FPUs and IPUs. The compute units (and the TCDM)
can be operated at twice the integer core speed, allowing for higher
peak throughput.

A.3. MISCELLANEOUS ASICS 177

A.3 Miscellaneous ASICs

Name Drift

Designers Stefan Mach, Wolfgang Roenninger, Kaja
Jentner, Florian Zaruba

Application / Publication Integer Dividers / Student Project
Technology / Package UMC65 / QFN40
Dimensions 1252 µm × 1252 µm
Voltage 1.2 V
Clock 600 MHz

Drift implements several different integer divider architectures that
can be used as part of the 64-bit RISC-V core Ariane. The name
stands for Division with different Radix representations of Integers
using Fractional Transformation.

178 APPENDIX A. CHIP GALLERY

Name Pony

Designers Stefan Mach, Marco Eppenberger,
Cyril Arnould, Michael Muehlberghuber,
Beat Muheim

Application / Publication Cryptography / Student Project
Technology / Package UMC65 / QFN56
Dimensions 2626 µm × 1252 µm
Voltage 1.2 V
Clock 600 MHz

This chip contains five candidates for the CAESAR competition to
determine an Authenticated Encryption with Associated Data (AEAD)
standard. All implementations have been geared towards a 100 Gb/s
throughput. For testing purposes, the top-level design of the chip selec-
tively allows feeding candidates from an externally accessible on-chip
RAM or pseudo-randomly generated data. Furthermore, clock-gating
is used for exact power measurements. The full name of the chip is
My Little Crypto: Throughput is Magic and it is the most beautiful
chip ever taped out.

Appendix B

Acronyms

AHP Ariane High Performance.

ALP Ariane Low Power.

ASIC application-specific integrated circuit.

AXI Advanced eXtensible Interface.

BB body bias.

EPI European Processor Initiative.

FMA fused multiply-add.

FP floating-point.

FPGA field-programmable gate array.

FPU floating-point unit.

HAL hardware abstraction layer.

HPC High Performance Computing.

IoT Internet of Things.

179

180 APPENDIX B. ACRONYMS

ISA instruction set architecture.

LNS logarithmic nubmer system.

MAC multiply-accumulate.

MCU microcontroller unit.

ML machine learning.

NaN not a number.

NaR not a real.

NTX network training accelerator.

P&R place & route.

SIMD single instruction multiple data.

SoC system on a chip.

SQNR signal-to-quantization-noise ratio.

SRAM static random-access memory.

TDP Thermal Design Power.

TP transprecision.

TP-FPU transprecision floating-point unit.

UART Universal Asynchronous Receiver Transmitter.

ULP ultra-low power.

unum universal number.

Bibliography

[1] D. A. Reed and J. Dongarra, “Exascale computing and big data,”
Communications of the ACM, vol. 58, no. 7, pp. 56–68, 2015.

[2] D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur,
and H.-S. P. Wong, “Device scaling limits of Si MOSFETs and
their application dependencies,” Proceedings of the IEEE, vol. 89,
no. 3, pp. 259–288, 2001.

[3] M. Bohr, “A 30 year retrospective on Dennard’s MOSFET scaling
paper,” IEEE Solid-State Circuits Society Newsletter, vol. 12,
no. 1, pp. 11–13, 2007.

[4] J. J. Dongarra, H. W. Meuer, E. Strohmaier et al., “TOP500
supercomputer sites,” Supercomputer, vol. 13, pp. 89–111, 1997.

[5] W.-c. Feng and K. Cameron, “The Green500 list: Encouraging
sustainable supercomputing,” Computer, vol. 40, no. 12, pp.
50–55, 2007.

[6] C. Hall, “Keeping cool and cutting costs in the data center,”
https://www.datacenterknowledge.com/power-and-cooling/
keeping-cool-and-cutting-costs-data-center, Mar 2018.

[7] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally,
M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller et al.,
“Exascale computing study: Technology challenges in achieving
exascale systems,” Defense Advanced Research Projects Agency
Information Processing Techniques Office (DARPA IPTO), Tech.
Rep, vol. 15, 2008.

181

https://www.datacenterknowledge.com/power-and-cooling/keeping-cool-and-cutting-costs-data-center
https://www.datacenterknowledge.com/power-and-cooling/keeping-cool-and-cutting-costs-data-center

182 BIBLIOGRAPHY

[8] N. Jouppi, C. Young, N. Patil, and D. Patterson, “Motivation for
and evaluation of the first tensor processing unit,” IEEE Micro,
vol. 38, no. 3, pp. 10–19, 2018.

[9] S. Markidis, S. W. Der Chien, E. Laure, I. B. Peng, and J. S.
Vetter, “Nvidia tensor core programmability, performance &
precision,” in 2018 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). IEEE, 2018, pp.
522–531.

[10] W. Kahan, J. D. Darcy, E. Eng, and H.-P. N. Computing, “How
Java’s floating-point hurts everyone everywhere,” in ACM 1998
workshop on java for high-performance network computing. Stan-
ford University, 1998, p. 81.

[11] B. Barrois and O. Sentieys, “Customizing fixed-point and float-
ing-point arithmetic – a case study in k-means clustering,” in
2017 IEEE International Workshop on Signal Processing Systems
(SiPS). IEEE, 2017, pp. 1–6.

[12] A. Volkova, T. Hilaire, and C. Lauter, “Arithmetic approaches
for rigorous design of reliable fixed-point LTI filters,” IEEE
Transactions on Computers, vol. 69, no. 4, pp. 489–504, 2020.

