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A B S T R A C T

Improving developer productivity is an important, but very difficult task, that re-
searchers from both academia and industry have been trying to solve for decades.
This has become even more challenging given the enormous scale at which today’s
software is produced. There is, however, an upside to this scale: the increased avail-
ability of code creates an exciting opportunity to learn from these large datasets.

The goal of this work is to leverage these datasets and to create programming
tools that accomplish tasks that were previously difficult or practically infeasible.
We address this problem, both at the foundational level by developing new tech-
niques that learn over existing code and synthesize new programs, as well as at
the application level, by creating software tools based on these models.

First, we address the core task of learning probabilistic models of code that
achieve state-of-the-art precision and are applicable across a variety of program-
ming languages. For this, we developed a novel probabilistic model, we identified
the right program representation to be compiled into that model, and we designed
suitable learning and inference algorithms. The key novelty of our approach is that
our probabilistic model is parametrized by a learned program, rather than a set of
non-interpretable weights, as typically done in machine learning.

Next, we address the problem of learning models of code that are not only ac-
curate, but also robust. This is a critical issue as existing models have shown to be
highly non-robust – a small input modification (e.g., code refactoring) can cause
the model to consistently produce the wrong result, thus hindering the tool’s adop-
tion in practice and pose a potential security risk. This is a highly non-trivial task
with several key challenges: learning the parts of the program relevant for the pre-
diction without conditioning on the entire program, allowing the model to over-
approximate the result when uncertain and developing models that learn com-
positional rules. In our work, we solve this problem from two perspectives: first,
from the programming languages angle, we learn interpretable rules of a static an-
alyzer, and second, from the machine learning perspective, we learn a robust deep
learning model that infers type annotations for dynamically typed languages.

Finally, we develop two tools, InferUI and FastSMT, that automate the tedious
and inefficient task of writing programs for two different application domains:
writing relational layouts for the Android platform and writing strategies that are
fast at solving SMT formulas. Further, both our tools significantly improve upon
the programs written manually by domain experts; they prevent common layouts
errors and achieve two orders of magnitude speed-up over the Z3 solver, respec-
tively. To make these tools practical, we combine program synthesis and machine
learning. This allows us to synthesize programs from a single input-output ex-
ample, while the machine learning component enables the synthesis to scale and
generalize to real-world programs and formulas.
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Z U S A M M E N FA S S U N G

Die Verbesserung der Entwicklerproduktivität ist eine wichtige, aber sehr schwie-
rige Aufgabe, die Forscher aus Wissenschaft und Industrie seit Jahrzehnten ver-
suchen zu lösen. Dies ist angesichts des enormen Umfangs, in dem die heutige
Software hergestellt wird, noch schwieriger geworden. Diese Größenordnung hat
jedoch einen Vorteil: Die erhöhte Verfügbarkeit von Code bietet eine aufregende
Gelegenheit, aus diesen großen Datenmengen zu lernen.

Ziel dieser Arbeit ist es, diese Datensätze zu nutzen und Programmierwerkzeu-
ge zu erstellen um Aufgaben zu erfüllen die zuvor schwierig oder praktisch nicht
realisierbar waren. Wir lösen dieses Problem sowohl auf der grundlegenden Ebe-
ne, indem wir neue Techniken entwickeln, die über vorhandenen Code lernen und
neue Programme synthetisieren, als auch auf Anwendungsebene, indem wir auf
diesen Modellen basierende Softwaretools erstellen.

Zunächst befassen wir uns mit der Kernaufgabe, probabilistische Codemodelle
zu erlernen, die auf dem neuesten Stand der Technik sind und auf eine Vielzahl
von Programmiersprachen anwendbar sind. Zu diesem Zweck haben wir ein neu-
artiges probabilistisches Modell entwickelt, die richtige Programmdarstellung für
dieses Modell identifiziert und geeignete Lern- und Inferenzalgorithmen entwi-
ckelt. Die wichtigste Neuerung unseres Ansatzes besteht darin, dass unser Wahr-
scheinlichkeitsmodell durch ein erlerntes Programm und nicht durch eine Reihe
nicht interpretierbarer Gewichte parametrisiert wird, wie dies normalerweise beim
maschinellen Lernen der Fall ist.

Als nächstes befassen wir uns mit dem Problem des Lernens von Codemodellen,
die nicht nur genau, sondern auch robust sind. Dies ist ein kritisches Problem, da
sich vorhandene Modelle als äußerst nicht robust erwiesen haben. Kleine Einga-
bemodifikationen (z. B. Code-Refactoring) können dazu führen, dass das Modell
durchweg das falsche Ergebnis liefert, wodurch die Übernahme des Tools in die
Praxis behindert wird und ein potenzielles Sicherheitsrisiko darstellt. Dies ist ei-
ne höchst komplexe Aufgabe mit mehreren zentralen Herausforderungen: Erler-
nen der für die Vorhersage relevanten Teile des Programms ohne Konditionierung
des gesamten Programms, sodass das Modell das Ergebnis bei Unsicherheiten
übersteuern kann, und erlernen der Kompositionsregeln ermöglicht. In unserer
Arbeit lösen wir dieses Problem aus zwei Perspektiven: Erstens lernen wir aus
Sicht der Programmiersprachen interpretierbare Regeln eines statischen Analysa-
tors und zweitens lernen wir aus Sicht des maschinellen Lernens ein robustes
Deep-Learning-Modell, für die Ableitung der Typanmerkungen für dynamische
Programmiersprache.

Schließlich entwickeln wir zwei Tools, InferUI und FastSMT, die die mühsame
und ineffiziente Aufgabe des Schreibens von Programmen für zwei verschiede-
ne Anwendungsbereiche automatisieren: das Schreiben von Beziehungslayouts für
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die Android-Plattform und das Schreiben von Strategien, mit denen SMT-Formeln
schnell gelöst werden können. Darüber hinaus verbessern unsere beiden Tools die
von Fachexperten manuell geschriebenen Programme erheblich. Sie verhindern
häufige Layoutfehler und erreichen eine Beschleunigung um zwei Größenordnun-
gen gegenüber dem Z3-Solver. Um diese Tools praktisch zu gestalten, kombinie-
ren wir Programmsynthese und maschinelles Lernen. Dies ermöglicht es uns, Pro-
gramme aus einem einzigen Eingabe-Ausgabe-Beispiel zu synthetisieren, während
die maschinelle Lernkomponente es ermöglicht, die Synthese zu skalieren und auf
reale Programme und Formeln zu verallgemeinern.
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1
I N T R O D U C T I O N

The increasing availability of large datasets is a key trend that acts as a catalyst in
many domains, such as natural language processing, computer vision or speech
recognition. The domain of programming is no exception and has seen an enor-
mous increase in large and high quality code bases written in different program-
ming languages and targeting diverse types of applications. For example, only on
GitHub, there are more than 100 million repositories out of which more than 33

million are public. To put these numbers into perspective, just twelve years ago
the number of all GitHub repositories was only 33 thousand while now, there are
1.6 new repositories created every second [21].

Learning from "Big Code" [22, 23] takes advantage of the availability of these
large codebases and aims to develop new techniques and tools that help program-
mers to be more productive in a wide range of tasks they perform daily – imple-
menting new code, maintaining or refactoring existing code, debugging, testing,
fixing bugs, reviewing code, understanding code and many more. In other words,
tools based on learning from large codebases have a tremendous potential to im-
prove all aspects of the software development as it is done today.

Naturally, this created a significant interest from both academia and industry
and resulted in several tools already deployed in practice, including JSNice [22]
– a statistical renaming and type inference tool for JavaScript used by more than
100 000 users yearly, Getafix [24] – an industrially deployed tool that automati-
cally fixes selected classes of Java bugs (i.e., null dereferences or incorrect API calls)
by learning from human-written fixes, or TypeWriter [25] – another industrially
deployed tool that combines statistical type inference for Python with search-based
validation used to assess the prediction correctness.

However, the number of tools that learn over programs and are deployed in
practice are only few and far between. Learning from code is still an emerging
research area with the number of publications doubling in the last year [23]. The
main reasons for this are twofold – (i) given that such tools have the potential to
improve almost any aspect of software development, much of the recent research
effort is dedicated to exploring new tasks, and (ii) there has been an enormous
interest in using deep learning to train models of code. In particular, the deep
learning based approaches are currently so popular that the majority of the re-
search papers published in the last two years employ some form of neural model.
For example, deep learning models have been trained for a wide range of existing
and new tasks, including code completion [26–29], type prediction [30–33], code
summarization [34–37], code classification [38, 39], bug detection [40–43], learn-
ing loop invariants [44, 45], malware detection [46], program translation [47, 48],
neural decompilation [49], or code search [50–52].
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2 introduction

1.1 this work

In this work, we focus on learning from large codebases, both at the foundational
level by developing new techniques that learn over existing code and synthesize
new programs, and at the application level, by creating software tools based on
these models. To achieve this, we address a number of hard problems at the inter-
section of programming languages, program synthesis and machine learning.

challenges The first challenging problem we consider is designing new prob-
abilistic models of code that achieve state-of-the-art precision and are applicable
across a range of programming languages. This includes addressing several key
challenges including: developing a novel probabilistic model, learning the right
program representation to be compiled into that model, designing the appropri-
ate learning and inference algorithms. The key novelty of our approach is that
our probabilistic model is parametrized by a learned program, rather than a set of
non-interpretable weights, as done typically in machine learning.

The second challenge is learning models and synthesizing programs that are
not only accurate, but also robust. When learning static analyzers (e.g., points-to
analysis rules), the notion of robustness is a natural requirement since the program
analyzers should produce sound results for all valid programs in a given program-
ming language. However, the same robustness property is highly desirable also for
other models of code, including those based on deep learning. In fact, the issue of
robustness is especially critical for deep learning models, which have been shown
to be very brittle in other domains including natural language processing [53–55].

The third challenge we address is to automate the tedious, error-prone, and in-
efficient task of writing programs for two different application domains: writing
relational layouts for the Android platform and writing strategies that are fast at
solving SMT formulas. For both domains, solving this task requires a careful com-
bination of program synthesis and machine learning techniques. This combination
is critical for developing tools that scale to real-world problems and that can be
directly integrated into existing tools (e.g., Z3 solver).

combining machine learning and programming languages In our
work, we apply both machine learning and programming languages techniques
to address the same problem but from different perspectives, as well as explore
different ways of integrating them together. Machine learning enables learning
accurate models that handle noisy data and has the potential to automate many
design steps found in traditional programming language systems (e.g., in program
synthesis)1. Further, machine learning models can often be applied to new tasks
relatively fast, which makes them very desirable (given that a suitable dataset is
available). Addressing the problem from the programming languages perspective

1 Strengths of each domain are based on the current state-of-the-art but are not specific to the given do-
main. For example, there is a large body of work on interpreting deep learning models [56–58], neural
network verification [59] or extending traditional program synthesis techniques to handle noise [9, 60].



1.2 contributions 3

learning over programs learning programs

P(y | ) y

modelprogram label

train arg max
P( | , y)DSL DSL y

modelprogram program label

train arg max eval

Figure 1.1: High-level illustration of two perspectives considered in our work that learn
to predict program properties from a dataset of programs. Learning over pro-
grams directly learns a machine learning model that predicts a given prop-
erty. In contrast, learning programs learns a program from a domain-specific
language which, when evaluated, computes the property.

allows building systems that are more interpretable, with provable guarantees, can be
easily integrated into existing systems and can work well even with small datasets.
The disadvantage, however, is that building such systems is typically more time
consuming and they do not readily apply to other tasks.

The main difference between using machine learning and programming lan-
guage techniques considered in our work is that the former learns over programs
while the latter learns programs, as illustrated in Figure 1.1. In fact, for machine
learning, the programs are often just a different type of input data over which
the machine learning models are trained and the main goal is to correctly pre-
dict a given property (e.g., the type of a variable, whether a program has a bug).
In contrast, when learning programs, the goal is to learn another program (e.g.,
a static type inference analysis) that computes the desired property. Learning such
programs is useful beyond computing the property, as they can be inspected, un-
derstood and integrated into existing systems by a domain expert.

1.2 contributions

The main contributions of this dissertation are summarized below:

chapter 2 : Designs a probabilistic model of code called probabilistic higher or-
der grammar (PHOG). This is a non-neural based model that learns to con-
dition each prediction on a small set of relevant parts of the program. The
key insight is that the conditioning is expressed as a learned program in
a domain-specific language. That is, the probabilistic model is parametrized
by a program. The model generalizes over a number of prior works [61–64]
and we evaluated it by learning probabilistic models for two programming
languages (JavaScript and Python), as well as character level language mod-
els for natural language text from Wikipedia. Even though our models are
non-neural and are instantiated with a simple maximum likelihood model
(based on counting), they are comparable and even better than a number of
sophisticated deep learning models developed after our work.

chapter 3 : Presents a new, automated approach for learning static analyzers
from data. Our approach builds on the results from Chapter 2 and extends
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it to allow learning analyzers that are sound and precise (with respect to
the training dataset). This is instead of considering a probabilistic setting in
which the model is allowed to make mistakes, which is unsound. To achieve
this, we designed a counter-example guided learning procedure that gen-
erates new programs beyond those in the initial dataset, critical for discov-
ering corner cases and ensuring the learned analysis generalizes to unseen
programs. In particular, we show that our approach can successfully learn al-
location site and a restricted set of points-to analysis rules for JavaScript that
are not supported by the state-of-the-art static analyzer Facebook Flow [65].

chapter 4 : Addresses the task of learning robust models of code. This is a simi-
lar problem to the one considered in Chapter 3, but with the focus on solving
it from a machine learning perspective of learning over programs rather than
learning programs. That is, instead of learning the static analysis explicitly as
a program, we learn a robust neural network that produces the most likely
analysis output. Even though the underlying models are different, we will
show that the technical solutions need to address the same set of challenges
when learning sound and precise models. Further, we will show the paral-
lels between the techniques used in machine learning (adversarial robustness,
learning to abstain) and programming languages (counter-example guided
synthesis, over-approximation) which have very similar goals but are called
differently by the different research communities.

chapter 5 : Shows how both learning over programs and learning programs con-
cepts can be combined to solve a given task efficiently. Concretely, we present
a new approach for learning strategies that solve SMT formulas consisting
of two main steps: (i) train a neural policy that applies a sequence of equisat-
isfiable transformations until the STM formula is solved, and (ii) synthesize
an interpretable representation of the policy decisions in the form of a loop-
free program with branches. Extracting a program that represents the policy
decisions allows us to integrate our approach directly into the underlying
SMT solver and avoids the need for the expensive evaluation of the learned
policy at inference time. We show that our approach is effective in practice –
it solves 27% more formulas over a range of benchmarks and achieves up to
100× runtime improvement over the state-of-the-art SMT solver Z3 [66].

chapter 6 : Describes a new application domain that learns layouts and their at-
tributes from images. Concretely, given an image of an application design,
we synthesize a relational layout that when rendered, places all the compo-
nents at that same location, such that it looks visually the same. In order
to build an end-to-end system capable of generating such layouts, a num-
ber of challenging tasks need to be addressed, including: (i) identifying the
type, size and location of various user interface components in the image, (ii)
synthesizing a layout that positions the identified components at the correct
location on the screen while generalizing to unseen devices with different
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Figure 1.2: An overview of the instantiation of our work for the task of learning proba-
bilistic models of code (i.e., predicting the next program token to write).

dimensions, and (iii) learning to correctly predict the attributes of each com-
ponent (e.g., shadows, colors, borders, etc.), such that it looks visually the
same as in the original image. We demonstrate how both machine learning
and programming language techniques can be used to address these chal-
lenges by instantiating our approach for the Android platform.

1.3 overview of the techniques and tools developed in our work

In the rest of this section, we give an overview of the techniques and applications
explored in this work. Concretely, we focus on highlighting how learning over pro-
grams and learning programs are combined and instantiated for different domains.

1.3.1 Probabilistic Models of Code

We start with learning a generative probabilistic model of code, that is, a proba-
bility distribution over programs. This is a natural first task since a probabilistic
model of code is a core component for many tasks including code completion [6,
27], deminification [22], patch generation [67], translation between programming
languages and others. This also applies to our work, where in Chapter 3 we build
upon the probabilistic model of code defined in Chapter 2 to learn static analyzers,
while in Chapter 6 we use it to guide program synthesizers.

More formally, a probabilistic model of code learns a probability distribution
P(y | x) given a training dataset D = {(xj, yj)}n

j=1 of n samples where xj are
inputs (partial programs) and yj are outputs (correct predictions for the partial
programs). The instantiation for both learning over programs and learning programs
approaches used in our work is shown in Figure 1.2. For the former, we use state-
of-the-art neural models to represent the probability distribution P(y | x). For the
latter, one of the contributions of this work is developing a new model, called prob-
abilistic higher order grammar (PHOG). While we leave the technical discussion
of neural networks and PHOG to Chapter 2, we highlight the concepts used in
both (though often using different names) in Table 1.1.
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concept Neural Networks PHOG (our work)

out-of-vocabulary

pointer networks equality programs (§ 2.2.1)

subword information -

attention soft (and hard) hard (§ 2.1)

interpretability attention & gradients programs & executions (§ 2.1)

coverage activation similarity path coverage (§ 3.4.1)

state LSTM cell state state programs (§ 2.1.2.2)

embeddings continuous discrete (§ 2.2)

Table 1.1: Comparison of various concepts used when training neural models and the
probabilistic higher order grammar (PHOG) developed in our work.

out-of-vocabulary words A common challenge inherent to language mod-
elling is handling the cases where words appearing at inference time are different
than those seen during training. This can be especially problematic for code, where
much of the variety comes from user defined identifiers, strings and constants [8,
68]. To address this issue, two general techniques exist – using subword informa-
tion and copying words from other parts of the input. For neural networks, the
former technique is used to enrich word vectors with subword information [69–72]
while the latter is known as pointer networks [27, 73]. For PHOG, we address this is-
sue using equality programs – our technique that has been developed concurrently
to pointer networks but for non-neural models.

attention Attention is a powerful technique used in deep learning [74–77],
which allows the model to use the information from any part of the input instead
of forcing the model to summarize the input into a fixed-length vector. The same
concept, referred to as the conditioning set, is also used in PHOG and allows the
model to selectively condition each prediction on the relevant parts of the input.
The main difference is that in PHOG, the conditioning set is small and discrete
(similar to hard attention in neural networks [78]). This is in contrast to soft atten-
tion that contains the probability distribution over all the inputs.

interpretability In terms of interpretability, there has been a large body of
works developed for neural networks including methods that create proxy models
of neural networks [79–82], identify relevant parts of the input via gradients [83–
86] or optimization [86], find interpretations of high level features [83, 85, 87, 88],
black-box methods [56, 89, 90] or using attention mechanisms (e.g., [91–93] for
graphs). In comparison, learning programs allows interpretability by construction
since the output is a program that can be inspected and executed. Naturally, the
interpretability of inspecting programs by hand is typically useful only if the re-
sulting programs are small and concise.
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coverage A side effect of the fact that the learned programs can be inspected
and executed is that we can take advantage of traditional program analysis tech-
niques to analyze them. One example where this is beneficial is when testing the
correctness of the learned model. For programs, we show how coverage guided
fuzzing can be used to efficiently find inputs that explore all possible loop-free
paths of the analyzed program (in Chapter 3). For neural networks, similar ideas
have been recently explored by grouping inputs together based on the similarity
of their activations [94].

state Another concept used both in neural networks and PHOG is the notion of
state. For neural networks, the most widely used implementation of a state is that
of an LSTM cell [95]. For example, this allows the model to learn cells suitable to
specific contexts, such as inside quotes, inside comments or sensitive to expression
depth [96]. For PHOG, the notion of state is supported using state programs that
extend the model with a stack capable of adding and removing different states.
While less expressive than LSTM, state programs do allow expressing many of the
same contexts including tracking quotes or comments.

embeddings Finally, a crucial property of neural networks is that they rep-
resent input words as high dimensional real vectors (i.e., word embeddings). In
contrast, PHOG keeps the original discrete representation, effectively treating all
words as independent of each other (i.e., the distance between all words in the vo-
cabulary is the same). However, we designed the PHOG model such that it can be
instantiated with any probabilistic model, including neural networks, log-bilinears
models, support vector machines and more. As a result, the PHOG model can also
take advantage of the continuous word representations, if instantiated with a prob-
abilistic model that supports them.

1.3.2 Robust and Accurate Models of Code

Despite substantial progress on training accurate models of code, the issue of ro-
bustness has been mostly overlooked. Yet, this is an important problem across
various domains (e.g., computer vision [97–100], natural language processing [55,
101–105]) where neural models have been shown to be highly non-robust - a small
input modification (e.g., pixel change) can cause the model to consistently predict
the wrong label [53, 54].

For the domain of code, the input modifications correspond to common code
refactoring a user might make, such as renaming variables, adding new code, or
various label and semantic preserving changes. For a model to be robust, it should
compute the correct prediction both on the original input program, as well as on
all its possible modifications. However, as existing models of code optimize only
for accuracy and do not consider the notion of robustness, it is not difficult to show
that they are highly non-robust even for simple program transformations such as
variable renaming or changing constants.
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Figure 1.3: Instantiation of our work for the task of training robust models of code. Here,
even though both approaches solve the same task independently of each
other, they share many common concepts as shown in Table 1.2.

In our work, we address the challenge of training robust and accurate models
of code from two independent perspectives – learning over programs (using neural
networks in Chapter 4) and learning programs (building upon PHOG in Chapter 3).
We illustrate their concrete instantiations in Figure 1.3 which considers three differ-
ent tasks – type inference, points-to analysis and allocation site analysis. As can be
seen, we selected the tasks that correspond to existing static analyses that domain
experts write by hand. The reasons for this are threefold:

• The learned programs from Chapter 3 can be used by domain experts to
design static analyzers faster, by discovering parts of the analyzer from data.

• It enables us to study the robustness for tasks without ambiguous labels.
This is in contrast to the inherently probabilistic, and ambiguous, setting of
some of the other tasks such as code completion2.

• We can collect suitable datasets automatically, by taking advantage of the fact
that the programs are executable and that the analyzer must approximate
the concrete program behaviour. Thus, we can obtain a dataset by executing
a large amount of programs in a given programming language with some
inputs, and obtaining a subset of the concrete semantics for each program.

In what follows, we highlight common concepts used by both approaches to
train robust models, as summarized in Table 1.2.

adversarial training At a high-level, both approaches use a variant of ad-
versarial training [53] which instead of minimizing the expected loss on the orig-
inal distribution of programs E(x,y)∼D[`( f (x), y)] (as done in standard training),

2 The issue with standard robustness in ambiguous settings is that one needs to additionally differentiate
between: (i) the case where the model predicts a different, yet valid label, due to ambiguity, and (ii) the
case where the model predicts an incorrect label. This is a non-trivial task since the set of all valid labels
is typically not known. For example, in code completion we observe a single variable name used by
the developer, even though different users might prefer different variable names in the same context.
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concept Neural Networks PHOG

training adversarial (§ 4.3) adversarial (§ 3.3)

finding counter-examples

gradients (§ 4.3.2) path coverage (§ 3.4)

guided (§ 4.3.2) guided (§ 3.4)

representation refinement remove edges (§ 4.4) extract nodes (§ 3.5.2)

approximation abstain (§ 4.2) lattice (§ 3.3)

compositionality sequence of models (§ 4.5) fixpoint

program transformations semantic & label preserving (§ 3.4.2, § 4.6)

Novel contribution, Adapting existing concepts to a new domain, Other works

Table 1.2: Comparison of various concepts used in our work for training robust models
of code using two different perspectives – learning over programs using neural
networks and learning programs using PHOG.

minimizes the expected adversarial loss E(x,y)∼D[maxδ⊆∆(x) `( f (x + δ), y)]. Here, f
is the model (e.g., neural network), ` is the loss (e.g., cross-entropy), δ is a program
transformation and ∆(x) is a set of all valid program transformations defined
over x. That is, we minimize the worst case loss obtained by applying a valid mod-
ification to the original program x, which is similar to finding a counter-example.

finding counter-examples The first challenge in applying adversarial train-
ing to code is solving the inner maxδ⊆∆(x). For neural networks, this is achieved
using gradient based techniques [106], by sampling at random or using other tech-
niques to guide the search (e.g., for cases where gradient based techniques are not
applicable). For PHOG, we take advantage of the fact that the model is expressed
as a program. This allows us to: (i) sample inputs from the dataset such that they
cover all the execution paths of the synthesized program, and (ii) use execution
traces to select which transformations are likely to affect the model output.

representation refinement For training to be successful, it should be per-
formed using a suitable program representation. This is especially important for
adversarial training where an adversary is actively trying to break the model. For
code, such an adversary is quite powerful since existing neural models of code typi-
cally process the entire program, which can contain hundreds of lines of code. This
is problematic, as it means that any program change can affect all predictions and
there can be infinitely many program changes. To address this issue we develop
a novel technique that: (i) learns which parts of the input program are relevant
for the given prediction, and (ii) refines the model representation such that only
relevant program parts are used as input. Essentially, the technique automatically
learns an abstraction which given a program, produces a relevant representation
of that program. For neural networks we instantiate this concept by representing
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programs as graphs that are sparsified as part of the training. When learning pro-
grams using PHOG, we also represent programs as graphs (trees), but learn to
extract concrete nodes relevant for the prediction instead of only removing edges.

approximation The next concept is the ability to over-approximate the correct
solution when the learned model is uncertain. This notion is natural for program
analysis which typically computes an abstract representation of the program’s con-
crete behaviors using a lattice of abstract facts equipped with an ordering between
them. This allows computing results with various degrees of precision, all of which
are sound over-approximations of the correct result. In other words, the analysis
computes very precise results when it is certain (i.e., knows enough program facts
to support this decision) and will soundly approximate the results when fewer pro-
gram facts can be deduced. In the worst case, the analysis returns the top element
of the lattice, which over-approximates all concrete program behaviours.

When learning programs, we follow this approach and incorporate the lattice
of abstract states as part of the learned programs (although the lattice has to be
provided manually and is not learned). When learning over programs, we augment
the standard neural model with an option to abstain from making a prediction
when uncertain. This corresponds to a flat lattice that either predicts a concrete
label or returns the top element (i.e., abstains).

compositionality Another high-level concept is compositionality. Currently,
there is a conceptual gap between the design of static analysis tools that typically
perform a computation until a fixpoint is reached, and neural networks that make
predictions in constant time by passing the input program through a neural net-
work (even though the network can be very large). Another consequence of the
existing neural network architectures is that they make all the predictions at the
same time. For example, in type prediction, the types of variable usages, as well
as all the expressions are predicted in a single forward pass. As a result, the mod-
els tend to learn brittle statistical regularities around the predicted position rather
than conditioning on the causal features (e.g., type of the previous usage).

To address this issue, we incorporate the fixpoint computation when learning
programs using PHOG. When learning over programs using neural networks, we
approximate the fixpoint computation by training a sequence of models that: (i)
learns to predict labels of increasing complexity, and (ii) are compositional – we
allow each model to explicitly condition on results computed by all prior models.

program transformations Finally, the set of all valid program transfor-
mations ∆(x) needs to be defined. The set ∆(x) can be seen as the user provided
specification that defines scenarios for which the model is expected to be robust.
As such, it is therefore independent of the underlying model and only depends
on the given task at hand. In our work, we use a wide range of semantic preserv-
ing (e.g., renaming variables, adding dead code, etc.), as well as label preserving
transformations (e.g., changing constants, adding method parameters, etc.).
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Figure 1.4: Illustration of combining learning over programs and learning programs. We first
train a neural model to solve the task and then extract the model as an inter-
pretable program. We instantiate the approach to learning to solve SMT for-
mulas by (i) using reinforcement learning to select strategies that are efficient
at solving SMT formulas, and (ii) synthesizing a Z3 strategy program that
extracts the learned model and can be directly plugged into the Z3 solver.

1.3.3 Learning Strategies to Solve SMT Formulas

So far, we have considered a number of tasks over code and addressed them from
two different perspectives – learning over programs and learning programs. Even
though both approaches share many common concepts and techniques, we used
them independently of each other. A natural next step is to take the advantages of
both approaches and combine them to solve the same task.

One way how both approaches can be combined is by training a neural model
to solve the task and then extracting its interpretable version, represented as a pro-
gram in a domain-specific language. This is useful whenever neural networks are
more efficient at solving the task at hand or easier to apply, yet the goal is to learn
an interpretable program that can be integrated into an existing system.

Furthermore, using neural networks is especially useful in a challenging setting
where the labelled dataset does not exist. That is, when the input is a set of pro-
grams without the corresponding ground-truth labels, but with an oracle that can
check whether the predicted labels are consistent (or even correct). As an example,
consider the task of fixing bugs where it is not known what the correct fix is, but it
is possible to run a test suite to check whether the proposed fix is correct. Finding
the correct fix is a search problem in a huge (or even infinite) search space, which
is a setting where neural networks can be very effective.

In our work, we instantiate this setting to the task of learning strategies to solve
SMT formulas and develop a tool called FastSMT. The instantiation is shown in
Figure 1.4, where each program corresponds to a first-order logic formula (e.g.,
∃x, y ∈ N : x > 10 ∧ x + y < 15) and the goal of the SMT solver [66, 107] is
to decide whether the formula is satisfiable or not (in this case the formula is
satisfiable and one valid model is x = 11 and y = 3).
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We phrase the challenge of solving SMT formulas as a tree search problem
where at each step a satisfiability preserving transformation is applied to the input
formula until the formula is solved. Our approach works in two phases: (i) given
a dataset of unsolved formulas we use reinforcement learning to learn a policy
that for each formula selects a suitable transformation to apply at each step in
order to solve the formula, and (ii) we synthesize a strategy in the form of a loop-
free program with branches. This strategy is an interpretable representation of the
policy decisions and once learned, it is used to guide the SMT solver to decide
formula satisfiability more efficiently, without requiring any modification to the
solver itself and without needing to evaluate the learned policy at inference time.

1.3.4 From Images to Layouts

Our last tool, called InferUI, addresses the task of synthesizing robust relational
layouts from examples. Concretely, the task of layout synthesis can be decomposed
into the following three steps: (i) given an image of an application design, identify
the set of components (e.g., buttons, text views, etc.) and their locations on the
screen, (ii) synthesize a relational layout which when rendered, places the compo-
nents at that same location, and (iii) infer the implementation of each component
which when rendered, looks visually the same as the input image.

We illustrate the three steps in Figure 1.5. Here, the first step identifies that
the input image contains three buttons and one background image. The second
step synthesizes a relational layout for the Android platform – a program that
can be compiled and rendered. The third step then infers the attributes of each
component such as the background color, shadows, fonts, and more.

Input Image

Component Detection Layout Synthesis
(Chapter 6)

Attribute Inference
(Our Work [13])

<ConstraintLayout>

<Button id="v1"

layout_width="match_constraint"

layout_marginTop="10dp"

constraintLeft_toLeftOf="parent"

constraintTop_toTopOf="v3"

.../>

...

</ConstraintLayout>

Font Family Roboto

Font Size 12sp

Corner Radius

Border Width 0dp

Background Color

Shadow none

Figure 1.5: Illustration of the three steps used to synthesize relational layouts. First, all
the components and their location are identified (either by the user or by train-
ing an object detection model [108–111]). Second, we synthesize a relational
layout which, when rendered, places the components at their respective po-
sitions. Third, we learn to infer visual attributes for each components which,
when rendered, look visually the same as in the input image.
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Figure 1.6: Illustration of combining machine learning and program synthesis for the
task of synthesizing robust relational layouts presented in Chapter 6.

The most relevant step for this dissertation is the second step which synthesizes
programs given an input specification. This is because it can be phrased as a pro-
gram synthesis task, in line with the learning programs perspective. Similar to other
synthesis tasks, this is a highly challenging problem since the input specification
is severely underspecified – it contains a single input-output example containing
view positions for one device, yet the synthesized program is expected to gener-
alize across a range of devices with various resolutions and screen sizes. To make
the synthesis practical and applicable to real-world layouts, we combine it with
learning over programs in three key areas, as illustrated in Figure 1.6.

scalability We learn a probabilistic language model to guide the symbolic
search used by program synthesis. This is critical for making the synthesis scalable
to complex layouts, as it improves the runtime by up to 100×.

generalization Because the input specification is underspecified, there is
typically a large number of programs that satisfy it. However, the majority of
those programs are incorrect and rejected by the users. To address this issue, we
learn different probabilistic models and use them to guide the synthesis towards
selecting better programs. These probabilistic models are learned not only over
programs, but also over program outputs or the input-output specification.

robustness To further improve generalization, it is possible to extend the spec-
ification with hand-crafted robustness properties that capture properties of good
layouts. In our work, we show how such robustness constraints can be formal-
ized and encoded as part of the synthesis problem. Going one step further, in our
subsequent work [7], we have shown that it is possible to learn suitable machine
learning models that replace such robustness properties. This saves not only the
time required to design and implement the robustness properties by hand, but
also leads to synthesizing layouts with improved generalization.
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1.4 summary

In this section, we have provided an overview of the topics presented in this thesis,
some of the associated challenges, our contributions, as well as a brief introduction
of the techniques and tools developed as part of our work. The main focus of our
work is learning from large and small codebases using two different perspectives
– a machine learning perspective that learns over programs and a programming
languages (or synthesis) perspective that learns programs. Throughout this thesis,
we will see how these perspectives can be used independently of each other to
solve the same task and, more crucially, how they can be combined together in
different ways.
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P H O G : P R O B A B I L I S T I C M O D E L F O R C O D E

In this chapter, we introduce a new approach for learning probabilistic language
models and show that our approach is a good fit for both, program source code
and character level language modelling. We designed our model to be extremely
fast at inference time and generic – it is readily applicable to any programming
language (given a parser) and is trained to predict all program elements in the
given language (e.g., variables, constants, method invocations, parameters, etc.).
As such, our model can be used as a core building block by a variety of tools
that learn from large codebases, including language translation [112, 113], patch
generation [67], probabilistic type inference [22], or code completion [62, 64, 114].

probabilistic language model More formally, a probabilistic language
model can be represented by the conditional probability of the next word given all
the previous words:

P(w) =
|w|

∏
t=1

P(wt | w<t) (2.1)

where wt is t-th word and w<t = (w1, w2, . . . , wt−1) is a sequence of words
preceding wt (exclusive). Depending on the application, the words can correspond
to a tokenized version of the program, nodes in the corresponding abstract syntax
tree or other suitable program representation. For character level modelling, the
words naturally correspond to characters in the input sentence.

conditioning context Finding the right program representation over which
a probabilistic model is learned is key to the overall model precision. In particu-
lar, it is critical that the representation contains parts of the input relevant for the
prediction while ignoring the rest. We can model the suitable representation by
replacing w<t in Equation 2.1 with a function f (w<t), which takes as input all the
preceding words w<t:

P(w) =
|w|

∏
t=1

P(wt | f (w<t)) (2.2)

The generalized formulation in Equation 2.2 is useful as the function f (w<t)
explicitly defines the conditioning context used as input to the probabilistic model.
In our work, we consider the case where the code is written sequentially and the
model is only allowed to look at the preceding words. However, the formulation
in Equation 2.2 can be easily extended by including both preceding words as well
as subsequent words, i.e., f (w<t,w>t).

15
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awaitReset = function() {

...

return defer.promise;

}

awaitRemoved = function() {

...

fail(function(error) {

...

defer.reject(error);

});

return defer.

}
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Figure 2.1: Example of a partial JavaScript code (a) and the corresponding abstract syntax
tree (b). To predict the property name, the probabilistic model for code can be
conditioning on different contexts, illustrated as boxes in (c). The existing
models condition either on the full input 1 (e.g., neural networks) or on a
fixed partial input 2 (e.g., n-gram, log-bilinear models), 3 (e.g., PCFG). In
contrast, we propose a model that conditions on context obtain dynamically
4 using a learned program that traverses the input and accumulates values.

To illustrate different conditioning contexts, consider the JavaScript code fragment
shown in Figure 2.1 (a). The code is parsed by a context-free grammar (CFG) in or-
der to obtain an abstract syntax tree (AST), shown in Figure 2.1 (b). Now, consider
the last statement which returns a property of the defer object. The JavaScript
CFG permits any valid identifier here, yet not every identifier would produce a
desirable program. In a box akin to a code completion window, we show some
reasonable values for which property should be returned along with their prob-
abilities. To compute these probabilities, the probabilistic language model can be
instantiated with different conditioning context f (w<t), as shown in Figure 2.1 (c):

• Conditioning on fixed partial input f (w<t) = {φi(w<t)}k
i=1. Traditionally, lan-

guage models reduced the difficulty of the modelling problem by transform-
ing the input into a fixed set of features φi(w<t). The models that use this
approach include n-gram models, log-bilinear models and probabilistic con-
text free grammars.

– N-gram model takes advantage of the observation that temporally closer
words are statistically more dependent. Concretely, the n-gram model
makes an independence assumption that each word depends only on
the last n− 1 words, thus f (w<t) = (wt−n−1, wt−n, · · · , wt−1).
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– Log-bilinear model defines the conditioning context as a linear combina-
tion of the features1 φ1(w<t), · · · , φk(w<t), which often correspond to
n-grams (i.e., φi(w<t) = wi for unigram or φi(w<t) = (wi, wi+1) for
bigram), but can also capture user-defined domain knowledge such as
cyclomatic complexity.

– Probabilistic context free grammar (PCFG) is an extreme case of condition-
ing on a fixed partial input, where each prediction is conditioned only
on the parent non-terminal node f (w<t) = parent(wt). While condition-
ing only on the parent is often sufficient for parsing, it is very limiting
when it comes to language modelling.

The main limitation of these models is that the context is fixed and identi-
cal for all prediction types. As shown in Figure 2.1 (c), PCFG is an extreme
case where the prediction is made only based on the fact that it is an object
Property, without taking into account any information about the object it-
self. This naturally leads to poor probability estimates and suggestions that
generate undesirable programs.

• Conditioning on full input f (w<t) = w<t. As the probabilistic language mod-
els became more powerful, they started conditioning on the full input instead
of manually defining a fixed set of features upfront. To achieve this, the state-
of-the-art and most widely used models are based on deep learning.

– Neural networks convert each input word into a real-valued vector and
then learn a smooth function that maps the vectors into the desired out-
put value – in this case a summary of the context relevant to make a pre-
diction. Over the years, many different architectures were proposed to
learn the mapping efficiently, including those that treat the input as
a sequence [95], tree [115], graphs [43] or even as a bag of words [116].

Because the model conditions on the full input, which for programs can be
hundreds of lines of code, it has to be powerful enough to: (i) discover and
condition on features that are strongly correlated with the prediction, rather
than (ii) conditioning on the much more common but weakly correlated fea-
tures. This is especially important for training robust models, a topic we
cover in Chapter 4.

• [Our Work] Conditioning on dynamic sparse input f (w<t) = p(w<t). In our
work, we develop a new probabilistic language model which learns to dy-
namically select a sparse subset of the input relevant to the prediction. The
model is dynamic because the conditioning context is computed based on the
current prediction and not fixed a priori as done for n-gram or log-bilinear
models. Further, it is sparse, meaning that only a few input words are selected,
rather than conditioning of the full input as done in neural networks.

1 The main difference between n-gram and log-linear models is that while n-grams use discrete word
representation, log-linear models use continuous representation by converting each word (or a feature)
into a real-valued vector. As a result, log-linear models are in fact a simple neural language model.
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– Probabilistic higher order grammar (PHOG) proposes a novel approach
to building probabilistic models – by parametrizing the model with
a learned program from a domain-specific language. That is, the con-
ditioning context is obtained by executing the learned program p. Upon
termination, p returns a set of input words that are relevant for the
given prediction. In Figure 2.1 (c), we show a conditioning that predicts
an object property by finding a place in the code where it was used
in the same context (a return statement with the same variable), and
then including the property used there as conditioning context (arrows

show movement over the AST that leads to computing this context).

The optimization problem addressed during the training is to search for the
program in a domain-specific language, which given an input (in our case
an AST), returns a conditioning context that maximizes the probability of
the dataset. As we will show in Section 2.1, we designed the domain-specific
language to be independent of the concrete programming language, making
our approach widely applicable.

PHOG is a novel approach to building probabilistic models – by parametrizing
the model with a learned program from a domain-specific language.

The design choice of using programs to parametrize the probabilistic model
has a number of advantages. First, programs are interpretable and can be
inspected by a developer. Second, programs are a natural way to incorporate
inductive bias, especially for domains that operate over structured data. Fi-
nally, the domain-specific language that defines the set of valid programs is
easily extensible and we designed it to include prior works that use fixed
conditioning context.

the need for dynamic conditioning In Figure 2.1 (c), we illustrated how
to compute conditioning context dynamically for a given type of prediction, in
this case, an object property. However, to learn accurate probabilistic models, it is
crucial that the conditioning depends not only on the prediction type, but also on
the context in which the prediction is made.

As a concrete example, consider the four JavaScript code examples shown in
Figure 2.2. The goal for each of these examples is to predict the most likely HTTP
header property that should be set when performing a HTTP request (marked as ?).
An important observation is that even though all four examples predict a property
name, the best features needed to make the correct prediction are very different in
each example (marked as green boxes). In Figure 2.2 (a) and (b), the only available
information is the variable name to which the dictionary object is assigned, and
the fact that it is used in the http.request API, respectively. In Figure 2.2 (c),
a prediction can be based on the previous two properties that were already set,
as well as on the fact that the dictionary is used as a second argument in the
http.request API. In Figure 2.2 (d), another similar call to http.request is present
in the same program and a probabilistic model may leverage that information.
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var http_options = {

? ← prediction

}; position

(a)

http.request(..., {

host: ’localhost’,

accept: ’*/*’,

?

});

(c)

http.request(..., {

?

});

(b)

relevant positions used to
condition the prediction

http.request(..., {

host: ’www.google.com’,

accept: ’*/*’,

user-agent: ’curl/7.2’

});

...

http.request(..., {

host: ’www.bing.com’,

accept: ’*/*’,

?

});

(d)

Figure 2.2: JavaScript code snippets used to motivate the need for a probabilistic model
with dynamically computed context based on the input. Although each exam-
ple predicts a property name used for an HTTP request, the best context used
to condition the prediction (shown as rectangles) is different for each input.

Intuitively, the best features depend on the context in which the completion is
performed. Thus, ideally, we would like our probabilistic model to automatically
discover the relevant features/context for each case.

To achieve this, recall than the key idea behind our approach is to parametrize
a probabilistic model by a learned program p. With this in mind, a natural way to
allow the program p to compute different conditioning contexts is to extend p with
branch statements. Concretely, our approach can learn a program such as the one
shown in Figure 2.3 directly from the training data. Here, the program contains
several tests that check properties of the input code snippet (e.g., whether some
properties have been set) in order to select the suitable conditioning context used
for making the prediction. In this example, each of the four inputs from Figure 2.2
will end up in a different branch, allowing the model to learn a suitable context
specialized for making each of the predictions.

if number properties already set

= 0 ≥ 1

if statement type

Assigment APICall

Model (a) Model (b) Model (c) Model (d)

if previous property name is
seen in program multiple times

true false

Figure 2.3: An example of a program, visualized as a decision tree, learned by our ap-
proach. When processed by this program, each of the inputs in Figure 2.2 will
end up in a different path (tree leaf) and thus a different model will be used
to answer the queries of each example. As a result, each of the models can
learn conditioning context specialized for the types of predictions it makes.
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The main challenge we need to address is how to learn such complex programs
with branches efficiently. The key technical insight is to (recursively) split the train-
ing data in a fashion similar to decision trees [117] and to then learn smaller spe-
cialized programs for each branch of the tree. Importantly, our formulation allows
us to cleanly represent and experiment with classic decision tree learning algo-
rithms such as ID3 [118] but also permits new, previously unexplored extensions
which lead to better precision than ID3.

outline We organize this chapter as follows. In Section 2.1 we introduce our
domain-specific language, called CondGen, for obtaining the conditioning context.
In Section 2.2 we define how we can use a program p ∈ CondGen to parametrize
a probabilistic language model. Next, in Section 2.3 we present our approach for
learning programs in CondGen. We then provide a thorough experimental evalua-
tion of our approach, instantiated for a number of datasets and two domains: (i)
learning probabilistic model of code in Section 2.4 and character level language
modelling in Section 2.5. Finally, we describe the related work in Section 2.6 and
provide a brief summary and discussion in Section 2.7.

2.1 parametrizing language models with programs

We start by defining a domain specific language, called CondGen, for expressing
programs that describe the conditioning context. At a high level, executing a pro-
gram p ∈ CondGen on an input w<t returns a conditioning context ctx ∈ Context
based on which, the probabilistic model makes a prediction P(wt | p(w<t)). For
example, the conditioning context computed by program p for the input shown
in Figure 2.2 (a) would consist of a single value http_options. However, the same
program p executed on a different input in Figure 2.2 (c) would lead to a larger
conditioning context that contains the object http, the method call request as well
as two object properties host and accept.

To keep our approach widely applicable, the CondGen language presented next
is not only independent of any programming language but also applicable beyond
programs to tasks over text. In what follows we will:

• Describe the basic building blocks of CondGen, which consists of programs
that traverse input and accumulate context with values from the input.

• Show how to instantiate these programs to language modelling over pro-
grams as well as character level language modelling.

• Describe the syntax and intuition behind the full CondGen language, which
extends the basic programs with branches and state.

• Formally define the small-step semantics of the CondGen language.
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2.1.1 Simple Programs

The SimpleProgram is a basic building block of the CondGen language and it has
the following syntax:

SimpleProgram ::= ε | Move; SimpleProgram | Write; SimpleProgram

The SimpleProgram describes a loop-free and branch-free program that accumu-
lates context with values from the input by means of traversing within the input
(using Move instructions) and writing the observed values (using Write instruc-
tions). The result of executing a SimpleProgram is accumulated context, which is
used either to condition the prediction, to determine which program to execute
next (described in Section 2.1.2.1) or to update the program state (described in Sec-
tion 2.1.2.2). Note that the syntax allows empty programs (denoted at ε), in which
case the accumulated context is empty.

One of the advantages of our approach is that the Move and Write instructions
can be specialized depending on the target application. For example, it is straight-
forward to add instructions that implement sophisticated static analysis or are
specific to a concrete programming language. We will demonstrate how this is
useful in Chapter 3, which extends the language with instructions specifically de-
signed for learning static analyzers. However, in this chapter, we keep the language
generic and instantiate it for two domains – for programs and for natural language.

2.1.1.1 Instantiation for Probabilistic Models of Code

When learning probabilistic models of code, we represent the input programs us-
ing their corresponding abstract syntax trees (AST). Each AST node contains two
attributes – the type of the node and an optional value. As an example, consider
the AST node Property : promise from Figure 2.1, where Property denotes the
type and promise is the value. The number of unique types is relatively small
(e.g., 44 for our JavaScript corpus) and is determined by the non-terminal sym-
bols in the underlying context-free grammar that defines the AST. The number of
values is very large (109 in our JavaScript corpus) and is a mixture of identifiers,
literals, constants and language specified operators (e.g., i, load, 7, ”get”, +, ∗).

move instructions For programs, we instantiate Move instructions as shown
in Figure 2.4. Here, the Move instructions facilitate tree traversal by moving the
current position in the tree to the parent node (UP), left and right siblings (LEFT,
RIGHT), first and last child (DOWN_FIRST, DOWN_LAST), previous and next node in
depth first search traversal order (PREV_DFS, NEXT_DFS), previous and next leaf2

node (PREV_LEAF, NEXT_LEAF), previous node that has the same type or value
(PREV_NODE_TYPE, PREV_NODE_VALUE) and finally to the previous node where the
parent and grandparent have the same type and values (PREV_NODE_CONTEXT). We

2 Leaf nodes are those nodes in the AST that contain a non-empty value. For example,
Property : promise is a leaf node but CallExpression and ReturnStatement are not.
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Move ::= LEFT | RIGHT | UP | DOWN_FIRST | DOWN_LAST | PREV_DFS | NEXT_DFS |
PREV_LEAF | NEXT_LEAF | PREV_TYPE | PREV_VALUE | PREV_CONTEXT

Write ::= WRITE_VALUE | WRITE_TYPE | WRITE_POS

. Instructions to traverse over abstract syntax trees

Figure 2.4: Instantiation of the Move and Write instructions for learning probabilistic
language models of code.

note that not all the instructions are defined symmetrically. For example, we de-
fined PRED_NODE_VALUE but not NEXT_NODE_VALUE. This is because the correspond-
ing instructions have limited usefulness since in our work, the predicted position
wt is the last word in the input (i.e., the code is written sequentially).

write instructions The write instructions WRITE_TYPE, WRITE_VALUE and
WRITE_POS append facts about the currently visited node to the accumulated con-
text by writing the type, value and position of the node in the parent respectively.

Example Consider the following example of a SimpleProgram:

LEFT, WRITE_VALUE, UP, WRITE_POS, UP, DOWN_FIRST, DOWN_LAST, WRITE_VALUE
(Figure 2.5)

Initially, the program execution (shown in Figure 2.5) starts at the position where
the prediction is made, in this case at the tree node Property :?. The first program
instruction LEFT moves the current position to the left sibling, which corresponds
to the node Property : autoHide. As the previous property of the same object is
relevant to the prediction, the program executes WRITE_VALUE to store the value
of the property (autoHide). Next, the program uses UP to traverse to the parent
node and WRITE_POS to store the position of the node in the parent. In this case,
this corresponds to conditioning on the fact that the object expression is a third
argument. Next, the program executes a sequence of Move instructions that traverse
to a node corresponding to the method name being executed and stores its value
using WRITE_VALUE. The result of executing this program is a conditioning context
containing tree values – autoHide, 3 and notify.

The key advantage of our definition of the Move and Write instructions is that
the language is small, yet expressive enough to describe interesting programs. For
example, we can express the program illustrated in Figure 2.1 as follows:

LEFT, PREV_NODE_CONTEXT, RIGHT, WRITE_VALUE
(Figure 2.1)

Similarly, we can directly encode a number of prior works that define fixed
condition context. For example, we can express the 3-gram model as follows:

PREV_DFS, WRITE_VALUE, PREV_DFS, WRITE_VALUE
(3-gram model)
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elem.notify(

...,

...,

{

position: ’top’,

autoHide: false,

?

}

)

CallExpression

MemberExpression

Identifier:elem

Property:notify

... �

... �

ObjectExpression

Property:position

String: ’top’

Property:autoHide

Boolean: false

Property:?

