mzuriCh ETH Library

Remote Side-Channel Attacks on
Anonymous Transactions

Conference Paper

Author(s):
Trameér, Florian; Boneh, Dan; Paterson, Kenneth G.

Publication date:
2020

Permanent link:
https://doi.org/10.3929/ethz-b-000421905

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000421905
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Remote Side-Channel Attacks on Anonymous Transactions

Florian Tramer” Dan Boneh Kenneth G. Paterson
Stanford University Stanford University ETH Ziirich
Abstract Bitcoin’s transaction graph. The same holds for many other

Privacy-focused crypto-currencies, such as Zcash or Monero,
aim to provide strong cryptographic guarantees for transaction
confidentiality and unlinkability. In this paper, we describe
side-channel attacks that let remote adversaries bypass these
protections.

We present a general class of timing side-channel and
traffic-analysis attacks on receiver privacy. These attacks en-
able an active remote adversary to identify the (secret) payee
of any transaction in Zcash or Monero. The attacks violate
the privacy goals of these crypto-currencies by exploiting
side-channel information leaked by the implementation of
different system components. Specifically, we show that a
remote party can link all transactions that send funds to a
user, by measuring the response time of that user’s P2P node
to certain requests. The timing differences are large enough
that the attacks can be mounted remotely over a WAN. We
responsibly disclosed the issues to the affected projects, and
they have patched the vulnerabilities.

We further study the impact of timing side-channels on
the zero-knowledge proof systems used in these crypto-
currencies. We observe that in Zcash’s implementation, the
time to generate a zero-knowledge proof depends on secret
transaction data, and in particular on the amount of transacted
funds. Hence, an adversary capable of measuring proof gen-
eration time could break transaction confidentiality, despite
the proof system’s zero-knowledge property.

Our attacks highlight the dangers of side-channel leakage in
anonymous crypto-currencies, and the need to systematically
protect them against such attacks.

1 Introduction

Bitcoin, the largest crypto-currency, is not private: several aca-
demic studies [2,24,34,42,44] and multiple commercial prod-
ucts [11, 12,23] show that one can effectively de-anonymize

*Part of this work was performed while the first author was visiting ETH
Ziirich.

crypto-currencies.

For those who want transaction privacy on a public
blockchain, systems like Zcash [45], Monero [47], and several
others offer differing degrees of unlinkability against a party
who records all the transactions in the network. We focus
in this paper on Zcash and Monero, since they are the two
largest anonymous crypto-currencies by market capitaliza-
tion. However our approach is more generally applicable, and
we expect other anonymous crypto-currencies to suffer from
similar vulnerabilities.

Zcash and Monero use fairly advanced cryptographic
primitives such as succinct zero-knowledge arguments (zk-
SNARKS) [5] and ring signatures [43]. Despite these strong
cryptographic protections, some protocol-level attacks on
transaction privacy have been found [4,28,37] and corrected
(we discuss these attacks in the related work in Section 7).

In this paper we take a different approach to analyzing the
privacy guarantees for anonymous transactions. Rather than
attacking the abstract protocols, we look at side-channel in-
formation that is leaked by the implementation of different
components in the system. Specifically, we look at timing side-
channels and traffic patterns, as measured by a remote network
attacker. We show that, while the abstract zero-knowledge
protocols used in these systems can hide information from
an observer, these protocols are vulnerable to side-channel
leakage. Any information leakage can invalidate the zero-
knowledge property, and weaken or break the privacy guaran-
tees of anonymous transactions.

1.1 Our results

We describe multiple attacks on transaction privacy in Zcash
and Monero that exploit communication patterns or timing
information leaked by different parts of the system. We take
a systematic approach, looking at the life cycle of an anony-
mous transaction as it traverses the system. At every step, we
look for side-channels and asses their impact on user privacy.

