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Land cover changes can affect the climate by altering the water and energy balance of the land surface. Numerous modeling
studies have indicated that alterations at the land surface can result in considerable changes in precipitation. Yet, land
cover-induced precipitation changes remain largely unconstrained by observations. Here we use an observation-based
continental-scale statistical model to show that forestation of rainfed agricultural land in Europe triggers substantial changes in
precipitation. Locally, we find an increase in precipitation following forestation, in particular in winter, which is supported by a
paired rain gauge analysis. In addition, forests are estimated to increase downwind precipitation in most regions during summer.
In contrast, the downwind effect in winter is positive in coastal areas but near-neutral and negative in Continental and Northern
Europe, respectively. The combined local and non-local effects of a realistic reforestation scenario, constrained by sustainability
safeguards, are estimated to increase summertime precipitation by 7.6±6.7 % on average over Europe (0.13±0.11 mm/day),
potentially offsetting a substantial part of the projected precipitation decrease from climate change. We therefore conclude that
land cover-induced alterations of precipitation should be considered when developing land management strategies for climate
change adaptation and mitigation.

Observations show that land cover changes (LCCs) alter local temperatures considerably through biogeophysical processes2–5.
Such observational constraints have enabled the evaluation of the land cover (LC)-temperature coupling in climate models6–10.
Alongside temperature, water availability is amongst the most important climate drivers for life on Earth. The high precipitation
amounts over tropical rainforests are partly sustained by the presence of the forests themselves11, 12. On the other hand,
precipitation can increase locally after clearing a forest patch in the Amazon13. Outside of the tropics, modeling studies suggest
that LCCs can trigger substantial changes in precipitation14, 15. However, such studies lack solid observational constraints at
regional to global scales, as little work has been conducted on estimating the LC-precipitation coupling in the mid-latitudes
based on observations16. This is likely owed to the difficulty of isolating such a signal. The distribution of a certain LC type
itself is often influenced by the precipitation climatology, by other factors (e.g., elevation) that in turn affect precipitation,
or systematic preferences for certain terrain types from human land use17. A further complication is that LC-precipitation
couplings do not necessarily occur at the location of the LC, but might also have an influence on precipitation further downwind.
Thus, they are difficult to observe especially in regions of heterogeneous LC, as in Europe.

In this study, we estimate the impact of converting rainfed agricultural land (ALr; including pasture) to forest on precipitation
over Europe. We focus on this LC conversion since it has been the dominant LCC over the last decades in many European
regions18–21 (Supplementary Fig. 1). An estimated 20 % of the European land area has undergone de-, re-, or afforestation
between 1900 and 1990 mainly in exchange for cropland and grassland20. In addition, reforestation has been proposed as a tool
to mitigate greenhouse gas emissions22, while potentially providing additional co-benefits for biodiversity23, soil protection23,
and the local climate2–4. For simplicity, we assume here that forestation corresponds only to the conversion of ALr to forest. We
acknowledge however that other forms of human land use, such as settlements, might also be suitable for forestation. Also, we
use forestation as a general term, not distinguishing between afforestation and reforestation. Due to the lack of constraints from
previous studies, we employ two independent methodologies to corroborate our results (Extended Data Fig. 1): (1) We search
for suitable closely-located rain gauge site pairs in the Global Sub-Daily Rainfall Dataset24 (GSDR) and Global Historical
Climatology Network25, 26 (GHCN), which differ in the ALr and forest fractions. Such an approach has previously been applied
to assess the effect of LC on temperature2, 27 and the surface energy budget28–30. (2) We statistically disaggregate the monthly
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precipitation climatology over 1986 to 2015 from MSWEP v2.231 (Multi-Source Weighted-Ensemble Precipitation version 2.2;
Supplementary Fig. 7) with a Generalized Additive Model (GAM) to infer the contribution of LC on the spatial distribution of
precipitation (Extended Data Table 1). Statistical models were successfully used as a tool to assess both local32 and remote33

temperature changes induced by LCC. For the GAM presented here, we consider topographic effects, which strongly modulate
the spatial distribution of precipitation34, by including a number of topographic metrics as predictors (Supplementary Fig. 3).
The ERA5-Land 2 m temperature climatology35 serves as an indicator for climatic conditions, as the amount of precipitation
varies considerably across climate zones. Further, the atmospheric circulation is an important driver of the spatial distribution
of precipitation36 and is therefore represented in the GAM by various metrics based on ERA5 air parcel trajectories37. Finally,
we employ the CORINE LC data38 as predictors in the GAM to examine the relation between LC and precipitation. Alongside
the local LC, we consider the upwind LC fractions, calculated from the backwards ERA5 air parcel trajectories (Extended Data
Fig. 2). Therefore, we can not only isolate the local effect of forestation but also its downwind effect.

Local effect of land cover on precipitation in site pairs
Among the 3481 rain gauge stations of GSDR and the 2376 stations of GHCN included in our analysis (Extended Data Fig. 3),
we find a total of 1512 station pairs that differ at least by 20 % in the ALr and forest LC fractions according to the CORINE LC
data at 0.1◦ resolution and fulfill the additional selection criteria defined to mitigate the influence of potential confounding
factors. Here, we focus on five clusters of station pairs, as approximately 100 sites pairs are required for a robust signal (Fig. 1
a). Precipitation is significantly higher at the sites dominated by forests in all regions, despite a considerable spread among
individual station pairs, with the exception of Region 5 from April to July (green bars in Figs. 1 b, d and Extended Data Fig. 4).
A stronger signal appears during the winter months, while the summer signal tends to be only slightly positive. Further, the
precipitation differences between the sites with more forest minus the site with more ALr (∆Ploc) is more pronounced under the
oceanic climate of Regions 1 and 2 and decreases in strength as the regions become more continental. In relative terms, the
median ∆Ploc correspond to 5-15 % and 0-10 % of the total precipitation during winter and summer, respectively (Extended
Data Fig. 5).