[13] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing:
A survey,” IEEE Design & Test, vol. 33, no. 1, pp. 8–22, 2016.

[14] S. Mittal, “A survey of techniques for approximate computing,”
ACM Computing Surveys (CSUR), vol. 48, no. 4, pp. 1–33, 2016.

[15] M. Zanghieri, S. Benatti, A. Burrello, V. Kartsch, F. Conti,
and L. Benini, “Robust real-time embedded emg recognition
framework using temporal convolutional networks on a multicore
IoT processor,” IEEE Transactions on Biomedical Circuits and
Systems, vol. 14, no. 2, pp. 244–256, 2020.

[16] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen,
D. Garcia, B. Ginsburg, M. Houston, O. Kuchaev,
G. Venkatesh et al., “Mixed precision training,” arXiv preprint
arXiv:1710.03740, 2017.

BIBLIOGRAPHY 183

[17] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized
convolutional neural networks for mobile devices,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 4820–4828.

[18] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantiza-
tion of deep convolutional networks,” in International conference
on machine learning, 2016, pp. 2849–2858.

[19] N. Burgess, J. Milanovic, N. Stephens, K. Monachopoulos,
and D. Mansell, “Bfloat16 processing for neural networks,” in
2019 IEEE 26th Symposium on Computer Arithmetic (ARITH).
IEEE, 2019, pp. 88–91.

[20] A. C. I. Malossi, M. Schaffner, A. Molnos, L. Gammaitoni,
G. Tagliavini, A. Emerson, A. Tomás, D. S. Nikolopoulos, E. Fla-
mand, and N. Wehn, “The transprecision computing paradigm:
Concept, design, and applications,” in 2018 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE,
2018, pp. 1105–1110.

[21] U. Köster, T. Webb, X. Wang, M. Nassar, A. K. Bansal, W. Con-
stable, O. Elibol, S. Gray, S. Hall, L. Hornof et al., “Flexpoint:
An adaptive numerical format for efficient training of deep neural
networks,” in Advances in neural information processing systems,
2017, pp. 1742–1752.

[22] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael,
A. Caulfield, T. Massengill, M. Liu, D. Lo, S. Alkalay, M. Hasel-
man et al., “Serving DNNs in real time at datacenter scale with
project Brainwave,” IEEE Micro, vol. 38, no. 2, pp. 8–20, 2018.

[23] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers et al.,
“In-datacenter performance analysis of a tensor processing unit,”
in 2017 ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2017.

[24] N. Amit, M. Wei, and C.-C. Tu, “Extreme datacenter specializa-
tion for planet-scale computing: ASIC clouds,” ACM SIGOPS
Operating Systems Review, vol. 51, no. 1, pp. 96–108, 2018.

184 BIBLIOGRAPHY

[25] D. Mukunoki and T. Imamura, “Reduced-precision floating-
point formats on GPUs for high performance and energy-efficient
computation,” in IEEE International Conference on Cluster
Computing (CLUSTER), 2016, pp. 144–145.

[26] A. Waterman and K. Asanovic, “The RISC-V instruction
set manual, volume I: User-level ISA, document version
20191214-draft,” RISC-V Foundation, 2019.

[27] PULP Platform, “The parallel ultra low power (PULP) platform,”
https://pulp-platform.org, 2021.

[28] Berkeley Architecture Research, “The Berkeley out-of-order
RISC-V processor,” https://boom-core.org, 2020.

[29] Reconfigurable Intelligent Systems Engineering (RISE), IIT-
Madras, “Shakti open source processor development ecosystem,”
http://shakti.org.in, 2021.

[30] Western Digital Corporation, “EH1 RISC-V SweRV CoreTM
1.9 from Western Digital,” https://github.com/chipsalliance/
Cores-SweRV, 2021.

[31] RISC-V International, “RISC-V Exchange,” https://riscv.org/
exchange, 2021.

[32] PULP Platform, “FPnew – new floating-point unit with transpre-
cision capabilities,” https://github.com/pulp-platform/fpnew,
2021.

[33] G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benini,
“A transprecision floating-point platform for ultra-low power
computing,” in 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2018, pp. 1051–1056.

[34] S. Mach, F. Schuiki, F. Zaruba, and L. Benini, “Fpnew: An
open-source multiformat floating-point unit architecture for ener-
gy-proportional transprecision computing,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 2020.

https://pulp-platform.org
https://boom-core.org
http://shakti.org.in
https://github.com/chipsalliance/Cores-SweRV
https://github.com/chipsalliance/Cores-SweRV
https://riscv.org/exchange
https://riscv.org/exchange
https://github.com/pulp-platform/fpnew

BIBLIOGRAPHY 185

[35] G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benini,
“Design and evaluation of smallFloat SIMD extensions to the
RISC-V ISA,” in 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2019, pp. 654–657.

[36] S. Mach, D. Rossi, G. Tagliavini, A. Marongiu, and L. Benini,
“A transprecision floating-point architecture for energy-efficient
embedded computing,” in 2018 IEEE International Symposium
on Circuits and Systems (ISCAS). IEEE, 2018, pp. 1–5.

[37] F. Montagna, S. Mach, S. Benatti, A. Garofalo, G. Ottavi,
L. Benini, D. Rossi, and G. Tagliavini, “A transprecision float-
ing-point cluster for efficient near-sensor data analytics,” arXiv
preprint arXiv:2008.12243, 2020.