The life-cycle of an anonymous transaction is shown in

@ User creates Tx

Wallet with local prover

1@

Wallet with remote prover

A= F

Adversary la

wallet

P2P node

@ Tx is sent into P2P network

Adversary 2

@ Wallets process new Txs

Wallet with local node

Wallet with remote node

Adversary 3 Adversary 1b

Figure 1: Side-channels in the anonymous transaction life cycle. (1) A user’s wallet creates a transaction, which involves
generating a cryptographic proof. This computation might be performed locally or outsourced to a remote service. (2) The wallet
sends the new transaction to a P2P node which propagates it into the network. (3) A P2P node shares a received transaction with a
connected wallet; the connection may be local or remote. During transaction creation, Adversary la can time an outsourced proof
generation to leak some transaction secrets (Section 3.3). When processing a new transaction, a wallet’s behavior may change
when it is the transaction’s payee. If the wallet connects to a remote node, this can be inferred by Adversary 1b that observes
traffic patterns between the wallet and node, or by Adversary 3 that controls the node. If the wallet and node are co-located,
changes in the wallet behavior can be inferred by Adversary 2 that interacts with the user’s P2P node (Section 3.2).

Figure 1. First, the transaction is created in the payer’s wal-
let, possibly with the help of a remote server to generate the
necessary zero-knowledge proof to prove transaction validity.
Then the transaction is transmitted through the P2P network.
Finally, the transaction is received by the payee wallet, pos-
sibly with the help of a remote P2P node that records all
transactions in the P2P network. The payee’s wallet must
scan through all anonymous transactions in the network to
find those transactions of which it is the recipient.

An attacker can observe side-channel information at each
of these steps and attempt to learn information about the
transaction, such as: the identity of the intended payee (e.g.,
their public key, or the IP address of their P2P node), the
amount of funds transferred in the transaction, or the source
of the funds. We next summarize our results.

Zcash. 1In Zcash, a user’s wallet and P2P node are run in a
single process. The wallet checks if it is the payee of every in-
coming transaction by attempting to decrypt it using its secret
key. This results in two sources of side-channel leakage: (1)
if decryption succeeds and the decrypted transaction (called a
Note plaintext) is well-formed, the wallet performs an extra
Pedersen commitment check; (2) if decryption succeeds, but
the decrypted transaction is malformed, the wallet throws an
exception that is propagated to the node’s P2P layer.

In the first case, the time taken to perform the extra Ped-
ersen commitment check causes a delay in the P2P node’s
response to subsequent network messages. Consequently, we
show an attack, termed PING, which sends a transaction to a
node followed immediately by a “ping” message (a standard
keep-alive message in Zcash’s P2P network). The attacker
can use the delay in the ping response to infer whether the

node was the transaction’s payee or not. This constitutes a
break of transaction unlinkability.

In the second case, we propose the REJECT attack wherein
an attacker carefully crafts a malformed transaction, encrypts
it under a known (but anonymous) public key, and sends it to
a target P2P node. If decryption succeeds, then the exception
is triggered, and the target node sends an explicit “reject”
message back to the attacker. Receipt of this message then
tells the attacker that the selected public key belongs to the
owner of the target P2P node — a breach of anonymity.

Details of the PING and REJECT attacks are in Section 4.

Monero. For Monero, where wallets and nodes are run in
separate processes, we show that receipt of a payment alters
the communication pattern between a wallet and its node. If
the wallet is connected to a remote node (as is common for
mobile wallets or when first syncing with the network), we
show in Section 5 that a passive network adversary can infer
if the wallet is the payee of a recent transaction. Furthermore,
even if the user’s wallet and node are co-located, we show
that a remote adversary can infer the wallet-to-node commu-
nication pattern by causing and observing lock contention
over the node’s resources. We validate this timing attack in a
WAN, where an attacker (located in London) infers if a victim
(running a node and wallet in Ziirich) receives a payment.