LEFT

WRITE_VALUE (autoHide)

UP

WRITE_POS (3)

UP

DOWN_FIRST

DOWN_LAST
WRITE_VALUE (notify)

Prediction
position

(a) Input program (b) Abstract syntax tree (c) Program execution

LEFT, WRITE_VALUE, UP, WRITE_POS, UP, DOWN_FIRST, DOWN_LAST, WRITE_VALUE
Previous

Property

Parameter

Position

API

name

(d) Example of a SimpleProgram

Figure 2.5: Example of a SimpleProgram (d) and its execution (c). The program uses Move
instructions to traverse the AST (b) representation of the JavaScript code snip-
pet (a). The result of executing the program is the conditioning context, which
in this case corresponds to the previous property (autoHide), the parameter
position (third parameter) and the name of the method called (notify).

2.1.1.2 Instantiation for Character Level Language Modelling

We show our instantiation of the Move and Write instructions for character level
language modelling in Figure 2.6. The intuition behind both is the same as for
code, except that they operate over sequence of characters instead of trees.

move instructions We define four types of Move instructions – LEFT and
RIGHT that move to the previous and next character, respectively, PREV_CHAR that
moves to the most recent position in the input with the same value as the current
characterwi and PREV_POS which works as PREV_CHAR but only considers positions
in the input that are partitioned into the same language model3. Further, for each
character c in the input vocabulary we generate instruction PREV_CHAR(c) that
traverses to the most recent position of character c.

write instructions We define three Write instructions – WRITE_CHAR that
writes the value of the character at the current position, WRITE_HASH that writes
a hash of all the values seen between the current position and the position of last

3 If there is only a single language model, then PREV_CHAR and PREV_POS are equivalent. We describe
how we partition the input and learn multiple language models in Section 2.2
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Move ::= LEFT | RIGHT | PREV_CHAR | PREV_CHAR(c) | PREV_POS

Write ::= WRITE_CHAR | WORD_HASH | WORD_DIST

. Instructions to traverse over sequence of characters

Figure 2.6: Instantiation of the Move and Write instructions from Figure 2.8 for character
level language modeling.

Write instruction, and WRITE_DIST that writes a distance (i.e., number of charac-
ters) between the current position and the position of the last Write. In our imple-
mentation we truncate WRITE_HASH and WRITE_DIST to a maximum size of 16.

Example With Write and Move instructions, we can express various programs
that extract useful context for a given position in the input text, as illustrated in
Figure 2.7. For example, a program that computes the length of the current word
can be written as:

PREV_CHAR( ), WRITE_DIST
(current word length)

Another useful program is:

LEFT, PREV_CHAR, RIGHT, WRITE_CHAR
(previous occurrence of the character on the left)

Here, LEFT moves to the prior character, PREV_CHAR to the previous occurrence of
the prior character and RIGHT moves to the character right after. This sequence of
instructions is very similar to instructions LEFT, PREV_NODE_CONTEXT, RIGHT used
earlier for modelling code.

(a) Input text

(c) Program(b) Program execution

M g 1 2 H e 2 A i 1 3 F e 2 6 M ?

PREV_CHAR( )

WRITE_DIST (2)

LEFT

WRITE_CHAR (M)PREV_CHAR
RIGHT

WRITE_CHAR (g)

Prediction
position

(second program)
LEFT, WRITE_CHAR, PREV_CHAR,

RIGHT, WRITE_CHAR

(first program)
PREV_CHAR( ), WRITE_DIST

Figure 2.7: Examples of SimplePrograms used for character level language modelling.
The first program computes the current word length by jumping to the pre-
ceding space via PREV_CHAR( ) instruction. Executing the second program
results in a conditioning context containing the prior character (M) and the
most recent character that follows it (g).
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2.1.2 CondGen: A Domain Specific Language for Describing Conditioning Context

Having described the core building block of CondGen, we now introduce the syntax
of the full CondGen, shown in Figure 2.8. At a high level, CondGen consists of four
types of programs that can be split into two categories:

• Programs that accumulate context, SimpleProgram and EqualityProgram, which
traverse the input with the goal of accumulating a set of relevant values.

• Programs with branches and state, BranchProgram and StateProgram, which
are used to dynamically select which programs to execute next.

. Program that traverses over the input and acculumates conditioning context

. Program that enables out-of-vocabulary words prediction

. Conditionally selects next program to execute by maching the context

accumulated by a SimpleProgram against a set of constant values

. Updates the current state and selects next program to execute based on the state

CondGen ::= SimpleProgram | EqualityProgram |
BranchProgram | StateProgram

SimpleProgram ::= ε |
Move; SimpleProgram |
Write; SimpleProgram

EqualityProgram ::= (SimpleProgram, SimpleProgram)

StateProgram ::= StateUpdate; StateSwitch
StateUpdate ::=

switch SimpleProgram

case Constant then INC

case Constant then DEC

default SKIP

StateSwitch ::=

switch state

case Constant then CondGen

· · ·
case Constant then CondGen

default CondGen

BranchProgram ::=

switch SimpleProgram

case Constant or · · · or Constant then CondGen

· · ·
case Constant or · · · or Constant then CondGen

default CondGen

Figure 2.8: Syntax of the CondGen language for character level language modelling.
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2.1.2.1 Branch Programs

As we have seen so far, SimplePrograms are expressive enough to describe relevant
conditioning context specialized for different types of predictions and their context.
Our next goal is to provide a mechanism to compose and select which program to
execute, such that the resulting program works well for the entire dataset.

To achieve this, we introduce BranchProgram that conditionally selects appro-
priate subprograms based on a learned condition. The condition is represented as
another SimpleProgram that accumulates values and executes the program associ-
ated with the matching case clause. If no clause matches, then a default program
is executed. Note that the BranchProgram is similar to the switch statement com-
monly found in imperative programming languages. The main difference is that in
our work, only one matching case clause is executed4 and we support disjunction
of values for each case condition. Further, we allow executing a subprogram only
if the conjunction of the conditions holds. This is possible because the programs in
each case clause can be any CondGen, meaning that BranchPrograms can be nested.

During the learning (described in Section 2.3), the goal is to synthesize all the
BranchProgram components – the SimpleProgram used as condition, the number
of case clauses, the constant values c1, . . . , cn used to match each case clause and
the CondGen programs inside of each case clause (including the default program).

Example We illustrate BranchPrograms on a simple example shown in Figure 2.9.
Here, the BranchProgram condition is LEFT WRITE_CHAR, which corresponds to re-
turning the previous character. For example, when the partial input is a1a, execut-
ing LEFT WRITE_CHAR will return a. Because this matches the case clause ′a′ or ′b′,
the execution will continue with the subprogram f1. For the input a1a2, the con-
dition returns 2, which does not match any case clause. In this case, the default
program f2 is executed.

t w<t wt LEFT WRITE_CHAR subprogram

1 a ε f2

2 a 1 a f1

3 a1 a 1 f2

4 a1a 2 a f1

5 a1a2 b 2 f2

6 a1a2b 1 b f1

switch LEFT WRITE_CHAR

case ‘a‘ or ‘b‘ then f1

default f2

(b) Program

(a) Input text

a1a2b1

Figure 2.9: Example of a BranchProgram executed on the input a1a2b1. The table shows
the current character that has to be predicted (wt), the partial input (w<t),
accumulated context by the condition LEFT WRITE_CHAR, and subprogram se-
lected based on matching the accumulated context against the case clauses.

4 If multiple case clauses match the condition, then the first one is executed.
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2.1.2.2 State Programs

A common difficulty in building statistical language models is capturing long
range dependencies in the given dataset. Our CondGen language partially addresses
this issue by using Move instructions that can jump to various positions in the input
(e.g., using instructions such as PREV_CHAR, PREV_NODE_CONTEXT, PREV_NODE_VALUE,
etc.). However, we can further improve this by explicitly introducing a state to our
programs using StateProgram.

The StateProgram consists of two sequential operations – updating the cur-
rent state and determining which program to execute next based on the value
of the current state. For both, we reuse the switch construct defined previously for
BranchPrograms. In our work, we consider integer valued state that can be either
incremented (INC), decremented (DEC) or left unmodified (SKIP) after processing
each input word. We note that other definitions of the state, such as stack based
state, are possible.

Example As an example of a StateProgram, consider the question of detect-
ing whether the current character is inside a comment or is part of the source
code. These denote very different types of data and to achieve high model preci-
sion, the probabilistic model should produce predictions tailored for both of them.
This can be achieved by using a simple state program shown in Figure 2.10. The
StateUpdate condition is LEFT WRITE_CHAR LEFT WRITE_CHAR, which accumulates
the last two characters which were written. The corresponding case clauses incre-
ment the state on ’/*’, decrement the state on ’*/’ and leave the state unchanged
otherwise. As a result, the StateSwitch selects subprogram f1 when predicting
code (when state = 0) and subprogram f2 when predicting comments.

state → 0

state → 1
program f2

state → 0
program f1

...

/* If these interrupts use reservation mode,

* clear the activated bit so request_irq()

* will assign the final vector.

*/

if (can_reserve) {

for_each_msi_entry(desc, dev) {

irq_data = irq_domain_get_irq_data(

domain, desc->irq);

irqd_clr_activated(irq_data);

}

}

StateSwitch ::=
switch state

case 0 then f1
default f2

StateUpdate ::=
switch LEFT WRITE_CHAR

LEFT WRITE_CHAR
case ’/*’ then INC

case ’*/’ then DEC

default SKIP

(a) StateProgram (b) Code snippet

Figure 2.10: Illustration of a SwitchProgram executed on a code snippet from Linux Ker-
nel. The SwitchProgram is designed to keep track of comments, by incre-
menting the state on ’/*’ and decrementing on ’*/’.
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2.1.2.3 Equality Programs

A common limitation of probabilistic models is that they cannot predict values (i.e.,
names of method calls, variable names, etc.) not seen in the training data. We offer
simple mitigation for this limitation by introducing EqualityPrograms, which can
express the equality of the output label to a value already present in the input.
Technically, this is achieved by learning a pair of SimplePrograms. The semantics
of the first program are as before – to accumulate context used to condition the
prediction. The second program also accumulates context, but with a different
purpose – the accumulated context contains concrete values from the input that
might be used as the prediction. We will describe a simple way to extend any
probabilistic model with the ability to predict such values in Section 2.2.1.

2.1.3 Small-step Semantics of CondGen

We formally define CondGen programs to operate on a state:

σ = 〈x, i, ctx, counts〉 ∈ States

The domain States is defined as States = X ×N × Context × Counts, where
x ∈ X is the input, i ∈N is a position in the input, Context = Σ∗ is a list of values
accumulated by executing Write instructions and Counts : StateSwitch→ N is
a mapping that contains a value denoting the current count for each StateSwitch

program. For code, the input X corresponds to abstract syntax trees, where each
node has an associated type and value5. For natural language, X = char∗ corre-
sponds to a sequence of characters. In both cases, we use Σ to denote the range
of values produced by executing any Write instruction. For code, Σ = N ∪ T ∪V
can be a natural number, node type (T) or node value (V). For natural language,
Σ = N∪ char can be a natural number or an input character.

Initially, the execution of a program p ∈ CondGen starts with an empty context
[] ∈ Context and counts initialized to zero (denoted as 0) for every StateSwitch

program. For a program p ∈ CondGen, an input x ∈ X, and a position i in x, we say
that p computes the context ctx = p(x, i) iff there exists a sequence of transitions,
according to the small-step semantics, from 〈p, x, i, [], 0〉 to 〈ε, x, _, ctx, _〉. That is,
ctx is the accumulated context obtained by executing all the instructions of the
program p on the input x starting at position i. To remove clutter, we will use p(x)
to denote executing program p from the last position in the input x.

2.1.3.1 Semantics of SimpleProgram for Probabilistic Models of Code

We formalize the small-step semantics of Write and Move instructions in Fig-
ure 2.11, using the rules [Write] and [Move], respectively.

5 We provide a description and example of abstract syntax trees in Section 2.1.1.1.
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w ∈ Write v = wr(w, x, i)

〈w :: s, x, i, ctx, counts〉 −→ 〈s, x, i, ctx · v, counts〉
[Write]

m ∈ Move i′ = mv(m, x, i)

〈m :: s, x, i, ctx, counts〉 −→ 〈s, x, i′, ctx, counts〉
[Move]

Figure 2.11: Small-step semantics of Move and Write instructions. Each rule is of the type:
CondGen× States→ CondGen× States.

write instructions The semantics of each Write instruction is that it ac-
cumulates a value v to the conditioning set ctx as defined by the function v =
wr(op, x, i). Here, wr : Write×X×N→ Σ is a function that takes as input Write
instruction, an input x ∈ X and position in the input i ∈ N, and returns a value v
appended to the context ctx. We define wr as follows:

• wr(WRITE_TYPE, x, i) returns the type of the node at position i in the input x.

• wr(WRITE_VALUE, x, i) returns the value of the node at position i in the input x.
If the node does not contain a value, a special symbol denoting the empty
value is returned.

• wr(WRITE_POS, x, i), which for node at position i, returns 0 if it the first child
of its parent, 1 if it is the second child, etc.

move instructions The semantics of each Move instruction is to traverse the
input by changing the current position i to i′ = mv(op, x, i). Here, mv : Move×X×
N→N is a function that computes the new position, defined as follows:

• mv(UP, x, i) = i′, where i′ is the parent node of the node at position i in x.

• mv(LEFT, x, i) = i′, where i′ is the position of left sibling of the node at
position i in x. Similarly, mv(RIGHT, x, i) returns the right sibling’s position.

• mv(DOWN_FIRST, x, i) = i′, where i′ is the first child of the node at position i
in x. Similarly, mv(DOWN_LAST, x, i) returns the position of the last child.

• mv(PREV_DFS, x, i) = i′, where i′ is the predecessor of the node at posi-
tion i in x in the left-to-right depth-first search traversal order. Similarly,
mv(NEXT_DFS, x, i) returns the position of successor node in the left-to-right
depth-first search traversal order.

• mv(PREV_LEAF, x, i) = i′, where i′ is the first leaf on the left of the node at
position i in x. Similarly, mv(NEXT_LEAF, x, i) returns the first leaf on the right.

• mv(PREV_NODE_CONTEXT, x, i) = i′, where i′ is the largest position for which
it holds that: i′ < i, the nodes at positions i and i′ have the same value and
type, and, the parents of both nodes have the same type.
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• mv(PREV_NODE_VALUE, x, i) = i′, where i′ is the largest position for which it
holds that: i′ < i, and the nodes at positions i and i′ have the same value.
The function mv(PREV_NODE_TYPE, x, i) is defined analogously but ensures
that the nodes have the same type.

Further, for all the Move instructions defined above, it is possible that the condi-
tion for the new position i′ cannot be satisfied, i.e., the execution of the instruction
fails. For example, when executing the UP instruction on a node that has no parent
or executing LEFT instruction on a node that has no left sibling. In cases where the
Move instruction fails, the semantics are that the original position i is returned.

2.1.3.2 Semantics of SimpleProgram for Character Level Language Modelling

The small-step semantics of Write and Move instructions for character level lan-
guage modelling are also defined in Figure 2.11, using rules [Write] and [Move],
respectively. The only difference is how the functions mv and wr are defined.

write instructions We define the wr function as follows:

• wr(WRITE_CHAR, x, i) returns the character at position i in the input string x.
If i is not within the bounds of x (i.e., i < 1 or i ≥ len(x)) then ε is returned.

• wr(WRITE_HASH, x, i) returns the hash of all characters seen between the cur-
rent position i and the position of the last Write instruction that was ex-
ecuted. More formally, let iprev be the position of the previous write. Then
wr(WRITE_HASH, x, i) = H(x, i, min(i+ 16, iprev)), where H : char∗×N×N→
N is a hashing function that hashes characters in the string from the given
range of positions. The hashing function used in our implementation is:

H(x, i, j) =


xi if i = j

H(x, i, j− 1) ∗ 137 + xj if i < j

ε otherwise

• wr(WRITE_DIST, x, i) returns a distance, measured as the number of charac-
ters, between the current position and the position of latest Write instruc-
tion. In our implementation we limit the return value to be at most 16, i. e.,
wr(WRITE_DIST, x, i) = min(16,

∣∣i− iprev
∣∣).

move instructions We define the mv function as follows:

• mv(LEFT, x, i) = max(1, i− 1), moves to the position of the previous character
in the input. Similarly, mv(RIGHT, x, i) = min(len(x)− 1, i + 1) moves to the
position of the next character. Here, len(x) denotes the length of x.

• mv(PREV_CHAR, x, i) = i′, where i′ is the position of the most recent character
with the same value as the character at position i, i. e., the maximal i′ such
that xi′ = xi and i′ < i. If no such character is found, the value −1 is returned.
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• mv(PREV_CHAR(c), x, i) = i′, where i′ is the position of the most recent char-
acter with the same value as character c, i. e., the maximal i′ such that xi′ = c
and i′ < i. If no such character c is found in x the value −1 is returned.

• mv(PREV_POS, x, i) = i′, where i′ is the same as for PREV_CHAR, except that
only positions that fall into the same leaf program are considered.

2.1.3.3 Semantics of BranchProgram

The semantics of BranchProgram are described by the [Switch] and [Switch-
Default] rules shown in Figure 2.12. In both cases, the guard of the BranchProgram,
denoted as op.guard, is executed to obtain the context ctxguard. The context is then
matched against all the case clauses in the syntactic order they were defined. If an
exact match is found, denoted as ctxguard ∈ cj, then the corresponding program is
selected for execution (rule [Switch]). Note that the condition

∧
1≤n<j ctxguard /∈ cn

ensures that if multiple case clauses match, only the first one is selected. If no
match is found, the default program denoted as op.de f ault is selected for exe-
cution (rule [Switch-Default]). In both cases, the current context is updated by
appending the index of the branch taken or a special symbol ⊥ for the default case.
This allows the model to distinguish which branch a program has taken, effectively
splitting the datasets into multiple partitions, one for each branch.

BranchProgram ::=

switch SimpleProgram

case Constant or · · · or Constant then CondGen

· · ·
case Constant or · · · or Constant then CondGen

default CondGen

BranchProgram ::=

switch guard

case c1 then f1
· · ·
case ck then fk

default fdefault

op ∈ BranchProgram 〈op.guard, x, i, [], counts〉 → 〈ε, x, _, ctxguard, _〉
ctxguard ∈ cj

∧
1≤n<j ctxguard /∈ cn

〈op, x, i, ctx, counts〉 −→ 〈op. f j, x, i, ctx · j, counts〉
[Switch]

op ∈ BranchProgram 〈op.guard, x, i, [], counts〉 → 〈ε, x, _, ctxguard, _〉∧
1≤n≤k ctxguard /∈ cn

〈op, x, i, ctx, counts〉 −→ 〈op. fdefault, x, i, ctx · ⊥, counts〉
[Switch-Default]

(a) BranchProgram Syntax (b) BranchProgram Notation

(c) BranchProgram Semantics

Figure 2.12: Small-step semantics of BranchProgram. Each rule is of the type: CondGen×
States → CondGen× States. The notation in (b) shows how individual parts
of the BranchProgram are referred to. For example, the SimpleProgram used
as a condition is denoted as guard.
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2.1.3.4 Semantics of StateProgram

The semantics of StateProgram are described by the rules [StateUpdate], [Up-
date] and [StateSwitch] in Figure 2.13. In our work, the state is represented as a
set of counters associated with each SwitchProgram. First, the rule [StateUpdate]
is used to execute StateUpdate program which determines how the counters are
updated. The execution of StateUpdate is similar to BranchProgram and results in
selecting one of the update operations INC, DEC or SKIP to be executed next.

The goal of the update instructions is to update the state. Their semantics are de-
scribed by the [Update] rule and each instruction computes value of the updated
counter and is described by following function update:

update : {INC, DEC, SKIP} ×N→N

defined as follows: (i) update(INC, n) = n + 1 increments the value by one, (ii)
update(DEC, n) = max(0, n− 1) decrements the value by one, bounded from below
by zero, and (iii) update(SKIP, n) = n keeps the value unchanged.

Finally, after the state has been updated, the StateSwitch program is executed.
The semantics of the StateSwitch are very similar to BranchProgram and are de-
fined by the rules [StateSwitch] and [StateSwitch-Def]. The only difference is
that the guard is not a program but simply the value of the state associated with
the given StateSwitch statement.

op ∈ StateUpdate 〈op.guard, x, i, [], counts〉 → 〈ε, x, _, ctxguard, _〉
ctxguard ∈ cj

∧
1≤n<j ctxguard /∈ cn

〈op :: s, x, i, ctx, counts〉 −→ 〈op. f j :: s, x, i, ctx, counts〉
[StateUpdate]

op ∈ StateUpdate 〈op.guard, x, i, [], counts〉 → 〈ε, x, _, ctxguard, _〉∧
1≤n≤k ctxguard /∈ cn

〈op :: s, x, i, ctx, counts〉 −→ 〈op. fdefault :: s, x, i, ctx, counts〉
[StateUpdate-Def]

op ∈ {INC, DEC, SKIP}
n = update(op, counts[s]) counts′ = counts[s→ n]

〈op :: s, x, i, ctx, counts〉 −→ 〈s, x, i, ctx, counts′〉
[Update]

op ∈ StateSwitch counts[op] ∈ cj
∧

1≤n<k counts[op] /∈ cn

〈op, x, i, ctx, counts〉 −→ 〈op. f j, x, i, ctx · j, counts〉
[StateSwitch]

op ∈ StateSwitch
∧

1≤n≤k counts[op] /∈ cn

〈op, x, i, ctx, counts〉 −→ 〈op. fdefault, x, i, ctx · ⊥, counts〉
[StateSwitch-Def]

Figure 2.13: Small-step semantics of StateProgram. Each rule is of the type: CondGen×
States→ CondGen× States.
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2.2 from CondGen to a probabilistic model

Having defined the syntax and semantics of the CondGen language, we now de-
scribe the probabilistic model used in our work. Concretely, given a program
p ∈ CondGen, our goal is to estimate the probability of next word wt using the
conditioning context computed by executing p on all the preceding words w<t:

P(wt | p(w<t)) (2.3)

Given the context computed using p(w<t), we can use a wide range of prob-
abilistic models to estimate P from the data, including neural networks, support
vector machines, log-bilinear models and more. However, in our work we estimate
p using a very simple model – maximum likelihood estimation via counting:

P(wt | p(w<t)) =
Count(p(w<t) · wt)

Count(p(w<t))
(2.4)

where Count(p(w<t) · wt) denotes the number of times the word wt is seen
in the training dataset together with the context produced by p(w<t). Similarly,
Count(p(w<t)) denotes the number of times the context was seen regardless of
the subsequent word. We have selected such a simple model for two reasons:

• It is fast to train and query. Once a program p ∈ CondGen is found, training
takes only a couple of seconds even on large datasets since it involves only
counting in a single pass over the training data.

• It regularizes the learning towards finding better conditioning context p(w<t),
rather than using the model capacity to make good predictions with larger
but noisy contexts. This is especially useful when the goal is to find inter-
pretable programs that can be inspected by a domain expert.

Example We illustrate how the probabilistic model is built on a simple example
shown in Figure 2.14. Here, the model is parametrized using a BranchProgram and
a training dataset with a single input sequence a1a2b1b2. Executing the guard pro-
gram LEFT WRITE_CHAR splits the input into two paritions: (i) containing samples
at positions 2, 4, 6, 8 processed by program f1, and (ii) containing samples 1, 3, 5, 7
processed by program f2. For each of these partitions, we estimate separate mod-
els from the data, as shown in the two tables in Figure 2.14 (bottom). For position
t = 8, the probability is estimated using Count( f1(w<8) · w8)/Count( f1(w<t)),
where f1(w<8) = 1. Here, Count(1) = 2 because f1(w<t) = 1 for positions 4 and 8.
Similarly, Count(1 · 2) = 2 for the same positions. As a result, the estimated prob-
ability of word 1 at position t = 8 is 1 (i.e., the model is 100% certain). In this case,
the model is certain since it found good conditioning context using program f1,
which recognizes that the sequence of numbers is repeating. On the other hand,
the conditioning context for f2 is empty and can be further improved. Note that



34 phog : probabilistic model for code

t w<t wt LEFT WRITE_CHAR subprogram

1 a ε f2

2 a 1 a f1

3 a1 a 1 f2

4 a1a 2 a f1

5 a1a2 b 2 f2

6 a1a2b 1 b f1

7 a1a2b1 b 1 f2

8 a1a2b1b 2 b f1

t f1(w<t) Pf1
(wt | f1(w<t))

2 a
Count(a·1)
Count(a) = 1

1 = 1.0

4 1
Count(1·2)
Count(1) = 2

2 = 1.0

6 2
Count(2·1)
Count(2) = 1

1 = 1.0

8 1
Count(1·2)
Count(1) = 2

2 = 1.0

t f2(w<t) Pf2 (wt | f2(w<t))

1 ε
Count(ε·a)
Count(ε) = 2

4 = 0.5

3 ε
Count(ε·a)
Count(ε) = 2

4 = 0.5

5 ε
Count(ε·b)
Count(ε) = 2

4 = 0.5

7 ε
Count(ε·b)
Count(ε) = 2

4 = 0.5

switch LEFT WRITE_CHAR

case ‘a‘ or ‘b‘ then LEFT LEFT WRITE_CHAR ( f1)

default ε ( f2)

Figure 2.14: Illustration of a model learned from the input sequence a1a2b1b2. The
BranchProgram splits the input into two partitions for which separate mod-
els Pf1

and Pf2 are estimated from the data. Note that for position t = 2, eval-
uating f1(w<2) = a returns the character a. This is because the semantics of
executing the second LEFT instructions is to keep the position unchanged if
there is no preceding character in the input.

for an empty context, the model will always return unconditional maximum like-
lihood estimates. Because the frequency of characters a and b is the same, the
unconditional estimate in our example is 0.5 for both of them.

smoothing A common issue inherent to learning probabilistic language mod-
els is adjusting the maximum likelihood estimation by taking into account data
sparseness. This is critical in improving the overall precision of the system, as
otherwise the model becomes overconfident in predictions based on rarely seen
conditioning sets (by assigning them high probability) and conversely can com-
pletely reject unseen contexts (by assigning them zero probability). As a concrete
example, the model from Figure 2.14 assigns all the probability mass to a single
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word (i.e., P(1 | p(w<6)) = 1.0 and P(2 | p(w<6)) = 0). To deal with data sparse-
ness, we use both modified Kneser-Ney smoothing [119, 120] as well as Witten-Bell
interpolation smoothing [121]. In both cases, the idea is to fall back to lower order
(i.e., shorter) conditioning sets when computing the maximum likelihood estimate
in case the given conditioning set is rare. The backoff order used in our work is
the order in which features were added to the conditioning context.

2.2.1 Extension: Predicting Out-of-Vocabulary Labels

A common limitation of probabilistic models is that they cannot predict values not
seen in the training data. We offer a mitigation for this using EqualityPrograms

that consist of a pair of SimplePrograms 〈pctx, peq〉. The goal of the first program
pctx is as before – to accumulate context used to condition the prediction. The
goal of the second program peq is to modify the probabilistic model so that it can
express the equality of the output label to a value contained in the input.

We note that our technique can be applied to any existing probabilistic mod-
els, by adjusting the training and inference procedures as defined next. To keep
our discussion general, we will replace the notation (w<t, wt) with the standard
notation (x, y) denoting the input and the ground truth label, respectively.

training First, we discuss the modified training procedure. Let ctxeq = c1 · · · cn
= peq(x) be the context computed by the program peq on a training sample (x, y).
Recall that y is the ground truth label to be predicted for the input x. We define:

y′ =

eqi if ∃i.ci = y (select i to be minimal)

y otherwise

In other words, if any of the accumulated values is equal to the label y we are
predicting, we replace the label with a special symbol eqi and train the probabilistic
model as before, but with y′ instead of y.

prediction Because we train the model to predict the special equality symbols
eqi, the model assigns part of the probability distribution to these symbols also at
the inference time. As a result, we adjust the standard inference computed using
arg maxy∈V P(y | x) to take into account the equality labels as follows:

arg max
y∈V∪ctxeq

P(y | x) + ∑
∀i.ci=y

P(eqi | x)

Here, V denotes the model vocabulary and ctxeq = c1 · · · cn = peq(x) is the con-
text accumulated by program peq. The formulation above modifies the standard
inference in two key ways: (i) it extends the vocabulary with all the labels com-
puted by the equality program ctxeq, and (ii) the probability mass of each equality
label is included using ∑∀i.ci=y P(eqi | x). Note that we use sum since multiple
values in ctxeq can refer to the same concrete value.
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elem.notify(..., {

position: ’top’,

autoHide: true,

autoHideDelay: 500

});

...

elem.notify(..., {

position: ’bottom’,

autoHide: true,

?

});

· · · �
ObjectExpression �

· · · �
Property:autoHide �

Boolean:false �

Property:autoHideDelay �

· · · �
ObjectExpression �

· · · �
Property:autoHide �

Boolean:false �

Property:? �

eq1

peq

Training sample
with EqualityProgram:

if y = autoHideDelay

(eq1, x)
if y 6= autoHideDelay

(y, x)

Figure 2.15: Illustration of relating the predicted label to a value already present in the
program. If the ground truth label y matches the value found by the peq
program, then the training sample is modified to predict a special equality
symbol eq1 instead of the standard label.

Example Consider the code snippet shown in Figure 2.15 that predicts the name
of the next property that the developer should set. The ground truth value is
a property name autoHideDelay, which is already present in the input program
at a location specified by the following program:

peq ::= LEFT PREV_NODE_CONTEXT RIGHT WRITE_VALUE

The execution of peq is sketched with arrows in Figure 2.15 and will return the
conditioning context ctxeq = autoHideDelay.

If we train on Figure 2.15 with pctx set to the empty program and peq as de-
scribed above, we will learn a probability distribution that Pr(y = eq1) = 1. This
means that the model is certain that the value to be predicted is equal to the first
value determined by the program peq. Then, given a program at query time (could
be another program, e.g., from Figure 2.2 (d)), this model will predict that y is
equal to the value returned by peq (the predicted value will be user-agent for the
program in Figure 2.2 (d)).

In our work, the semantics for peq relate a predicted label y to another value in
the input x with an equality predicate. An interesting item for future work is to
use other predicates to predict values that are a sum, a concatenation or another
function on possibly several values in the input x. Further, in addition to equality
constraints, it would also be possible to learn inequality constraints, such as that
two parameters should not alias.
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2.3 learning

In this section, we present our approach for learning probabilistic language models
parametrized by a program in CondGen.

dataset Our training data is built by first taking the set of available inputs (e.g.,
programs or natural language text) and generating a set of pairs where each pair
consists of a word in the input (to be predicted) and all the preceding words. More
formally, our training dataset is D = {(xj, yj)}n

j=1 of n samples, where xj ∈ X are
inputs and yj ∈ Y are outputs (correct predictions for the partial programs). Each
possible output is called a label and Y is the set of possible labels. As an example,
an input sentence s = (w1, w2, . . . , wk) would be transformed into k training sam-
ples {(w<t, wt)}n

t=1, where wt is the word to be predicted at position t and w<t
are all the preceding words seen in the input.

problem statement The goal of the learning is to minimize the following
optimization objective:

arg min
p∈CondGen

E(x,y)∼D`(x, y; p) + λ ·Ω(p) (2.5)

where `(x, y; p) is a loss function that measures the performance of a model
parametrized by program p, Ω : CondGen → R+ is a regularization term used
to avoid over-fitting to the data by penalizing complex programs and λ ∈ R is
a regularization constant. We instantiate Ω(p) to return the number of instructions
in the program p. As the loss function, we use the cross-entropy loss. As we have
no access to the underlying distribution but only to the dataset D, we approximate
the expected loss as:

E(x,y)∼D`(x, y; p) =
1
|D| ∑

(x,y)∈D

− log2 P(y | p(x<t)) (2.6)

scaling to large datasets In order for the learning procedure to explore
a large number of candidate programs in a reasonable time, it is important that
all the algorithms presented in this section scale to large datasets (in our exper-
iments |D| = 108) without the need to restrict how much data can be used
for learning. To mitigate this problem, we use the representative dataset sam-
pling technique [9]. The main idea is to select a small sample |d| � |D| such

that
∣∣∣E(x,y)∼D`(x, y; pi)−E(x,y)∼d`(x, y; pi)

∣∣∣ ≤ ε for all previously generated pro-
grams pi. That is, evaluating programs on a small dataset d approximates evalua-
tion on the full dataset D within error ε that is as small as possible.
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2.3.1 Learning SimplePrograms

We next describe our approach to synthesizing programs p ∈ SimpleProgram such
that they minimize Equation 2.5. We use a combination of three techniques to
solve this optimization problem and find p≈best – an exact enumeration, approximate
genetic programming search, and Markov chain Monte Carlo (MCMC) search.

enumerative search We start with the simplest approach that enumerates
all possible programs up to some instruction length. As the number of programs is
exponential in the number of instructions, we enumerate only short programs with
up to 5 instructions (not considering PREV_CHAR(c)) that contain a single Write

instruction. The resulting programs serve as a starting population for a follow-up
genetic programming search.

The reason we omit the PREV_CHAR(c) instruction is that this instruction is
parametrized by a character c that has a large range (of all possible characters
in the training data). Considering all variations of this instruction would lead to
a combinatorial explosion.

genetic programming search The genetic programming search proceeds
in several epochs, where each epoch generates a new set of candidate programs
by randomly mutating the programs in the current generation. Each candidate
program is generated using the following procedure:

1. select a random program p from the current generation

2. select a random position i in p, and

3. apply a mutation that removes, inserts or replaces the instruction at position
i with a randomly selected new instruction (not considering PREV_CHAR(c)).

These candidate programs are then scored with the objective function (Equation 2.5)
and after each epoch, a subset of them is retained for the next generation while the
rest is discarded. The policy we use to discard programs is to randomly select two
programs and discard the one with the worse score. We keep discarding programs
until the generation has less than 25 candidate programs. Finally, we do not apply
a cross-over operation in the genetic search procedure.

markov chain monte carlo search (mcmc) Once a set of candidate
programs is generated using a combination of enumerative search and genetic
programming, we apply MCMC search to further improve the programs. This
procedure is the only one that considers the PREV_CHAR(c) instruction (which has
108 and 212 variations for the Linux Kernel and Hutter Prize Wikipedia datasets
respectively)6.

6 In our evaluation, we apply this step only to character level datasets where the number of Write

instructions is large. For programs, there are fewer than 15 Write instructions and therefore this step
is not required.
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The synthesized program is a combination of several basic building blocks con-
sisting of a few instructions. To discover a set of good building blocks, at the be-
ginning of the synthesis we first build a probability distribution I that determines
how likely a building block will be the one with the best cost metric, as follows:

• Consider all building blocks that consist of up to three Move and one Write

instruction, B : {empty, Move}3 × Write.

• Score each building block b ∈ B on the full dataset D by calculating the
bits-per-character (BPC) bbpc (as defined in Equation 2.6) and the error rate
berror_rate (i.e., the fraction of correctly predicted labels) on dataset D.

• Accept the building block with probability min(1.0, emptybpc/bbpc) where
emptybpc is the score for the unconditioned empty program. Note that for
the BPC metric, lower is better. That is, if the program has better (lower) BPC
than the empty program, it is always accepted. Otherwise, it is accepted with
probability emptybpc/bbpc.

• For an accepted building block b, set the score as I′(b) = 1.0− berror_rate, that
is, the score is proportional to the number of samples in the dataset D that
are classified correctly using the building block b.

• Set the probability with which a building block b ∈ B will be sampled by
normalizing the distribution I′, that is, I(b) = I′(b)/ ∑b′∈B I′(b′).

Given the probability distribution I, we now perform random modifications of
a candidate program p by appending/removing such blocks according to the dis-
tribution I in a MCMC procedure that does a random walk over the set of possible
candidate programs. That is, at each step we are given a candidate program, and
we sample a random piece from the distribution I to either randomly add it to the
candidate program or remove it (if present) from the candidate program. Then, we
keep the updated program either if the score of the modified candidate program
improves (according to Equation 2.5), or with a low probability even if the score
did not improve.

2.3.2 Learning EqualityPrograms

The learning procedure for EqualityPrograms is the same as for SimplePrograms,
except that we learn two programs – pctx and peq. To speed up the learning, in
practice we first learn a set of good SimplePrograms which are then extended
with the second equality program.

2.3.3 Learning BranchPrograms

The key idea of our approach is to phrase the problem of learning a probabilis-
tic model of code parametrized with BranchProgram as learning a decision tree.
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This is possible because a decision tree can in fact be seen as a restricted form of
a BranchProgram with the following shape:

if (pred(x)) then pa else pb

where pred is a boolean predicate on the input x and pa, pb are recursive branches
of the tree or unconditional probability distribution for leafs. The semantics of
decision trees are standard: check the predicate pred(x) and depending on the
outcome execute either pa or pb.

While restrictive, the above decision tree formulation can be easily extended to
our setting by allowing more than two branches and by replacing the uncondi-
tional probability at leafs with more powerful probabilistic models (in our case
using SimplePrograms and EqualityPrograms). This enables us to cleanly instan-
tiate existing decision tree learning algorithms and to obtain new variants. These
variants have not been explored previously, yet turn out to be practically useful.

preliminaries : entropy and information gain Our goal at learning
time is to discover a model that “explains well” the training data D. One pos-
sible and commonly used metric to measure this is the entropy of the resulting
probability distribution, estimated as follows:

H(D, p) = − ∑
(x,y)∈D

1
|D| log2 P(y | p(x)) (2.7)

We use a variant of the entropy metric called cross-entropy, which makes the en-
tropy formulation above equivalent to the loss defined earlier in Equation 2.6.

The intuition behind decision tree learning is that we can recursively split the
dataset into two smaller partitions (branches), each of which is allowed to special-
ize for the given subset of the dataset (e.g., by choosing suitable features). The
goal of the optimization algorithm is then to select a predicate that leads to the
best model performance. To measure the effect different predicates have on the
model performance, a commonly used metric is called information gain defined
as follows:

IG(D, pred) = H(D, ε)−

∣∣∣Dpred

∣∣∣
|D| H(Dpred, ε)−

∣∣∣D¬pred

∣∣∣
|D| H(D¬pred, ε) (2.8)

Here, pred is the predicate used to split the dataset, Dpred ={(x, y)∈D | pred(x)}
denotes the subset of the dataset for which the predicate evaluates to true and
similarly, D¬pred = {(x, y) ∈ D | ¬pred(x)} denotes the subset of the dataset for
which the predicate evaluates to false. For a given predicate pred, the information
gain quantifies how many bits of information will be saved if we split the dataset
with the predicate. For simplicity, we use an unconditional model, denoted using
ε, for the entropy on the full dataset and both partitions. However, as we will see
shortly, the above definition can be instantiated with other models which helps to
find better predicates.
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Algorithm 1: Decision tree algorithm for learning BranchPrograms.

def Learn(d f ull , dbranch, syn)
Input: Dataset d, local synthesis procedure syn
Output: Program p ∈ BranchProgram

1 begin
2 if |dbranch| < 250∧ |dbranch| < 0.1 |d f ull | then
3 return εi . Stop if dbranch is too small
4 p← syn(dbranch)
5 where p ≡ if (pred(x)) then pa else pb
6 pa ← Learn(d f ull , {(x, y) ∈ dbranch | pred(x)}, syn)
7 pb ← Learn(d f ull , {(x, y) ∈ dbranch | ¬pred(x)}, syn)
8 return p ≡ if (pred(x)) then pa else pb

algorithm Our greedy learning algorithm for learning BranchPrograms is
shown in Algorithm 1. A useful benefit of our approach is that we can instantiate
different decision tree learning algorithms by simply varying the fragment of the
language to which the learned program p belongs, along with the corresponding
search procedure (denoted as syn). In this way, we instantiate existing algorithm
ID3 [118] as well as our own variants ID3+ and E13 described next.

id3 decision tree learning We instantiate ID3, one of the most commonly
used and studied decision tree algorithms [117], as follows. Let BranchProgram0
be a fragment of BranchProgram with programs in the following shape:

if (pred(x)) then εa else εb

where εa and εb are empty programs. Then, for a dataset d ⊆ D we define
syn0(d) = arg maxp∈BranchProgram0

IG(d, p). That is, our goal is to find a program
that maximizes the information gain7. We obtain the ID3 learning algorithm by
invoking Algorithm 1 with syn = syn0. Then, at each step of the algorithm, we
synthesize a single branch using syn0, split the data according to the branch and
call the algorithm recursively. As a termination condition, we stop recursing once
the dataset is smaller than a certain size (250 samples), and smaller than a certain
fraction of the full dataset (10%). This limits the depth of the tree and prevents
overfitting to the training data.

Nota that since the space of programs is very large we use approximations in our
maximization procedure. Concretely, for a given candidate predicate, the possible
branch targets are the 32 most common values obtained by executing the predicate
on the training data. We then select the number of case clauses and their associated
constants using a combination of enumerative search and genetic algorithm.

7 Note that here we overload the information gain definition from Equation 2.8 to take as input a pro-
gram p ∈ BranchProgram, not a predicate. The semantics of such overloaded definition is that the
information gain is computed over all the partitions specified by the program p.
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Figure 2.16: Comparing two different BranchPrograms trained on the input sequence
a1a2b1b2. The entropy of the unconditional distribution (Equation 2.7) on
the full input is H(D, ε) = 2. The information gain (Equation 2.8) of the left
and right programs is 1 and 0.31, respectively. As a result, the left program
will be selected over the right program when using ID3 algorithm.

Example As a concrete example, let us consider the two candidate BranchPrograms
shown in Figure 2.16. Both programs can be explored during the ID3 learning as
they belong to the BranchProgram0 fragment (they both contain empty programs
in the case clauses. To select which program is better, the ID3 algorithm selects the
one with the higher information gain, computed using the Equation 2.8. In this
case, the program with case ‘a‘ or ‘b‘ has higher information gain is it man-
ages to split the dataset into two partitions with disjoint labels – one partition that
contains labels 1, 2 and a second partition with labels a, b.

id3+ decision tree learning Our formulation of ID3 as learning a pro-
gram in a BranchProgram fragment allows us to extend and improve the algorithm
by making modifications of the BranchProgram fragment. We also provide exten-
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sions that leverage the capability of the BranchProgram to express probabilistic
models other than standard decision trees.

In particular, classic ID3 learning results in decision trees with the leafs of the
tree being empty programs. Our models, however, allow combining branch in-
structions with other probabilistic models like in Figure 2.14. To handle such com-
binations, we extend the ID3 algorithm to also generate programs in the tree leafs.

Let BranchProgramS be a fragment of BranchProgram where tree leafs can be ei-
ther empty programs or SimplePrograms. Programs in this fragment may describe
probabilistic models without branches such as language models [68, 122] or other
models (e.g., [6, 9]). Let synS(d) = arg maxp∈BranchProgramS

IG(d, p) be a synthesis
procedure which computes a program that best fits d. Then, the ID3+ learning
algorithm extends ID3 by replacing the empty programs returned on line 3 of Al-
gorithm 1 with synS(d). The branch synthesis of the ID3+ algorithm uses the same
syn0 procedure as ID3 and as a result constructs a tree with the same structure.
The only difference in the resulting tree is the programs in the leaves of the tree.

e13 algorithm The ID3+ learning algorithm essentially first runs ID3 to gen-
erate branches until too few samples fall into a branch and then creates a prob-
abilistic model for the final samples. Intuitively, there are two potential issues
with this approach. First, ID3+ always trains the probabilistic models based on
BranchProgramS only on small datasets. These small datasets may result in learn-
ing inaccurate models at the leaves. Second, syn0 always minimizes information
with respect to empty programs, but the leaves of the tree may contain non-empty
programs (i.e., more powerful probabilistic models).

To address these limitations, we propose to instantiate the learning algorithm so
that instead of using syn0 as ID3 does, it uses the following procedure:

• First, let synS(d) ∈ BranchProgram be the best program that we would syn-
thesize for d if that program was a leaf node in the ID3+ algorithm.

• Let BranchProgramA be a fragment of BranchProgram with programs in the
shape p ≡ if (pred(x)) then pa else pb where pred is a predicate and pa and
pb are either the empty program or synS(d).

• Finally, to obtain our final E13 algorithm, in Algorithm 1 we set syn to
synA = arg maxp∈BranchProgramA

IG(d, p) .

2.4 evaluation : probabilistic models of code

In this section, we provide a thorough experimental evaluation of the learning
approach presented so far, instantiated to the domain of code. For the purposes
of evaluation, we chose the tasks of learning probabilistic models of code for two
programming languages – JavaScript and Python. This is a challenging setting
because the dynamic nature of these languages makes it difficult to extract precise
semantic information via static analysis (e.g., type information). To evaluate our
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probabilistic model, we built a code completion system, called Deep3, capable of
predicting any JavaScript or Python program element.

key benefits of our approach We demonstrate the key benefits of our
approach by showing that:

• Our scalable learning allows for synthesizing large, complex CondGen pro-
grams. The probabilistic model parametrized by these programs significantly
improves state-of-the-art accuracy for both JavaScript and Python dataset.

• Our model is precise enough to allow new types of predictions, not possible
with prior approaches. For example, we can predict loops and try statements
with 65% and 54% accuracy, respectively. In contrast, prior state-of-the-art
models completely fail and achieve accuracy close to zero.

• The programs synthesized by our approach are interesting beyond the in-
duced probabilistic model. Our synthesized CondGen programs enable us to
highlight the program elements used to make each prediction, and can be
used to explain and justify the prediction to the user.

• Even though our models are non-neural and instantiated with a simple max-
imum likelihood model (based on counting), they are comparable and even
better than a number of sophisticated deep learning models developed 2+
years after our work. However, the latest work based on transformer mod-
els [29] does improve upon our work for a range of prediction types.

experimental comparison of various systems In our experiments we
compared the performance of several systems:

• PCFG and N-gram: we include two commonly used probabilistic models
based on probabilistic context free grammars (PCFGs) and n-gram models
(for n = 3). Despite their limited accuracy, these models are used by a num-
ber of existing programming tools [61, 68, 112, 123, 124].

• DeepSyn: we use a previous state-of-the-art system for JavaScript code com-
pletion. For a fair comparison, we implemented the model from [9] and
trained it on the full Python and JavaScript languages (as opposed to only
JavaScript APIs and fields as in [9]) by learning specialized models for each
AST node type.

• SVM: instead of learning a generative model as in our work, a number of
prior approaches (e.g., [22, 67, 123, 124]) learn discriminative models. In our
evaluation, we compare to a discriminative model based on support vector
machine (SVM) instantiated with syntactic feature functions that correspond
to the types and values of the 10 nodes preceding the completion position in
the AST (similar to the features used in [123]). To learn the feature weights,
we used an online learning algorithm based on hinge loss (following [22])
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and performed grid-search for the parameters that control the regularization
(L∞), the learning rate and the SVM margin.

• Neural Models: recently, applying deep learning has shown great success
for the domain of code. In fact, the deep learning based approaches are cur-
rently so popular that they became de-facto standard models employed by
the majority of research papers published in the last two years. We include
comparison to a number of recent models including LSTM [27, 95, 125],
Code2Seq [28] and Transformers [29, 116]. However, we do note that these
works were developed after our models by 2 [27, 28] to 4 years [29].

• ID3+ and E13: these are the learning algorithms proposed in this work and
implemented in Deep3.

javascript dataset js150 For our evaluation, we collected a corpus from
GitHub repositories containing 150 000 non-obfuscated JavaScript files and made
it publicly available at www.sri.inf.ethz.ch/js150. The first 100 000 files are used
for training and the last 50 000 are used as a blind set for evaluation purposes only.
From the 100 000 training data samples, we use the first 20 000 for learning the
CondGen program. Further, in our experiments, we use only files that parse to
ASTs with at most 30 000 nodes, because larger trees tend to contain JSON objects
as opposed to code.

The files are stored in their corresponding ASTs formats as defined by the ESTree
specification8. Each AST node contains two attributes – the type of the node and
an optional value. As an example, consider the AST node Property : autoHide
from Figure 2.15 where Property denotes the type and autoHide is the value. The
number of unique types is relatively small (44 for JavaScript) and is determined
by the non-terminal symbols in the grammar that describe the AST whereas the
number of values (109 in our corpus) is very large and is a mixture of identifiers,
literals and language specified operators (e. g., +,−, ∗).

python dataset py150 We also collected a corpus of Python programs from
GitHub and made it available as ASTs at www.sri.inf.ethz.ch/py150. This dataset
includes programs with up to 30 000 AST nodes and from projects with non-viral
licenses such as MIT, Apache and BSD. To parse the dataset, we used the AST
format for Python 2.7 from the parser included in the Python standard library (we
also release the code that we used for parsing the input programs). Further, we
would like to acknowledge the work of Kanade et al. [18] that provides a redis-
tributable subset of our py150 corpus as of the year 2020.

The ASTs are stored similarly to the JavaScript ASTs such that every node in-
cludes the type and optionally a value. For example, the AST node attr : path
is of type attr and has the value path. Semantically, this node corresponds to
accessing the path attribute of a Python object.

8 https://github.com/estree/estree

www.sri.inf.ethz.ch/js150
www.sri.inf.ethz.ch/py150
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js150 py150

Model Types Values Types Values

Prior Work

PCFG 51.5% 50.1% 59.0% 10.2%

n-gram 69.2% 71.2% 63.2% 63.9%

DeepSyn [9] 74.1% 80.9% 72.5% 67.2%

SVM 67.5% 70.5% - -

Our Work

PHOG 83.9% 82.9% 76.3% 69.2%

Follow-up Work

LSTM [125] 84.8% 76.6% - -

LSTM \w Attention [27] 88.6% 80.6% 80.6% 69.8%

Pointer Mixture Network [27] - 81.0% - 70.1%

Table 2.1: Comparison of our work against a number of prior as well as follow-up works.
The results show the accuracy of each model on the task of predicting arbitrary
AST types and values for the js150 and py150 datasets. We can see that our
model significantly outperforms prior works while being comparable, and in
some cases even better, than follow-up work based on neural models.

methodology Given the structure of ASTs, we learn two different models for
a programming language – one for predicting the node type and a second one
for predicting the node value. Since both of these define probability distributions,
they can be easily combined into a single model of the full programming language.
To make sure our predictions also capture the structure of the tree, and not only
the labels in the nodes of the tree, we also predict whether a given node should
have any siblings or children. For this purpose, when predicting the type of an
AST node, the label further encodes whether the given node has right siblings and
children which allows us to expand the tree accordingly.