In order to infer the relationship between forestation and precipitation in a spatially-explicit way across Europe, we use
a GAM, which we first validate here at the site pairs. The ∆Ploc predicted by the GAM at the site pairs has a smaller spread
than the one of the rain gauge pairs but gives a similar result for the magnitude and seasonality of the median ∆Ploc over the
five regions, supported by an index of agreement (IA)39 of 0.80 (red/’all forcings’ in Fig. 1 b-d and Extended Data Fig. 4). To
ensure that the observed ∆Ploc does not originate from systematic differences in variables other than the local ALr and forest
LC fractions, we make a second GAM prediction, using the forcing data from the first station for all predictors at both sites
except for these two LC fractions (orange/’LC only’ in Fig. 1 b-d and Extended Data Fig. 4). While the signal in this GAM
prediction is somewhat weaker in all regions, it shows a similar pattern as the paired sites (IA of 0.61), indicating that most of
the precipitation difference at the site pairs can be explained by the difference in the ALr and forest LC fractions. For a second
confirmation, we fitted another GAM without the LC-related predictors to the MSWEP precipitation climatology. Reassuringly,
the precipitation difference predicted by this GAM for the site pairs captures only a small fraction of the signal from the site
pairs (blue/’no LC’ in Fig. 1 b-d and Extended Data Fig. 4, IA of 0.052).

Theoretical effect of uniform forestation on precipitation
We employ the GAM that was evaluated in the previous section to estimate the effect of a 20 % increase in forest cover uniformly
across Europe, with the exception of Northern Scandinavia, where no agricultural land is available for forestation (Extended
Data Fig. 6). Locally, such a forestation increases precipitation in almost all locations with a mean of 0.087 mm/day across
the area that is reforested (Fig. 2 c). ∆Ploc is more positive during winter (mean of 0.13 mm/day) and tends to be stronger at
locations close to the coast (Fig. 2 a). During the summer months, precipitation locally increases only weakly or even decreases
slightly due to forestation (Fig. 2 b, mean of 0.043 mm/day). Besides the overall local increase in precipitation associated with
forestation, we find substantial downwind effects from this LCC on precipitation (∆Pdw). Foresting 20 % of the land surface
decreases winter downwind precipitation over Northern Europe, exhibits a weak signal in Central and Eastern Europe, and
increases precipitation in coastal areas of Western and Southern Europe (Fig. 2 d, mean of 0.043 mm/day). On the other hand,
the GAM predicts a downwind increase due to forestation in summer precipitation over most of Europe (Fig. 2 e, mean of
0.17 mm/day). The ∆Pdw during winter originates mostly from forestation in regions close to the coast, while the relevance of
forestation in continental regions for downwind precipitation is confined to the summer season (Supplement A).
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Figure 1. Local precipitation difference between forest and agricultural land at site pairs. Panel a, locations of the site
pairs in GSDR (purple) and GHCN (orange). To the right the median (black line), interquartile range (colored shading), and
range between 10th and 90th percentile (grey shading) of the monthly precipitation difference between the site with more forest
coverage minus the site with more rainfed agricultural land (∆Ploc) over all site pairs (b) and Region 3 (d), which exhibits an
intermediate signal strength (other regions are shown in Extended Data Fig. 4). Bars correspond to distribution amongst the site
pairs in the rain gauge data sets (green), the generalized additive model (GAM) prediction using all the forcings at the
individual stations (red), the contribution to ∆Ploc in the GAM from the differences in the local rainfed agricultural land and
forest fractions (orange), and prediction of a GAM that was fitted without the land cover (LC) information (blue). Colored
circles indicate samples which are significantly different from zero in a t-test and diamonds GAM prediction samples which are
significantly different from the sample of the site pairs in a Welch’s t-test both at 5 % confidence level. N is number of site pairs
and ∆Fr median difference in forest/rainfed agricultural land fraction among site pairs used to estimate the contribution from
those LCs in the GAM. Panel c shows monthly medians of ∆Ploc over the five regions in the site pairs against monthly medians
of the all-forcing GAM (red), LC only GAM (orange), no LC GAM (blue), and medians of LC only GAM plus medians of no
LC GAM (purple). R denotes Pearson correlation coefficient and λ the index of agreement.
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Figure 2. Theoretical precipitation change from foresting 20 % of the land surface across Europe. Estimated local
(a-c) and downwind precipitation change (d-f) after foresting 20 % of the land surface in the entire study domain. Stippling
depicts areas that were not forested in the respective scenario. Top row boreal winter (DJF), middle row boreal summer (JJA),
and bottom row annual mean.
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Table 1. Area-weighted average plus/minus area-weighted mean absolute deviation from average of relative precipitation
change under RCP4.5 (Fig. 4 a, d), following forestation (Fig. 4 b, e), and sum of the two (Fig. 4 c, f) over biogeographical
regions (Fig. 3 k). Columns 2-4 boreal winter (DJF) and columns 5-7 boreal summer (JJA). In bold numbers of forestation that
reduce the climate change signal. Sheet1