[38] S. Mach, F. Schuiki, F. Zaruba, and L. Benini, “A 0.80 pJ/flop,
1.24 Tflop/sW 8-to-64 bit transprecision floating-point unit for a
64 bit RISC-V processor in 22nm FD-SOI,” in 2019 IFIP/IEEE
27th International Conference on Very Large Scale Integration
(VLSI-SoC). IEEE, 2019, pp. 95–98.

[39] D. Diamantopoulos, F. Scheidegger, S. Mach, F. Schuiki, G. Hau-
gou, M. Schaffner, F. K. Gürkaynak, C. Hagleitner, A. C. I.
Malossi, and L. Benini, “Xwattpilot: A full-stack cloud sys-
tem enabling agile development of transprecision software for
low-power SoCs,” in 2020 IEEE Symposium in Low-Power and
High-Speed Chips (COOL CHIPS). IEEE, 2020, pp. 1–3.

[40] F. Glaser, S. Mach, A. Rahimi, F. K. Gürkaynak, Q. Huang,
and L. Benini, “An 826 Mops, 210 uW/MHz Unum ALU in 65
nm,” in 2018 IEEE International Symposium on Circuits and
Systems (ISCAS). IEEE, 2018, pp. 1–5.

[41] D. Rossi, F. Conti, M. Eggiman, S. Mach, A. Di Mauro, M. Guer-
mandi, G. Tagliavini, A. Pullini, I. Loi, J. Chen, E. Flamand, and
L. Benini, “A 1.3 Tops/W @ 32 Gops fully integrated 10-core
SoC for IoT end-nodes with 1.7 uW cognitive wake-up from
MRAM-based state-retentive sleep mode,” in 2021 IEEE Inter-
national Solid- State Circuits Conference (ISSCC). IEEE, Feb.
2021.

186 BIBLIOGRAPHY

[42] F. Schuiki, F. Zaruba, S. Mach, and L. Benini, “Kosmodrom:
Energy-efficient ariane cores with transprecision FPU in 22nm,”
in RISC-V Workshop Zurich, 2019.

[43] F. Zaruba, F. Schuiki, S. Mach, and L. Benini, “The floating point
trinity: A multi-modal approach to extreme energyefficiency and
performance,” in 2019 26th IEEE International Conference on
Electronics, Circuits and Systems (ICECS). IEEE, 2019, pp.
767–770.

[44] A. Pullini, M. Gautschi, F. K. Gürkaynak, F. Glaser, S. Mach,
G. Rovere, D. Schiavone, G. Haugou, D. Palossi, A. Marongiu
et al., “KISS PULPino – updates on PULPino,” in 5th RISC-V
Workshop. ETH Zürich, 2016.

[45] A. Pullini, S. Mach, M. Magno, and L. Benini, “A dual processor
energy-efficient platform with multi-core accelerator for smart
sensing,” in International Conference on Sensor Systems and
Software. Springer, 2016, pp. 29–40.

[46] M. Eggimann, S. Mach, M. Magno, and L. Benini, “A RISC-V
based open hardware platform for always-on wearable smart
sensing,” in 2019 IEEE 8th International Workshop on Advances
in Sensors and Interfaces (IWASI). IEEE, 2019, pp. 169–174.

[47] A. Di Mauro, F. Zaruba, F. Schuiki, S. Mach, and L. Benini,
“Live demonstration: Exploiting body-biasing for static corner
trimming and maximum energy efficiency operation in 22nm
FDX technology,” in 2020 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, 2020, pp. 1–1.

[48] H. Müller, D. Palossi, S. Mach, F. Conti, and L. Benini, “Fün-
fliber-drone: A modular open-platform 18-grams autonomous
nano-drone,” in Design, Automation Test in Europe Conference
Exhibition (DATE 2021), 2021, pp. 12–11.

[49] D. Zuras, M. Cowlishaw, A. Aiken, M. Applegate, D. Bailey,
S. Bass, D. Bhandarkar, M. Bhat, D. Bindel, S. Boldo et al.,
“IEEE standard for floating-point arithmetic,” IEEE Std 754-
2008, pp. 1–70, 2008.

BIBLIOGRAPHY 187

[50] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini,
D. Rossi, E. Flamand, F. K. Gürkaynak, and L. Benini,
“Near-threshold RISC-V core with DSP extensions for scalable
IoT endpoint devices,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 25, no. 10, pp. 2700–2713, 2017.

[51] C. Bekas, A. Curioni, and I. Fedulova, “Low-cost data uncertainty
quantification,” Concurrency and Computation: Pract. & Exper.,
vol. 24, no. 8, pp. 908–920, 2012.

[52] P. Klavík, A. C. I. Malossi, C. Bekas, and A. Curioni, “Changing
computing paradigms towards power efficiency,” Phil. Trans. R.
Soc. A, vol. 372, no. 2018, 2014.

[53] N.-M. Ho, E. Manogaran, W.-F. Wong, and A. Anoosheh, “Effi-
cient floating point precision tuning for approximate computing,”
in 22nd Asia and South Pacific Design Automation Conf. (ASP-
DAC). IEEE, 2017, pp. 63–68.

[54] W.-F. Chiang, M. Baranowski, I. Briggs, A. Solovyev,
G. Gopalakrishnan, and Z. Rakamarić, “Rigorous floating-point
mixed-precision tuning,” in Proc. of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages. ACM,
2017, pp. 300–315.

[55] D. Monniaux, “The pitfalls of verifying floating-point compu-
tations,” ACM Trans. Program. Lang. Syst., vol. 30, no. 3, pp.
12:1–12:41, May 2008.