For both Zcash and Monero, our attacks enable a remote
adversary to link anonymous transactions by identifying the
P2P node of each transaction payee. As described in Sec-
tion 3.2, the attacks can be further exploited to: (1) identify
the IP address of a user’s P2P node, given her public key; (2)
break the unlinkability of diversified addresses belonging to

the same user. For Zcash, the attacks further enable to: (3) re-
motely crash a Zcash node, given the user’s public key, and (4)
create a remote timing side-channel on an (non constant-time)
ECDH key-exchange involving the user’s long-term secret
viewing key, which potentially results in leakage of that key.
These attacks can put privacy-conscious crypto-currency
users (e.g., whistle-blowers or activists) at risk. For example,
an adversary that links a user’s anonymous public key to her
P2P node could uncover the user’s physical identity or loca-
tion. An adversary that breaks unlinkability — and monitors
transactions as they enter the P2P network — can infer which
P2P nodes belong to users that are transacting with each other.
The vulnerabilities we uncover and exploit run deeper than
the cryptographic timing side-channels exploited in prior
work (e.g., Kocher’s attack [29] and subsequent remote timing
attacks on TLS [8,9]). Indeed, even if all the cryptographic
primitives in Zcash or Monero were constant-time, the attacks
described above would still apply (except for the timing at-
tack on the ECDH key exchange). This is because our main
attacks exploit a lack of constant-timeness at the protocol
level, whereas prior literature mainly studies cryptographic
constant-time guarantees at a lower-level algorithmic level.

Side-channels in ZkSNARK generation. In Section 6 we
look at timing side-channels at transaction creation time,
where the payer generates a zZkSNARK to prove that the trans-
action is valid. We observe that in Zcash, the time to generate
azkSNARK is not constant, but depends on secret information
such as the Hamming weight of the transaction amount. Our
experiments show that the current implementation is therefore
not zero-knowledge in practice: the information gleaned from
timing leakage invalidates the zero-knowledge property. An
adversary can extract this information if it can measure the
running time of the zkSNARK generation procedure. How-
ever, as we explain in Section 3.3, it may be difficult to exploit
this leakage in the current Zcash system.

1.2 Disclosure and remediation.

All the vulnerabilities discussed in this paper were disclosed
to Zcash and Monero, and have subsequently been fixed in
recent versions of both projects [17,20,22,35].

We hope that this work will help inform other privacy-
oriented blockchain projects about the dangers of side-
channel leakage in anonymous payment systems. It should
also motivate the development of constant-time implementa-
tions of cryptographic primitives such as zkSNARK provers.

2 Architecture of an Anonymous Payment
System

This section introduces some core design concepts of privacy-
focused crypto-currencies such as Zcash and Monero.

These crypto-currencies build on top of Bitcoin’s so-called
UTXO model. Each transaction spends outputs from prior
transactions and produces new outputs. The set of “unspent
transaction outputs” (UTXOs) is recorded in a blockchain,
and represents the total currency in circulation.

Each user of the currency possesses one or more public keys
(also known as addresses), and connects to a P2P network to
send and receive transactions.

Privacy goals. In Bitcoin, a UTXO is a tuple of the form
(amount, pk), where pk is the recipient’s public key. To later
spend this UTXO, the recipient produces a signature under
the corresponding secret key. A transaction thus reveals the
amount of spent currency, the origin of funds (i.e., which
UTXOs are spent), and their destination (i.e., the public key
of the owner of the new UTXOs). Moreover, a user’s public
key can be linked to the P2P node that she connects to when
sending transactions into the network.

Currencies such as Zcash and Monero aim to provide the
following stronger privacy guarantees:

e Confidentiality: A transaction does not reveal the trans-
acted amount.

e Untraceability: When a transaction spends a UTXO, it is
hard to identify the transaction that produced that UTXO.

e Unlinkability: Given two transactions sent into the net-
work (at most one of which is sent by the adversary), the
adversary cannot tell whether they pay the same address.
Moreover, given two addresses, an adversary cannot de-
termine whether they belong to the same user.

e User anonymity: Given a user’s address (i.e., a public
key), an adversary cannot determine how the owner of
that address is connected to the P2P network.

Privacy techniques. These privacy guarantees are achieved
via a combination of cryptographic techniques, which we
informally describe next.

Confidential transactions [33] hide the amount of trans-
acted funds. A confidential transaction’s UTXOs are of the
form (Commit(amount), pk), i.e., they only reveal a crypto-
graphic commitment to the transacted amount. The transac-
tion further includes a proof that its total balance is zero.

