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Abstract

The return for given security or market index is very stochastic and
non-stationary with many regime shifts and it seems to be unpredictable or
very hard to predict. This is not the case with its second moment - volatility.
Volatility is a measure of dispersion of returns and, therefore, it quanti�es
the level of uncertainty.

(G)ARCH is the most popular model for forecasting volatility and a well-
accepted benchmark solution to this problem. There are many variants of
ARCH model and the most popular of them are explored and compared in
this thesis. However, issue with ARCH is that it does not explain nor takes
into account volatility at different frequencies. Another part of this thesis
deals with multifractal models which are built in order to account for this
downside of (G)ARCH.

Another type of models that proved to be good are regime-switching
models. These models deal with modeling underlying process as a Markov
process and assume that volatility is determined by components that have
different degrees of persistence and that switch over time. Some results based
on regime-switching models are outperforming (G)ARCH and therefore are
de�nitely one of the topics of most interest when it comes to volatility
predictors.

In this thesis, we show that none of the volatility predictors captured
well the pandemic in�uence on market volatility and propose including
exogenous variables to the model. We also show that MSM outperforms
other models in the low volatility state, but does not do so when markets
are unstable. The performance of mentioned models depends highly on the
underlying asset and we evaluate them on four different assets.

Lastly, after building volatility predictors, momentum investment strate-
gies and volatility-based risk hedging is discussed.
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Chapter 1

Introduction

Financial markets are very complicated systems in�uenced by many peo-
ple and companies, by various timings across many, more or less, correlated
assets. They are naturally driven by news which can range from weather
news [46], up to the presidential tweets such as the ones from the former
president of the US, Donald Trump [31], or technological innovations that
might not come to production in years [22].

Arguably, �nancial markets are most interesting when they are volatile,
i.e. unstable. Volatility, sometimes also called fear index, since it is often
associated with risk, measures the magnitude of the change in asset prices.
Therefore, volatility forecasting plays an important role for almost everyone
involved in the �nancial markets from options pricing, investment, portfolio
optimization, risk management, and more concretely Value-at-Risk to the
purely impressive scienti�c challenge. Moreover, being in accordance with
Ef�cient Market Hypothesis, it has been shown that returns themselves are
dif�cult to forecast. On the other hand, volatility is, to a certain extent,
predictable. The main topic of this thesis is the comparison of the various
volatility forecasting models.

It comes as no surprise that forecasting �nancial market volatility has re-
ceived extensive attention, especially with the rise of popularity of derivatives
- main instruments used for hedging. It is the only not directly observable
variable in the Black-Scholes formula for options pricing and option values
are, therefore, mostly determined by market forecasts of future volatility.
Volatility is particularly important for options traders since higher volatility
makes options more valuable. Except for this obvious reason for interest,
it also represents a challenge to the researchers and is thus a very popular
topic in academic circles. When Black-Scholes formula was invented, only a
few types of options were traded and even they had short maturity.

Market participants use diverse strategies and investment horizons de-
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pending on beliefs or their core business. While there are participants such
as high-frequency speculators, arbitrageurs and day traders who exploit
opportunities over the very short time periods, there are also participants
such as insurance companies or pension funds that look for opportunities
that can span over several decades. Of course, with the rise of technology
and machine learning, algorithmic trading becomes increasingly popular so
that even long-run investors engage in high-frequency trading.

This thesis is based on the two main volatility forecasting models and
their alterations. First one is Robert Engle’s ARCH and its famous con�gu-
ration GARCH and the second one is motivated by the research by Calvet
and Fisher in which they claim that Markov-switching Multifractal (MSM)
can outperform some of the most reliable forecasting models, including
previously mentioned (G)ARCH. Markov-switching multifractal, or shortly
MSM, is considered a bridge between two important features of volatility -
multifractality and regime-switching. It takes regime-switching idea, follow-
ing the work of Hamilton, and intuition of multifractality which is in essence
idea that there are multiple shocks of different degrees of persistence. The
models were evaluated and tested on various datasets of different liquidity
and characteristics. Findings and conclusions are reported in the chapter 4.

At the end, based on the �ndings in this thesis, momentum-like trading
strategy is proposed, evaluated on multiple datasets and compared to the
benchmark models. Momentum is also known as a trend-following strategy
and it is one of the oldest and most well-researched phenomena in the �nance.
Existence of momentum is considered a market anomaly and �nancial theory
struggles to explain it. Big factor in momentum strategy is precisely volatility
and while momentum is overall well-performing strategy, momentum crashes
are not an unknown term in �nancial world. Momentum crash refers to worse
performing stocks in the market rebounding more quickly than winners, a
famous example being Spring 2009.
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Chapter 2

Volatility

2.1 De�nition

Volatility is a statistical measure of the dispersion of returns. It has
no exact or �xed de�nition but is often referred to as variance, usually
denoted by s2 or a standard standard deviation of logarithmic returns from
expectation and it represents the degree of variation of a price over time.

The logarithmic return of an asset over a time interval Dt is de�ned as

rDt = ln pt � ln pt�Dt

where pt is the price of an asset at time t.

In the literature rDt is usually written shorter as rt and it represents
logarithmic return at time t after some assumed Dt. Volatility is, therefore,
de�ned as

s2 =

vuut 1
N � 1

N

å
t=1

(rt � flr)

where flr is the average return over this sample period and N is the number
of days. Note also that volatility is sometimes computed as the standard
deviation of price returns rather than logarithmic price returns.

2.2 Types of volatility and terminology

There are many possible meanings of word volatility depending on the
(missing) adjective in front of it.
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2.3. Stylized facts about volatility

Realized volatility, sometimes also called statistical volatility, is, as the
name says, the volatility realized in the market, i.e. the one that has already
been measured. It is empirical unconditional variance over a given time
period and can be calculated as the sum of squared returns, most commonly
intraday ones.

Conditional volatility is the volatility of a random variable given some
additional information such as the past values of itself or model errors in the
past.

Implied volatility comes from the price of an option and represents its
volatility in the near future. Option pricing models such as the most popular
Black-Scholes model calculate option price based on option’s strike price, time
to expiration, underlying price and volatility. Since the �rst three variables
in the formula are observable variables, volatility is the main unknown. On
the other hand, based on option prices in the market, one can calculate its
implied volatility, or, in other words, reverse the equation acting like the
option price is the known variable.

One should note that while realized volatility can be calculated even for
securities without any options on them, implied volatility does not exist
without options. Among many differences of implied and realized volatility,
main is that implied volatility is always forward-looking, while realized
volatility can relate to the past when it is often called historical volatility, or
to the future when it is called future realized volatility.

Volatility can also vary depending on a time horizon. Annualized volatil-
ity is the standard deviation of yearly logarithmic returns. The volatility for
time horizon T in years can be calculated as

sT = sannually
p

T

Using the same analogy, if by sdaily we denote the daily volatility, then
we can calculate volatility for time horizon of T trading days as

sT = sdaily
p

T

In the special case of converting daily volatility to annualized, we can set
the value of T to 252 in the previous formula since there are approximately
252 trading days in a year.

2.3 Stylized facts about volatility

There are some well-known regularities when it comes to the asset returns
and volatility [37].
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2.3. Stylized facts about volatility

1. Horizontal volatility dependence. Volatility is mean-reverting and
tends to cluster. Except from that, unlike returns, volatility has long-
memory, i.e. it exhibits autocorrelation.

2. Extreme events. The returns distribution has fat-tails. It is noticeable
that returns tend to stay close to mean or very far from it.

3. Leverage effect. Leverage effect is the effect of volatility having a
negative correlation with returns. In other words, it is more common
that the volatility increases after negative returns than after the positive
ones. This is also known as asymmetric volatility phenomenon.

4. (Asymmetric) vertical dependence. Volatility acts differently depend-
ing on the time interval we are looking at.

2.3.1 Horizontal volatility dependence

Given Ef�cient Market Hypothesis, �rst moment of the asset returns is
less predictable than volatility - its second moment1. In other words, while
return time series exhibit absence of linear autocorrelation2 and very short
memory, �nancial volatility has long-range linear correlation which is known
as clustering. That means that large or small price changes are likely to be
followed by respectively large or small price changes which is illustrated
in the �gure 2.1. While in the �gure 2.1 we can clearly see the clustering
of the returns data, �gure 2.2 highlights the absence of clustering in the
standardized residuals after �tting the model to the data.

Figure 2.1: Returns of S&P500 data from
January 2010 to March 2021

Figure 2.2: Standardized residuals of S&P500
data from January 2010 to March 2021

The autocorrelation coef�cient measures the unconditional correlations
of two series while partial autocorrelation measures the relationship of two

1For the distribution, mean would be the �rst moment, volatility the second, skewness
the third and kurtosis the second moment.

2This is actually not entirely true. It is shown that return series contain signi�cant
autocorrelations during the early part of the day.
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2.3. Stylized facts about volatility

series taking into account the relationships of all previous lags. The difference
is, therefore, that autocorrelation of lag k is the correlation between Xt and
Xt+k while the partial autocorrelation of lag k is the conditional correlation
of Xt and Xt+k given the values of Xt+1, Xt+2, ..., Xt+k�1.

Figure 2.3: Partial Autocorrelation of returns
series for S&P500 data from January 2010 to

March 2021

Figure 2.4: Autocorrelation of returns series
for S&P500 data from January 2010 to March

2021

Figure 2.5: Partial Autocorrelation of squared
returns series for S&P500 data from January

2010 to March 2021

Figure 2.6: Autocorrelation of squared returns
series for S&P500 data from January 2010 to

March 2021

Figure 2.7: Partial autocorrelation of absolute
returns series for S&P500 data from January

2010 to March 2021

Figure 2.8: Autocorrelation of absolute returns
series for S&P500 data from January 2010 to

March 2021

On the �gures 2.4-2.8 we can see correlograms of S&P500 series both
for returns series, squared returns series and absolute returns series. While,
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2.3. Stylized facts about volatility

for example, partial autocorrelation graph of returns series appears to be
random and to be equally likely positive or negative from one observation
to the next one, the partial autocorrelation of squared returns and absolute
returns series shows signi�cant correlation for the shorter lags. This tells us
that while the sign of the value of observations is independent of the past,
the magnitude of the change in observations may show correlation. As can
be seen in all of the plots, at lag 0, the correlation is 1 as the data is perfectly
correlated with itself. The correlograms are done on the daily returns data
even though similar plots can be obtained by checking cumulative intraday
returns (see for example [21]).

As already mentioned, when returns are largely negative (or positive) on
a given day, we would expect large movements on the following days as well.
This is one of the main characteristics of volatility and it is incorporated in
the ARCH model that will be explored in the next chapter. Persistency of
a volatility is present both within small and large intervals of time, namely
both within the trading day and across many trading decades.

2.3.2 Extreme events

Distribution of asset returns is much further from normal distribution as
was once thought. There exists excess kurtosis and therefore asset returns
follow leptokurtic distribution.

An easy way to check for normality is to look at the QQ plot where
deviations from the red line represent differences from normal distribution.
On the �gure 2.9, one can see that distribution of returns of S&P500 data de-
viates from normal distribution on both tails while having bigger deviations
on the left one. While the mean of the plotted distribution is around 0.00
and standard deviation is around 1.09, we have negative skew of -1.11 and
kurtosis of 24.20.

There are multiple ways to deal with this characteristic of the distribution
of asset returns. This ranges from incorporating this stylized fact into the
model used to explain the returns to looking at other distributions, most
notably student’s t-distribution which will be introduced in the next chapter.

What is also common is that markets experience shift in the volatility
level. This usually happens after some big market event such as Asian crisis
in 1997 impacting South Korean Stock Exchange Composite Index (KOSPI).
Another common reason for the shift is policy changes [21].

2.3.3 Leverage e�ect

Leverage effect or volatility asymmetry corresponds to a negative correla-
tion between past returns and future volatility, namely, volatility increases
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2.3. Stylized facts about volatility

Figure 2.9: QQ plot for S&P500 data from January 2010 to March 2021

when the stock price falls [19]. The unconditional distribution of returns is
negatively skewed since large negative returns are more common then the
large positive returns. While for individual stocks leverage effect is small
and decays over 50 days, for stock indices this effect decays over 10 days but
is also much bigger.

Leverage effect was �rst discussed by Black and this effect is very im-
portant for options prices. One of the unanswered questions in this area is
also whether volatility increases after prices drop or prices drop because of
volatility increase. While Black claims that price drop is the cause of volatility
increase since price dropping makes bankruptcy of company more probable
and therefore stock more volatile, there is also another direction claiming that
it makes more sense that increase of volatility makes the stock less attractive
which decreases its price [13].

Some of the possible explanations include volatility feedback effect which
explains increase of future volatility by market operators triggering sell orders
which makes more shares available and therefore decreases the price of the
asset.

While some consider volatility feedback effect and leverage effect two
explanations of the same underlying phenomena, others claim that volatility
feedback effect explains why an increase in the volatility results in a negative
return and leverage effect explains negative return causing an increase in the
volatility. Lastly, Bekaert and Wu [11] proposed alternative explanation for
volatility causing instability in �nancial markets. Namely, they proposed that
those two effects may be interacting and together producing excess volatility,
volatility persistence and volatility smile.

There are numerous observations related to the leverage effect most of
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2.3. Stylized facts about volatility

which are collected in [19] to which I refer the interested reader.