To train the model for predicting types, we generate one training sample for
each AST node in the dataset by replacing it with an empty node (i. e., a hole) and
removing all the nodes to the right. Following the same procedure, we generate
training samples for predicting values, except that we do not remove the type of
the node to be predicted, but only its value. In total, our JavaScript dataset consists
of 10.7 · 108 samples used for training and 5.3 · 107 for evaluation. Our Python
dataset consists of 6.2 · 107 training samples and 3 · 107 evaluation samples.

evaluation metric We measure the precision of our models by using the
accuracy metric. Accuracy is the proportion of cases where the predicted label
with the highest probability is the correct one in the evaluated program. Note that
our model always provides a prediction and therefore the recall metric is 100%.
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2.4.1 Main Results

In Table 2.1 we provide a summary of the main results. The top half contains
the accuracy of prior works for predicting AST types and values for both of our
JavaScript and Python datasets. Here, the best model is DeepSyn which consistently
outperforms the second best n-model by 3% to 9%. Our tool outperforms SVM by
even larger margin of 6% to 10%. In the bottom half of Table 2.1, we provide the
results for a number of follow-up works based on neural networks. Similar to our
work, these works perform predictions on the AST representation of the input pro-
gram, but using much more sophisticated models. Even though the neural models
have much higher capacity and can benefit from the distributional representation
of the input words, their results are comparable to the results of Deep3. In particu-
lar, while neural models do improve the prediction of types, they can still be worse
for the more difficult task of predicting values (e.g., by 2% for JavaScript).

To study the performance for predicting values further, we provide an additional
comparison to follow-up works in Table 2.2. Here, all the models are based on
neural networks and include the recent state-of-the-art Transformer [116] model
widely used for natural language processing tasks, as well as Code2Seq [28] and
TravTrans [29] models specifically designed to model program ASTs. The results
in Table 2.2 show that both the LSTM and even Transformer models are signif-
icantly worse than our work (Deep3). Compared to Code2Seq, our model pro-
vides better predictions for many specialized predictions (e.g., +6% for attribute
access or +4% for numeric constants), but the overall performance of both mod-
els is very similar. The only model that outperforms our work is the recent work
TravTrans which combines transformers with the AST representation of programs.
This shows that four years after our model was developed (as of the time of writ-
ing), while our model is no longer the state-of-the-art, it does outperform (or is
comparable to) most neural models developed in the meantime and it remains the
state-of-the-art non-neural model.

Our Work Follow-up Work

Prediction Task Deep3 LSTM Transformer Code2Seq TravTrans

Value prediction MRR

All leaf nodes 43.9% 23.8% 36.5% 43.6% 58.0%

Attribute access 45.3% 26.4% 41.0% 39.2% 60.5%

Numeric constant 53.2% 32.2% 51.7% 49.2% 63.5%

Function parameters 58.1% 45.5% 54.3% 56.5% 67.2%

worse than Deep3 similar better

Table 2.2: Mean reciprocal rank (MRR) of our work and a number of follow-up works for
various value prediction tasks. All the results in this table are adapted from
the follow-up work of Kim et al. [29].
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JavaScript js150 Dataset

Prior Work Our Work: Deep3

Prediction Task PCFG 3-gram DeepSyn [9] ID3+ E13

Node value prediction accuracy (Figure 2.18)

Unrestricted prediction 50.1% 71.2% 80.9% 76.5% 82.9%

API prediction 0.04% 30.0% 59.4% 54.0% 66.6%

Field access prediction 3.2% 32.9% 61.8% 52.5% 67.0%

Node type prediction accuracy (Figure 2.17)

Unrestricted prediction 51.5% 69.2% 74.1% 83.9% 80.0%

Predicting Loop statements 0% 37.5% 0.04% 65.0% 28.3%

Predicting Branch statements 0% 40.9% 17.3% 65.7% 40.4%

Table 2.3: Accuracy comparison for selected tasks between JavaScript models used in
prior work and our technique.

In the remainder of this section, we will provide a thorough evaluation of our
models, including the breakdown of predictions for types and values, inspecting
and interpreting the learned programs, as well as an ablation study measuring the
effect of different learning algorithms and the benefit of our technique to predict
out-of-vocabulary words.

2.4.2 Probabilistic Model for JavaScript

In Table 2.3 we provide highlights of the accuracy for several interesting prediction
tasks. Each row includes an application we evaluate on and each column includes
the accuracy of the corresponding probabilistic model on this task. The tasks of
“unrestricted predictions” for both values and types include a wide range of sub-
tasks – some of them are easy and others are not. Example of an easy task is
to predict that there will be nodes of type Property inside an ObjectExpression

(i.e., properties inside a JSON object). As a result of these easy tasks, even the most
trivial baselines such as PCFG succeed in predicting around half of the labels.

We include some of the more difficult tasks as separate rows in Table 2.3. When
faced with these tasks of predicting APIs, field accesses or less frequent statements
such as loops and branches, the accuracy of the PCFG model essentially goes down
to 0%. This is expected as by construction, PCFG does not include the necessary
context needed to make such predictions.

For every task in our experiments, a probabilistic model based on decision trees
has higher accuracy than any of the previous models – PCFG, the 3-gram language
model or the DeepSyn model. An interesting observation is that the model obtained
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Prior Work Our Work

Prediction Task DeepSyn [9] ID3+

ContinueStatement 17% 58%

ForStatement 0% 60%

WhileStatement 0% 76%

ReturnStatement 14% 75%

SwitchStatement 1% 47%

ThrowStatement 9% 51%

TryStatement 2% 54%

IfStatement 18% 66%

Table 2.4: List of new predictions enabled by our probabilistic model when predicting
type of a statement.

from the ID3+ algorithm is more precise than the one obtained from E13 when
predicting types and in contrast, E13 produces the most precise model for values.
We hypothesize that the reason for this is the relatively smaller number of labels
for types – there are 176 unique labels for types and around 109 labels for values.
In our further evaluation, we take the CondGen program obtained from ID3+ for
types and the CondGen program obtained from E13 for values.

2.4.2.1 Predicting Node Types

We first discuss the application of our model for predicting types of AST nodes,
that is, learning the structure of the code. There are in total 44 different types of
nodes in JavaScript that range over program statements, expressions, as well as
constants and identifiers. Our predicted labels for types also include tree structure
information whether the node has a right sibling and children. As a result, the
total number of different labels that can be predicted is 176.

We provide a detailed list of difficult type predictions for previous models that
are now enabled by our decision tree models in Table 2.4. An interesting insight
of our evaluation is that there are entire classes of predictions where previous
models (such as DeepSyn) fail to make correct predictions about the program struc-
ture. For example, previous models failed to predict a range of statements such
as loops, switch statements, if statements and exception handling statements. One
of the reasons why previous models predict such statements with very low ac-
curacy is that these statements are significantly less frequent in code than other
statements (e. g., assignments). In contrast, our model partitions the training data
into multiple branches and builds precise models for each such case.

example completion To illustrate the difficulty of correctly predicting such
queries consider the example shown in Figure 2.17. Here, the figure shows the
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prediction position→

for (j = 0; j < groups.length; j++) {

idsInGroup = groups[j].filter(

function(id) {

return ids.indexOf(id) >= 0;

}

);

if (idsInGroup.length === 0) {

?

}

}

correct→
type

conditioning context →

PrID3+ PrDeepSyn Prn− gram

ContinueStatement

ReturnStatement

ExpressionStatement

VariableDeclaration

0.86 0.03 0.00
0.04 0.11 0.11
0.03 0.66 0.61
0.02 0.06 0.10

Figure 2.17: Example of predicting type of a statement from a code snippet in our evalu-
ation data. We show the top 4 predictions and their probabilities predicted
by each system.

original code snippet with the developer querying the code completion system
asking it to predict the statement at the position denoted with “?”. As can be
seen by inspecting the code, it is not immediately clear which statement should be
filled in, as it depends on the intended semantics. However, by training on a large
enough dataset and conditioning our prediction on appropriate parts of the code,
we can hopefully discover some regularities that help us make good predictions.

Indeed, for this example, as well as for 58% of other queries, Deep3 successfully
predicted a ContinueStatement. Our model suggests ContinueStatement with a
very high probability of 86%, whereas the second most likely prediction has only
4% probability. On the other hand, existing models (PCFG, n-gram and DeepSyn)
are biased towards predicting ExpressionStatement, simply because it is three or-
ders of magnitude more frequent than ContinueStatement. These models cannot
discover proper conditioning to predict the correct statement with high confidence.

interpreting the learned program To understand how Deep3 obtained
its high accuracy, we examined the program learned during the training and the
branch this example fell into. The decision tree performed the following checks for
this prediction:

1. check whether the query node is the first child of the current scope,

2. test whether the current scope is defined by an IfStatement,

3. retrieve what is the type of node that defined previous scope (where scopes
are created by code blocks, functions or modules) and test if it defines a loop
or other constructs such as function or an IfStatement.

Once all of these conditions were satisfied, the probabilistic model looked at the
values in the last IfStatement where the query node is defined. In Figure 2.17, we
highlighted with green boxes all positions in the code on which our probabilistic
model conditions in order to make the correct prediction.
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Prior Work Our Work

Prediction Task Example DeepSyn E13

API name this.getScrollBottom(inTop) 59.4% 66.6%

API call target node.removeAttribute(attName) 63.1% 67.0%

Array index identifier event[prop] = ... 72.4% 82.8%

Assigment variable identifier result = ... 66.8% 70.3%

Table 2.5: Accuracy of various applications for predicting values in JavaScript.

2.4.2.2 Predicting Node Values

We now turn our attention to evaluating the quality of the learned program trained
for predicting values in JavaScript programs. While this task is similar to the task
of predicting node types in JavaScript ASTs, some of the predictions are much
more challenging because the label set for values is several orders of magnitude
larger than the label set for types. In Table 2.5 we show the accuracy for several pre-
diction tasks, as well as examples of predictions made for these tasks. For all these
tasks, we improve the accuracy between 3% to 10% over the accuracy achieved
by the DeepSyn model. In addition, for the API and field access prediction tasks,
Deep3 outperforms DeepSyn by 6% and 5%, respectively as shown in Table 2.3. We
expect that these tasks are useful in the context of IDE code completion and the
improvement in accuracy should result in better user experience.

interpreting the learned program As an interesting example query for
value prediction, consider the query shown in Figure 2.18 where the value should
be completed with an API call. The goal of this query is to predict the API name
at the position denoted by “?”. For this case, the learned CondGen program inves-
tigates the context in which the API call is done (on a variable, on a field object,
on this object, etc.), how the result of the call is used and since it is used as an
argument in a function call, at what position that argument is. Note that while this
program makes sense (it closely identifies the kind of API used), providing all this
conditioning manually would require tremendous amount of effort.

2.4.3 Predicting Out-of-Vocabulary Labels

We next evaluate Deep3’s capability to predict values not seen in the training data
with the model described in Section 2.2.1. To check the effect of this extension
(which affects 11% of the learned programs used as leaves in the decision tree), we
performed an experiment where we compared the accuracy of the resulting prob-
abilistic models with and without the extension. For a fair comparison, Table 2.3
summarizes the results for both DeepSyn and Deep3 with this extension enabled.
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← prediction position

point_x.applyForce(direction.multiply(...));

point_y.applyForce(direction.?

branch based on context of API prediction

API completion query:

Fragment of the learned CondGen program for predicting APIs:

api() obj.api() obj.field.api()

branch on how is the result used

assigment argument binaryexpression

branch on argument position

1 2 3

Model based on:
i) name of the call target (direction)

ii) previous API call on the same object (multiply)

Figure 2.18: Example of an API completion query and visualization of the decomposition
learned by our approach. As can be seen the our approach learns a special-
ized model that is learn on queries predicting API invoked directly on call
target that are used as second argument in another method invocation.

If we disable the second program peq from Section 2.2.1, the overall accuracy for
predicting values decreases by 2%, from 82.9% to 80.9%. This decrease is caused
mostly by the lower accuracy of predicting identifiers and properties – these are
the two prediction tasks that contain most of the user defined values. On the other
hand, for predicting types, the second program that describes equality does not
affect the accuracy. This is intuitive since all the possible labels for types are easily
seen in the training data (there are only 176 unique labels).

2.4.4 Learned Programs

Using the learning approach proposed in our work, we discover a CondGen pro-
gram with a large number of branches that is interesting in itself and provides
several benefits beyond providing a state-of-the-art code completion system. The
programs learned using the E13 algorithm contain 13, 160 and 307 leaves together
with 5, 869 and 157 internal switch nodes in their decision trees for values and
types, respectively. That number of cases is clearly infeasible to conceive or de-
sign manually. For example, only for predicting ContinueStatement, the learned
CondGen program for types uses 30 different leaves in its decision tree. One of the
advantages of our approach is that despite the relatively large size of the model, its
learned CondGen program can be easily inspected, interpreted and even manually
modified by an expert, if needed.
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Python py150 Dataset

Prior Work Our Work: Deep3

Prediction Task PCFG 3-gram DeepSyn [9] ID3+ E13

Value prediction accuracy

Unrestricted prediction 10.2% 63.9% 67.2% 63.7% 69.2%

Attribute accesses 0% 25% 42% 27% 42%

Numeric constants 22% 44% 40% 39% 46%

Names (variable, module) 17% 38% 38% 39% 51%

Function parameter names 40% 50% 50% 50% 57%

Type prediction accuracy

Unrestricted prediction 59.0% 63.2% 72.5% 76.1% 76.3%

Function calls 55% 65% 71% 74% 74%

Assignment statements 29% 39% 61% 67% 66%

Return statements 0% 19% 10% 41% 29%

Lists 23% 46% 52% 58% 52%

Dictionaries 30% 52% 59% 61% 61%

raise statements 0% 18% 1% 27% 13%

Function parameters 54% 47% 70% 75% 76%

Table 2.6: Accuracy comparison for selected tasks between Python models used in prior
work and in our technique.

An interesting observation we made by looking at the learned CondGen program
for values is that the model learns sequences of instructions that perform traversals
to a previous method invocation depending on whether the call target is a simple
identifier, another call expression or field access. That is, our synthesized CondGen

performs a form of lightweight program analysis and leads to improvements in
the prediction accuracy. Such specialized sequences are at the moment learned for
performing certain kinds of predictions in some branches of a CondGen program.
An interesting future work item is to build a library of such automatically learned
program analyses and investigate their applicability for building either more pre-
cise probabilistic models for code or for other problems in this space.

prediction speed Even though the learned programs contain thousands of
instructions, executing them is fast. This is due to the fact that for any prediction,
only a small part of the instructions in a program needs to be executed (since
execution traverses only a single branch of the decision tree). As a result, Deep3 is
capable of inferring around 15 000 queries per second on a single CPU core.
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2.4.5 Probabilistic Model for Python

To build our probabilistic model for Python, we took Deep3 and fed it with another
training dataset of Python ASTs. This means that the only effort necessary for our
models to handle that programming language was to provide a parser for Python
and to download a large training dataset. We summarize the accuracy of Deep3 in
Table 2.6 and compare it to baseline models such as PCFG, n-gram language model
and a model synthesized by the algorithm of DeepSyn [9]. Overall, the results for
Python mimic the ones for JavaScript, but with some nuances:

• Similar to JavaScript, the best Python models learned by Deep3 outperform
the models from previous works. The ID3+ algorithm performs well for pre-
dicting the node types, but not as well for predicting node values. The E13

algorithm is the best algorithm for predicting node values.

• The precision of all Python models is lower than the precision of the cor-
responding model for JavaScript. One possible explanation is the different
structure of the Python ASTs, which include less information that is redun-
dant and easily predictable. This interpretation of the results is also sup-
ported by the lower precision of the PCFG model.

2.5 evaluation : character level language modelling

In this section, we evaluate our proposed probabilistic model by instantiating it to
the task of character level language modelling. The only change required to our
whole approach is adjusting the domain-specific language with Move and Write in-
structions that operate over sequence of characters, as described in Section 2.1.3.2.

datasets We use two diverse datasets: a natural language one and a struc-
tured text (source code) one. Both were previously used to evaluate character-
level language models – the Linux Kernel dataset [126] and Hutter Prize Wikipedia
dataset [127]. The Linux Kernel dataset contains header and source files in the
C language shuffled randomly, and consists of 6 206 996 characters in total with
vocabulary size 101. The Hutter Prize Wikipedia dataset contains the contents of
Wikipedia articles annotated with meta-data using special mark-up (e.g., XML or
hyperlinks) and consists of 100 000 000 characters and vocabulary size 205. From
both datasets, we use the first 80% for training, the next 10% for validation and
the final 10% as a test set.

evaluation metrics To evaluate the performance of various probabilistic
language models we use two metrics. Firstly, we use the bits-per-character (BPC)
metric which corresponds to the negative log likelihood of a given prediction
E[− log2 p(y | x)], where y is character being predicted and x denotes all the
characters preceding y in the input. Further, we use error rate, which corresponds
to the ratio of mistakes the model makes. This is a practical metric that directly
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quantifies how useful the model is in a concrete task (e.g., auto-completion). As
we will see, having two different evaluation metrics is beneficial, as better (lower)
BPC does not always correspond to a better (lower) error rate.

2.5.1 Language Models

We compare the performance of our trained model, instantiated with the CondGen

language, against two widely used language models – n-gram model and recur-
rent neural networks. For all models we consider character level modelling of the
dataset at hand. That is, all models are trained by feeding the input data character
by character, without any knowledge of higher level word or sentence boundaries.

n-gram We use the n-gram model as a baseline, as it has been traditionally the
most widely used language model due to its simplicity, efficient training and fast
sampling. We note that n-gram can be trivially expressed in the CondGen language
as a program containing a sequence of LEFT and WRITE instructions. To deal with
data sparseness we have explored various smoothing techniques including Witten-
Bell interpolation smoothing [121] and modified Kneser-Ney smoothing [119, 120].

recurrent neural networks We also compare to recurrent network lan-
guage models shown to produce state-of-the-art performance in various natural
language processing tasks. In particular, for the Linux Kernel dataset, we compare
against a variant of recurrent neural networks with Long Short-Term Memory
(LSTM) [95]. To train our models, we follow the experimental set-up and use
the implementation of [126]. We initialize all parameters uniformly in range [-
0.08, 0.08], use mini-batch stochastic gradient descent with batch size 50 and RM-
SProp [128] per-parameter adaptive update with base learning rate 2 · 10

−3 and
decay 0.95. Further, the network is unrolled 100 time steps and we do not use
dropout. Finally, the network is trained for 50 epochs (with early stopping based
on a validation set) and the learning rate is decayed after 10 epochs by multiplying
it with a factor of 0.95 each additional epoch. For the Hutter Prize Wikipedia dataset
we compared to various other, more sophisticated models as reported by [129].

our model For the purposes of this evaluation, we enhance our model de-
scribed so far with two simple extensions:

• Backoff : where instead of learning a single program, we learn multiple pro-
grams and use backoff whenever the current program is not confident enough.
Concretely, we extend the language with the following rule:

EqualityProgram | EqualityProgram backoff t; EqualityProgram
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Linux Kernel Dataset [126]

Model Bits per Character Error Rate Model Size

LSTM (Layers×Hidden Size)

2×128 2.31 40.1% 5 MB

2×256 2.15 37.9% 15 MB

2×512 2.05 38.1% 53 MB

n-gram

4-gram 2.49 47.4% 2 MB

7-gram 2.23 37.7% 24 MB

10-gram 2.32 36.2% 89 MB

15-gram 2.42 35.9% 283 MB

Our Work

CondGenw/o cache&backoff 1.92 33.3% 17 MB

CondGenw/o backoff 1.84 31.4% 19 MB

CondGenw/o cache 1.75 28.0% 43 MB

CondGen 1.53 23.5% 45 MB

Table 2.7: Detailed comparison of LSTM, n-gram and our models on Linux Kernel dataset.

Then, for a program f = f1 backoff t; f2 the semantics are defined as:

Pf (y | f (x)) =

Pf1
(y | f1(x)) if arg maxy′∈Y Pf1

(y′ | f1(x)) ≥ t

Pf2 (y | f2(x)) otherwise

That is, we backoff to the next model if the probability of the most likely
character according to the current model is less than a constant t.

• Cache: further, we also consider backoff to a cache model [130]. Concretely,
the cache model is a model that is trained on the last k characters seen in
the current input (and updated after each new character is read), rather than
pre-trained on the training dataset.

In our experiments, we backoff the learned program to a 7-gram and 3-gram
model and we use a cache size of 800 characters. The backoff thresholds t are se-
lected by evaluating the model performance on the validation set. Finally, for the
Linux Kernel dataset we manually include a StateProgram as a root that distin-
guishes between comments and code (illustrated in Section 2.1.2.2). The program
learned for the Linux Kernel dataset contains ≈700 BranchPrograms and ≈2 200

SimplePrograms and has over 8 600 Move and Write instructions in total.
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Hutter Prize Wikipedia Dataset [127]

Metric n-gram DSL model Stacked LSTM MRNN MI-LSTM HM-LSTM†

n = 7 Our Work [131] [132] [133] [129]

BPC 1.94 1.62 1.67 1.60 1.44 1.34

Table 2.8: Bits-per-character metric for various neural language models (as reported
by [129]) achieved on Hutter Prize Wikipedia dataset where the CondGen model
achieves competitive results. †Combines character and word level models.

2.5.2 Model Performance

We compare the performance of our model, n-gram and neural networks for the
tasks of learning character level language models by discussing a number of rele-
vant metrics shown in Table 2.7 and Table 2.8.

precision We can see that as expected, the n-gram model performs worse in
both BPC and error rate metrics. However, even though the best BPC is achieved
for a 7-gram model, the error rate decreases up to 15-gram. This suggests that
none of the smoothing techniques we tried can properly adjust to the data spar-
sity inherent in the higher order n-gram models. It is however possible that more
advanced smoothing techniques such as one based on Pitman-Yor Processes [134]
might address this issue. As our model uses the same smoothing techniques as
n-grams, any improvement to smoothing is directly applicable to it.

As reported by [126], the LSTM model trained on the Linux Kernel dataset im-
proves BPC over the n-gram. However, in our experiments this improvement did
not translate to lower error rate. In contrast, our model is superior to n-gram and
LSTM in all configurations, improving over the best other model in both evaluation
metrics – decreasing BPC by over 0.5 and improving error rate by more than 12%.

For the Hutter Prize Wikipedia dataset, even though the dataset consists of nat-
ural language text and is much less structured than the Linux Kernel, our model
is competitive with several neural network models. Similar to the results achieved
on Linux Kernel, we expect the error rate of our model for Hutter Prize Wikipedia
dataset, which is 30.5%, to be comparable to the error rate achieved by other mod-
els. However, this experiment shows that our model is less suitable for unstruc-
tured text such as the one found on Wikipedia.

training time Our model takes ≈ 8 hours to train. The majority of training
time is spent in the synthesis of SwitchPrograms where one needs to consider
a massive search space of possible programs from which the synthesis algorithm
aims to find one that is approximately the best (e.g., for Linux Dataset the number
of basic instructions is 108 which means that naive enumeration of programs up to
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size 3 already leads to 108
3 different candidate programs). All of our experiments

were performed on a machine with Intel(R) Xeon(R) CPU E5-2690 with 14 cores.

model size In Table 2.7 we include the size of all the trained models measured
by the size in MB of the model parameters. The models have roughly the same
size except for the n-gram models with high order, for which the size increases
significantly. The reason why both the n-gram and our models are relatively small
is that we use hash-based implementation for storing the prediction context. That
is, in a 7-gram model the previous 6 characters are hashed into a single number.
This significantly decreases the model size at the expense of some hash collisions.

interpreting the learned program By inspecting the synthesized pro-
gram we identified interesting SimplePrograms building blocks such as the se-
quence PREV_CHAR( ) RIGHT WRITE_CHAR that conditions on the first character of
the current word, PREV_CHAR(\n) WRITE_DIST that conditions on the distance from
the beginning of the line or PREV_CHAR(_) LEFT WRITE_CHAR that checks the pre-
ceding character of a previous underscore (useful for predicting variable names).
These are examples of more specialized programs that are typically found in the
branches of nested switches of a large CondGen program. The top level switch
of the synthesized program uses the character before the predicted position (i.e.
switch LEFT WRITE_CHAR) and handles separately cases such as newline, tabs, spe-
cial characters (e.g., !#@.∗), upper-case characters and the rest.

2.6 related work

We next survey some of the work that is most closely related to ours.

2.6.1 Probabilistic Models of Code

Recently, there has been an increased interest in building probabilistic models
of code and using these probabilistic models for various prediction tasks. The
existing techniques for building probabilistic models of code can be roughly split
into four categories – n-gram models, model based on probabilistic grammars,
log-bilinear models and neural models.

n-gram models The most popular and widely used probabilistic model of
code is the n-gram model, due to its simplicity and efficient learning (first explored
by Hindle et. al., [61] for modelling source code). Although the model used by
Hindle is based on a syntactic representation of the code (e.g., including tokens
such as (,) or ;), it was a promising first step in finding regularities in natural code.
Shortly after, various improvements of the representation over which the model
is learned were proposed, including structural and data dependencies [63] and
defining task specific abstractions [64, 135]. Additionally, to address some of the
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n-gram limitations, several extensions were developed, such as modeling local and
global context [136] or including topic models [63].

In comparison, our work defines a new probabilistic model that is more precise
and more expressive than the n-gram model. In fact, the n-gram model is a spe-
cial case with which our model can be instantiated, as it can be easily expressed
by a SimpleProgram. At the same time, our model keeps many of the advantages
of n-gram model by being fast to train and query. Further, we can easily change
the parameterization of our model by varying the choice of the domain-specific
language. Additionally, we note that we can incorporate any of the above n-gram
extensions, as these do not require the underlying model to be n-gram. We il-
lustrated this in our evaluation where we showed how our model can be easily
extended with a cache and backoff.

probabilistic grammars Another line of work considers probabilistic gram-
mars, typically a PCFG, with various extensions built on top. A close work from
the domain of natural language processing are lexicalized grammars, such as those
produced by annotating the non-terminals with summaries of decision sequences
used to generate the tree so far [137]. Instead, in our work, we parametrize the pro-
duction rules of the grammar and phrase the task of finding the best parametriza-
tion as an optimization problem.

Additionally, several approaches have been developed to improve the precision,
specifically in the domain of modelling source code. To capture code idioms, [138]
uses probabilistic tree substitution grammars which extend a PCFG with produc-
tion rules that allow tree fragments on the right-hand side. Gvero et. al., [112]
augment grammar production rules with additional semantic checks that allow
picking local variables in the current scope. Similarly, to model code locality and
code reuse, various extensions were proposed that incorporate the context of the
already generated AST by extending a PCFG with traversal variables [139] and
using adaptor grammars with a cache [140].

These extensions are applicable to PHOG and are mainly orthogonal to our
work. Instead, we focus on a probabilistic model which can be used as a more
precise basic building block that can replace the PCFG used in the above works.

log-bilinear models An alternative to n-grams and probabilistic grammars
is a log-bilinear model. This model is especially suited when we have a large set of
features and the goal is to learn the optimal weights per feature that reveal which
features are relevant for the prediction. Such features are either simply generated
(e.g, previous 10 non-terminals and terminals [123]) or manually designed for a
given task (e.g., 17 features relevant for name prediction [124]). Another related
work proposes a language model of C# programs that uses a log-linear model that
operates over abstract syntax tree [139].

In terms of the features (conditioning context), our work is as expressive as log-
bilinear models, as we can easily encode any features via additional instructions
in the CondGen language. Further, instead of supplying the features manually, we
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learn these automatically, which is especially useful when training generic models
of a full scale programming language. Concretely, instead of learning a linear com-
bination over a small set of predefined features, our work enables learning from
an exponentially larger set of features (specified using programs in the CondGen

language). Finally, because the model of our work is described as a program, it is
more interpretable, can also be understood, edited by a human and further tuned
towards a specific application.

neural models Recently, applying deep learning has shown great success for
many tasks including building probabilistic models of code. In our evaluation, we
compare to a number of models developed after our work, including LSTM [27,
95, 125], Code2Seq [28] and Transformers [29, 116]. Even though these models are
newer and more sophisticated, we have shown that our model still outperforms (or
is comparable) to most neural models developed in the meantime and it remains
the state-of-the-art non-neural model. However, we do note that the recent work
TravTrans [29] (developed four years after our model), which combines transform-
ers with the AST representation of programs, does outperform our model.

discriminative learning In addition to generative approaches for code
modelling, there have also been several works that employ discriminative mod-
els including [22, 67]. Such approaches, however, do not provide valid probability
distributions and require user specified feature functions whose weights are then
learned. More importantly, these models also lead to less precise models as shown
in our evaluation, where our model achieved lower error rate (by 5% to 10%) com-
pared to models used by [22] trained on shallow features from [123]. Further, the
feature functions can be difficult to discover manually, are designed only for a spe-
cific task the tool addresses, and cannot serve as a basis for a general purpose
model of complex, rich programming languages such as JavaScript and Python.
Further, the combination of weights and feature functions leads to models that are
difficult to understand, debug and explain.

2.6.2 Decision Tree Learning

Decision trees are a well studied and widely used approach for learning classifiers.
Among a large number of decision tree algorithms, notable ones include ID3 [118]
and its successor C4.5 [141], along with various general purpose techniques such
as bagging and random forests. Although decision trees are mostly used as a black
box classification technique, it is also possible to extend them to reflect the domain
knowledge available for the given task at hand. For example, in the context of
learning program invariants [142], it is necessary that the decision tree classifies
all the examples perfectly and includes domain knowledge in form of implication
counter-examples.

In our work, we first show that decision tree algorithms are a good fit for learn-
ing programs in CondGen language and then we describe how to extend and adapt
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the classic ID3 learning algorithm so that it takes advantage of the fact that the
leafs do not necessary have to correspond to unconditioned maximum likelihood
estimate but can be represented using probabilistic models conditioned on com-
plex features (in our case, contexts).

2.6.3 Program Synthesis

Similar to the existing line of work in program synthesis, the output of our learning
procedure is a program drawn from a domain-specific language. One of the main
challenges for many existing program synthesis techniques [143–146] is scalability:
it is still difficult to scale these approaches to the task of synthesizing large, practi-
cal programs. To address this challenge, several recent works attempt to exploit the
structure of the particular task to be synthesized by using techniques such as hier-
archical relational specifications [147] or shapes of independent components [148].
Such approaches allow for finding suitable decompositions easily, which in turn
can significantly speed up the synthesis procedure. Another approach taken by
Raza et. al. [149] proposes the use of compositional synthesis guided by examples.
Finally, Kneuss et. al. [150] decompose the initial synthesis problem of discovering
a recursive function into smaller subproblems.

The main difference between our work and program synthesis approaches is
that these attempt to satisfy all of the provided input-output examples. This has
implications on the scalability, as well as on the level of acceptable errors. Fur-
ther, in our work, we consider a very different setting consisting of large and
noisy datasets where our goal is to discover a decomposition without relying on
any domain-specific knowledge on the shape of the underlying components and with-
out using guidance from counter-examples. Finally, to deal with domain-specific
languages that contain hundreds of instructions, we propose a simple extension
that uses Markov chain Monte Carlo (MCMC) to sample from a large number of
instructions and guides the learning towards discovering better programs.

2.7 summary

In this chapter, we proposed PHOG, a novel approach to building probabilistic
models – by parametrizing the model with a learned program from a domain-
specific language. The choice of expressing the language model as a program re-
sults in several advantages including easier interpretability, extensibility with new
instructions and the fact one might be interested in learning the program, rather
than the resulting language model (as shown in the next chapter). We demon-
strated the broad applicability of our model by applying it to the tasks of learning
probabilistic models of code, as well as character level language modelling. For
code, we used the same approach without any modifications to train models for
both JavaScript and Python, significantly improving upon prior works. Similarly,
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for character language modelling we trained two models, one over programs (in-
cluding comments) and second over Wikipedia articles.

The key insight of our work is a new decision tree based learning approach that:
(i) discovers a suitable decomposition of the entire data set, (ii) learns the best
conditioning context for each component, and (iii) allows usage of probabilistic
models as leafs in the obtained decision tree. In our work, all three components
are concisely represented as a loop-free program with branches and the underlying
probabilistic model is a simple maximum estimator based on counting. However,
our approach does not put any restrictions on the probabilistic model used and
other models can be easily incorporated.

A particularly interesting class of models are the recent deep learning methods
which have become de-factor standard models in many domains, including for
code. Indeed, as we have shown in our evaluation, even though our instantiation
of PHOG is competitive and sometimes also better than many neural based models
(developed after our work), it does produce worse results than the latest state-of-
the-art deep learning models. The main conceptual reason for this is that while
our probabilistic model is based on discrete word representations and sparse in-
put (similar to hard attention), neural models use continuous word representations
with soft attention – making the neural models significantly more powerful. Fur-
ther, even though our model is widely applicable, it is significantly more limited
than deep learning models that can easily combine multiple input modalities such
as images, text and programs in a single model. As an example, neural models
can be easily adapted to a more complex task of predicting whole subtrees instead
of single values, and has been show to achieve significantly better results than our
pre-trained models [26].

As a result, a natural future work item is combining PHOG with neural net-
works as leafs, as predicates in the branches or by transferring some of the tech-
niques by making them differentiable. At the same time, it is possible to explore
deep learning as a way to improve the learning algorithm by: (i) training a neural
network, (ii) explaining the network’s predictions by computing which nodes are
relevant for the prediction, and (iii) synthesizing a program that captures the rel-
evant nodes. While we did not explore this particular combination for improving
PHOG, we will show how similar idea is applied to improve the model robustness
in Chapter 4, as well as in Chapter 5 for synthesizing interpretable programs that
capture decision making of a neural policy.
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L E A R N I N G S TAT I C A N A LY Z E R S

In Chapter 2, we presented a novel approach for building probabilistic language
models by learning a program p from a domain-specific language L with the goal
of minimizing the model loss on a dataset of samples D, formalized as:

arg min
p∈L

E(x,y)∼D `(x, y; p) (3.1)

learned program model loss

[Chapter 2]

The key novelty was to parametrize the model by the learned program, where the
model in Chapter 2 corresponds to a probabilistic language model and the pro-
gram was used to accumulate parts of the input relevant for the current prediction.

this chapter This chapter builds on the techniques presented so far but with
a focus on the learned programs, instead of the resulting model. To be practically
useful, we are interested in learning not any programs but programs that would
otherwise have to be written manually by a domain expert. In particular, the goal
of the system developed in this chapter is to help experts design static analyzers
faster, by learning parts (programs) of the analyzer from data.

We selected static analysis as it is an important and fundamental method for
automating program reasoning with a myriad of applications in verification, op-
timization and bug finding. At the same time, while the theory of static analysis
is well understood, building an analyzer for a practical language is a highly non-
trivial task, even for experts. This is because one has to address several conflicting
goals, for example (i) the analysis must be scalable enough to handle realistic pro-
grams, (ii) be precise enough to not report too many false positives, (iii) handle
tricky corner cases and specifics of the particular language (e.g., JavaScript), (iv)
decide how to precisely model the effect of the environment (e.g., built-in and
third party functions), and other concerns. Addressing all of these manually is dif-
ficult and can easily result in suboptimal static analyzers, hindering their adoption
in practice.

problem statement Our goal is to develop an automated approach for creat-
ing static analyzers: instead of manually providing the various inference rules of
the analyzer, the key idea is to learn these rules from a dataset of programs. We
state our learning problem as follows: given a domain-specific language L for de-
scribing analysis rules (i.e., transfer functions, abstract transformers), a dataset D

of programs in some programming language (e.g., JavaScript), and an abstraction

63
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function α that defines how concrete behaviors are abstracted, the goal is to learn
an analyzer pa ∈ L (i.e., the analysis rules) such that programs in D are analyzed
as precisely as possible, subject to α. At a high level, this goal translates to the
following optimization problem, which we explain in more detail next:

arg min
pa∈L

E(x,y)∼D `(x, y; pa) (3.2)

s.t. ∀(x, y) ∈ D, ∀δ ⊆ ∆(x). α(y) v pa(x+ δ)

learned analysis precision

soundnessrobustness

[This Chapter]

key challenges While the optimization problem above shares some similar-
ities to the one in Chapter 2, there are a number of key challenges specific to the
fact that we are learning static analyzers:

• Learning new rules (pa ∈ L). First, static analyzers are typically described via
rules designed by experts (i.e., type inference rules, abstract transformers),
while existing general machine learning techniques such as support vector
machines and neural networks only produce weights over feature functions
as output. If these existing techniques were directly applied to program anal-
ysis [22, 151], the result would be a (linear) combination of existing rules
and no new interesting rules would be discovered. Instead, we introduce
domain-specific languages for describing the analysis rules, and then learn
such analysis rules (which determine the analyzer) over these languages. The
main challenge is similar to traditional program synthesis – to design the lan-
guage such that it is generic and expressive enough to include the necessary
analysis rules, yet concise such that one can learn programs efficiently.

• Robustness (δ ⊆ ∆(x)). The second challenging problem is to avoid learn-
ing an analyzer that works well on the training data D, but fails to gener-
alize well to programs outside of D. For static analyzers this is a natural,
yet critical, requirement as they are expected to work correctly for all pro-
grams. This is in contrast to traditional machine learning techniques that
are optimized for programs that are likely according to the training data D.
Further, standard techniques from statistical learning theory [152] such as
regularization are insufficient for our purposes. The idea of regularization is
that picking a simpler model minimizes the expected error rate on unseen
data, but a simpler model also contradicts an important desired property of
static analyzers to correctly handle tricky corner cases. We address this challenge
via a counter-example guided learning procedure that leverages program se-
mantics to generate new data (i.e., programs) for which the learned analysis
produces incorrect results. Formally, this corresponds to developing an ad-
versary that searches for the worst case modification of the original input
x+ δ, by applying a set of valid modifications δ ⊆ ∆(x).
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• Soundness and Over-approximation (α(y) v pa(x)). Third, when learning static
analyzers we need to consider two important concepts – soundness and over-
approximation. We say that a static analysis is sound if its results model
all possible executions of the program under analysis. That is, any feasi-
ble program behaviour should be included as part of the result, denoted
as α(y) v pa(x) (here, α is an abstraction function introduced formally in
Section 3.2). In other words, static analysis should never produce an incor-
rect result, only results that are less precise. To achieve this in practice, the
analysis over-approximates the set of possible behaviours when it is either
uncertain or in order to ensure that the computation is tractable. This is in
contrast to traditional machine learning techniques which are probabilistic
and frequently produce incorrect results. To address this challenge, we adapt
the techniques presented in Chapter 2, by: (i) designing a loss function that
captures the fact that the analysis has to be sound (unlike probabilistic mod-
els), and (ii) we support a way to over-approximate the result in cases where
the most precise analysis does not exist or has not been found.

main contributions Our main contributions are:

• A novel method for learning static analysis rules from a dataset of programs.
The main insight is that we can express interesting rules of a static analysis
via a general domain-specific language that allows traversing abstract syntax
trees and accumulates values.

• A counter-example guided refinement loop that ensures that the analysis
generalizes beyond the training data. We achieve this by designing a strong
adversary that generates counter-examples (i.e., new programs) using both
semantic preserving and non-semantic preserving program transformations.

• Two techniques that make the adversary significantly more efficient at gener-
ating counter-examples. In particular, we leverage the fact that the analysis
pa is an interpretable program by: (i) partitioning the dataset into equiv-
alence classes with respect to pa, and (ii) applying program modifications
that trigger different execution paths when executing pa.

• An instantiation of our approach to the task of learning rules for allocation
site and restricted points-to analysis for JavaScript code. These are practical
and relevant problems because of the tricky language semantics and wide
use of libraries. Interestingly, our system learned inference rules missed
by manually crafted state-of-the-art tools, e.g., Facebook’s Flow [65] and
TAJS [153]. We contacted a developer from Flow’s team who confirmed that
extending Flow to cover the cases handled by our analysis is a highly re-
quested feature.

outline We organize this chapter as follows. In Section 3.1 we give an overview
of our approach and the challenges on a simple points-to analysis for JavaScript. In
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Section 3.2 we discuss what it formally means for a learned analyzer to be correct.
In Section 3.3 we present our learning algorithm, which extends the techniques
presented in Chapter 2. In Section 3.4 we introduce the adversarial component
which tests whether the learner analyzer is correct, and if not, returns a set of
counter-examples. Then, in Section 3.5 and Section 3.6 we discuss the steps needed
to instantiate our approach for learning points-to and allocation site analysis, re-
spectively. In Section 3.7 we briefly discuss implementation details of our work, in
particular, how the training datasets can be obtained automatically – without man-
ual labelling and without access to already implemented analysis that we would
like to learn. Next, in Section 3.8 we provide a detailed experimental evaluation of
our approach, which includes examples of the learned analyzers. Finally, we de-
scribe the related work in Section 3.9 and provide a brief summary and discussion
in Section 3.10.

3.1 overview

We start by providing an intuitive explanation of our approach on a simple points-
to analysis for JavaScript. Assume we are learning the analysis from one training
data sample given in Figure 3.1 (a). It consists of variables a, b and b is assigned
a new object, where we use s0 to denote the object identify (in our case, s0 cor-
responds to the program label at which the object was allocated). Our goal is to
learn that a may also point to s0 due to the assignment a = b.

Points-to analysis is typically done by applying inference rules until fixpoint.
An example of an inference rule modelling the effect of assignment is:

VarPointsTo(v2, h) Assignment(v1, v2)

VarPointsTo(v1, h)
[Assign]

This rule essentially says that if variable v2 is assigned to v1 and v2 may point to
an object h, then the variable v1 may also point to this object h.

domain specific language (dsl) for analysis rules Consider the fol-
lowing general shape of inference rules:

VarPointsTo(v2, h) v2 = f (v1)

VarPointsTo(v1, h)
[General]

Here, the function f takes a program element (a variable) and returns another
program element or >. The rule says: use the function f to find a variable v2 whose
points-to set will be used to determine what v1 points to. The Assign rule is an
instance of the General rule that can be implemented as the following function:

fAssign(x) ::= y if there is Assignment:x ← y

> otherwise



3.1 overview 67

var b = {}; // program label s0
a = b;

Expected points-to set
D = {(a→ {s0})}

(a) Training data

VarDeclaration:b

ObjectExpression:{}

Assignment

Identifier:a

Identifier:b

(b) AST representation of (a)

fdesired(x) ::=

y if there is Assignment:x ← y

y if there is VarDeclaration:x← y

> otherwise

fover f it(x) ::=

y if y is VarDeclaration:y preceding x

y if there is VarDeclaration:x← y

> otherwise

(c) Learned functions to resolve points-to queries from (a)

Figure 3.1: Two examples of learned programs for points-to analysis using the training
data shown in (a). While both fdesired and fover f it work correctly on the dataset
D, only fdesired generalizes to programs beyond those in D.

Where Assignment:x ← y denotes that the input variable x appears as the left
hand side of an assignment x = y in the program. The same function can however
be also rewritten as follows:

fAssign(x) ::= switch WRITE_POS UP WRITE_TYPE

case ‘1 Assignment‘ then RIGHT

default >

where we first traverse the AST, shown in Figure 3.1 (b), check if x is its first child
(WRITE_POS) and whether the parent node of x is of type Assignment (UP WRITE_TYPE).
If this is the case, that is, executing WRITE_POS UP WRITE_TYPE returns 1 and
Assignment, then we return the right sibling of x. Otherwise fAssign returns >.

Key Insight: interesting rules of a static analyzer can be expressed using a domain-specific
language L with branches that allows traversing ASTs and accumulating values.

As can be seen from the shape of the function shown above, we can reuse the
CondGen language presented in Chapter 2 to learn rules for points-to analysis. Just
as importantly, this allows us to reuse the techniques for learning probabilistic
models of code (parametrized by CondGen) and apply them also for the task of
learning static analyzers.

the overfitting problem Unfortunately, applying the learning techniques
from Chapter 2 naively will often lead to learning poor programs. To understand
why this is the case, consider the two functions from Figure 3.1 (c). Here, in ad-
dition to modelling assignments, the functions are also trained to handle the case
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Program
modifications ∆(x)

Learning

arg minpa∈L E(x,y)∼D`(x, y; pa)
s.t. ∀(x, y) ∈ D. α(y) v pa(x)

Testing

∃δ ⊆ ∆(x), ∃(x, y) ∈ D

s.t. α(y) 6v pa(x + δ)

(Section 3.4)

(Section 3.3)

Adversary
(tests analysis pa)

Synthesis

Over-
approximation

No analysis
satisfies D

No counter-examples:
return analysis pa

Candidate analysis
pa ∈ L learned
on dataset D

Counter-example
(x+ δ, y) /∈ D

D← D∪ {(x+ δ, y)}

Language L
describing

analysis rules

Input
dataset D

Program
executions

Figure 3.2: Overview of our approach to learning static analysis rules from data con-
sisting of three components – a language L for describing the analysis rules,
a learning algorithm and an adversary that tests the analysis – that interact
in a counter-example based refinement loop.

of variable initialization (first line in the program). Because the dataset D typi-
cally does not determine a unique solution, both of these functions can be learned.
However, while fdesired implements the desired functionality and generalizes well,
fover f it overfits to the training dataset. This is problematic as it leads to a non-
robust model which at best is imprecise and at worst unsound. By inspecting
fover f it we can see that it conditions on the statement prior to the current assign-
ment instead of conditioning on the assignment itself, yet it succeeds to produce
the correct analysis result on our dataset D. While seemingly correct, this is due
to the specific syntactic arrangement of statements in the training data D and will
not generalize to other programs, beyond those in D.

our solution To address the problem of overfitting and non-robustness, we
propose a counter-example guided procedure that biases the learning towards
semantically meaningful analyses, as illustrated in Figure 3.2. The inputs to the
learning algorithm are a dataset D of programs with the ground-truth analysis
results and a language L for describing the analysis rules. The goal of the learning
is to find a sound and precise analysis that works on programs in D, and ap-
proximates the results in cases where the most precise analysis cannot be learned.
To ensure that the analysis also works on samples beyond those in the training
dataset D, we introduce an adversary and connect it with the synthesizer. This
component takes as input the learned analysis pa and a set of valid program mod-
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ifications δ ⊆ ∆(x), and tries to find another program x+ δ for which pa fails to
produce the desired result y. This counter-example (x+ δ, y) is then fed back to
the synthesizer which uses it to generate a new candidate analyzer as illustrated
in Figure 3.2.

Using the approach described above, a possible way to exclude fover f it is to
insert an unnecessary statement (e.g., var c = 1) before the assignment a = b in
Figure 3.1 (a). Here, the analysis defined by fover f it produces an incorrect points-to
set for variable a (as it points-to the value 1 of variable c). Once this sample is
added to D, fover f it is penalized and the next iteration will produce a different
analysis until eventually the desired analysis fdesired is returned.

counter-example guided learning To learn a static analyzer pa, the syn-
thesizer and the adversary are linked together in a counter-example guided loop.
This type of iterative search is frequently used in program synthesis [144], though
its instantiation heavily depends on the particular application task at hand. In our
setting, the examples in D are programs (and not say program states) and we also
deal with notions of (analysis) approximation. This also means that we cannot di-
rectly leverage off-the-shelf components (e.g., SMT solvers) or existing synthesis
approaches. Importantly, the counter-example guided approach employed here is
of interest to machine learning as it addresses the problem of overfitting with tech-
niques beyond those typically used (e.g., regularization [152], which is insufficient
here as it does not consider samples not in the training dataset).

relation to adversarial training Our approach presented in Figure 3.2
can be split into two separate steps – (i) learning an analysis pa that is sound and
precise on a training dataset, and (ii) testing the correctness of the analysis pa,
which produces a set of counter-examples. The two steps are performed iteratively
by extending the original dataset with the counter-examples at each iteration, until
no more counter-examples can be found.

Adversarial training [53] consists of the same two steps but used slightly dif-
ferently – instead of iteratively extending the original dataset with the counter-
examples, adversarial training discards the counter-examples found in previous
iterations and only trains on the most recent ones. As we will see in our evaluation,
the number of counter-examples found when learning static analyzers is roughly
of the same magnitude as the original dataset. Therefore, we can easily afford to
keep all of them and prevent the model from making the same mistakes in subse-
quent iterations. This is possible because in our work, one iteration of the learning
algorithm (with programs) produces significantly better models compared to train-
ing a neural network for one epoch. Training neural models typically requires a
large number of epochs to find a model with good performance. As a result, keep-
ing counter-examples for all those epochs will become very expensive and make
the training prohibitively slow. Even worse, most of the counter-examples will not
be useful since they were obtained with poor models.
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correctness of the approach Our method produces an analyzer that is
guaranteed to be sound w.r.t to all of the examples in D. Even if the analyzer
cannot exactly satisfy all examples in D, the synthesis procedure always returns an
over-approximation of the desired outputs. That is, when it cannot match the target
output exactly, it learns to over-approximate (e.g., can return > in some cases).
The over-approximation can be seen as a measure of the model’s confidence on its
predictions, as lower confidence would result in larger approximations. A formal
argument together with a discussion on these points is provided in Section 3.3.
However, we note that our method is not guaranteed to be sound for all programs
in the programming language. We see the problem of certifying the analyzer as
orthogonal and complementary to our work: our method can be used to predict
an analyzer that is likely correct, generalizes well, and to sift through millions of
possibilities quickly, while a follow-up effort can examine this analyzer and decide
whether to accept it or even fully verify it. Here, an advantage of our method is
that the learned analyzer is expressed as a program, which can be easily examined
by an expert, as opposed to standard machine learning models where interpreting
the result is very hard and therefore difficult to verify with standard methods.

3.2 checking analyzer correctness

In this section, following [154], we briefly discuss what it means for a (learned)
analyzer pa to be correct. The concrete semantics of a program p include all of p’s
concrete behaviors and are captured by a function JpK : N→ ℘(C). This function
associates a set of possible concrete states in C with each position in the program p,
where a position can be a program counter or a node in the program’s AST.

A static analysis pa of a program p computes an abstract representation of the
program’s concrete behaviors, captured by a function pa(p) : N→ Awhere (A,v)
is an abstract domain, usually a lattice of abstract facts equipped with an ordering
v between facts. An abstraction function α : ℘(C)→ A then establishes a connec-
tion between the concrete behaviors and the abstract facts. It defines how a set of
concrete states in C is abstracted into an abstract element in A. The abstraction
function is naturally lifted to work point-wise on a set of positions in N (used in
the definition below).

