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Dynamic optimal congestion pricing in multi-region urban networks by

application of a Multi-Layer-Neural network

Alexander Genser∗, Anastasios Kouvelas

Institute for Transport Planning and Systems, Department of Civil, Environmental and
Geomatic Engineering, ETH Zurich, CH-8093 Zurich, Switzerland

Abstract

Traffic management by applying congestion pricing is a measure for mitigating congestion in
protected city corridors. As a promising tool, pricing improves the level of service in a network and
reduces travel delays. However, real-world implementations are restricted to static pricing, i.e.,
the price is fixed and not responsive to the prevailing regional traffic conditions. Dynamic pricing
overcomes these limitations but also affects the user’s route choices. This work uses dynamic
pricing’s influence and predicts pricing functions to aim for a system optimal traffic distribution.
The framework models a large-scale network where every region is considered homogeneous,
allowing for the Macroscopic Fundamental Diagram (MFD) application. We compute Dynamic
System Optimum (DSO) and a Quasi Dynamic User Equilibrium (QDUE) of the macroscopic
model by formulating a linear optimization problem and utilizing the Dijkstra algorithm and a
Multinomial Logit model (MNL), respectively. The equilibria allow us to find an optimal pricing
methodology by training Multi-Layer-Neural (MLN) network models. We test our framework
on a case study in Zurich, Switzerland, and showcase that (a) our neural network model learns
the complex user behavior and (b) allows predicting optimal pricing functions. Results show a
significant performance improvement when operating a transportation network in the DSO and
highlight how dynamic pricing influences the user’s route choice behavior towards the system
optimal equilibrium.

Keywords: Multi-region-network modeling, Dynamic optimal pricing, Dynamic system optimum,
Linear rolling horizon optimization, Machine learning, Deep neural networks.

1. INTRODUCTION1

The fact that more and more people live in cities puts significant pressure on the mobility2

services of urban areas. One major challenge of today’s transportation systems is the mitigation3

of congestion. Therefore, the traffic management domain has proposed various technologies to4

tackle rising traffic demand in the last decades. Research has shown several effective microscopic5

approaches, such as, e.g., optimal traffic light control and macroscopic methods, where Perimeter6

Control (PC) is well recognized. PC allows a significant reduction of user delay in a protected7

region by controlling traffic lights at the region border (Geroliminis et al., 2013; Keyvan-Ekbatani8

et al., 2012; Kouvelas et al., 2017a). Nevertheless, methods, such as PC, do not consider external9
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effects when focusing on car traffic. Air pollution, noise, accidents, congestion, and space10

occupation are examples of costs the road users do not have to accommodate for. Hence, this11

results in adverse effects on the performance of a traffic system, the environment, and the economy12

(Hansen, 2018).13

Pigou (1920) showed early on in his extensive work on external costs that congestion pricing14

(often also denoted as road pricing) is a promising tool. Practical evaluations of field imple-15

mentations in, e.g., London, Stockholm, and Singapore underline the effectiveness of congestion16

pricing (Eliasson, 2017). The impact of rising traffic demand is mitigated, internalization of17

external effects and a reduction in performance metrics such as travel times, vehicle kilometers18

traveled, or travel delays is achieved.19

Although there is a broad agreement on the efficiency of congestion pricing, the design of the20

pricing scheme itself is still tackled by several research domains. As already reviewed by Lindsey21

and Verhoef (2000) the fundamental work from Vickrey (1963) was one of the first that shows the22

potential of congestion pricing to influence the travel behavior (i.e., the route and mode choice).23

Also, the work claims the need to set prices reflecting the current traffic state in a network; i.e., if24

a city experiences congestion, tolls need to react dynamically with a specific magnitude. Note25

that prices and tolls are used as synonyms in this work. In recent years, several theoretical (micro-26

and macroscopic) studies have shown that extending a transportation system with a dynamic27

pricing scheme can further improve the performance of a transportation network (e.g., Zheng28

et al. (2012); Kachroo et al. (2017); Zheng et al. (2016); Gu et al. (2018); Yang et al. (2019).29

However, the implementation of congestion pricing on a link-level has been found as not practi-30

cal. High investments to upgrade the infrastructure and regulation issues (e.g., the infrastructure31

operator needs to provide an alternative non-tolled route) are faced in practice. One of the first32

works that try to overcome this challenge by tackling congestion pricing at the macroscopic level33

was published by Zheng et al. (2012). The work utilizes the Macroscopic Fundamental Diagram34

(MFD) to derive an optimal cordon-based pricing scheme. Zheng and Geroliminis (2020), Gu35

and Saberi (2021), and Chen et al. (2021) follow this approach and show the advantages of an36

aggregated approach on network-level.37

Besides the comprehensive findings of these studies, they lack an analytical and efficient38

formulation of a real-time system optimum. This is of great interest, as the optimal quantities can39

be utilized to derive optimal pricing functions. In the present work, we focus on a multi-region40

network model based on Sirmatel and Geroliminis (2018) to find the optimal macroscopic pricing41

scheme with the application of supervised machine learning. The defined urban regions are42

considered homogeneous with different characteristics (i.e., size, capacity, average trip length)43

in the heterogeneous traffic network. A well-defined MFD characterizes every region. The44

determination of Dynamic System Optimum (DSO) is solved by reformulating the nonlinear45

model into a linear program and applying several approximations based on the work by Genser46

and Kouvelas (2020) with a Linear Rolling Horizon Optimization (LRHO); i.e., the optimal route47

choice is determined. Implementation of the Quasi Dynamic User Equilibrium (QDUE) is based48

on the utilization of Djikstra algorithm to find the shortest paths and a multinomial Logit (MNL)49

model to determine the user’s route choices. To determine the optimal time-varying pricing50

functions, we train deep neural networks (more specifically, a Multi-Layer-Neural (MLN) network)51

models that capture the complex user’s route choice behavior and predict the generalized trip52

costs in every region.53

The application of the proposed framework, including the pre-trained pricing prediction54

models, allows us to highlight the following contributions: (a) the formulation of an efficient55
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and linear program to find real-time solutions for the nonlinear optimal route guidance problem56

(i.e., the DSO); (b) the design of MLN network models that allow a generic application to learn57

the user’s route choice behavior and predict their generalized trip costs; (c) the derivation of58

demand-specific pricing functions for optimal tolling in a multi-region network.59

The remainder of this paper is organized as follows: Section 2 points the reader to related60

work on the derivation of user and system equilibrium and optimal pricing. Section 3 introduces61

the utilized macroscopic simulation model. Section 4 elaborates on the applied methodology.62

First, the derivation of DSO with all steps to linearize the problem is introduced. The chapter63

continues with the QDUE by applying Djikstra algorithm and MNL. The optimal toll derivation64

with a MLN network model is presented at the end of Section 4. The methodology is applied65

to a case study in Zurich, Switzerland, with results for DSO, QDUE, and the optimal pricing66

functions (Section 5). The paper closes with a conclusion and future work in Section 6.67

2. RELATED WORK68

The general idea of congestion pricing was picked up already decades ago by Pigou (1920)69

followed by works such as Knight (1924); Vickrey (1963). Since then, optimal pricing problems70

have been tackled for microscopic and macroscopic traffic models. Generally, the literature71

differentiates between two types of pricing problems: First-best pricing is defined by pricing72

every link in a network efficiently. Thus, network modeling on the microscopic level is essential73

and information of every link must be available in real-time. Works such as Beckmann et al.74

(1956) suggest deriving tolls for first-best pricing with the concept of marginal social cost pricing.75

Consequently, the tolls represent an equivalent of the negative externalities caused to other users76

in the transportation network. Differently, Bergendorff et al. (1997) and Hearn and Ramana77

(1998) show that toll vectors exist for fixed demand scenarios and define the first-best toll set78

based on the concepts of user equilibrium and system optimum. Finally, Yildirim and Hearn79