2.3.4 (Asymmetric) vertical dependence

Data appears to have different characteristics depending on the frequency
of intervals over which it was observed. For example, the leptokurtic distribu-
tion is more observable for longer time intervals. This also leads to different
preference when it comes to models since while some models perform better
on the shorter horizons, others do so for the bigger ones. High-frequency
trading data has become widely available thus leading to the recent increase
in the models based on the intraday data. There are many studies that
came to the conclusion that high-frequency volatility models outperform
(G)ARCH-like models [34]. This is, as expected, especially true for short
horizons. However, usually best-performing models are those that combine
low frequency and high-frequency data.

What is also true is that high-frequency data results in the better estimates
of the actual volatility. The best possible frequency of the data depends,
however, on the market. The data should not be too frequent since this leads
to noisy estimates. In the developed and highly liquid market such as the US
one, one usually takes 5-minute intervals [21]. Another method frequently
applied to the high-frequency estimates is to take the mean of a longer time
period such as daily or weekly one since for a small sample, the sample
mean is very noisy estimate of the true mean. This thesis, however, does not
consider such models and evaluations because of the lack of the access to
such data.
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Chapter 3

Volatility forecasting

3.1 Types of volatility models

Poon and Granger compared 93 studies [21] on volatility forecasting tested
out-of-sample, looking at various assets among many time horizons. Based
on those results, it is no surprise that option-implied volatility is �a must� in
industry since their conclusion was that its forecasts are more accurate then
those of time series models. Even though among time series models none
appeared to be a lot better than others, according to them, historical volatility
appears to perform slightly better than generalized autoregressive conditional
heteroscedasticity. Those are followed by, at the last place, stochastic volatility
models.

As noted in the paper, there are four dominating types of volatility
models:

1. Historical volatility models. As the name says, historical volatility
considers changes in the previous time periods when forecasting future
volatility. The calculation itself may be based on intraday changes or
changes from one closing price to the next one.

Some of the historical volatility models are simple historical averages,
random walk models, autoregressive moving average models as well
as exponential smoothing models.

The general formula for historical volatility models is:

�st = j1st�1 + j2st�2 + ... + jtst�t

where �st is the expected standard deviation at time t, j the weight
parameter and s is the historical standard deviation for period indicated
in the subscript.
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3.1. Types of volatility models

Most of the historical volatility models are considered na¤�ve since they
do not directly model most of the stylized facts about the volatility.

Another disadvantage of historical volatility models is that they are
largely affected by large outliers in the past. Namely, the volatility they
forecast will be affected by the outlier as long as it is in the volatility
estimation period. One of the ways to avoid this is to truncate the
outliers by imposing a cap on the largest values. This is of course done
if the outliers really represent the outliers1 or, in other words, exception
that is not likely to happen again anytime soon [21].

While most of the historical models are very simple, they can also be
quite sophisticated like realized volatility model of Andersen, Bollerslev,
Diebold and Labys [3].

2. (G)ARCH-like models. As previously mentioned, Engle introduced
autoregressive conditional heteroscedasticity (ARCH) model in 1982
for which he received a Nobel prize in 2003. Its more popular gen-
eralization, generalized autoregressive conditional heteroscedasticity
model, or shortly GARCH, was introduced by his PhD student Boller-
slev in 1986 and, since then, many extensions of the (G)ARCH have
been proposed that are meant to account for various stylized facts of
volatility.

The meaning behind the name (G)ARCH is exactly one of its styl-
ized facts. Conditional heteroscedasticity means that data has time-
dependent varying characteristic, while autoregressive means that the
model is estimating volatility at time t based on the information known
up to the time point t� 1.

Word heteroskedasticity comes from the ancient Greek language and
it means �different dispersion�. It refers to the variance of residual
or error term that varies. One of the main problems in calculating
volatility using Black and Scholes formula brie�y explained later is
that it is based on an assumption of the constant volatility. Today, it
is widely accepted that volatility is not constant. While Black-Scholes
formula leads to elegant closed-form formula for the volatility, it makes
an assumption which is in general not true.

3. Stochastic volatility models. Stochastic volatility models have at-
tracted interest recently as one of the alternatives to the popular
GARCH model. Stochastic volatility models, similarly to GARCH
models, aim to correct constant volatility assumption of implied volatil-
ity models, by considering volatility a random process governed by
state variables. For example, changes in price level of the underlying

1Frequent large numbers should not be called outliers.
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3.1. Types of volatility models

security, tendency of volatility to revert to some long-run variable and
variance of the volatility process itself have an effect on the volatility
forecasting. Stochastic volatility models are explained with following
formulas:

rt = m + #t

#t = zt exp(ht/2)

ht = w +
p

å
j=1

b jht�j + vt

where return rt is de�ned as usually and where vt is an innovation
term and variables vt and zt can be correlated.

Another advantage of stochastic volatility models is that they have a
noise term and are therefore less affected by large outliers than the
ARCH models. On the other side, ARCH models are less affected by
large outliers than historical volatility models [21].

The survey among papers done by Poon and Granger in [21] also leads
to the conclusion that despite added complexity, stochastic models do
not provide better volatility forecasts. These models are not further
discussed in the thesis.

4. Option-implied models. Option-implied models are based on the
implied volatility which is brie�y described in the chapter 2. This is a
very popular approach because of the belief that option traders, and
therefore option prices, contain in itself all the information including
the information extracted from past information. Implied volatility
is, therefore, future volatility expected by the options market. When
there are multiple options, having the same expiration, listed on the
same asset, each can have different implied volatility which is known
as volatility skew or smile.

If by g we denote the model for pricing options, by c the price of the
option, by S the price of the underlying asset, by X the exercise price,
by s the volatility, by R a risk-free interest rate and by T the time to
option maturity Black-Scholes formula claims the following relation

c = g(S, X, s, R, T)

which we can revert to get the volatility.

Black-Scholes implied that standard deviation tends to be higher than
actual volatility which is usually linked to volatility risk premium
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leading to historical volatility sometimes being used for calibration.
One additional insight is that low volatility is often underestimated
and high volatility overestimated. Another fact about implied volatility
forecasts is that they work worse for smaller markets such as the one in
Sweden [21].

3.2 (G)ARCH models and alterations

3.2.1 Some notation

A white noise process consists of random variables that cannot be pre-
dicted. Therefore, a time series is white noise if the variables it consists of
are independent and identically distributed with a mean of zero.

A residual is de�ned as the difference between the observed value of a
variable and its predicted value. Ideally, successive residuals are uncorrelated
with each other and, therefore, they constitute a white noise time series. If
that is the case, the model has predicted all the possible components and
what is left is the unpredictable white noise.

A stationary time series is time series whose statistical properties are con-
stant over time. These properties can include mean, variance, autocorrelation
etc.

Skewness is a measure of the lack of symmetry in the data.

Kurtosis is a measure of heavy-tailedness of the data compared to the
normal distribution.

3.2.1.1 Distributions

Even though, as already mentioned, asset returns do not follow normal
distribution, it still has an important spot in �nance and is basis for the
other distributions. The probability density function of the standard normal
distribution is:

f (x) =
1

s
p

2p
e�

1
2 ( x�m

s )2

where m is the mean or expectation of the distribution, while s is its
standard deviation.

Student’s t-distribution is a distribution that is more representative of
the real �nancial data. It is symmetric and bell-shaped like the normal
distribution but has heavier tails and therefore is more likely to produce
results that fall far from its mean. Student’s t-distribution has parameter n
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3.2. (G)ARCH models and alterations

which indicates the shape of a curve. The larger the n is, the more peaked the
curve becomes, which implies higher kurtosis or in other words heavier tails.

The probability density function of the student’s t-distribution is:

f (x) =
G
� n+1

2
�

p
npG

� n
2
�
�

1 +
x2

n

�� n+1
2

where n is, as mentioned, the number of degrees of freedom and G is the
gamma function. In this thesis the constraint n > 2 is usually assumed to
ensure that the second order moment exists.

While considering student’s t-distribution gives us needed heavier tails, it
does not account for negative skewness. If we want to model asymmetry in
the distribution, we can represent data with skewed student’s t-distribution
which has additional parameter l that indicates skewness. l is between -1
and 1 and l < 0 indicates negative skewness. There are various ways in
which one might introduce skewness to the distribution and I would refer
the interested reader for this speci�c case to the [17].

Generalized error distribution, also known as the exponential power
distribution, is a parametric family of symmetric distributions. The proba-
bility density function of the standardized generalized error distribution is
described with:

f (h; n) =
ne�

1
2 jh/ljn

l21+ 1
n G
� 1

n
�

where n > 0 is the shape parameter and

l =

 
G
� 1

n
�

4
1
n G
� 3

n
�

! 1
2

3.2.2 (G)ARCH model

Assume that we want to predict the return rt of an asset at the time t
having all of the information up to that time point available. Denote the
predicted mean return at time t with rt. The prediction will most likely not
be correct and we will have some remaining residual #t.

rt = mt + #t

Similarly, we model the volatility as the expected variance given all the
information up to the point t. Volatility is not directly observable but is
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3.2. (G)ARCH models and alterations

related to the prediction error since if the prediction works well, the residual
in the volatility is just the volatility multiplied with some white noise.

#t = st � zt

where zt is a strong white noise process and st is a time-dependent
standard deviation. The series s2

t is then modelled as

s2
t = a0 +

p

å
i=1

ai#2
t�i

where a0 > 0 and ai � 0 for i > 0. In the literature a0 is often named w
and those two notations will be used in the thesis interchangeably.

The lag length p � 0 is part of the model speci�cation. It can be decided
using the Box-Pierce or its more popular modi�cation Ljung-Box test for
autocorrelation signi�cance.

In practice, the generalized version of ARCH, GARCH, is more commonly
used. GARCH model is ARCH that incorporates a moving average compo-
nent together with the autoregressive component. As already mentioned,
Tim Bollerslev, the student of Robert Engle himself, extended the ARCH
model to allow volatility to have an additional autoregressive element within
itself. The GARCH(p,q) model equation is as follows

s2
t = w +

p

å
i=1

ai#2
t�i +

q

å
j=1

b js2
t�j

Besides p-period lags of residuals, GARCH adds q-period lags of vari-
ances for predicting the current variance. Its most basic example is GARCH
(1,1) model. In the formula above, w is a constant term, b is an autoregressive
parameter and a is a moving-average parameter. Therefore we could say that
complete GARCH model consists of three components: a mean model, a
volatility process and a distribution of the standardized residuals.

3.2.3 GARCH(1,1)

A very basic but very effective and widely used model is GARCH(1,1)
described with the following equations

rt = m + #t

#t = stet
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s2
t = w + a#2

t�1 + bs2
t�1

As before, some conditions need to be met, namely all of its parameters w,
a, and b need to be non-negative. Secondly, in order to ensure mean-reverting
to the long-run variance, we need a + b < 1. The long-run variance is equal
to w

1�a�b . As follows from the de�nition, the larger the a, the bigger the
immediate impact of residuals also called prediction errors or shocks. For
a �xed a, bigger b means longer duration of the impact or in other words
higher persistence for both low and high volatility periods.

3.2.3.1 Parameter estimation

Parameter estimation of the model GARCH(1,1) is a simple optimiza-
tion process and is done via maximum likelihood estimation in a usual
way. Namely, to perform the maximum-likelihood estimation, one makes
distributional assumptions on et.

If et follows a standardized Gaussian distribution, we have:

LLF = �
N
2

log(2p)�
1
2

N

å
t=1

log(s2
t )�

1
2

N

å
t=1

#2
t

s2
t

If et follows a student’s t-distribution, we have:

LLF = N log

0

@ G( n+1
2 )

q
p(n� 2)G( n

2 )

1

A�
1
2

N

å
t=1

log s2
t �

n + 1
2

N

å
t=1

log
�

1 +
#2

t
s2

t (n� 2)

�

3.2.4 RiskMetrics model
In 1996, JP Morgan suggested special case of exponentially weighted moving

average (EWMA) method for forecasting volatility. Their idea of estimating value
at risk, or shortly, VaR has, since then, become very popular. The usual EWMA
formula is

s2
t = ls2

t�1 + (1� l)r2
t�1

In general, EWMA has some positive properties such as a greater weight upon
more recent observations, but it also has drawbacks such as the �xed decay factor that
introduces subjectivity into the estimation. The decay factor is l and is sometimes
also known as the smoothing constant. This factor determines the exponentially
declining weighting scheme of the observations giving bigger weight to the more
recent information instead of as in the more naive models giving the, for example,
same weight to all the previous information. A high l naturally indicates slower
decay, or, in other words, longer persistence. Even though the optimal l varies by
the asset class, the overall optimal parameter proposed by RiskMetrics uses a lambda
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of 0.94 which is appropriate for analysing daily data and l of 0.97 for monthly data.
This value was found to minimize the mean squared error of volatility forecasts for
asset prices [38].

EWMA is actually a special case of GARCH(1,1) where w = 0 and a + b = 1.
The difference between EWMA and GARCH is that GARCH includes the additional
term for mean reversion.

3.2.5 EGARCH
Exponential GARCH, or shortly EGARCH, was introduced by Nelson in 1991

[39]. This model is based on the log-variance instead of the variance itself and is
introduced in order to address the asymmetric shock effect by adding a conditional
component. Another advantage of EGARCH is that, since it is based on the log-
variance, it does not need non-negativity constraints on a and b. This means that
maximum likelihood optimization is faster during model �tting.

As with the GARCH, we have parameter p which is the order of the symmetric
innovation, q which is the order of the lagged (transformed) conditional variance,
but now we also have parameter o which is the order of asymmetric innovation
and, as already mentioned, this parameter models one of the stylized facts about
volatility - leverage effect.