[56] J. L. Gustafson, “A radical approach to computation with real
numbers,” Supercomputing Frontiers and Innovations, vol. 3,
no. 2, 2016.

[57] J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod,
M. Joldes, V. Lefèvre, G. Melquiond, N. Revol, and S. Torres,
Handbook of Floating-Point Arithmetic, 2nd edition. Birkhäuser
Boston, 2018, ACM G.1.0; G.1.2; G.4; B.2.0; B.2.4; F.2.1., ISBN
978-3-319-76525-9.

[58] M. Bista, “Image annotation using ZYNQ SoC,” Ph.D. disserta-
tion, TRIBHUVAN UNIVERSITY, 2017.

188 BIBLIOGRAPHY

[59] M. M. Trompouki and L. Kosmidis, “Towards general purpose
computations on low-end mobile GPUs,” in Design, Automation
& Test in Europe Conf. & Exhibition (DATE). IEEE, 2016, pp.
539–542.

[60] D. H. Bailey, H. Yozo, X. S. Li, and B. Thompson, “ARPREC:
An arbitrary precision computation package,” Lawrence Berkeley
National Laboratory, 2002.

[61] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmer-
mann, “MPFR: A multiple-precision binary floating-point library
with correct rounding,” ACM Transactions on Mathematical
Software (TOMS), vol. 33, no. 2, p. 13, 2007.

[62] J. R. Hauser, “Handling floating-point exceptions in numeric
programs,” ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 18, no. 2, pp. 139–174, 1996.

[63] H. Brönnimann, G. Melquiond, and S. Pion, “The design of the
Boost interval arithmetic library,” Theoretical Computer Science,
vol. 351, no. 1, pp. 111–118, 2006.

[64] S. Graillat, F. Jézéquel, R. Picot, F. Févotte, and B. Lathuilière,
“Auto-tuning for floating-point precision with discrete stochastic
arithmetic,” https://hal.archives-ouvertes.fr/hal-01331917, 2016.

[65] C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel,
W. Kahan, K. Sen, D. H. Bailey, C. Iancu, and D. Hough,
“Precimonious: Tuning assistant for floating-point precision,”
in Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis. ACM,
2013, p. 27.

[66] M. Moscato, L. Titolo, A. Dutle, and C. A. Munoz, “Auto-
matic estimation of verified floating-point round-off errors via
static analysis,” in International Conference on Computer Safety,
Reliability, and Security. Springer, 2017, pp. 213–229.

[67] H. Kaul, M. Anders, S. Mathew, S. Hsu, A. Agarwal, F. Sheikh,
R. Krishnamurthy, and S. Borkar, “A 1.45 GHz 52-to-162 Gflop-
s/W variable-precision floating-point fused multiply-add unit

https://hal.archives-ouvertes.fr/hal-01331917

BIBLIOGRAPHY 189

with certainty tracking in 32nm CMOS,” in 2012 IEEE Interna-
tional Solid-State Circuits Conference. IEEE, 2012, pp. 182–184.

[68] J. Y. F. Tong, D. Nagle, and R. A. Rutenbar, “Reducing power
by optimizing the necessary precision/range of floating-point
arithmetic,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 8, no. 3, pp. 273–286, 2000.

[69] T. Rzayev, S. Moradi, D. H. Albonesi, and R. Manchar, “Deep-
Recon: Dynamically reconfigurable architecture for accelerating
deep neural networks,” in International Joint Conference on
Neural Networks (IJCNN), 2017, pp. 116–124.

[70] M. Gautschi, M. Schaffner, F. K. Gürkaynak, and L. Benini,
“An extended shared logarithmic unit for nmiscar function kernel
acceleration in a 65-nm CMOS multicore cluster,” IEEE Journal
of Solid-State Circuits, vol. 52, no. 1, pp. 98–112, 2017.

[71] W. Tichy, “The end of (numeric) error: An interview with John
L. Gustafson,” Ubiquity, vol. 2016, no. April, pp. 1:1–1:14, Apr.
2016.

[72] “Unum arithmetic in Julia,” https://github.com/
JuliaComputing/Unums.jl, 2017.

[73] M. Kvasnica, “munum: Matlab(R) library for universal numbers,”
https://bitbucket.org/kvasnica/munum, 2017.

[74] J. Muizelaar, “Python port of the Mathematica Unum prototype
from ’The End of Error’,” https://github.com/jrmuizel/pyunum,
2017.

[75] A. Bocco, Y. Durand, and F. de Dinechin, “Hardware support
for Unum floating point arithmetic,” in 2017 13th Conference on
Ph. D. Research in Microelectronics and Electronics (PRIME).
IEEE, 2017, pp. 93–96.

[76] J. Hou, Y. Zhu, Y. Shen, M. Li, Q. Wu, and H. Wu, “Enhancing
precision and bandwidth in cloud computing: Implementation of
a novel floating-point format on FPGA,” in 2017 IEEE 4th In-
ternational Conference on Cyber Security and Cloud Computing
(CSCloud), June 2017, pp. 310–315.

https://github.com/JuliaComputing/Unums.jl
https://github.com/JuliaComputing/Unums.jl
https://bitbucket.org/kvasnica/munum
https://github.com/jrmuizel/pyunum

190 BIBLIOGRAPHY

[77] J. L. Gustafson, The End of Error: Unum Computing. CRC
Press, 2017.

[78] J. L. Gustafson, “Posit arithmetic,” Mathematica Notebook de-
scribing the posit number system, vol. 30, 2017.