(2005) extend the proposed solutions from Bergendorff et al. (1997) and Hearn and Ramana80

(1998) for demand uncertainties with a General Variable Demand (GVD) model. Although the81

application of tolls derived by solving the first-best pricing problem guarantees the operation at82

the system optimum, the practicality has been critical discussed. Lindsey and Verhoef (2000)83

argues that even with electronic tolls (users do not have to stop at a toll which causes travel84

delays), the investment and operational costs are high. Several countries’ regulations force the85

infrastructure operator to provide an alternative non-tolled route. Furthermore, it is unlikely that86

a toll system is implemented in the whole network at once, which is a constraint for first-best87

pricing.88

Therefore, recent research focuses on the second-best pricing problem, where only a subset of89

the links is utilized for pricing. Considering a small toy network, represented as a graph, Meng90

et al. (2012) and Chung et al. (2012) are formulating optimization problems to derive optimal91

tolls with a bi-level cellular particle swarm optimization and (considering demand uncertainties)92

a mixed-integer problem, respectively. Both works focus on determining prices by utilizing the93

total distance traveled on priced arcs in a network. Furthermore, an optimal speed-based pricing94

design using the average travel speed has been proposed by Liu et al. (2013). Finally, a joint95

model incorporating the travel distance and time (Joint distance and time toll (JDTT)) was96

introduced by Liu et al. (2014). Methodologies of the aforementioned papers are operating at97

the link level, which remains challenging when one considers a city center corridor with a high98

number of links (holds for the first and second-best toll problem).99
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Besides, sophisticated modeling incorporates a dynamic traffic assignment, making the compu-100

tation of dynamic traffic equilibria (i.e., QDUE and DSO) relatively expensive. Nevertheless, this101

is an essential procedure to evaluate the applied dynamic pricing scheme. van Essen et al. (2016)102

collects a literature review on the role of travel information and stresses the importance to push a103

system from the user equilibrium (i.e., people are behaving selfishly in their route choice and try104

to maximize their benefit) to a more efficient system optimum (i.e., a part of the network users105

need to act in a non-selfish way by choosing an alternative route which might result in, e.g., a106

longer travel time). The interested reader is referred to works such as Amirgholy and Gao (2017)107

or Zhong et al. (2020) for a detailed derivation of macroscopic traffic model’s DSO. One way to108

direct a transportation network towards the system optimum is by influencing the user’s route109

choice with travel information. Different systems have been utilized in the past to provide users110

with information about the current toll to enter a protected region (e.g., a website or mobile app111

that provides the current price or information systems on the highway displaying the current112

toll one would need to pay) (Siuhi and Mwakalonge, 2016). With the advancement of vehicle113

technology, toll data can even be provided in real time to the user. Consequently, congestion114

pricing can not only be utilized as a general solution for reducing car traffic demand (i.e., the115

user’s mode choice or departure time is influenced) or the internalization of external effects. The116

user’s route choice can be affected, leading to a better distribution of traffic in the network and,117

consequently, better system performance.118

Accounting for given limitations of microscopic modeling of congestion pricing, other works119

have focused on a macroscopic approach using multi-region models and MFD. To the authors’120

best knowledge, one of the first works considering MFD to obtain optimal pricing was published121

by Zheng et al. (2012). Utilizing an agent-based simulator, the concept of MFD, and a proportional122

controller, dynamic cordon-based pricing is shown as an efficient tool to save travel times and123

ease congestion in the cordon. Simoni et al. (2015) design an area-based pricing scheme with124

the concept of marginal costs. The derived pricing methodology is applied to the simulator125

MATSim. Nevertheless, the proposed method does not include a feedback strategy. Gu et al.126

(2018) investigate several pricing methodologies with simulation-based optimization and feedback127

control. The work combines a microscopic simulator with a Proportional-Integral (PI) control128

utilizing the MFD. This approach allows maintaining a protected region at the critical vehicle129

accumulation (corresponding to the maximum vehicle flow) and calculating prices based on the130

link-based distance and time traveled. Nevertheless, the iterative approach introduces a heavy131

dependency on a simulator to derive the MFD and the link-based prices; moreover, no comparison132

to traffic equilibria is performed. Zheng and Geroliminis (2020) propose another area-based133

pricing system by considering heterogeneous user groups; i.e., the user groups are characterized134

with different Value of Times (VOT). Then, by applying a network aggregated two-region model135

and the concept of MFD, the paper derives fair tolls. Also, with MFD, Chen et al. (2021) propose136

another PI control to optimize tolls by utilizing MATsim as a simulator. Besides, the Cumulative137

Prospect Theory (CPT) is applied to (a) reduce the peak-hour demand with tolling and (b) model138

the level of service experienced by network users.139

As the derivation of pricing for large-scale urban networks requires the consideration of complex140

relationships (e.g., network structure, traffic flow theory, route choice, etc.), several recently141

published works tackle the problem with machine learning models. E.g., Mohanty et al. (2020)142

forecast traffic congestion within a region by applying a Long-Short-Term-Memory (LSTM) neural143

network and derive a neighborhood congestion score. The work shows that the LSTM model144

is useful for the optimal pricing problem. Shukla et al. (2020) also utilized a spatially-induced145

4



LSTM to predict the current traffic conditions. The output of their LSTM model and road146

network-related parameters are then fed to a proposed algorithm that allows the determination of147

tolls. Apart from neural networks also reinforcement learning has gained rising attention to tackle148

optimal pricing with promising results; the interested reader is referred to works such as, Sato149

et al. (2021); Zhu and Ukkusuri (2015); Mirzaei et al. (2018).150

3. MACROSCOPIC MULTI-REGION MODELING151

In this paper, the traffic network is modeled as a multi-region network partitioned into152

homogeneous regions. The notation of used variables denotes Table 1. The homogeneous regions153

are defined by R = {1, 2, . . . , K}, where K is the total number of regions. Every region from R154

is modeled with a well-defined MFD, represented by the function G(NI(t)). NI(t) denotes the155

aggregated vehicle accumulation of a region I at time t. Consequently, the dynamic equations156

can be defined in continuous time as follows:157

dNII(t)

dt
= QII(t)−MII(t) +

∑
H∈NI

MHII(t), (1)

158

dNIJ(t)

dt
= QIJ(t)−

∑
H∈NI

MIHJ(t) +
∑

H∈NI ;H 6=J

MHIJ(t), (2)

Notation Unit Description

t [s] Continuous simulation time step
T [s] Simulation time
R - Set of regions
I - Origin region and element of R
J - Destination region and element of R
NI - Set of all neighboring regions of I
H - Stop-over region and element of NI

K - Total number of regions
NII , NIJ [veh] Vehicle accumulation from origin I to I or J , respectively
NI , NH [veh] Aggregated vehicle accumulation for region I and H
G(·) [veh/s] Outflow MFD of a region I
L̄I [m] Average trip length in region I
QII , QIJ [veh/s] Traffic demand from I to I or J , respectively
MII [veh/s] Internal flow from region I to I
MIHJ [veh/s] Transfer flow from origin I over H to destination J
θIHJ - Route choice variable (QDUE) from region I to J via H ∈ NI

n - Polynomial degree for MFD design
a, b, c - Polynomial coefficients for MFD design

M̃IHJ [veh/s] Transfer flow preventing a region from overflow
C(·) [veh/s] Capacity function
tr, tf , tc [s] Demand parameters for rising, falling and const. magnitude time.
Qt [veh/s] Demand magnitude for QII and QIJ

Table 1: Notation for the multi-region model. The time component t is omitted for the reader’s convenience.
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where indices I ∈ R, H ∈ NI and J ∈ R represent the origin, stop-over, and destination region,159

respectively. Variables NII(t) and NIJ(t) denote vehicle accumulations of region I that have160

final destination region I and J , respectively. NI is a set containing all neighboring regions of I.161