EGARCH is explained with the following equation:

ln s2
t = w +

p

å
i=1

ai(jet�ij �
p

2/p) +
o

å
j=1

gjet�j +
q

å
k=1

bk ln s2
t�k

where et = #t/st. If g < 0, then negative shocks have a bigger impact on future
volatility than the positive shocks.

3.2.6 (F)IGARCH
One big downside of the GARCH model is its short memory. Another way to

see this downside of GARCH is to consider one of the best performing GARCH
models - GARCH(1,1). One forward iteration of GARCH(1,1) gives

s2
t = w + a#2

t�1 + bs2
t�1

= w + a#2
t�1 + b(w + a#2

t�2 + bs2
t�2)

= w + bw + b2w + ... + a
¥

å
i=1

bi�1r2
t�i

=
w

1� b
+ a

¥

å
i=1

bi�1r2
t�i

(3.1)

This means that volatility shock declines at a single exponential rate b which
implies picking up short-run autocorrelation but not so easily longer cycles.
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Fractionally Integrated GARCH, or shortly, FIGARCH was proposed by Baillie,
Bollerslev and Mikelsen in 1996 [9] and it is meant to capture long-run dynamic
dependencies in the conditional variance. Having its basis on ARFIMA type repre-
sentation, FIGARCH is just an extension of the IGARCH model that allows fractional
orders of integration in the autoregressive polynomial. One of the stylized facts
of �nancial time series is long-memory which can be seen in autocorrelation plots.
While most of the models capture persistence, models like GARCH and GJRGARCH
have memories that are too short to model �nancial time series [21].

The GARCH(p,q) model can be rewritten to the equivalent ARMA-type repre-
sentation [30] which is :

[1� a(L)� b(L)]#2
t = a0 + [1� b(L)](#2

t � s2
t )

where a(L) = a1L + a2L2 + ... + aqLq and b(L) = b1L + b2L2 + ... + bpLp are
lag operators. The integrated GARCH(p,q) process is then

[1� a(L)� b(L)](1� L)#2
t = a0 + [1� b(L)](#2

t � s2
t )

and fractionally integrated GARCH is

[1� a(L)� b(L)](1� L)d#2
t = a0 + [1� b(L)](#2

t � s2
t )

where (1� L)d is the fractional differencing operator.

3.2.7 Other famous (G)ARCH-like models
3.2.7.1 HARCH

Heterogeneous ARCH process, or shortly, HARCH describes the conditional
variance as a function of the square of the sum of lagged innovations, or the squared
lagged returns, over different horizons.

Variance is described with

s2
t = w +

m

å
i=1

ali

 

l�1
i

li
å
j=1

#2
t�j

!

Note that lag-1 HARCH is identical to ARCH(1), but, for example if lags are
equal to [1,5,22] the model is

s2
t = w + a1#2

t�1 + a5

 
1
5

5

å
j=1

#2
t�j

!

+ a22

 
1
22

2

å
j=1

2#2
t�j

!
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3.2.7.2 TARCH

TARCH, sometimes also called ZARCH is the model that uses absolute values.

The volatility is described by the following equation:

st = w + aj#t�1j+ gj#t�1jI[#t�1<0] + bst�1

Using the similar principle we can build model with other powers for which the
volatility equation would look like:

sk
t = w + aj#t�1jk + gj#t�1jk I[#t�1<0] + bsl

t�1

where the conditional variance is (sk
t )2/k.

3.2.7.3 GJRGARCH

The GJR-GARCH named after its innovators Glosten, Jagannathan and Runkle
[20] allows the conditional variance to respond differently to the past innovations
depending on whether they are positive or negative. This model is sometimes
called Sign-GARCH and similarly to EGARCH, model is developed to address the
asymmetric shock effect on volatility. g parameter is introduced to account for the
leverage effect and the model is described by

s2
t = w + a#2

t�1 + g#2
t�1 I[#t�1<0] + bs2

t�1

where I is just an indicator function that takes the value 1 when its argument is
true

I[#t�1<0] =

(
0, if rt�1 � m.
1, if rt�1 < m.

(3.2)

3.3 Regime-switching models
Almost any �nancial time series experiences dramatic breaks over a suf�ciently

long period of time and there are many possible reasons for that such as wars,
�nancial panics, changes in government policies, or most recently big pandemics.
Many economic variables behave differently during economic downturns and regime-
switching models are designed to account for that.

Hamilton proposed in [27] that model that describes volatility of a certain asset
should, therefore, change accordingly. On the 9th of March 2020, volatility index
hit the highest level since 2008 �nancial crisis due to the COVID-19 pandemic and
possible in�uence of Russia-Saudi Arabia oil price war. Indeed market volatility has
changed and one possible way of modeling volatility is that for data prior to 9th of
March we use a model such as

yt � m1 = j(yt�1 � m) + #t
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and for data after 9th of March 2020 to use

yt � m2 = j(yt�1 � m2) + #t

where m2 < m1.

Forecasting the model in this way has to take into account that if the process has
changed in the past, it might change in the future. Since the change in regime is not
a foreseeable event, it should be seen as a random variable [27]. To model this, one
needs the way to describe the probability of the changes between regimes.

Denote with s�t regime or state at the time t and let the model have two regimes,
namely s�t 2 f1, 2g. We can then group two of the equations above into

yt � ms�t = j(yt�1 � ms�t�1
) + #t

We can then build a transition matrix where each pij denotes the probability that
the regime j will be followed by the regime i.

In the following section we will discuss one such model and explain the details
of regime-switching through a transition matrix.

3.3.1 MSGARCH
GARCH model was introduced to account for volatility clustering but it comes

with a signi�cant drawback. Volatility might have structural breaks, namely, GARCH
does not change parameters if a big event that in�uences asset volatility happens. In
other words, the pure GARCH model may fail to capture changes in the volatility
dynamics. The very basic idea behind the Markov-switching GARCH is to decrease
the long GARCH persistence by switching from one variance structure to another.

In the �gure 3.1 we can see two GARCH model simulations with different
parameters connected. On the left side we have a low volatility state and on the
right side we have a high volatility state. If we try to estimate this model as a
single-parameters model using GARCH we get a model which has alpha+beta¿1
which means that as time goes, volatility goes to in�nity. This problem clearly
illustrates the issue with structural breaks and a big downside of GARCH and in
general single-regime models. Model that naturally arises is Markov-switching
GARCH, or shortly, MSGARCH. Markov-switching GARCH allows parameters of
GARCH to change over time according to a latent discrete Markov process.

Figure 3.1: Structural break in volatility -
simulation

Figure 3.2: Structural break in residuals -
simulation
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Even though Quandt and Goldfeld were the �rst ones to introduce Markov-
switching regression model, Hamilton’s work [27] is better known. He extended
Markov-switching regressions for AR processes and provided a nonlinear estimation
�lter.

Markov-switching models are applied in many social sciences. Hamilton [27]
was the �rst one to model GDP with a switching process. What followed was
modeling interest and exchange rates, monthly stock returns and even modeling
US states as Democratic or Republican [45]. In health sciences, models are used to
model rapid cycling bipolar disorder as well as incidence rate of infectious disease
in epidemic and non-epidemic states.

Markov-Switching GARCH model consists of K regimes where each is a (G)ARCH-
like model of unique parameters. Namely,

h1,t = w1 + a1y2
t�1 + bh1,t�1

h2,t = w2 + a2y2
t�1 + bh2,t�1

...

hK,t = wK + aKy2
t�1 + bKhK,t�1

As already mentioned, the idea of MSGARCH is to allow parameters of the
GARCH model to vary over time according to a latent dicrete Markov process
instead of being �xed. Well-known problem of GARCH model is that it adapts
slowly and MSGARCH is an attempt to solve this downside.

There are K separate GARCH processes, each being for one regime of the
unobserved Markov chain. Let yt be variable that is observed at time t. We assume
E[yt] = 0 and E[ytyt�l ] = 0 for all l 6= 0 or in other words yt is zero-mean and is
not serially correlated.

If we denote by It�1 the information available as of time t� 1, then the general
Markov-switching GARCH speci�cation can be expressed as:

ytj(st = k, It�1) � D(0, hk,t, xk)

where D(0, hk,t, xk) is a continuous distribution with zero mean, time varying
variance hk,t and additional shape parameters xt.

There are two popular aproaches of the dynamics of the variable st which
represents the regime at time t.

1. First-order ergodic homogeneous Markov chain model [24]

2. Mixture of GARCH models [25]
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3.3.2 First-order Markov chain
Following this approach, it is assumed that st evolved according to transition

probability matrix P

P =

2

64

p1,1 . . . p1,K
...

...
pK,1 . . . pK,K

3

75

where pi,j = P[st = jjst�1 = i] is the probability of transition from state st�1 = i
to state st = j. Each of the entries in the matrix need to satisfy 0 < pi,j < 1, 8i, j 2
f1, ..., Kg and åK

j=1 pi,j = 1, 8i 2 f1, ..., Kg. We also have E[y2
t jst = k, It�1] = hk,t,

meaning that hk,t is the variance of yt conditional on st = k.

3.3.3 Independent states
In this case st is sampled independently over time from a Multinomial distribu-

tion with vector of probabilities w = (w1, ..., wK)T , or in other words P[st = k] = wk.

Estimation of MSGARCH as well as mixture of GARCH can be done with regular
maximum likelihood estimation. Another possible way is to use Bayesian Markov
chain Monte Carlo (MCMC) technique.

3.4 Multifractal volatility models
Besides the mentioned slow adaption to new regimes, one big downside of the

ARCH model is that it does not explain return phenomena at different frequencies.
Multifractal models attempt to overcome this drawback by assuming that volatility
is determined by components that have different degrees of persistence which
randomly switch over time.

Fractals are patterns that are self-similar across different scales and they are
created through a repetition of a single, simpler process. A fractal is basically a
shape that can be separated into parts, each of which is the smaller version of the
whole. The famous examples include Cantor set where one removes the middle
third of the interval or the Koch �ake. Mandelbrot [35] contains a great introduction
to fractal theory and its applications in the natural sciences. The key step between
fractals and multifractals is lengthening or shortening the horizontal time axis so
that the pieces are stretched or squeezed. The simplest multifractal is Mandelbrot’s
binomial measure on [0, 1] and it can be derived as the limit of a multiplicative
cascade as explained as follows. Let m0 be the uniform probability measure on the
unit interval and let m0 and m1 be two positive real numbers adding up to 1. In the
�rst part of the cascade, we de�ne a new measure denoted by m1 whose density
is a step function and which uniformly spreads the mass m0 on the left half of the
subinterval and m1 on the right half of the subinterval. Following the cascade in
the similar way, we split the left interval into two subintervals of the equal length
and allocate to the left subinterval, namely [1, 1/4] a fraction m0 of m1[0, 1/2] while
the right subinterval gets allocated m1. Continuing this process further, we get an
in�nite sequence of measures that weakly converges to the binomial measure. Note
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3.4. Multifractal volatility models

that the mass is preserved since m0 + m1 = 1. This measure can be generalized by
splitting interval into arbitrary many subintervals b at each step of the process and
by randomizing the allocation of mass between subintervals.

Multifractality has been observed in many systems, one important being �nancial
markets. The ease of access and availability of huge amounts of data at different
frequencies has lead to the recent increase in the number of proposed methods.
Some of the most popular models summarized in [30] are the Multiplicative cascade
models whose main idea was already brie�y explained; Multifractal model of asset
returns, or shortly MMAR, that incorporates two important elements - long tails and
long-dependence; Multifractal random walk, or shortly MRW, that models volatility
such that it can be reduced as an exponential of a long memory process; Exponentials
of long memory processes described in [50]; Agent based models and one of the
most popular ones - Markov-switching Multifractal which will be explored further.

Another emerging idea of interest which considers multifractality is based on
de�ning multifractal volatility and including it in the already existing models. One
of the recommended proxies for volatility [28] is

st =

"
1
n

n

å
j=1

r2
j

RV2
j

#

RVt, (3.3)

where n is the number of days in the sample and RVt is the realized variance
calculated by taking the sum of squared intraday returns.

Wei and Wang constructed the formula for multifractal volatility [52]

st =

"
ån

j=1 r2
j

ån
‘=1 Da‘

#

Dat, (3.4)

where Dat is the singularity width from the intraday data on the t-th day.

One can then construct analogous de�nitions to the one widely accepted such as

st =

"
1
n

n

å
j=1

r2
j

Daj

#

Dat (3.5)

and

st =

"
ån

j=1 RV2
j

ån
‘=1 Da‘

#

Dat (3.6)

Dat can then be viewed as a measure of the asset risk [30].

This multifractal volatility de�nition can be incorporated into existing volatility
models for volatility forecasting. The ARFIMA(1, d, 1) model is de�ned as

(1� jL)(1� L)d[RVt � m] = (1� qL)#t

where L is the lag operator, m is the mean of the realized volatility, coef�cients d,
j and q are �xed and unknown, and #t is Gaussian white noise with zero mean and
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variance s2
# . Based on this model, one can construct multifractal volatility model

such as
(1� jL)(1� L)d[MFVt � m] = (1� qL)#t

3.4.1 Markov-switching multifractal
As already mentioned, Markov-switching multifractal, or shortly, MSM is a

model developed by Calvet and Fisher [15] that incorporates volatility components of
heterogeneous durations. In summary, it is discrete-time Markov process with multi-
frequency stochastic volatility even though it can be also speci�ed in continuous
time [15].