Page 1

ΔP ± MAD [%] DJF JJA

Region RCP 4.5 Forestation Sum RCP 4.5 Forestation Sum

Mediterranean -0.19 ± 4.9 23 ± 9.7 23 ± 11 -19 ± 3.7 19 ± 8.9 -0.63 ± 9.1

Atlantic 6.3 ± 2.3 16 ± 11 23 ± 11 -8.7 ± 6.0 5.7 ± 7.7

Alpine 7.4 ± 4.0 6.7 ± 5.6 3.2 ± 9.9 1.7 ± 2.5 4.9 ± 11

Continental 7.9 ± 3.2 6.9 ± 10 -6.0 ± 5.2 4.8 ± 3.6 -1.2 ± 6.4

Boreal 11 ± 2.2 8.6 ± 4.5 7.6 ± 3.1 2.9 ± 3.3 11 ± 5.1

14 ± 5.6

-0.79 ± 4.2

-1.0 ± 9.3

-2.1 ± 4.1

Implications for a realistic forestation scenario
The forestation scenarios presented so far were stylized and might not be applicable in all regions of Europe. Therefore, we
estimate the changes in precipitation if the reforestation potential according to the Global Reforestation Potential Map22, 40 was
realized. This map was constrained by safeguards for food and fiber security, biodiversity, and against adverse biogeophysical
temperature effects2–4. In total, 14.4 % of the land surface in the study domain is suitable for forestation, with concentrations
over the British Isles, western and southern France, Portugal, Italy, and Eastern Europe (Fig. 3 j). The ∆Ploc due to this scenario
often exceeds 0.1 mm/day during winter, while the summer signal rarely exceeds this value except for the British Isles. Addi-
tionally, this forestation scenario triggers substantial non-local changes in the precipitation field (Fig. 3 d-f). These downwind
effects reach regions with no significant forestation potential, such as Scandinavia, where reforestation was prohibited due to the
local biogeophysical warming effect of forests in those areas22, 40. Adding the two contributions up, precipitation is increased
by 0.14 mm/day in winter, 0.13 mm/day in summer, and 0.16 mm/day for the annual mean averaged over the continent. The
precipitation change amounts to more than 10 % of the annual mean precipitation for 27 % of the European area (Fig. 3 l).

The precipitation changes induced by realistic forestation have the potential to compensate part of the climate change
signal, as estimated by ten EUR-11 ensemble members (Fig. 4 and Table 1). During summer, realistic forestation is estimated
to alleviate the precipitation decreases under RCP4.5 in the Mediterranean, Atlantic, and the Continental biogeographical
regions (Fig. 3 k) and to compensate a considerable fraction of the precipitation signal under RCP8.5 (Supplementary Fig. 4 and
Supplementary Table 1). Therefore, forestation could play a crucial role in adapting to the increased risks of summer droughts
due to climate change41. Further, forestation is estimated to attenuate the wintertime precipitation increase in the Boreal region
and even overcompensate the precipitation reduction in the Mediterranean (Fig. 3 k). On the other hand, it could also have
potentially adverse effects by further intensifying climate change-induced precipitation increases in the Atlantic region. It needs
to be noted that the forestation-induced precipitation changes presented here are determined under recent climatic conditions
and may be altered under a warmer climate. Also, the EUR-11 ensemble exhibits substantial (mostly positive) biases in the
simulated precipitation distribution of the recent past42, 43, which could also affect the estimated precipitation changes due to
climate change.

Physical drivers and potential caveats
Here, we provide a first observational estimate of forestation-induced changes in precipitation over Europe. Therefore, it is
difficult to assess the robustness of our estimate with previous studies. Forest differs in several biogeophysical characteristics
from agricultural land, which can explain the identified precipitation changes. Firstly, forests typically have a higher surface
roughness than agricultural land. We hypothesize that this might alter the local precipitation amount by inducing more
turbulence and slowing movement of precipitating air masses. The increased surface roughness over urban areas has been
identified as an important contributor to the amplification of precipitation over cities and downwind of cities44. Similarly, the
high surface roughness of forests was an important contributor to the precipitation increase from afforestation in the Sahel region
in a model experiment14. Further supporting this hypothesis, we find that higher wind speeds, as an anti-correlated proxy for the
surface roughness, are associated with lower precipitation in particular during winter (Fig. B1 and Supplement B). The surface
roughness has also implications for ∆Pdw. A decreased number of cyclones was found following large-scale reforestation of
Europe in a regional climate model, mainly due to the high surface roughness of forests15. Especially forests close to the coast
might therefore hinder the propagation of frontal systems into the interior of the continent. As cyclones contribute more to the

5/20



a
d

g

b c
fe

DJF JJA Average

h i

k

L
o
ca
l

D
o
w
n
w
in
d

S
u
m

lj

Fi
gu

re
3.

Po
te

nt
ia

lp
re

ci
pi

ta
tio

n
ch

an
ge

fr
om

re
al

is
tic

fo
re

st
at

io
n.

E
st

im
at

ed
lo

ca
l(

a-
c)

,d
ow

nw
in

d
(d

-f
),

an
d

to
ta

lp
re

ci
pi

ta
tio

n
ch

an
ge

(g
-i

)a
ss

oc
ia

te
d

w
ith

fo
re

st
at

io
n

in
pa

ne
lj

.T
op

ro
w

bo
re

al
w

in
te

r(
D

JF
),

m
id

dl
e

ro
w

bo
re

al
su

m
m

er
(J

JA
),

an
d

bo
tto

m
ro

w
an

nu
al

m
ea

n.
Pa

ne
lk

sh
ow

s
bi

og
eo

gr
ap

hi
ca

lr
eg

io
ns

ov
er

w
hi

ch
av

er
ag

es
ar

e
ca

lc
ul

at
ed

in
Ta

bl
e.

1
an

d
pa

ne
ll

th
e

pr
ec

ip
ita

tio
n

ch
an

ge
in

pa
ne

li
as

a
fr

ac
tio

n
of

th
e

an
nu

al
m

ea
n

pr
ec

ip
ita

tio
n.