Internal demand within one region is defined by QII(t); moreover, demands with origin I and162

destination J are denoted by QIJ(t). Note that QII(t) and QIJ(t) are exogenous signals. Intra-163

and inter-regional flows are computed by functions MII(t) and MIHJ(t) representing internal164

flows in a region and transfer flows from region I to H (with final destination J), respectively,165

defined as follows:166

MII(t) =
NII(t)

NI(t)
G(NI(t)), (3)

167

MIHJ(t) = θIHJ(t)
NIJ(t)

NI(t)
G(NI(t)). (4)

Variables θIHJ(t) represent the route choices at time t; for their computation, an implementation of168

Dijkstra shortest path algorithm in combination with a MNL model is utilized for the computation169

of QDUE. To find the optimal route guidance (i.e., DSO splitting rates), a linear optimization170

problem is solved (see Section 4.1 for derivations).171

The sequence of regions a user can traverse in the proposed model is not arbitrary. If the indices172

IHJ are parametrized with I = J (e.g., IHJ = 131), paths are restricted. This assumption does173

not allow for unrealistic path choices and improves the quality of the model. An example of a174

four-region model and the allowed possibilities to move from an origin (o) to a destination (d)175

are shown in Figure 1. The black route here represents the user’s choice traversing from I = 3176

via H = 1 to the destination J = 4. Hence, this represents one potential solution of the DUE,177

although it might be more beneficial for the whole four-region system that the user travels a path178

where the splitting rates θ324 or θ344 apply.179

Note that the transfer flows need to be restricted by (5). The minimum among incoming180

transfer flow or maximum region capacity is considered, preventing a region from accepting181

o

d

Figure 1: Four-region model with potential routes from origin I = 3 to destination J = 4.
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incoming flows that exceed capacity (overflow, M̃IHJ(t)). The latter is modeled with function182

CIHJ(NH(t)) (the reader is referred to Sirmatel and Geroliminis (2018) for the modeling of183

function C(·)).184

M̃IHJ(t) = min (CIHJ(NH(t)), θIHJ(t)
NIJ(t)

NI(t)
G(NI(t))). (5)

Elements of set R are considered as homogeneous and can, therefore, be characterized by185

a well-defined MFD. Previous works are using mathematical relationships to model an MFD186

represented as a polynomial of degree n (e.g., in Geroliminis and Daganzo (2008). Furthermore,187

other approximations, such as an exponential function or a novel method proposed by Ambühl188

et al. (2018) proposing to estimate the MFD from measurement data, are applied. However,189

several methods suffer from function parameters that lack physical meaning and might introduce190

problems with optimization procedures. Hence, the current work models function G(·) with a191

polynomial of degree n = 3. With commonly utilized mathematical procedures a polynomial is192

easy to fit and is simpler to handle when linearizing an optimization problem (concavity and193

continuity). G(·) is defined as follows:194

G(NI) =
(
aN3

I (t) + bN2
I (t) + cNI(t)

)
/L̄I . (6)

Function G(·) is the estimated outflow [veh/s] with respect to NI ; the coefficients a, b, c are195

derived by fitting the polynomial to e.g., derived measurement data from loop detectors. The196

variable L̄I denotes the average trip length.197

To model a realistic demand-supply system, the simulation plant receives demand patterns198

as trapezoids. A trapezoid is defined as an euclidean geometry shape by specifying the rising199

time tr [s], falling time tf [s], time that the demand remains at constant magnitude tc [s], and200

demand magnitude Qt in [veh/sec]. Figure 2 shows a graphical representation of the parameter201

definition. Often these parameters are found by generating random numbers that satisfy the given202

application requirements. In the current work, an optimization procedure from Kosmatopoulos203

and Kouvelas (2009) is utilized to find appropriate parameters tr, tf , tc, and Qt, producing a204

Figure 2: Representation of demand patterns as trapezoids for QIJ .

7



desired simulation scenario (e.g., two congested and two uncongested regions). By setting a target205

accumulation per region on the MFD curves, different scenarios for testing the optimal route206

guidance determination and pricing methodology can be generated efficiently for a simulation207

time of T (Genser and Kouveals, 2019).208

The next section of this work presents the utilization of the presented simulation model and209

all required methodology parts to derive the proposed optimal congestion pricing method.210

4. METHODOLOGY211

Utilizing the simulation model from Section 3 we introduce the methodology that allows us212

to compute (a) the traffic equilibria and (b) predict the generalized costs, and (c) utilize this213

quantities to derive optimal pricing for the multi-region network. Figure 3 depicts a block diagram214

with all the core components that are introduced in this section. We utilize the multi-region215

simulation plant from Section 3 in a discretized form to simulate traffic scenarios for a given216

exogenous demand profile. To compute the equilibria, i.e., DSO and QDUE, a linear formulation217

of an optimal route guidance optimization problem is used for the DSO. For the QDUE the218

Dijstrka algorithm (to compute the shortest path) and an MNL (to model the travel behavior) are219

utilized. Finally, we feed the outputs from the equilibria derivation to the pricing computation.220

Within this procedure, pre-trained MLN networks are utilized to derive the optimal generalized221

costs. Consequently, the methodology allows deriving the optimal price for a user-specified control222

horizon. Note that Table 2 denotes the used nomenclature for the presented methodology.223

In more detail, the first block (Figure 3, top) represents the discretized multi-region model224

to simulate the vehicle accumulation trajectories NI(k), NII(k), and NIJ(k), ∀k, for a given225

exogenous demand scenario QIJ(k), ∀k. Note that k is the discrete-time step, and for k = 1, i.e.,226

Figure 3: Block diagram of the optimal congestion pricing methodology.
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Notation Unit Description

k [s] Discrete simulation time step
Tc [s] Control horizon
QI [veh/s] Aggregated demand for region I
N∗I [veh] Optimal aggregated vehicle accumulation (DSO) for region I
MIH [veh/s] Transfer flow (QDUE) from origin I to H
M∗

IH [veh/s] Optimal transfer flow (DSO) from origin I over H
θ∗IHJ - Optimal route choice variable from region I to J via H ∈ NI

NI,crit - Critical vehicle accumulation of region I
NI,jam - Jam vehicle accumulation of region I
n∗c,I , nc,I - Fraction of NI and NI,crit in region I (DSO, QDUE)
VOT [CHF/h] Value of Time parameter
P ∗IH [CHF] Pricing matrix for traversing from region I to H
M - Set of pre-trained MLN network models
αII , αIJ - Fraction of vehicle accumulation as LRHO model parameters
l - Index of peice-wise affine (PWA) function for MFD
L - Total number of PWA functions
Gl

I(·) [veh/s] PWA MFD function
fII , fIH , fHI , fIHJ [veh/s] LRHO decision variables for internal and transfer flows
Np - Prediction horizon
kp [s] Discrete prediction time step of LRHO
τI , τH , τIH [s] Average travel time in region I, H, and I via H
TIH [s] Travel time matrix
cIH , c

∗
IH [CHF] Generalized and predicted costs traversing region I via H

C∗IH , CIH [CHF] Generalized cost matrix (DSO, QDUE)
UH,IJ - Utility function from I to J and alternatives H
εH - Error term of unobserved determinations
µ - MNL scaling parameter
pIH [CHF] Optimal price traversing region I via H
P ∗IH [CHF] Optimal price matrix
xm - Neuron input
yo - Neuron output
wo,m - Weight for neuron input
Io - Summation of weighted input to neuron
F (·) - Activation function of neuron
TSI [veh · h] Time spent in region I
TTS [veh · h] Total Time spent in the network
TTD [veh · km] Total traveled distance in the network
MAE [CHF] Mean absolute error
N [veh] Vehicles served

Table 2: Notation for the equilibria and pricing methodology.

the beginning of the simulation, an initial route choice with equal probability for all θIHJ(k = 1)227

is set. This is reasonable, as at k = 1, the network is empty, and consequently, the costs for all228