UTXO anonymity sets provide untraceability by concealing
the identity of a transaction’s inputs. Specifically, an anony-
mous transaction does not reveal the UTXOs it spends, but
only a super-set of UTXOs along with a zero-knowledge proof
of ownership of some UTXOs in this set.

Obfuscated and diversified addresses guarantee unlinka-
bility. To prevent linkability of transactions sent to the same

I'The latter property enables a user to receive payments from different
entities without those entities knowing that they are paying the same user.
This can be trivially done if the user maintains multiple public-key pairs. A
more efficient solution is given by diversified addresses, described hereafter.

address, the UTXOs of anonymous transactions contain an
“obfuscated” public key (e.g., a commitment to the key in
Zcash). Diversified addresses (or sub-addresses in Monero)
enable a user to anonymously transact with multiple entities,
without managing multiple secret keys. From a single secret
key sk, users can create multiple public keys pkj,...,pk,.
These keys are unlinkable: it is hard to determine whether
two public keys pk,pk’ are derived from the same secret key.

Blockchain scanning is a technical consequence of unlinka-
bility. Since an anonymous transaction’s UTXOs do not reveal
the recipient’s public key in the clear, users have to scan every
new transaction and perform various cryptographic operations
to check whether a transaction is intended for them.

User anonymity is guaranteed by untraceability and unlink-
ability. Since a transaction reveals nothing about the sender’s
or receiver’s public key, a user’s public key cannot be linked
to the P2P node that she uses to send or receive transactions.

Software deployments. Deployments of crypto-currency
software differ across projects (and among users of the same
currency). Various deployment choices greatly influence a
user’s vulnerability to the side-channel attacks we present.

We distinguish three types of software: (1) Nodes are P2P
clients that handle the blockchain’s consensus layer by ex-
changing and validating transactions and blocks; (2) A wallet
(possibly backed by a hardware module) stores a user’s keys
and UTXOs and connects to a node to send or receive transac-
tions. (3) A prover produces the zero-knowledge (ZK) proofs
required to privately spend a user’s UTXOs.

We consider the following common deployment modes,
which refer to the interaction between a user’s wallet and a
P2P node or prover.

1. Integrated. The wallet, node and prover functionalities
are all part of the same process. This is the current design
of the official Zcash client.

2. Local. Different components are run in separate processes
in a local network (this is Monero’s default for wallets
and nodes). Some hardware wallets also delegate the gen-
eration of cryptographic proofs to a local software.

3. Remote owned. Due to restricted computation power or
memory, a wallet may connect to a remote P2P node or
prover hosted by the user. Remote P2P nodes are com-
monly used, e.g., in Monero or Zcash’s mobile wallets.
Outsourcing cryptographic proofs is uncommon, but is
explicitly enabled in Zcash’s design [27] and was imple-
mented in an earlier protocol version [15].

4. Remote third-party. As running a P2P node is costly, users
may connect their wallet to a node hosted by a third party.
This is common in Monero: newly created wallets connect
to third party nodes while a local node downloads the
blockchain. Such a deployment is unlikely for ZK provers
as the third-party prover has to be trusted for privacy [27].

The anonymous transaction life-cycle. Figure | illus-
trates how anonymous transactions are created and shared
with nodes and wallets via a P2P network:

1. To send a new transaction, a user’s wallet selects some
UTXOs and produces a zero-knowledge proof of validity
for the transaction.

2. The transaction is sent to the P2P node connected to the
wallet and shared with the network. P2P nodes store these
transactions in their “Memory Pool” (Mempool).

3. P2P nodes share these transactions with connected wallets.
A wallet scans every new transaction to check whether it
is the transaction’s payee.

Steps 2 and 3 are also performed once a transaction is
included in a block. When a block is mined, the block and the
transactions it contains are propagated to all P2P nodes. The
block’s transactions are then shared with user wallets.