6/20



a b

d e

D
JF

JJ
A

RCP4.5 Forestation Sum
c

f

Figure 4. Comparison of precipitation changes from climate change and forestation. Change in precipitation in EUR-11
multi model ensemble under RCP4.5 scenario between 1986-2015 and 2071-2100 relative to modeled precipitation climatology
of 1986-2015 (a, d), estimated precipitation changes due to realistic forestation scenario relative to precipitation climatology of
1986-2015 in MSWEP (b, e), and sum of the two (c, f). Top row boreal winter (DJF) and bottom row boreal summer (JJA).

total precipitation during winter than during summer45, 46, this can explain why forestation leads to a downwind increase of
precipitation in areas close to the coast during winter, while the signal is neutral in Central and Western Europe and even negative
in Northern Europe. Indeed, forestation is estimated to decrease the propagation speed of the calculated wind trajectories further
away from the coasts, leading to a reduction of the rainfall amount (Supplement B). Secondly, observations indicate that forests
typically sustain higher evapotranspiration than ALr in particular during the summer season3, 4, 47. We hypothesize that this is an
important driver behind the downwind summertime precipitation increase from forestation in most locations of Europe, which
is supported by applying a moisture source diagnostic to the wind trajectories used in this study (Supplement C). Higher evapo-
transpiration of forests was also linked to increased precipitation in the tropics11, 12 and the Sahel region14. Thirdly, forestation
warms the land surface during winter but cools it during summer3, 4, 47. This could explain the seasonal cycle of the local signal
we observe, as warmer temperatures at the land surface destabilize the planetary boundary layer, thereby favoring the creation
of precipitation. In fact, the urban heat island effect was linked to locally increased precipitation44. Overall, future sensitivity
experiments with models could provide a valuable contribution to understand the processes underlying the signals observed here.

Despite the fact that our results are consistent with the current understanding of mechanisms at play, a number of po-
tential caveats in the analysis should be highlighted. Our results are based on a spatial rather than a temporal comparison
of the precipitation amount over different LCs. In consequence, the observed ∆Ploc can be the result of a spatial redistribu-
tion of precipitation rather than an alteration of the overall amount of precipitation, which would imply that the estimated
∆Ploc is not directly attributable to the effect of forestation at larger scales. Further, causality is inherently uncertain in
such observation-based approaches. By choosing precipitation as a response variable and LC as a predictor, we implicitly
assume that the latter influences the former. In reality, the distribution of the different LC types may also be influenced
by precipitation amounts. However, the results of the site pair analysis are robust against the stringency of the selection
criteria (Supplement D and Fig. D1). As for the GAM analysis, the influence of potential confounding factors is minimized
by including them as predictors. While the two estimates of ∆Ploc based on different data sets and methodologies show
good agreement, they are not fully independent, as MSWEP v2.2 incorporates rain gauge measurements besides reanalysis
products and remote sensing data sets. Hence, we cannot exclude that systematic biases in the rain gauge measurements
translate to the GAM analysis. The undercatch of rain gauges measurements is exacerbated by high wind speeds48. As
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forests typically have a higher surface roughness than ALr, lower surface wind speeds occur at the sites in regions with
more forest (Supplement B). This could result in weaker undercatch at those sites compared to the sites with more ALr in
their proximity. Further, the ∆Ploc in the GAM could not be evaluated in the southern half of Europe, due to the scarcity
of rain gauge data in those areas. Thus, the compensatory effect of forestation on the projected reduction of precipitation
due to climate change in Southern Europe is prone to larger uncertainties than the precipitation changes from forestation in
other regions (Note however that the GAM exhibits a similar signal as the rain gauge data over the Iberian Peninsula with
relaxed selection criteria; Extended Data Fig. 7). Uncertainties are larger for ∆Pdw, for which we rely solely on the GAM.
Overall, our results are consistent with observations in the tropics11 and modeling studies12, 15. Nevertheless, the estimated
downwind effect of forestation is sensitive to both the construction of the GAM and the starting heights of the wind trajectory
calculation, although qualitatively robust (Fig. E2 and Supplement E). We therefore encourage a more thorough analysis of ∆Pdw.

Overall, our results imply that forestation could trigger substantial changes in precipitation over Europe. Forestation-induced
precipitation changes appear to be subject to spatial trade-offs due to downwind effects. While we find a local increase in
precipitation due to forestation across Europe, forestation might reduce precipitation further downwind in winter. On the
other hand, forestation increases precipitation downwind in summer, likely due to higher moisture supply by forests than
by ALr. This downwind enhancement of precipitation might come at the cost of a local reduction of runoff49, 50, adding yet
another dimension to the spatial interconnections. Overall, our results highlight that LCCs, such as forestation, can alter
precipitation in the mid-latitudes considerably, both locally and further downwind. Hence, the consequences of human land-use
for water availability should be considered alongside biogeochemical effects and the biogeophysical alteration of temperatures.
As droughts are projected to become more severe with changing climate in Europe41, the interplay between LC and water
availability deserves more attention.
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Methods
Extended Data Fig. 1 provides an overview of the overall procedure and how the various datasets (Supplementary Table 2) and
analysis steps are connected. Supplementary Table 3 shows all abbreviations used.

Gridded data
We employ a number of gridded data sets, which are used for two purposes: (1) They serve as criteria to find suitable site
pairs in the GSDR and GHCN data. (2) They are used as response variables and predictors for the GAM. All the data are used
at a regular 0.1◦ grid, which is the native resolution of the MSWEP data set. The study domain of the GAM is confined to
the coverage of the CORINE LC data. Turkey was removed from the analysis, since it is surrounded by areas not covered by
CORINE, which hampers the calculation of the upwind LC fractions.
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Precipitation fields
We use the monthly precipitation climatologies from MSWEP v2.2 over the period 1986-2015 as the response variable to
train the GAMs. This data set is the latest version of the Multi-Source Weighted-Ensemble Precipitation data set31. For
simplicity we refer to it as MSWEP. It is available globally at 0.1◦ spatial and 3-hourly temporal resolution. As indicated by its
name, multiple rain gauge data sets, remote sensing products, and reanalysis products were used to create MSWEP50. This
data set systematically outperforms other gridded precipitation data sets when evaluated with rain gauge data and streamflow
measurements51 as well as radar measurements52. We calculate monthly precipitation climatologies from MSWEP over the
period 1986-2015 (Supplementary Fig. 2).