[79] R. Kirchner and U. Kulisch, “Accurate arithmetic for vector
processors,” Journal of parallel and distributed computing, vol. 5,
no. 3, pp. 250–270, 1988.

[80] R. K. Montoye, E. Hokenek, and S. L. Runyon, “Design of the
IBM RISC System/6000 floating-point execution unit,” IBM
Journal of research and development, vol. 34, no. 1, pp. 59–70,
1990.

[81] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižie-
nis, J. Wawrzynek, and K. Asanović, “Chisel: constructing hard-
ware in a scala embedded language,” in DAC Design Automation
Conference 2012. IEEE, 2012, pp. 1212–1221.

[82] S. Mach, “The smallFloat extensions for RISC-V,”
https://iis-git.ee.ethz.ch/smach/smallFloat-spec/blob/v0.
5/smallFloat_isa.pdf, 2018.

[83] “Auto-vectorization in GCC,” https://www.gnu.org/software/
gcc/projects/tree-ssa/vectorization.html, 2018.

[84] R. Usselmann, “Floating point unit,” https://opencores.org/
projects/fpu, 2018.

[85] J. Al-Eryani, “FPU,” https://opencores.org/projects/fpu100,
2017.

[86] F. de Dinechin and B. Pasca, “Designing custom arithmetic data
pathwith FloPoCo,” IEEE Design & Test of Computers, vol. 28,
no. 4, pp. 18–27, Jul. 2011.

[87] B. A. Research, “Berkeley hardware floating-point units,” https:
//github.com/ucb-bar/berkeley-hardfloat, 2020.

https://iis-git.ee.ethz.ch/smach/smallFloat-spec/blob/v0.5/smallFloat_isa.pdf
https://iis-git.ee.ethz.ch/smach/smallFloat-spec/blob/v0.5/smallFloat_isa.pdf
https://www.gnu.org/software/gcc/ projects/tree-ssa/vectorization.html
https://www.gnu.org/software/gcc/ projects/tree-ssa/vectorization.html
https://opencores.org/projects/fpu
https://opencores.org/projects/fpu
https://opencores.org/projects/fpu100
https://github.com/ucb-bar/berkeley-hardfloat
https://github.com/ucb-bar/berkeley-hardfloat

BIBLIOGRAPHY 191

[88] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz et al.,
“The Rocket chip generator,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.

[89] K. Asanovic, D. A. Patterson, and C. Celio, “The Berkeley out-
-of-order machine (BOOM): An industry-competitive, synthesiz-
able, parameterized RISC-V processor,” University of California
at Berkeley Berkeley United States, Tech. Rep., 2015.

[90] F. Kaiser, S. Kosnac, and U. Brüning, “Development of a RISC-V-
conform fused multiply-add floating-point unit,” Supercomputing
Frontiers and Innovations, vol. 6, no. 2, pp. 64–74, 2019.

[91] P. Zamirai, J. Zhang, C. R. Aberger, and C. De Sa, “Revisiting
bfloat16 training,” arXiv preprint arXiv:2010.06192, 2020.

[92] F. Schuiki, M. Schaffner, and L. Benini, “NTX: An energy-effi-
cient streaming accelerator for floating-point generalized reduc-
tion workloads in 22 nm FD-SOI,” in 2019 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE,
2019, pp. 662–667.

[93] J. L. Gustafson and I. T. Yonemoto, “Beating floating point at
its own game: Posit arithmetic,” Supercomputing Frontiers and
Innovations, vol. 4, no. 2, pp. 71–86, 2017.

[94] M. Gautschi, M. Schaffner, F. K. Gürkaynak, and L. Benini,
“A 65nm CMOS 6.4-to-29.2 pJ/flop @ 0.8 V shared logarithmic
floating point unit for acceleration of nmiscar function kernels in
a tightly coupled processor cluster,” in 2016 IEEE International
Solid-State Circuits Conference (ISSCC). IEEE, 2016, pp.
82–83.

[95] A. Nannarelli, “Tunable floating-point adder,” IEEE Transac-
tions on Computers, vol. 68, no. 10, pp. 1553–1560, 2019.

[96] K. Manolopoulos, D. Reisis, and V. A. Chouliaras, “An efficient
dual-mode floating-point multiply-add fused unit,” in 2010 17th
IEEE International Conference on Electronics, Circuits and
Systems. IEEE, 2010, pp. 5–8.

192 BIBLIOGRAPHY

[97] V. Arunachalam, A. N. J. Raj, N. Hampannavar, and C. Bidul,
“Efficient dual-precision floating-point fused-multiply-add archi-
tecture,” Microprocessors and Microsystems, vol. 57, pp. 23–31,
2018.

[98] H. Zhang, D. Chen, and S. Ko, “Efficient multiple-precision
floating-point fused multiply-add with mixed-precision support,”
IEEE Transactions on Computers, 2019.

[99] J. Pu, S. Galal, X. Yang, O. Shacham, and M. Horowitz, “FPMax:
a 106 Gflops/W at 217 Gflops/mm2 single-precision FPU, and
a 43.7 Gflops/W at 74.6 Gflops/mm2 double-precision FPU, in
28nm UTBB FDSOI,” arXiv preprint arXiv:1606.07852, 2016.

[100] T. M. Bruintjes, K. H. Walters, S. H. Gerez, B. Molenkamp, and
G. J. Smit, “Sabrewing: A lightweight architecture for combined
floating-point and integer arithmetic,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 8, no. 4, pp.
1–22, 2012.

[101] PULP Platform, “PULPissimo,” https://github.com/
pulp-platform/pulpissimo, 2021.