3 Overview of the Attacks

This section gives an overview of our attack strategies. Sec-
tion 4, 5 and 6 then describe instantiations and evaluations of
these attacks in both Zcash and Monero.

3.1 Threat Model

The attacks described in this paper are remote side-channel
attacks. We thus never assume that a victim’s software is com-
promised.” In line with the software deployments described
in Section 2, we consider the following remote adversaries,
which are illustrated in Figure 1.

1. A network adversary (Adversary 1a and 1b in Figure 1)
passively monitors the encrypted traffic between a vic-
tim’s wallet and a remote service (e.g., a node or prover).

2. A P2P adversary (Adversary 2) participates in the P2P
network. The attacker may deviate from the P2P protocol.

3. A remote node adversary (Adversary 3) controls a third-
party P2P node and passively monitors the (plaintext)
communication between a victim’s wallet and this node.

3.2 Attack Type I: Side-Channels at the Re-
ceiving Party

The most practical and pervasive side-channel attacks that we
discovered affect the last stage of the anonymous transaction
life-cycle depicted in Figure | — when a wallet processes
new transactions. These attacks enable remote adversaries to
break the system’s unlinkability and anonymity guarantees.

2 An adversary co-located with a user’s wallet could resort to more power-
ful attacks (e.g., cache side-channel attacks). However, such adversaries are
explicitly outside of the threat model considered by Monero and Zcash [18].

Our attacks exploit prevalent design flaws in the way that
a user’s wallet periodically checks whether it is the payee of
any new transactions.

Attack goals. Our attacks target transaction unlinkability
and user anonymity. The attacker’s goals are thus to: (1) de-
termine whether two transactions pay the same address, and
(2) to determine how the user of a known address connects to
the P2P network.

Our attacks are tailored to common deployment of wallets
and P2P nodes. The actual goal achieved by all of our attacks
is to identify the P2P node that is being used by the payee of
a transaction. In a setting where multiple users connect their
local wallet to a shared remote P2P node, the attacks mounted
by a network adversary or by a remote node adversary further
recover the actual wallet used by the transaction payee.

We consider two different attack scenarios:

e The adversary knows an anonymous public key and sends
a transaction to this key to determine which P2P node (or
wallet) the key’s owner uses to receive transactions.

e An honest user sends a transaction for which the adversary
does not know the intended payee or her public key. The
adversary determines which P2P node (or wallet) is used
by the transaction’s payee.

The latter attack scenario subsumes the first, as the adver-
sary can send honestly crafted transactions to a known public
key. The latter scenario directly leads to a break of transaction
unlinkability. Given two transactions sent into the network,
the adversary simply determines whether the payees of both
transactions use the same P2P node or wallet. In addition,
both attack scenarios represent a break of user anonymity and
can be bootstrapped for additional privacy violations:

e [P address recovery. The adversary can link a public key
to the IP address of the owner’s P2P node (or her wallet
if it connects to a remote node), unless the owner uses
anonymization tools such as Tor.” This information can
be used to de-anonymize or geo-localize the victim.

o Diversified address linkability. Given two public keys, an
attacker can determine if they belong to the same user or
not. The attacker sends a transaction to each public key,
and checks if the same node or wallet is identified. This
breaks the unlinkability property of diversified addresses.

o Private key recovery. The vulnerabilities underlying some
of our attacks also open avenues for extracting a victim’s
secret “viewing” key via timing side-channels. Theft of
this key lets the adversary passively link all transactions
sent to the victim (but not steal the victim’s funds).

3 An attacker who obtains a victim’s public key does not necessarily know
the victim’s IP address. The victim could have shared the key using a third
party messaging system or forum. An attacker might also have obtained some
public keys by hacking a service supporting anonymous transactions.