9



paths are equal. Additionally, an initial price matrix P ∗IH(k = 1) denotes a user-defined starting229

price for traversing from I via H. As this work considers dynamic congestion pricing, P ∗IH(k = 1)230

can be set to zero and will react accordingly due to the system feedback throughout time evolves.231

The outputs NI(k), NII(k), NIJ(k), and θIHJ(k) are used to determine the DSO and the232

QDUE, respectively. The equilibria constitute two important system states for defining the233

potential improvement the pricing methodology can add. As an output system states for k + Tc234

are determined, which allows the computation of the splitting rates θIHJ(k + Tc), θ
∗
IHJ(k + Tc),235

the transfer flows MIH(k+Tc), M
∗
IH(k+Tc) and the accumulations NI(k+Tc), N

∗
I (k+Tc) for the236

QDUE and DSO, respectively. Note that Tc denotes the control horizon and all optimal quantities,237

i.e., computed with DSO, are defined with an asterisk. Further, the block for equilibria derivation238

uses VOT(k) as an input. The VOT is utilized here to calculate generalized costs of a trip239

through the multi-region network. Consequently, it serves as a parameter for the determination of240

DSO and QDUE splitting rates. The complete derivation of (a) the linear optimization problem241

formulation for DSO and the computation of QDUE with Dijstrka and MNL is introduced in242

Section 4.1.243

Finally, the block for the pricing computation utilizes the route choice signals θ∗IHJ(k+Tc) and244

θIHJ(k+Tc), and transfer flows M∗
IH(k+Tc) and MIH(k+Tc) from DSO and QDUE, respectively.245

Also, the fractions of accumulations and critical accumulation (NI,crit) of a region I serve as246

an input and represent the region’s congestion level; the variable is denoted as nc,I and n∗c,I .247

Note that all quantities are utilized as inputs to a pre-trained set of MLN network models M,248

which allow the derivation of prices for horizon k + Tc and every combination of origins I and249

neighboring regions H. The determined prices are collected in a pricing matrix P ∗IH(k + Tc),250

which is then applied to the simulation plant for the specified control horizon. The magnitude of251

every pricing matrix element reflects the required economic incentive to influence a travel option252

from I to J over H for time horizon k + Tc towards the system optimal choice. The way we253

specify our machine learning models to derive the optimal generalized costs and calculate the254

optimal prices are introduced in detail in Section 4.2.255

4.1. EQUILIBRIA DERIVATION256

How users in a transportation network decide on their travel route is assumed to follow257

well-defined principles. The Wardrop principles proposed in Wardrop (1952) describe the two258

states as the user equilibrium and the system optimum. As equilibria are not constant throughout259

time, to capture the traffic dynamics and the resulting varying route choice, the states are com-260

monly denoted as DUE and DSO. The DUE constitutes that if users in a network are departing261

at the same time experience a minimal and equal travel time, the system operates in a DUE262

state (Yildirimoglu and Geroliminis, 2014; Ran et al., 1996). In other words, every user tries263

to maximize their own utility i.e.; one tries to get from origin to destination as fast as possible.264

Also, this means that the travel time or the resulting travel costs are minimized, and no user265

can find a better minimal solution by adjusting the route choice. The derivation and analysis266

of the DUE have been extensively studied in works such as, e.g., Huang et al. (2020) or Guo267

and Ban (2020). Nevertheless, it has been shown that operating in the DUE does not lead to an268

overall maximization of system performance. Contrary to the DUE, the DSO shows a substantial269

improvement in network performance but also introduces for a subset of users longer routes to270

reach their destination. Thus, we introduce the derivation of both equilibria as fundamental work271

for the pricing models.272

273
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Derivation of DSO274

At first, the linear derivation of DSO is introduced. The problem aims for deriving the275

optimal splitting rates θ∗IHJ(k + Tc) for a given Tcthat consequently allow the derivation of the276

optimal internal flows M∗
II(k + Tc), optimal transfer flows to neighboring regions M∗

IH(k + Tc),277

and finally the optimal accumulation trajectories N∗II(k + Tc), N
∗
IJ(k + Tc), and N∗I (k + Tc). The278

multi-region model from Section 3 is formulated with several nonlinearities (e.g. formulation of279

MFD function G(·), fraction of accumulations NIJ(t)/NI(t), etc.). Hence, an NMPC is applied280

in several other studies focusing on optimal control (Sirmatel and Geroliminis, 2018; Tajalli and281

Hajbabaie, 2018; Hajiahmadi et al., 2013). This work formulates the problem as a linear model282

to allow the application of an LRHO; implying the utilization of a linear model. Therefore, the283

nonlinearities are removed by applying several approximations based on Genser and Kouvelas284

(2020) and Kouvelas et al. (2017a,b).285

First, the model parameters αII(k) and αIJ(k) are introduced, which are updated every time286

a predicted solution is applied to the simulation plant; i.e., the parameters remain constant over287

the prediction horizon and are updated when rolling the prediction horizon. αII(k) and αIJ(k)288

are defined as follows:289

αII(k) =
NII(k)

NI(k)
, ∀I ∈ R (7)

and290

αIJ(k) =
NIJ(k)

NI(k)
. ∀I, J ∈ R (8)

Secondly, MFD functions GI(·) are approximated with a number of piece-wise affine (PWA)291

functions; l = {1, 2, ..., L} denotes the index of PWA function and L the total number of functions,292

chosen for an accurate approximation. In the following, each piece-wise linear MFD function is293

indicated by Gl
I(·). Thirdly, we introduce new decision variables:294

fII(k) = θIII(k)Gl
I(NI(k))αII(k), ∀I ∈ R (9)

and295

fIH(k) = Gl
I(NI(k))

∑
J∈R

θIHJ(k)αIJ(k), ∀I, J ∈ R, H ∈ NI (10)

where fII(k) and fIH(k) define decision variables for internal and transfer flows, respectively.296

The right sides of equations (9) and (10) show the remaining nonlinearities by the product of297

θIII(k) and θIHJ(k), respectively. The introduction of fII(k) and fIH(k) allow to complete the298

linearization of the problem. As in Kouvelas et al. (2017b) the methodology was applied to find299

the optimal perimeter control, a transformation from fII(k) and fIH(k) to the original control300

variables is used.301

Nevertheless, variables fII(k) and fIH(k) only consider internal flows and transfer flows to302

a neighboring region H; i.e., the information about the final destination J is not available. In303

our approach to determine the optimal splitting rates θ∗III(k) and θ∗IHJ(k) this information is304

necessary to ensure that the summation of flow proportions on every possible path from I to305

J is correct, as well as for the transformation to the original decision variables. Therefore, we306

introduce one additional decision variable fIHJ(k) that is constrained by307 ∑
J∈R

fIHJ(k) = fIH(k), ∀I, J ∈ R, H ∈ NI (11)
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to ensure that splitting rates can be constrained correctly and calculation of the original decision308

signals θ∗III(k) and θ∗IHJ(k) can be obtained. Note that for θ∗III(k) the result does not influence309

optimal route choices, as the splitting rate corresponds to users traveling from origin I, over I, to310

final destination I. Hence, all θIII must be θIII(k) = 1 ∀k. Nevertheless, the decision signals are311

included in the algorithm and the results serve for validation purposes. Finally, we introduce312

an operational constraint to prevent the optimization results, i.e., the route choice signals, from313

oscillating:314 ∣∣∣θ∗IHJ(k)− θ∗IHJ(k − 1)
∣∣∣ ≤ σ ∀I, J ∈ R, H ∈ NI , (12)

where the left-hand side of the equation represents the absolute difference between the route choice315

signals in time and σ denotes a user-defined parameter to constraint the magnitude deviation.316

An LRHO procedure is introduced and utilized to solve for optimal splitting rates θ∗IHJ(k) for
a prediction horizon of Np:

max
NI(k),fII(k),fIH(k)