The speci�cation is pure regime-switching and has multiple frequencies, arbi-
trarily many states, a dense matrix and requires only four parameters.

MSM volatility is then derived by multiplying a �nite number �rst-order Markov
components which are identical except for their switching probabilities which follow
approximately geometric progression. The construction has closed-form likelihood.

What the authors claim is that compared to GARCH(1,1), MSM has higher
likelihood than GARCH for all four daily currencies they tested it on both in- and
out-of-sample. Since both models have the same number of parameters, using
standard selection criteria such as BIC and AIC would also lead to picking MSM.
Out-of-sample MSM has the accuracy of GARCH on short horizons such as one day
and performs better at longer horizons such as 20 to 50 days, while authors claim
that MSM outperforms MS-GARCH and FIGARCH out-of-sample.

The difference in regime-switching for MS-GARCH and MSM is that MS-GARCH
uses regime-switching only for low-frequency events while MSM uses linear autore-
gressive transitions at medium frequencies and a thick-tailed conditional distribution
of returns. On the other hand, MSM captures long-memory features, intermediate
frequency volatility dynamics and thick tails in returns.

What is interesting about MSM is that, usually, one uses small number of regimes
in the model since it is popular opinion that regimes do not switch frequently.

3.4.1.1 De�nition

Let Pt be the price of an asset or exchange rate. Volatility is driven by a �rst-order
Markov state vector which consists of flk positive real number components:

Mt = (M1,t; M2,t; ...; Mflk,t)

The components of Mt have the same marginal distribution but evolve at different
frequencies. Assume that the volatility state vector has been constructed up to the
point t� 1

Mt�1 = (M1,t�1; M2,t�1; ...; Mflk,t�1)

Now Mt is built as follows. Each Mk,t is drawn from some �xed distribution M
with probability gk and is otherwise equal to its previous value Mk,t�1.
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Mk,t drawn from distribution M with probability gk

Mk,t = Mk,t�1 with probability 1� gk
(3.7)

Switching events and new draws are independent across k and t. It is required
that M � 0 and E(M) = 1. While multipliers Mk,t have the same distribution, their
dynamics, i.e. their transition probabilities gk are different. All of the components
are mutually independent which contributes to the parsimony of the model.

Stochastic volatility is modeled by

s(Mt) = fls

 flk

Õ
i=1

Mk,t

!1/2

where fls is a positive constant. For returns it holds then

rt = s(Mt)#t

where f#tg are i.i.d standard Gaussians N (0, 1). The transition probabilities are
de�ned as

gk = 1� (1� g1)bk�1

where g1 2 (0, 1) and b 2 (1, ¥).

The transition probabilities of components with low frequencies grow approxi-
mately geometrically at rate b, while at high frequencies, the rate is smaller. There-
fore, parameters gflk and b alone de�ne the transition matrix.

MSM is de�ned with one number - flk which is the number of frequencies.
Considering distributions, one simplest solution is binomial distribution where M
takes only two values m0 or m1. In the simplest case, those two values occur with
the equal probability. Since E(M) = 1 it must be that m1 = 2�m0. The parameters
are then

y = (m0, fls, b, gflk)

for binomial MSM, where, as previously mentioned, m0 de�nes the distribution
of multipliers, fls is the unconditional standard deviation of returns and gflk and b
de�ne together the set of switching probabilities.

While this is the simplest possible MSM, it already produces good results. On
the other hand there exist more complex models such as multinomial MSM and
lognormal MSM. I refer the interested reader to the authors’ book [15].
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3.5 Discussion, future improvements and remarks
One of the very popular directions to go when forecasting volatility is to incor-

porate multivariate models, i.e. to look and predict multiple time series at the same
time. While for univariate time series we consider variation of only one variable at
the time and deal with one-dimensional data, for multivariate time series we take
into account multiple variables and their relation. Multivariate GARCH attempts
to jointly capture volatility dynamics in several �nancial markets and language R
contains great number of packages for estimating multivariate GARCH models such
as DCC.

Many believe that one way of improving forecasting power is to use exogenous
variables. There are many possible directions in which this research can go since
volatility might be linked to macroeconomic news, interest rates, trading volume,
recessions or seasonal factors. What is unclear is how to use this speci�c information
to improve volatility forecasts [21].

There is almost no discussion about the tight relationship between asset prices
and market sentiment. This relationship is a well-studied topic, especially in the
industry with �nancial companies having more and more NLP researcher roles.
Therefore, the advancing in the area is very hard because of the lack of computational
resources available to the independent researchers for analyzing huge amount of
text. One promising alternative to this is to use Google trends. Google trends are
new, promising and accessible data to anyone. It is a website by Google that analyzes
the popularity of speci�c search queries in Google Search. It can be restricted to
the region, period of time and even where it was searched for. This includes Image
search, News search, Google shopping and YouTube search.

It comes as no surprise that volume of search is correlated with volatility [26].
One very simple example of correlation between S&P500 price and number of times
it was searched through Google can be seen in �gure 3.3

The Pearson correlation coef�cient measures the linear relationship between two
datasets where it is assumed that each dataset is normally distributed. The Pearson
value is between -1 and 1, where 0 indicates no correlation. Like other correlation
coef�cients, this one varies between -1 and +1 with 0 implying no correlation. The
Pearson correlation coef�cient between S&P500 asset price and volume of search in
Google engine is 0.66 which indicates very positive correlation.

Most of the papers do not take into account how models perform depending on
the time horizon or in general the period of time they were evaluated. The topic of
which models performs better when there is low volatility and which when there is
high volatility is not well-covered. Even more interestingly, papers do not usually
cover how models complement each other cross-sectionally and through time [21].
This is a big problem since performance of the models usually depends on the
underlying asset and market conditions.

Models perform differently depending on the state of volatility. For example,
comparing EGARCH and GJRGARCH out-of-sample, EGARCH overestimated
volatility much more than GJRGARCH did even when overall based on the MSE, the
model performed better. On the considered data EGARCH overestimated volatility
9-11% more than GJRGARCH. On the other hand, the EGARCH was usually closer
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Figure 3.3: Correlation between S&P500 price and the number of times it was searched on
Google

to the true volatility when they both underestimated. This lead to the speci�c
weighting of the predictions be a slightly better model then the individual models
alone. This, however, did not change the fact of (G)ARCH-like models adapting very
slowly to the new regimes. As will be seen in the next chapter, they have all hugely
underestimated volatility during the burst of the pandemic.

As already mentioned, simple combination of (G)ARCH models when combined
with concrete weighting performs better than individual models. However, difference
in the ensemble model compared to the individual ones is outshined by the slow
adaptation to the new regime. If, however, combination could be combined with
regime-switching, this could lead to good results.
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Chapter 4

Forecast evaluation, empirical results
and analysis

Backtesting is the method meant for testing predictive model on historical
data. In other words, in the backtesting step results predicted by the model are
compared with the actual historical data. Usually, historical data is separated into
two parts, in-sample and out-of-sample data. In-sample data is used for model
�tting, while out-of-sample data is reserved for backtesting and evaluating the model
performance.

4.1 In-sample results

4.1.1 Notation
Ljung-Box test is a statistical test determining whether any of a group of auto-

correlations of a time series is different from zero. In other words, this test tests
the overall randomness of a model based on the number of lags instead of testing
randomness at each distinct lag.

The Hurst exponent is one popular measure of long-term memory of time series.
Usually if the value of Hurst exponent is around 0.5, series are considered random.
If the value of Hurst exponent is close to 0 series are mean-reverting and values near
1 indicate a trending series.

Ideally, we would like to choose parsimonious models over complex ones or in
other words use as few parameters as possible.

In order to decide whether to drop speci�c parameter or not, we can use
hypothesis test, better known as null-hypothesis. In the case of parameters, the null
hypothesis is whether the parameter value is 0. If the hypothesis cannot be rejected,
parameter should not be used in the model. The signi�cance level is usually set to
0.05, meaning that the probability of observing the results in the data is 5%.

With p-value, one usually denotes the probability of obtaining the observed
results of a test, assuming that the null hypothesis is true. In other words, it de�nes
the chance that results happened by chance.
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4.1. In-sample results

T-statistic is the statistical measure which is calculated as the estimated parame-
ter value subtracted by its expected mean value and then divided by its standard
error. T-statistic is supposed to measure how distant in terms of standard errors is
the estimated parameter away from zero. The larger the distance, the more likely
the parameter is not zero and therefore should be included in the model.

4.1.2 Data description
Descriptive statistics of the data used for performance evaluation in the time

period between January 2010 and March 2021 is shown in the table below

Description JNJ OMX ETH-USD SPX

Mean 0.0 0.0 0.0 0.0
Var 1.14 1.45 41.97 1.21

Skew -0.32 -0.78 38.12 -0.77
Kurtosis 17.66 18.20 31424.30 26.27

Hurst(returns) 2 � 10�4 5.25 � 10�5 �3 � 10�3 2 � 10�3

Q-stat(returns) 0.0 0.0 0.0 0.0
ADF(returns) 2.8 � 10�26 4.74 � 10�23 4.65 � 10�12 6.36%

Daily vol 1.28% 1.21% 6.48% 1.1%
Monthly vol 5.87% 5.53% 29.7% 5.04%
Annual vol 20.35% 19.15% 102.87% 17.47%

S&P500 (SPX or SPY) is a stock index based on the 500 largest companies listed
on the New York Stock Exchange and Nasdaq. This index is considered to be the
overall health of the economy and b measure is also de�ned in regard to this index.

OMX (Stockholm 30) is a stock index like S&P500 but for the Stockholm Stock
Exchange. It is a capitalization weighted index of the 30 most-traded stock on the
Nasdaq Stockholm stock exchange. It is slightly more volatile than S&P500, and is,
naturally, traded less.

Ethereum is a decentralized, open-source blockchain with smart contract func-
tionality and its native cryptocurrency is Ether (ETH). It is the second-largest cryp-
tocurrency. It is chosen for model evaluation as one of the harder-to-predict assets
because of its volatility.

Johnson & Johnson (JNJ) is one of the best-known names in the health industry.
Johnson & Johnson is the example of a stable stock without much volatility.

4.1.3 Information criteria
Information criteria is a method for selecting a model. It is used as a measure

of trade-off between goodness of �t and complexity of the model. In simpler
terms, when �tting models it is possible to increase the likelihood by adding extra
parameters and therefore increasing complexity of the model. This will usually result
in over�tting and poor results on the new or test data. While information criteria
considers the model likelihood, it also adds penalties for model complexity, i.e. if
models A and B have the same likelihood values, but model A has less parameters,
then model A has smaller information criteria score.
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4.1. In-sample results

Two among most popular information criteria are Akaike information criteria
and Bayesian information criteria.

4.1.3.1 Akaike information criteria

Akaike information criteria, or shortly AIC, is information criteria named after
its inventor Akaike.

The main equation is the following one:

AIC = �2 ln(L) + 2k

where L is maximum likelihood estimation (log-likelihood) and k is the number
of parameters.

4.1.3.2 Bayesian information criteria

Bayesian information criteria, or shortly BIC, is information criteria similar
to AIC information criteria. The main difference is the amount of penalty they
introduce for model complexity.

BIC usually leads to choosing a more parsimonious model since it imposes
bigger penalties on parameters.

The BIC formula is:

BIC = �l ln(L) + ln(n)k

4.1.4 Comparison
Hyperparameter search for optimal models for the S&P500 data was performed.

Based on AIC and BIC criteria, set of models among which the selection was per-
formed contains GARCH, HARCH, FIGARCH, TARCH, EGARCH, GJRGARCH
models of lag-values up to 10. There are two benchmark models included - Risk-
Metrics and GARCH(1,1). Hyperparameter search also includes search for the best
possible distribution and mean model for all the mentioned models. Considered
distributions are normal, student’s t-distribution, skewed student’s t-distribution
and ged. Considered mean models are constant, zero, autoregressive model, hetero-
geneous autoregressive (HAR) model and least squares model. The period on which
the models were selected is the period between 01.01.1995. and 31.12.2009. Reported
are log-likelihood, AIC and BIC criteria for (G)ARCH-like models in the table below.
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4.1. In-sample results

Model mean dist AIC BIC LL

GARCH(p=1,q=1) constant t 10777.4 10808.6 -5383.69
RiskMetrics constant normal 58553.2 58578.1 -29272.6

FIGARCH(p=1,q=1,tr=500) constant skewt 10752.8 10796.5 -5369.41
FIGARCH(p=0,q=1,tr=1000) constant skewt 10755.8 10793.2 -5371.90

HARCH([1,7,23]) constant skewt 10793.6 10837.3 -5389.82
HARCH([2,7,23]) constant ged 10798.0 10835.4 -5392.99
GARCH(p=2,q=1) constant skewt 10760.0 10803.7 -5373.02

EGARCH(p=3,q=1,o=4) constant skewt 10572.6 10647.4 -5274.30
EGARCH(p=2,q=1,o=3) zero skewt 10581.4 10637.5 -5281.68
TARCH(p=0,q=3,o=2) constant skewt 10634.2 10690.3 -5308.09
TARCH(p=0,q=1,o=1) zero skewt 10643.8 10675.0 -5316.91

GJRGARCH(p=0,q=3,o=2) constant skewt 10642.0 10698.1 -5311.99
GJRGARCH(p=0,q=1,o=1) zero skewt 10654.5 10685.7 -5322.25

The same selection is performed for the period between 01.01.2010. and
31.03.2021. and below is the table described model performance for that time
period.