Attack strategies. Our attacks exploit a difference in the
way that a wallet processes a transaction when it is the payee
and when it is not. This difference is due to additional crypto-
graphic operations performed to retrieve received funds.
Such differences in wallet behavior are not an issue per se,
as a remote attacker cannot directly interact with a user’s wal-
let. Yet, we find that due to various design flaws, differences
in wallet behavior impact the interactions between the wallet
and its P2P node. In turn, we show that a remote attacker can
infer changes in the wallet-to-node interactions via various
side-channels. We develop two general attack strategies:

e Strategy 1: Traffic analysis of wallet-to-node communica-
tion. If a wallet connects to a remote node, a network adver-
sary or remote node adversary can passively observe changes
in the wallet-to-node interaction.

o Strategy 2: Inferring wallet behavior from the P2P layer. If
the wallet and node are co-located, a remote adversary cannot
observe their interactions. Nevertheless, if changes in wallet
behavior impact the interactions between the user’s P2P node
and remote peers, information still leaks to the adversary.

Both strategies apply not only when a transaction is created
and sent into the P2P network, but also when it is included
in a block. At that point, the block and all its transactions are
shared with each peer, and wallets re-process the transactions
to ensure they are valid (e.g., they did not double spend).

3.3 Attack Type II: Side-Channels at the
Sending Party

The attacks described in Section 3.2 — which break transac-
tion unlinkability and user anonymity — exploit flaws in the
system design of P2P clients and wallets. As such, they do not
directly target any of the protocol’s cryptographic protections.
To broaden the scope of our investigation of side-channel vul-
nerabilities in anonymous transactions, we initiate a study of
attacks on the cryptographic tools that guarantee confidential-
ity and untraceability at transaction creation-time — specifi-
cally succinct zero-knowledge arguments (zk-SNARKS).

The attacks in this section are of a more conceptual nature.
While they are less likely to affect current users, these attacks
illustrate once more the importance of having side-channel-
free cryptographic implementations for future-proof and in-
depth security of anonymity-preserving systems.

Attack goals. The transaction sender is responsible for en-
suring confidentiality and untraceability. As we argue below,
the most plausible target for a remote attack is to recover
transaction amounts — thereby breaking confidentiality.

Challenges. Remote side-channel attacks on transaction
creation face a number of challenges:

1. Non-interactivity: Users can create transactions without
interacting with any other parties.

2. Ephemeral secrets: Many transaction secrets (e.g., trans-
action amounts, and secrets related to UTXOs) are single-
use. Thus, even if a side-channel exists, an adversary gets
a single attempt at extracting these secrets.

3. High-entropy secrets: Long-lived secrets used in creating
transactions (e.g., the user’s secret key) have high-entropy,
and require a high-precision side-channel to be extracted.

We show that these challenges can be overcome by an
adversary that targets the proving phase of the transaction
creation process and that aims to (partially) recover a transac-
tion’s confidential amount.

SNARKS in anonymous transactions. Zero-knowledge
proofs are a fundamental building block for anonymous trans-
actions. In a zk-SNARK protocol, a prover has some secret
input (called a witness), and convinces the verifier that this
witness satisfies a given predicate, without revealing anything
else about the witness. In Zcash and Monero, such proofs cer-
tify the validity of transactions while preserving their privacy.
In Zcash for example, a proof witness contains a list of spent
UTXOs, a receiver address, and a transacted amount, and the
proof guarantees that these UTXOs exist and belong to the
spender, and that all funds are transferred to the receiver.

Timing side-channels in zk-SNARK provers. Our thesis
is that in current implementations, the fime taken to produce
a proof leaks information about the prover’s secret witness—
and in particular about the amount of currency being spent.
Yet, as noted above, it may be hard for a remote adversary
to obtain a timing side-channel on the proof generation pro-
cess, due to the non-interactive nature of transaction creation.
Worse, timing a proof generation may be insufficient to ex-
tract secrets that are ephemeral or have high-entropy. Despite
these challenges, we argue below that remote timing attacks
on zk-SNARK provers in anonymous crypto-currencies are
possible in some deployment scenarios, and we demonstrate
in Section 6 that the timing of a proof generation can leak
significant information about secret transaction amounts.
Regarding non-interactivity, we make two observations:

e Ifaweak client (e.g., a mobile wallet) outsources proofs to
a remote service, a network adversary can time the prover.
While proof outsourcing is uncommon, the Zcash protocol
enables this feature [27] and remote proving services were
designed for early protocol versions [15]. Proof delegation
is also recommended for hardware wallets [16]. Some
users may opt for delegating proofs to a remote service.