Tc ·
kp+Np−1∑

k=kp

∑
I∈R

[
fII(k) + fIH(k)

]
(13)

s.t. NI(k + 1) = NI(k) + Tc

(
QI(k)− fII(k)−∑

H∈NI

fIH(k) +
∑
H∈NI

fHI(k)
)

(14)

equations (11), (12) (15)

0 ≤ fII(k) ≤ αIIG
l
I(NI(k)) (16)

0 ≤ fIHJ(k) (17)∑
H∈NI

fIHJ(k) ≤ αIJ(k)Gl
I(NI(k)) (18)

0 ≤ NI(k) ≤ NI,jam (19)

k = kp, kp + 1, ..., kp +Np − 1 (20)

∀I, J ∈ R, H ∈ NI

For every solution computed with the LRHO, a calculation of the optimal splitting rates θ∗IHJ(k)317

can be performed by utilizing the variables fIHJ(k), αIJ(k), and Gl
I(NI(k)). Analogically, splitting318

rates for internal flows (as stated above the result has to be θIII(k) = 1) can be evaluated with319

fIII(k), αII(k), and Gl
I(NI(k)). Note that all constraints in equations (13)–(20) are linear, and320

consequently, the problem can be solved with low computational power as a linear program. The321

results are utilized in Section 4.2 as in input to the MLN network allowing for the derivation of322

the optimal generalized costs and the optimal pricing functions.323

324

Derivation of QDUE325

Whereas the network’s throughput is maximized to compute the DSO, the DUE is defined by326

each user in the network, minimizing her/his travel costs (i.e., travel time). In this work, the327

DUE is approximated by finding the shortest paths from origin I to a destination region J with328

Djikstra algorithm and applying an MNL model. Consequently, we denote the equilibrium as329

QDUE. Modeling the inputs for these algorithms requires the costs of a trip in the network.330
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Therefore, we first calculate the travel time of a trip from a region I to a neighbor H by utilizing331

the signals from the macroscopic model. The travel time τIH(k) can be defined as follows:332

τIH(k) = τI(k) + τH(k) =
L̄I ·NI(k)

GI(NI(k)) · L̄I

+
L̄H ·NH(k)

GH(NH(k)) · L̄H

,∀I ∈ R, H ∈ NI (21)

where τI(k) and τH(k) are approximated by the fraction of average trip lengths L̄I , L̄H and the333

corresponding estimated speeds (e.g., for τI(k) by utilizing the outflow GI(NI(k)), average trip334

length L̄I , and vehicle accumulation of a region NI). Note that all elements for τIH(k) of a given335

network with arbitrary topology can be compiled in a travel time matrix TIH(k).336

To transform the elements of TIH(k) into generalized costs that users experience when traveling337

through the network, we utilize the Value of Time (VOT). Hence, the generalized cost matrix338

CIH(k) can be defined by simply multiplying339

CIH(k) = TIH(k)VOT(k), ∀I ∈ R, H ∈ NI (22)

where VOT(k) is the VOT for trips from I to H in the network. Generalized costs CIH(k)340

are then utilized to calculate the shortest paths with Djikstra algorithm (represent minimum341

users costs or maximum user utility) which are used as input alternatives for the MNL. The342

simulation model allows three path possibilities from I to J and therefore, three alternatives343

over neighboring region H are allowed; UH,IJ(k) defines the utility function for individuals going344

from I to J via an alternative H. Essentially, UH,IJ(k) is modeled with a deterministic term,345

which is the corresponding element for a pair (I,H) from the generalized cost matrix CIH(k);346

i.e., UH,IJ(k) = cIH(k) + εH , where cIH(k) ∈ CIH(k) and εH denotes an error term containing all347

unobserved determinations of the utility function; µ denotes a scaling parameter. Finally, the348

MNL is defined as follows:349

θIHJ(k) =
exp(µUH,IJ(k))∑

H∈N exp(µUH,IJ(k))
. ∀I, J ∈ R, H ∈ NI (23)

The MNL definition is motivated by Ben-Akiva and Bierlaire (1999) and allows the derivation350

of the QDUE splitting rates, which represent an approximation of the DUE. Finally, the sets351

of equilibrium quantities are derived and serve as input to the pricing models introduced in352

Section 4.2.353

4.2. Optimal pricing with Multi-Layer-Perceptron networks354

This work utilizes the macroscopic multi-region model to derive optimal pricing for every355

region boundary in the network. Contrary to other works (e.g., Gu et al. (2018) focusing on356

a Proportional-Integral (PI) scheme utilizing MFD to allow for maintaining a protected region357

at the critical vehicle accumulation; corresponding to maximum vehicular flow), here, we utilize358

the concept of machine learning and design MLN networks to calculate the unknown optimal359

generalized cost matrix. Thus, this methodology allows the optimal price computation for every360

region boundary and time step, reflecting the additional costs that a user should experience to361

lead the network to the optimal state (i.e., the DSO).362

In Section 4 we have derived the splitting rates of the QDUE and the DSO, respectively. As363

shown in equation (23), the generalized cost matrix CIH(k) is utilized to compute the splitting364

rates θIHJ(k). However, for finding θ∗IHJ(k), the LRHO procedure is applied, and thus, the365

optimal generalized costs C∗IH(k) are unknown. Also, the relationship from equation (23) shows366
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that recovering a generalized cost matrix (the quantity is part of the utility function) by knowing367

θ∗IHJ(k) does not give a unique solution. Thus, a methodology is needed that models the reverse368

relationship between route choice and the generalized costs.369

For decades neural networks are applied in the transportation domain for different purposes,370

e.g., traffic flow prediction, traffic signal control, or license plate recognition. As a systematic371

review by Wang et al. (2019) shows, the different types of neural networks can be assigned to372

several different applications in transportation. For example, Convolutional Neural Networks373

(CNN) are widely used for visual recognition, such as vehicle detection or license plate recognition.374

Otherwise, Deep Neural Networks (DNN) or Recurrent Neural Networks (RNN) are utilized to375

master time series prediction or classification tasks. For more details the interested reader is376

referred to e.g., Wang et al. (2019) or Nguyen et al. (2018).377

In this work, we design a specific type of DNN, a feed-forward MLN network. A MLN consists378

of one input layer, one hidden layer, and one output layer in its simplest form. The layers are379

composed of neurons taking one/multiple inputs and computing an output. The connections380

between neurons are modified by weights that scale the computations throughout the network.381

Figure 4 depicts a neuron X; the illustration and mathematical description is based on Dougherty382

(1995). The inputs are denoted by {x1, x2, ..., xm}, the output by yo, the weights for every input383

by {wo,1, wo,2, ..., wo,m}.384

Mathematically, the output is computed by applying the following equations:385

Io =
m∑
i=0

xiwo,i, (24)

and386

yo = F (Io), (25)

where Io denotes the summation of all weighted inputs and F (·) a transfer function (e.g., sigmoid,387

ReLU, etc.). By connecting a substantial number of neurons to a MLN network, such models388

allow the learning of complex non-linear relationships with the concept of supervised learning.389

For details, the reader is refereed to Dougherty (1995).390

391

MNL architecture392

As depicted in Figure 5, we train a set of MLN networks M to derive a unique pricing model for393

every region border in the network. Thus, every model takes as input features all elements of394

the splitting rate vector θ∗IHJ ∀I,H, J , transfer flow vector M∗
IH ∀I,H, and the vector containing395

n∗c,I ∀I. The output of every model is c∗IH , which is an element of the optimal generalized cost396

Figure 4: Schematic example of a neuron (based on Dougherty (1995)).
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Figure 5: Neural network design for generalized cost estimation c∗IH∀I,H.

matrix C∗IH , i.e., c∗IH ∈ C∗IH . Also, the architecture of the models is sketched. The hidden layer is397

designed with two fully connected networks consisting of 50 hidden layers each. In both networks,398

the activation function ReLU is utilized. As an optimizer, the well-known Adam algorithm is399

applied, and as a loss function, the Mean Absolute Error (MAE) (defined in Section 4.3) is used.400