Topography
Topography plays a crucial role in the spatial distribution of precipitation34, 36, 53. We use the Digital Elevation Model over
Europe version 1.1 (EU-DEM v1.1)54 to derive a number of relevant metrics. First, we compute the mean elevation at 0.1◦

from the original 30 m resolution. Besides, we calculate the slope, exposition of the slope, the Topographic Position Index
(TPI), and the Terrain Ruggedness Index (TRI) using the gdaldem tool of the Geospatial Data Abstraction software Library
2019 (GDAL, Supplementary Fig. 3). The TPI describes the elevation of a point in comparison to the surrounding areas. It is
defined as the elevation difference between the focal grid cell and the mean of the eight surrounding grid cells. The TRI is a
measure of terrain variability and calculated as the mean of the absolute elevation differences between the focal grid cell and
the eight adjacent grid cells. The exposition of the slope and the TPI are calculated from the 0.1◦ elevation data, whereas the
slope and TRI are computed at the original resolution of EU-DEM and than averaged over the 0.1◦ grid.

Land cover information
For the LC information, we regrid the CORINE Land Cover (CLC) data from the year 2000 at 100 m resolution to 0.1◦

resolution38. The original 44 LC classes are aggregated to the classes artificial surfaces, agricultural land, forest, shrubland,
natural low vegetation, bare soil, wetland, and open water according to Supplementary Table 4. Further, we differentiate
irrigated agricultural land using the Global Map of Irrigation Areas version 5 (GMIA5)55, because irrigation itself can trigger
substantial modifications of the precipitation distribution56, 57. The fraction of irrigated agricultural land in a grid cell from
GMIA5 is used, unless it exceeds the fraction of agricultural land in CLC. In this case, it is set to the fraction of agricultural
land in CLC, to assure the fraction of irrigated agricultural land does not exceed the total fraction of agricultural land in CLC
(Supplementary Fig. 5). The remainder of the agricultural land in CLC is then attributed to ALr.

Trajectory-based fields
The spatial distribution of precipitation is not only affected by the properties of the land surface at a given location, but also the
atmospheric motion prior to reaching this location. In particular the distance to the coast along the path of atmospheric motion
is an important driver of how much moisture is available for precipitation36, as the oceans are the most important moisture
source. To account for the relationship between the atmospheric circulation and precipitation, we use the Lagrangian analysis
tool (LAGRANTO) based on hourly ERA5 reanalysis data37, 58. Every six hours between January 1986 and December 2015,
we calculate two kinematic trajectories five days backward in time for all land grid cells where the precipitation exceeded
1 mm/hr. We choose the two pressure levels that have produced most precipitation in the ERA5 data as starting heights, where
the precipitation production at a specific level was calculated from the volumetric rain and snow water content of this level
minus the volumetric rain and snow water content of the level above (Supplementary Fig. 6). The calculations are done in time
steps of 10 min using hourly ERA5 wind field data at 0.5◦ resolution. Lagranto enables to track the position of the air parcel,
the specific humidity, the land-sea mask, the elevation of the surface, and precipitation at the surface of ERA5, as well as the
LC fractions from CLC. In the post-processing, we follow the trajectories backwards in time until the coast to determine the
distance of the final precipitation event to the coast along the trajectory (uw_cd), the time it took to reach the coast (uw_ct),
and the elevation difference between the highest topographic point the airmass surmounted on its path from the coast and the
end point (uw_hd; Extended Data Fig. 2 d and e). In addition, we compute the average fraction of each LC class the airmass
overpassed during the previous five days, which are called upwind LC fractions here (uw_pct_LCi; Extended Data Fig. 2 a-c).
In the calculation of the upwind LC fractions we stop tracking the trajectory if the specific humidity of the parcel falls below
0.05 g/kg or if a land point is reached according to the ERA5 land-sea mask that is outside of the CLC domain. Collecting all
trajectories for a given location and month, we then compute the median value for each of those metrics to retrieve the predictor
fields for the GAMs. Using a similar approach, we calculate the median of the elevation difference between highest topographic
point the airmass surmounted during the day following the precipitation event and the point where the precipitation occurred
(dw_hd; Extended Data Fig. 2 f).

2 m Temperature
Finally, we use the ERA5-Land monthly 2 m temperature climatology from 1986-2015 as a predictor in the GAM, which is
available at the required 0.1◦ resolution35.
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Site pair analysis
For the paired rain gauge station analysis we employ the GSDR data set24 of the following countries: Belgium, Spain
(Catalonia), Finland, Germany, Ireland, Italy, Norway, Portugal, Switzerland, and the UK. In addition, we include the data from
the Integrated Surface Database59, which is not country specific. GSDR has been extensively quality controlled for common
mechanical, recording, and storage errors in rainfall data as well as being checked against neighboring gauges60. The station
data are aggregated from the original hourly to a three-hourly resolution to match with the temporal resolution of MSWEP. We
exclude stations with more than 50 % missing data arriving at a total of 3481 stations in the study domain. Besides GSDR, we
also employ the GHCN-Daily v3.2025, 26 rain gauge collection, which is available at daily resolution and has 2376 stations with
less than 50 % missing days available in the study domain (Extended Data Fig. 3). Given the differing temporal resolution
and quality checks of the two data sets, we only look for site pairs within one data set. Further, we neglect any measured data
prior to 1986. For all of these stations we extract the values of the gridded data sets at the respective location to check for the
following criteria to find station pairs: (1) The first site has at least 20 % more forest coverage and at least 20 % less coverage
by ALr than the second site according to the CLC data. Note that the site comparison does not correspond to a pure local
comparison, but rather to a comparison of having 20 % more/less of ALr/forest within a grid cell of roughly 11 km by 7 km. The
isolated signal does therefore not only include the effect of foresting one specific location but also the effect of foresting areas in
close proximity. (2) The sum of the ALr and forest fractions is at least 50 % at each site. (3) The great-circle distance between
the two sites is less than 0.75◦ corresponding to 83.5 km. (4) They have at least three overlapping years of measurements. (5)
They differ less than 25 m in altitude, 5◦ in slope, 3 m in TRI, 20 % in the open water fraction, 20 % in the upwind open water
fraction, and 0.25◦ in the annual mean uw_cd. For each station in a pair, we then calculate the monthly rainfall climatology
considering only times during which both stations have collected data. As an additional quality check, we discard station
pairs that had a smaller sample size than 400 and 50 for any month in GSDR and GHCN, respectively (corresponding to 50
measurement days). An analysis of the sensitivity of the site pair analysis on the selection criteria is presented in Supplement D.