Model mean dist AIC BIC LL

GARCH(p=1,q=1) constant t 6909.71 6939.45 -3449.85
RiskMetrics constant normal 35993.7 36017.4 -17992.8

FIGARCH(p=0,q=1,tr=1000) constant skewt 6875.24 6910.92 -3431.62
HARCH([3,6,23]) constant skewt 6896.60 6938.24 -3441.30
GARCH(p=2,q=1) constant skewt 6890.22 6931.85 -3438.11
GARCH(p=1,q=1) constant skewt 6895.08 6930.76 -3441.54

EGARCH(p=2,q=1,o=9) constant skewt 6733.55 6828.71 -3350.77
EGARCH(p=1,q=1,o=1) zero skewt 6759.12 6794.80 -3373.56
TARCH(p=0,q=2,o=2) constant skewt 6718.49 6766.08 -3351.25
TARCH(p=0,q=1,o=1) zero skewt 6725.18 6754.91 -3357.59

GJRGARCH(p=0,q=2,o=2) constant skewt 6760.40 6802.59 -3372.20
GJRGARCH(p=0,q=1,o=1) constant skewt 6766.90 6802.59 -3377.45

Model parameters and further descriptive statistics of models can be found in
the respective appendices - In sample results 1995-2010, S&P500 and In sample
results 2010-2021, S&P500.

MSM model in-sample results and parameters for the period of January 2010 -
March 2021 are summarized in the table below.
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4.2. Out-of-sample results

flk m0 b gk s LL
1 1.80 1.50 0.05 1.36 -3668.81
2 1.70 11.44 0.11 1.53 -3539.59
3 1.62 6.79 0.12 1.79 -3505.62
4 1.59 4.68 0.14 1.46 -3493.90
5 1.59 4.93 0.14 1.16 -3494.80
6 1.48 2.63 0.16 1.54 -3489.04
7 1.43 2.13 0.19 1.38 -3489.48
8 1.40 1.79 0.16 1.25 -3488.93
9 1.38 1.65 0.18 1.15 -3489.03

10 1.35 1.53 0.18 1.16 -3488.84

4.2 Out-of-sample results
There are many things that in general need to be taken into consideration

when comparing volatility forecasting out-of-sample results. If the evaluation is
based on squared variance errors, the standard error will usually be quite large
[21]. Well-known fact is that different cost functions will favor different models.
While non-linear GARCH forecasts produce smaller mean absolute errors than the
exponentially weighted moving average, tighter GARCH models produce more VaR
violations.

One of the noted and sensible observations is that forecasting longer horizons
leads to preferring simple models. For a larger than one-year horizons, Figlewski
found that using low frequency data and historical volatility models produces best
results [18].

Comparing different volatility forecasts can be tricky because forecasted values
have to be compared against an ex post proxy of volatility, rather than its true, latent
value. Patton [41] [40] has identi�ed a class of loss functions that asymptotically
generate the same ranking of models regardless of the proxy being used. Ranking
ensures that models rankings achieved with proxies such as squared returns or
realized volatility correspond to the ranking that would be achieved if forecasts were
compared against the true volatility. Patton class rules out most of the traditionally
used losses in the volatility forecasting literature such as mean absolute error. The
two valid loss functions from the group of ones usually used are the quasi-likelihood
loss which depends only on the multiplicative forecast error and mean squared
error.

The quasi-likelihood loss is named for its close relation to the Gaussian likeli-
hood and is de�ned as

L( fls2, htjt�k) =
flst

2

htjt�k
� log

flst
2

htjt�k
� 1

where flst
2 is an unbiased ex post proxy of conditional variance and htjt�k is a

volatility forecast based on t� k information.

This loss metric will not be used and mentioned further in the thesis and we
will focus on the mean squared error.
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4.2. Out-of-sample results

Mean squared error, or shortly MSE, is another possible measurement of back-
testing results. It is de�ned as

L( fls2, htjt�k) = ( flst
2 � htjt�k)2

In this thesis we will compare models with mean squared error between squared
returns and squared volatility. All the models are trained on returns data expressed
in percentage change. Therefore, mean squared error might seem bigger than it is
usually reported and when compared with results in other papers the right metric
might be MSE divided by 10000 or 100 depending on a paper. It should also be noted
that when squared errors are used as proxies the noise may be quite substantial.

4.2.1 Rolling window forecast
In the rolling-window forecast, in-sample data is used for model �tting after

which 1-period ahead forecast is made. Continuing this process as time rolls, that is,
�tting the model on existing data and providing the forecast for the next day, we
can see how our model performs out-of-sample.

In the expanding window forecast, one starts with a sample of data and contin-
uously adds new data. Expanding window forecast is more responsive to the most
recent news, changes in economic cycles, etc.

Similarly to expanding window forecast, �xed rolling window forecast adds
new data points as time moves forward. The difference, however, is that with each
new addition we remove the oldest data point currently in the set. When opting for
a �xed rolling window forecast, we have additional variable to determine - window
size. If a window size is too wide, it may include obsolete data and, therefore,
higher prediction bias. While wide window size would lead to over�tting, too small
window size might not incorporate relevant data to the model which would give
higher variance.

All of the selected models in-sample, i.e. from the previous section are evaluated
out-of-sample on the data. We also added models that performed best in-sample on
this time period. This was done in order to contrast in-sample results for periods
containing 2008 crisis and also best possible model which was more recent. We
conclude that models are quite robust and model selection does not depend much
on the period on which it was selected.
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4.3. Results depending on the data

Model mean dist MSE

GARCH(p=1,q=1) constant t 103.61
RiskMetrics constant normal 123.57

FIGARCH(p=1,q=1,tr=500) constant skewt 104.18
FIGARCH(p=0,q=1,tr=1000) constant skewt 104.13

HARCH([1,7,23]) constant skewt 108.40
HARCH([2,7,23]) constant ged 101.01
HARCH([3,6,23]) constant skewt 104.92
GARCH(p=2,q=1) constant skewt 104.95
GARCH(p=1,q=1) constant skewt 103.47

EGARCH(p=3,q=1,o=4) constant skewt 109.10
EGARCH(p=2,q=1,o=3) zero skewt 112.28
EGARCH(p=1,q=1,o=1) zero skewt 103.70
EGARCH(p=2,q=1,o=9) constant skewt 108.43
TARCH(p=0,q=3,o=2) constant skewt 92.60
TARCH(p=0,q=1,o=1) constant skewt 97.36
TARCH(p=0,q=1,o=1) zero skewt 98.01
TARCH(p=0,q=2,o=2) constant skewt 92.78

GJRGARCH(p=0,q=3,o=2) constant skewt 99.39
GJRGARCH(p=0,q=1,o=1) zero skewt 107.24
GJRGARCH(p=0,q=2,o=2) constant skewt 99.39
GJRGARCH(p=0,q=1,o=2) constant skewt 104.31

MSM(2) n n 148.01
MSM(3) n n 155.14
MSM(4) n n 148.69

In the appendix Comparison of in sample models selected on different time
periods, we show the plots that compare in-sample and out-of-sample models.

4.3 Results depending on the data

4.3.1 OMX
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Model mean dist AIC BIC LL MSE

GARCH(p=1,q=1) constant t 7006.28 7035.30 -3498.14 49.18
RiskMetrics constant normal 23809.8 23833.1 -11900.9 87.13

FIGARCH(p=0,q=1,tr=1000) constant skewt 6997.23 7032.05 -3492.61 49.72
FIGARCH(p=0,q=1,tr=1000) zero skewt 7001.86 7030.88 -3495.93 49.74

HARCH([3,7,22]) constant skewt 7005.69 7046.32 -3495.85 49.58
HARCH([3,7,22]) zero skewt 7010.14 7044.96 -3499.07 49.67
GARCH(p=1,q=1) constant skewt 6997.25 7032.08 -3492.62 49.20
GARCH(p=1,q=1) constant zero 7002.55 7031.57 -3496.27 49.32

EGARCH(p=2,q=1,o=9) zero skewt 6850.08 6937.14 -3410.04 46.80
EGARCH(p=2,q=1,o=2) zero skewt 6855.15 6901.58 -3419.58 46.07
TARCH(p=0,q=1,o=1) zero skewt 6873.13 6902.15 -3431.56 45.98

GJRGARCH(p=0,q=1,o=1) zero skewt 6884.32 6913.34 -3437.16 49.39
MSGARCH 1 n n 6896.33 6960.18 -3437.16 35.26
MSGARCH 2 n n 6872.02 6941.67 -3424.01 40.21

MSM(4) n n n n -4103.36 48.33

MSGARCH 1 This model has 2 regimes, one being GARCH and other being
GJRGARCH. Distribution of both models is student’s t-distribution. Model is in
state 1 0.2386% of the time and in the state 2 0.7614% of time. The transition matrix
is

P =
�

0.0001 0.9999
0.3133 0.6867

�

MSGARCH 2 This model has 2 regimes, one being EGARCH with ged distri-
bution and other being GARCH with skewed ged distribution. Model is in state 1
0.7077% of the time and in the state 2 0.2923% of time. The transition matrix is

P =
�

0.5970 0.4030
0.9757 0.0243

�

Models are compared in the �gure 4.1

4.3.2 ETH-USD
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4.3. Results depending on the data

Figure 4.1: Rolling window forecast for OMX data

Model mean dist AIC BIC LL MSE

GARCH(p=1,q=1) constant t 10404.3 10431.5 -5197.15 3029.54
RiskMetrics constant normal 80714.1 80736.5 -40353.0 1512.08

FIGARCH(p=1,q=1,tr=500) zero ged 10387.2 10414.3 -5188.58 2959.16
FIGARCH(p=0,q=1,tr=500) zero ged 10387.3 10409.0 -5189.65 2957.83

HARCH([1,6,22]) zero ged 10385.6 10412.8 -5187.81 2868.92
GARCH(p=1,q=1) ged zero 10385.0 10406.8 -5188.52 2802.73

EGARCH(p=1,q=1,o=2) zero ged 10382.8 10415.5 -5185.42 2762.36
EGARCH(p=1,q=1,o=1) zero ged 10383.0 10410.1 -5186.49 2763.77
TARCH(p=1,q=1,o=1) zero ged 10387.5 10414.7 -5188.76 2767.98

GJRGARCH(p=1,q=1,o=1) zero ged 10386.2 10413.3 -5188.08 2796.46
MSGARCH 1 n n 10362.7 10422.5 -5170.4 1914.03
MSGARCH 2 n n 10353.9 10419.1 -5164.95 1914.03
MSGARCH 3 n n 10355.3 10469.4 -5156.65 1936.78

MSM(2) n n n n -6286.18 1580.45

MSGARCH 1 This model has 2 regimes, one being GARCH and other being
GJRGARCH. Distribution of both models is student’s t-distribution. Model is in
state 1 0.73% of the time and in the state 2 0.27% of time. The transition matrix is

P =
�

0.9171 0.0829
0.2240 0.7760

�

MSGARCH 2 This model has 2 regimes, one being EGARCH with ged distribu-
tion and other being GARCH with skewed ged distribution. Model is in the state 1
0.9407% of the time and in the state 2 0.0593% of time. The transition matrix is

P =
�

0.9565 0.0435
0.6892 0.3108

�

36
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MSGARCH 3 This model has 3 regimes, one being GARCH with ged distri-
bution, second being GJRGARCH with skewed ged distribution, and third being
EGARCH with student’s t-distribution. Model is in the state 1 0.5044% of the time, in
the state 2 0.2754% of the time and in the state three 0.2202% of time. The transition
matrix is

P =

2

4
0.7258 0.2742 0.0000
0.5021 0.3159 0.1820
0.0000 0.2276 0.7724

3

5

Models are compared in the �gure 4.2

Figure 4.2: Rolling window forecast for ETH data

4.3.3 JNJ

Model mean dist AIC BIC LL MSE

FIGARCH(p=0,q=1,tr=5000) constant t 6167.48 6196.53 -3078.74 45.15
HARCH([2,6,24]) constant t 6171.05 6205.90 -3079.52 45.83
GARCH(p=1,q=1) constant t 6168.68 6197.73 -3079.34 45.42
GARCH(p=2,q=2) constant t 6166.69 6207.35 -3076.34 44.97

EGARCH(p=1,q=1,o=7) constant t 6132.38 6202.09 -3054.19 48.05
EGARCH(p=1,q=1,o=1) constant t 6136.59 6171.44 -3062.29 48.53
TARCH(p=1,q=1,o=1) constant t 6136.00 6170.85 -3062.00 41.96

GJRGARCH(p=1,q=2,o=2) constant t 6141.02 6187.49 -3062.51 43.98
GJRGARCH(p=0,q=1,o=1) constant t 6143.99 6173.04 -3067.00 42.64

MSGARCH 1 n n 6135.04 6198.94 -3056.52 38.63
MSGARCH 2 n n 6131.79 6201.50 -3053.90 45.07

MSM(2) n n n n -4117.03 68.30
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MSGARCH 1

This model has 2 regimes, one being GARCH and other being GJRGARCH.
Distribution of both models is student’s t-distribution. Model is in state 1 0.3486%
of the time and in the state 2 0.6514% of time. The transition matrix is

P =
�

0.9839 0.0161
0.0086 0.9914

�

MSGARCH 2

This model has 2 regimes, one being EGARCH with ged distribution and other
being GARCH with skewed ged distribution. Model is in the state 1 0.7108% of the
time and in the state 2 0.2892% of time. The transition matrix is

P =
�

0.989 0.011
0.027 0.973

�

Models are compared in the �gure 4.3

Figure 4.3: Rolling window forecast for JNJ data

4.4 Discussion, future improvement and remarks
We can see that preferable distribution for index data is skewed student’s t-

distribution while JNJ performs better with student’s t-distribution and ETH with
ged distribution. That means that distribution should be decided on the per asset
basis.