401

Datasets402

The training of pricing models requires (a) a QDUE data set where the generalized costs are403

known to tackle a regression problem with the backpropagation procedure and (b) the split of404

the data set into training data (70% of the data set) and test data (30% of the data). Note that405

the split of validation data is performed automatically by the utilized machine learning library.406

We utilize a dataset representing the QDUE simulation scenario, where all the required model407

inputs are available (θIHJ ∀I,H, J , MIH ∀I,H, nc,I ∀I). To prevent the models from learning408

demand-specific patterns (e.g., low demand or low vehicle accumulation at the beginning/end409

of the simulation), the data is randomly shuffled (a) before the split into training and test data410

and (b) during the training process. Also, the pre-processing ensures the scaling by applying a411

MinMaxScaler procedure, which is important as the splitting rates have a different variable range412

than the generalized costs.413

414

Hyperparameter tuning415

Hyperparameter tuning is a crucial step when designing a neural network. Therefore, we tune416

the batch size and the number of epochs for model training. Besides, we investigate the learning417

rate of the stochastic gradient descent optimization algorithm. For a decrease of training time418

and an increase in model performance, an exponential decay function with an initial learning419

rate, a decay step, and a decay rate is utilized.420

421

Price function derivation422
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After predicting every element of C∗IH(k + Tc) for the control horizon Tc, the final pricing matrix423

for every option from a region I to H (i.e., every region border) can be calculated by applying424

the following relationship:425

P ∗IH(k + Tc) = CIH(k + Tc)− C∗IH(k + Tc). ∀I ∈ R, H ∈ NI (26)

Thus, every element of the pricing matrix P ∗IH(k + Tc) contains the price p∗IH(k + Tc) for all426

implemented tolls in the multi-region-network and is applied for the future time steps of the427

simulation (Figure 3).428

4.3. Performance metrics429

To evaluate the performance gain when pushing a system from the QDUE to DSO and to430

calculate measures for the effectiveness of our pricing methodology, we utilize a set of performance431

metrics. First, we define the Time Spent (TS) in [veh·h] for a region I as follows:432

TSI =
T∑

k=1

NI(k). (27)

Further we define the Total TS (TTS) to also evaluate the performance of the whole multi-region433

network. TTS in [veh·h] is defined by434

TTS =
T∑

k=1

∑
I∈R

NI(k) =
∑
I∈R

TSI . (28)

Another aggregated performance metric often used for macroscopic models is the Total Traveled435

Distance (TTD). The metric is computed by utilizing the average trip length L̄I , the internal436

flows MII(k) of a region I and the transfer flows MIHJ(k) that leave region I via a neighbor437

region H to a destination region J . Note that J 6= I must hold. The following equation defines438

TTD:439

TTD =
T∑

k=1

∑
I∈R

L̄I

(
MII(k) +

∑
H∈NI

∑
J∈NI ;J 6=I

MIHJ(k)
)
. (29)

The consistency of all the simulations, the optimization procedure, and the pricing methodology440

is evaluated by the number of vehicles served, which must be consistent throughout all simulation441

scenarios. The number of vehicles served is computed with the following equation:442

N =
T∑

k=1

∑
I∈R

NI(k). (30)

Finally, to verify the learning process of the MLN networks and detect the overfitting of models,443

we utilize the MAE (also denoted as loss) defined as follows:444

MAE =
1

T

T∑
k=1

∣∣∣c∗IH − cIH∣∣∣, (31)

where c∗IH represents the predicted generalized cost and cIH the generalized costs from the test445

dataset. k is here utilized to sum the errors over T . The next section will utilize all the performance446

metrics to evaluate the numerical experiments from a case study in Zurich, Switzerland.447
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5. NUMERICAL EXPERIMENT AND RESULTS448

5.1. Simulation set-up and scenario design449

This section presents a numerical experiment, where modeling is based on an example of the450

city of Zurich. The region design is derived from analyzing the main traffic arterials of Zurich451

and geographical reference of available Loop Detectors (LD). The city center (denoted as R1)452

corresponds to an area of 1.5 [km2] and has 113 LDs available. Consequently, parameters for453

MFD design are assumed with realistic values as follows: Jam accumulation N1,jam = 5000 [veh],454

average trip length L̄1 = 500 [m], and a network length L1,n of 30 lane kilometers. R2, R3, and R4455

denote the neighboring regions of the city center and are designed with an area of 5.0 [km2] each.456

The number of detectors for regions R2, R3, and R4 are 182, 277, and 135, respectively. MFDs457

for the border regions is designed with N2,jam = N3,jam = N4,jam = 8000 [veh], L̄2 = L̄3 = L̄4 =458

2000 [m] and a road length L2,n = L3,n = L4,n of 48 lane kilometers, respectively. Hence, the459

entire network is designed for a storage capacity of 29000 vehicles. The region design is depicted460

in Figure 6a and Table 3 shows the introduced region parameters.461

Considering parameters design, we are proposing a four region network (Figure 6b), where462

region R1 represents the city center. The derived inputs to determine MFDs for R1 – R4 are463

listed in Table 4. The maximum outflows qout are considered as 4.50 [veh/s] and 6.00 [veh/s] for464

(a) (b)

Figure 6: Regions design for the city of Zurich and multi-region-network model; (a) every region is stated with an
ID (R1 – R4), area A, and number of available LDs nDT; (b) region R1 is modeled as the city center (indicated by
the double lines); R2, R3, and R4 represent the boundaries to the city center.

Table 3: Parameters for the design of the city center (R1) and the border regions (R2 – R4)

Parameter Variable Unit City center R1 Border regions R2 – R4

Area A [km2] 1.50 5.00
Number of LDs nDT [-] 113 182, 277, 135
Jam accumulation NI,jam [veh] 5000 8000
Average trip length L̄I [m] 500 2000
Network length LI,n [m] 30.000 48.000
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Table 4: Parameters for the MFD design of the city center (R1) and the border regions (R2 – R4)

Parameter Unit City center R1 Border regions R2 – R4

qout [veh/s] 4.50 6.00
κ [veh/m] 0.16 0.16
a [-] 2.10 ·10−10 7.72 ·10−11

b [-] -2.25 ·10−6 -1.25 ·10−6

c [-] 6.06 ·10−3 5.13 ·10−3

the city center R1 and the border regions R2, R3 and R4, respectively. Jam density κ is derived465

by NI,jam/LI,n and assigned equal to 0.16 [veh/m] for all regions.466

Note that parameters a, b, and c correspond to the parameters of the polynomial MFD467

representation and do not have a physical meaning. Figure 7 depicts the designed MFDs with468

the parameters from Table 4. Also, the affine approximations for the city center and border469

regions are shown, respectively. These functions Gl
1(N1) and Gl

2,3,4(N2,3,4) are utilized for the470

DSO calculation later. The approximation granularity for each MFD is specified by the number471

of lines l = 20, considering the computational effort and minimization of the approximation error.472

As a relevant peak-hour simulation scenario for testing the pricing methodology is required,473

representative demand patterns are derived. Therefore we defined target accumulations for every474

region and determined representative trapezoid parameters by solving an optimization problem.475

R1 represents a traffic situation in the congested regime, whereas R2 and R4 operate always in476

non-congested states. R3 reaches the critical vehicle accumulation for a short time but shows no477

severe congestion. Furthermore, the demand magnitudes show that R1 and R2 are contributing478

more to the accumulation trajectories, compared to R3 and R4. The derived demand patterns479

0 1000 2000 3000 4000 5000 6000 7000 8000
0

1

2

3

4
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6

Figure 7: The MFDs are designed according to assumptions related to the City of Zurich (region size, partitioning,
etc.) and one can note that R2, R3 and R4 are modeled as larger regions with higher capacity. The dashed lines
are representing the linear fit of each MFD, respectively.
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Figure 8: Traffic demand per region and pre-defined simulation horizon; configuration is for a 4X4 OD matrix,
where I specifies to the origin and J the destination.