Definition 3.2.1 (Analysis Correctness). A static analysis pa is correct if:

∀p ∈ TL. α(JpK) v pa(p) (3.3)

Here TL denotes the set of all possible programs in the target programming lan-
guage (TL). That is, a static analysis is correct if it over-approximates the concrete
behaviors of the program according to the particular lattice ordering.

checking correctness One approach for checking the correctness of an an-
alyzer is to try to automatically verify the analyzer itself, that is, to prove that
the analyzer satisfies Definition 3.2.1 via sophisticated reasoning (e.g., as the one
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found in [155]). Unfortunately, such automated verifiers do not currently exist
(though, coming up with one is an interesting research challenge) and even if they
did exist, it is prohibitively expensive to place such a verifier in the middle of
a counter-example learning loop where one has to discard thousands of candidate
analyzers quickly. Thus, the correctness definition that we use in our approach is
as follows:

Definition 3.2.2 (Analysis Correctness on a Dataset and Test Inputs). A static anal-
ysis pa is correct w.r.t to a dataset of programs P and test inputs ti if:

∀p ∈ P. α(JpKti) v pa(p) (3.4)

The restrictions over Definition 3.2.1 are: the use of a set P ⊆ TL instead of
TL and JpKti instead of JpK. Here, JpKti ⊆ JpK denotes a subset of a program p’s
behaviors obtained after running the program on some set of test inputs ti.

The advantage of this definition is that we can automate its checking. We run
the program p on its test inputs ti to obtain JpKti (a finite set of executions) and
then apply the function α on the resulting set. To obtain pa(p), we run the analyzer
pa on p; finally, we compare the two results via the inclusion operator v.

3.3 learning analysis rules

We now present our approach for learning static analysis rules from examples.
Let D = {(xj, yj)}n

j=1 be a dataset of programs from a target language TL (i.e.,
JavaScript) together with outputs that a program analysis should satisfy. That is,
xj ∈ TL and yj ∈ A are the outputs to be satisfied by the learned program analysis.

Definition 3.3.1 (Analysis Correctness on Examples). We say that a static analysis
pa ∈ L is correct on D = {(xj, yj)}n

j=1 if:

∀(x, y) ∈ D . y v pa(x) (3.5)

This definition is based on Definition 3.2.2, except that the result of the analysis
is provided in D and need not be computed by running programs on test inputs.

Note that the definition above does not mention the precision of the analysis pa
but is only concerned with soundness. To search for an analysis that is both sound
and precise and avoids obvious, but useless solutions (e.g., always return the >
element of the lattice (A,v)), we define a precision metric.

loss function We define a loss function ` : TL ×A×L → R that takes a pro-
gram in the target language, its desired program analysis output and a program
analysis and computes a real-valued scored denoting the analysis quality:

E(x,y)∼D`(x, y; pa) =
1
|D| ∑

(x,y)∈D


1 if y 6v pa(x)

0 if y = pa(x)

dist(y, pa(x)) otherwise

(3.6)
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Here, the loss is equal to one when the analysis is unsound (y 6v pa(x)), the loss
is zero if the analysis returns the most precise result (y = pa(x)) and otherwise,
the loss is computed using a distance function dist : A×A → R(0,1) that captures
the analysis imprecision (i.e., the distance between y and pa(x) in the lattice of ab-
stract elements (A,v)). To remove clutter, we will also use the following notation
`(D; pa) = E(x,y)∼D`(x, y; pa) to denote the empirical loss on the dataset D.

problem formulation Given a language L that describes the analysis in-
ference rules (i.e., abstract transformers) and a dataset D of programs with the
desired analysis results, the learning should return a program analysis pa ∈ L
such that:

1. pa is correct on the examples in D (Definition 3.3.1), and

2. the loss `(D, pa) is minimized (Equation 3.6).

The above statement essentially says that we would like to obtain a sound anal-
ysis which also minimizes the over-approximation that it makes. As the space of
possible analyzers can be prohibitively large, we discuss a restriction on the lan-
guage L and give a procedure that efficiently searches for an analyzer such that
the correctness is enforced and the cost is (approximately) minimized.

language for describing analysis rules As illustrated in Section 3.1,
to express interesting rules of a static analyzer, we reuse the loop-free CondGen

language with branches from Chapter 2. The only difference is how the concrete
Move and Write instructions are instantiated. We will describe the instantiation for
points-to analysis in Section 3.5 and for allocation site analysis in Section 3.6.

learning Because the language L has the same shape as CondGen, we can
adapt the Algorithm 1 from Section 2.3. The resulting algorithm is shown in Algo-
rithm 2 and contains three modifications:

• Loss function: we use the loss function from Equation 3.6.

• Termination: each recursive branch terminates either when the most precise
program is found (line 2) or when the learning fails to find a BranchProgram

that improves information gain (line 6).

• Approximation: when no further BranchProgram can be found, we approxi-
mate the results to ensure the analysis remains sound (line 7).

approximation If the information gain is zero, we could not find any suitable
predicate to split the dataset and the analysis pbest has non-zero cost. In this case,
we define a function approximate that returns an approximate, but correct program
analysis – in our implementation we return an analysis that loses precision by
simply returning >, which is always a correct analysis.
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Algorithm 2: Algorithm for learning program analysis rules expressed in
domain-specific language L from data.

def Learn (D)
Input: Dataset D = {(xj, yj)}n

j=1
Output: Program pa ∈ L

1 pbest ← synSimpleProgram(D) . Section 2.3.1
2 if `(D, pbest) = 0 then . Precise analysis without branches
3 return pbest

4 p← synE13BranchProgram(pbest, D) . Section 2.3.3
5 where p ≡ if (pred(x)) then pa else pb
6 if H(D, pbest)− H(D, p) == 0 then . No improvement over pbest
7 return approximate(D)

8 pa ← Learn({(x, y) ∈ D | pred(x)})
9 pb ← Learn({(x, y) ∈ D | ¬pred(x)})

10 return p ≡ if (pred(x)) then pa else pb

In practice, this approximation does not return > for the entire analysis, but
only for a few branches in the decision tree, for which the synthesis procedure
fails to produce a good program using both synSimpleProgram and synE13BranchProgram.

In terms of guarantees, for Algorithm 2, we can state the following lemma.

Lemma 3.3.1. The analysis pa ∈ L returned by Algorithm 2 is correct according
to Definition 3.3.1.

The proof of this lemma follows the definition of the algorithm and uses induction
for the recursion. For our induction base case, if `(D, pbest) = 0, the analysis is
correct since by the definition from Equation 3.6, the loss is zero only if y = pa(x).
The analysis is also correct if approximate is called. In our induction step we use the
fact that analyses pa and pb from the recursion are correct from which it follows
that the composed analysis if pred(x) then pa else pb is also correct.

3.4 the adversary : testing an analyzer

A key component of our approach is an adversary that can quickly test whether the
current candidate analyzer is correct, and if not, to find a set of counter-examples.
The adversary takes as an input a candidate analyzer pa and the dataset D used to
learn pa and outputs a counter-example program on which pa behaves incorrectly.

Formally, finding a counter-example corresponds to solving the following satis-
fiability problem:

∃δ ⊆ ∆(x), ∃(x, y) ∈ D s.t. α(y) 6v pa(x+ δ) (3.7)

That is, the goal is to check whether there exists a sample in the given dataset
(x, y) ∈ D and a corresponding set of program transformations δ ⊆ ∆(x), such
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that running the analysis on a new program x+ δ leads to an incorrect α(y) 6v
pa(x+ δ). Naturally, in practice we would solve the above satisfiability problem
not only once but multiple times, thus obtaining a set of counter-examples.

key challenge A key problem the adversary must address is to quickly find
a counter-example in the search space of all possible programs. This can be very
challenging since the original dataset D can be very large and there can be in-
finitely many valid program changes ∆(x) to choose from. Furthermore, the prob-
lem is even harder than it might seem, since we are not applying a single change
but a set of program changes δ⊆∆(x).

finding counter-examples efficiently In our work, we develop an ad-
versary that solves the satisfiability problem from Equation 3.7 by decomposing it
into three subproblems – (i) selecting which sample to test (x, y) ∈ D, (ii) defining
valid program transformations ∆(x) and (iii) selecting which of the valid transfor-
mations to apply δ ⊆ ∆(x). For two of the subproblems, (i) and (iii), the key for
making efficient choices is that we leverage the information obtained by inspecting
the analysis under test pa. In other words, the counter-example search is guided
by the concrete analysis being tested.

3.4.1 Choosing Relevant Samples to Test via Equivalence Classes

As the first step, we need to determine which sample (x, y) ∈ D from the dataset
should be selected for testing. This is important since the training dataset is typi-
cally large and selecting samples at random will be hugely ineffective, especially
if the candidate analysis pa is already very strong.

To address this issue, our adversary selects samples as follows:

• it partitions the dataset into equivalence classes with respect to pa, and

• it selects samples from each equivalence class

This ensures that samples are selected based on whether they are exploring dif-
ferent parts of the learned analysis and not proportional to their frequency in the
dataset. In our case, the partitions correspond to execution paths of the candidate
analysis pa. As a result, following the steps above guarantees that we select sam-
ples such that all paths are covered very early on during testing. Further, because
the analysis is represented as a loop-free program with branches, obtaining the
execution paths is straightforward.

3.4.2 Defining Relevant Program Modifications

We now define various program modifications that, when applied to an existing
program, lead to potential counter-examples for the learned program analysis pa.
We split the modifications into semantic preserving and non-semantic preserving.
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Semantic Preserving Code Modifications for JavaScript

Adding Code

bool/string/num expressions ∅→ expr

unused variable declaration ∅→ var x = expr

anonymous function declaration ∅→ (function(arg1, . . . , argn){ expr })();
Dead Code

if statement ∅→ if (expr) { dead_code }
Renaming

variables x → y

user defined functions function inc(...) → function dec(...)

function parameters function get(x) → function get(y)

Table 3.1: Overview of semantic preserving program modifications used in our work.

semantic preserving modifications Semantic preserving modifications
are designed such that, as the name suggests, they modify the programs in a way
that does not affect any of the concrete program behaviors. Further, not only they
are semantic preserving with respect to the program, they are also designed to be
semantic preserving with respect to the analysis pa. Formally, this means that all
the semantic preserving modifications satisfy the following property:

∀δ ⊆ ∆(x)semanticpreserving . pa(x) = pa(x+ δ) (3.8)

The intuition behind such modifications is to ensure stability by exploring local
program modifications. If the adversary discovers a modification for which the above
property is violated, the current analysis pa is incorrect and the counter-example
program x+ δ is reported. The advantage of these modifications is that since they
do not change the analysis results, the ground-truth labels can be directly reused.

We list the semantic preserving modifications used in our work in Table 3.1.
These include various types of dead code insertion as well as variable, param-
eter and function name renamings. We use expr to denote random expression
consisting of boolean, string and numeric constants, x and y to denote variable
names and arg to denote argument names. As a concrete example, the modifi-
cation var x = expr can be instantiated as var p = 3 + 7 and denotes that we
insert a statement with a fresh variable name with value equal to a randomly gen-
erated expression. Further, we use dead_code to denote any side-effect free code,
i.e., we can generate and if statement where the body declares and invokes an
anonymous function, declares a fresh variable or another nested if statement.

We note that which transformations are semantic preserving can vary depend-
ing on the kind of analysis being learned. For instance, inserting dead code that
reuses existing program identifiers can affect flow-insensitive analysis, but should
not affect a flow-sensitive analysis.



76 learning static analyzers

Non-Semantic Preserving Code Modifications for JavaScript

Functions

adding function parameters function get(x) → function get(x, arg1, . . . , argn)

adding method arguments obj.get(x) → obj.get(x, expr1, . . . , exprn)

Changing Constants

number substitution 2 → 7

string substitution ”get” → ”load”

boolean substitution true → false

Table 3.2: Overview of non-semantic preserving program modifications.

non-semantic preserving modifications To ensure better generaliza-
tion, we are also interested in exploring changes to programs that may not be
semantic preserving. This is useful as it allows us to discover new programs that
exhibit behaviors further away from those seen in the training dataset.

We list the non-semantic preserving modifications used in our work in Table 3.2.
Here the modifications include changing numeric, string and boolean constants as
well as adding function parameters and method arguments. These modifications
are useful since both points-to and allocation site analysis often depend on the
number and type of the method arguments and function parameters. At the same
time, they are prone to overfitting to common constants, especially in cases where
the number of relevant samples is small (e.g., when handling corner cases).

Because these modifications do not preserve the program semantics, they typi-
cally also do not provide any guarantees that the analysis results remain the same.
Therefore, for these modifications to be practically useful we also need a way
to compute what the correct label should be after the modification is applied. In
our work, we address this issue trivially by simply executing the modified pro-
gram and observing the concrete program behaviours. This is possible since this
is identical to how all our training datasets are obtained (we provide details in
Section 3.7.1).

3.4.3 Choosing Modification Positions

Finally, having selected a program to test x and defined a set of valid program
transformations ∆(x), the last step is to select which of the transformations to
apply δ ⊆ ∆(x). The key insight we use for selecting a good δ is observing that
most of the modifications in ∆(x) have no effect on the analysis results. More
importantly, the reason why they have no effect on the results is that they are
changing parts of the program that are not even considered by the analysis when
making a prediction. As an example, consider an intraprocedural analysis and a
program with two functions – A and B. When analyzing function B, all transforma-
tions that affect function A will have no effect because we know that the analysis
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is only intraprocedural (i.e., does not analysize any code outside of the current
function). Therefore, an adversary equipped with such knowledge will only select
modifications that modify the function under test.

With this intuition in mind, recall that the static analysis learned in our work
comes from a domain-specific language that traverses abstract syntax trees (ASTs).
For any given program, typically only a small subset of all the AST nodes deter-
mine the results of the analysis pa. We can compute exactly which these are by
instrumenting the analyzer and recording all the visited AST nodes. Intuitively,
if we were to change any node outside the set visited by the analysis, the results
would remain unchanged (since the node was not visited as part of the execution).
This gives us a simple, yet very effective, technique to prioritize positions accessed
while executing the program analysis. Note however that we still allow changing
all program positions, albeit with a much smaller probability. This is because we
are selecting a set of modifications and not only a single one.

So far, we have described two main components of our approach, the learning
that produces a candidate static analysis and the adversary that finds counter-
examples for which the analysis does not yet work. In the next two sections, we
will show how to instantiate our learning approach to two tasks – learning points-
to and allocation site analysis for JavaScript.

3.5 points-to analysis

The goal of points-to analysis is to answer queries of the type q : V → ℘(H), where
V is a set of program variables and H is a heap abstraction (e. g., allocation sites).
That is, the goal is to compute the set of (abstract) objects to which a variable may
point-to at runtime. Similar to the example illustrated in Section 3.1, to answer
such queries a common line of work [156–158] uses a declarative approach where
the program is abstracted as a set of facts and the analysis is defined declaratively
(e. g., as a set of Datalog rules) using inference rules that are applied until a fixed
point is reached.

our goal Our goal is to learn the inference rules that define the analysis, from
data, as described in our approach so far. In particular, we would like to infer rules
of the following general shape:

VarPointsTo(v2, h) v2 = f (v1)

VarPointsTo(v1, h)
[General]

where the goal of learning is to find a set of functions f that, when used in the
points-to analysis, produce precise results (as defined earlier). However, we focus
our attention not on learning the standard and easy to define rules, like the one
for assignment, but on rules that are tricky to model by hand and are missed by
existing analyzers. In particular, consider the following subset of inference rules
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⊥

>

h1 h2 · · · hn−1 hnH =

Figure 3.3: Lattice of context-insensitive abstract heap locations H for points-to analysis.

that capture the points-to sets for the this variable in JavaScript. This rule has the
following shape:

VarPointsTo(v2, h) v2 = f (this)
VarPointsTo(this, h)

[This]

which is an instantiation of the general rule for the this variable by setting v1 =
this. In JavaScript, designing such rules is a challenging task as there are many
corner cases and describing those precisely requires more inference rules than the
rest of the (standard) analysis rules. Further, because assigning a value to this ob-
ject is not allowed (i. e., using this as a left-hand side of an assignment expression),
the value of this at runtime is not observed at the program level, yet assignments
do occur internally in the interpreter and the runtime. Complicating matters, the
actual values of the this reference can depend on the particular version of the
interpreter.

3.5.1 Instantiating our Learning Approach

We now define the necessary components required to instantiate the learning ap-
proach described so far. Most of the instantiations are fairly direct except for the
language L.

lattice of abstract heap locations The lattice (H,v) used to represent
the abstract domain of heap locations H is shown in Figure 3.3. The abstraction
function α : O → H maps the concrete objects seen at runtime to abstract heap
locations represented using a context-insensitive allocation site abstraction H. The
lattice is quite simple and consists of the standard elements >, ⊥ and elements
corresponding to individual heap locations h1 · · · hn that are not comparable.

concrete and abstract program semantics The concrete properties
we are tracking and their abstract counterpart as described in Section 3.2 are instan-
tiated by setting C := O, A := H and N := 〈V, J∗〉. That is, all concrete program
behaviors are captured by a function JpK : 〈V, J∗〉 → ℘(O) that for each program
variable V sensitive to the k-most recent call sites J, computes a set of possible
concrete objects seen at runtime O. The abstract semantics are similar except that
we instantiate the abstract domain to be the lattice describing heap-allocated ob-
jects H. We will discuss how we obtain the concrete behaviors JpKti after running
the program on a set of test inputs ti in Section 3.7.1.
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Move ::= Movecore ∪ Movecall ∪ Movejs

Movecore ::= UP | LEFT | RIGHT | DOWN_FIRST | DOWN_LAST | TOP
Movecall ::= GOTO_CALLER

Movejs ::= GOTO_GLOBAL | GOTO_UNDEF | GOTO_NULL | GOTO_THIS | UP_UNTIL_FUNC

Write ::= WRITE_VALUE | WRITE_POS | WRITE_TYPE | HAS_LEFT | HAS_RIGHT | HAS_CHILD

Figure 3.4: Move and Write instructions used to instantiate Lpt language for expressing
the result of points-to query by means of traversing over ASTs.

3.5.2 Language for Points-To Inference Rules

Our main goal was to design a language Lpt that is fairly generic: (i) it does not
require the designer to provide specific knowledge about the analysis rules, and
(ii) the language can be used to describe rules beyond those of points-to analysis.
The first point is especially important as specifying tricky parts of the analysis
rules by hand requires substantial effort, which is exactly the process we would
like to automate. Indeed, we aim at a language that is expressive enough to capture
complex rules which use information from method arguments, fields, assignments,
etc., yet can be automatically discovered during learning.

The main idea is to define Lpt to work over abstract syntax tree (AST) by provid-
ing means of traversing and conditioning on different parts of the tree. Further, we
do not require the analysis to compute the results directly (e.g., a concrete points-
to set for a given location). Instead, we allow the results to be specified indirectly
by means of traversing to an AST position that determines the result. For example,
such locations in the AST correspond to program positions with the same points-
to set for points-to analysis, or to declaration sites for scope analysis or to program
positions with the same type for type analysis.

syntax We define Lpt in Figure 3.4 by instantiating the Move and Write instruc-
tions of the CondGen language defined in Chapter 2. We split the Move instructions
into three groups where Movecore includes language and analysis independent in-
structions that traverse over trees, Movejs includes instructions that traverse to a set
of interesting program locations that are specific to the JavaScript language, and
Movecall allows us to learn a call-site sensitive analysis.

semantics The semantics of executing programs in Lpt follows the semantics
of CondGen programs defined in Section 2.1.3 with two changes:

• For cases when the Move instruction fails to execute or approximates the re-
sult, the remaining instructions are not executed. This is in contrast to the
original semantics from Figure 2.11, which continues the execution without
changing the position in the program. We introduce this change as it makes
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m ∈ Move i′ = mv(m, x, i) i′ /∈ {⊥,>}
〈m :: s, x, i, ctx, counts〉 −→ 〈s, x, i′, ctx, counts〉

[Move]

m ∈ Move i′ = mv(m, x, i) i′ ∈ {⊥,>}
〈m :: s, x, i, ctx, counts〉 −→ 〈ε, x, i, ctx, counts〉

[Move-Fail]

Figure 3.5: Small-step semantics of Move instructions. We differentiate between the case
where the Move instruction can be executed ([Move]) and when it fails (⊥) or
approximates (>) the result ([Move-Fail]).

the learned programs easier to understand by domain experts. The corre-
sponding small-step semantics are shown in Figure 3.5.

• The program state additionally includes the information about the k-most re-
cent call sites. This does not affect the program semantics and only provides
additional information used by the Movecall instructions.

write instructions The semantics of the write instructions are described by
the [Write] rule in Figure 2.11. Recall from Section 2.1.3 that each write accumu-
lates a value c to the context ctx according to the function wr:

wr : Write×X×N→ Σ

The semantics of WRITE_TYPE, WRITE_VALUE and WRITE_POS remain unchanged.
The semantics of the new instructions are defined as follows:

• wr(HAS_LEFT, x, i) and wr(HAS_RIGHT, x, i) return 1 if the node at position i
has a left (right) sibling and 0 otherwise.

• wr(HAS_CHILD, x, i) returns 1 if the node at position i has at least one child
and 0 otherwise.

• wr(HAS_CALLER, x, i) returns 1 if the current call trace is non-empty and 0
otherwise.

move instructions Move instructions are described by the [Move] and [Move-
Fail] rules in Figure 3.5 and use the function mv:

mv : Move×X×N→N∪ {⊥,>}

The semantics of UP, LEFT, RIGHT, DOWN_FIRST and DOWN_LAST are as defined in
Section 2.1.3 with one exception – when they cannot be executed, they return ⊥.
The semantics of the new instructions are defined as follows:

• mv(GOTO_GLOBAL, x, i) = i′, where i′ is a node position corresponding to the
global JavaScript object in the input x. For this and the other GOTO opera-
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tions, the returned position i′ is always unique and independent of the start-
ing position i. That is, regardless of the position from which GOTO_GLOBAL is
executed, it will point to the same global JavaScript object.

• mv(GOTO_THIS, x, i) = i′, where i′ is a node position corresponding to the ob-
ject to which this keyword points-to in the top-level scope. In a web browser
this is the window object while in a Node.js application it is module.exports.

• mv(GOTO_UNDEF, x, i) = i′, where i′ is a node position corresponding to the
undefined JavaScript object in the input x. Similarly, for mv(GOTO_NULL, x, i) =
i′, i′ is the position corresponding to the null value.

• mv(GOTO_CALLER, t, n, i · i′) = n′ × i′, where n′ is the node corresponding to
call site of the top method i from call trace and i′ is the call trace with the
method i removed. If the call trace is empty then n′ = ⊥.

• mv(UP_UNTIL_FUNC, x, i) = i′ traverses recursively (using the UP instruction)
to the position of the first node whose parent is a function declaration or the
root of the tree is reached.

• mv(TOP, x, i) = > denotes that the analysis approximates the result to the >
element in the lattice.

3.6 allocation site analysis

Next, we describe the instantiation of our approach to the task of learning allo-
cation site analysis. The goal of allocation site analysis is to answer queries of
the type q : L → {true, f alse}, where L is a set of program locations. That is, for
each program location, the analysis returns a boolean value denoting whether the
location is an allocation site or not.

our goal Our goal for allocation site analysis is to learn inference rules from
data in the following shape:

f (l) = true
AllocSite(l)

[Alloc]

We illustrate the expected output and some of the complexities of allocation site
analysis on a small example shown in Figure 3.6. The goal of the analysis is to de-
termine all the program locations at which a new object is allocated. In JavaScript,
there are various ways how an object can be allocated, some of which are shown
in Figure 3.6. These include creating a new object without calling a constructor ex-
plicitly (for example by creating a new array or object expression inline), creating
a new object by calling a constructor explicitly using new, creating a new object by
calling a method or new objects created by throwing an exception. Further, some
of the cases might also depend on the actual values passed as arguments. For ex-
ample, calling a newObject(obj) constructor with obj as an argument does not
create a new object but returns the obj passed as argument instead.
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var obj = {a: 7};

var arr = [1, 2, 3, 4];

if (obj.a == arr.slice(0,2)) { ... }

var n = new Number(7);

var obj2 = new Object(obj);

try { ... } catch (err) { ... }

Allocation Sites
(new object allocated)

Figure 3.6: Illustration of program locations (highlighted in green) for which the alloca-
tion site analysis should report that a new object is allocated.

⊥

>

true f alseHa =

Figure 3.7: Lattice used for allocation site analysis.

Next, let us consider the following simple, but unsound and imprecise allocation
site analysis:

falloc(x) =

true if there is Argument:x or NewExpression:x

f alse otherwise
(3.9)

which states that a location x is an allocation site if it is either an argument or a new
expression. This analysis is imprecise because there are other ways to allocate an
object (e.g., when creating arrays, strings, boxed values or by calling a function).
It is also unsound, because the JavaScript compiler might not create a new object
even when NewExpression is called (e.g., newObject(obj) returns the same object
as the given obj). Instead of defining such tricky corner cases by hand, we use our
approach to learn this analysis automatically from data, as described next.

3.6.1 Instantiating our Learning Approach

We now define the necessary components required to instantiate the learning ap-
proach described in our work.

abstract lattice Figure 3.7 shows the lattice (Ha,v) used to represent the
abstract domain for allocation site analysis. The abstraction function α : L → Ha
maps the concrete program locations to the elements true and f alse which denote
whether the program location is an allocation site or not.

concrete and abstract program semantics The concrete properties
we are tracking and their abstract counterpart as described in Section 3.2 are in-
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Move ::= UP | LEFT | RIGHT | DOWN_FIRST | DOWN_LAST | TOP
PREV_NODE_VALUE | PREV_NODE_TYPE

Write ::= WRITE_VALUE | WRITE_POS | WRITE_TYPE | HAS_LEFT | HAS_RIGHT | HAS_CHILD

HAS_PREV_NODE_TYPE | HAS_PREV_NODE_VALUE | NEW_ALLOC | NO_ALLOC

Figure 3.8: Move and Write instructions used to instantiate the Lalloc language for ex-
pressing the result of allocation site query by means of traversing over ASTs.

stantiated by setting C := {true, f alse}, A := Ha and N := L, where L is a set of all
program locations (nodes in an AST). That is, all concrete program behaviors are
captured by a function JpK : 〈L〉 → {true, f alse} that for each program location L
computes whether it is an allocation site. The abstract semantics are similar except
that we instantiate the abstract domain to be the lattice (Ha,v). We will discuss
how we obtain the concrete behaviors JpKti after running the program on a set of
test inputs ti in Section 3.7.1.

language for allocation site analysis The DSL language Lalloc used
to instantiate the learning of the allocation site analysis is very similar to the Lpt
used for points-to analysis and CondGen used for learning probabilistic models of
code. The syntax of the language is shown in Figure 3.8 and is based on the same
idea of traversing over the abstract syntax tree of a given program. It contains four
additional Write instructions:

• wr(HAS_PREV_NODE_TYPE, x, i) returns 1 if the node at position i can success-
fully execute the instruction PREV_NODE_TYPE (i.e., there exists a node with
the same type prior to position i) and 0 otherwise.

• wr(HAS_PREV_NODE_VALUE, x, i) returns 1 if the node at position i can success-
fully execute the instruction PREV_NODE_VALUE and 0 otherwise.

• wr(NEW_ALLOC, x, i) and wr(NO_ALLOC, x, i) return a special value that denotes
the analysis result, that is, whether a given location is an allocation site or
not. These two instructions are used only in the leafs of the learned analysis.

3.7 implementation

In this section we describe the implementation details of our approach.

obtaining training data Our learning approach uses the dataset of exam-
ples D = {(xj, yj)}n

j=1 consisting of pairs (xj, yj) where xj is a program (and a lo-
cation in the program) and yj is the desired output of the analysis when applied to
xj. In general, obtaining such labeled training data for machine learning purposes
is a tedious task. In our setting, however, this process can be automated because:
(i) in static analysis, there is a well understood notion of correctness, namely, the
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analyzer must approximate (in the sense of lattice ordering) the concrete program
behaviors, and (ii) thus, we can simply run a large number of programs in a given
programming language with some inputs, and obtain a subset of the concrete se-
mantics for each program.

3.7.1 Obtaining Concrete Behaviors of a Program

We extract the relevant concrete behaviours JpKti of the program p by instrument-
ing the source code (not the interpreter) such that when executed, p produces
a trace π consisting of all object reads, method entry points, method exit points
and call sites. Additionally, at each method entry, we record the reads of all the
parameters and the value of this. Further, every element in the trace contains a
mapping to the location in the program (in our case to the corresponding node in
the AST) and object reads record the unique identifier of the object being accessed.

training dataset for points-to analysis Given such a trace π, we cre-
ate a dataset Dpt used for points-to analysis by generating one input-output exam-
ple for each position in the trace π at which this variable was read. Further, we
select only the first read of this in each scope as all such references point to the
same object.

training dataset for allocation site analysis Given such a trace π,
we create a dataset Dalloc used for the allocation site analysis by generating one
input-output example for each position in the trace π as follows:

1. we select all the positions in the trace π where an object was read.

2. for each position we select only the first read in the trace, i. e., the first loop
iteration or the first method invocation.

3. we filter reads of this object and field access.

From a trace π, we determine the correct label by assigning the label true to all
the positions in π for which the corresponding identifier of the object being ac-
cessed was not seen previously within the same method call (or global scope) and
f alse otherwise. That is, intuitively we say that a program location is an allocation
site if the object being read was not seen before. We consider method call bound-
aries to make the analysis modular and independent of the current program call
trace.

3.7.2 Checking Analysis Correctness

points-to analysis For a program analysis pa and a dataset D, we are in-
terested in checking whether the analysis results computed for the program p are
correct with respect to the concrete values seen during the execution of p. Given a
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training example (x, y) ∈ D, recall that executing the program analysis i = pa(x)
on the input x results in a position i in the input program (via tree traversal using
Move instructions) or > (in case the analysis approximates the result). If the anal-
ysis returns > then it is trivially correct, otherwise we distinguish between two
cases. If i corresponds to the original position, we say that the analysis is correct if
the value has not been seen in the trace π before position i. This is true when po-
sition i is a new allocation site. Otherwise, we say that the analysis is correct if the
value o has been seen previously in the trace at position i. Note that there might
be multiple positions in the program that all point to the same result. Therefore, it
is important that we consider all of them as correct.

allocation site analysis Checking the correctness of the allocation site
analysis is trivial as executing the analysis pa ∈ Lalloc on an input example pro-
duces one of the labels NewAlloc, NoAlloc or Top which can be directly compared
to the expected output y ∈ {true, f alse}.

3.7.3 JavaScript Restrictions

Finally, we remove from the training data programs that use the eval function, dy-
namic function binding using Function.prototype.bind and the Function object
constructor. These are language features that require a combination of analyses to
be handled precisely and are, therefore, typically ignored by static analyzers [159].
We also filter accesses to arguments object for the allocation site analysis. This is
a limitation of our instrumentation that instruments reads and methods calls by
means of wrapper functions that affect the binding of arguments object.

3.8 evaluation

In this section, we provide a detailed experimental evaluation instantiated to two
practical analysis problems for JavaScript – learning points-to analysis rules and
learning allocation site rules. In our experiments, we show that:

• The approach can learn program analysis rules for tricky cases involving
JavaScript’s built-in objects. These rules cover interesting corner cases that
even existing state-of-the-art analyzers handle only partially.

• The counter-example based learning is critical for ensuring that the learned
analysis generalizes well and does not overfit to the training dataset.

• Our adversary for generating programs to test the analysis is an order of
magnitude more efficient at finding counter-examples than naively modify-
ing the programs in the dataset D.

These experiments were performed on a 28 core machine with 2.60Ghz Intel(R)
Xeon(R) CPU E5-2690 v4 CPU, running Ubuntu 16.04. In our implementation, we
parallelized both the learning and the search for the counter-examples.
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global.length = 4;

var dat = [5, 3, 9, 1];

function isBig(value) {

return value >= this.length;

}

// this points to global

dat.filter(isBig); // [5, 9]

// this points to boxed 42

dat.filter(isBig, 42); // []

// this points to dat object

dat.filter(isBig, dat); // [5, 9]

Figure 3.9: JavaScript code snippet illustrating a subset of the objects to which this can
point to depending on the context in which the method isBig is invoked.

training dataset We use the official ECMAScript (ECMA-262) conformance
suite (https://github.com/tc39/test262) – the largest and most comprehensive
test suite available for JavaScript containing over 20 000 test cases. As the suite also
includes the latest version of the standard, all existing implementations typically
support only a subset of the testcases. In particular, the NodeJS interpreter v4.2.6
used in our evaluation can execute (i. e., does not throw a syntax error) 15 675 tests
which we use as the training dataset for learning.

3.8.1 Learning Points-to Analysis Rules for JavaScript

We now evaluate the effectiveness of our approach for the task of learning a points-
to analysis for the JavaScript built-in APIs that affect the binding of this. This is
useful because existing analyzers either model this only partially [65, 157] (i. e., by
covering a subset of the behaviors of Function.prototype APIs) or not at all [158,
160], resulting in potentially unsound results.

We illustrate some of the complexity of determining the objects to which this

points to within the same method in Figure 3.9. Here, this points to different
objects depending on how the method is invoked and what values are passed in
as arguments. In addition to the values shown in the example, other values may
be seen during runtime if other APIs are invoked, or the method isBig is used as
an object method or as a global method.

learned analyzer A summary of our learned analyzer is shown in Table 3.3.
For each API we collected all its usages in the ECMA-262 conformance suite, rang-
ing from only 6 to more than 600, and used them as the initial training dataset for
learning. In all the cases, a significant amount of counter-examples were needed
to refine the analysis and prevent overfitting to the initial dataset. On average, for
each API, the learning finished in 14 minutes, out of which 4 minutes were used
to synthesise the program analysis and 10 minutes used in the search for counter-
examples (cumulatively across all refinement iterations). The longest learning time
was 57 minutes for the Function.prototype.call API for which we also learn
the most complex analysis – containing 97 instructions in Lpt. We note that even
though the APIs in Array.prototype have very similar semantics, the learned pro-
grams vary slightly. This is caused by the fact that a different number and type

https://github.com/tc39/test262
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JavaScript Points-to Analysis

Function Name Dataset Size Counter-examples Found Analysis Size∗

Function.prototype

call 026 372 97 (18)

apply 006 182 54 (10)

Array.prototype

map 315 064 36 (6)

some 229 082 36 (6)

forEach 604 177 35 (5)

every 338 031 36 (6)

filter 408 076 38 (6)

find 053 073 36 (6)

findIndex 051 096 28 (6)

Array

from 032 160 57 (7)

JSON

stringify 018 055 9 (2)

∗ Number of instructions in Lpt (Number of branches)

Table 3.3: Dataset size, number of counter-examples found and the size of the learned
points-to analysis for JavaScript APIs that affect the points-to set of this.

of examples were available as the initial training dataset, which means that the
adversary had to find different types of counter-examples.

To illustrate the complexity of the learned program analysis and the fact that it
is easy for it to be interpreted by a human expert, we show the learned analysis
for the API Array.prototype.filter in Figure 3.10. By inspecting the programs
in the branches we can see that the analysis learns three different locations in
the program to which the this object can point-to: the global object, a newly allo-
cated object, or the second argument provided to the filter function. The analysis
also learns the conditions determining which location to select. For example, this
points to a new allocation site only if the second argument is a primitive value,
in which case it is boxed by the interpreter. Similarly, this points-to the second
argument (if one is provided), except for cases where the second argument is null
or undefined.

For better readability, we replaced the sequence of instructions in Lpt used as
branch conditions and branch targets with their informal descriptions. For exam-
ple, the learned sequence that denotes the second argument of the calling method
is GOTO_CALLER DOWN_FIRST RIGHT RIGHT. It is important to note that we were not
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Array.prototype.filter ::=

if caller has one argument

points-to global object

else if 2nd argument is Identifier

if 2nd argument is undefined

points-to global object

else

points-to 2nd argument

else if 2nd argument is this

points-to 2nd argument

else if 2nd argument is null

points-to global object

else // 2nd argument is a primitive value

points-to fresh allocation site

Figure 3.10: Learned points-to analysis for JavaScript API Array.prototype.filter. For
better readability, we replaced the sequence of Move and Write instructions
from Lpt with their informal description.

required to manually provide any such sequences in the language but that the
learning algorithm discovered such relevant sequences automatically.

3.8.2 Learning Allocation Site Analysis for JavaScript

Next, we evaluate the effectiveness of our approach on a second analysis task –
learning allocation sites in JavaScript. This is an analysis that is used internally by
many existing analyzers. The analysis computes which statements or expressions
in a given language result in an allocation of a new heap object. For an illustration
of the expected output and some of the complexities of allocation site analysis, we
refer the reader to the example presented earlier in Figure 3.6.

For this task, we obtain 134 721 input-output examples from the training data,
which are further expanded with additional 905 counter-examples found during
99 refinement iterations of the learning algorithm. For this number of examples
(much higher than in the other analyzer), the synthesis time was 184 minutes
while the total time required to find counter-examples was 7 hours. The learned
program is relatively complex and contains 135 learned branches, including the
tricky case where NewExpression does not allocate a new object. Compared to the
trivial, but wrong analysis falloc from Equation 3.9, the synthesized analysis marks
over twice as many locations in the code as allocation sites (≈ 21 000 vs ≈ 45 000).

program learned for object allocation using NewExpression As il-
lustrated in Figure 3.6, calling new in a JavaScript program does not necessarily
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if WriteType == NewAllocation

if constructor for given object was used before

NewAlloc

else if last argument is LiteralNumber

NewAlloc

else if last argument is LiteralString

NewAlloc

else if constructor with no arguments

NewAlloc

else if last argument is LiteralBoolean

NewAlloc

else if last argument is UnaryExpression

NewAlloc

else if last argument is ArrayExpression

NewAlloc

else if last argument is null

NewAlloc

else

if last argument has been used before

Top

else

Top

Figure 3.11: Learned analysis for object allocation by invoking the constructor explicitly.

lead to the allocation of a new object. The exception are the semantics of the built-
in Object class that are defined as follows1:

“The Object constructor creates an object wrapper for the given value. If the value is
null or undefined, it will create and return an empty object, otherwise, it will return an

object of a Type that corresponds to the given value. If the value is an object already, it
will return the value.“

— Object constructor

By inspecting the learned program shown in Figure 3.11 we can see that it learns
the above semantics by checking the type of the argument passed to the construc-
tor. If the argument is one of the primitive types or a null value, then it will be
always wrapped to a new object (marked by returning NEW_ALLOC as the leaf pro-
gram). The program also learns that if the constructor has no arguments, then it
always allocates a new object. Further, if the argument was used before, then the
analysis chooses to conservatively approximate the result. Note that the program
shown in Figure 3.11 corresponds to only a small part of the full analysis learned,
as there are many more constructs that can lead to new object allocations.

1 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object
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Programs explored until first counter-example is found

Difficulty Random Modifications Guided by Analysis

Easy (≈ 60%) 146 13

Hard (≈ 40%) > 3000 130

Table 3.4: The effect of using the learned analysis to guide the counter-example search.

3.8.3 Analysis Generalization

We study how well the learned program for points-to analysis works for unseen
data. First, we manually inspected the learned analysis at the first iteration of
the learning procedure (without any counter-examples generated). We did that to
check if we overfit to the initial dataset and found that indeed, the initial analysis
would not generalize to some programs outside the provided dataset. This hap-
pened because the learned rules conditioned on unrelated regularities found in
the data (such as variable names or fixed positions of certain function parameters).
Our adversary, and the counter-example learning procedure, however, eliminate
such kinds of non-semantic analyses by introducing additional function arguments
and statements in the test cases.

Overfitting to the initial dataset was also caused by the large search space of
possible programs in the DSL for the analysis. However, we decided not to restrict
the language, because a more expressive language means more automation. Also,
we did not need to provide upfront partial analysis in the form of a sketch [144].

adversary effectiveness for finding counter-examples We evalu-
ate the effectiveness of our adversary to find counter-examples by comparing it to
a random adversary that applies all possible modifications to a randomly selected
program from the training dataset. For both adversaries, we measure the average
number of programs explored before a counter-example is found and summarize
the results in Table 3.4. In the table, we observe two cases: (i) early in the analysis
loop when the analysis is imprecise and finding a counter-example is easy, and
(ii) later in the loop when hard corner cases are not yet covered by the analysis. In
both cases, our adversary guided by analysis is an order of magnitude more efficient.

is the counter-example refinement loop needed? We also compare
the effect of learning with a refinement loop to learning with a standard “one-shot”
machine learning algorithm, but with more data provided up-front. For this exper-
iment, we generate a dataset Dhuge by applying all possible program modifications
(as defined in Table 3.1 and Table 3.2) on all programs in D. For comparison, let
the dataset obtained at the end of the counter-example based algorithm on D be
Dce. The size of Dce is two orders of magnitude smaller than Dhuge.
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An analysis that generalizes well should be sound and precise on both datasets
Dce and Dhuge, but since we use one of the datasets for training, we use the
other one to validate the resulting analysis. For the analysis that is learned us-
ing counter-examples (from Dce), the precision is 99.9%, the fraction samples over-
approximated to the top element of the lattice is 0.01%, and there are no unsound
results. However, evaluating the analysis learned from Dhuge on Dce has precision
of only 70.1%, with 0.08% of samples over-approximated to the top element of
the lattice and the remaining 29.1% of the cases being unsound! This means that
Dce indeed contains interesting cases critical to the soundness and precision of the
learned analysis.

summary Overall, our evaluation shows that the learning approach presented
in our work can learn static analysis rules that handle various cases such as the
ones that arise in JavaScript built-in APIs. The learned rules generalize to cases
beyond the training data and can be inspected and integrated into existing static
analyzers that miss some of these corner cases.

3.9 related work

We next discuss prior works that are most closely related to the approach pre-
sented in this chapter.

synthesis from examples Similar to our work, synthesis from examples
typically starts with a domain-specific language (DSL) which captures a hypothe-
sis space of possible programs together with a set of examples the program must
satisfy and optionally an oracle to provide additional data points in the form of
counter-examples using CEGIS-like techniques [144]. Examples from this research
direction include discovery of bit manipulating programs [146], string process-
ing [161], functional programs [162], or data structure specifications [163]. A recent
work has shown how to generalize the setting to large and noisy datasets [9].

Other recent works [164, 165] synthesize models for library code by collecting
program traces which are then used as a specification. The key differences with
our approach are that we (i) use a large dataset covering hundreds of cases and (ii)
we synthesize an analysis that generalizes beyond the provided dataset.

program analysis and machine learning Recently, several works ap-
plied machine learning in the domain of program analysis for tasks such as prob-
abilistic type prediction [22, 166], reducing the false positives of an analysis [151],
or as a way to speed up the analysis [167–169] by learning various strategies used
by the analysis. We can think of the probabilistic type prediction approaches [22,
166] as being a kind of non-interpretable program analyzer that predicts types of
variables with a certain probability. In the next chapter, we will investigate apply-
ing state-of-the-art deep learning techniques for the type inference task with the
focus on the robustness of these models.
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Other work connecting analysis and machine learning is that of Mangal et al.
[151]. Here the authors start with the analysis rules already specified, in their case,
in Datalog. Since the analysis tends to produce false positives, the authors then
learn weights assigned to the rules which allow them to avoid deriving certain
facts at the fixed point (and avoid some false positives). The follow-up work of
Si et al. [170] also targets analyses written in Datalog with the goal of learning
to compose in predefined rules into a Datalog program that performs well on
the training dataset. To achieve this efficiently, the authors extend Datalog to the
continuous setting where the learning is performed on a weighted combination
of all possible programs and the best program is then discretized. Another recent
work [167] explores the use of machine learning for analysis, this time however,
the goal is to find a strategy for deciding which variables should be tracked flow
insensitively. This approach aims to optimize the performance of the analysis by
tracking fewer variables flow sensitively.

A key difference compared to our work is that we present a method to learn
the static analysis rules which can then be applied in an iterative manner. This
is a different task than [22, 166] which do not learn rules that can infer program
specific properties and [167–169] which assume the rules are already provided
and typically learn a classifier on top of them. Further, in our work, we learn
static analysis rules expressed in a domain-specific language that allows traversing
and writing values from trees. This is in contrast to approaches that assume the
rules are given and consider the challenging task of composing them in a Datalog
programs, either using machine learning techniques [151, 170] or using program
synthesis techniques [171–173].

learning invariants In an orthogonal effort there has also been work on
learning program invariants using dynamic executions. For recent representative
examples of this direction, we refer the reader to [142, 174]. The focus of all
these works is rather different: they work on a per-program basis, exercising
the program, obtaining observations and finally attempting to learn the invari-
ants. Counter-example guided abstraction refinement (CEGAR) [175] is a classic
approach for learning an abstraction (typically via refinement).

scalable program analysis Another line of work considers scaling pro-
gram analysis in hard to analyse domains such as JavaScript at the expense of
analysis soundness [158, 176]. These works are orthogonal to ours and follow the
traditional way of designing the static analysis components by hand. An inter-
esting future work, however, is applying the techniques presented in our work
with the goal of automating parts of the manual design process that is currently
required to develop such tools.

checking correctness of the static analysis Finally, a related line of
work addresses the problem of checking the correctness of existing static analyz-
ers [177, 178]. At a high-level, this is exactly the same task that the adversary
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in our work has to perform. Similar to our work, the correctness is assessed by
generating new inputs or programs and checking whether the concrete program
semantics (i.e., obtained by executing the new programs) satisfy the specification.
The main difference to our work is the specification complexity; we use a generic
specification that can be applied to a wide range of different analyzers and fo-
cus on the challenging task of learning the static analyzer itself. In contrast, the
works [177, 178] assume that the analyzer is given, but focus on a much more com-
plex specifications defined with respect to a concrete static analysis. As a result,
the specification of [177, 178] can discover more errors, for example, by encoding
properties that transformers of a numerical static analyzer needs to satisfy.

3.10 conclusion

In this chapter, we presented a new approach for learning static analyzers from
examples. The key insight of our work is that: (i) we can express interesting static
analysis rules using a domain-specific language that does not require the designer
to provide specific knowledge about the analysis being learned, (ii) we can obtain
the training dataset automatically, without having access to an existing static anal-
ysis that solves the task we are trying to learn, and (iii) we use a counter-example
guided loop which iteratively tests the learned analysis and generates new pro-
grams for which the analysis fails.

The first point is especially important as specifying tricky parts of the analysis
rules by hand requires substantial effort, which is exactly the process we would
like to automate. Here, the main idea behind our domain-specific language is the
same as in the previous chapter – to express programs that traverse over abstract
syntax trees and accumulate values. This allows us to model rules of points-to
analysis by means of traversing to the program position with the same points-to
set, or for allocation site analysis by means of conditioning on the context relevant
for deciding whether a new object is allocated or not. Similarly, as a future work
one could apply the same ideas to learn type inference rules (by traversing to
a program location with the same type) or call site analysis (by traversing to the
method invocation).

However, at the same time, the domain-specific language is also the main limi-
tation of our approach. This is because the most challenging part required devel-
oping a commercial grade program analysis tools, such as Facebook’s Flow [65], is
often designing the right abstractions suitable for the task at hand. As a concrete
example, the main reason why Flow misses many of the rules learned by our ap-
proach is not because the Flow developers are not aware of some of these cases,
but rather because incorporating them into the existing analysis would require
significant design changes. Therefore, we see our work either as a technique for
learning simple full analyses such as allocation site, or as a technique that helps
experts design more complex static analyzers faster, by learning tricky parts and
corner cases of the analysis from data.
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Finally, in this chapter, we have used several steps required to learn analyzer
rules that generalize well to program beyond those seen in the training dataset. In
particular, we used concepts such as over-approximation, counter-example based
learning instantiated with a set of program modifications or compositionality of
the analysis where rules are applied until a fixpoint is reached. These techniques
are of interest beyond our work as a way to train better and more robust models.
In fact, we will see all of the above steps incorporate in the next chapter, with
the exception that the technical solution will be very different – we will address
a general class of neural models and do not assume any prior knowledge rather
than decision tree learning over a domain-specific language.



4
R O B U S T N E S S F O R M O D E L S O F C O D E

In Chapter 3, we presented a new approach for learning static analyzers pa from
a domain-specific language L and a training dataset D, formalized as:

arg min
pa∈L

E(x,y)∼D `(x, y; pa) (4.1)

s.t. ∀(x, y) ∈ D, ∀δ ⊆ ∆(x). α(y) v pa(x+ δ)

learned analysis precision

soundnessrobustness

[Chapter 3]

To achieve this, the two key contributions were: (i) the fact that we learn an in-
terpretable program, which can be inspected and understood by a domain expert,
and (ii) that we address the problem of learning robust and sound static analysis
that generalize well to samples beyond those included in the dataset D.

existing models of code For static analyzers, ensuring soundness and ro-
bustness is a natural, yet critical, requirement as they are expected to work cor-
rectly for all programs. This is in contrast to traditional machine learning tech-
niques that typically solve the following optimization problem:

arg min
θ

E(x,y)∼D `(x, y; θ) (4.2)

learned parameters precision
Accurate Models of Code

[Prior Works]

That is, the only goal considered during learning is how well does the model per-
form on programs that are likely according to the dataset D. In fact, both our work
on learning probabilistic models of code1 presented in Chapter 2, as well as recent
deep learning models for code use a variant of the loss from Equation 4.2. This
includes models applied to a wide range of tasks, including code completion [26,
27], code captioning [34–36], code classification [38, 39] and bug detection [41–43].

this chapter In this chapter, we address the challenging problem of training
(adversarially) robust neural models for code. This is a very important problem
shown to affect neural models in different domains [53–55], yet despite substantial
progress on training accurate neural models of code, the issue of robustness for
code has been overlooked. Similar to Chapter 3, we focus on tasks that compute

1 See the loss function from 2.5, which is the same as Equation 4.2, except for the regularization term.

95
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program properties (e.g., type inference), usually addressed via handcrafted static
analysis, but for which a number of recent neural models with high accuracy
have been introduced [30, 31, 179]. Unsurprisingly, as these works do not consider
robustness, their adversarial accuracy can drop significantly. However, training
both robust and accurate models of code in this setting is non-trivial and requires
one to address several key challenges:

• Program Representation. Programs are highly structured and long, containing
hundreds of lines of code. This makes the task of training robust models very
challenging since neural networks typically condition on the full input and
any program modification (which there can be infinitely many) can poten-
tially affect the result. To address this challenge, our goal is to:

Enable neural networks to learn the parts of the program which are relevant for the
prediction, without conditioning on the entire program.