[102] PULP Platform, “PULPino,” https://github.com/
pulp-platform/pulpino, 2021.

[103] OpenHW Group, “OpenHW Group CORE-V CV32E40P
RISC-V IP,” https://github.com/openhwgroup/cv32e40p, 2021.

[104] OpenHW Group, “OpenHW Group Website,” https://www.
openhwgroup.org, 2021.

[105] A. Pullini, D. Rossi, I. Loi, G. Tagliavini, and L. Benini, “Mr.
Wolf: An energy-precision scalable parallel ultra low power SoC
for IoT edge processing,” IEEE Journal of Solid-State Circuits,
vol. 54, no. 7, pp. 1970–1981, 2019.

[106] F. Glaser, G. Tagliavini, D. Rossi, G. Haugou, Q. Huang, and
L. Benini, “Energy-efficient hardware-accelerated synchroniza-
tion for shared-L1-memory multiprocessor clusters,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 32, no. 3, pp.
633–648, 2021.

https://github.com/pulp-platform/pulpissimo
https://github.com/pulp-platform/pulpissimo
https://github.com/pulp-platform/pulpino
https://github.com/pulp-platform/pulpino
https://github.com/openhwgroup/cv32e40p
https://www.openhwgroup.org
https://www.openhwgroup.org

BIBLIOGRAPHY 193

[107] G. Tagliavini, D. Cesarini, and A. Marongiu, “Unleashing fine-
grained parallelism on embedded many-core accelerators with
lightweight OpenMP tasking,” IEEE Transactions on Parallel
and Distributed Systems, vol. 29, no. 9, pp. 2150–2163, 2018.

[108] F. Montagna, M. Buiatti, S. Benatti, D. Rossi, E. Farella,
and L. Benini, “A machine learning approach for automated
wide-range frequency tagging analysis in embedded neuromoni-
toring systems,” Methods, vol. 129, pp. 96–107, 2017.

[109] J. Robelly, G. Cichon, H. Seidel, and G. Fettweis, “Implemen-
tation of recursive digital filters into vector SIMD DSP archi-
tectures,” in 2004 IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 5. IEEE, 2004, pp. V–165.

[110] M. Cavalcante, F. Schuiki, F. Zaruba, M. Schaffner, and
L. Benini, “Ara: A 1-GHz+ scalable and energy-efficient RISC-V
vector processor with multiprecision floating-point support in
22-nm FD-SOI,” IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, vol. 28, no. 2, pp. 530–543, 2019.

[111] Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. Sto-
janović, and K. Asanović, “A 45nm 1.3 GHz 16.7 double-precision
Gflops/W RISC-V processor with vector accelerators,” in Eu-
ropean Solid State Circuits Conference (ESSCIRC), ESSCIRC
2014-40th. IEEE, 2014, pp. 199–202.

[112] F. Zaruba, F. Schuiki, T. Hoefler, and L. Benini, “Snitch: A tiny
pseudo dual-issue processor for area and energy-efficient execu-
tion of floating-point intensive workloads,” IEEE Transactions
on Computers, 2020.

[113] A. Bocco, Y. Durand, and F. De Dinechin, “SMURF: Scalar
multiple-precision Unum RISC-V floating-point accelerator for
scientific computing,” in Proceedings of the Conference for Next
Generation Arithmetic 2019, 2019, pp. 1–8.

[114] M. K. Jaiswal, B. S. C. Varma, H. K. . So, M. Balakrishnan,
K. Paul, and R. C. C. Cheung, “Configurable architectures for

194 BIBLIOGRAPHY

multi-mode floating point adders,” IEEE Transactions on Cir-
cuits and Systems I: Regular Papers, vol. 62, no. 8, pp. 2079–2090,
2015.

[115] J. D. Bruguera, “Low latency floating-point division and square
root unit,” IEEE Transactions on Computers, vol. 69, no. 2, pp.
274–287, 2019.

[116] G. Mitra, B. Johnston, A. P. Rendell, E. McCreath, and J. Zhou,
“Use of SIMD vector operations to accelerate application code
performance on low-powered Arm and Intel platforms,” in 2013
IEEE International Symposium on Parallel & Distributed Pro-
cessing, Workshops and Phd Forum. IEEE, 2013, pp. 1107–1116.

[117] G. Mitra, E. Stotzer, A. Jayaraj, and A. P. Rendell, “Implemen-
tation and optimization of the OpenMP accelerator model for
the TI Keystone II architecture,” in International Workshop on
OpenMP. Springer, 2014, pp. 202–214.

[118] RISC-V Foundation, “RISC-V "P" extension specification,” https:
//github.com/riscv/riscv-p-spec, 2021.

[119] R. M. Russell, “The CRAY-1 computer system,” Communica-
tions of the ACM, vol. 21, no. 1, pp. 63–72, 1978.

[120] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole,
G. Gabrielli, M. Horsnell, G. Magklis, A. Martinez, N. Pre-
millieu et al., “The Arm scalable vector extension,” IEEE Micro,
vol. 37, no. 2, pp. 26–39, 2017.

[121] T. Yoshida, “Fujitsu high performance CPU for the Post-K
computer,” in Hot Chips, vol. 30, 2018.

[122] RISC-V Foundation, “RISC-V "V" extension specification,” https:
//github.com/riscv/riscv-v-spec, 2021.