QIJ [veh/s] are depicted in Figure 8. Note that after 2000 [s] of simulation time, no demand is480

present to ensure that we can clear the network at the simulation end; i.e., all users can finish481

their trip until 3000 [s] of simulation.482

5.2. Equilibria results and comparison483

The created demand scenario serves as an exogenous input to the simulation plant. Thus,484

the accumulation trajectories for every NIJ(k) ∀k and all route choice signals θIHJ(k) ∀k are485

computed for a simulation horizon of 3000 [s]; this time horizon was chosen to ensure an empty486

network for the given traffic demand. The transformation of travel times in the multi-region487

model into generalized costs is performed by applying a VOT of 27 [CHF/h] (based on the488

study from Hörl et al. (2019)). The simulated scenario represents the QDUE. Figure 9 depicts489

the vehicle accumulation trajectories for all NIJ . The solid black trajectory in every subplot490

represents the aggregated accumulation NI for regions 1 – 4. The critical vehicle accumulations491

NI,crit for all regions are depicted with the horizontal dashed line. As expected by design, R1492

experiences substantial congestion whereas R2 and R4 operate in free-flow conditions respectively.493

R3 reaches the critical vehicle accumulation of 1920 [veh] around 1000 [s] of simulation time.494

To derive the performance gain of DSO, we use the linear model approximation and LRHO495

method to compute the optimal splitting rates θ∗IHJ(k). The linear program aims at maximizing496

the flow in the multi-region-network and was designed with the following parameters: prediction497

horizon Np = 3; control cycle Nc = 4; control time step Tc = 20sec; operational parameter σ = 0.2.498

Np and Nc are chosen concerning computational complexity and system response. Finding the499

optimal splitting rates θ∗IHJ(k) allow to simulate the optimal accumulation trajectories N∗I (k),500

N∗II(k), and N∗IJ(k). Figure 10 shows the vehicle accumulation for the optimal traffic distribution501

in the four-region network (dashed aggregated lines). Additionally, the aggregated accumulations502

of the QDUE for every region I, i.e., NI are shown again for comparison (solid black lines). The503

highlighted area between the aggregated trajectories denotes the performance improvement in504

vehicle accumulation between the QDUE and the DSO for all regions, respectively.505
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Figure 9: Accumulation trajectories NIJ for the QDUE scenario of R1 – R4.
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Figure 10: Accumulation trajectories N∗
IJ for R1 – R4 operating in the DSO. Note that the dashed line represents

the aggregated vehicle accumulation NI of the DSO and the highlighted area the performance improvement.

The accumulation trajectories of the DSO show that in every region, vehicle accumulation is506

reduced. In region R1, where the network experiences congestion, an operation in DSO allows507

mitigation of congestion. Although N∗1 exceeds the critical vehicle accumulation for a short time,508

the congestion dissolves faster than in the baseline scenario (N1). The same behavior is shown509

in R2. In R4, the vehicle accumulation peak around 1000 [s] of simulation time can be reduced510

significantly. Only in R3 the accumulation peak slightly higher than in the QDUE. However, an511

improvement is shown when the exogenous demand and consequently vehicle accumulation gets512

lower. An inspection of the cumulative trip endings for every region R1– R4 additionally shows513
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Figure 11: Cumulative trip endings MII and M∗
II for the QDUE and DSO for R1 – R4. The enclosed areas denote

the performance improvement

the performance improvement (Figure 11). The area between every pair (MII ,M
∗
II) indicates514

that in all regions, users can finish their trip earlier; i.e., the experienced reduction in delay is515

depicted. Also, both equilibria show the same magnitude of final cumulative trip endings, proving516

that the optimization problem is formulated correctly.517

A quantitative analysis of the performance metrics TSI , TTS, TTD, and N between the518

QDUE and DSO are compiled in Table 5. When the system operates in the QDUE and splitting519

rates are determined by Dijkstra algorithm and MNL the following results are determined: The520

TS of R1 is 17.97 [veh·h·105] and of R2 23.03 [veh·h·105]. The results for the DSO show a reduction521

to 14.03 [veh·h·105] and 21.01 [veh·h·105] for R1 and R2; corresponding to an improvement of522

21.93% and 8.77%, respectively. The border regions R3 and R4 show a TS of 27.72 [veh·h·105]523

and 19.42 [veh·h·105], respectively. In the DSO, the metrics reduce to 26.50 [veh·h·105] and 16.51524

[veh·h·105] which corresponds to an improvement of 4.39% and 15.00%, respectively. Note that525

R3 shows the lowest performance improvement as depicted in Figure 10. Finally, the aggregated526

performance is determined with 88.15 [veh·h·105] for the QDUE and 78.06 [veh·h·105] for the527

DSO; resulting in an performance improvement of 11.45% of TTS. We also compare the TTD for528

the whole network: For the QDUE the TTD is computed with 54.23 [veh·km·106]; DSO shows a529

TTD of 49.96 [veh·km·106] corresponding to an improvement of 7.87%. Finally, we also compute530

the number of vehicles served N for both equilibria. The computation supports the consistent531

trip endings in Figure 11: 14.54 [veh·103] are served in the QDUE and also in the DSO.532

Finally, we show the splitting rate signals for the QDUE and DSO in Figure 12, i.e., θIHJ (full533

lines) and θ∗IHJ (dashed lines) for all allowed combinations of both variables. The difference in534

route choice between the two equilibria can be observed especially between 500 seconds and 1500535

seconds of simulation time, where a certain high vehicle accumulation is present. In the QDUE536

all of the route choice signals show one path with the highest probability of being chosen. During537

high vehicle accumulations, this probability reduces, and the other two paths become more likely538

to be chosen. Contrary, in the DSO, traffic is guided via one path with the highest probability539

of θ∗IHJ = 1. Additionally, it can be observed that after 1500 seconds of simulation time, the540
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Table 5: Comparison of performance metrices for the QDUE and DSO, respectively. Performance improvements
(stated as Impr.) and the difference of vehicles (stated as Diff.) are denoted separately.

QDUE DSO Impr./Diff.
[veh·h·105] [veh·h·105] [%]

TS1 17.97 14.03 21.93
TS2 23.03 21.01 8.77
TS3 27.72 26.50 4.39
TS4 19.42 16.51 15.00
TTS 88.15 78.06 11.45

QDUE DSO Impr./Diff.
[veh·km·106] [veh·km·106] [%]

TTD 54.23 49.96 7.87

QDUE DSO Impr./Diff.
[veh·103] [veh·103] [veh]

N 14.54 14.54 0

DSO route choice signals change more frequently than in the QDUE. This holds for all path541

possibilities except θ1H4. Note that the smoothness of the signals differs because of the control542

horizon Tc; i.e., the routing signals of the DSO only change every 80 seconds after a period of543

Nc; whereas the QDUE signals are updated for every simulation time step of 20 seconds. The544

difference in the signals indicate a significantly different routing of users through the network.545

Hence, it is shown that there must be a particular incentive for users to switch their route from546

QDUE to DSO. Finally, note that the DSO signal only changes after a period of the control547

horizon Nc passed and the solution of the LRHO problem is applied.548

5.3. Training and application of pricing models549

Both equilibria serve as an input for training the MNL models and for online prediction of the550

generalized costs. First, we take the QDUE scenario and extract the variables which are needed551

to create the dataset. Hence, we utilize the splitting rates θIHJ , the transfer flows MIH , and the552

fraction of the vehicle and critical accumulation nc,I of all regions. We compile a dataset with553

150 data samples, i.e., a training data set with 105 samples (70% of the data) and a test data set554

with 45 samples (30% of the data).555

We utilize the designed MNL architecture of two fully connected networks with 50 layers each.556