Authors of the MSM model claimed that main advantage of MSM is its perfor-
mance on longer horizons. MSM showed poor results in-sample and performed
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better than (G)ARCH-like models and MSGARCH out-of-sample only on ETH data.
It is known that MSM usually underestimates volatility and therefore high volatility
during the pandemic had a huge effect on the MSE score of MSM. It also apperead
to be true for both MSM and MSGARCH that their performance was better for a
smaller number of regimes. More concretely, models performed best overall with
2 regimes on average. Another fact that needs to be mentioned is that Multifractal
models performed better than GARCH models on the data which did not include
bursts of volatility.

As can be seen in the table below, MSM outperforms all (G)ARCH-like models
out-of-sample for the period before the pandemic.

Model MSE

EGARCH 3.37
FIGARCH 4.01
GARCH 3.97

HGARCH 3.99
TARCH 3.30

GJRGARCH 3.30
MSM(2) 2.97

MSM(2)+GJGARCH 2.46

We can also see that while MSM underestimates volatility for almost all low
volatility periods, it does so also so for high volatility ones. This can be exploited so
that when it is relatively low volatility state such as returns squared being smaller
than 0.22� 0.26, we can forecast volatility in the following way:

1. When the volatility forecast by (G)ARCH-like model, in this case GJRGARCH
is smaller than 0.26%, we take the prediction of MSM model.

2. When the volatility forecast by (G)ARCH-like model, in this case GJRGARCH
is higher than 0.26%, we take the prediction of (G)ARCH-like model.

This shows the improvement of 21% over the best MSM model and improvement
of 34% over the best (G)ARCH-like model out-of-sample. One can observe this in
the 4.4.

We can also observe that in-sample MSM results do not signi�cantly improve by
increasing flk. This also manifested in out-of-sample results where MSM performed
better for smaller k values where the best flk depended on the asset.

Lastly, while MSM is parsimonious model, it requires signi�cant computational
effort since complexity grows exponentially with k.

We can also see that MSGARCH outperformed (G)ARCH-like and MSM models
for the OMX data out-of-sample. While this was not a surprise, we can also �nd that
RiskMetrics outperformed all the models out-of-sample for ETH data, with MSM on
the second place.

Main improvement that would need to be made to the evaluation process is
to evaluate these models using different metrics. While QL, brie�y explained in
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4.4. Discussion, future improvement and remarks

Figure 4.4: Ensemble - MSM - GJRGARCH comparison

this section, is one of the possible metrics, there are some remarkably better ones
explained in [41] [40] and [42].

Another possible slight improvement and interesting thing to explore is to do
a search of best possible models and distributions for MSGARCH. This could be
done in simple way similarly to the GARCH hyperparameter search. What would
be interesting to explore is the relationship between best (G)ARCH-like models and
MSGARCH models using (G)ARCH-like models for the basis of regimes. Based on
the data and results in this thesis, simple models as regimes work better than more
complicated ones (see for example MSGARCH 1 versus MSGARCH 2 performance).
This might be due to the fact that some of the features introduced to GARCH models
are already modeled when switching regimes.

What seems like a possible idea is to model longer memory dependencies in
GARCH using something like HARCH but assigning further lags bigger weights.
This can be combined with TARCH idea of using different powers.

What can be seen on the plots as well as model evaluations is that all the models
performed bad during pandemics. While this was expected and was impossible to
predict well, it could probably be improved up to the some extent. One idea would
be to use something simple like google trends data brie�y described in the previous
chapter as the additional parameter. In order to encapsulate the exogenous variables,
one should search for words such as war, pandemic, government policy etc. This
could also be included in MSGARCH model either indirectly by incorporating such
parameters in individual regimes or directly by modifying the transition matrix with
such variables.
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Chapter 5

Momentum strategy

Momentum investing, also known as trend-following, is a strategy of buying
stocks or securities that have had high returns over the past time period, usually
three to twelve months, while selling those that have had low returns over the same
time period. The momentum strategy is contrasted in a way with the ef�cient-market
hypothesis which states that asset prices re�ect all the available information. This
hypothesis states that since assets always trade at their fair value, it is impossible to
beat the market unless one purchases riskier investments.

Traditional asset models are not good at explaining success of momentum
strategy [32] even though it has proven robust for over 200 years and across the globe.
The problem with momentum strategy is that it brings risk. Namely, momentum
investing usually experiences steeper drawdowns during crisis than other strategies
where by drawdown is meant percentage between the peak and the subsequent jaz.

Jegadeesh and Titman [29] quantitatively show the idea of momentum in their
famous paper where they �nd that stocks that performed well in the past can
outperform stocks that have performed poorly in the past, at least in the near future.
It is a popular view that humans tend to overreact to information which has a
consequence of stock prices also overreacting to the information. The authors also
show that it is pro�table to buy past winners and sell past losers simultaneously.

There are many attempts in explaining momentum strategy and why it works.
Many believe that momentum is related to over-con�dence of investors, con�rmation
biases or in other words the tendency to interpret new evidence as the con�rmation
of one’s existing beliefs or theories, as well as under-reaction, over-reaction and
herding which is a tendency of investors to follow what other investors are doing
rather than relying on their own analysis.

5.1 Cross-sectional momentum strategy
The cross-sectional momentum strategy portfolio is constructed based on asset’s

performance compared or relative to other assets. One of the popular strategies
coming from the idea of momentum strategy is that for each decile, buying the top
decile from the previous time period and selling the bottom decile leads to pro�t.
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5.2. Description of different momentum strategies explored in thesis

This type of momentum strategy is also known as winner-minus-loser, or shortly,
WML strategy and it proves to produce at least 1% per month in the holding period
of one year. Another momentum strategy called winner-only, or shortly WO, also
proved good. It only buys the top decile, without shorting the bottom decile.

Even though, most of the time WML strategy performs well, Daniel and
Moskowitz [16] as well as Barroso and Santa-Clara [10] found out that market
crashes can lead to big losses when using this strategy. Size of the loss is such that
it is possible that all returns accumulated over the years can easily be wiped out
during such a crash. As was pointed out in those papers, momentum crashes are
partly forecastable since they occur in panic states when market volatility is high.
Barosso and Santa-Clara therefore propose momentum trading strategy but with
volatility-scaling technique.

Another type of momentum strategy is time series momentum strategy. This
type of momentum strategy considers only the absolute returns for the buy and sell
trade. Unlike cross-sectional momentum strategies, it does not compare stocks to
each other, rather it compares stocks to their own previous value.

In [32], Kim proposed a strategy taking into account both success of WML and
WO and its downsides during large volatility periods. They proposed putting buy
trade for top decile if the expected return of its holding period is positive and
sell trade for bottom decile if the expected return of its holding period is negative.
Otherwise they proposed no trades. Therefore, the whole strategy is based on
predicting returns for top and bottom deciles.

5.2 Description of di�erent momentum strategies ex-
plored in thesis

5.2.1 Gold momentum strategy
It has been observed that there is an inverse correlation between price of gold

and health of economy. Namely, it was suggested that during high volatility periods,
investors buy gold in order to hedge risk since gold is considered a stable asset
which is not expected to easily drop in value by big margin.

The strategy that was evaluated is as follows. For 200 days, last being in the
May this year, we predict volatility of the following day. If the squared volatility is
above 0.9 and we do not already have gold stock in the possession, we buy a stock.
In the opposite case, namely, when the volatility is below 0.9 and we do not own the
stock - we buy one. This strategy gave return of 17% over 2000 days and performed
worse than buy-and-hold strategy for gold which had return of 27%. This could
possible be improved by changing very arbitrary 0.9 threshold for volatility as well
as considering having multiple stocks and selling when volatility is above some
smaller value than buy-threshold. What was also not accounted for is price and one
could de�nitely improve the strategy by waiting for both values to be good enough.
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5.3. Discussion, future improvement and remarks

5.2.2 Volatility-scaled momentum strategy
This strategy has been evaluated on the set of stocks containing Facebook, Apple,

IBM, Microsoft and Google. It is evaluated on the time period from January 2010 to
March 2021. Firstly, we compute monthly cumulative returns for each stock from the
group. After that we look at the returns of past eleven months, avoiding the most
recent month. The idea is to buy the best performing stock at the beginning of each
month and to sell the worst performing stock at the same time. This is the previously
mentioned WML strategy. However, before deciding on winner and loser for the
respective month, we scale the returns by the volatility prediction for the future
month in order to buy less volatile stocks for which momentum strategy is known to
perform well. Although the strategy did perform well and had 136% excess return, it
still performed worse than the buy-and-hold strategy for index S&P500. The strategy,
however, outperformed S&P500 on 60 months and underperformed on 59 months. It
also performed better than buy-and-hold strategy for IBM and momentum strategy
for S&P500 where we buy top decile stocks and sell bottom decile stocks at the
beginning of each month in the similar way as described previously but without
volatility-scaling.

5.2.3 Turtle single stock strategy
This strategy considers single stock, in this case TSLA and time period of 500

days. Volatility forecast used in this model is expanding rolling-window forecast
with the start of 500 days before the trading strategy backtesting starts. We look at
20 day moving average of the price and volume of trading. At the beginning of the
strategy we buy a stock and later we have at most one stock of that same kind in
any point of time. If the volume of trading is higher than the moving average and
the volatility is higher than the speci�ed threshold, we buy if the price is smaller
than the moving average. Similarly, we sell when it is the opposite. This strategy
performs better when transaction costs are not included than simple buy-and-hold
strategy for the same stock.

5.3 Discussion, future improvement and remarks
Volatlity index or VIX is derived from S&P500 options prices and it basically

represents US stock market expected volatility and market sentiment. VIX demon-
strates volatility clustering as might be expected since it is based on the volatility.
VIX is a security one can trade and it is an annualized number that represents what
the market’s expectation of 30-day forward-looking volatility is. Opposite to other
market products, VIX cannot be bought or sold directly, but is instead traded and
exchanged via derivative contract, derived ETFs and ETNs which most commonly
track VIX futures indices.

Hedging strategy is a method of reducing exposure to risk in the event that an
asset in the portfolio has bigger chances of decreasing. Ideally, they would limit
losses but not signi�cantly reduce rate of return. One of the main ideas of hedging
is to buy securities inversely correlated with the risky asset.

It has been observed that there exists a negative correlation between S&P500
and VIX. Usually, when VIX goes up, S&P500 goes down which can be seen on the
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5.3. Discussion, future improvement and remarks

�gure 5.1.

Figure 5.1: Negative correlation between S&P500 and VIX.

Volatility can be directly traded via VIX. If we expect an increase in volatility, we
can go to long futures position while if we expect decrease in volatility, we can go
into short futures position. This can be exploited to create the potential improvement
in momentum strategy.

Options are �nancial derivatives that give buyers the right to buy or sell an
underlying asset at the agreed price and date. Options are special in that buyer
is not obliged to buy or sell, but only presented with a possibility. Call options
give buyer the right to buy whereas put options give the buyer right to sell the
speci�c bond, stock, commodity or other asset or instrument. Put options are type
of protection. Best time to buy them would be when price is low but volatility could
grow in future. Again, common way of protecting portfolio is by buying put options.
The higher the volatility, the higher is option priced. This can also be exploited in
order to enhance the momentum strategy.

However, this was not explored further in the thesis due to the dif�culty in
obtaining the appropriate data.
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Chapter 6

Conclusion

During the last six months I have participated in many workshops, webinars and
talks on the topic of automatic trading, algorithmic trading and �nance in general.
I attempted in many ways to understand the gap between what is published and
what is actually going on in the �nancial world. What sounded strange 6 months
ago when I talked with professor Sornette now makes sense. The best ideas are not
published and while in all of the companies quant researchers have weekly meetings
in order to read newly published papers from academia, academia does not get to
know most of the work done in best companies.

When I asked professor Sornette to do a thesis with him, I must say that I
have hoped that there will be some natural language processing part, the area I
am also very passionate about. I was very quickly discouraged from doing that by
professor Sornette with the explanation that in academia we do not have suf�cient
computational resources and that without that one cannot that easily �nd new
results in the intersection of �nance and natural language processing. Today I
am very grateful to professor Sornette for that advice since that proved to be true.
However, while in the periods of low volatility models explored in this thesis do
perform well, out-of-sample results presented in this thesis are a showcase of their
bad performance when the crisis occurs. Markets are in great deal indeed driven by
news, sentiment on twitter which started to expand to the other platforms such as
reddit with the remarkable example of Game Stop volatility at the beginning of this
year[2].

In chapter 2 of this thesis, we discuss stylized facts about volatility with the
case example of S&P500 data. In chapter 3, models which are used in the thesis
are explained with the idea of incorporating mentioned stylized facts. The idea of
incorporating exogenous variables such as Google trends data is proposed at the end
of the chapter 3. In chapter 4, we evaluate those models on the four different assets,
in- and out-of-sample. We do so by including pandemic period to the out-of-sample
data. Best selected models varied by assets, as well as best distribution of residuals.
We also discuss possible improvements, of which the simplest but well-performing
one is using the multiple volatility predictors depending on the state of volatility.

Finally, in chapter 5 we brie�y discuss momentum strategies and their possible
extensions and improvements with the additional volatility information.
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Chapter 7

Software

In this section we brie�y mention software packages used in this thesis.