• Approximation. Because the property prediction problem is usually undecid-
able, the static analyzers approximate the ideal solution. Naturally, the same
should apply when using neural networks to solve the same prediction task.
As a result, the challenge we address is to:

Enable neural models to approximate the result when uncertain.

• Compositionality. Currently, there is a conceptual gap between the design of
static analysis tools that typically perform a computation until a fixpoint is
reached and neural networks that make predictions in constant time (even
though the networks ca be very large). This is problematic, since making all
the predictions at the same time results in models prone to learning statistical
regularities around the predicted position rather than the actual rules. Our
goal is to bridge this gap and to:

Extend neural models such that they take advantage of learning compositional rules.

accurate and robust models of code To address these challenges, we
propose a novel method that combines three key components that lead to the
following optimization problem:

arg min
θ,α

E(x,y)∼D max
δ⊆∆(x)

`(( fθ , gh
θ )(α(x+ δ)), y) (4.3)

learned parameters θ

learned abstraction α

precision

robustness abstain

Robust Models of Code

[This Chapter]

We illustrate the main components in Figure 4.1 and briefly describe them next
(we provide more detailed description in Section 4.1). First, we train a model that
abstains [180] from making a prediction when uncertain (denoted as function gh

θ ),
effectively partitioning the dataset into two parts: one part where the model makes
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Learning to
Abstain

•
• •

•• •

Adversarial
Training

•
• •

•• •

Represenation
Refinement

•
• •

•• •

`
` `

``
`

Figure 4.1: Illustration of the three key components used in our work. Each point rep-
resents a sample, is a region where the model abstains from making pre-
dictions, and are regions of model prediction, © is the space of valid
modifications for a given sample, and BBB is the learned (reduced) space of
valid modifications.

predictions ( , ) that should be accurate and robust, and one ( ) where the model
abstains and it is enough to be robust. Second, we instantiate adversarial training [53]
to the domain of code, which corresponds to training using a worst case modifica-
tion of the original inputs (maxδ⊆∆(x)). Third, we develop a new method to refine
the representation used as input to the model by learning the parts of the program
relevant for the prediction (denoted as the function α). This reduces the num-
ber of places that affect the prediction and helps to make adversarial training for
code effective. Finally, we create a new algorithm that trains multiple models, each
learning a specialized representation that makes robust predictions on a different
subset of the dataset (not shown in Figure 4.1).

contributions Our main contributions are:

• We propose a novel combination of abstaining and robustness for neural
models. To the best of our knowledge, this combination has not been ex-
plored apart from the concurrent work on training image classifiers [181].

• An instantiation of adversarial training [53] to models of code via a rich set
of both semantic and label preserving program modifications.

• A new method that learns to refine (sparsify) the program representation
used as input to the model.

• A new training algorithm that produces multiple models, each based on
a specialized (learned) program representation necessary to make robust pre-
dictions on a different subset of the dataset.

• An implementation and thorough evaluation of our proposed system for the
task of type inference. We show the effectiveness of our approach by success-
fully training a model that improves robustness by 15% while preserving
high accuracy 87.7%. At the same time, extending the model with the ability
to abstain allows us to train highly accurate and robust models for a subset of
the dataset, with 99.9% accuracy and 99.9% robustness for 29% of the samples.
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outline We organize this chapter as follows. In Section 4.1 we present an
overview of our approach and all the key components on a running example. In
Section 4.2 we briefly describe a recent method proposed by Liu et. al. [180] used in
our work to extend neural models with the ability to abstain from making a predic-
tion. In Section 4.3 we describe our instantiation of adversarial training. Next, we
formally describe our novel contributions – learning to refine program represen-
tations (Section 4.4) and our training algorithm that combines all the components
together by learning multiple specialized models (Section 4.5). In Section 4.6 we
provide an experimental evaluation of our approach on five neural model archi-
tectures. Finally, we describe the related work in Section 4.7 and provide a brief
summary with discussion in Section 4.8.

4.1 overview : accurate and robust models of code

In this section, we present an overview of our approach. Without loss of generality,
we define an input program p to be a sequence of words p = w1:n. The words can
correspond to a tokenized version of the program, nodes in an abstract syntax tree
corresponding to p or other suitable program representations. Further, let l ∈ N

be a position in the program p that corresponds to a word wl ∈W. A training
dataset D = {(xj, yj)}n

j=1 contains a set of samples, where x ∈ X is an input tuple
x = 〈p, l〉 consisting of a program p and a position in the program l, while y ∈ Y

contains the ground-truth label. As an example, the code snippet in Figure 4.2 con-
tains 12 different samples (x, y), one for each position where a prediction should
be made (annotated with their ground-truth types y).

Our goal is to learn a function f : X → R|Y|, represented as a neural network,
which for a given input program and a position in the program, computes the
probability distribution over the labels. The model’s prediction then corresponds
to the label with the highest probability according to f .

(hexstr, radixnum) => {

vnum = parseIntnum(

hexstr.substringstr(1num),

radixnum

);

rednum = vnum >>num 16num;

...

Training Dataset D = {(xj, yj)}n
j=1

(hex, radix) => {

vnum,1.0 = parseIntnum,1.0(

hex.substringstr,0.9(1num,1.0),

radix

);

red = v >> 16num,1.0;

Learned selection function gh that makes a prediction
only if confident enough and abstains otherwise.

Learning to Abstain (Section 4.2)

D

Figure 4.2: Illustration of learning to abstain. Even though the dataset contains 12 pre-
dictions, the model trained to abstain is confident in predicting only 5.
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step 1 : augment the model with an (un)certainty score We start by
augmenting the standard neural model f with an option to abstain from making
a prediction. To achieve this, we adopt the recently proposed approach by [180]
and introduce a selection function gh : X→ R, which measures the model’s cer-
tainty. Then, we define the model to make a prediction only if gh is confident
enough, in our work when gh(x) ≥ h, and abstain from making a prediction oth-
erwise. Here, h ∈ R is an associated threshold that controls the desired level of
confidence. For example, using a high threshold h = 0.9, the model learns to make
only five predictions for the program in Figure 4.2 and will abstain from uncertain
predictions such as predicting parameter types.

The first insight from our work is that allowing the model to abstain is benefi-
cial for achieving robustness. This step leads to simpler models, since learning to
abstain is easier than learning to predict the correct label. This is in contrast with
forcing the model to learn the correct label for all samples, which is infeasible for
most practical tasks.

(hex, radix) => {

vnum,1.0 = parseIntnum,1.0(

hex.substringstr,0.9(1num,1.0),

radix

);

red = v >> 16num,1.0;

Learning to Abstain (Section 4.2)

(colornum,0.9, radix) => {

vnum,0.4 = parseIntnum,0.6(

color.substringbool,0.9(1num,1.0),

radix

);

red = v >> 16num,1.0;

δ = [rename hex→ color]

Trained with the worst case modifications x + δ

Adversarial Training (Section 4.3)

x + δ

Figure 4.3: Illustration of adversarial training which trains on the worst case modifica-
tions of the original samples.

step 2 : adversarial training Next, we instantiate adversarial training to
the domain of code. Concretely, let ∆(x) be a set of valid modifications of the
sample x and let x + δ denote a new input obtained by applying the modifications
in δ ⊆ ∆(x) to x. As a concrete example, Figure 4.3 shows a refactoring of the
program from Figure 4.2 by renaming hex to color. Even though this change does
not affect the types in the program, the model suddenly predicts incorrect types for
both the color parameter and the substring function. Further, even though the
types of parseInt and v are still correct, the model became much more uncertain.

Intuitively, our goal is to address this issue and to ensure that the model is ro-
bust for all valid modifications δ ⊆ ∆(x) – when evaluated on x + δ, the model
either abstains or predicts the correct label. Concretely, we use adversarial train-
ing [53], which instead of minimizing the expected loss on the original distribution
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E(x,y)∼D[`(( f , gh)(x), y)] as usually done in standard training, minimizes the ex-
pected adversarial loss:

E(x,y)∼D[ max
δ⊆∆(x)

`(( f , gh)(x + δ), y)] (4.4)

That is, we minimize the worst case loss obtained by applying a valid modification
to the original sample x. Similar to other domains, the main challenge in this
setting is solving the inner maxδ⊆∆(x) efficiently for the domain of code.

standard adversarial training is insufficient Although adversarial
training has been successfully applied in many domains [97–100], in our work
we show that for code, adversarial training alone is insufficient to achieve model
robustness. The key reason is that, existing neural models of code typically process
the entire program which can contain hundreds of lines of code. This is problematic
as it means that any program change will affect all predictions and there can
be infinitely many program changes in ∆(x). Further, a single discrete program
change is much more disruptive in affecting the model than a slight continuous
perturbation of a pixel value. At the same time, in our evaluation we show that
adversarial training, while not sufficient, can be used to improve robustness by 0%
to 7%, depending on the model architecture.

...

v = parseIntnum(

hex.substring(1),

radix

);

...

Adversarial Training (Section 4.3) Representation Refinement (Section 4.4)

Learned abstraction α used to
predict the parseInt return type

...

v = parseInt(

hex.substring(1),

radix

);

...

parseInt(
_,
_

);

α =

Learn α

Retrain
with α

Figure 4.4: Illustration of learned representation refinement that keeps the parts of the
program relevant for prediction while abstracting the rest.

step 3 : representation refinement To address the issue that adversarial
training alone does not work well, we develop a novel technique that: (i) learns
which parts of the input program are relevant for the given prediction, and (ii)
refines the model representation such that only relevant program parts are used
as input to the neural network. Essentially, the technique automatically learns an
abstraction α which given a program, produces a relevant representation of that
program. Figure 4.4 shows an example of a possible abstraction α that takes as
input the entire program but keeps only the parts relevant for predicting the type
of parseInt – it is a method call with name parseInt which has two arguments. To
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learn the abstraction α, we first represent programs as graphs and then phrase the
refinement task as an optimization problem that minimizes the number of graph
edges, while ensuring that the accuracy of the model before and after applying α
stays roughly the same.

Finally, we apply adversarial training, but this time on the abstraction α obtained
via representation refinement, resulting in new functions f and gh. Overall, this
results in an adversarially robust model mi = 〈 f , gh, α〉.

(hex, radix) => {

v = parseInt(

hex.substring(1),

radix

);

red = v >> 16;

Samples at Iteration i

(hex, radix) => {

v = parseInt<num>(

hex.substring(1<num>),

radix

);

red = v >> 16<num>;

Samples at Iteration i + 1

apply model

mi = 〈 f , gh, α〉

Figure 4.5: Illustration of applying predictions produced by a robust model mi directly
to the dataset. As a result, the subsequent models can depend on these pre-
dictions rather than relearning them from scratch.

step 4 : learning accurate models Although the model mi is robust, it
provides predictions only for a subset of the samples for which it has enough con-
fidence (i.e., gh(x) ≥ h). To increase the ratio of samples for which our approach
makes a prediction (i.e., does not abstain), we perform two steps: (i) generate a new
dataset Di+1 by annotating the program with the predictions made by the learned
model mi (illustrated in Figure 4.5), and removing successfully predicted samples,
and (ii) learn another model mi+1 on the new dataset Di+1. We repeat this process
for as long as the new learned model predicts some of the samples in Di+1.

Training multiple models is beneficial because: (i) the models are easier to train,
as well as easier to make robust, as they do not try to learn all predictions, (ii) it
allows conditioning on the predictions learned by earlier models which helps both
interpretability and robustness. For example, the model mi+1 can learn that the left
hand side of the assignment v=parseInt has the same type as the right hand side,
since the type of parseInt was already predicted by mi. Interestingly, if we think
of each model as a learned set of rules, we can essentially apply the models to
a given program in a fixed point style (similar to how a traditional sound static
analysis works), and (iii) each model learns a different representation α that is
specialized for the predictions it makes. For example, while predicting the type
of parseInt is independent of the argument values (parseInt(_, _)), predicting
the second argument type is not (parseInt(_, radix)). Using a single abstraction to
predict both would lead to either reduced robustness or accuracy, depending on
which abstraction is used.
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summary Given a training dataset D, our approach learns a set of robust mod-
els, each of which makes robust predictions for a different subset of D. To achieve
this, we extend existing neural models of code with three key components – the
ability to abstain (with associated uncertainty score), adversarial training, and
learning to refine the representation. Next, we formally describe each of the com-
ponents (in Sections 4.2, 4.3 and 4.4) and then present our training algorithm that
combines all of them together (in Section 4.5).

4.2 training neural models to abstain

We now present a method for training neural models of code that provide an
uncertainty measure and can abstain from making predictions. This is important
as essentially all practical tasks contain some examples for which it is not possible
to make a correct prediction (e.g., due to the task difficulty or because it contains
ambiguities). In the machine learning literature this problem is known as selective
classification (supervised-learning with a reject option) and is an active area with
several recently proposed approaches [180, 182–185]. In our work, we use one of
these methods [180] which is briefly summarized below. For a full description, we
refer the reader to the original paper [180].

Let D = {(xj, yj)}n
j=1 be a training dataset and f : X→ Y an existing model

trained to make predictions on D. The existing model f is augmented with an
option to abstain from making a prediction by introducing a selection function
gh : X→ R(0,1) with an associated threshold h ∈ R(0,1), which leads to the follow-
ing definition:

( f , gh)(x) :=

 f (x) if gh(x) ≥ h

abstain otherwise
(4.5)

That is, the model makes a prediction only if the selection function gh is con-
fident enough (i.e., gh(x) ≥ h) and abstains from making a prediction otherwise.
Although conceptually the model is now defined by two functions f (the original
model) and gh (the selection function), it is possible to adapt the original classi-
fication problem such that a single function f ′ encodes both. To achieve this, an
additional abstain label is introduced and a function f ′ : X→Y ∪ {abstain} is
trained in the same way as f (i.e., same network architecture, hyper-parameters,
etc.) with two exceptions: (i) f ′ is allowed to predict the additional abstain label,
and (ii) the loss function used to train f ′ is changed to account for the additional
label. After f ′ is obtained, the selection function is defined as gh := 1− f ′(x)abstain,
that is, the probability of selecting any label other than abstain according to f ′.
Then, f is defined to be the re-normalized probability distribution obtained by tak-
ing the distribution produced by f ′ and assigning zero probability to the abstain

label. Essentially, as long as there is sufficient probability mass h on labels outside
abstain, f decides to select one of these labels.
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loss function for abstaining To gain an intuition behind the loss func-
tion used for training f ′, recall that the standard way to train neural networks is
to use cross entropy loss:

`CrossEntropy(p,y) := −
|Y|

∑
i=1

yi log(pi) (4.6)

Here, for a given sample (x, y) ∈ D, p = f (x) is a vector of probabilities for each
of the |Y| classes computed by the model and y ∈ R|Y| is a vector of ground-
truth probabilities. Without loss of generality, assume only a single label is correct,
in which case y is a one-hot vector (i.e., yj = 1 if j-th label is correct and zero
elsewhere). Then, the cross entropy loss for an example where the j-label is correct
is − log(pj). Further, the loss is zero if the computed probability is pj = 1 (i.e.,
− log(1) = 0) and positive otherwise.

Now, to incorporate the additional abstain label, the abstain cross entropy loss
is defined as follows:

`AbstainCrossEntropy(p,y) := −
|Y|

∑
i=1

yi log(pioi + pabstain) (4.7)

Here p ∈ R|Y|+1 is a distribution over the classes (including abstain), oi ∈ R

is a constant denoting the weight of the i-th label and pabstain is the probability
assigned to abstain. Intuitively, the model either: (i) learns to make “safe” predic-
tions by assigning the probability mass to pabstain, in which case it incurs constant
loss of pabstain, or (ii) tries to predict the correct label, in which case it potentially
incurs smaller loss if pioi > pabstain. If the scaling constant oi is high, the model is
encouraged to make predictions even if it is uncertain and potentially makes lot of
mistakes. As oi decreases, the model is penalized more and more for making mis-
predictions and learns to make “safer” decisions by allocating more probability
mass to the abstain label.

obtaining a model which never mis-predicts on the dataset D For
the `AbstainCrossEntropy loss, it is possible to always obtain a model f ′ that never
mis-predicts on samples in D. Such a model f ′ corresponds to minimizing the
loss incurred by Equation 4.7 which corresponds to maximizing pioi + pabstain (as-
suming i is the correct label). This can be simplified and bounded from above
to pi+ pabstain ≤ 1, by setting oi = 1 and for any valid distribution it holds
that 1 = ∑pi∈p pi. Thus, pioi + pabstain has a global optimum trivially obtained
if pabstain = 1 for all samples in D. That is, the correctness (no mis-predictions)
can be achieved by rejecting all samples in D. However, this leads to zero recall
and is not practically useful.

balancing correctness and recall To achieve both correctness and high
recall, similar to Liu et al. [180], we train our models using a form of annealing. We
start with a high oi = |Y|, biasing the model away from abstaining, and then train
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for a number of epochs n. We then gradually decrease oi to 1 for a fixed number
of epochs k, slowly nudging it towards abstaining. Finally, we keep training with
oi = 1 until convergence. We note that the threshold h is not used during training.
Instead, it is set after the model is trained and is used to fine-tune the trade-off
between recall and correctness (precision). Further, note that oi = 1 is used only if
the desired accuracy is 100% and otherwise we use oi = 1 + ε. Here, ε is selected
by decreasing the value oi as before but stopping just before the model abstains
from making all predictions.

summary We described an existing technique [180] for training a model that
learns to abstain from making predictions, allowing us to trade-off correctness
(precision) and recall. A key advantage of this technique is its generality – it works
with any existing neural model with two simple changes: (i) adding an abstain

label, and (ii) using the loss function in Equation 4.7. To remove clutter and keep
discussion general, the rest of our work interchangeably uses f (x) and ( f , gh)(x).

4.3 adversarial training for code

In Section 4.2, we described how to learn models that are correct on a subset of
the training dataset D by allowing the model to abstain from making a prediction
when uncertain. We now discuss how to achieve robustness (that is, the model
either abstains or makes a correct prediction) for a much larger (potentially infinite)
set of samples beyond those included in D via so-called adversarial training [53].

adversarial training The goal of adversarial training [97–100] is to mini-
mize the expected adversarial loss:

E(x,y)∼D[ max
δ⊆∆(x)

`( f (x + δ), y)] (4.8)

In practice, as we have no access to the underlying distribution but only to the
dataset D, the expected adversarial loss is approximated by adversarial risk (which
training aims to minimize):

1
|D|

|D|

∑
(x,y)∈D

max
δ⊆∆(x)

`( f (x + δ), y) (4.9)

Intuitively, instead of training on the original samples in D, we train on the
worst perturbation of each sample. Here, δ ⊆ ∆(x) denotes an ordered sequence
of modifications while x + δ denotes a new input obtained by applying each mod-
ification δ ∈ δ to x. Recall that each input x = 〈p, l〉 is a tuple of a program p
and a position l in that program for which we will make a prediction. Applying
a modification δ : X→X to an input x corresponds to generating both a new pro-
gram as well as updating the position l if needed (e.g., in case the modification
inserted or reordered program statements). That is, δ can modify all positions in p,
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not only those for which a prediction is made. Further, note that the sequence of
modifications δ ⊆ ∆(x) is computed for each x separately, rather than having the
same set of modifications applied to all samples in D.

Similar to the adversary defined in Section 3.4, using adversarial training for
code requires a set of program modifications ∆(x), and a technique to solve the
optimization problem maxδ⊆∆(x) efficiently. We elaborate on both of these next.

4.3.1 Program Modifications

To use adversarial training we define two classes of program modifications – la-
bel preserving and semantic preserving. Here, label preserving modifications are
modifications that do not change the ground-truth label y. Semantic preserving
modifications additionally ensure that also the overall program semantics do not
change. Our use of label preserving modifications is motivated by the fact that
preserving programs semantics is for many properties unnecessarily strict and re-
stricts the variety of modifications that can be used. The modifications in both
classes are further divided into three types – word substitutions, word renaming,
and sequence substitutions.

• Word substitutions are allowed to substitute a word at a single position in
the program with another word (not necessarily contained in the program).
Examples of word substitutions include changing constants or values of bi-
nary/unary operators.

• Word renaming is a modification which includes renaming variables, parame-
ters, fields or methods. In order to produce valid programs, this modification
needs to ensure that the declaration and all usages are replaced jointly. Be-
cause of this, renaming a single variable in practice always corresponds to
making multiple changes to the program (i.e., |δ| > 1 unless the variable is
used only once).

• Sequence substitution is the most general type of modification which can per-
form any label preserving program change such as adding dead code or
reordering independent program statements.

The main property differentiating the modification types is that word renaming
and substitution do not change the program structure. This is used both to com-
pute which substitution should be made, as well as to provide formal correctness
guarantees (discussed in Section 4.5). Further, is it used for efficiency, as we can
implement word substitutions and word renaming directly on the batched tensors,
thus making them fast. In contrast, sequence substitutions require parsing batched
tensors back to programs, applying modifications on the programs and the pro-
cessing the resulting programs back to batched tensors. In our experiments, our
optimized implementation of word substitutions and renaming leads to ≈ 70×
runtime improvement, which is critical for fast training.
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Additionally, it is also possible to define modifications that are not label preserv-
ing (i.e., change the ground-truth label), in which case the user has to additionally
provide an oracle that computes the correct label y. We have provided an example
of such oracle in Section 3.4 where we obtained ground-truth labels by execut-
ing the modified programs. For type inference, we could also execute programs
to obtain concrete traces or we could run an existing static analyzer after each
modification.

4.3.2 Finding Adversarial Examples

Given a program x, its associated ground-truth label y, and a set of valid modi-
fications ∆(x) that can be applied on x, our goal is to select a subset δ ⊆ ∆(x)
such that the inner term in the adversarial risk formula maxδ⊆∆(x) `( f (x + δ), y) is
maximized. Solving for the optimal δ is highly non-trivial since: (i) δ is an ordered
sequence rather than a single modification, (ii) the set of valid modifications ∆(x)
is typically very large, and (iii) the modification can potentially perform arbitrary
rewrites of the program (due to sequence substitutions). Thus, we focus on solving
this maximization approximately, inline with how it is solved in other domains. In
what follows, we discuss three approximate approaches to achieve this and discuss
their advantages and limitations.

4.3.2.1 Greedy Search

The first approach is a greedy search that randomly samples a sequence of mod-
ifications δ ⊆ ∆(x). The sampling can be performed for a predefined number of
steps with the goal of maximizing the adversarial risk, or until an adversarial ex-
ample is found (i.e., f (x+δ) 6= f (x)). Concretely, for a given input x = 〈p, l〉, let us
define the space of valid modifications ∆(x) ⊆ ∆(p, l1)× ∆(p, l2)× · · · × ∆n(p, ln)
as the Cartesian product of possible modification applied to each position in the
program l1:n. We select δ using the following procedure: sample a threshold value
t ∼ N (0.1, 0.4) and apply the modification at each location with probability t. If
|∆i(p, li)| > 1, then the modification to apply is sampled at random from the set
∆i(p, li). Sampling of the threshold value t is done per each sample x and ensures
variety in the number of modifications applied.

limitations and advantages The main advantage of this technique is that
it is simple, easy to implement, and very fast. Given its simplicity, this technique is
independent of the actual modification and applies equally to words substitutions,
word renamings as well as sequence substitutions. However, a natural limitation
of this technique is that is uses no information about which positions and which
values are important for the prediction.
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4.3.2.2 Gradient-based Search

Another approach to guide the search is to find which program positions to change.
Recall that in Section 3.4.3, this was achieved by instrumenting the analyzer and
recording all the visited AST nodes. Then, the visited nodes were simply sampled
with higher probability. For neural networks, the same approach cannot be applied
as the model visits all the nodes. However, an alternative solution for neural mod-
els exists – we can use gradient information to measure the importance of each
position for a given prediction. Then, we can sample the positions to modify with
probability proportional to their importance.

Formally, for a given sample (x, y) ∈ D, we compute the importance of each
node to the prediction made by the model f by computing:

a( f , x, y) =
[
‖Gi,:‖1

]|p|
i=1 (4.10)

where |p| is the program length2 and G = ∇x `( f (x), y) ∈ R|p|×emb denotes the
gradient with respect to the input x = 〈p, l〉 and a given prediction y. As positions
in p correspond to discrete words, the gradient is computed with respect to their
embedding emb ∈ R. The score for each position in p is computed by applying
the L1-norm over the embedding gradients, producing a vector of unnormalized
scores a ∈ R|p|. To obtain a probability distribution â( f , x, y) over all positions
in p, we normalize the entries in a accordingly.

Additionally, as shown in the concurrent work [106], the gradients can also be
used to select both the program position and the new value to be used (instead of
sampling from all valid values uniformly at random).

limitations and advantages The main advantage of the gradient-based
approach is that the decision of which position to change, as well as what the
new value should be is guided, rather than random. Further, for renaming mod-
ifications, such approach was shown to be quite effective [106] at finding the ad-
versarial examples. However, the main limitation of this approach is that it works
only for replacing a single value (i.e., word substitutions and word renaming) and
not when the value is a complex structure (i.e., sequence substitution). Sequence
substitutions are an important class of modifications which are however hard to
optimize for, as in general, they can perform arbitrary changes to the program
(e.g., adding dead code, adding/removing statements, etc.).

4.3.2.3 Reducing the Search Space

The third technique is orthogonal to the first two and aims to reduce the search
space of relevant modifications a priori, rather than searching it more efficiently.
We achieve this by refining the program representation over which the model is
learned, described in detail in the following section. As a concrete example, con-
sider the code snippet x shown in Figure 4.6 (a). Here we use the red dashed cirle

2 In our case, the program length corresponds to the number of nodes in the AST.
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(a) Original Representation

∆(x) •x

• x + δ

...

v = parseInt(

color.substring(1),

radix

);

...
decision boundary

x

(b) Refined Representation

α(x)

∆(α(x)) •α(x)

parseInt(
_,
_

);

Figure 4.6: Illustration that shows the benefit of refined representation for learning ro-
bust models. It can be seen that the space of program modifications that
needs to be considered when using refined representation ∆(α(x)) is signifi-
cantly smaller compared to considering the program directly ∆(x).

to illustrate the set of valid program modifications ∆(x) and represent the code
snippet as a point (in the latent space of the model) placed in the center of this
region. The goal of a gradient based optimization would then be to iteratively find
a modification δ ⊆ ∆(x) which maximizes the loss and ideally, crosses the model’s
decision boundary. In our work, we refine the program representation by learning
an abstraction function α that removes parts of the program unrelated to the pre-
diction. In this case, when predicting the return type of the function parseInt, the
refined representation might contain only the fact that it is a function parseInt

with two arguments. However, the actual argument values (color.substr(1) and
radix), as well as assignment (v = ...) are abstracted away. As a result, the re-
fined space of valid modifications ∆(α(x)) is significantly smaller and easier to
optimize. For example, the modification δ that crossed the decision boundary in
Figure 4.6 (a) can no longer affect the model as it has been abstracted away.

limitations and advantages The main advantage of this approach is that
it applies to both renaming and structural modifications. The main disadvantage
is that it depends on the fact that the dependencies between program locations can
be checked efficiently and learned as part of the training. While we show how this
can be done for graph neural networks, our approach currently does not support
other models such as recurrent neural networks.

summary In this section, we described how adversarial attacks can be applied
to code via a set of program modifications. The adversarial attacks we consider
are applied on the discrete input (i.e., the attack always correspond to a concrete
program) rather than considering attacks in the latent space that are not directly
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interpretable. We describe two existing techniques that can be used to guide the
search for adversarial attacks (greedy search and gradient-based search) and one
that makes the attacks easier by reducing the search space. These techniques are
quite general and can be applied to a number of tasks over code. We will discuss
the concrete program modifications used in our evaluation in Section 4.6.

4.4 learning to refine representations

As motivated in Section 4.1, a key issue with many existing neural models for
code is that the model prediction f (x) depends on the full program p, even though
only small parts of p are typically relevant. We address this issue by learning an
abstraction α that takes as input p and produces only the parts relevant for the
prediction. That is, α refines the representation given as input to the neural model.

overview Our method works as follows:

1. we convert the program into a graph representation,

2. then we define the model to be a graph neural network (e.g., [92, 186–188]),
which at a high level works by propagating and aggregating messages along
graph edges,

3. because dependencies in graph neural networks are defined by the structure
of the graph (i.e., the edges it contains), we phrase the problem of refining
the representation as an optimization problem which removes the maximum
number of graph edges (i.e., removes the maximum number of dependen-
cies) without degrading the model’s accuracy, and

4. we show how to solve the optimization problem efficiently by transforming
it to an integer linear program (ILP).

from programs to graphs Following the approach from Chapters 2 and 3,
we start by representing programs using their corresponding abstract syntax trees
(AST). These are further transformed into graphs, as done in [26, 43], by including
additional edges.

Definition 4.4.1. (Directed Graph) A directed graph is a tuple G = 〈V, E, ξV , ξE〉
where V denotes a set of nodes, E⊆V2 denotes a set of directed edges, ξV : V →Nk

is a mapping from nodes to their associated attributes and ξE : E → Nm is a
mapping from edges to their attributes.

We associate two attributes with each node – type which corresponds to the
type of the AST node (e.g., Block, Identifier, BinaryExpression, etc.) and value
associated with the AST node (e.g., +,−, 0, 1, ”GET”, x, data, etc.). For edges we use
a single attribute the edge type, which can be: (i) ast, for the edges that correspond
to those included in the AST, (ii) last usage, for edges introduced between any two
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usages (either read or write) of the same variable, and (iii) returns-to, for edges
introduced between a return statement and the function declaration. All edges
are initially added in both directions, but can be later removed during training.
Depending on the task, more edge types can be easily added.

representation refinement Our goal is to learn an abstraction function
α : 〈V, E, ξV , ξE〉→ 〈V, E′ ⊆ E, ξV , ξE〉 that removes a subset of the edges from the
graph. To quantify the size of the abstraction, we use |α(x)| := |E′| to denote the
number of edges after applying α on x.

defining valid graph refinements Because the goal of representation re-
finement is to reduce the number of nodes on which a prediction depends, we
need to ensure that α itself does not depend on all the graph nodes. This is nec-
essary as otherwise we only shift the dependency on the entire program from the
model f to the representation refinement α. To achieve this, the decision to in-
clude or remove a given edge is done locally, based only on the edge attributes
and attributes of the nodes it connects.

Concretely, for a given edge 〈s, t〉 ∈ E, we define an edge feature φ(〈s, t〉) :=
〈ξE(〈s, t〉), ξV(s), ξV(t)〉 to be a tuple of the edge attributes and attributes of the
nodes it connects. As a form of regularization, we condition only on the type at-
tribute of each node. We denote the set of all possible edge features Φ to be the
range of the function φ evaluated over all edges in D. Further, we define the
refinement α as a subset of edge features α ⊆ Φ. Finally, the semantics of exe-
cuting α over edges E is that only edges whose features are in α are kept, i.e.,
{e | e ∈ E ∧ φ(e) ∈ α}.

problem statement We formulate the refinement learning problem as fol-
lows – minimize the expected size of the refinement α ⊆ Φ subject to the constraint
that the expected loss of the model f stays approximately the same:

arg min
α⊆Φ

∑
(x,y)∈D

|α(x)| (4.11)

subject to
∑(x,y)∈D `( f (x), y) ≈ ∑(x,y)∈D `( f (α(x)), y)

Our problem statement is quite general and can be instantiated by using both
the loss `AbstainCrossEntropy (Section 4.2) and using adversarial risk (Section 4.3).

Allowing the model to abstain from making predictions is important in order
to obtain small |α| (i.e., sparse graphs). This is because the restriction that the
model accuracy is roughly the same is otherwise too strict and would require that
most edges are kept. Further, note that the problem formulation is defined over
all samples in D, not only those for which the model f predicts the correct label.
This is necessary since the model needs to make a prediction for all samples, even
if that prediction is to abstain.
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optimization via integer linear programming (ilp) To solve Equa-
tion 4.11 efficiently, the key idea is that for each sample (x, y)∈D we: (i) capture
the relevance of each node to the prediction made by the model f by computing
the attribution a( f , x, y)∈R|V| (using Equation 4.10), and (ii) include the minimum
number of edges necessary for a path to exist between every relevant node (accord-
ing to the attribution a) and the node where the prediction is made. Preserving all
paths between the prediction and relevant nodes encodes the constraint that the ex-
pected loss stays approximately the same, since it allows propagating information
throughout the graph neural network. This optimization can be naturally encoded
as minimum-cost maximum-flow problem and solved efficiently with off-the-shelf
integer linear programming solvers.

Concretely, let us define a sink to be the node for which the prediction is being
made while sources are defined to be all nodes v with attribution av > t. Here, the
threshold t ∈ R is used as a form of regularization. To encode the sources and the
sink as an ILP program, we define an integer variable rv associated with each node
v ∈ V as:

rv =


−∑v′∈V\{v} rv′ if v is predicted node [sink]

b100 · avc else if av > t [sources]

0 otherwise

That is, rv for a source is its attribution value converted to an integer and rv for
a sink is a negative sum of all source values. Note that in our definition it is not
possible for a single node to be both source and a sink. For cases when the sink
node has a non-zero attribution, this attribution is simply left out since every node
is trivially connected to itself.

We then define our ILP formulation of the problem as shown below:

min
∀(〈V, E, ξV , ξE〉, y) ∈D

∑
q∈Φ

costq (4.12)

subject to

0 ≤ fst ≤ costφ(〈s,t〉) ∀〈s, t〉 ∈ E [edge capacity]

rv + ∑
{s|(s, v)∈E}

fsv = ∑
{t|(v, t)∈E}

fvt ∀v ∈ V [flow conservation]

Here costq is an integer variable associated with each edge feature and denotes
the edge capacity (i.e., the maximum amount of flow allowed to go trough the
edge with this feature), fst is an integer variable denoting the amount of flow
over the edge 〈s, t〉, the constraint 0≤ fst ≤ costφ(〈s, t〉) encodes the edge capacity,
and rv + ∑{s|(s, v)∈E} fsv = ∑{t|(v, t)∈E} fvt encodes the flow conservation constraint
which requires that the flow generated by the node rv together with the flow from
all the incoming edges ∑{s|(s, v)∈E} fsv has to be the same as the flow leaving the
node ∑{t|(v, t)∈E} fvt. The solution to this ILP program is a cost associated with each
edge feature q ∈ Φ. If the cost for a given edge feature is zero, it means that this
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1

2 3

4 5 6

(a) Original Graph G

(b) Graph Nodes V

V ξV a rv flow conservation constraints

1 A 0.3 r1 = −70 r1 + f21 + f31 = f12 + f13

2 A 0 r2 = 0 r2 + f12 + f42 + f52 = f21 + f24 + f25

3 B 0 r3 = 0 r3 + f13 + f63 = f31 + f36

4 C 0 r4 = 0 r4 + f24 = f42

5 B 0 r5 = 0 r5 + f25 = f52

6 D 0.7 r6 = 70 r6 + f36 = f63

(c) Graph Edges E

E ξE φ(〈s, t〉) edge capacity constraints optimal cost

〈1, 2〉 ast q1 = 〈ast, A, A〉 0 ≤ f12 ≤ costq1 costq1 = 0

〈1, 3〉 ast q2 = 〈ast, A, B〉 0 ≤ f13 ≤ costq2 costq2 = 0

〈3, 1〉 ast q3 = 〈ast, B, A〉 0 ≤ f31 ≤ costq3 costq3 = 70
〈5, 2〉 ast q3 = 〈ast, B, A〉 0 ≤ f52 ≤ costq3

. . .
〈6, 3〉 ast q7 = 〈ast, D, B〉 0 ≤ f63 ≤ costq7 costq7 = 70

Optimization Problem

minimize ∑7
i=1 costqi subj. to

(e) Problem Statement

edge capacity constraints
flow conservation constraints

Solution α = {q3, q7}

1

2 3

4 5 6

q3

q7q3

(d) Abstracted Graph α(G)

Figure 4.7: An example of the ILP encoding from Equation 4.12 on a single graph (a)
where the prediction should be made for node 1. The refined graph is shown
in (d) and contains only three edges necessary to connect node 1 and 6.

feature was not relevant and can be removed. As a result, we define the refinement
α = {q | q ∈ Φ ∧ costq > 0} to contain all edge features with non-zero weight.

Example As a concrete example, consider the initial graph shown in Figure 4.7 (a)
and assume that the prediction is made for node 1. For simplicity, each node has
a single attribute ξV , as shown in Figure 4.7 (b), and all edges are of type ast. The
edge feature for edge 〈1, 3〉 is therefore 〈ast, A, B〉, since ξE(〈1, 3〉)= ast, ξV(1)=A
and ξV(3) = B, as shown in Figure 4.7 (c). The attribution a reveals two relevant
nodes for this prediction – the node itself with score 0.3 and node 6 with score
0.7. Therefore, we define a single source r6 = 70 and a sink r1 =−70 and encode
both the edge capacity constraints, and the flow conservation constraints as shown
in Figure 4.7 (note that according to Equation 4.12, we would encode all samples
in D jointly). The minimal cost solution assigns cost 70 to edge features q3 and q7
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which are needed to propagate the flow from node 6 to node 1. The graph obtained
by applying the abstraction α = {q3, q7} is shown in Figure 4.7 (d) and makes the
prediction independent of the subtree rooted at node 2. Note however, that an
additional edge is included between nodes 5 and 2. This is because α is computed
using local edge features φ only, which are the same for edges 〈3, 1〉 and 〈5, 2〉.

summary We presented a novel approach to refine the program representa-
tion used as input to the neural model. To achieve this, we represent programs
as graphs and learn to remove edges not relevant for the prediction (i.e., to spar-
sify the graph). We encode this problem as an integer linear program which can
be solved very efficiently with off-the-shelf solvers – in all our experiments the
solver takes less than a second to complete. We note, however, that an end-to-end
trainable solution is also possible. For example, one could make α continuous by
defining a learnable weight for each edge feature φ, encode the sparsity on α as
part of the loss, and extend the graph neural network such that each message
propagated along an edge e is scaled using the corresponding value of the edge
feature φ(e).

4.5 training algorithm

We now describe our algorithm that combines learning to abstain, adversarial train-
ing and representation refinement.

training a single adversarially robust model The training proce-
dure used to learn a single adversarially robust model is shown in Algorithm 3.
The input is a training dataset D and the desired accuracy tacc that the learned
model should have. Here, setting tacc = 1.0 corresponds to a model that makes
no mis-prediction (i.e., 100% accuracy), while tacc = 0 corresponds to training
a model that never abstains.

We start by training a model f and a selection function gh as described in Sec-
tion 4.2 (line 3). At this point we do not use adversarial training and train with
a weaker threshold tacc − ε, as our goal is only to obtain a fast approximation of
the samples that can be predicted with high certainty. We use f and gh to obtain
an initial representation refinement α (line 5) which is applied to the dataset D

to remove edges that are not relevant according to f and gh (line 9). After that,
we perform adversarial training (line 10) as described in Section 4.3. However, in-
stead of training from scratch, we reuse the model f and gh learned so far, which
speeds-up training. Next, we refine the representation again (line 5) and if the
new representation is smaller (line 6), we repeat the whole process. Note that the
adversarial training also uses threshold tacc − ε to account for the fact that the
suitable representation is not known in advance. After the training loop finishes,
we set the threshold h used by gh to match the desired accuracy tacc. The final
result is a model consisting of the function f trained to make adversarially robust
predictions, the selection function gh and the abstraction α.
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Algorithm 3: Training procedure used to learn a single adversarially robust
model 〈 f , gh, α〉.
def RobustTrain(D, tacc)

Input: Dataset D = {(xj, yj)}n
j=1, threshold tacc

Output: Model f , selection function gh, abstraction α ⊆ Φ
1 αlast ← Φ . Start with no refinement, i.e., all edge features
2 Drefined ← D

3 f , gh ← Train(D, tacc − ε)
4 while true do
5 α← RefineRepresentation(Drefined, f , gh)

6 if |α| ≥ |αlast| then
7 break

8 αlast ← α
9 Drefined ← {(α(x), y) | (x, y) ∈ D} . Apply α on the dataset

10 f , gh ← AdversarialTrain(Drefined, f , gh, tacc − ε) . Retrain

11 set threshold h in gh such that the accuracy is tacc
12 return 〈 f , gh, α〉

incorporating robust predictions Once a single model is learned, it
makes robust predictions on a subset of the dataset Dpredict = {(x, y) | (x, y) ∈
D ∧ gh(α(x)) ≥ h} and abstains from making a prediction on the remainder of
the samples Dabstain = D \Dpredict. Next, for all samples in Dpredict, we use
the learned model to annotate the position l in the program p (recall that each
x = 〈p, l〉 consists of a program p and a position l) with the ground-truth label y
(denoted as Apply in Algorithm 4). Annotating a program position corresponds to
either defining a new attribute (as illustrated in Figure 4.5) or replacing an existing
attribute (e.g., the value attribute) of a given node. Note that annotating programs
is useful only in cases where the same program p is shared by multiple samples
(x, y) ∈ D (i.e., multiple predictions are computed for different positions in the
same program).

main training algorithm Our main training algorithm is shown in Algo-
rithm 4. It takes as input the training dataset D and learns multiple models M,
each of which makes robust predictions on a different subset of D (as motivated
in Section 4.1). The number of models and the subsets for which they make pre-
dictions is not fixed a priori and is learned as part of our training. Model training
(line 3) and model application (line 4) are performed as long as a non-empty robust
model exists (i.e., it makes at least one prediction). If the goal is to make predic-
tions for all the samples in D, the Algorithm 4 is run iteratively, with decreasing
values of tacc until the full dataset is covered.
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Algorithm 4: Training multiple adversarially robust models, each of which
learns to make predictions for a different subset of the dataset D.

def AccurateAndRobustTrain(D, tacc = 1.0)
Input: Dataset D = {(xj, yj)}n

j=1, threshold tacc
Output: Sequence of models M

1 M← []
2 while true do
3 〈 f , gh, α〉 ← RobustTrain(D, tacc) . From Algorithm 3

4 Dabstain ← Apply(D, f , gh, α)
5 if |Dabstain| = |D| then
6 break

7 D← Dabstain

8 M← M · 〈 f , gh, α〉
9 return M

verifying model correctness A natural extension of our approach is to
formally verify that the learned models are correct. Even though formally veri-
fying the correctness of all samples is typically infeasible, it is possible to verify
a subset of them. This can be achieved since using representation refinement sig-
nificantly simplifies the problem of proving correctness of all positions (nodes) in
the program to a much smaller set of relevant positions. In fact, for some cases
the refined representation is so small that it is possible to simply enumerate all
valid modifications (e.g., a finite set of valid variable renamings) and check that
the model is correct for all of them. Additionally, it would be possible to adapt
the recently proposed techniques [189, 190] based on Interval Bound Propagation,
which verify robustness with respect to any valid word renaming and word sub-
stitution modifications. However, applying these techniques to realistic networks
in a scalable and precise ways is an open problem beyond the scope of our work.

4.6 evaluation

We instantiated our approach to a well studied task – predicting types for dynam-
ically typed languages JavaScript and TypeScript [9, 30, 31, 179]. In this task,
the need for model robustness is natural since the model is queried each time
a program is modified by the user. Our key results are:

• Our approach learns accurate and adversarially robust models for the task of type
inference, achieving 87.7% accuracy while improving robustness from 52.1%
to 67.0%.

• We train highly accurate and robust models for a subset of the dataset, with
99.9% accuracy and 99.9% robustness for 29% of the samples.
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All our models are implemented in PyTorch [191]. The graph neural networks
are implemented using the DGL library v0.4.3 [192] and to solve the integer lin-
ear program we use Gurobi solver v8.11 [193]. All our experiments used a single
Nvidia TITAN RTX. We make all the models, datasets and code available at:

https://github.com/eth-sri/robust-code

dataset To obtain the datasets used in our work, we extend the infrastructure
from DeepTyper [30], collect the same top starred projects on GitHub, and perform
similar preprocessing steps – remove TypeScript header files, remove files with
less than 100 or more than 3 000 tokens and split the projects into train, validation
and test datasets such that each project is fully contained in one of the datasets.
Additionally, we remove exact file duplicates and files that are similar to each
other (≈ 10% of the files). We measure file similarity by collecting all 3-grams
(excluding comments and whitespace) and removing files with Jaccard similarity
greater than 0.7.

We compute the ground-truth types using the TypeScript compiler version 3.4.5
based on manual type annotations, library specifications and analyzing all project
files. While we reuse the same GitHub projects and part of DeepTyper’s infrastruc-
ture3 to obtain the dataset, the datasets are not directly comparable for a number of
reasons. First, we fixed a bug due to which some type annotations were incorrectly
included as part of the input. Second, the projects we used are a subset of those
used in DeepTyper since some are no longer available and were removed from
GitHub. Third, we additionally predict the types corresponding to all intermedi-
ate expressions and constants (e.g., the expression x + y contains three predictions
for x, y and x + y). This improves model performance as it is explicitly trained also
on the intermediate steps required to infer the types. Finally, we train all the mod-
els to predict four primitive types (string, number, boolean, void), four function
types (()⇒string, ()⇒number, ()⇒boolean, ()⇒void) and a special unk label
denoting all the other types. While this is similar to types predicted by some other
works (e.g., [22]), it is only a subset of the types considered in DeepTyper.

dataset size We trained our models using a dataset that contains 3 000 pro-
grams split equally between training, validation and test datasets. Because each
program contains multiple type predictions, the number of training samples is
significantly higher than the number of programs. Concretely, there are 139 915,
223 912 and 121 153 samples in training, validation and test datasets. We note that
this is only a subset of the full dataset that can be obtained by processing all the
files included in the projects used by DeepTyper.

During adversarial training, we explore 20 different modifications δ ⊆ ∆(x)
applied to each sample (x, y) ∈ D which effectively increases the dataset size by
up to two orders of magnitude, since for each training epoch the modifications
are different. For the purposes of evaluation, we increase the number of explored

3 https://github.com/DeepTyper/DeepTyper

https://github.com/eth-sri/robust-code
https://github.com/DeepTyper/DeepTyper
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modifications to 1 300 for each sample – 1 000 for renaming modifications and a
further 300 for renaming together with structural modifications. These thresholds
are rather high and were selected with the goal of closely estimating the true
number of adversarial samples. Further, note that since δ ⊆ ∆(x) is a set, each
iteration explores a set of concrete program modifications.

evaluation metrics We use two main evaluation metrics:

• Accuracy is computed over the unmodified dataset D and corresponds to the
accuracy used in prior works. Concretely, the accuracy is defined as the ratio
of samples (x, y) for which the most likely label according to the model f ,
denoted f (x)best, is the same as the ground truth label y:

1
|D| ∑

(x,y)∈D

1 if f (x)best = y

0 otherwise

• Robustness is the ratio of samples (x, y) ∈ D for which the model f evalu-
ated on all valid modifications δ ⊆ ∆(x) either abstains or makes a correct
prediction:

1
|D| ∑

(x,y)∈D

0 if ∃δ⊆∆(x) f (x + δ)best /∈ {y, abstain}

1 otherwise

models We evaluate five neural model architectures:

• LSTM is a bidirectional LSTM with attention which takes as input a sequence
of AST nodes, including both types and values, obtained using pre-order
traversal.

• DeepTyper is a model proposed by Hellendoorn et al. [30] and consists of
a bidirectional LSTM layer, followed by a single layer graph neural network
that connects all variables with the same name (referred as consistency layer),
followed by another bidirectional LSTM layer. Our only modification is that
the input to our model is a sequence of AST types and values, instead of
using syntactic program tokens.

• GCN, GGNN and GNT are three graph neural networks that use as input the
graph program representation described in Section 4.4. Here, GCN is a Graph
Convolutional Network [186], GGNN is Gated Graph Neural Network [188]
and GNT is a graph implementation of a recently proposed transformer neural
network architecture [116, 194].

All models were trained with an embedding and hidden size of 128, batch size
of 32, dropout 0.1 [195], initial learning rate of 0.001, using Adam optimizer [196]
and between 10 to 20 epochs.
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Substitutions and Renaming Examples

Semantic Preserving

variable renaming x → y

object field renaming obj.x → obj.y

property assignment renaming {x : obj} → {y : obj}
Label Preserving

number substitution 2 → 7

string substitution ”get” → ”load”

boolean substitution true → false

Table 4.1: List of renaming and substitution program modifications used in our work.

Structural Modifications Examples

Label Preserving

new function parameters def inc(x) → def inc(x, y)

new method arguments inc(x) → inc(x, expr)

Semantic Preserving

ternary expressions expr1 → (expr2) ? expr1 : expr1

array access expr → [expr, expr][const]

side-effect free expressions ∅→ expr

adding object expressions ∅→ {x : y, z : expr}

Table 4.2: List of structural program modifications used in our work.

program modifications We instantiate the adversarial training with both
semantic preserving and label-preserving modifications shown in Table 4.1 and
Table 4.2. More importantly, we use a range of modifications that include word
substitutions, word renamings, as well as structural modifications, such as assing
side-effect free expressions or wrapping existing expressions in ternary expres-
sions. Here, expr is either an existing expression or a new expression consisting of
a random binary expression over constants up to depth 3, const is a randomly se-
lected constant that results in a valid expression and x, y, z are variables in the pro-
gram scope. The concrete modification we use are similar to those in Section 3.4.2,
but we do note that the list is still not exhaustive and can be extended in the future.

reducing dependencies via dynamic halting We further strengthen
our GNT model by implementing the adaptive computation time (ACT) [197] which
dynamically learns how many computational steps each node requires in order to
make a prediction. This is in contrast to using a fixed amount of steps as done
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in [26, 43]. In our experiments, ACT significantly reduces the number of steps
each node performs (half of the nodes perform ≤3 steps).