[123] F. Johansson, “Arb: efficient arbitrary-precision midpoint-radius
interval arithmetic,” IEEE Transactions on Computers, vol. 66,
no. 8, pp. 1281–1292, 2017.

https://github.com/riscv/riscv-p-spec
https://github.com/riscv/riscv-p-spec
https://github.com/riscv/riscv-v-spec
https://github.com/riscv/riscv-v-spec

BIBLIOGRAPHY 195

[124] V. Lefèvre, “Correctly rounded arbitrary-precision floating-point
summation,” IEEE Transactions on Computers, vol. 66, no. 12,
pp. 2111–2124, 2017.

[125] A. Anderson, S. Muralidharan, and D. Gregg, “Efficient multi-
byte floating point data formats using vectorization,” IEEE
Transactions on Computers, vol. 66, no. 12, pp. 2081–2096, 2017.

[126] M. Brandalero, L. Carro, A. C. S. Beck Filho, and M. Shafique,
“Multi-target adaptive reconfigurable acceleration for low-power
IoT processing,” IEEE Transactions on Computers, 2020.

[127] R. Prasad, S. Das, K. Martin, G. Tagliavini, P. Coussy, L. Benini,
and D. Rossi, “TRANSPIRE: An energy-efficient TRANSpre-
cision floating-point Programmable archItectuRE,” in Design,
Automation and Test in Europe Conference (DATE), 2020.

[128] “Arm helium technology,” https://www.arm.com/why-arm/
technologies/helium, 2020.

[129] “Arm cortex m55 processor,” https://www.arm.com/products/
silicon-ip-cpu/cortex-m/cortex-m55, 2020.

[130] N.-M. Ho and W.-F. Wong, “Exploiting half precision arithmetic
in Nvidia GPUs,” in High Performance Extreme Computing
Conference (HPEC), 2017 IEEE. IEEE, 2017, pp. 1–7.

[131] S. Eliuk, C. Upright, and A. Skjellum, “dMath: A scalable
linear algebra and math library for heterogeneous GP-GPU
architectures,” arXiv preprint arXiv:1604.01416, 2016.

[132] E. Azarkhish, D. Rossi, I. Loi, and L. Benini, “Neurostream:
Scalable and energy-efficient deep learning with smart memory
cubes,” IEEE Transactions on Parallel and Distributed Systems,
vol. 29, no. 2, pp. 420–434, 2017.

[133] F. Schuiki, M. Schaffner, F. K. Gürkaynak, and L. Benini, “A
scalable near-memory architecture for training deep neural net-
works on large in-memory datasets,” IEEE Transactions on
Computers, vol. 68, no. 4, pp. 484–497, 2018.

https://www.arm.com/why-arm/technologies/helium
https://www.arm.com/why-arm/technologies/helium
https://www.arm.com/products/silicon-ip-cpu/cortex-m/cortex-m55
https://www.arm.com/products/silicon-ip-cpu/cortex-m/cortex-m55

196 BIBLIOGRAPHY

[134] D. Bol, M. Schramme, L. Moreau, T. Haine, P. Xu, C. Frenkel,
R. Dekimpe, F. Stas, and D. Flandre, “A 40-to-80 MHz sub-4
µW/MHz ULV Cortex-M0 MCU SoC in 28nm FDSOI with du-
al-loop adaptive back-bias generator for 20 µs wake-up from deep
fully retentive sleep mode,” in 2019 IEEE International Solid-
State Circuits Conference-(ISSCC). IEEE, 2019, pp. 322–324.

[135] GreenWaves Technologies, “GreenWaves unveils groundbreak-
ing ultra-low power GAP9 IoT application processor for
the next wave of intelligence at the very edge,” https://
greenwaves-technologies.com/gap9_iot_application_processor,
2019.

[136] F. Zaruba and L. Benini, “The cost of application-class process-
ing: Energy and performance analysis of a Linux-ready 1.7-GHz
64-bit RISC-V core in 22-nm FDSOI technology,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 27,
no. 11, pp. 2629–2640, 2019.

[137] OpenHW Group, “CVA6 RISC-V CPU,” https://github.com/
openhwgroup/cva6, 2021.

[138] D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das, K. Baner-
jee, S. Avancha, D. T. Vooturi, N. Jammalamadaka, J. Huang,
H. Yuen et al., “A study of bfloat16 for deep learning training,”
arXiv preprint arXiv:1905.12322, 2019.

[139] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper
with convolutions,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 1–9.

[140] S. Shibahara et al., “A 16 nm FinFET heterogeneous nona-core
SoC supporting ISO26262 ASIL B standard,” IEEE JSSC, vol. 52,
no. 1, pp. 77–88, 2017.

[141] A. Zjajo, “Random process variation in deep-submicron CMOS,”
in Stochastic Process Variation in Deep-Submicron CMOS.
Springer, 2014, pp. 17–54.

https://greenwaves-technologies.com/gap9_iot_application_processor
https://greenwaves-technologies.com/gap9_iot_application_processor
https://github.com/openhwgroup/cva6
https://github.com/openhwgroup/cva6

BIBLIOGRAPHY 197

[142] Y. Lee, A. Waterman, H. Cook, B. Zimmer, B. Keller, A. Puggelli,
J. Kwak, R. Jevtic, S. Bailey, M. Blagojevic et al., “An agile
approach to building RISC-V microprocessors,” IEEE Micro,
vol. 36, no. 2, pp. 8–20, 2016.

[143] D. Rossi, A. Pullini, I. Loi, M. Gautschi, F. K. Gürkaynak,
A. Teman, J. Constantin, A. Burg, I. Miro-Panades, E. Beignè
et al., “Energy-efficient near-threshold parallel computing: The
PULPv2 cluster,” Ieee Micro, vol. 37, no. 5, pp. 20–31, 2017.