The MSGARCH package [5] is implemented in R while using C++ in the
background for the reasons of ef�ciency. MSGARCH makes it possible to create
simulations and perform maximum likelihood estimation. It supports single-step
as well as multi-step ahead forecasts. Lastly, advantages that risk managers can
enjoy consist of broad functionality such as estimation of conditional volatility,
value-at-risk and expected-shortfall [6].

The Python ARCH toolbox [1] contains routines for univariate volatility models,
bootstrapping, multiple comparison procedures as well as the required testing
infrastructure.

Statsmodels [48] is a Python module that provides classes and functions for the
estimation of many different statistical models, as well as for conducting statistical
tests, and statistical data exploration. The module encapsulates a for each estimator.
The results are tested against existing statistical packages to ensure that they are
correct.
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Appendix

In sample results 1995-2010, S&P500
In sample results of S&P500 volatility forecasts between 01.01.1995. and 31.12.2009.

For each model best parameters are selected according to BIC and AIC criteria.

GARCH(1,1) - Benchmark

coef std err t P> jtj 95.0% Conf. Int.

mu 0.0746 1.313e-02 5.682 1.328e-08 [4.888e-02, 0.100]

coef std err t P> jtj 95.0% Conf. Int.

omega 6.0748e-03 2.237e-03 2.716 6.616e-03 [1.690e-03,1.046e-02]
alpha[1] 0.0684 9.625e-03 7.101 1.236e-12 [4.949e-02,8.722e-02]
beta[1] 0.9298 9.413e-03 98.783 0.000 [ 0.911, 0.948]

coef std err t P> jtj 95.0% Conf. Int.

nu 8.0259 1.117 7.183 6.827e-13 [ 5.836, 10.216]

GARCH
Model selected by AIC criteria has standardized skew student’s t-distribution

and constant mean.

coef std err t P> jtj 95.0% Conf. Int.

mu 0.0645 1.363e-02 4.732 2.229e-06 [3.779e-02,9.123e-02]
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In sample results 1995-2010, S&P500

coef std err t P> jtj 95.0% Conf. Int.

omega 8.4598e-03 3.168e-03 2.670 7.584e-03 [2.250e-03,1.467e-02]
alpha[1] 0.0200 1.577e-02 1.267 0.205 [-1.093e-02,5.088e-02]
alpha[2] 0.0668 2.121e-02 3.150 1.630e-03 [2.525e-02, 0.108]
beta[1] 0.9102 1.423e-02 63.968 0.000 [ 0.882, 0.938]

coef std err t P> jtj 95.0% Conf. Int.

nu 8.3271 1.164 7.153 8.491e-13 [ 6.045, 10.609]
lambda -0.0681 2.000e-02 -3.402 6.688e-04 [ -0.107,-2.885e-02]

Model selected by BIC criteria has standardized skew student’s t-distribution
and constant mean.

coef std err t P> jtj 95.0% Conf. Int.

mu 0.0645 1.363e-02 4.732 2.229e-06 [3.779e-02,9.123e-02]

coef std err t P> jtj 95.0% Conf. Int.

omega 8.4598e-03 3.168e-03 2.670 7.584e-03 [2.250e-03,1.467e-02]
alpha[1] 0.0200 1.577e-02 1.267 0.205 [-1.093e-02,5.088e-02]
alpha[2] 0.0668 2.121e-02 3.150 1.630e-03 [2.525e-02, 0.108]
beta[1] 0.9102 1.423e-02 63.968 0.000 [ 0.882, 0.938]

coef std err t P> jtj 95.0% Conf. Int.

nu 8.3271 1.164 7.153 8.491e-13 [ 6.045, 10.609]
lambda -0.0681 2.000e-02 -3.402 6.688e-04 [ -0.107,-2.885e-02]

EGARCH
Model selected by AIC criteria has standardized skew student’s t-distribution

and constant mean.

coef std err t P> jtj 95.0% Conf. Int.

mu 0.0343 1.325e-02 2.590 9.598e-03 [8.349e-03,6.030e-02]
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In sample results 1995-2010, S&P500

coef std err t P> jtj 95.0% Conf. Int.

omega 2.2971e-03 2.320e-03 0.990 0.322 [-2.250e-03,6.844e-03]
alpha[1] -0.1386 4.283e-02 -3.235 1.217e-03 [ -0.223,-5.461e-02]
alpha[2] 0.1647 6.178e-02 2.665 7.692e-03 [4.358e-02, 0.286]
alpha[3] 0.0941 4.235e-02 2.223 2.622e-02 [1.114e-02, 0.177]
gamma[1] -0.2112 2.733e-02 -7.727 1.103e-14 [ -0.265, -0.158]
gamma[2] -0.0426 3.686e-02 -1.155 0.248 [ -0.115,2.968e-02]
gamma[3] 0.1188 3.565e-02 3.332 8.619e-04 [4.891e-02, 0.189]
gamma[4] 0.0387 2.480e-02 1.561 0.119 [-9.892e-03,8.730e-02]
beta[1] 0.9870 2.699e-03 365.644 0.000 [ 0.982, 0.992]

coef std err t P> jtj 95.0% Conf. Int.

nu 11.0480 1.892 5.840 5.219e-09 [ 7.340, 14.756]
lambda -0.0872 2.145e-02 -4.066 4.781e-05 [ -0.129,-4.517e-02]

Model selected by BIC criteria has standardized skew student’s t-distribution
and zero mean.

coef std err t P> jtj 95.0% Conf. Int.

omega 6.5427e-03 1.786e-03 3.663 2.496e-04 [3.042e-03,1.004e-02]
alpha[1] -0.1398 4.739e-02 -2.950 3.173e-03 [ -0.233,-4.694e-02]
alpha[2] 0.2590 4.822e-02 5.372 7.804e-08 [ 0.164, 0.353]
gamma[1] -0.2060 2.791e-02 -7.382 1.555e-13 [ -0.261, -0.151]
gamma[2] -0.0512 3.720e-02 -1.376 0.169 [ -0.124,2.173e-02]
gamma[3] 0.1570 2.788e-02 5.632 1.776e-08 [ 0.102, 0.212]
beta[1] 0.9848 2.702e-03 364.507 0.000 [ 0.979, 0.990]

coef std err t P> jtj 95.0% Conf. Int.

nu 10.9746 1.897 5.786 7.188e-09 [ 7.257, 14.692]
lambda -0.0963 2.049e-02 -4.699 2.609e-06 [ -0.136,-5.614e-02]

TARCH
Model selected by AIC criteria has standardized skew student’s t-distribution

and constant mean.

coef std err t P> jtj 95.0% Conf. Int.

mu 0.0330 1.357e-02 2.434 1.493e-02 [6.434e-03,5.963e-02]
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In sample results 1995-2010, S&P500

coef std err t P> jtj 95.0% Conf. Int.

omega 0.0314 6.757e-03 4.650 3.324e-06 [1.817e-02,4.466e-02]
gamma[1] 0.1075 2.319e-02 4.635 3.568e-06 [6.203e-02, 0.153]
gamma[2] 0.1437 3.369e-02 4.263 2.013e-05 [7.761e-02, 0.210]
beta[1] 0.3749 0.150 2.499 1.244e-02 [8.091e-02, 0.669]
beta[2] 0.0614 0.132 0.465 0.642 [ -0.197, 0.320]
beta[3] 0.4377 0.152 2.886 3.907e-03 [ 0.140, 0.735]

coef std err t P> jtj 95.0% Conf. Int.

nu 10.6551 1.839 5.795 6.839e-09 [ 7.051, 14.259]
lambda -0.0903 2.064e-02 -4.373 1.224e-05 [ -0.131,-4.982e-02]

Model selected by BIC criteria has standardized skew student’s t-distribution
and zero mean.

coef std err t P> jtj 95.0% Conf. Int.

omega 0.0187 3.128e-03 5.987 2.136e-09 [1.260e-02,2.486e-02]
gamma[1] 0.1322 1.327e-02 9.966 2.144e-23 [ 0.106, 0.158]
beta[1] 0.9339 7.116e-03 131.237 0.000 [ 0.920, 0.948]

coef std err t P> jtj 95.0% Conf. Int.

nu 10.6430 1.861 5.720 1.064e-08 [ 6.996, 14.290]
lambda -0.1037 1.982e-02 -5.231 1.689e-07 [ -0.143,-6.483e-02]

FIGARCH
Model selected by AIC criteria has standardized skew student’s t-distribution

and constant mean.

coef std err t P> jtj 95.0% Conf. Int.

mu 0.0634 1.382e-02 4.585 4.545e-06 [3.628e-02,9.047e-02]

coef std err t P> jtj 95.0% Conf. Int.

omega 0.0232 8.131e-03 2.850 4.366e-03 [7.240e-03,3.911e-02]
phi 0.1151 4.363e-02 2.637 8.355e-03 [2.956e-02, 0.201]
d 0.6070 9.305e-02 6.524 6.863e-11 [ 0.425, 0.789]
beta 0.7020 7.053e-02 9.953 2.449e-23 [ 0.564, 0.840]

coef std err t P> jtj 95.0% Conf. Int.

nu 8.2096 1.081 7.596 3.063e-14 [ 6.091, 10.328]
lambda -0.0679 2.026e-02 -3.350 8.090e-04 [ -0.108,-2.816e-02]

54



In sample results 1995-2010, S&P500

Model selected by BIC criteria has standardized skew student’s t-distribution
and constant mean.

coef std err t P> jtj 95.0% Conf. Int.

mu 0.0632 1.370e-02 4.610 4.029e-06 [3.631e-02,9.003e-02]

coef std err t P> jtj 95.0% Conf. Int.

omega 0.0135 6.270e-03 2.155 3.117e-02 [1.223e-03,2.580e-02]
d 0.8503 6.195e-02 13.725 7.151e-43 [ 0.729, 0.972]
beta 0.8359 5.239e-02 15.956 2.603e-57 [ 0.733, 0.939]

coef std err t P> jtj 95.0% Conf. Int.

nu 8.0515 1.063 7.573 3.648e-14 [ 5.968, 10.135]
lambda -0.0697 2.020e-02 -3.451 5.582e-04 [ -0.109,-3.013e-02]

GJRGARCH
Model selected by AIC criteria has standardized skew student’s t-distribution

and constant mean.

coef std err t P> jtj 95.0% Conf. Int.

mu 0.0358 1.360e-02 2.635 8.421e-03 [9.177e-03,6.249e-02]

coef std err t P> jtj 95.0% Conf. Int.

omega 0.0213 5.682e-03 3.742 1.824e-04 [1.013e-02,3.240e-02]
gamma[1] 0.0919 2.733e-02 3.361 7.768e-04 [3.829e-02, 0.145]
gamma[2] 0.1869 3.954e-02 4.726 2.285e-06 [ 0.109, 0.264]
beta[1] 0.2958 0.114 2.597 9.406e-03 [7.255e-02, 0.519]
beta[2] 0.0889 0.143 0.620 0.535 [ -0.192, 0.370]
beta[3] 0.4608 0.152 3.034 2.416e-03 [ 0.163, 0.759]

coef std err t P> jtj 95.0% Conf. Int.

nu 10.9177 2.000 5.458 4.829e-08 [ 6.997, 14.839]
lambda -0.0951 2.049e-02 -4.644 3.414e-06 [ -0.135,-5.499e-02]

Model selected by BIC criteria has standardized skew student’s t-distribution
and zero mean.

coef std err t P> jtj 95.0% Conf. Int.

omega 0.0118 2.618e-03 4.494 7.002e-06 [6.633e-03,1.689e-02]
gamma[1] 0.1387 1.776e-02 7.812 5.609e-15 [ 0.104, 0.174]
beta[1] 0.9260 8.888e-03 104.179 0.000 [ 0.909, 0.943]
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In sample results 1995-2010, S&P500

coef std err t P> jtj 95.0% Conf. Int.

nu 10.7175 1.967 5.450 5.050e-08 [ 6.863, 14.572]
lambda -0.1087 1.974e-02 -5.504 3.715e-08 [ -0.147,-6.996e-02]

HARCH
Model selected by AIC criteria has standardized skew student’s t-distribution

and constant mean.

coef std err t P> jtj 95.0% Conf. Int.

mu 0.0654 1.366e-02 4.791 1.658e-06 [3.867e-02,9.220e-02]

coef std err t P> jtj 95.0% Conf. Int.

omega 0.1094 2.601e-02 4.206 2.603e-05 [5.842e-02, 0.160]
alpha[1] 0.0000 2.848e-02 0.000 1.000 [-5.582e-02,5.582e-02]
alpha[7] 0.2893 7.456e-02 3.880 1.046e-04 [ 0.143, 0.435]
alpha[23] 0.6780 8.068e-02 8.403 4.340e-17 [ 0.520, 0.836]

coef std err t P> jtj 95.0% Conf. Int.

nu 8.3643 1.164 7.187 6.627e-13 [ 6.083, 10.645]
lambda -0.0686 1.963e-02 -3.493 4.772e-04 [ -0.107,-3.010e-02]

Model selected by BIC criteria has generalized error distribution and constant
mean.

coef std err t P> jtj 95.0% Conf. Int.

mu 0.0765 1.328e-02 5.763 8.281e-09 [5.050e-02, 0.103]

coef std err t P> jtj 95.0% Conf. Int.

omega 0.1153 2.785e-02 4.140 3.467e-05 [6.072e-02, 0.170]
alpha[2] 0.0000 4.251e-02 0.000 1.000 [-8.331e-02,8.331e-02]
alpha[7] 0.2841 8.697e-02 3.266 1.089e-03 [ 0.114, 0.455]
alpha[23] 0.6796 8.217e-02 8.270 1.341e-16 [ 0.519, 0.841]

coef std err t P> jtj 95.0% Conf. Int.