To implement ACT, recall that for each node vi ∈ V in the graph, a graph neural
network computes a sequence of hidden states si

t where t ∈ N is the timestep4.
Following [197], the number of timesteps that the model performs is controlled by
introducing an extra sigmoidal halting unit hi

t ∈ R(0,1) with associated learnable
weight matrix Wh and bias bh:

hi
t = σ(Whsi

t + bh)

The output of the halting unit is then used to determine the halting probability pi
t

as follows:

pi
t =


1−∑t−1

k=0 hi
k if t = T (last timestep)

1−∑t−1
k=0 hi

k if ∑t
k=0 hi

k ≥ 1− ε

hi
t otherwise

where T ∈ N is the maximum allowed number of timesteps and ε ∈ R(0,1) is a
small constant introduced to allow the network to stop after a single step (we use
ε = 0.01 in our experiments). Finally, the halting probability pi

t is used to define
the final state si

T of a node vi as a weighted average of its intermediate states:

si
T =

T

∑
t=0

pi
t · si

t

4.6.1 Accurate and Adversarially Robust Models

We summarize the main results in Table 4.3. The second column (left) shows the
median test accuracy and standard deviation of various models (across three tri-
als trained with different random seeds). The GCN achieves the worst accuracy of
82.6% as it corresponds to a very simple graph neural networks architecture. The
GGNN architecture improves the accuracy to 86.7%, which is further improved by
our GNT graph transformer model to 89.3%. In comparison, the accuracy of the
traditional LSTM model is slightly worse but still very hight at 88.2%. Similarly,
the DeepTyper achieves slightly worse but very similar accuracy of 88.4%. Note
that for both LSTM and DeepTyper models, the accuracy is reported when trained
using the AST program representation as the input. We have also compared to us-
ing syntactic program tokens as proposed originally in DeepTyper and found that
using this simpler representation leads to ≈1% accuracy decrease for both LSTM

and DeepTyper. As a result, all the results for these models are reported using the
stronger AST based representation.

4 Note that we assume only that the model computes si
t for each timestep, not how si

t is computed. As
a result, the approach is independent of the concrete graph neural architecture used to compute si

t.
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`( f (x), y) maxδ⊆∆(x) `( f (x + δ), y)

Standard Training Adversarial Training

Model Accuracy Robustness Accuracy Robustness

LSTM 88.2% ± 0.2 44.9% ± 1.3 87.5% ± 0.4 51.9% ± 1.3

DeepTyper 88.4% ± 0.2 52.4% ± 1.2 87.1% ± 0.3 55.1% ± 2.6

GCN 82.6% ± 0.6 49.1% ± 1.1 81.9% ± 0.5 49.3% ± 3.1

GNT 89.3% ± 0.9 47.4% ± 1.0 88.3% ± 0.4 50.0% ± 0.5

GGNN 86.7% ± 0.4 52.1% ± 0.4 86.1% ± 0.2 57.9% ± 1.5

Table 4.3: Comparison of accuracy and robustness across various models when using
standard training compared to adversarial training.

existing models are not robust While highly accurate, all models are
also non-robust for up to half of the samples in the dataset. In other words, for
every second sample x in our dataset, there exists a modification δ ⊆ ∆(x) for
which f (x) predicts the type correctly while f (x + δ) mis-predicts it. However,
since these models were not trained with the goal of adversarial robustness, it is
expected for them to be (at least partially) non-robust.

adversarial training alone is insufficient To improve the robust-
ness, we next train the models using adversarial training as described in Section 4.3
and present the results in Table 4.3 (last two columns). Unfortunately, while the
adversarial training increase the robustness, it does so only slightly. The best im-
provement was achieved for LSTM and GGNN models (7% and 5.8%, respectively).
For DeepTyper and GNT the robustness increased by ≈ 2.5% while for GCN it is
only 0.2%. This illustrates that while useful, if used alone, adversarial training is
not enough.

our work : training accurate models that abstain In Table 4.4 we
show the main results achieved by the models trained in our work. First, we
trained our models to be both accurate and robust on a subset of the dataset. This
can be achieved by setting the desired accuracy threshold, in our case tacc = 1.00,
which corresponds to training the model to make only correct predictions. For
tacc = 1.00, our approach learns an almost perfect model that is both accurate and
robust for≈30.0% of the samples. Here, GNT learned 7 models and achieved 99.98%
robustness while GGNN learned 8 models with robustness of 99.01%. Learning mul-
tiple models is crucial for achieving higher coverage, as a single model would not
abstain for only 17− 20% of the samples, compared to 30% using multiple models.

The model did not achieve 100% accuracy and robustness for tacc = 1.00 due
to several samples included in the test set. These samples were mis-predicted be-
cause they contained code structures not seen during training and not covered by
the modifications δ ⊆ ∆(x). This illustrates that it is important that the samples
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maxδ⊆∆(x) `AbstainCE(( f , gh)(α(x + δ)), y)

Abstain + Adversarial + Refinement

Model Accuracy Robustness

tacc = 1.00 (Abstain ≈ 70%)

GNT 99.93% 99.98%

GGNN 99.80% 99.01%

maxδ⊆∆(x) `AbstainCE(( f , gh)(α(x + δ)), y)

Abstain + Adversarial + Refinement

Model Accuracy Robustness

tacc = 0.00

GNT 86.6% 62.3%

GGNN 87.7% 67.0%

Table 4.4: Comparison of accuracy and robustness when using our approach with all
three components – learning to abstain, adversarial trining and representation
refinement. Note that the adversarial training and the ability to abstain is appli-
cable to all the models. The representation refinement is designed specifically
to models defined over graphs, including GCN, GGNN and GNT.

in D are diverse and contain all the language features and corner cases of the pro-
grams, or that the modifications ∆(x) are expressive enough such that these can
be discovered automatically during training.

our work : improving robustness Next, we train models that take advan-
tage of the highly accurate and robust models trained using tacc = 1.00, but make
predictions for all the samples (i.e., do not abstain). This can be achieved by con-
tinuing the training while reducing tacc to zero and conditioning on all the models
trained with higher tacc. In our experiments, we train a single additional model by
directly setting tacc = 0 after training with tacc = 1.00. The results are shown in
Table 4.4 (right) and lead to additional robustness increase of 9.2% and 12.3% com-
pared to using adversarial training only for GGNN and GNT, respectively. For GNT,
the accuracy slightly decreases by 1.7% which is expected as increasing model ro-
bustness typically comes at the cost of reduced accuracy [198]. Interestingly, for
GGNN our robust training increases the accuracy over both the adversarial training,
as well as standard training by 1.9% and 1.0%, respectively.

adversarial robustness breakdown Table 4.5 provides a detailed break-
down of the robustness metric for the GNT and GGNN models trained with tacc =1.00
from Table 4.4. Here, Dabstain contains the samples for which the model abstains
from making a prediction and Dcorrect contains the samples for which the model
evaluated on a non-adversarial input (i.e., x without any modification) makes a cor-
rect prediction. We use ∀ Correct to denote that a sample (x, y) is correct for all
possible modifications δ⊆∆(x), the ∃ incorrect has the same definition as robust-
ness (i.e., there exists a modification that leads to an incorrect prediction), and
abstain denotes the remaining samples.

The GNT is precise and keeps predicting the correct label in 90% of cases and ab-
stain in the rest. This is even though the requirements for ∀ Correct are very strict
and require that all samples are correct. When considering Dabstain, the GNT model
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Robustness

Model Dataset Size ∀ Correct ∃ Incorrect Abstain

GNT with tacc = 1.00
Dcorrect 29.3% 90.0% 0.00% 10.00%

Dabstain 70.6% − 0.01% 99.99%

GGNN with tacc = 1.00
Dcorrect 30.6% 75.5% 0.06% 23.94%

Dabstain 69.3% − 1.46% 98.54%

∀ Correct := ∀δ⊆∆(x)( f , gh)(α(x + δ))best = y

∃ Incorrect := ∃δ⊆∆(x)( f , gh)(α(x + δ))best /∈ {y, abstain}

Table 4.5: Robustness breakdown for the GNT and GGNN models trained using our ap-
proach from Table 4.4.

is also precise and produces incorrect predictions for only one sample (0.01%). For
GGNN the results are similar but the model is both less precise (keeps the correct
prediction in 75.5% of the cases) and less robust (1.46% of the samples in Dabstain

can be modified to cause a mis-prediction). This shows that the majority of robust-
ness errors from Table 4.3 are due to mis-predicted samples for which the model
originally abstained.

4.7 related work

Our work is related to a number of different lines of work from adversarial ma-
chine learning and learning over code.

model certainty Several approaches have been recently proposed to extend
neural models with certainty measures [180, 182–185]. In our work, we use the
method proposed by Liu et al. [180] but in a novel way – applied to the adversarial
setting with the goal of training robust models.

adversarial training Even though the problem of adversarial robustness
of code has been overlooked, the adversarial training has already been applied to
related domains – natural language processing [55, 101–105] and graphs [199–201].

In the domain of graphs, existing works focus on attacking the graph struc-
ture [199–201] by considering that the nodes are fixed and edges can be added
or removed. While this setting is natural for modelling many types of graphs,
such approaches do not apply for the domain of code where graph edges cannot
be added and removed arbitrarily.

In natural language processing, existing approaches generally: (i) measure the con-
tribution of individual words or characters to the prediction (e.g., using gradi-
ents [105], forward derivatives [55] or head/tail scores [104]), and (ii) replace or
remove those whose contribution is high (e.g., using dictionaries [190], charac-
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ter level typos [102–104], or handcrafted strategies [105]). The adversarial training
used in our work operates similarly, except our modifications are designed over
programs.

program representations A core challenge of using machine learning for
code is designing a suitable program representation used as model input. Due to
its simplicity, the most commonly used program representation is a sequence of
words, obtained either by tokenizing the program [30] or by linearizing the ab-
stract syntax tree [27]. This, however, ignores the fact that programs do have a rich
structure – an issue addressed by representing programs as graphs [26, 43] or as
a combination of abstract syntax tree paths [34]. In our work, we follow the ap-
proach proposed in recent works and represent programs as graphs. More impor-
tantly, we develop a novel technique that learns to refine the representation based
on model predictions instead of fixing it a priori. As shown in our evaluation, this
is crucial for learning robust models.

adversarial attacks for code Recall that in Chapter 3 we introduced
a counter-example based training algorithm for learning static analyzers that gen-
eralize beyond the training dataset [5]. Concretely, we instantiated our approach
with a range of semantic and non-semantic preserving modifications and an ad-
versary that checked whether the learned analysis is sound (robust) to those. The
only difference was that our model was not based on deep learning but instead,
was a synthesized program in a domain-specific language.

Concurrent to our work, a number of works explored the task of generating
adversarial attacks for variable renaming modifications and neural-based models,
either via gradient based optimization [106] or using Metropolis-Hastings sam-
pling [202]. In comparison, the key contributions of our work are focused on de-
veloping techniques that improve the model robustness, rather than on finding
the adversarial examples. In particular, we propose to combine the ability to ab-
stain with adversarial training and introduce an approach to reduce the problem
complexity by learning to refine the representation (which also reduces the search
space an adversarial attack needs to consider). In terms of program modifications,
our work is not restricted to variable renamings and considers a richer class of
modifications, including those that change the program structure. However, we
do see these works as complementary to ours since finding adversarial examples
efficiently and the ability to make models robust against them go hand in hand.

Furthermore, recent work of Ramakrishnan et al. [203] explored the notion of the
robustness to a k-adversary. Here, the adversarial training considers only a single
program modification (k = 1), which leads to an easier optimization problem
compared to considering an arbitrary number of program modifications (as done
in our work). However, the authors show that training with a single modification
is already sufficient to improve the model robustness, even when evaluated with
up to 5 modifications. Overall, we believe that techniques like [203] and [106, 202]
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will soon become critical for scaling the robust training to ever increasing range of
program modifications that are being considered.

type inference We evaluated our work on the task of type inference for
which a number of recent works improve accuracy by proposing a new neural
architecture. In contrast, the goal of our work is to study and improve the ro-
bustness of these models. To achieve this, we compare to two prior works in our
evaluation [30, 179]. In addition to predicting types from source code, Malik, Patra
& Pradel [31] showed that it is possible to predict parameter types using natural
language information obtained from method docstrings. Here, existing attacks on
text (LSTM) can be used to assess its robustness but evaluating text models is
outside the scope of our work. Finally, two concurrent works have proposed new
models to improve accuracy: Typilus [32] and LambdaNet [33]. Both of these works
represent programs as graphs and use graph neural networks as the underlying
model architecture, which makes our approach applicable. However, we note that
for LambdaNet we expect the model to be quite robust as the authors manually
designed a sparse graph representation (by designing a static analysis to extract
the type dependence graph) over which to learn.

4.8 conclusion and discussion

We presented a new technique to train accurate and robust neural models of code.
Our work addresses two key challenges inherent to the domain of code: the diffi-
culty of computing the correct label for all samples (i.e., the input is incomplete
code snippet, program semantics are unknown) and the fact that programs are
significantly larger and more structured compared to images or natural language.

To address the first challenge, we allow the model to abstain from making a pre-
diction, rather than forcing the model to make predictions for all samples (as done
in prior works). To address the second challenge, we learn which parts of the pro-
gram are relevant for the prediction, and abstract the rest (instead of using the
entire program as input).

Further, we introduce a new procedure that trains multiple models, instead of
one. This has several advantages, as each model is simpler and thus easier to train
robustly, the learned representation is specialized to the kind of predictions it
makes, and the model directly conditions on predictions of prior models (instead
of having to re-learn them). However, a disadvantage of our approach is that the
models are learned sequentially which slows down the training (i.e., training 10
models will take 10× more time). To speed up the training, it would be interesting
to allow learning multiple models in parallel at each sequential step and then
combine them as explored by Shazeer et al. [204].

We believe than our work is only one step in addressing the task of adversari-
ally robust models of code and that many challenges remain open. For example,
it remains to be seen how effective our approach is at other tasks over code, be-
yond type inference. Further, we optimize for the worst case adversarial robust-
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ness, which corresponds to learning a robust model for all programs. An interest-
ing future work is to optimize with respect to those modification that are common
among developers, especially if it is not possible to be robust for all of them. While
we checked robustness for a wide range of program modifications, these are still
far from exhaustive and more work is needed in defining new ones. Finally, as the
number of possible program modifications is large and growing, an interesting
area is designing how they can be searched and combined more efficiently. In our
work, the side-effect of learning to refine the program representation is that the
search space of possible program modifications is reduced (since parts of the pro-
gram become independent of each other). However, more work in area is needed,
for example, as explored recently by Ramakrishnan et al. [203], Yefet, Alon & Yahav
[106] or Zhang, Albarghouthi & D’Antoni [205].





5
FA S T S M T: L E A R N I N G S T R AT E G I E S T O S O LV E F O R M U L A S

In Chapter 3 and Chapter 4 we have presented two approaches to achieve the same
task – to learn robust and precise models that learn to predict program properties
(e.g., type inference, points-to analysis), usually addressed via handcrafted static
analyses. The difference between these approaches is that in Chapter 3, we showed
how this can be achieved by learning an interpretable program in a domain-specific
language that can be inspected and adapted by a domain expert. In contrast, Chap-
ter 4 showed how training robust and precise models can be achieved by extending
the latest state-of-the-art deep learning models, which are much harder to inter-
pret but are also much more powerful and flexible.

this chapter In this chapter, we present a new approach for learning to solve
satisfiability modulo theories (SMT) formulas that combines the strengths of both
deep learning as well as program synthesis techniques. Concretely, our approach
works in two phases:

1. given a dataset of formulas whose solution is initially unknown, we first use
reinforcement learning to train a neural policy that learns both how to solve
these formulas as well as to solve them fast, and then,

2. we synthesize a loop-free program with branches that captures the policy
decision making in an interpretable manner.

This combination allows us to train models that are extremely effective in prac-
tice – we solve 27% more formulas over a range of benchmarks and achieve up to
100× runtime improvement over a state-of-the-art SMT solver.

the need for efficient solvers SMT solvers are a powerful class of au-
tomated theorem provers that can deduce satisfiability and validity of first-order
formulas in particular logical theories (e.g., real numbers, arrays, bit vectors). SMT
solvers are more general than SAT solvers (which are restricted to the satisfiability
of boolean formulas) and over the years have become and integral part in a va-
riety of application domains including verification (e.g., neural networks [206]),
program synthesis, static analysis, scheduling, and others [207].

To efficiently solve complex real-world problems, state-of-the-art SMT solvers
(e.g., Z3 [66], Yices [208], CVC4 [107], MathSAT5 [209], Boolector [210]) contain
hand-crafted heuristics combining algorithmic proof methods and satisfiability
search techniques. Indeed, crafting the right heuristic is critical and can be the
difference between solving a complex formula in seconds or not at all.

127
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Figure 5.1: Main components of our approach to learn to solve SMT formulas.

limitations of handcrafted heuristics Unfortunately, manually dis-
covering heuristics that work well across a range of formulas can be difficult for
several reasons: (i) fundamentally, one cannot anticipate all possible formulas a
solver will be invoked with, meaning that as long as the solver’s users cannot in-
fluence the heuristic construction (i.e., the heuristics are fixed by the developers
and shipped to all the users), there will inevitably be cases where the performance
will be suboptimal [211], (ii) even if one can anticipate all possible formulas (which
is infeasible in practice since both the applications and formulas change over time),
finding the right heuristic is still challenging and requires expert knowledge, and
(iii) there is not a single best heuristic that works well for all the formulas. Instead,
the suitable heuristics need to be selected dynamically based on the concrete for-
mula and context in which it is invoked.

To address the first issue, several modern SMT solvers provide a mechanism for
end users to control and define new combinations of heuristics that target a partic-
ular problem. For example, Z3 [66] allows users to define custom heuristics, called
tactics, that the solver follows when processing a formula. Typically, such tactics
are combined and performed in sequence (as specified by the user), forming an
(interpretable) program called a strategy. However, the resulting strategies can end
up being quite complex (e.g., contain loops and conditionals) and this fact, com-
bined with the vast search space, means that manually finding a well-performing
strategy can be very difficult, even for experts. As a result, while already highly
tuned for many applications, the existing heuristics used in the state-of-the-art
SMT solvers are often suboptimal in practice.

our work : fastsmt We present a new approach for learning strategies to solve
SMT formulas. We phrase the challenge of solving SMT formulas as a tree search
problem where at each step a transformation is applied to the input formula until
the formula is solved. Our approach works in two phases as illustrated in Fig-
ure 5.1: first, given a dataset of unsolved formulas we learn a policy that for each
formula selects a suitable transformation (a tactic) to apply at each step in order
to solve the formula, and second, we synthesize a strategy in the form of a loop-
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free program with branches. This strategy is an interpretable representation of the
policy decisions and is used to guide the SMT solver to decide if a formula is
satisfiable more efficiently (i.e., to solve the formula).

Because the resulting strategy is represented as a program that the SMT solver
supports, it can be directly integrated with the solver without requiring any addi-
tional modifications. Note that while often overlooked, the ease of integration is in
fact critical for the system to be practically useful. Further, an added benefit of exe-
cuting the synthesized program is zero runtime overhead during inference. This is
in contrast to trying to evaluate a neural policy at each step. This would not only
cause significant runtime overhead but also non-trivial software dependencies that
need to be shipped alongside the solvers and would depend on the availability of
specialized hardware such as GPUs. Finally, we note that our approach does not
require any changes to the solver’s internals and thus can work with any decision
procedure that cleanly exports its tactics.

main contributions Our main contributions are:

• A method that leverages classic learning models such as Bilinear Models and
Imitation Learning for the task of discovering SMT strategies (represented
as a neural policy). Importantly, our learning does not require any prior
knowledge – we assume a dataset of formulas with unknown satisfiability
and no existing strategies used to bootstrap the learning.

• A synthesis procedure that takes as input the learned model and generates
an interpretable strategy in the form of a program that captures the model’s
decision-making.

• An extensive experimental evaluation of our approach on formulas of vary-
ing complexity across 3 different theories (QF_NRA, QF_BV and QF_NIA). We
demonstrate the effectiveness of our approach by successfully synthesizing
strategies that solve 27% formulas more and achieve up to 100× runtime
improvement over state-of-the-art Z3 solver [66].

outline We organize this chapter as follows. In Section 5.1 we give an overview
of our approach and how SMT solvers work. In Section 5.2 we describe a domain-
specific language Strategy used by Z3 to enable control over the core solver heuris-
tics. In Section 5.3 we describe how we train a neural policy that learns to solve
SMT formulas. Then, in Section 5.4 we describe how we synthesize a program in
the Strategy language that captures the neural policy decision making. In Sec-
tion 5.5 we provide an experimental evaluation of our approach by applying it to
improve the state-of-the-art SMT solver Z3. Finally, we describe the related work
in Section 5.6 and provide a brief summary and discussion in Section 5.7.
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5.1 overview

At a high level, an SMT solver takes as input a first-order logical formula and then
tries to decide if the formula is satisfiable. In the process, solvers employ various
heuristics that first transform the input formula into a suitable representation and
then use search procedures to check its satisfiability. Existing heuristics include:

• simplify, which applies basic simplification rules such as constant folding
(x + 0)→ x or removal of redundant expressions (x− x)→ 0,

• gaussian_elim, which eliminates variables (x = 1∧ y ≥ x+ z)→ (y ≥ 1+ z)
using Gaussian elimination,

• elim_term_ite, which replaces the term if-then-else with fresh auxiliary dec-
larations

(
(if x > y then x else y) > z

)
→
(
k > z∧ (x>y =⇒ k= x)∧ (x ≤

y =⇒ k = y)
)
,

• bit_blast, which reduces bit-vector expressions by introducing fresh vari-
ables, one for each bit of the original bit-vector (e.g., a bit vector of size 4 is
expanded into four fresh variables), and many more.

In total, the Z3 SMT solver defines more than 100 such heuristic transformations
(called tactics) that can be combined together to define a custom strategy. For
example, a strategy for integer arithmetic can be defined as1:

using simplify with (som : true); normalize_bounds;

lia2pb; pb2bv; bit_blast; sat

Here, normalize_bounds, lia2pb, bit_blast and sat denote individual tactics
while using simplify with (som : true) denotes a tactic simplify executed with
a specific set of parameters, in this case using som : true that controls how poly-
nomials should be represented. Although the above sequence of transformations
(tactics) works well for some types of input formulas (e.g., in case every variable
has a lower and an upper bound), for other formulas a different set of tactics is
more suited. In some cases, the suitable set of tactics can be obtained by a small
modification of the original tactic while in others, a completely different set of
tactics needs to be defined. As a concrete example, consider the following strategy
implemented in the Yices SMT solver [208, 211]:

if (¬diff∧ num_atoms
dim

< k) then simplex else floyd_warshall

Here, two high level tactics can be applied to solve an input formula – the Simplex
algorithm or the algorithm based on Floyd-Warshall all-pairs shortest distance. The
Simplex algorithm is used if the input formula is not in the difference logic frag-
ment (denoted using ¬diff) and the ratio of inequalities divided by the number
of uninterpreted constants is smaller than a threshold k.

1 For more information and examples we refer the reader to the official Z3 tutorial available online at:
https://rise4fun.com/z3/tutorial/strategies

https://rise4fun.com/z3/tutorial/strategies
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problem statement Given a dataset of SMT formulas F={ fi}n
i=1, our goal is

to find a strategy expressed as a program in the domain-specific language Strategy:

arg min
q∈Strategy

∑
f∈F

cost( f , q) where cost( f , q) def
=

runtime(q( f )) if q solves f

ttimeout otherwise
(5.1)

Here, runtime(q( f )) ∈ Q denotes the runtime required for strategy q to solve
formula f and ttimeout ∈ Q is a constant denoting the penalty for not solving f
(either due to timeout or because the strategy q is not powerful enough). Our goal
is to find a strategy that minimizes the time required to solve the formulas in the
dataset F . Note that our cost function reflects the fact that we aim to synthesize
a strategy that solves as many formulas as possible yet one that is also the fastest.
Generally, optimizing for Equation 5.1 directly is problematic as using runtime
makes the optimization problem inherently noisy and non-deterministic. It also
makes the learning hard to parallelize due to significant impact of hardware and
environment on overall runtime. Thus, instead of runtime, we use the amount
of work measured as the number of basic operations performed by the solver
required to solve a formula (e.g., implemented via the rlimit counter in Z3).

challenges There are two main challenges we address in our work:

• Interpretability. We are interested in learning a model that is not only efficient
at solving a given set of formulas but also expressible as a program in the
Strategy language. This is important, as the learned strategies can then be
directly used as input to existing solvers.

• No prior domain knowledge. Our learning does not assume any prior knowl-
edge about the dataset F and which strategies work best in general – initially
the solution to all the formulas in the dataset is unknown, no existing strate-
gies are used to boostrap the learning (not even the default strategies already
written by the SMT solver developers) and we do not rely on any heuristics
(and their combination) that may be useful in solving formulas from F . In-
deed, this represents the most challenging setting for learning.

our approach The key idea behind learning a program qbest ∈ Strategy ef-
ficiently is to take advantage of the fact that each program q can be decomposed
into a set of smaller branch-free programs q1, ..., k, each qi corresponding to one ex-
ecution path of q. This is possible because programs in the Strategy language do
not contain state since the state is implicitly captured in the formula being solved.
As a result, in our approach we learn the program qbest via a two step process:

• Learn a neural policy. First, we learn a policy which finds a set of candidate
strategies consisting of only sequences of tactics where each strategy per-
forms well on a different subset of the dataset F . This allows us to phrase
the learning problem as a tree search over tactics for which state-of-the-art
models can be used. This step is described in Section 5.3.
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• Synthesize a combined strategy. Then, given a set of candidate strategies, we
combine these into a single best strategy qbest by synthesizing control struc-
tures such as branches and loops.This step is described in Section 5.4.

5.2 language for expressing smt solver strategies

We start by formally defining the language used by Z3 to enable control over the
core solver heuristics, as shown in Figure 5.2. The core building blocks of the lan-
guage are called tactics and represent various heuristic transformations that might
be applied during the search. Optionally, each tactic defines a set of parameters
that affect its behavior. For example, the simplify tactic contains >50 parame-
ters that control which simplifications are performed (e.g., if elim_and : true then
simplify rewrites conjunctions using negation and disjunctions). The tactics are
combined into larger programs either sequentially or using one of the following
control structures:

• if p then q1 else q2: If the predicate p evaluates to true apply q1, otherwise
apply q2. The predicate can contain arithmetic expressions as well as Probes
which collect statistics of the current formula (e.g., num_consts returns the
number of non-boolean constants).

• q1 else q2: First apply q1 and if it fails then apply q2 on the original input.

• repeat q, c: Keep applying q until it does not modify the input formula any
more or the number of iterations is greater than the constant c.

• try q for c: Apply q to the input and if it does not return in c ms then fail.

• using t with params: Apply the given tactic t with the parameters params.

(Strategy) q ::= t | q; q | if p then q else q | q else q |

repeat q, c | try q for c | using t with params

(Tactics) t ∈ Tactics = { bit_blast, solve_eqs, elim_uncnstr . . . }
(Predicates) p ::= p ∧ p | p ∨ p | expr ./ expr

(Expressions) expr ::= c | probe | expr ⊕ expr

(Constants) c ∈ Consts = Q

(Probes) probe ::= Probe→ Q, Probe = { num_consts, is_pb, . . . }
(AOperators) ⊕ ::= + | − | ∗ | /

(BOperators) ./ ::= > | < | ≥ | ≤ | = | 6=
(Parameter) param ::= (Param, Q), Param = { hoist_mul, flat, som, . . . }
(Parameters) params ::= ε | param; params

Figure 5.2: Syntax of the Strategy language used to express SMT strategies in Z3 [66].
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Goal: learn a policy π(a | s) that selects the next action given the current state

Best Strategy: q = s0
a0−→ s1

a1−→ s2
a2−→ s3 which solves the formula in 12 seconds

(State) s = Φ × Tactics∗ (Action) a = Tactics × Params

s0 s1 s2

s3

timeout

timeout

12 sec

532 sec

timeout

a1 a2

a3

Figure 5.3: Illustration of how solving the formula can be phrased as a tree search prob-
lem. Here, the nodes correspond to states and edges correspond to actions
(tactics) applied to transform the input formula. The goal of the neural policy
is to select the next action to explore given the current state.

5.3 learning a neural policy

We phrase the problem of learning candidate strategies as a tree search problem,
as illustrated in Figure 5.3. We start from an initial state s0 and at each timestep t
we choose an action at that expands the tree by exploring a single edge. In our
setting, a state corresponds to a tuple consisting of an SMT formula and a strategy
used to compute the formula. An action is described by a tactic and its parameters
(if any) a ∈ Tactics× Params. Applying an action transforms the formula into
another, equisatisfiable formula. Terminal states are those that decide the initial
formula f , that is, f was reduced to a form that is either trivially satisfiable or
unsatisfiable. Further, for practical reasons, terminal states also include those to
which applying an action (tactic) leads to a timeout.

A terminal state defines a strategy q (i.e., a sequence of tactics starting from the
tree root) with an associated cost( f , q) (as defined in Equation 5.1) that we aim
to minimize. In the example from Figure 5.3, the best strategy is a sequence of
actions a1, a2, a3 which results in solving the formula in 12 seconds. Our goal is
to learn a policy, denoted as π(a | s), that represents a probability distribution
of actions conditioned on a state s. Ideally, the learned distribution should be
such that selecting the most likely action at that state minimizes the expected
cost. In what follows, we first describe the models used to represent the policy π
considered in our work and then describe how the models are trained, including
how to construct a suitable training dataset.

5.3.1 Models

We define two models – a simpler bilinear model and a more complex neural based
policy. Further, in our evaluation we also include tree baseline models that perform
random search, bread-first search and search using an evolutionary algorithm.
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Strategy

[simplify, sat, PAD, . . . ] Embed

R
eLU

Z3 Probes

[num_consts, is_pb, . . . ] [37, 0, . . . ]
eval. on f

Formula Representation

BOW | Skip-Gram | AST Embed
eval. on f

R
eLU

R
eLU
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ax
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oid

Tactics

0.70 : pb2bv
0.15 : smt
0.01 : sat

. . .

Params

0.20 : flat
0.75 : som
0.95 : factor

. . .

Figure 5.4: Neural network architecture used to predict next tactic and arguments.

bilinear model Based on matrix factor models used in unsupervised learn-
ing of word embeddings [70, 212], as well as an supervised text classification [213],
we define a bilinear model as follows:

π(a | s) = σ(UV φ(s, a)) (5.2)

where φ(s, a) is a bag of features computed for an action a taken in state s, U ∈
Rk×h and V ∈ Rh×|V| are the learnable weight matrices, V is the input vocabulary
and σ is softmax computing the probability distribution over output classes (in
our case actions to be taken in a given state s). As the set of all possible actions is
too large to consider, we randomly generate a subset of parameters for each tactic
before training starts, thus obtaining the overall set of actions S ⊆ Tactics ×
Params. We define φ(s, a) to be all n-grams constructed from the strategy of the
state s. For example, for the strategy a1; a2; a3, the extracted n-grams (features) are
described by the vector: 〈a1, a2, a3, a1a2, a2a3, a1a2a3〉. Then, the vocabulary set V is
simply the collection of all possible n-grams formed over S.

neural network Our second model is based on a neural network and im-
proves over the bilinear model in two key aspects – it considers a richer state when
making the predictions and predicts tactics, as well as their corresponding param-
eters. The architecture of the neural network model is illustrated in Figure 5.4 and
uses two inputs: (i) the strategy in the current state (as in the bilinear model), and
(ii) the formula f to be solved in the current state. The strategy is encoded by first
padding it to be of fixed size, concatenating the embedding of each action in the
strategy into a single vector and finally feeding the resulting vector into a fully-
connected layer. We encode the input formula in two ways: first, by computing
a set of formula measures such as the number of expressions and constants, and
second, by learning a representation of the formula itself. The formula measures
are computed using probes2 supported by Z3 and are a subset of the possibilities

2 In our implementation, we use the following 16 probes – num-consts, num-exprs, size,
depth, ackr-bound-probe, is-qfbv-eq, arith-max-deg, arith-avg-deg, arith-max-bw,
arith-avg-bw, is-unbounded, is-pb, num-bv-consts, num-arith-consts and is-qfbv-eq.
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Algorithm 5: Iterative algorithm used to train the policy π.
Input: Dataset of formulas F , Number of iterations N, Number of formulas

to sample K, Exploration rates β, Exploration policy πexplore (e.g.,
random policy)

Output: Trained policy π, Explored strategies Q
1 D ← ∅; Q ← ∅; π ← policy initialization
2 for i = 1 to N do
3 π̂ ← βiπ + (1− βi)πexplore . policy π̂ explores with probability (1− βi)

4 Q ← Q ∪ (
⋃

f∈F FindTopKUnseenStrategies( f , π̂, K) ) . Algorithm 6

5 D ← D ∪ Extract training dataset from strategies Q
6 π ← Retrain model π on D
7 return π,Q

one could define. For the learned representation of the formula we experimented
with three different approaches:

• Bag-of-words (BOW): The formula is treated as a sequence of tokens from
the SMT-LIB language. We obtain its bag-of-words and use it as the formula
embedding.

• Abstract Syntax Tree (AST): From the formulas AST, we extract all subtrees
of depth at most two. The bag-of-words over such subtrees is used as the
formula embedding. Futher, as a form of regularization, we discard subtrees
that appear in fewer than 5% of the formulas in F .

• Skip-gram: Each formula in the dataset is treated as a sequence of tokens over
which we learn a skip-gram model. We define the embedding of the formula
as the average of all embeddings of its tokens.

The network output consists of two parts – a probability distribution over the
tactics to apply next, and an assignment to each tactic parameter. The possible
tactic parameters are captured by the set Param from Figure 5.2. We provide a full
list of tactics and their parameters in Section 5.5. To compute arguments for the
tactic parameters, the network introduces a separate output layer for each param-
eter type. The layer performs regression and outputs normalized values in the
range [0, 1]. For boolean parameters, values 1 and 0 correspond to true and false,
respectively. For integer parameters, the output of the network is mapped and
discretized into the range of allowed values.

5.3.2 Training

Our training is based on the DAgger method [214] and is shown in Algorithm 5.
The training starts with a randomly initialized policy used to sample the top K
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Algorithm 6: Procedure for finding top K strategies.

def FindTopKUnseenStrategies( f , π, K)
Input: Formula f , Model π, Number of strategies to sample K
Output: Top K most likely unseen strategies according to the model π

1 global G ← ∅ . contains all visited states throughout the training
2 s0 ← ( f , ε) . initial state is the formula without any actions applied
3 S← ∅
4 queue← priority_queue()
5 queue.push(s0, ε, 1)
6 while |S| < K and |queue| > 0 do
7 (sj, aj, pj)← queue.pop()
8 s′j ← state obtained by applying action aj in state sj

9 if s′j /∈ G then
10 S← S ∪ {s′j.strategy}; G ← G ∪ {s′j}

11 if ¬ pruned(s′j) then
12 for a ∈ actions(s′j, π) do
13 queue.push(s′j, a, pj · π(a | s′j))

14 return S

most likely unseen strategies for each formula in the training dataset F (line 4).
The selected strategies are evaluated and used to create a training dataset (line 5)
on which the policy π is retrained (line 6). As the model is initially untrained, the
strategies are sampled at random and only as the training progresses the policy
will learn to select strategies that perform well on formulas from F . As an alterna-
tive, one could pre-train the initial policy using strategies supplied by an expert in
which case the algorithm would correspond to imitation learning. However, in our
work, we assume such expert strategies are not available and therefore we start
with a model that is initialized randomly.

finding most likely strategies A key step of the training presented in Al-
gorithm 5 is a procedure that finds the top K most likely strategies to solve a given
formula. Importantly, we are interested in returning strategies that were not yet
explored during the training. This is because the already explored strategies are
kept in the dataset (line 5 in Algorithm 5) so it is wasteful to explore the same
strategies multiple times. This algorithm, shown in Algorithm 6, takes as input
a single formula f ∈ F , a model π (e.g., a neural network policy, bilinear model,
etc.) and an integer K (the number of strategies to explore).

During the search we keep a priority queue of tuples (sj, aj, pj) consisting of
a state, a possible action and its associated probability, initialized with (s0, ε, 1), s0
denoting the initial state. At each step, we remove the tuple with highest probabil-
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ity from the queue, apply its action to obtain a new state s′j and update the priority
queue with new tuples (s′j, a, pj · π(a | s′j)) for all actions a ∈ Tactics× Params

capturing the possible transitions from s′j. For practical reasons we approximate
the set of all possible actions (denoted as actions(s′j, π)) as follows:

• If we are using the neural network policy, we consider the most likely pa-
rameters for each tactic according to that policy, or

• If we are not using the neural network policy and instead are using models
which do not predict parameters, we consider 20 different parameter config-
urations for each tactic which are selected at random before training starts.

We additionally perform pruning of states, which cannot possibly lead to an op-
timal strategy (line 9, described next). Finally, we note that in practice, we perform
the search for batches of formulas at once in order to leverage the parallelization
capabilities of our system.

pruning via equivalence classes A challenge in training the models pre-
sented above is that whether a strategy solves the formula is known only at ter-
minal states. This is especially problematic for datasets where the majority of the
effort is spent on finding any successful strategy. To address this issue, we take
advantage of the fact that some information can be learned also from partial strate-
gies – namely their current runtime and their transformed formula. This allows us
to check if multiple transformed formulas are equivalent (we consider two formu-
las equivalent if their abstract syntax tress are identical) and keep only the one
which was fastest to reach (and prune the others).

building the training dataset Each sample in our training dataset D =
{〈(ti,pi), si〉}M

i=1 for the neural network consists of a state and its associated train-
ing label. Here, the label is a tuple consisting of a probability distribution over
tactics t ∈ R|Tactics| and the values of all tactic parameters p ∈ R|Param|. The intu-
ition behind this choice is that for a state s, the vector t encodes the likelihood that
a given tactic is fast at solving the formula whereas p contains the best parameter
values found so far during training. Generating the dataset in this way encodes
the preference for strategies that are most efficient in contrast to finding any strat-
egy that solves the input formula. To train the neural network model using such
a dataset, the loss is constructed as a weighted average of the cross-entropy loss
for tactic prediction and mean-squared-error for parameter prediction.

We build the dataset as follows. First, we evaluate each strategy in Q on the for-
mula for which it was generated and keep only those that succeeded in solving the
formula. Second, let us denote with r(t, si) the best runtime (or timeout) achieved
from state si by first applying tactic t, with rbest(si) the best runtime achieved from
state si, and with v(p, si) the value assigned to parameter p in tactics with the best
runtime from state si. We obtain r, rbest and v by considering all the states and ac-
tions performed when evaluating the strategies in Q. Then, for each non-terminal
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r(s4)= 10

r(s5)=tTIMEOUT

r(s6)= 40

r(s7)=tTIMEOUT

simplify(flat : true)

solve_eqs

smt

bit_blast
sat(scc : false)

smt

s1

s2

s3

s4 r(s4) = 10

s5 r(s5)=tTIMEOUT

s6 r(s6) = 40

s7 r(s7)=tTIMEOUT

Figure 5.5: Example with all states visited while solving a formula, including the runtime
associated with each terminal state. Terminal states are colored blue ( ) if
formula was solved, and orange ( ) otherwise.

State Target tactics Target parameters

s1 = (ϕ1, ε)
Pr(simplify) = 0.8 flat = true

Pr(bit_blast) = 0.2 -

s2 = (ϕ2, simplify(flat = true)) Pr(solve_eqs) = 1 -

s3 = (ϕ3, bit_blast) Pr(sat) = 1 scc = false

Table 5.1: Training dataset constructed from the example shown in Figure 5.5.

state si that eventually succeeded, we create one training sample 〈(σ(t̃i),pi), si〉
where t̃i = [1/r(t, si)]t∈Tactics, σ normalizes t̃i to a valid probability distribution
and pi = [v(p, si)]p∈Param. To generate the training dataset for bilinear model we
follow the same steps except that we use t̃i = 1[rbest(si) = r(t, si)]t∈Tactics which
assigns probability 1 to the best tactic and 0 to others.

Example Let us consider an example where the model explored seven different
states as shown in Figure 5.5. Further, in addition to the visited states we also
keep information about the cumulative runtime required to compute the state
(starting from the initial state s0), as well as whether the state successfully solves
the formula. Then, the dataset is constructed by generating one training sample
〈(σ(t̃i),pi), si〉 for each non-terminal state that eventually succeeded in solving the
formula. In our example, this corresponds to generating one training sample for
all three non-terminal states s1, s2 and s3.

The resulting dataset is shown in Table 5.1, where we use ε to denote that no
tactic was applied so far. For state s1, there are two possible tactics which lead to
solving the formula (simplify(flat = true) and bit_blast). However, the best
strategies in the respective subtrees have different runtimes, hence the probabil-
ities assigned to the corresponding tactics are different and reflect the fact that
using simplify(flat = true) is significantly faster compared to using bit_blast.
Finally, in case both states s6 and s7 would not solve the formula, it would mean
that no training example is generated for state s3 (since we generate training sam-
ples only for non-terminal states that eventually succeeded in solving the formula).



5.4 synthesizing a combined, interpretable strategy 139

5.4 synthesizing a combined, interpretable strategy

The policy π learned in Section 5.3 can be used to extend the existing SMT solvers
as follows: invoke the solver with the current formula f and the action a0 selected
by π, obtain a new intermediate formula f1, then again invoke the solver from
scratch with f1 and a new action a1, obtaining another intermediate formula f2,
and so on. While possible, wrapping existing SMT solvers in such iterative loop
is very problematic in practice because: (i) executing the neural policy at each
step would incur significant run-time overhead and introduce additional hardware
requirements (e.g., GPU support), and (ii) more importantly, we would have lost
the connection with the original formula f , as at each step we are making a new,
fresh invocation of the SMT solver. This is problematic for tasks (e.g., planning)
that require more information from SMT solvers, beyond satisfiability of f , for
instance, the model itself. To address both of these challenges, we synthesize an
interpretable policy qbest that follows π and can be expressed in the Strategy

language from Figure 5.2. Programs in this language can be then given directly as
input to the SMT solver, without having to modify the solver internals in any way.

Recall from Figure 5.2 that the Strategy language defines two types of state-
ments used to combine programs: if-then-else and or-else. However, notice that
the or-else is in fact a special version of the if statement with a condition that
checks if a given tactic terminates within c milliseconds. As a result, we can reduce
the problem of synthesizing programs in the Strategy language to the problem
of synthesizing branches with predicates over a set of candidate strategies.

Note that this is the same language fragment that we used in Chapter 3 to learn
Lpt and Lalloc programs. However, the synthesis problem considered in this section
is easier compared to Chapter 3. This is because here, we trained a neural policy
to obtain a set of candidate strategies (straight-line programs in Strategy) and the
goal of the synthesis is to combine them via branches with predicates. In contrast,
in Chapter 3 the programs were learned directly with the goal of optimizing the
performance on a given dataset, without any access to good building blocks from
which they can be composed.

synthesizing qbest To synthesize branches with predicates, we adapt the tech-
niques based on decision tree learning. Consider the tree illustrated in Figure 5.6
(top left) with the same structure as the one used during the search (i.e., edges
denoting actions and nodes denoting states) but formed from the two candidate
strategies q1 and q2. Each SMT formula is evaluated by taking a path in the tree
and applying all the corresponding actions. Intuitively, at each node with more
than one outgoing edge a decision needs to be taken to determine which path to
take. To encode such decisions, our goal is to introduce one or more branches at
each such node, denoted as orange square ( ) in Figure 5.6.

Formally, letQ = {qi}n
i=1 be a set of candidate strategies, F a dataset of formulas

and b ::= if p then qtrue else qfalse a branch that partitions F into two parts –
Ftrue are formulas on which predicate p evaluates to true and Ffalse for the rest.
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f1 f2 f3

q1 = a1; a2; a3 10 100 100

q2 = a1; a4; a5 30 TIMEOUT 20

formulas and their associated costs

f1 f2 f3

200 250 30

num_expr

formula measure

a1
a2

a3

a4
a5

strategies q1 and q2

if true then a2 else _ Branch Cost: 0.276 = (−1/3 · log(1/3)− 2/3 · log(2/3)) + 0

if num_expr > 100 then a2 else a4 Branch Cost: 0.2 = −2/3 · log(1/2) + 1/3 · 0

Figure 5.6: Illustration of the decision tree representation of strategies, scored formulas,
their measures and two sample programs in Strategy with their correspond-
ing branch scores (according to Equation 5.4).

To obtain Q, we evaluate the learned policy π over the training formulas, as well
as collect all the successful strategies explored during learning. We define a notion
of multi-label entropy of a dataset of formulas, denoted as H(F ) [215]:

H(F ) = −∑q∈Q p(q) log(p(q)) + (1− p(q)) log(1− p(q)) (5.3)

where p(q) denotes the ratio of formulas solved by strategy q in F . The goal of
synthesis is then to discover branches that partition F into smaller sets, each of
which has small entropy (i.e. either none or all formulas are solved). Using the
entropy, we define a cost associated with a branch b as:

cost(b,Ftrue,Ffalse) =
|Ftrue|
|F | H(Ftrue) +

|Ffalse|
|F | H(Ffalse) (5.4)

That is, the branch cost is a weighted sum of entropies in each of the resulting
branches. With this scoring function we build the decision tree in a top-down
fashion – for each node with multiple outgoing edges we recursively synthesize
predicates that minimize the cost. If the dataset size for some node is below a cer-
tain threshold, we greedily select the strategy which can solve the most formulas,
breaking ties using runtimes. To express branches, we consider the following types
of predicates: (i) true which allows expressing a default choice, (ii) Probes with
arithmetic expression as defined in Figure 5.2, and (iii) try s for c which allows
checking whether the tactics terminate within c ms.

Example Consider the example shown in Figure 5.6 that contains two candidate
strategies q1 and q2 and a dataset consisting of three formulas F = { f1, f2, f3}.
By evaluating both strategies on all the formulas in the dataset we can see that
q1 solves all three formulas while q2 solves only two ( f1 and f2). However, while
q1 solves f3 in 100 seconds, the same formula can be solved by q2 in only 20

seconds. Since q1 is faster on all the remaining formulas, the best possible program
in this example would be – select q1 for f1 and f2, but select q2 for f3. To achieve
this, we evaluate a number of formula measure that can serve as predicates in the
synthesized program. In Figure 5.6 (top right), we can see an example of a measure



5.4 synthesizing a combined, interpretable strategy 141

Algorithm 7: A procedure for selecting a subset of the candidate strategies.

Input: Set of formulas F , Strategies Q = {qi}m
i=1, weight λ ∈ [0, 1], K ∈ Z+

Output: K selected strategies
1 Qbest ← ∅; A← F ; B← ∅
2 while |Qbest| < K do
3 qbest ← ε; Abest ← ∅; Bbest ← ∅; scorebest ← 0
4 for qi ∈ Q do
5 if qi 6∈ Qbest then
6 Ai ← subset of formulas in A which strategy qi can solve
7 Bi ← subset of formulas in B which strategy qi can solve
8 scorei ← λ|Ai|+ (1− λ)|Bi|
9 if scorei > scorebest then

10 qbest ← qi; Abest ← Ai; Bbest ← Bi; scorebest ← scorei

11 Qbest ← Qbest ∪ qbest; A← A \ Abest; B← B ∪ Abest

12 return Qbest

that computes the number of expressions in each formula. Using this measure we
can express our desired program as if num_expr > 100 then a2 else a4.

Additionally, Figure 5.6 (bottom) shows the branch score computed for this pro-
gram according to Equation 5.4. Given that the branch above is optimal, it should
hold that the score for the other branch is worse (in this case higher). We can check
that this is the case by comparing the score to a branch that uses strategy q1 for
all the formulas if true then a2 else _. Indeed, by computing the scores for both
programs we can see that the optimal program achieves score 0.2 which is better
than 0.276 for the program that always uses strategy q1.

scaling the synthesis to large datasets As the set of candidate strate-
gies can be large, especially when the dataset contains a large number of formulas,
we perform synthesis only on a subset set of strategies. Intuitively, these strategies
should be: strong individually (i.e. each strategy should be able to solve a large
number of formulas alone) and strong together (i.e. the number of formulas solv-
able by at least one of the strategies should be large). In order to trade-off these
two conditions we use a greedy procedure shown in Algorithm 7.

We proceed in an iterative manner, choosing one new strategy at every step. In
every iteration, each strategy receives a score for every formula it solves. The score
is equal to λ for every formula which was previously unsolved, and 1− λ for each
formula that was already solved (by another previously selected strategy). One can
notice that if λ = 1, the algorithm will greedily maximize the number of formulas
that the strategies can solve in the union. If λ = 1/2, the algorithm will simply
select k strategies that solve the most formulas individually. In our experiments,
we treat λ as a hyperparameter and optimize it on a validation set of formulas.
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5.5 evaluation

We implemented our method in a system called FastSMT and evaluated its effec-
tiveness by learning to solve formulas of varying complexity across 3 logics QF_NRA,
QF_BV and QF_NIA and 5 benchmarks. The main results of our experiments are that:

• Our approach successfully learns a neural policy that solves 27% more for-
mulas than the handcrafted heuristics included in the state-of-the-art SMT
solver Z3 [66]. This is even though our training has not prior knowledge –
the solution of all training formulas was unknown and existing Z3 heuristics
were not used to bootstrap the learning.

• We synthesized a program in the Strategy language that mimics the pol-
icy decision making and solves 9% more formulas and up to three orders
of magnitude faster than Z3. In contrast to the non-interpretable neural pol-
icy, this program is directly incorporated into Z3 without any modifications
required.

• We show that our learned models generalize well to significantly harder
formulas that those seen during training. Concretely, a model trained with
only 10 second time limit generalizes well to formulas that require up to 10

minutes to solve and successfully solves 8.6% more formulas than Z3.