GAM construction
GAMs express the expected value, E, of a response variable, Yi, as the sum of a number of smooth functions61:

g(E(Yi)) = f1(x1i)+ f2(x2i)+ f3(x3i,x4i)+ ... (1)

, where g is a link function, f j are the smooth functions, and xk are different predictor variables. GAMs possess a number of
features that are advantageous for our analysis: (1) The smooth functions allow to empirically capture non-linear relations
between the predictor and the response variables without a prior assumption regarding the shape of this relation. (2) The smooth
functions can depend on several predictor variables. (3) The additive structure of GAMs makes them readily interpretable. (4)
The smooth functions are penalized for their ’wiggliness’, which prevents overfitting of the model. In this case, the response
variable is the monthly precipitation climatology of MSWEP, which is assumed to follow a gamma distribution, g is the
natural logarithm, and the f j terms are summarized in Extended Data Table 1. The logarithmic link function was chosen to
avoid harming the assumption of constant variance of residuals. Precipitation changes from forestation are estimated in a
spatially-explicit way with our GAM, by including interaction terms between the LC fractions and other spatially-varying
variables (’prox_LCi, t2m, alt’ and ’uw_pct_LCi, t2m, uw_ct’ smooths) and by directly including interaction terms of the LC
fractions with the spatial dimensions (’prox_LCi, lat, lon’ and ’uw_pct_LCi, lat, lon’ smooths).

We employ the extensive R package Mixed GAM Computation Vehicle with Automatic Smoothness Estimation (’mgcv’)61, 62

to construct a GAM for each month of the MSWEP precipitation climatology. To shorten computation times, the model is fitted
with the ’bam’ function, which is numerically optimized for large datasets, using the fast restricted maximum likelihood method
(fREML) to estimate the smoothing parameters (if not specified) and discretization of covariate values, which increases the
computational efficiency of the fREML method63, 64. We use thin plate regression splines (’s’ smooths) for the one-dimensional
terms, which are invariant in space and therefore called global terms here, and tensor product smooths (’ti’ smooths) for the
multi-dimensional terms, which are suitable if other terms using the respective predictors are used (Supplementary Fig. 7). To
avoid unrealistically noisy results, the smoothing parameters were chosen manually for the multi-dimensional terms. For the
local effect of LC, we also account for proximity effects by computing proximity LC fractions giving a third weight to the
central grid cell and a sixth weight to each of the four grid cells that share an edge with the central grid cell (prox_LCi).

Performance assessment of GAM
Across all months, the GAM achieves an adjusted R2 of 0.93, a RMSE of 0.30 mm/day, and an index of agreement39 of 0.96.
Overall, the residuals still show some spatial correlation up to a distance of approximately 1.5◦, which we accept in order to not
have to over-fit the precipitation field with the purely spatial term (Supplementary Figs. 8 and 9). The GAM slightly deteriorates
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the agreement with the precipitation climatologies at the rain gauges compared to the original MSWEP data (Supplementary
Fig. 10). However, considerable differences are already present between the rain gauges and MSWEP, likely owed to the
different spatial and temporal scales of these data sets. These differences are not systematic however. The significance of
the individual smooths was tested in a type III ANOVA, using the ’mgcv’ function ’anova’. Overall, all the smooths remain
highly significant throughout the year, with a few exceptions mostly for interactions terms of some variables with latitude and
longitude (Extended Data Table 1). Note however, that the significance of the terms is likely to be slightly overestimated due to
the spatial auto-correlation of the residuals65.

To compare the results of the GAM with the site pairs, we make a GAM prediction extracting the forcing data from each
individual site in a site pair. Due to the differing spatial scales of the rain gauge data (point scale) and the MSWEP data (0.1◦

grid), we use the local CLC fractions at the sites (within 0.1◦ grid cell) as the proximity when conducting the GAM prediction.
Besides this, we make a second GAM prediction, using only the local CLC ALr and forest LC information from the individual
sites, but setting all other predictor variables to the values at the location of the site with more forest coverage (Site 1) at both
sites. The ALr and forest LC fractions at the second site are computed as follows to ensure the LC fractions still add up to
100 %:

∆Fr = min(pct f or1,100− pctagr1,mean(pct f or1 − pct f or2, pctagr2 − pctagr1)),

pct∗agr1 = pctagr1 +∆Fr, pct∗f or1 = pct f or1 −∆Fr
(2)

, where pct f or1 and pctagr1 are the fraction forest and fraction ALr at the site with more forest, pct f or2 and pctagr2 the respective
fractions at the site with less forest, ∆Fr the imposed LCC, and pct∗agr1 and pct∗f or1 the new fractions of ALr and forest to
compute the contribution from the differences in those two LCs. A GAM prediction at Site 1 with these updated LC fractions
is then subtracted from the original prediction at Site 1 to isolate the actual contribution from the differences in the ALr and
forest fractions, while excluding contributions from other factors, such as elevation. To further corroborate our results, we fit a
GAM without the local LC fractions as predictors (blue terms in Extended Data Table 1). Note that the linear fits in Fig. 1,
Extended Data Fig. 7, and Supplementary Fig. 10 are produced with the Matlab function ’fitlm’ using the option ’RobustOpts’
to be less affected by outliers when fitting. A discussion on the sensitivity of the GAM results on its structure is provided in
Supplement E.