nu 1.4199 5.527e-02 25.690 1.512e-145 [ 1.312, 1.528]
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In sample results 2010-2021, S&P500

RiskMetrics

coef

mu 0.0000

coef

omega 0.0000
alpha[1] 0.9400
beta[1] 0.0600

In sample results 2010-2021, S&P500

GARCH(1,1) - Benchmark

coef std err t P> jtj 95.0% Conf. Int.

mu 0.0935 1.166e-02 8.023 1.032e-15 [7.070e-02, 0.116]

coef std err t P> jtj 95.0% Conf. Int.

omega 0.0266 5.976e-03 4.447 8.691e-06 [1.487e-02,3.829e-02]
alpha[1] 0.1855 2.317e-02 8.007 1.175e-15 [ 0.140, 0.231]
beta[1] 0.8067 2.011e-02 40.104 0.000 [ 0.767, 0.846]

coef std err t P> jtj 95.0% Conf. Int.

nu 4.9941 0.465 10.745 6.249e-27 [ 4.083, 5.905]

GARCH
Model selected by AIC criteria has standardized skew student’s t-distribution

and constant mean.

coef std err t P> jtj 95.0% Conf. Int.

mu 0.0742 1.289e-02 5.755 8.641e-09 [4.891e-02,9.942e-02]

coef std err t P> jtj 95.0% Conf. Int.

omega 0.0337 8.198e-03 4.105 4.046e-05 [1.758e-02,4.972e-02]
alpha[1] 0.1160 2.863e-02 4.051 5.095e-05 [5.987e-02, 0.172]
alpha[2] 0.1015 4.061e-02 2.500 1.242e-02 [2.193e-02, 0.181]
beta[1] 0.7656 3.099e-02 24.701 1.039e-134 [ 0.705, 0.826]
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In sample results 2010-2021, S&P500

coef std err t P> jtj 95.0% Conf. Int.

nu 5.4697 0.556 9.840 7.585e-23 [ 4.380, 6.559]
lambda -0.1063 2.412e-02 -4.409 1.037e-05 [ -0.154,-5.907e-02]

Model selected by BIC criteria has standardized skew student’s t-distribution
and constant mean.

coef std err t P> jtj 95.0% Conf. Int.

mu 0.0747 1.287e-02 5.806 6.385e-09 [4.950e-02,9.995e-02]

coef std err t P> jtj 95.0% Conf. Int.

omega 0.0254 5.665e-03 4.486 7.264e-06 [1.431e-02,3.651e-02]
alpha[1] 0.1783 2.149e-02 8.295 1.083e-16 [ 0.136, 0.220]
beta[1] 0.8095 1.964e-02 41.225 0.000 [ 0.771, 0.848]

coef std err t P> jtj 95.0% Conf. Int.

nu 5.4597 0.553 9.868 5.734e-23 [ 4.375, 6.544]
lambda -0.1037 2.401e-02 -4.321 1.555e-05 [ -0.151,-5.668e-02]

EGARCH
Model selected by AIC criteria has standardized skew student’s t-distribution

and constant mean.

coef std err t P> jtj 95.0% Conf. Int.

mu 0.0279 1.291e-02 2.161 3.068e-02 [2.598e-03,5.319e-02]

coef std err t P> jtj 95.0% Conf. Int.

omega 1.1853e-03 4.441e-03 0.267 0.790 [-7.519e-03,9.890e-03]
alpha[1] 0.0771 4.270e-02 1.805 7.111e-02 [-6.628e-03, 0.161]
alpha[2] 0.0693 4.167e-02 1.663 9.636e-02 [-1.238e-02, 0.151]
gamma[1] -0.2556 3.037e-02 -8.414 3.946e-17 [ -0.315, -0.196]
gamma[2] -0.0206 3.788e-02 -0.543 0.587 [-9.480e-02,5.367e-02]
gamma[3] 0.0744 3.838e-02 1.938 5.264e-02 [-8.482e-04, 0.150]
gamma[4] -0.0368 3.797e-02 -0.969 0.333 [ -0.111,3.762e-02]
gamma[5] 0.0782 4.157e-02 1.882 5.988e-02 [-3.253e-03, 0.160]
gamma[6] -0.0358 4.495e-02 -0.797 0.425 [ -0.124,5.227e-02]
gamma[7] 0.0566 4.122e-02 1.372 0.170 [-2.422e-02, 0.137]
gamma[8] -0.0370 4.331e-02 -0.854 0.393 [ -0.122,4.791e-02]
gamma[9] 0.0702 3.587e-02 1.957 5.031e-02 [-9.594e-05, 0.141]
beta[1] 0.9811 6.308e-03 155.532 0.000 [ 0.969, 0.993]
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In sample results 2010-2021, S&P500

coef std err t P> jtj 95.0% Conf. Int.

nu 6.1880 0.765 8.092 5.858e-16 [ 4.689, 7.687]
lambda -0.1713 2.691e-02 -6.365 1.954e-10 [ -0.224, -0.119]

Model selected by BIC criteria has standardized skew student’s t-distribution
and zero mean.

coef std err t P> jtj 95.0% Conf. Int.

omega 7.3972e-03 5.595e-03 1.322 0.186 [-3.569e-03,1.836e-02]
alpha[1] 0.2014 2.338e-02 8.611 7.227e-18 [ 0.156, 0.247]
gamma[1] -0.2184 1.813e-02 -12.047 2.021e-33 [ -0.254, -0.183]
beta[1] 0.9551 7.331e-03 130.277 0.000 [ 0.941, 0.969]

coef std err t P> jtj 95.0% Conf. Int.

nu 5.7886 0.662 8.740 2.322e-18 [ 4.491, 7.087]
lambda -0.1778 2.341e-02 -7.596 3.053e-14 [ -0.224, -0.132]

TARCH
Model selected by AIC criteria has standardized skew student’s t-distribution

and constant mean.

coef std err t P> jtj 95.0% Conf. Int.

mu 0.0259 1.246e-02 2.074 3.805e-02 [1.425e-03,5.028e-02]

coef std err t P> jtj 95.0% Conf. Int.

omega 0.0770 1.156e-02 6.663 2.680e-11 [5.436e-02,9.967e-02]
gamma[1] 0.2332 2.574e-02 9.061 1.287e-19 [ 0.183, 0.284]
gamma[2] 0.2781 2.783e-02 9.995 1.596e-23 [ 0.224, 0.333]
beta[1] 0.0231 4.332e-02 0.534 0.593 [-6.178e-02, 0.108]
beta[2] 0.7111 3.971e-02 17.908 1.030e-71 [ 0.633, 0.789]

coef std err t P> jtj 95.0% Conf. Int.

nu 6.1081 0.727 8.398 4.532e-17 [ 4.683, 7.534]
lambda -0.1709 2.648e-02 -6.454 1.089e-10 [ -0.223, -0.119]

Model selected by BIC criteria has standardized skew student’s t-distribution
and zero mean.
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In sample results 2010-2021, S&P500

coef std err t P> jtj 95.0% Conf. Int.

omega 0.0435 6.052e-03 7.189 6.518e-13 [3.165e-02,5.537e-02]
gamma[1] 0.2792 2.338e-02 11.944 6.984e-33 [ 0.233, 0.325]
beta[1] 0.8587 1.247e-02 68.877 0.000 [ 0.834, 0.883]

coef std err t P> jtj 95.0% Conf. Int.

nu 6.0352 0.721 8.372 5.647e-17 [ 4.622, 7.448]
lambda -0.1860 2.411e-02 -7.714 1.224e-14 [ -0.233, -0.139]

FIGARCH
Model selected by AIC criteria has standardized skew student’s t-distribution

and constant mean.

coef std err t P> jtj 95.0% Conf. Int.

mu 0.0729 1.272e-02 5.725 1.033e-08 [4.791e-02,9.779e-02]

coef std err t P> jtj 95.0% Conf. Int.

omega 0.0364 9.977e-03 3.650 2.621e-04 [1.686e-02,5.597e-02]
d 0.6001 7.737e-02 7.756 8.733e-15 [ 0.448, 0.752]
beta 0.4665 7.890e-02 5.913 3.360e-09 [ 0.312, 0.621]

coef std err t P> jtj 95.0% Conf. Int.

nu 5.5246 0.544 10.160 3.001e-24 [ 4.459, 6.590]
lambda -0.1114 2.430e-02 -4.585 4.533e-06 [ -0.159,-6.380e-02]

Model selected by BIC criteria has standardized skew student’s t-distribution
and constant mean.

coef std err t P> jtj 95.0% Conf. Int.

mu 0.0729 1.272e-02 5.725 1.033e-08 [4.791e-02,9.779e-02]

coef std err t P> jtj 95.0% Conf. Int.

omega 0.0364 9.977e-03 3.650 2.621e-04 [1.686e-02,5.597e-02]
d 0.6001 7.737e-02 7.756 8.733e-15 [ 0.448, 0.752]
beta 0.4665 7.890e-02 5.913 3.360e-09 [ 0.312, 0.621]

coef std err t P> jtj 95.0% Conf. Int.

nu 5.5246 0.544 10.160 3.001e-24 [ 4.459, 6.590]
lambda -0.1114 2.430e-02 -4.585 4.533e-06 [ -0.159,-6.380e-02]
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In sample results 2010-2021, S&P500

GJRGARCH
Model selected by AIC criteria has standardized skew student’s t-distribution

and constant mean.

coef std err t P> jtj 95.0% Conf. Int.

mu 0.0380 1.281e-02 2.966 3.013e-03 [1.289e-02,6.310e-02]

coef std err t P> jtj 95.0% Conf. Int.

omega 0.0617 9.860e-03 6.256 3.949e-10 [4.236e-02,8.101e-02]
gamma[1] 0.2618 4.521e-02 5.790 7.033e-09 [ 0.173, 0.350]
gamma[2] 0.3639 5.028e-02 7.239 4.523e-13 [ 0.265, 0.462]
beta[1] 4.0761e-04 3.726e-02 1.094e-02 0.991 [-7.263e-02,7.344e-02]
beta[2] 0.6527 3.734e-02 17.478 2.104e-68 [ 0.579, 0.726]

coef std err t P> jtj 95.0% Conf. Int.

nu 5.7430 0.636 9.024 1.815e-19 [ 4.496, 6.990]
lambda -0.1515 2.583e-02 -5.864 4.508e-09 [ -0.202, -0.101]

Model selected by BIC criteria has standardized skew student’s t-distribution
and constant mean.

coef std err t P> jtj 95.0% Conf. Int.

mu 0.0385 1.275e-02 3.020 2.524e-03 [1.352e-02,6.351e-02]

coef std err t P> jtj 95.0% Conf. Int.

omega 0.0317 5.315e-03 5.971 2.361e-09 [2.132e-02,4.215e-02]
gamma[1] 0.3315 4.385e-02 7.559 4.071e-14 [ 0.246, 0.417]
beta[1] 0.8167 1.825e-02 44.742 0.000 [ 0.781, 0.853]

coef std err t P> jtj 95.0% Conf. Int.

nu 5.7282 0.637 8.996 2.332e-19 [ 4.480, 6.976]
lambda -0.1488 2.554e-02 -5.827 5.641e-09 [ -0.199,-9.878e-02]

HARCH
Model selected by AIC criteria has standardized skew student’s t-distribution

and constant mean.

coef std err t P> jtj 95.0% Conf. Int.

mu 0.0731 1.301e-02 5.621 1.893e-08 [4.762e-02,9.861e-02]
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In sample results 2010-2021, S&P500

coef std err t P> jtj 95.0% Conf. Int.

omega 0.1332 2.297e-02 5.799 6.684e-09 [8.817e-02, 0.178]
alpha[3] 0.2461 8.058e-02 3.054 2.257e-03 [8.817e-02, 0.404]
alpha[6] 0.4020 0.102 3.946 7.932e-05 [ 0.202, 0.602]
alpha[23] 0.2886 6.064e-02 4.760 1.940e-06 [ 0.170, 0.407]

coef std err t P> jtj 95.0% Conf. Int.

nu 5.3607 0.533 10.049 9.315e-24 [ 4.315, 6.406]
lambda -0.1077 2.431e-02 -4.431 9.369e-06 [ -0.155,-6.008e-02]

Model selected by BIC criteria has standardized skew student’s t-distribution
and constant mean.

coef std err t P> jtj 95.0% Conf. Int.

mu 0.0731 1.301e-02 5.621 1.893e-08 [4.762e-02,9.861e-02]

coef std err t P> jtj 95.0% Conf. Int.

omega 0.1332 2.297e-02 5.799 6.684e-09 [8.817e-02, 0.178]
alpha[3] 0.2461 8.058e-02 3.054 2.257e-03 [8.817e-02, 0.404]
alpha[6] 0.4020 0.102 3.946 7.932e-05 [ 0.202, 0.602]
alpha[23] 0.2886 6.064e-02 4.760 1.940e-06 [ 0.170, 0.407]

coef std err t P> jtj 95.0% Conf. Int.

nu 5.3607 0.533 10.049 9.315e-24 [ 4.315, 6.406]
lambda -0.1077 2.431e-02 -4.431 9.369e-06 [ -0.155,-6.008e-02]

RiskMetrics

coef

mu 0.0000

coef

omega 0.0000
alpha[1] 0.9400
beta[1] 0.0600
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