To train our models, we use 10 iterations of Algorithm 5 with exponentially
decaying exploration rate to choose between policy and random action. We train
the bilinear model using FastText [213] for 5 epochs with learning rate 0.1 and
20 hidden units. We implemented the neural network model in PyTorch [191] and
trained it using a learning rate of 10

−4, mini batch size 32, Adam optimizer [196]
with Xavier initialization [216] and early stopping. Further, we train all our models
using time limit of 10 seconds allocated for solving each formula. Unless specified
otherwise, we also use 10 second time limit when evaluating the models. We make
all the models, datasets and the code available at:

https://github.com/eth-sri/fastsmt

smt benchmarks We evaluated the effectiveness of FastSMT on 5 different
datasets – AProVE [217, 218], hycomp [219], core [220], leipzig [221] and Sage2 [222,
223]. These contain formulas of varying complexity across 3 logics QF_NRA, QF_BV
and QF_NIA. The formulas have on average 336, 35, 228, 153, 345 assertions, 929,
10 690, 1 672, 886, 1 887 expressions and 118, 49, 46, 20, 79 variables for leipzig,
core, hycomp, AProVE and Sage2 benchmarks, respectively and require up to 60 MB
for each formula to be stored in the SMT2-lib format. All datasets are part of the
official SMT-LIB benchmarks [224] and encode formulas from both academic and
industrial tools (i.e. Sage and AProVE). We split the formulas in training, validation
and test sets in predetermined ratios for all datasets.

https://github.com/eth-sri/fastsmt
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Formulas solved Speedup percentile

Benchmark Both Only Z3 Only FastSMT None P90 P50 P10

Best learned strategy (Section 5.3)

leipzig 57 0 3 8 5.8× 60.7× 191.5×
Sage2 2 531 0 2 402 1 511 1.2× 2.5× 22.0×
core 270 0 0 0 1.2× 1.3× 1.9×
hycomp 1 633 1 210 138 1.0× 2.0× 4.3×
AProVE 1 397 3 221 91 4.0× 89.6× 988.7×

Total 56.2% 0.1% 27.0% 16.7% 2.6× 31.2× 241.7×

Synthesized program (Section 5.4)

leipzig 55 5 1 7 1.4× 9.9× 21.7×
Sage2 2 488 200 705 3 051 0.8× 1.2× 3.1×
core 270 0 0 0 1.2× 1.3× 1.8×
hycomp 1 547 93 112 230 0.4× 1.1× 2.3×
AProVE 1 365 76 112 159 3.2× 65.1× 860.8×

Total 54.6% 3.6% 8.9% 32.9% 1.4× 15.7× 178.0×

Table 5.2: Comparison of the quality of the strategies found by our work against Z3.

5.5.1 Comparison to the State-of-the-art SMT Solver Z3

We evaluate the effectiveness of the learned strategies compared to the hand-
crafted strategies in Z3 4.6.2 on two metrics – number of solved formulas and
speedup. We compute the speedup by counting the amount of executed basic op-
erations (using rlimit counter in Z3) as a deterministic and machine independent
measure of the work required to solve the formula.

Table 5.2 (top) shows the number of formulas solved by Z3 compared to the best
strategy found by any of our methods. We also measure the speedups of our strate-
gies over Z3 on all the formulas which were solved by both methods. For example,
the 90

th percentile (P90) in the AProVE benchmark denotes that for 90% of the for-
mulas the speedup is at least 4.0×. The learned strategies significantly outperform
Z3 across all benchmarks – solving 27% more formulas, with up to 3 orders of
magnitude speedups and with only 4 formulas solved by Z3 but not by any of our
learned strategies. This shows that, for all our benchmarks, the strategies found
during training generalize well to other formulas from the same dataset.

Table 5.2 (bottom) shows the performance of the single combined strategy syn-
thesized as described in Section 5.4. Here, the result of synthesis is a program in
the Strategy language that is used as input to Z3 together with the formula to
solve. Naturally, as the Strategy language has limited expressiveness (i.e., restrict-
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Formulas solved Speedup percentile

Benchmark Both Only Z3 Only FastSMT None P90 P50 P10

10 second time limit

leipzig 57 3 0 8 5.8× 60.7× 191.5×
Sage2 332 2 246 220 1.2× 2.7× 35.5×
core 270 0 0 0 1.2× 1.3× 1.9×
hycomp 273 0 34 18 1.0× 1.8× 4.0×
AProVE 283 0 18 14 3.9× 87.8× 1 314.0×

Total 68.3% 0.3% 16.8% 14.6% 2.6× 30.9× 309.4×

10 minutes time limit

leipzig 63 0 1 4 3.5× 43.9× 183.2×
Sage2 630 0 138 32 1.3× 6.5× 199.6×
core 270 0 0 0 1.2× 1.3× 1.9×
hycomp 298 0 10 17 1.0× 2.0× 40.1×
AProVE 306 0 3 6 3.9× 89.3× 1301.5×

Total 88.1% 0.00% 8.6% 3.3% 2.2× 28.6× 345.3×

Table 5.3: Comparison of the best strategy found by any of our models against Z3 with
10 seconds (top) and 10 minutes (bottom) time limit for testing. Note that all
models are still trained only with 10 seconds time limit.

ing the kind of expressions that can be used as branch predicates) the performance
improvement is smaller compared to the best strategy found by any of our meth-
ods for each formula as shown in Table 5.2 (top). However, the improvement over
the default Z3 strategy is still significant – not only our synthesized program solves
formulas faster, it also solves 8.9% more formulas in total.

generalization to harder to solve formulas The 10 seconds time
limit in our experiments was selected for practical purposes - it is large enough to
solve the majority of the formulas and to learn the strategies in a reasonable time.
To check how well our strategies generalize to higher time limits we kept the 10

seconds time limit for training, but used 10 minutes for evaluation. We show the
results from this experiment in Table 5.3. With the 10 minutes time limit, 88.1%
of the formulas are solved by both methods. Crucially, our strategies are still able
to solve 8.6% more formulas than Z3. Overall, with the increased time limit, our
method can solve 97.7% of the formulas (up from 85.1% with the 10 seconds time
limit). Further, the speedups over Z3 are comparable (and even slightly higher) to
the speedups achieved with the 10 seconds time limit. Note since the experiments
take significantly longer to run, we evaluated them only on a subset of the dataset.
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Speedup - number of operations Speedup - wall clock time

Benchmark P90 P50 P10 Mean P90 P50 P10 Mean

leipzig 3.5× 43.9× 183.2× 71.6× 0.3× 2.3× 7.3× 3.5×
Sage2 1.3× 6.5× 199.6× 62.7× 1.2× 4.8× 72.5× 37.8×
core 1.2× 1.3× 1.9× 1.4× 0.5× 0.8× 1.3× 0.9×
hycomp 1.0× 2.0× 40.1× 51.9× 0.9× 1.4× 65.7× 25.0×
AProVE 3.9× 89.3× 1 301.5× 519.9× 0.9× 6.4× 120.8× 45.8×

Total 2.2× 28.6× 345.3× 141.5× 0.8× 3.1× 53.5× 22.6×

Table 5.4: Comparison of speedup in number of operations and wall clock time.

number of basic operations and runtime So far, all our experiments
used the number of basic operations as a deterministic measure of the amount of
work required to solve a formula. In Table 5.4, we show a comparison between
the number of operations and the wall clock time for the experiments in Table 5.3.
We can see that on average (P50), the wall clock runtime of the learned strategies
is 3.1× faster compared to the Z3 solver. However, this speedup is significantly
smaller than the corresponding speedup of the basic operations. The reasons for
the smaller speedup of the wall clock time are two fold: (i) for formulas that can
be solved very fast, wall clock time mostly accounts for the initialization of the
solver and the overhead of the system, rather than the actual time it takes to solve
the formula, and (ii) while the number of operations reported by Z3 do correlate
with the runtime, they are only an approximation which in our case, seems to
overapproximate the actual speedup.

5.5.2 Effectivness of the Learned Models

To compare bilinear model and the neural network based policy defined in Sec-
tion 5.3, we trained both models and used them to obtain the 100 most likely strate-
gies for each formula in our test dataset. The results are shown in Figure 5.7 and
additionally include three baseline models that perform random search, breadth-
first search and search using an evolutionary algorithm. The x-axis shows the
number of most likely strategies sampled from each model and the y-axis their
runtime proportional to the runtime of the best known strategy (i.e., best strategy
from the top 100 strategies across all models). Here, score one denotes that the
best known strategy was found, whereas score zero denotes that no strategy was
found that solves the formula. Even though the baselines perform poorly, they are
already able to find simpler strategies that can solve some of the formulas. Note
that in our experiment, the evolutionary algorithm performed similarly to a ran-
dom model, as it got easily stuck in a local minima without enough exploration.
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Figure 5.7: Comparison of our models (bilinear and NN) and baselines for learning SMT
solver strategies. Each line (higher is better) denotes the quality of the best
learned strategy among top x most likely strategies found by a given model
(x axis) proportional to the best known strategy overall (y axis).

Overall, the best model is the neural network policy (NN), which is also most
complex and considers the richest set of features.

the effect of state representation In Figure 5.8 we evaluate the effect
of instantiating the neural network model with a different set of input features
capturing the current state. For our task, the representation at the right level of
complexity is bag-of-words – if the formula representation is flattened using pre-
trained embeddings it loses the relevant information and with more complex AST
features the model suffers due to data sparsity. Further, we note that for our task
the most important features are those capturing the sequences of tactics applied
so far, which is illustrated by the strong performance of Strategy only model.
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Figure 5.8: The effect of different state representation used to train the neural policy.
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Figure 5.9: Performance of the neural policy after 2, 4, 6, 8 and 10 steps of Algorithm 5.

the effect of iterative training Finally, in Figure 5.9 we show the im-
provement of our neural network policy as it is continuously retrained using the
DAgger method [214]. We perform a total of 10 stages of DAgger, retraining the
model after every stage. In every stage, the current model is used to search for the
best strategies, as described in Algorithm 6. For the purpose of this experiment,
we save the models after every 2 stages and then load each model again and use
it to search for the best strategies on the unseen formulas from the test set. We
run all of the models for 100 iterations without retraining (which means that each
model predicts 100 best strategies for every formula). One can notice that later
models tend to outperform earlier models, thus justifying the increased number
of training stages. The only exception in this case are the models trained after 6

and 8 stages, where an earlier model performs better by a small margin. This can
be explained by the stochastic nature of the training procedure.

5.6 related work

Given the importance and wide range of SMT solver applications, a number of
approaches have been developed to improve both their runtime, as well as the
range of formulas they can solve.

portfolio based approaches The most common approach of tools such as
SATzilla [225], CPhydra [226], SUNNY [227], Proteus [228], ISAC [229] is a portfolio
based method. The key idea is that different SMT solvers use different heuristics
and hence work well for different types of formulas. Then, given several SMT
solvers and a dataset of formulas, the goal is to learn a classifier that uses features
extracted from the given formula to select the right SMT solver (or alternatively
defines the order in which to run the solvers). In comparison, we address a harder
problem - we learn how to instantiate an SMT solver with a strategy that efficiently
solves the given dataset of formulas.



148 fastsmt : learning strategies to solve formulas

evolutionary search A closely related work to ours is StratEVO [230] which
also studies the task of generating SMT strategies. However, StratEVO has several
limitations – it performs the search using an evolutionary algorithm, which does
not incorporate any form of learning, the search does not depend on the actual
formula, and local mutations tend to get stuck in local minima (as we show in
our experiments in Section 5.5). As a result, such approach reduces to random
search for many tasks where a suitable strategy cannot be trivially found. Instead,
we leverage models that learn from previously explored strategies as well as the
current formula. As we show, this enables us to discover complex strategies that
are out of reach for approaches not based on learning.

learning branching heuristics and premise selection Recently, sev-
eral learning techniques have been applied for improving the performance of
SAT solvers [231, 232], constraint programming solvers [233], solving quantified
boolean formulas [234], solving mixed integer programming problems [235] as
well as premise selection in interactive theorem provers [236–238]. At a high level,
these are complementary to us – we learn to search across many tactics and com-
bine them into high level strategies, while they optimize a single tactic (e.g., by
learning which variable to branch on in SAT). Our work also supports formulas
from multiple theories (as long as there is a corresponding tactic language) where
selecting a suitable high level strategy leads to higher speedups compared to op-
timizing a single tactic in isolation. However, there are also common challenges,
such as defining a suitable formula representation. This representation can range
from a set of hand-crafted features [231, 239], to recursive and convolutional neu-
ral networks [236, 238], to graph embeddings [237]. We extend this line of work
by considering fast to compute representations based on bag of words, syntactic
features, and features extracted from a graph representation of the formula.

parameter tuning Finally, a number of approaches exist for finding good
parameter configurations from a vast space of both discrete and continuous param-
eters, including ParamILS [240], GGA [241], TB− SPO [242] or SMAC [243]. An interest-
ing application of such approaches to the domain of SAT/SMT solvers is proposed
by SATenstein [244], which first designs a highly parameterized solver framework
to be subsequently optimized by off-the shelf tools. Although such tools are not
applicable for the task of searching for strategy programs (that include loops and
conditionals) considered in our work, they can be used to fine-tune the strategy
parameters once a candidate strategy is found.

5.7 conclusion

We presented a new approach for improving the performance of state-of-the-art
SMT solvers based on a combination of training a policy that learns to discover
strategies that solve formulas efficiently and a synthesizer that produces inter-
pretable strategies based on this model. The synthesized strategies are represented
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(declare-const x Int)

(declare-const y Int)

...

(assert (...))

(assert (...))

(check-sat)

(a) Formula solved by
the default Z3 strategy

(declare-const x Int)

(declare-const y Int)

...

(assert (...))

(assert (...))

(check-sat-using (fastsmt-strategy))

(b) Formula solved by
our learned strategy

Figure 5.10: Example which shows that integrating our learned strategy with Z3 corre-
sponds to changing a single line of code.

as programs with branches that can be directly used by the developers, without
requiring any changes to the underlying solver. Concretely, to solve a formula
with our learned strategy, it is sufficient to change a single line of code in the for-
mula definition as illustrated in Figure 5.10. Here, we replace the line (check-sat),
which corresponds to solving the formula using the default Z3 strategy, with
(check-sat-using (fastsmt-strategy)), which solves the formula using our learned
strategy. This avoids the need to evaluate the learned policy at inference time and
ensures that all the SMT solver functionality is still supported (e.g., retrieving
a model or computing the unsat core).

We demonstrate the practical usefulness of our approach by learning strategies
that consistently improve over the Z3 SMT solver on formulas from 5 official
SMT-LIB benchmarks of varying complexity. Concretely, when selecting the best
strategy per formula, we solve 27% more formulas and achieve on average ≈31×
runtime improvements over Z3. When synthesizing the best strategy for the whole
benchmark, we solve 8.9% more formulas with a speedup of ≈16× on average. An
interesting future work would be to close this gap between best strategies learned
using a neural policy and the strategies that can be represented in the Strategy

language supported by Z3. For example, one could try to learn new probes and
formula measures that can be used as predicates in the Strategy language, thus
increasing its expressiveness. This also partially addresses the main limitation of
our approach, the fact that we are limited by the fragment of the SMT theories for
which suitable tactics have to be predefined by the authors of Z3. Another future
direction would be to automatically learn the transformations (i.e., tactics) that
preserve satisfiability of formulas but improve the solver performance. Such trans-
formations have been used by a subsequent work for the complementary problem
of checking the correctness of SMT solvers [245, 246]. These could include rewrit-
ing parts of the formulas using an API function that exists but the user was not
familiar with (e.g, PbEq), as well as learning a probabilistic model that selectively
restricts the formula to make it easier for the solver to prove3.

3 In the next chapter, we will discuss a handcrafted instantiation of this idea as one of the techniques
that makes our approach scalable (Section 6.5.1)
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So far, our focus was on building new techniques and tools that predict program
properties. Concretely, given a program x as input, we learned a number of prob-
abilistic models of code (Chapter 2), robust models that perform type inference
(Chapter 4), compute points-to or allocations site analysis (Chapter 3), or learn
strategies to solve SMT formulas (Chapter 5). To achieve this, we trained our mod-
els using two perspectives: (i) a machine learning perspective that learns over pro-
grams, where the model is parametrized by a set of weights θ (typically correspond-
ing to the weights of a deep learning model), and (ii) a programming languages
perspective, where we learn programs which are either used directly to compute
the results (e.g., as done when learning a static analyzer in Chapter 3) or are used
to parametrize a machine learning model (as in Chapter 2).

program synthesis As our next step, we explore the direction of learning
programs further, but this time from the perspective of program synthesis. Even
though the output of both program synthesis and learning programs is the same,
a program, they differ in what guarantees they provide and in which settings
they are used. In particular, the most common application of program synthesis is
to repeatedly synthesize programs with provable guarantees from a user provided
specification I , such as a small set of input-output examples. For example, given the
input-output pairs (01,10) → 11 and (00,10) → 10, a bitvector synthesizer might
return a program that computes bitwise or of the input arguments (x, y)→ x | y.
More formally, the problem statement in program synthesis is typically phrased
as a satisfiability query that searches for a program which produces the correct
result when executed on all the input-output examples in the specifications I , i.e.,
∃p ∈ L ∀(x, y) ∈ I . p(x) = y. In contrast, learning from programs is usually in-
voked only once on a massive datasets and applied to tasks that produce probabilistic
solutions, without any formal guarantees. As a result, the problem formulation is
phrased as learning a program that maximizes the probability (or minimizes the
loss) of the correct answer arg maxp∈LE(x,y)∼D Pr(y | x; p).

In Figure 6.1 we illustrate the formulation of the techniques presented so far
and their relation to program synthesis. We can see that in Chapter 3, we have
in fact already showed how program synthesis techniques can be combined with
probabilistic learning over large datasets to provide some guarantees – in this case
that the learned analysis soundly over-approximates the correct results. Further,
for completeness, we also differentiate between program synthesis using symbolic
and statistical search (e.g., [247]). While in this chapter we will focus on using
symbolic search, we note that our recent work on guiding program synthesizers [7]
is a general technique applicable to both (though beyond the scope of this thesis).
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θ
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(Chapter 2)
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(Chapter 3)
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∃p ∈ L ∀(x, y) ∈ I . y = p(x)

symbolic search

Figure 6.1: Overview of the techniques described so far and their high-level formulation.

this chapter In this chapter, we present a novel approach for synthesizing ro-
bust relational layouts from examples. Given an application design consisting of a
set of views and their location on the screen, we synthesize a relational layout that
when rendered, places the components at that same location. To achieve this, we
first develop a symbolic synthesizer that produces relational layouts for Android
that generalize across multiple screen sizes and resolutions. Then, we show how
machine learning techniques can be used to improve the synthesizer by making
it scale to real-world layouts, generalize better and automate parts of the design
process domain experts need to perform in order to build such synthesizer.

synthesis layouts from images The design and creation of the user inter-
face layouts are core parts of the application development for both desktop and
mobile applications. Creating a user interface typically involves a collaboration
between a designer, who draws an image of how the user interface should look
like, and a developer that implements the design on the desired platform such as
Android, iOS, Web or desktop. Concretely, the goal of the developer is to write an
implementation of the user interface, referred to as layout, which when rendered
on the device places all the views (e.g., buttons, text views, images, etc.) at the
same location on the screen as specified by the designer, as shown in Figure 6.2.
For a developer, the task of writing code to generate a given user interface lay-
out is challenging due to the large space of potential designs – many candidate
programs can produce visually identical user interface layouts yet some of these
programs may fail to generalize well (e.g., when a screen is resized) or have poor
performance. Designing robust layouts is a critical factor, especially in domains
in which layouts are expected to be used across a large number of different con-
texts. For example, each Android application can be potentially installed on more
than 15 000 devices with varying screen resolutions and physical dimensions, all
of which need to be considered by the developer during layout implementation.
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<ConstraintLayout>

<Button id="v1"

layout_width="match_constraint"

layout_marginTop="10dp"

constraintLeft_toLeftOf="v3"

constraintTop_toTopOf="parent"

.../>

<ProgressBar

...

</ConstraintLayout>

(b) Layout Implementation

360dp (Galaxy Nexus)

v1 v2

v3 v4

(a) User Interface Design

360dp (Galaxy Nexus)

v1 v2

v3 v4

v1 v2

v3 v4

384dp (Nexus 4)

(c) Rendered Layout

Figure 6.2: Main steps of user interface design: (a) the designer draws an image contain-
ing four views v1, . . . , v4 (e.g., buttons, text views, etc.) how the application
user interface should look like, (b) the developer implements the design for
a given platform (e.g., Android), (c) the implementation is rendered on a
range of devices with different physical dimensions.

common layout errors To illustrate common layout generalization errors,
consider the layouts shown in Figure 6.3. Given the input design from Figure 6.2
the developer can create multiple layouts that all produce the expected results
when rendered on a Galaxy Nexus device but for various reasons do not general-
ize well to devices with slightly different screen size such as Nexus 4 or P4 Pro.
The leftmost example shows that keeping the absolute view position and size un-
changed on a smaller device often results in drawing some of the views outside
the screen. Shifting views to the left or right to adjust for the smaller screen size
is also not a solution, as it can result in overlaying views on top of each other. On
a larger device, the issue is reversed and not adjusting the views to the screen size
leads to visual errors due to resulting blank areas on the screen. The layout that
generalizes well should adjust the position of views v2 and v4 while also resizing
v2. Note that deciding which views to adjust and how is a hard problem that is
context dependent – it depends on other components and their location on the
screen. This is where the developer experience is crucial, as it allows to manu-
ally create a layout that generalizes to a large number of devices often using only
a single example provided by the designer.

341dp (P4 Pro)

v1 v2

v3 v4

Views Outside of Screen

341dp (P4 Pro)

v1 v2

v3 v4

Overlaying Views

v1 v2

v3 v4

384dp (Nexus 4)

Wrong Scaling

v1 v2

v3 v4

384dp (Nexus 4)

Inconsistent Alignment

Figure 6.3: Common layout generalization errors, shown in red, on devices with different
physical dimensions than the device for which the layout was designed.
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existing approaches are insufficient To address the gap between vi-
sual design and concrete layout implementation, several approaches have been
proposed. Given the complexity and time requirements of this task, a common
method is to outsource it to a company that manually creates layouts from images
for a high fee [248–251]. Another approach is to try and automate parts of the pro-
cess using better tool support [252, 253], generating user interface sketches from
real images [254] or hand drawings [255], sketch based code search for similar
layouts [256] or generation of layouts for different screen orientations [257].

Other approaches try to address the problem by generating layout code directly
from images [258–261]. Their main focus is on the computer vision task required
to process raw images and not on the actual layout synthesis. Concretely, (i) they
lack a language for expressing layouts [258, 259] or the language is simple and
fails to express many layouts [260], (ii) they either do not define a synthesis algo-
rithm or it is implemented as part of a neural network which is non-interpretable,
lacks any formal guarantees and can even produce layouts that are syntactically
incorrect, (iii) they return any layout, without considering the issue of generaliza-
tion to other contexts (i.e., multiple devices), and (iv) they do not provide a way
for a developer to give feedback in cases where the layout should be adjusted. The
ability to incorporate user feedback is especially important, since the synthesizer
is expected to make mistakes as the input specification is severely underspecified –
it contains only a single example, yet the produced layout is expected to generalize
to a large number of different devices and screen sizes.

our work In this work, we propose a system called InferUI that addresses the
above limitations in a principled way. The main idea is to phrase the problem of
generating layouts as a program synthesis from examples. The examples consid-
ered in our work consist of a set of absolute view positions, allowing for a natural
way to express the desired design. Then, given a set of views and their absolute
positions, InferUI synthesizes a relational layout that renders each view according
to the absolute view positions. Crucially, we also consider the harder task of syn-
thesizing a relational layout that generalizes well across multiple devices from an
input specification consisting of only a single device. As there can be a large space
of possible solutions, we introduce three additional mechanisms in order to guide
the synthesizer towards the desired goal: we present a set of robustness proper-
ties that a layout should satisfy (these also prevent common layout generalization
errors), we introduce a probabilistic model of constraints learned from existing
layouts written by developers (thus, giving preference to more natural layouts),
and we additionally improve the generalization by learning a probabilistic model
of how the rendered real-world applications look like (i.e., learning a probabilistic
model how program outputs look like). Conditioning on the program outputs is
useful not only as an additional source of learning signal but also because it al-
lows us to obtain significantly larger datasets than what would have been possible
otherwise – for example, for Android it is sufficient to browse applications in the
marketplace without the need of obtaining their source code.
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main contributions Our main contributions are:

• A formal specification of a set of relational constraints from the most expres-
sive and efficient Android ConstrainLayout (version 1.0.2).

• A new algorithm for synthesizing relational layouts on a single device. It
succeeds in 100% of cases, bridging the gap between design and layout im-
plementation for one device.

• A new algorithm that synthesizes relational layouts and generalizes well to
multiple devices. Even when the given specification consists of a single device,
the layouts correctly generalize in 92% of the cases for a real-world dataset
of Google Play applications.

• A probabilistic model of constraints learned from a large set of layouts writ-
ten by developers. The model is used to guide the layout synthesis and en-
ables solving complex real-world layouts in less than 3 seconds. Further, it
allows synthesizing constraints that developers prefer – it correctly predicts
the exact constraints written by a developer in 62% of cases.

• A set of robustness properties that capture good design practices and pre-
vent common visual errors caused by incorrect layouts. We incorporate these
properties as part of the synthesis problem, ensuring they are always satis-
fied by the produced layouts. Further, we use the robustness properties to
discover several visual errors in existing Android applications.

• A technique that reduces the problem of selecting which program general-
izes well to the simpler task of deciding which output is correct. This allows
us to learn a probabilistic model over program outputs that guides the syn-
thesis towards layouts that generalize well. While the full details of this tech-
nique are beyond the scope of this thesis, we do provide a brief overview in
Section 6.5.2. For a complete description, please refer to our work [7].

outline We organize this chapter as follows. In Section 6.1 we discuss the
motivation behind our work and the practical benefits of the layout synthesis. In
Section 6.2 we formally define the semantics of the Android’s ConstrainLayout

and show how the Android renderer engine encodes the semantics as a set of linear
equations; the solution of which specifies the absolute position of each view. In
Section 6.3 we introduce an algorithm that synthesizes layouts for a single device.
In Section 6.4 we extend the algorithm to synthesize layouts that generalize across
multiple devices, a necessary extension for making our tool practically usable. In
Section 6.5 we introduce a probabilistic model used to guide the synthesis that
allows scaling to real-world layouts. In Section 6.6 we provide an experimental
evaluation of our approach, which also incudes a synthetic user study where the
synthesizer refines the layout based on user feedback. Finally, we describe the
related work in Section 6.7 and provide summary and discussion in Section 6.8.
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6.1 practical benefits of our approach

Our work carries a number of practical benefits when it comes to writing, maintain-
ing and ensuring correctness of relation layouts for Android, including: automa-
tion of end-user design, discovering and fixing layout errors, as well as porting
existing layouts to improve performance. We briefly elaborate on each of these
next, and discuss at a high level how our approach achieves these goals.

automating end-user design Traditionally, the process of creating any type
of application (web, desktop, mobile, etc.) or content (text documents, images) con-
sists of a design phase and an implementation phase. In the design phase the user
decides what the result should be, whereas the implementation puts the design
into effect. In some domains, it is possible to lift the implementation to a level
that is natural for the user to operate on and hides all (or majority) of the internal
complexity. For example, consider the task of drawing an image using a stylus
pen compared to writing the corresponding vector image directly in SVG format.
Even though both approaches represent the result in an SVG format, using the sty-
lus pen is natural, orders of magnitude faster and does not require any technical
knowledge about how SVG is implemented.

Unfortunately, even though there are currently almost 3 million Android appli-
cations, implementing Android layouts still resembles drawing images by writing
SVG format by hand. In particular, Android layouts are represented using XML
format where the user needs to know the semantics of several layouts contain-
ers (e.g., RelativeLayout, LinearLayout, FrameLayout, etc.), all of their attributes,
and how they affect rendering the views on screen. Instead, in our work, we hide
the implementation complexity of Android layouts from the user and synthesize
layouts from a specification that is natural for the user to write – by giving exam-
ples of how the views should be positioned on screen.

avoiding and finding layout errors A key challenge in layout synthesis
and a potential cause of errors is failing to produce layouts that generalize well
to a large set of different devices and screen sizes. To address this challenge we
developed and formalized a set of robustness properties that good layouts should
satisfy. Our synthesis algorithm ensures that all of these properties hold for the
generated layouts. Further, these robustness properties are useful beyond synthesis
to find errors in existing layouts, as demonstrated in our evaluation.

porting layouts for better performance A major reason why rela-
tional layouts were introduced in Android is their rendering performance. Con-
cretely, implementing a given layout using ConstraintLayout can result in up to
20% faster rendering speed compared to previous layout implementations (e.g.,
LinearLayout or RelativeLayout). However, as ConstraintLayout was only re-
cently released, more than 99% of existing layouts in Google Play Store applica-
tions are still written using the old layout system. To benefit from this improved
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Application Design

Flat Hierarchy (Our Work) Nested Hierarchy

wrapper view

Figure 6.4: Same set of views expressed as flat vs nested layout hierarchy. The nested
hierarchy uses extra views used to group other views without being rendered.
In contrast, the flat hierarchy uses more expressive layout constraints that
removed the need of wrapper views and results in faster layout rendering.

performance, developers have no other choice but to manually rewrite their exist-
ing layouts. This not only requires considerable amount of time but can introduce
errors and visual artefacts. Instead, using our approach, developers can automat-
ically synthesize ConstraintLayout from their existing layouts. Crucially, the lay-
outs are synthesized not on a “best effort” basic but instead with provable guaran-
tees that the result will visually look the same on all of the supported devices.

To illustrate the reason behind the performance gains, consider the layout shown
in Figure 6.4 consisting of three views. Here, the designer would like the up-
per TextView to be centered with the Image and TextView below it. The stan-
dard way to implement this on Android is to wrap the bottom two views in
a LinearLayout which positions them next to each other. Then the LinearLayout

can be centered with the TextView above. This results in deeply-nested layout
hierarchies that are slower to render. Instead, the ConstraintLayout is more ex-
pressive and enables centering a view, in our case the upper TextView, in between
two other views – the left edge of bottom Image and right edge of the bottom
TextView. This makes the view hierarchy smaller and faster to render by remov-
ing the unnecessary LinearLayout. Note that the added expressivity also means
that ConstraintLayouts are harder to synthesize.

probabilistic model of constraints Finally, our probabilistic model of
constraints is a useful component that can be incorporated in other applications.
For example, a common issue with a number of approaches that identify user
interface components in images [258, 260, 261] is that they produce noisy output.
A possible approach to reduce this issue would be to incorporate the probabilistic
model as an additional term in the loss function, effectively allowing the computer
vision model to adjust the views into positions that produce likely layouts.
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6.2 capturing relational constraints

In this section, we define a set of relational constraints that capture the semantics
of Android’s ConstraintLayout.

views , handle points and relations We define a view as a tuple of five
handle points corresponding to left, right, top, bottom edges and text baseline
(the vertical position of an imaginary line upon which a line of text is placed),
illustrated in Figure 6.5. Note that the text baseline is defined only for views con-
taining text. For a given view A, we denote these handle points as A.xL, A.xR,
A.yT , A.yB and A.ybaseline. The handle points allow us to specify relational con-
straints such as: left edge of view A should be aligned to right edge of view B.
That is, we can relate views via their handle points.

xL xR

yT

yB

ybaselinetextView = 〈xL, xR, yT , yB, ybaseline ∈ Z≥0〉

Figure 6.5: View definition consisting of five handle points used to relate views to each
other (left) and illustration of the handle points on a rendered view (right).

relational constraints To relate views via their handle points, the fol-
lowing three classes of constraints exist – constraints for relative, centering and
circular positioning. We define a constraint to specify the horizontal position of
a view as the following tuple:

Constraint = 〈th ∈ C, A, B, C ∈ View, mL, mR ∈ Z≥0, bh ∈ R[0,1], α ∈ Z[0,360), r ∈ R〉

where th is the type of the constraint, A, B and C are views related to each other
and mL, mR, bh, α and r are constants corresponding to the left margin, right mar-
gin, bias, angle in degrees and distance, respectively. Note that the constraints typ-
ically use only a subset of the constants and views, depending on the constraint
type (which also specifies the given constant semantics). The constraints that spec-
ify vertical position are defined analogously, except that they use vertical margins
and bias (mT , mB, bv) instead of horizontal margin and bias (mL, mR, bh). In what
follows, we formally define 26 different types of constraints C that can be applied
to a given view to specify its location, as supported by ConstraintLayout v1.0.2.

relative positioning constraints A core component in relational layout
is constraining the position of a given view relative to another. This can be done
either horizontally (e.g., view A is to the right of B) or vertically (e.g., view A
is above B). We provide semantics of horizontal relational layout constraints in
Figure 6.6. For example, the constraint RLR specifies that the left edge of view
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A should be aligned to the right edge of view B, which results in the constraint
A.xL = B.xR + mL. When mL = 0, then the views would be rendered right next
to each other as shown in Figure 6.6 (bottom left). If mL > 0, then view A will be
positioned with the offset mL from view B. Vertical relative constraints are defined
analogously to horizontal constraints.

Relative Positioning Constraints

RLL: Align Left of A to Left of B + Margin RRL: Align Right of A to Left of B + Margin
A.xL = B.xL + mL A.xR = B.xL −mR

RLR: Align Left of A to Right of B + Margin RRR: Align Right of A to Right of B + Margin
A.xL = B.xR + mL A.xR = B.xR −mR

Left of A to Right of B + Margin

B A
mR = c

Left of A to Right of B

B A

Figure 6.6: Relative positioning constraints that specify the horizontal position (left and
right edges) of view A relative to other views (B and/or C). Vertical con-
straints for top and bottom edges (not shown) are defined analogously.

baseline constraints Baseline constraints RB provide additional flexibility
to constraint the vertical position of two views by aligning their baseline handle
points. This is illustrated in Figure 6.7, where we can see that regardless of the
view size, their text baseline will be positioned at the same vertical position.

B A
Baseline Constraints

RB: Align Baseline of A to Baseline of B
A.ybaseline = B.ybaseline

Figure 6.7: Baseline position constraints that align two views vertically such that their
text is at the same vertical position.

fixed view size centering constraints In addition to relating pairs of
views using relative position constraints, it is also possible to relate view triples.
A typical example is horizontally centering a view on the screen, as illustrated
in Figure 6.8 (bottom left). Here, we would like to express that view A should be
horizontally centered in between views B and C instead of relating it only to the
left (or right) view using a margin. For this purpose, we define fixed view size
centering constraints, as shown in the Figure 6.8 (top). Without margins and with
the default bias b = 0.5, view A is always centered in between the corresponding
handle points of views B and C (note that B and C can refer to the same view).
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The margins have the same semantics as in relative positioning constraints, only
that now there are both left and right margins (or top and bottom).

The bias attribute b ∈ R[0,1] controls the preference for positioning in between
views B and C. The intuition is that the bias specifies where to position the view on
the line segment between both handle points. For instance, for b = 0.35, the view
will be positioned at 35% of the line segment length, as illustrated in Figure 6.8
(bottom right). If the bias is set to the minimum (i.e., b = 0) the view A is positioned
directly to the right of B. Note that even if the bias is set to minimum (or maximum)
the margins still apply. That is, the centering constraint with b = 0 and mL = 10
will position view A at distance 10 from the right edge of view B.

Finally, in order to accurately model the semantics of Android’s layout system
implementation we strengthened the constraints. In particular, for constraints FLL
and FRR the margins are ignored if view A is centered with a single handle point
(i.e., if B = C). Further, for constraints FLR and FRL we discovered a bug in the
Android layout solver that results in rendering view A incorrectly (its position is
shifted by one pixel). This happens in case view A is related to the content frame
(a view representing the available device screen size) and the margins are larger
than its distance from the content frame.

Fixed View Size Centering Constraints

FLR: Center A between Left of B and Right of C + Margin + Bias
(1− b) · A.xL + b · A.xR = (1− b) · (B.xL + mL) + b · (C.xR −mR) ∧
(A = B ∧ A = ContentFrame)⇒ (mL ≤ A.xL − B.xL ∧mR ≤ A.xR − B.xR)

FRL: Center A between Right of B and Left of C + Margin + Bias
(1− b) · A.xL + b · A.xR = (1− b) · (B.xR + mL) + b · (C.xL −mR) ∧
(A = B ∧ A = ContentFrame)⇒ (mL ≤ A.xL − B.xL ∧mR ≤ A.xR − B.xR)

FLL: Center A between Left of B and Left of C + Margin + Bias
(1− b) · A.xL + b · A.xR = (1− b) · (B.xL + mL) + b · (C.xL −mR) if B 6= C
(1− b) · A.xL + b · A.xR = (1− b) · B.xL + b · C.xL ∧mL = 0∧mR = 0 if B = C

FRR: Center A between Right of B and Right of C + Margin + Bias
(1− b) · A.xL + b · A.xR = (1− b) · (B.xR + mL) + b · (C.xR −mR) if B 6= C
(1− b) · A.xL + b · A.xR = (1− b) · B.xR + b · C.xR ∧mL = 0∧mR = 0 if B = C

B A C
b=0.5

mL =0 mR =0
B A C

b=0.35

mL =0 mR =0

Figure 6.8: Fixed view size centering constraints that specify the horizontal center of
view A to be along the line connecting the corresponding handle points of
view B and C. Note that the constraints are fixed view size because they specify
only the center of view A, not its width or height. Vertical constraints (not
shown) are defined analogously.
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circular constraints Circular position constraints, shown in Figure 6.9,
allow relating the center of two views at an angle α and a distance r. Using circular
constraints, we can express that two views are related at an angle α = 45° without
having to compute the corresponding margins manually.

B

A
α

r

Circular Constraints

RC: Align Center of A to Center of B at an Angle + Distance
A.xL + A.xR = 2r · sin(α) + (B.xL + B.xR)

Figure 6.9: Circular constraints that position the center of view A at an angle α with
distance r from the center of view B.

dynamic view size centering constraints So far all the constraints as-
sumed that the width and height of the view are known. This is because in order
to render the view on the screen we need to compute the position of all of its
edges and not only one of them or its center. To support dynamic view sizes, the
constraint has to relate both horizontal (or vertical) handle points, as defined in
Figure 6.10. For example, the effect of constraint DRL : A.xL = B.xR+mL ∧ A.xR =
C.xL+mR with mL = 10, mR = 10 is that view A is rendered between the right
and left edges of views B and C, respectively, while spanning the whole space in
between them (except for margins), as illustrated in Figure 6.10 (bottom).

Dynamic View Size Centering Constraints

DLL: Center A between Left of B and Left of C + Margin
A.xL = B.xL + mL ∧ A.xR = C.xL + mR

DLR: Center A between Left of B and Right of C + Margin
A.xL = B.xL + mL ∧ A.xR = C.xR + mR

DRL: Center A between Right of B and Left of C + Margin
A.xL = B.xR + mL ∧ A.xR = C.xL + mR

DRR: Center A between Right of B and Right of C + Margin
A.xL = B.xR + mL ∧ A.xR = C.xR + mR

Center A between Right of B and Left of C + Margin

B A C
mL =40 mR =40

B A C
mL =10 mR =10

Figure 6.10: Dynamic view size centering constraints that specify the position of both
view edges. As a result, specifying the position of both edges also deter-
mines the view size. Vertical constraints (not shown) are defined analo-
gously.
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view size The view size needs to be specified in addition to relative, circular
and fixed size centering constraints in order to compute the absolute positions of
all view handle points. The view size is defined as follows:

Size = 〈th, tv ∈ {Fixed, MatchConstraint}, width, height ∈ Z≥0〉

that is, the view size is either fixed (denoted as Fixed) in which case the view size
is a constant or dynamically computed, as specified by the constraints (denoted as
MatchConstraint). Note that it is allowed for a view to have one dimension fixed
while the other dimension is computed dynamically.

6.2.1 Layout Constraint Solving

Having formalized the relational constraints and view sizes we now describe how
they are used to compute absolute view positions. This will be a necessary com-
ponent for synthesizing layouts that generalize to multiple devices presented in
Section 6.4. Given a set of views with associated constraints and view sizes, we
compute the absolute view positions in two steps:

1. we encode view constraints and view sizes as a set of linear equations where
free variables correspond to view handle points (as formalized in Figures 6.6,
6.7, 6.8, 6.9 and 6.10), and

2. we find the satisfying assignment to the free variables by solving the result-
ing linear equations.

In our case, this assignment captures the absolute positions of each view’s handle
points corresponding to the left, right, top and bottom edges. However, because all
the constraints are relational (i.e., they only specify the position of a view relative
to other views), one may obtain many different satisfying assignments. This is
undesirable as it results in non-deterministic view position. Because of this, a so
called content frame (typically spanning the available screen size) is included as an
additional view with fixed absolute coordinates. Then, if all views are transitively
related to the content frame and the relations do not contain cycles, the resulting
system of linear equations has exactly one satisfying assignment. Throughout the
paper, when indexing views we use ρ or index zero (e.g., v0) to refer to the content
frame and indices 1 and above when referring to other views. Further, for all of
our algorithms we simplify the presentation and remove clutter by encoding only
the horizontal constraints (the vertical constraints are defined analogously).

encoding relational constraints Figure 6.11 defines how to encode re-
lational constraints as a conjunction of linear equations. We have three kinds of
equations: φposition, φsize and φconstraints. Here, φposition specifies the absolute posi-
tion of the content frame. As this position is known, we simply assign the concrete
values to the content view handle points. Equation φsize restricts the view size. If
the size is fixed it is enforced using xi

L + si.width = xi
R, which specifies that the



6.2 capturing relational constraints 163

ψlayout(ρ∈View, c⊂Constraint, s⊂Size) = φposition ∧ φsize ∧ φconstraints

φposition
def
=
(

x0
L = ρ.xL

)
∧
(

x0
R = ρ.xR

)
φconstraints

def
=
|c|∧
i=1

JciK φsize
def
=
|s|∧
i=1

xi
L + si.width = xi

R if si.ti
h = Fixed

xi
R − xi

L ≥ 0 otherwise

Figure 6.11: Function ψlayout that specifies absolute view positions from relational layout
constraints c and view sizes s (where |c| = |s|) by encoding this problem as
a set of linear equations.

distance between left and right handle points is equal to the width of the view. If
the size is computed dynamically we only enforce that it is non negative. Finally,
φconstraints encodes the actual constraints over the view handle points. We use JciK
to denote the evaluation of the constraint ci, which returns the logical formula
associated with ci based on its definition from Figures 6.6, 6.7, 6.8, 6.9 and 6.10.

example Figure 6.12 illustrates the encoding of the relational layout constraints
according to Figure 6.11 on a simple example consisting of two views. The con-
straint c1

h specifies that the left edge of the first view is to the right of the left
edge of the content frame with margin 10. The constraint c2

h specifies that the sec-
ond view should be positioned between the right edges of the first view and the
content frame. The width of the first view is fixed, while the width of the second
view is computed dynamically allowing it to span all of the remaining available
space on the screen. By solving the resulting formula we can compute the absolute
positions of all views, as shown at the bottom of Figure 6.12.

c1
h = 〈th = RLL, A = v1, B = v0, mL = 10〉 s1

h =〈th = Fixed, width = 260〉

c2
h = 〈th = DLR, A = v2, B = v1, C = v0, mL =mR =10〉 s2

h = 〈th = MatchConstraint〉

Input: Constraints & Size

Constraint System

ψlayout((0, 720), (c1
h, c2

h), (s
1
h, s2

h)) = φposition ∧ φsize ∧ φconstraints

φconstraints
def
= x1

L = x0
L + 10 ∧ x2

L = x1
R + 10∧ x2

R = x0
R − 10

φposition
def
= x0

L = 0∧ x0
R = 720 φsize

def
= x1

L + 260 = x1
R ∧ x2

R − x2
L ≥ 0

Solution

A satifying assigment to x1
L, x1

R, x2
L, x2

R in ψlayout

v1 v2x1
L = 10, x1

R = 270 x2
L = 280, x2

R = 710

Figure 6.12: An example of how the relational constraints are encoded using ψlayout. The
solution of the formula specifies the absolute view positions on the screen.
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6.3 single device relational layout synthesis

So far we defined how to compute absolute view positions given relational con-
straints (Section 6.2.1). We now discuss the inverse problem of generating these
constraints for a single device given the absolute view positions and sizes (as pro-
vided by a user). In particular, for each view, we are interested in generating one
constraint that controls its horizontal position and one constraint for its vertical
position. We need at least one constraint (for either axis) as otherwise the view po-
sition is unconstrained and cannot be computed. Moreover, exactly one constraint
is also sufficient because if multiple constraints are specified then they are either
redundant or unsatisfiable.

problem statement The layout synthesis problem is defined as follows:

Input: A set v ⊂ View of N views with specified absolute positions
on the screen defining where the views should be rendered.
A content frame ρ∈ View defining the screen size.

Output: A set of N view sizes s ⊂ Size and N horizontal and verti-
cal constraints ch, cv ⊂ Constraint (one for each input view)
where v |= ψlayout(ρ, ch, cv, s).

That is, we need to define a synthesizer that for a given screen size ρ and abso-
lute positions of all views, finds constraints and view sizes whose solution matches
the input (as specified by ψlayout). Such a synthesizer can then automate the man-
ual process of writing constraints and view sizes by hand.

relational layout synthesis We encode the problem as a logical formula
ψ ranging over boolean, integer and real valued variables, as shown in Figure 6.13.
A model (i.e., a satisfying assignment to all the free variables) of ψ determines
which constraints and view sizes should be applied, such that we solve the prob-
lem statement above. We divide the formula into four parts φposition, φvalid, φacyclic
and φconstraints that are described next.

Here, φpositions encodes the input specification by setting the handle points based
on the input views v and content frame ρ. Then, φvalid defines the domain of con-
stants which are allowed to be used by the (to be synthesized) relational con-
straints. In particular, the margins mL, mR and the distance r have to be non-
negative, the bias bh has to be between zero and one, and the angle is a valid
degree. The formula φacyclic encodes that constraint relations are acyclic. Acyclic
relations are required, as otherwise the constraints do not specify a unique solu-
tion when solving for absolute view positions (since views depend transitively on
themselves). To encode acyclic relations we assign an integer variable vi.d > 0 to
each view vi. The intuition behind each vi.d is that it captures distance from the
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ψ(ρ∈View,v⊂View) = φposition ∧ φvalid ∧ φconstraints ∧ φacyclic

φposition
def
=
(

x0
L = ρ.xL

)
∧
(

x0
R = ρ.xR

)
∧

 |v|∧
i=1

xi
L = vi.xL ∧ xi

R = vi.xR


φvalid

def
=
|v|∧
i=1

mi
L ≥ 0∧mi

R ≥ 0∧ 0 ≤ bi
h ≤ 1∧ 0 ≤ αi < 360∧ ri ≥ 0

φconstraints
def
=
|v|∧
i=1

|C(vi ,v,ρ)|∧
k=0

gi
k ⇒ Jci

kK

 ∧ gi
0 + · · ·+ gi

|C(vi ,v,ρ)| = 1

φacyclic
def
= (ρ.d = 0) ∧

 |v|∧
i=1
vi.d>0∧

|C(vi ,v,ρ)|∧
k=0

gi
k ⇒ vi.d =

Jci
k.BK.d + 1 if ti

h ∈ R

Jci
k.BK.d + Jci

k.CK.d + 1 otherwise



Figure 6.13: Synthesis algorithm that given a set of absolute view positions v and a con-
tent frame ρ computes suitable constraints and view sizes that render the
views at the same absolute positions as specified by v.

content frame, where the content frame has a distance of zero (i.e., ρ.d = 0). Then,
the distance of a view is defined as 1 plus the sum of distances of the views it
relates to (where Jci

k.BK is used to denote view B associated with constraint ci
k).

Such encoding efficiently disallows cycles, since introducing a cycle will result in
an unsatisfiable assignment to distance variables.

The φconstraints encodes the constraints for each view. Let C(vi,v, ρ) denote the
set of all admissible constraints for a given view vi. This set is obtained by instan-
tiating each constraint type with view vi as source (i.e., A = vi) and all the other
views including content frame as possible targets (i.e., B, C ∈ {ρ ∪ v \ {vi}}). We
then associate a boolean variable gi

k with each admissible constraint ci
k for that

view and add the implication gi
k ⇒ Jci

kK. The interpretation of gi
k is such that if

it is true, the constraint ci
k is activated, and will be returned as part of the solu-

tion. Finally, we enforce that for each view exactly one horizontal constraint is
synthesized1, by restricting the sum of all gi

k for a given view vi to be equal to 1.

view size Note that the synthesis algorithm ψ does not depend on the view
size. Instead, the view size can be determined after a satisfying assignment for
the synthesis formula is found. Concretely, if the synthesized constraint is of type
DLL,DLR,DRL or DRR then the view size is of type MatchConstraint and of type
Fixed otherwise. This is possible because during synthesis, the view size is known,
as the input v already specifies all handle points.

1 In our implementation we encode this constraint using PbEq function, which is an optimized imple-
mentation of pseudo-boolean relations of type k1 ∗ p1 + · · ·+ kn ∗ pn = k provided by Z3 Solver. In our
case k1, . . . , kn = 1 and k = 1.
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6.4 generalizing layouts to multiple devices

In this section, we build upon the synthesis algorithm ψ and show how to extend it
to synthesize constraints that generalize across multiple devices. This functionality
is extremely useful as in practice developers have to consider a large number of
devices with different screen sizes and resolutions on which an application might
be rendered. For example, there are more than 15 000 device models with almost
100 different screen sizes (even after an adjustment using density independent
pixels) that one needs to consider when developing an Android application.

Compared to ψ, which takes only a single device ρ as input, the algorithm to
support multiple devices takes a list of devices d ⊂ View to be considered (or
alternatively, a maximum allowed resize ratio of the device ρ). However, note that
the input specification still consists of absolute view positions v only for a single
device ρ and not for all the devices d. As a result, the synthesis problem is severely
underspecified, as we do not have any specification for the additional devices. We
address the under specification issue using two techniques: (i) by designing a set
of properties that “good layouts” should satisfy (this section), and (ii) by learning
from a large set of layouts already written by developers (Section 6.5).

Our synthesis algorithm ψ� supports multiple devices and is shown in Fig-
ure 6.14. It consists of three parts. First, using ψ, we compute formulas for c
and s that satisfy the input specification v on device ρ. Second, using c and
s from the first step we produce a view layout vd on each device d, that is,
vd |= ψlayout_syn(d, c, s). Finally, for each device we check that the views vd sat-
isfy a set of robustness properties. All three steps are encoded as a single logical
formula, the solution of which specifies the desired constraints and view sizes.