[144] PULP Platform, “Snitch System,” https://github.com/
pulp-platform/snitch, 2021.

[145] F. Schuiki, F. Zaruba, T. Hoefler, and L. Benini, “Stream seman-
tic registers: A lightweight RISC-V ISA extension achieving full
compute utilization in single-issue cores,” IEEE Transactions on
Computers, vol. 70, no. 2, pp. 212–227, 2020.

[146] M. Kovač, D. Reinhardt, O. Jesorsky, M. Traub, J.-M. Denis, and
P. Notton, “European processor initiative (EPI) – an approach
for a future automotive eHPC semiconductor platform,” in Elec-
tronic Components and Systems for Automotive Applications.
Springer, 2019, pp. 185–195.

[147] “European Processor Initiative,” https://www.
european-processor-initiative.eu, 2021.

[148] F. Zaruba, F. Schuiki, and L. Benini, “Manticore: A 4096-core
RISC-V chiplet architecture for ultra-efficient floating-point com-
puting,” IEEE Micro, 2020.

https://github.com/pulp-platform/snitch
https://github.com/pulp-platform/snitch
https://www.european-processor-initiative.eu
https://www.european-processor-initiative.eu

Curriculum Vitae

Stefan Mach was born on 26th September 1990 in Lucerne, Switzerland.
He received his BSc degree from ETH Zurich in 2014 and his MSc
degree from ETH Zurich in 2016. He joined the Integrated Systems
Laboratory of ETH Zurich as a Ph.D. candidate in 2016 under Prof.
Dr. Luca Benini’s supervision. His research interests include transpre-
cision computing, computer arithmetics, and energy-efficient processor
architectures.

199

	Acknowledgments
	Abstract
	Zusammenfassung
	1 Introduction
	1.1 Motivation
	1.2 Transprecision Computing
	1.3 Open-Source Instruction-Set Architecture
	1.4 Outline
	1.5 Contributions
	1.6 List of Publications

	2 Exploring Transprecision Computing
	2.1 Introduction
	2.2 Primer on Floating-Point Arithmetic
	2.2.1 IEEE 754 Floating-Point
	2.2.2 Considerations for FP in Hardware

	2.3 Extensions to the FP Type System
	2.3.1 Floating-Point Types And Programming Flow
	2.3.2 Transprecision Floating Point Unit Prototype
	2.3.3 Experimental Results
	2.3.4 Related Work

	2.4 Alternatives to FP Arithmetics: Unum
	2.4.1 Properties of Unums
	2.4.2 Considerations for Unum in Hardware

	2.5 Alternatives to FP Arithmetics: Posit
	2.5.1 Properties of Posits
	2.5.2 Considerations for Posit in Hardware

	2.6 Summary and Conclusion

	3 An Open-Source Transprecision FPU
	3.1 Introduction
	3.2 Architecture
	3.2.1 Requirements
	3.2.2 Building Blocks
	3.2.3 Configuration, Parametrization, and Usage

	3.3 Enabling FPnew in the RISC-V ISA
	3.3.1 FP Formats
	3.3.2 Operations
	3.3.3 Scalar Extensions
	3.3.4 Vectorial Extension
	3.3.5 Auxiliary Operations Extension
	3.3.6 Encoding
	3.3.7 Compiler Support

	3.4 Programming of TP Application Kernels
	3.4.1 Transprecision Application Case Study
	3.4.2 Compiler Support

	3.5 Related Work
	3.5.1 SIMD and TP in Commercial ISAs
	3.5.2 Open-Source Configurable FPU Blocks
	3.5.3 FPUs for RISC-V
	3.5.4 Novel Arithmetics / TP FP Accelerators
	3.5.5 Multi-Mode Arithmetic Blocks
	3.5.6 Other uses of our TP-FPU

	3.6 Summary and Conclusion

	4 Transprecision FP in the Embedded Domain
	4.1 Introduction
	4.2 Embedded SoC for Transprecision
	4.2.1 System Architecture
	4.2.2 SoC Implementation
	4.2.3 Benchmarking

	4.3 Augmenting RI5CY with FPnew
	4.3.1 Integration
	4.3.2 Implementation Results

	4.4 Embedded TP Cluster Architectures
	4.4.1 Architecture and Implementation
	4.4.2 Software Infrastructure
	4.4.3 Experimental Results
	4.4.4 Comparison with the SoA
	4.4.5 Related Work

	4.5 Notable Embedded Systems Using FPnew
	4.6 Summary and Conclusion

	5 Transprecision FP in the High-Performance Domain
	5.1 Introduction
	5.2 Application-Class TP Computing
	5.2.1 Integration
	5.2.2 Silicon Implementation
	5.2.3 Implementation Results
	5.2.4 Application Performance Study
	5.2.5 Comparison to the State of the Art

	5.3 Data Center Scale Embedded TP Computing
	5.3.1 Agile Transprecision Software Development
	5.3.2 XwattPilot Cloud System
	5.3.3 Implications for HP & Embedded Co-Execution

	5.4 Notable HP Class Systems Using FPnew
	5.4.1 Snitch
	5.4.2 Ara
	5.4.3 European Processor Initiative

	5.5 Summary and Conclusion

	6 Conclusions
	6.1 Main Results
	6.2 Outlook

	A Chip Gallery
	A.1 Treated in This Thesis
	A.2 Further Implementations of FPnew
	A.3 Miscellaneous ASICs

	B Acronyms
	Bibliography
	Curriculum Vitae