Estimating the theoretical effect of forestation on precipitation
When estimating the forestation-induced precipitation change, we confine ourselves to foresting 20 % of the land surface, to (1)
ensure the imposed LCC is of realistic magnitude and (2) prevent moving outside of the boundaries of the predictor space for
the ALr and forest LC fractions. Further, the GAM estimate of ∆Ploc was evaluated for foresting 20 % of the land surface with
the site pair analysis. We determine the local effect of foresting 20 % of the land using one LC map with 10 % more forest and
10 % less ALr and a second LC map with 10 % less forest and 10 % more ALr relative to CLC. When creating these maps, we
prevent LC fractions from falling below 0 % or above 100 %. In case it is impossible to convert 10 % of the land surface in one
direction, we allow for more than 10 % conversion in the other direction up to a total conversion of 20 %:

∆LCtot = min(20%, proxagr + prox f or), ∆LC1 = min(proxagr,max(10%,∆LCtot − prox f or)),

and ∆LC2 = min(prox f or,max(10%,∆LCtot − proxagr))
(3)

, where proxagr and prox f or are the proximities ALr and forest in the CLC, ∆LCtot is the total LCC between the map with more
forest cover and the map with more ALr, and ∆LC1 and ∆LC2 are the imposed changes in the ALr and forest fraction for the
forested map and the deforested map, respectively. ∆LC1 is than added to the forest fraction and subtracted from the fraction of
ALr to create the forested LC map (LC1), while the opposite is done with ∆LC2 to create the deforested map (LC2). To avoid
the estimation of the forestation effect in regions with no ALr available for forestation in Scandinavia, we prevent forestation at
grid cells where the average fraction of ALr within a moving window of 3.1◦ is below 8 %. With this procedure, it is possible to
achieve 20 % forestation almost everywhere in Europe (Extended Data Fig. 6 a). Then, we predict precipitation with each of the
two new LC maps (Ppred(LC1) and Ppred(LC2)) and calculate the difference of the two predictions to estimate the local change
in precipitation due to foresting 20 % of the land surface:

∆Ploc = Ppred(LC1)−Ppred(LC2) (4)
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Using the same procedure, we calculate the upwind LC fractions if the land was transformed according to the mentioned rules
when processing the wind trajectories (Extended Data Fig. 6 b and c; uw_pct_LCi(LC1) and uw_pct_LCi(LC2)). Again, the
two GAM predictions for each of the resulting upwind LC fractions are subtracted to determine ∆Pdw:

∆Pdw = Ppred(uw_pct_LCi(LC1))−Ppred(uw_pct_LCi(LC2)) (5)

Realistic forestation scenario
Finally, we estimate the precipitation change of reforesting Europe according to the World Reforestation Potential Map40

(WRPM), which estimates the reforestation potential relative to the LC state from 2000-2009. Starting from the original binary
map indicating whether a location is suitable for reforestation at 0.0083◦ resolution, we calculate the area fraction which is
suitable for reforestation at 0.1◦ resolution. This fraction we then add to the forest and subtract from the ALr fractions of CLC,
again making sure the ALr cover fraction does not fall below 0 % and the forest fraction does not exceed 100 %. The estimate
of the precipitation change due to this reforestation scenario then amounts to the difference of a GAM prediction with the
forested local and upwind LC fractions minus a GAM prediction with local and upwind LC fractions according to CLC.

Comparison to climate change signal
The EURO-CORDEX EUR-11 regional climate simulations, used for comparison to the climate change signal, stem from the
CH2018 collection66. EURO-CORDEX simulations at 0.44◦ resolution are excluded from the analysis, since they generally
represent present day precipitation fields worse than the ensemble at 0.11◦ resolution67. Compared to the original EUR-11
ensemble68, some simulations were removed in CH2018 following quality checks. We use data from nine different RCM/GCM
combinations with a total of ten available ensemble members at 0.11◦ resolution for the RCP4.5 and RCP8.5 scenarios to
calculate multi-model mean precipitation climatologies for the periods 1986-2015 and 2071-2100 (Supplementary Table 5, note
that MPI-CSC-REMO2009/MPI-M-MPI-ESM-LR provides two ensemble members). The original data on a rotated grid were
interpolated to a regular 0.1◦ grid using distance-weighted remapping of CDO. Then, we compute the area-weighted change in
precipitation between 2071-2100 and 1986-2015 over five aggregated biogeographical regions compared to the climatology of
1986-2015. For the realistic forestation scenario, we compute the precipitation changes from this scenario compared to the
MSWEP precipitation climatology of 1986-2015.
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Extended Data Figures and Tables

CORINE
Land 
Cover

CORINE
Land 
Cover

CORINE
Land 
Cover
pct_LCi

CLC GMIA5EU-DEM

GDAL

alt, slope, 
expo, TPI, 

TRI

ERA5

Lagranto

Trajectories

uw_pct_LCiuw_pct_LCiuw_pct_LCiuw_pct_LCi

uw_hd, 
dw_hd, 
uw_cd, 
uw_ct

ERA5-Land

t2m

MSWEP R/mgcv

Predictor variables

Full GAM

No LC GAM

Check performance

GSDR

GHCN

Site pair 
results

Selection criteria
Check agreement, contribution
from forestation

Contribution of other factors

Local and
remote effect

of realistic
forestation

Local and
remote effect
of idealized
forestation

WRPM

Idealized
reforested

pct_LCi, 

uw_pct_LCi

Realistic
reforested

pct_LCi, 

uw_pct_LCi

Recalculate upwind LC fractions

CH2018
Comparison to CC

Legend

Input data set
Software
Predictor/selection var.
Derived dataset/objects
Result
Used as input
Comparison

Site pairs

Make GAM predictions

Updated predictor
variables

Extended Data Figure 1. Overview of the steps, softwares, and input data sets described in the Methods and how
they are interconnected. White boxes, input data sets and yellow boxes softwares used in the study (Supplementary Table 2).
The blue boxes show variables that were used as predictor variables in the GAMs and for the selection criteria in the site pair
analysis, the green boxes derived data sets and objects, and red boxes the final results.