ψ�(ρ∈View,d⊂View,v⊂View) = ψ(ρ,v)→ 〈c, s〉 ∧
|d|∧
k=1

ψgen(dk,v, c, s)

ψgen(d,v, c, s) def
= vd |= ψlayout_syn(d,v, c, s) ∧

φinside_screen(d,vd) ∧ φpixel_per f ect(vd) ∧ φpreserve_aspect_ratio(v,vd) ∧

φpreserve_order(v,vd) ∧ φpreserve_centering(v,vd) ∧ φpreserve_margins(v,vd)

ψlayout_syn(d∈View,v⊂View, c⊂Constraint, s⊂Size) = φposition ∧ φsize ∧ φconstraints

φposition
def
=
(
v0

d .xL = d.xL

)
∧
(
v0

d .xR = d.xR

)
φsize

def
=
|v|∧
i=1

|C(vi ,v,ρ)|∧
k=0

gi
k ⇒

vi.xR − vi.xL = vi
d.xR − vi

d.xL if ci.ti
h /∈ D

true otherwise


φconstraints

def
=
|v|∧
i=1

|C(vi ,v,ρ)|∧
k=0

gi
k ⇒ Jci

kK
d


Figure 6.14: Algorithm for synthesizing constraints that generalize to a set of devices d.
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Before formalizing the robustness properties we first briefly describe the en-
coding of ψlayout_syn. The idea behind ψlayout_syn is similar to ψlayout defined in
Figure 6.11 except that now our goal is to encode both the layout and the synthe-
sis within a single logical formula. For this purpose ψlayout_syn introduces a fresh
set of free variables vd denoting views rendered on a device d. Then, it reuses the
boolean variables gi

k defined in ψ to restrict the view size and apply constraints
over vd (here Jci

kK
d denotes evaluating the constraint ci

k over a set of views vd).

6.4.1 Robustness Properties

To prevent common errors made by developers, we designed a set of general prop-
erties that good layouts should satisfy. Encoding these properties as part of the
synthesis formula allows us to synthesize layouts that generalize well to multi-
ple devices even though their input specification is not available. As an example,
Figure 6.15 shows four existing applications rendered on a device they were de-
signed for (LG Nexus 4), as well as on other devices. Using the applications on
a device with smaller height leads to overlaying two views containing text and im-
age (Amigo), rendering a button partially out of the screen (Candid), as well as vi-
sual artefacts caused by stretching common margins used between views (FBook).
Similarly, using the application on a device with smaller/larger width can lead to
errors as the one found in the Asobimasu application. In the remainder of this sec-
tion we formalize our generalization properties designed to avoid such common
layout errors and encode those in ψ�.

LG Nexus 4

Overlaying Views (Amigo [262])

User Constraints

Alcatel POP S3

Ours Synthesized

Alcatel POP S3

LG Nexus 4

Centering
(Asobimasu [263])

Samsung Galaxy Nexus

BenQ Agora 4G Lite

LG Nexus 4

Views Outside of the Screen (Candid [264])

Alcatel POP S3 LG Nexus 4 Alcatel POP S3

Inconsistent Margins (FBook [265])

Figure 6.15: Examples of visual errors that arise from using applications on different
physical devices that designed for (reference device is LG Nexus 4).
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preserve order The φpreserve_order property ensures that when views v are
rendered on a different device, their relative order stays the same. That is, if view
A is to the left of view B on a device ρ, we expect the same to hold for all devices.
Concretely, we add constraints for each pair of view handle points that ensure their
ordering is preserved. This property enforces that a layout producing the visual
error in Amigo is not allowed. Instead, the synthesized constraints will prevent
overlaying the views and move the application logo and name upwards instead of
downwards on a smaller screen (shown in Figure 6.15).

φpreserve_order(v,vd)
def
=
∧ alignedLL(v

i,v j,vi
d,v j

d) ∧ alignedLR(v
i,v j,vi

d,v j
d)

alignedRL(v
i,v j,vi

d,v j
d) ∧ alignedRR(v

i,v j,vi
d,v j

d)

∣∣∣∣∣∣ ∀i, j ∈N.

0≤ j< i< |v|

}

alignedLR(v
i,v j,vi

d,v j
d)

def
=


vi

d.xL = vi
d.xR if vi.xL = vi.xR

vi
d.xL < vi

d.xR if vi.xL < vi.xR

vi
d.xL > vi

d.xR if vi.xL > vi.xR

preserve margins A standard design technique is to position two views
within a certain margin of each other. For example, views are aligned to the screen
border typically with a margin of 16 pixels and the spacing between two views is
often 8 pixels (or a multiple of 8). The φpreserve_margins property ensures that such
margins are preserved across multiple devices. The margins we preserve, denoted
M, correspond to the most commonly used values by developers.

φpreserve_margins(v,vd)
def
=
∧


vi.xL−v j.xL =v
i
d.xL−v

j
d.xL if

∣∣∣vi.xL−v j.xL

∣∣∣∈M
vi.xR−v j.xL =v

i
d.xR−v

j
d.xL if

∣∣∣vi.xR−v j.xL

∣∣∣∈M
vi.xL−v j.xR =vi

d.xL−v
j
d.xR if

∣∣∣vi.xL−v j.xR

∣∣∣∈M
vi.xR−v j.xR =vi

d.xR−v
j
d.xR if

∣∣∣vi.xR−v j.xR

∣∣∣∈M

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀i, j ∈N.

j 6= i

1≤ i< |v|
0≤ j< |v|



preserve centering The φpreserve_centering property ensures that when the
views v are centered on device ρ, they will also be centered on all the other devices
in d. Note that for this property we consider all view triples that can be centered.

φpreserve_centering(v,vd)
def
=
∧


centeredLL(v
i
d,v j

d,vk
d) if centeredLL(v

i,v j,vk)

centeredLR(v
i
d,v j

d,vk
d) if centeredLR(vi,vj,vk)

centeredRL(v
i
d,v j

d,vk
d) if centeredRL(vi,vj,vk)

centeredRR(v
i
d,v j

d,vk
d) if centeredRR(vi,vj,vk)

∣∣∣∣∣∣∣∣∣∣∣∣

∀i, j, k ∈N.

j 6= i

k 6= i

1 ≤ i < |v|
0≤ j,k< |v|


centeredLR(v, vi, vj)

def
=
(
(v.xL + v.xR)/2 = (vi.xL + vj.xR)/2

)
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preserve aspect ratio The φpreserve_aspect_ratio property ensures that the ratio
of width to height is preserved across all devices. However, this property applies
only to views with one of the standard aspect ratios as defined below:

φpreserve_aspect_ratio(v,vd)
def
=
|v|∧
i=1

ar(vi) = ar(vi
d) if ar(vi) ∈ {16

9
,

3
2

,
4
3

,
1
1

,
3
4

,
2
3
}

ar(v) def
=

v.xR − v.xL
v.xB − v.xT

pixel perfect We ensure that the synthesized constraints take into account
the physical limitations of the device – the fact that device screens consist of a dis-
crete number of pixels. To prevent rounding (which can introduce visual artefacts)
we ensure that only solutions which do not require rounding are produced by
restricting the handle points representation to be non-negative integers.

φpixel_per f ect(vd)
def
=
|vd |∧
i=1
vi

d.xL ∈ Z≥0 ∧ vi
d.xR ∈ Z≥0

inside screen Finally, the φinside_screen property ensures that all views are ren-
dered fully inside the device screen.

φinside_screen(d,vd)
def
=
|vd |∧
i=1

(
d.xL ≤ vd.xi

L

)
∧
(
vd.xi

R ≤ d.xR

)

6.4.2 Incorporating User Feedback

As the synthesis problem is under specified, it is possible that even after satisfying
all robustness properties, the synthesized layout is not the one the designer had
in mind. It is therefore important that a designer can provide feedback and re-run
the layout synthesis. As our synthesis algorithm is encoded as a logical formula,
it naturally allows specifying a wide range of additional properties to be satis-
fied. However, instead of requiring the designer to write logical formulas, we can
simply render the layouts and allow the user to modify the absolute position and
size of the rendered views. Then, the views which were changed are added as an
additional input specification.

summary In this section, we presented a synthesis algorithm that produces lay-
outs that generalize well on multiple devices while requiring an input specification
only for a single device. To achieve this, the key idea is to design a set of properties
satisfied by layouts that generalize well and encode them as part of the synthesis
task. Further, the properties are encoded in a modular way, as logical formulas
that allow the user to easily add more constraints if necessary.
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6.5 scaling synthesis with a probabilistic constraints model

In this section, we extend ψ� to make it: (i) scale to synthesizing real-world lay-
outs in less than a second, and (ii) improve the generalization across multiple de-
vices by taking into account constraints that are likely to be written by developers.

key challenge i : scalability As we will show in our evaluation, state-of-
the-art SMT engines do not scale to solving the synthesis formula ψ� directly. This
is because the formula size is cubic in the number of views v and quickly becomes
intractable to solve for all but very small sizes. The main scalability bottleneck is
that both synthesis algorithms ψ and ψ� consider all admissible constraints for
each view, out of which only two are synthesized – one horizontal and one verti-
cal constraint. The key idea that enables us to make synthesis scale is that instead
of considering all admissible constraints, we only consider those that are likely
to make the synthesis formula satisfiable. That is, we are interested in learning a
model F : Constraint→ Constraint which takes as input all admissible constraints
and returns only a subset of them. In the extreme case, F returns exactly the two
constraints for each view that make the synthesis formula satisfiable, effectively
solving the synthesis problem. Although creating such a perfect model is too ex-
pensive, we will focus on learning a model that is precise and fast to compute.

key challenge ii : natural constraints In Section 6.4 we defined a set
of general properties which every layout should satisfy. However, for many de-
signs, multiple options may be available and a designer has to select one of these
based on their intentions. Although our model supports supplying additional con-
straints (Section 6.4.2), our goal is to reduce the amount of feedback the user needs
to provide in order to synthesize the desired layout. For this purpose, we extend
the synthesis algorithm such that if multiple constraints exist that satisfy the input
specification, it produces those that are more likely to be written by a developer.

6.5.1 Guiding the Synthesis via Probabilistic Model of Constraints

The key idea that addresses both issues, scalability and natural layouts, is to guide
the synthesis with a probabilistic model of constraints that assigns probability to
each constraint P : Constraint→ R[0,1]. Then, F is defined to simply return K most
likely constraints according to P. Our final synthesis algorithm ψ�+ ÿ, shown in
Figure 6.16, extends ψ� by: (i) considering only a subset of all admissible con-
straints (F(C(vi,v, ρ))), and (ii) out of those constraints c that satisfy the formula,
it selects the ones which are most likely according to the probabilistic model P.

We now define a probabilistic model that assigns probabilities to constraints. A
key challenge here is that the probability of a constraint depends on the context
in which it is used. That is, the same constraints can have different probability
depending on where the views they relate to are located on the screen. To solve
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ψ�+ ÿ(ρ∈View,d⊂View,v⊂View) = max
∑|v|i=1 scorei

ψ�(ρ,d,v)

φconstraints
def
=
|v|∧
i=1

|F(C(vi ,v,ρ))|∧
k=0

gi
k ⇒

(
Jci

kK∧ scorei = P(ci
k,v)

) ∧ gi
0+ · · ·+gi

|F(C(vi ,v,ρ))| = 1

Figure 6.16: Synthesis algorithm ψ�+ ÿ guided by a probabilistic model of constraints.

this issue, we learn the probabilistic model over a large dataset of layouts that
capture the context in which constraints are written by developers.

probabilistic model definition Let c ∈ Constraint be a relational con-
straint, v⊂View be a set of views and ρ∈View be a content frame, as defined in
Section 6.2. We define the probability of a constraint as:

P(c, ρ,v) =
1

Z(ρ,v)

K

∏
k=1

Pfk
(c | fk(c,v))wk (6.1)

where {Pfk
}K

k=1 is a set of probability distributions with associated weights wk ∈
Rk, { fk}K

k=1 is a set of feature functions and Z is a normalization function that
ensures P is a valid probability distribution (where C(v, ρ) denotes all admissible
constraints defined over v and ρ):

Z(ρ,v) = ∑
c∈C(v,ρ)

K

∏
k=1

Pfk
(c | fk(c,v))wk (6.2)

The intuition behind our definition is that the complex probability distribution
of a constraint can be decomposed into a product of simpler probability distribu-
tions Pfk

over the set of views v. The goal of each Pfk
is to capture one relevant

aspect that helps in deciding whether the constraint c is likely or not. Although
Pfk

and its feature function fk can be complex, we show that even a small set of
well designed simple functions is sufficient to capture the intuition behind good
constraints. We note that even though the feature functions can depend on the con-
text captured by the position of the other views, they cannot condition on other
constraints. This is important, as it allows us to pre-compute all constraint proba-
bilities before solving the synthesis formula.

To estimate the distributions Pfk
we use a training dataset that reflects developer

preferences instead of manually designing fixed distributions. For a given feature
function fk we estimate the constraint probability using maximum likelihood esti-
mation (via counting):

Pfk
(c | fk(c,v)) =

1 + Count( fk(c,v))
1 + |T|+ ∑t∈T Count(t)

(6.3)
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where Count( fk(c,v)) denotes the number of times the value computed by the
function fk was seen in the training data, T denotes the range of fk when evaluated
on the training dataset (i.e., the set of all returned values) and ∑t∈T Count(t) is the
number of training examples. To avoid returning zero probability for values not
seen during training we use an approach called additive smoothing [266, 267]
which adds one to the numerator and |T| to denominator.

feature functions The feature functions used in our work are formally de-
fined in Table 6.1. Each feature function returns a tuple of values that are used to
compute the constraint probability as defined by Equation 6.3. We use orientation
and class helper functions to return the constraint orientation (horizontal or verti-
cal) and class (relational, centering or circular), respectively. We use the constraint
type (or its orientation/class) as part of the return value as a shorthand for defin-
ing a specialized probability distribution learned only from constraints of that
type. Further, to prefer simpler constraints we use a regularization feature function
which returns the number of unique constants and views used by a constraint c.

Feature Functions: fk(c,v) Description

Margins
fm

def
= 〈orientation(c.th), c.mL, c.mR〉 Returns the margins associated with the con-

straint c. Defines one model per orientation.
Bias
fb

def
= 〈orientation(c.th), c.bh〉 Returns the bias associated with the con-

straint c. Defines one model per orientation.
Distance
fd

def
= 〈class(c.th), ‖LineSeg(c.th, c.A, c.B)‖〉 Returns the shortest euclidean distance be-

tween A and B. Defines one model per con-
straint class.

Size
fs

def
= 〈orientation(c.th), s.th, bwidth/16c〉 Returns a tuple consisting of the view size

type and the view width rounded to 16 pix-
els.

Orientation
fo

def
= 〈c.th, arctan2(LineSeg(c.th, c.A, c.B))〉 Returns the angle of the shortest line seg-

ment from A to B. Defines one model per
constraint type.

Type
ft

def
= 〈c.th〉 Returns the constraint type.

Intersection

fi
def
= |{v | ∀v ∈ v. intersects(v, seg)}|
where seg = LineSeg(c.th, c.A, c.B)

Returns the number of other views inter-
sected by a line segment between hs and ht.

Table 6.1: Feature functions used to define a probabilistic model of constraints. We use
LineSeg(c.th, c.A, c.B) to denote the shortest line segment connecting handle
points of views A and B related by constraint c.
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Constraint Orientation Intersection Margins

fo(c,v) P(c | fo) fi(c,v) P(c | fi) fm(c,v) P(c | fm)

A B
ca 〈RRL, 0°〉 0.34 0 0.77 〈H, 10〉 0.06

A B
cb 〈RLR, 180°〉 0.38 0 0.77 〈H, 10〉 0.06

A B
cc 〈RRR, 0°〉 0.06 1 0.07 〈H, 60〉 0.005

Table 6.2: Values and probabilities computed by feature functions of different constraints
relating two views.

example : querying the model Consider two views A and B positioned
next to each other and related with each other using a constraint, as illustrated in
Table 6.2. For each constraint, Table 6.2 shows the values computed by the orien-
tation, intersection and margins feature functions, as well as their probabilities as
computed by our model. The most likely constraint is cb since the orientation 180°
(i.e., right to left) is slightly more likely than 0° (i.e., left to right). This is due to
the fact that the screen content tends to be written from left to right which results
in right to left constraints (since we want to anchor the view to the left side). Note
that the computed orientation probability for constraint cc is significantly smaller
than for ca even though they both have angle value 0°. This is because for orienta-
tion we learn a separate model for each constraint type. As a result, we learn that
aligning views with their right edges, as done by constraint cc, is much more likely
when the views are either above or below each other instead of side by side as in
the above example. On the other hand, for margins we learn only two models, one
for horizontal and one for vertical constraints. Therefore, since both constraints ca
and cb in Table 6.2 are horizontal and have the same margin, their probabilities
according to the margin model are also the same.

example : training the model In Figure 6.17 we show the training of the
probabilistic model of constraints. Figure 6.17 (a) contains example of five con-
straints written by a developer that are used as a training dataset. For example, the
constraint c1 specifies that the left edge of view v1 is aligned to the left edge of view
v3 with zero margin. For each of the constraints we first extract all the features,
such as the orientation, margin or the type of the constraint, as shown in (b). Based
on the extracted feature we then define the probabilistic models using maximum
likelihood estimation which first counts the number of times each feature appears
in the training dataset and then uses Equation 6.3 to compute the constraint prob-
ability as shown in Figure 6.17 (c). For example, consider the probability of con-
straint c3 according to the orientation model P(c3 | fo(c3,v)) = 1+Count( fo(c3,v))

1+|T|+∑t∈T Count(t) .
Here, Count( fo(c3,v)) = Count(〈RLR, 180°〉) = 2 is the number of times 〈RLR,
180°〉 appears in the dataset which is twice (for constraints c3 and c4). |T| = |{〈RLR,
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(a) Training Dataset (b) Features Extracted from the Training Dataset in (a)

(c) Probabilistic Constraint Models of the Training Dataset in (a)

v1 v2

c3

v3 v4

c4
c1

v5 v6

c5
c2

Constraint fo(c,v) fm(c,v) ft(c,v)

c1 〈RLL, 270°〉 〈H, 0〉 RLL

c2 〈RLL, 90°〉 〈H, 0〉 RLL

c3 〈RLR, 180°〉 〈H, 10〉 RLR

c4 〈RLR, 180°〉 〈H, 16〉 RLR

c5 〈RLR, 160°〉 〈H, 16〉 RLR

Orientation Model for RLL Constraints

fo Count( fo) P(c | fo)

〈RLL, 90°〉 1
1+1

1+2+2 = 0.4

〈RLL, 270°〉 1
1+1

1+2+2 = 0.4

Unseen 0
1+0

1+2+2 = 0.2

Orientation Model for RLR Constraints

fo Count( fo) P(c | fo)

〈RLR, 180°〉 2
1+2

1+2+3 = 0.5

〈RLR, 160°〉 1
1+1

1+2+3 = 0.33

Unseen 0
1+0

1+2+3 = 0.16

Margin Model for Horizontal Constraints

fm Count( fm) P(c | fm)

〈H, 0〉 2
1+2

1+3+5 = 0.33

〈H, 16〉 2
1+2

1+3+5 = 0.33

〈H, 10〉 1
1+1

1+3+5 = 0.22

Unseen 0
1+0

1+3+5 = 0.11̄

Type Model

ft Count( ft) P(c | ft)

RLR 3
1+3

1+2+5 = 0.5

RLL 2
1+2

1+2+5 = 0.375

Unseen 0
1+0

1+2+5 = 0.125

Figure 6.17: Example of training a probabilistic model of constraints. For each constraint
in a training dataset (a) the features are extracted (b) and used to train the
probabilistic model (c).

180°〉, 〈RLR, 160°〉}| = 2 is the number of unique features seen during training and
∑t∈T Count(t) = 3 is the number of constraints in the model. Note that using the
constraint type as part of the feature denotes a specialized probability distribution
learned only from constraints of that type. Therefore, in Figure 6.17 (c), separate
orientation models are defined for constraint types RLL and RLR.

constraint generation Note that the probabilistic model can condition the
constraint probability on the values of the margins, bias or views it relates to. This
is crucial for the model precision yet these are the values we are interested in
synthesizing. To address this issue, we take advantage of the fact that constraints
with one unknown variable can be resolved locally given the input specification v
and the content frame ρ. For this purpose we instantiate all relative and circular
positioning constraints for each pair of views A, B ∈ {v ∪ ρ} and solve for the
margins and distance, respectively. Further, we instantiate the centering constraints
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〈ρ,d,v〉

(CNN) Rendered Wireframe

CNN

〈ρ,d,v〉

(MLP) Handcrafted Features

aligned

centered

· · ·
intersect


2

3

· · ·
0

 ReLU

〈ρ,d,v〉 Encoder

LSTM LSTM LSTM

v1 v2 vn

(RNN) Per View Encoding

Figure 6.18: Illustration of three different models used to learn a neural model over the
synthesis outputs. For a full description, please refer to our work [7].

for each triple of views A, B, C ∈ {v∪ ρ}, by fixing the bias to be from a fixed set of
values and restricting that either one of the margins is zero or they are both equal
to each other. Finally, the logical formulas specified by the constraints are also
simplified (e.g., by evaluating sin(α) in circular constraints for known α). Using
this approach allows us to score the constraints with the probabilistic model before
solving the synthesis formula.

6.5.2 Guiding the Synthesis via Probabilistic Model of Outputs

Finally, we briefly discuss an alternative way of building probabilistic models that
guide the synthesis. In particular, instead of learning a model directly over pro-
grams, which are often difficult to obtain at scale, we can learn a probabilistic
model over the program outputs. In our domain, this corresponds to learning a
probabilistic model of how an application layout looks like. This allows us to ef-
fectively reduce the task of selecting which program generalizes well to a simpler
task of deciding which output is correct (or more likely).

To achieve this, we learn a number of neural models over different output rep-
resentations as illustrated in Figure 6.18. For (CNN) the representation corresponds
to the rendered image of the layout where each view is drawn as a rectangle
with a 1px black border on a white background. For (MLP) the representation cor-
responds to a set of handcrafted features similar to those defined in Table 6.1.
Finally, in (RNN) the representation is obtained by computing an embedding of
each view via a shared encoder. The embeddings of each view are then combined
with a LSTM layer to compute the representation of the whole output. All of
these probabilistic models can then be used as additional signal that guides the
synthesis towards better solutions. For a full technical description of how this is
implemented in practice, please refer to our work [7].

summary We have presented our approach to synthesizing relational constraints
from examples. We started by introducing a new synthesis algorithm that solves
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the problem for a single device in Section 6.3. In Section 6.4 we extend the synthesis
algorithm such that the synthesized layouts satisfy a set of robustness properties al-
lowing them to generalize across multiple devices. Finally, in this section we show
how to scale both algorithms to complex real-world layouts using a probabilistic
model of constraints to guide the synthesis towards satisfiable solutions.

6.6 evaluation

In this section, we provide a thorough evaluation of our proposed approach imple-
mented in a tool called InferUI that synthesizes Android layouts. We demonstrate
the key benefits of our approach by showing that:

• Scalability. The synthesis algorithm scales to real-world applications and syn-
thesizes even the most complex layouts for a single device in ≈ 3 seconds.

• Precision & Robustness. The synthesized layouts based on a specification from
only a single device generalize well to multiple devices with 92% of views
being rendered at the screen location intended by the user.

• Naturalness. The synthesis algorithm creates natural constraints for devel-
opers: 62% of constraints it synthesizes match those written manually by
developers.

We performed all experiments on a typical developer laptop with 2.40 GHz
Intel(R) Core(TM) i7-7560U CPU, running Ubuntu 16.04.

dataset of android applications For the purposes of evaluation we col-
lected two datasets of real-world layouts: (i) PlayStore dataset consisting of top
500 ranked applications on Google Play Store, and (ii) a GitHub dataset consisting
of top 500 public repositories with the highest number of watchers on GitHub that
contain ConstraintLayout. In order to compare to ground truth layouts written
manually by developers, we consider only layouts that use ConstraintLayout.
However, note that this does not limit the applicability of our approach since
ConstraintLayout is the latest and most expressive layout available on Android.
Further, we preprocess the dataset by removing incomplete layouts (e.g., the po-
sition of some views is not constrained), layouts with invalid constraints (e.g.,
relating to a non-existing view) and layouts with circular constraints. Although
the Android layout solver implementation is robust enough to render even such
invalid layouts, we remove them as they are typically of low quality. Finally, we
consider only layouts with at least two views.

training a probabilistic model of constraints We trained our prob-
abilistic model of constraints by extracting all user defined constraints from our
datasets and evaluating them using the feature functions from Section 6.5. When
evaluating applications from the PlayStore dataset we use the model trained on
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the GitHub dataset and conversely we use the model trained on the GitHub dataset
when evaluating layouts from the PlayStore dataset. Because our model estimates
the constraint probability using maximum likelihood estimation (via counting) it
is extremely fast to train and query – it takes less than a second to train models
for both of our datasets.

evaluated algorithms To evaluate the effectiveness of our approach we
evaluate four algorithms:

• ψ described in Section 6.3 that synthesizes layouts for a single device. At
a high level, this algorithm can be summarized as solving p |= I , where p
is the synthesized layout and I encodes the input specification (in this case,
the set of views for a single device).

• ψ� described in Section 6.4 that synthesizes layouts that generalize to multi-
ple devices. This can be summarized as p |= I ∧ φrobust(d), where φrobust(d)
corresponds to robustness properties that should be satisfied across multiple
devices d.

• ψ�+ ÿ described in Section 6.5 which is an extension of ψ� that guides
the synthesis with a learned probabilistic model of constraints. This can be
summarized as arg maxp|=I∧φrobust(d)

P(p | I), where P(p | I) is a learned
probabilistic model of constraints.

• ψÿ which is a guided extension of the ψ algorithm. This can be summarized
as arg maxp|=IP(p | I).

For all algorithms, we use the Z3 SMT solver version 4.6.0 [66] and set the time-
out to one minute. Further, we guide the search for the ψÿ and ψ�+ ÿ algorithms
by selecting top 5 most likely constraints for each view. In case the problem is un-
satisfiable we increase the number of selected constraints by 10 for each view in
the unsat core. We repeat this process until a satisfiable solution is found or the
time limit is reached. In our experiments, top 5 constraints are sufficient in 69% of
cases. They need to be expanded once, twice and three or more times in 21%, 7%
and 3% of the cases, respectively.

6.6.1 Scalability & Runtime

To evaluate the scalability of our algorithms, we synthesized layouts of increasing
complexity. We consider layouts containing up to 20 views which includes 99.9% of
the layouts in our dataset. The average runtime of successfully synthesized layouts
is shown in Table 6.3. For a single device, the synthesis runtime is in milliseconds
and even the most complex layouts are synthesized in a little over half a second.
When synthesizing constraints for multiple devices, the runtimes are naturally
higher but still very fast and less than 3 seconds. All runtimes reported are end-
to-end, that is, including the time spent generating and scoring constraints using
a probabilistic model.
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Number of Views

Algorithm [2, 4) [4, 8) [8, 12) [12, 16) [16, 20)

Single Device

ψ 29 ms 94 ms 490 ms 1.8 s 15 s

ψÿ 37 ms 59 ms 129 ms 238 ms 519 ms

Multi Device

ψ� 49 ms 580 ms 19 s – –

ψ�+ ÿ 44 ms 95 ms 314 ms 3 s 3 s

Table 6.3: Average runtime of different synthesis algorithms proposed in our work.

In addition to runtime, we also evaluate the percentage of successfully synthe-
sized layouts. The results are shown in Table 6.4 together with a breakdown of why
the synthesis was unsuccessful. The algorithm ψ scales to layouts of size ≈ 10 after
which it timeouts in 87.2% of the cases. This is because the problem complexity
growth is cubic in the number of views and quickly becomes intractable as more
views are added. In contrast, the ψÿ succeeds for all layouts in our dataset. The
problem of synthesizing layouts that generalize to multiple devices is much harder
and can be solved directly by ψ� only for the smallest layouts containing less than
4 views. Guiding the synthesis using a probabilistic model significantly improves
the scalability and allows us to synthesize up to three times larger layouts.

When synthesizing layouts for multiple devices, in addition to timeout, the prob-
lem can also be unsatisfiable. For example, depending on the application design it
is not always possible to fit all views into a smaller screen. Instead, the designer
needs to create an alternative design that removes or restructures some of the
views. In some cases, however, the robustness properties are too restrictive and
disallow valid layouts. For example, although preserving margins or centering is
typically correct, some views might be centered simply by chance.

Number of Views Synthesis Result

Algorithm [2, 4) [4, 8) [8, 12) [12, 16) [16, 20) SAT UNSAT TIMEOUT

Single Device

ψ 99.0% 82.9% 38.3% 26.5% 16.6% 845 0 238

ψÿ 100% 100% 100% 100% 100% 1083 0 0

Multi Device

ψ� 61.3% 23.5% 4.3% 0% 0% 327 9 747

ψ�+ ÿ 98.7% 92.6% 73.0% 58.8% 41.7% 963 97 23

Table 6.4: Percentage of successfully synthesized layouts of increasing complexity.
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Percentage of Views that Generalize to Multiple Devices

Metric ψ ψÿ ψ�+ ÿ

GitHub Dataset

Horizontal Match 14.7% 78.3% 89.1%

Vertical Match 73.7% 88.3% 96.5%

Full Match 12.6% 69.4% 86.5%

PlayStore Dataset

Horizontal Match 13.7% 85.8% 93.4%

Vertical Match 81.7% 92.4% 98.9%

Full Match 12.9% 75.5% 92.3%

Table 6.5: Percentage of views that generalize to multiple devices. A given view general-
izes if its synthesized position is the same as the one specified by the user.

6.6.2 Precision & Robustness

To evaluate the precision of our approach we compare the absolute view positions
computed using our synthesized layout with the ground truth provided by the
user (obtained by rendering layouts written by developers). Recall that the input
to all of our synthesis algorithms is a set of absolute view positions on a single
device. As a result, for a single device synthesis the precision is always 100%, as
we are guaranteed to satisfy the input specification. To evaluate the precision on
multiple devices we synthesize layouts based on the specification for devices with
screen size 360dp× 640dp (e.g., Galaxy Nexus) and evaluate on devices with screen
size in the range 341dp× 518dp to 384dp× 640dp. The results for both our datasets
are shown in Table 6.5. We can see that ψ generalizes poorly to only 12.6% and
12.9% of all views for the GitHub and PlayStore datasets, respectively. This is
expected, as the synthesis only considers a single device for which the layout is
synthesized. The ψÿ improves the generalization significantly by more that 55%
for both datasets. Here, even though the synthesis algorithm still considers only
a single device, the probabilistic model enables the synthesis to select constraints
that are likely to generalize instead of any constraints that satisfy the input speci-
fication. Finally, we can see that ψ�+ ÿ leads to additional ≈ 15% generalization
improvement by using both the probabilistic model of constraints, as well as con-
sidering multiple devices during synthesis.

finding layout bugs in existing applications The robustness proper-
ties defined in Section 6.4 can also be used to find layout bugs in existing ap-
plications. The results of evaluating robustness properties on both existing and
synthesized layouts are shown in Table 6.6. We can see that although ψÿ signifi-
cantly improves over ψ it still violates at least one property in more than half of
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Percentage of Layouts that Violate Robustness Properties

Property ψ ψÿ ψ�+ ÿ User Defined (GitHub + PlayStore)

φinside_screen 86% 52.3% 0% (4%) 21

φpixel_per f ect 40.3% 22.7% 0% (8.5%) 41

φpreserve_aspect_ratio 1.2% 0.6% 0% (0.8%) 4

φpreserve_order 16.8% 24.5% 0% (4%) 19

φpreserve_margins 85.0% 59.0% 0% (5%) 24

φpreserve_centering 89.0% 55.2% 0% (3.3%) 16

Table 6.6: Percentage of cases where layouts violates robustness properties. For user de-
fined layouts we also provide the total number of violations found.

the analyzed layouts. On the other hand, the ψ�+ ÿ guarantees by design that all
the properties are satisfied if the synthesis succeeds. Further, we have also found
several property violations in existing applications. The most common violation is
for φpixel_per f ect property which can cause small “off by one pixel” visual artefacts.
More importantly, we also discovered serious issues that result in views being ren-
dered outside of the screen or overlapping with each other. For concrete examples
of bugs we found please refer to Figure 6.15.

6.6.3 Synthesising Natural Layouts

We now evaluate the similarity of our synthesized constraints compared to those
written manually by the users. It is a useful metric to optimize even though ideally
the user never has to modify the constraints and in fact does not even need to be
aware that they exist (especially if the user is not a developer but a designer).
This is because, as illustrated in Table 6.5, synthesizing constraints that a user
would write is an important indicator that the layout generalizes well. For our
datasets, we synthesize constraints that relate the same views as the user (centering
constraints are considered to match only if both target views are the same) in 62%
of the cases using the ψ�+ ÿ algorithm. Note that this percentage of constraints
is significantly lower than the percentage of views that generalize well. This is
because multiple constraints typically exist that all result in the same absolute
position of the view. The ones that are finally selected depend on the preference
of the developer, such as constraints that relate views from left to right.

the importance of probabilistic model of constraints We have al-
ready shown that guiding the synthesis using a probabilistic model of constraints
is crucial for achieving scalability. For completeness, we also evaluate the effect
of returning the most likely constraints that satisfy the synthesis formula instead
of returning any satisfying assignment. For ψÿ, this leads to 35% improvement



6.7 related work 181

in view generalization (Table 6.5) and 20% improvement in returning a constraint
a user would write. For ψ�+ ÿ, although we did not observe an improvement in
view generalization (it is already very high at 92%), the improvement in returning
a constraint user would write is still 10%.

6.6.4 Incorporating User Feedback

So far, all our experiments synthesized layouts from a single device input specifi-
cation. However, as discussed in Section 6.4.2, our approach also supports refining
the synthesized layout by extending the input specification with the user feedback.
To evaluate such an interactive setting, we performed a synthetic user study as fol-
lows: (i) synthesize the layout using a single device input specification, (ii) render
the layout on a set of devices,(iii) ask the user to randomly select a single view
not rendered according to their design preferences. If such a view is found, we
add it as part of the input specification and repeat the process from step (i). Other-
wise, the synthesis terminates successfully. Note that this experiment is synthetic
as we emulate the user using the constraints the developers wrote in our dataset of
GitHub and PlayStore applications. Overall, using ψ� the user needs to provide
0, 1, 2 or 3 or more feedbacks in 63%, 25%, 8% and 4% of the cases, respectively.

6.7 related work

We next discuss some of the work that is most closely related to ours.

layout generation from images A number of recent works such as RE-
MAUI [259], UI2Code [261] and pix2code [260] aim to generate layouts from im-
ages. Pix2code and UI2Code both use a language model based on deep neural
networks which first encodes the input image using a convolutional neural net-
work and then uses a recurrent neural network to generates a sequence of view
names (e.g., TextView, Button, etc.) that are present on the screen. In pix2code,
the output sequence is represented in a domain-specific language which encodes
the simplest layout supported in Android (LinearLayout) and arranges all com-
ponents either horizontally in a single column or vertically in a single row (or
their combination). In UI2Code the output is a deeply-nested hierarchical struc-
ture with the names of all views present on the screen. This means that UI2Code
does not in fact generate layouts but rather a sequence of components detected on
the screen. As a result, a developer still has to write the layout manually and the
output is only used to help in deciding which views are used in the screenshot.
REMAUI uses optical character recognition to identify text within an application
screen. Identified words, detected edges and hand-engineered heuristics are used
to segment the screenshot into user interface components, which are then exported
into a layout. What layouts are supported, as well as how the export is performed
(the synthesis algorithm) is however not explained by the authors.
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As it can be seen, pix2code, UI2Code as REMAUI are all focused on the vision
problem of identifying which views are present in the input image rather than
on the layout synthesis problem. In comparison, our work is the first to solve the
complementary problem to view detection – once the views and their location are
known, we synthesize a layout that both renders them on the screen according to
this specification and generalizes to multiple devices.

visual errors detection In recent years, several techniques have been de-
veloped to detect visual errors that arise from cross-browser incompatibilities in
web applications [268–271], as well as in mobile applications [272]. For this pur-
pose, a given application is typically first rendered on a set of devices (or web
browsers) and searched for visual errors. If an error is found, an effort is made
to localize its precise location (e.g., CSS property causing the error) which is then
reported to the developer. In this line of work, Cassius [271] formalizes a set of
core components of CSS 2.1 standard and then verifies that a given web page con-
forms to 14 accessibility guidelines. In comparison, in our work we defined a set
of robustness properties that can be verified in a similar way by formalizing the
Android ConstraintLayout. More importantly, we developed a scalable synthesis
algorithm that encodes the robustness properties as part of the specification, thus
avoiding visual errors by construction.

program synthesis Combinations of program synthesis with images have
been recently used to synthesize graphic programs from simple hand-drawn im-
ages [273], as well as to infer program updates from how objects are manipulated
on a SVG canvas [274]. In both of these approaches, the image is abstracted to
a set of traces performed to draw the image. Although the visual output of these
works and ours is similar (a set of rectangles drawn on a canvas) their internal rep-
resentation is very different, which also requires developing different techniques
to solve the task. In our case, the representation is declarative and based on a set
of relational constraints compared to representing images as programs containing
conditionals or even loops. Furthermore, although our implementation currently
returns a single most likely layout it might be useful to return multiple layouts
amongst which the user can choose. To achieve this we could incorporate the tech-
niques proposed by Ellis, Solar-Lezama & Tenenbaum [275] which allows efficient
sampling of programs that satisfy given specification.

machine learning for program synthesis Several approaches have been
developed to accelerate program synthesizers by guiding the search towards a so-
lution using a learned probabilistic model. Log-linear models were trained over
a set of hand crafted features to guide synthesis of text processing tasks [276]
and automatic patch generation [67]. In [247] a neural network is trained to pre-
dict which predefined transformations are likely to be applied such that an input-
output example is satisfied. In [236], a recurrent neural network is trained on a
dataset of existing proof traces and used to improve the proof search of the the-
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orem prover. Neural networks are also used by Kalyan et al. [277] for synthesis
of text processing tasks which improves over prior work by combining statistical
and symbolic search approaches and by not requiring hand crafted features. Fi-
nally, the work of Lee et al. [278] uses probabilistic higher order grammar [6] that
learns to guide A∗ search to speed-up the synthesis in various domains including
bitvectors, circuits and text processing tasks.

Compared to prior work, our work differs in three aspects – the domain over
which the probabilistic model is learned, how the model is used to guide the syn-
thesis and the type of the model. We introduce learning techniques to the domain
of relational layout synthesis. The inputs over which our features are learned are
a set of views positioned on a screen, instead of strings, numbers or proof traces.
Next, our work considers the search procedure that solves the synthesis task to
be a black-box – in our case an SMT solver. As a result, we guide the synthesis
by restricting its search space, concretely, by selecting a subset of constraints that
are extended if the synthesis fails. In contrast, prior works [67, 236, 247, 276–278]
keep the search space unchanged and instead modify the search procedure used
to find the solution. This is because while modifying the search procedure of A∗ or
breadth-first search considered in prior works is straightforward, it is challenging
to modify the search procedure of state-of-the-art SMT solvers. However, it would
be interesting to apply our techniques presented in Chapter 5 and to learn SMT
strategies that speed-up the solver on this particular dataset of formulas. Finally,
the probabilistic model used in our work is maximum likelihood estimation that
is extremely fast to both train and query. Here, the model precision can be fur-
ther improved by using more complex models such as log-linear model, neural
networks or probabilistic higher order grammar.

6.8 conclusion

We presented a new approach for synthesizing relational layout constraints from
examples and implemented it in a system called InferUI targeting Android appli-
cations. Our approach is based on a combination of techniques, enabling it to scale
to complex real-world layouts that generalize across multiple devices. Concretely,
our algorithm synthesizes layouts with provable guarantees that satisfy both the
input specification for a single device as well as a set of robustness properties
(which aid in generalization). We showed that InferUI works well in practice and
successfully scales to synthesizing complex layouts from top 500 ranked applica-
tions in the Google Play Store as well as top 500 most watched application on
GitHub. Crucially, we achieved this without compromising on applicability – we
support the latest ConstraintLayout used in Android and directly generate the
corresponding source code to be used by the developer.
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C O N C L U S I O N A N D F U T U R E W O R K

In this dissertation, we developed a number of techniques and practical tools that
learn from large codebases consisting of mainly program source code, but also
program traces, program outputs, input-output examples or even natural language
text from Wikipedia. The programs over which we learned correspond to both
general purpose programs written in Python and JavaScript, as well as specialized
programs designed for a particular domain, such as writing relational layouts in
Android or writing satisfiability modulo theories (SMT) formulas.

At a high-level, our work and the models we learn can be summarized into two
main dimensions – the types of goals that we are solving and the techniques we
used to solve them. In terms of goals, we focused on: (i) predicting program properties,
such as those produced by a type inference or a code completion model, and (ii)
synthesizing programs, where the scope is to synthesize a program which when
executed, produces the desired result (e.g., an Android layout or a SMT solver
strategy that solves a given formula). In terms of the techniques, we focused on
two different perspectives: (i) a machine learning perspective, Pr(y | x; θ), that
learns over programs, where the program is just a different input data modality and
we are learning the model’s parameters θ that optimize a given metric (such as the
likelihood of the correct label), and (ii) the programming languages perspective,

Predict

Properties

Synthesize

Programs

Machine Learning

learning over programs
Programming Languages

learning programs

(Chapter 4) (Chapter 5)

arg max
θ

E(x,y)∼D Pr(y | x; θ)

(Chapter 4)

arg max
θ, α

E(x,y)∼D min
δ⊆∆(x)

Pr(y | α(x + δ); θ)

(Chapter 2)

arg max
p∈L

E(x,y)∼D Pr(y | x; p)

(Chapter 3)

arg max
p∈L

E(x,y)∼D Pr(y | x; p)

s.t. ∀δ ⊆ ∆(x). y v p(x + δ)

(Our Work [7])

guided search

arg min
θ

E(I ,p)∼D Pr(p | I ; θ)

statistical search

(Chapter 6)

∃p ∈ L ∀(x, y) ∈ I . y = p(x)

symbolic search

Figure 7.1: Overview two learning goals (predicting properties and synthesizing pro-
grams), two perspectives used to address them (machine learning and pro-
gramming languages) and the high-level level formulation used in this dis-
sertation to address them. The solid arrows ( ) denote that the techniques
from one chapter are used or extended in another chapter. The dashed ar-
rows ( ) denote that the same task is solved, but using different techniques.
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Pr(y | x; p), which learns programs that are either used to parametrize a probabilis-
tic model (e.g., as done in our probabilistic model called PHOG) or are executed
to obtain the desired result (as in program synthesis).

We have shown how the same task can be solved independently using both the
machine learning and the programming language techniques. For example, both
Chapters 3 and 4 address the task of learning robust models of code that generalize
beyond the samples included in the original training dataset. However, while in
Chapter 3 this problem is phrased as a hard constraint that ensures the analysis
soundness ∀δ ⊆ ∆(x). y v p(x + δ), in Chapter 4 the same property is phrased
as part of the optimization objective of an end-to-end differentiable deep learning
model minδ⊆∆(x) Pr(y | α(x + δ); θ).

At the same time, we have explored different ways of combining machine learn-
ing and program synthesis. Concretely, in Chapter 5 we first use machine learning
to train a neural policy that is efficient at solving SMT formulas, and then extract
the policy decisions as an interpretable program in a domain-specific language
supported by the Z3 SMT solver. Here, the actions learned by the neural policy
(i.e., equisatisfiable transformations of a given SMT formula) are so complex that
it is infeasible to encode them formally and use program synthesis techniques di-
rectly. Instead, the neural policy is used to search in this highly complex search
space and its decisions are observed by executing the trained policy on a dataset
of formulas. This significantly reduces the problem program synthesis has to con-
sider, since now it is sufficient to synthesize a loop-free program with branches
that is best at combining the observed program traces.

Further, in Chapter 6 we have also explored combining machine learning and
program synthesis in a domain where it is possible to encode the semantics of the
target language formally and where traditional program synthesis can be applied.
In this case, we use machine learning to address two key challenges of program
synthesis: (i) scalability of the symbolic search, for which the search space grows
exponentially with the program size, and (ii) the severe problem underspecifica-
tion, in which the synthesis is expected to produce correct programs from a single
input-output example. We address both of these challenges by learning a number
of probabilistic models that are used to guide the search, rank the synthesized
programs, as well as to generate new input-output examples automatically [7].

Overall, combining machine learning and program synthesis is an exciting and
active research area, especially given the recent advances in deep learning. We be-
lieve that exploring ways of using the best of each method is important – not only
it can lead to state-of-the-art models, but also because some of the techniques are
fundamentally very similar, yet often overlooked by either of the research commu-
nities (e.g., as shown in Chapters 3 and 4). For example, a common deep learning
view is that ultimately, deep learning will be able to solve the task given enough
data and compute power. While certainly ambitious, this can also lead to systems
that in practice boil down to a hyperparameter optimization exercise. More impor-
tantly, the assumptions of enough data and compute power are often misaligned
with typical program synthesis tasks that are designed specifically for as few as
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one input-output example. Instead, a more practical view might be that given the
success of machine learning and deep learning in particular, deep learning tech-
niques are going to be involved in most systems in some form. However, that
form would vary from task to task and does not necessarily have to correspond to
a model that solves the task end-to-end. Instead, the machine learning model can
improve the effectiveness of individual parts or even automate their design.

7.1 future work

Unfortunately, we did not explore all the challenges and questions we wish to see
answered. In the remainder of this section, we summarize the main directions that
can be explored in the future.

parametrizing models by programs In Chapter 2 we introduced a new
probabilistic model with the key idea of parametrizing the model with a learned
program. Even though our formulation allows instantiating our approach with any
model in the decision tree leafs, we only experimented with the simplest possible
model – a maximum likelihood estimation via counting. While this model was
already powerful enough to achieve state-of-the-art results, a natural next step
would be to use more powerful models such as neural networks. This can be done
by incorporating them as leaf nodes, as well as for the predicates inside of the tree.

Another interesting direction in this line of work is incorporating the programs
used to parametrize the model as prior over which neural based approaches can
learn. For example, this idea has been recently explored by [279] where the au-
thors: (i) define a domain-specific language that navigates over graphs and allows
adding edges, and (ii) develop a new differentiable Graph Finite-State Automaton
Layer that learns to optimize over the weighted combination of such programs. As
another example, consider the task of program translation where several recent
works phrase the problem as a token level sequence-to-sequence translation [48]
or tree-to-tree translation [47]. However, even when not considering adversarial
robustness, such approaches can fail in trivial cases that are slightly different than
those seen during training. This is even though the corresponding program writ-
ten by a domain expert to perform such translation would be the same for both
cases (e.g., to rewrite ternary expressions from CoffeeScript to JavaScript).

robust models of code While our work makes a number of steps in ad-
dressing the task of robust models of code, many challenges remain still open. For
example, in our work we focused on tasks that can be solved without any ambi-
guity and for which it is possible to write a sound static analyzer. This results in
a controlled setting where the model performance and decisions can be analyzed
and reasoned about. For example, we can inspect the model manually and deter-
mine whether: (i) the features learned by the model (i.e., set of program locations)
are indeed relevant for the prediction (i.e., they are used by the static analysis), or
whether (ii) the features are non-robust and even though the model is making the
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right prediction, it is for the wrong reasons. However, in the future we would like
to also explore the effectiveness of our approach for other tasks over code, beyond
tasks with no ambiguity.

Further, we optimize for the worst case adversarial robustness, which corre-
sponds to learning a robust model for all valid programs. An interesting future
work is to optimize only with respect to those modifications that are common
among developers, especially if it is not possible to be robust for all of them. Ad-
ditionally, while we checked the robustness for a wide range of program modifica-
tions, these are still far from exhaustive and more work is needed in defining new
ones. An interesting direction to explore here is learning program modifications
directly from the data, such as, by looking at the git commits.

At the same time, as the number of possible program modifications can be
further increased, an interesting research direction is exploring how they can be
searched and combined more efficiently. In our work, the side-effect of learning
to refine the program representation and learning the conditioning context is that
the search space of possible program modifications is reduced (since parts of the
program become independent of each other). However, more work in this area is
needed, both to explore how structural modifications can be discovered efficiently
(current gradient-based approaches support only token renamings), as well as how
different transformations can be composed efficiently.

Finally, in our work, we considered the task of empirical robustness, which is
only an under-approximation of the true robustness and does not give formal guar-
antees. It is however possible to adapt and extend the recently proposed certified
robustness techniques, such as those based on Interval Bound Propagation [189,
190], to verify robustness with respect to any valid word renaming and word sub-
stitution modifications.

learning strategies to solve smt formulas In our work, we showed
that it is possible to speed-up the state-of-the-art SMT solver Z3 by up to 100× by
learning a neural policy that predicts how the formula should be transformed next.
However, we assumed a setting where the set of possible transformations (i.e., tac-
tics), as well as the language to express them were fixed (Z3 Strategy language).
This was possible only because the authors of Z3 already spent a significant man-
ual effort to refactor the heuristics used internally by the solver and expose them
via a high-level interface.

A natural next step is to remove this limitation. To start with, one could learn
new predicates that extend the existing Strategy language. This would allow us
to reduce the gap between strategies that are learned by the neural policy (which
can solve 27% more formulas than Z3) and strategies that we can synthesize and
express in the Strategy language (which solve 8% more formulas than Z3). As a
next step, a significantly more challenging task would be to apply our approach to
other solvers, which do not yet define an explicit language to control the heuristics.
Even though they do not provide such interface explicitly, they still do contain the
same (or similar) heuristics internally. The main challenge here would be identify-
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ing such heuristics automatically (e.g., the corresponding branches in the source
code) and replacing them with the learned heuristics.

combining machine learning and program synthesis Lastly, there
are various directions in which our work on combining machine learning and
synthesis can be extended. Firstly, to instantiate the relational layout synthesis
presented in Chapter 6, one of our contributions was to formalize the semantics
of the Android Constraint layout. While necessary, this step is currently done
manually and requires a lot of time and tedious work to correctly model all the
corner cases. Even worse, to build a practical tool, one would have to continuously
update the formalization to match the latest version implemented in Android. The
situation becomes even more problematic when considering similar layout systems
for web, where each browser comes with its own implementation. To address this
issue, in the future we would like to learn the specification itself. To achieve this,
the high-level problem statement is similar to the one in Chapter 3, where the goal
was to learn a sound static analysis from a dataset of program traces.

The second interesting future work is combining the object detection step, which
identifies user interface components and their location in the image, with the syn-
thesis step which synthesizes relational layouts that when rendered, position the
components at that location. The challenging part here is that the object detection
model often produces noisy outputs, which our current synthesis does not support.
At the same time, whether a given layout can be efficiently synthesized (including
how likely the synthesized program is), would be useful information to refine the
predictions of the object detection model.
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