The training of each model is performed with 100 epochs, a batch size of 64, and a validation split557

of 20%. Additionally, the learning rate with an exponential decay function is utilized with the558

following parameters: initial learning rate of 0.01, decay-steps of 10000, and a decay rate of 0.9.559

The optimizer Adam is used with standard settings, and the loss function MAE is utilized. Note560

that the listed parameters result from the hyperparameter tuning procedure. Figure 13 depicts561

that all the models learn efficiently, improve performance via epochs, and no overfitting occurs.562

Thus, the models can be included in the framework and serve as online prediction engines for563

optimal generalized costs and are then utilized for the price calculation. The results of the online564

application result in accumulation trajectories as shown in Figure 14. Note that the solid black565
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Figure 13: Loss and validation-loss for all tolls where pricing with p∗IH is performed.
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Figure 14: Accumulation trajectories NIJ for aggregated accumulation results QDUE and DSO for R1 – R4.

line is the QDUE, the dark grey dashed line constitutes the DSO, and the light grey dashed line566

the pricing results. Finally, the quantitative analysis is given in Table 6.567

Applying (a) the prediction models for the optimal generalized costs and (b) the optimal568

pricing functions show that the model performance can be increased compared to the QDUE.569

In R1 the peak of the congestion can not be further mitigated with pricing compared to the570

DSO. Nevertheless, the congestion dissolves slightly faster than in the QDUE. Afterward, the571

vehicle accumulation trajectory of the pricing result is slightly higher than the DSO but shows572

improvement compared to QDUE. As denoted in Table 6 the DSO improved the situation by573

21.93%; the pricing methodology allows the improvement of TS1 by 14.32%. In R2 and R3 the574
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Table 6: Comparison of performance metrices for the QDUE and DSO, respectively. Performance improvements
(stated as Impr.) and the difference of vehicles (stated as Diff.) are denoted separately.

QDUE Impr./Diff. (DSO) Impr./Diff. (Pricing)
[veh·h·105] [%] [%]

TS1 17.97 21.93 14.32
TS2 23.03 8.77 12.15
TS3 27.72 4.39 5.23
TS4 19.42 15.00 13.47
TTS 88.15 11.45 10.71

QDUE DSO Impr./Diff.
[veh·km·106] [%] [%]

TTD 54.23 7.87 8.62

QDUE DSO Impr./Diff.
[veh·103] [veh] [veh]

N 14.54 0 0

pricing methodology even increases the improvement of TS2 and TS3 from the DSO (8.77% and575

4.39%) to 12.15% and 5.23%, respectively. In R4 the improvement of TS4 by applying pricing is576

13.47% compared to 15.00% when operating in the DSO. Overall, the pricing methodology can577

decrase the TTS in the network by 10.71%. The TTD shows an improvement of 8.62%. This is578

surprisingly higher than in the DSO with 7.87%. The difference in vehicle accumulation N is579

again 0 supporting the correct formulation of the methodology.580

The pricing function for all 12 tolls derived during the online application of our pricing581

methodology are depicted in Figure 15. Also, we compute average prices for all tolls during the582

devices are active. The results indicate which toll sets – on average – the highest and lowest price583

(Table 7.). Note that the diagonal elements with I = H are not available, as there are no tolls for584

trips that do not traverse any region border (marked with NA for not available).585

All the implemented tolls are active 2/3 of the simulation time. For leaving R1 the highest586

price has to be paid when traversing through R3: The price increases with rising demand in587

the network but shows the highest peak around 800 seconds of simulation time. Additionally,588

the prices remain longer above 2 CHF than the prices when traversing through R2 or R4. On589

average (when the tolls are active) the prices are 1.53 CHF, 1.74 CHF, and 1.35 CHF to traverse590

through R2, R3, R4, respectively (Table 6). In R2 the pricing functions to traverse through the591

neighbors R1, R3, R4 show different behavior. One can note that the p∗21 shows the highest price592

with 2.71 CHF around 800 seconds of simulation time, complying with the experienced congestion593

in R1, i.e., the dynamic pricing reacts to influence the user’s route guidance. Additionally, the594

alternatives are priced lower, i.e., p∗23 < p∗21 and p∗24 < p∗21. After the congestion dissolves, the595

price to traverse through the city center decreases and remains lower than the other alternatives.596

The average prices from Table 6 are computed for R2, R3 and R4 as follows: 1.46 CHF, 1.35597

CHF, and 1.39 CHF. Also, tolls that regulate transfer flows starting from R3 to enter the city598

center (R1) react according to the experienced congestion. Nevertheless, the highest magnitude is599

computed for traversing to region R4. The averages prices are computed as follows: 1.53 CHF600
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Figure 15: Derived tolls for R1 – R4; every region is controlled by three tolls p∗IH .

Table 7: Average prices for all tolls pIH in [CHF].

p∗IH [CHF] H = 1 H = 2 H = 3 H = 4

I = 1 NA 1.53 1.74 1.35
I = 2 1.46 NA 1.35 1.39
I = 3 1.53 1.43 NA 1.74
I = 4 1.49 1.41 1.51 NA

for p∗31, 1.43 CHF for p∗32, and 1.74 CHF for p∗34. This also shows that on average, the pricing601

methodology sets an incentive for user’s to traverse through R2 for the first 1000 seconds of the602

simulation. In R4 again, the highest pricing peak is shown for traversing the city center; after the603

congestion dissolves, the pricing remains high for traversing through R3. The averages prices are604

computed with 1.49 CHF, 1.41 CHF, and 1.51 CHF, for R1, R2, and R3, respectively.605

6. CONCLUSION606

The paper presents the derivation of optimal price functions for a multi-region network with607

homogeneous regions characterized by well-defined MFD functions. First, the optimal routing608

information (splitting rates) is derived with an LRHO optimization problem, providing network609

system optimum, which can be utilized as an ideal target for determining dynamic pricing functions.610

A linearization methodology was implemented to relax the nonlinear optimization problem that611

allows the application of LRHO. The proposed method from the literature was extended and612

utilized for obtaining optimal splitting rates in the multi-region network. Accumulation trajectories613

are utilized to show the system improvement of the methodology with TS for every region, and614

TTS and TTD for the entire network as performance indicators. The results are compared to615

the QDUE scenario, which is derived by utilizing the Dijkstra route choice algorithm and an616

MNL. The proposed linear program reduces TTS significantly and guarantees an optimal and617
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fast solution instead of nonlinear formulations. The computed performance metrics show an618

improvement in the TTS of 11.45% and improved TTD of 7.87%.619

Consequently, an optimal pricing methodology is designed to target pricing network users620

according to the difference between QDUE and DSO. MNL models are trained for every imple-621

mented toll in the network to determine the optimal pricing functions. Thus, the generalized622

costs of DSO can be predicted accurately. A price matrix is computed online with the utilization623

of the generalized cost matrices of QDUE and DSO. The online computation and application624

allow the real-time derivation of prices that reflect the current traffic state in the network and625

simulate the user’s route choice reaction to pricing. The framework allows improving the QDUE626

state by 10.71% for the TTS and by 8.62% for the TTD. Hence, the pricing functions significantly627

push the multi-region network towards an operation closer to the DSO.628

Future research should focus on running more extensive experiments with different toll set-ups629

i.e., only specific tolls are active (e.g., tolls protecting the city center or only border region630

tolls). Also, the prediction of the generalized costs should be further investigated; e.g., the631

performance of the framework with other route choice model implementations is an interesting632

research direction. Based on recent research, the simulation plant should also be extended with a633

trip length model (for now, only average trip lengths are considered), allowing extensive analysis634

of users’ travel times in the system. Furthermore, a weighting of the different regions can be635

applied in the optimization procedure to account for the different region parameters (i.e., size,636

storage capacity, etc.). This improves the quality of the modeling further and also contributes to637

further developments of the proposed methodology.638
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