Extended Data Table 1. Smooths used to construct the GAM. First column, the predictor variables used in the respective
smooth. Second column, names the type of smooth used. Third column, shows the maximum number of nodes of the smooth
(higher k more flexibility) and column four the smoothing parameter applied (higher sp results in a smoother function). In blue
smooths that were removed when fitting the ’no LC’ GAM. Last column shows the maximum p-value across the GAMs for the
individual months of the respective smooth and in brackets number of months for which this smooth had a p-value larger than
0.01. For the LC-related smooths values are given in order of forest, ALr, shrubland, natural low vegetation, artificial surfaces,
irrigated agricultural land, natural bare land, open water, and wetland.

Variable(s) Type k sp Description Max p-value (number of p-values above 0.01)
alt s 15 estimated global altitude term 3.1e-29 (0)
alt, lat, lon ti 5 5 spatially varying altitude term 7.1e-19 (0)
TPI s 10 estimated global TPI term 7.4e-42 (0)
expo s 10 estimated global exposition term 1.3e-7 (0)
expo, lat, lon ti 5 5 spatially varying exposition term 8.6e-22 (0)
slope s 15 estimated global slope term 1.9e-2 (1)
slope, lat, lon ti 5 5 spatially varying slope term 7.2e-34 (0)
TRI s 10 estimated global TRI term 8.6e-2 (2)
t2m s 20 estimated global 2 m temperature term 1.0e-71 (0)
uw_hd s 10 estimated global upwind height difference term 1.2e-41 (0)
dw_hd s 10 estimated global downwind height difference term 8.8e-76 (0)
uw_cd s 10 estimated global upwind coast distance term 4.2e-45 (0)
prox_LCi s 10 estimated global term for local effect of each LC class 1.6e-4 (0), 5.1e-5 (0), 1.45e-13 (0), 8.2e-3 (0), 1.5e-1 (3), 1.2e-14 (0), 1.4e-4 (0), 2.2e-2 (1), 2.1e-8 (0)
prox_LCi, lat, lon ti 3 5 spatially varying local effect of each LC class 2.6e-2 (1), 2.3e-6 (0), 1.3e-2 (1), 1.7e-1 (1), 1.1e-2 (1), 5.4e-1 (3), 2.7e-2 (1), 2.1e-4 (0), 9.8e-1(4)
prox_LCi, t2m, alt ti 5 5 term varying with mean climate for local effect of each LC class 7.3e-27 (0), 1.3e-20 (0), 2.1e-9 (0), 5.0e-6 (0), 1.9e-2 (2), 1.7e-15 (0), 5.3e-12 (0), 3.2e-2 (1), 5.4e-8 (0)
uw_pct_LCi s 10 estimated global upwind term for each LC class 1.9e-15 (0), 5.5e-18 (0), 4.4e-11 (0), 1.5e-8 (0), 1.1e-24 (0), 2.9e-58 (0), 5.4e-19 (0), 2.0e-21 (0), 2.0e-2 (1)
uw_pct_LCi, lat, lon ti 3 5 spatially varying upwind term for each LC class 6.0e-1 (2), 3.2e-2 (3), 1.8e-5 (0), 1.5e-9 (0), 2.2e-2(1), 3.6e-5 (0), 0.34e-2 (1), 2.2e-2 (2), 2.4e-1 (2)
uw_pct_LCi, t2m, uw_ct ti 5 5 upwind term varying with mean climate for each LC class 4.9e-12 (0), 6.7e-7 (0), 1.9e-44 (0), 4.5e-33 (0), 5.0e-3 (0), 2.0e-60 (0), 1.1e-3 (0), 5.3e-3 (0), 2.0e-11 (0)
lat, lon ti 15 5 spatial term to capture large scale variation of precipitation 0 (0)
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Extended Data Figure 2. Examples of trajectory-based fields. Upwind forest fraction in January (a) and August (b).
Panel c shows the upwind fraction of ALr in August. Panel d shows the upwind distance to coast, panel e the upwind height
difference, and panel f the downwind height difference in January.
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Extended Data Figure 3. Location of the GSDR (purple) and GHCN (orange) rain gauge stations included in the site pair
analysis.
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Extended Data Figure 4. Local precipitation difference between forest and agricultural land at site pairs. As Fig.1 d
but for Regions 1, 2, 4, and 5.
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Extended Data Figure 5. Relative local precipitation difference between forest and agricultural land at site pairs.
The median (black line), interquartile range (colored shading), and range between 10th and 90th percentile (grey shading) of
∆Ploc in the rain gauge data sets as a fraction of the precipitation at the site with more ALr over the five regions in Fig. 1 a.
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Extended Data Figure 6. Changes in LC fractions for uniform forestation scenario. Panel a, change in local ALr and
forest fractions used to predict the local effect of forestation with the GAM (calculated from Eq. 3). To the right, the change in
the upwind forest fraction following 20 % forestation in January (b) and July (c), retrieved from recalculating the upwind LC
fractions in the trajectories with the altered LC maps.
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Extended Data Figure 7. Local precipitation difference between forest and agricultural land at site pairs with
relaxed selection criteria. As Fig. 1 but with relaxed selection criteria (ID 10 in Supplement D). Note that Panel d shows
Region 6 instead of Region 3.
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