e More generally, an adversary may get out-of-band infor-
mation on when the transaction creation process starts and
observe when it ends by monitoring the P2P network. For
example, a user could setup recurring payments, where

transactions are created at a fixed time. An adversary may
also have the ability to trigger a transaction as part of
some outer protocol. We draw a connection to timing
side-channels for digital signatures. While signatures are
non-interactive, protocols that use them (e.g., TLS) can
introduce remote side-channels [8, 9].

Due to the high-entropy of many transaction secrets, our at-
tacks target the transacted amount, a non-cryptographic value
for which even a coarse approximation (as leaked by a single
timing measurement) constitutes a privacy breach.”*

Attack strategy. We consider a cryptographic timing at-
tack that exploits timing variations in arithmetic operations
depending on the operands’ values. Such attacks have been
studied for many cryptographic primitives [8,9,29], but had
not been considered for zk-SNARKSs prior to this work.

We exploit the fact that the time to produce a proof is cor-
related with the value of the prover’s witness. As the witness
contains the transaction amount, we expect this amount to be
correlated with the proof time. For example, Zcash’s proofs
decompose the transaction amount into bits and compute an
elliptic curve operation for each non-zero bit. The proof time
is thus strongly correlated with the Hamming weight of the
transaction amount, which is in turn correlated with its value.

4 Attacks on Unlinkability and Anonymity in
Zcash

We now evaluate the side-channel attacks on transaction pro-
cessing described in Section 3.2. We first demonstrate attacks
against Zcash. Attacks on Monero are described in Section 5.
Our attacks on Zcash adopt the second strategy from Sec-
tion 3.2, that exploits a lack of isolation between a user’s
wallet and P2P node to leak wallet behaviors to a remote
P2P adversary. In the Zcash client, the two components are
part of a single process that sequentially processes received
messages (including new transactions). We describe two side-
channel attacks that exploit this tight coupling. Throughout
this section, we often use the term “node” to refer to the single
process that implements both a P2P client and a wallet.

4.1 Unlinkability in Zcash

To understand our side-channel attacks, we first describe how
Zcash guarantees unlinkability. From Section 2, recall that
unlinkability relies on two concepts: (1) transactions only
contain a commitment to the recipient’s public key, and (2) a
user can derive multiple unlinkable public keys (diversified
addresses) from a single secret key.

4A co-located adversary (which is not part of Zcash’s threat model [18])
can likely recover significantly more information by exploiting more fine-
grained timing side-channels, e.g., from a shared cache.

Zcash’s diversified addresses are static Diffie-Hellman keys.
The private key is a scalar, ivk (the incoming viewing key). A
diversified public key is of the form (Gg4, PKy4) where Gq is a
random point in an elliptic curve group and PKy = ivk - Gg4.

A payment to the address (Gq4,PKq) contains a UTXO (a
Note commitment) of the form:

cm = Commit(Ggq||PKg4||v;rem) ,

where v is the sent amount and rcm the commitment random-
ness. To later spend this UTXO, the receiver has to prove that
she knows an opening of cm.

In-band secret distribution. The sender uses El-Gamal
encryption to share an opening of cm with the recipient. The
sender samples an ephemeral secret key esk, computes the
public key EPK = esk - Gy, and derives the shared key

k = esk-PKy = esk-ivk- Ggq .

The opening of the commitment cm is included in the Note
plaintext (np). The sender encrypts the Note plaintext np
under an authenticated encryption scheme using the key k,
and appends the ciphertext C and the ephemeral public key
EPK to the transaction.

Blockchain scanning. To recover her funds, a user scans
each transaction with her private key ivk. For a transaction
with public key EPK, Note ciphertext C and Note commitment
cm, she computes:

TrialDecrypt(ivk, EPK,C,cm)

k =ivk-EPK

np = Decrypt, (C)

if np= 1, return L

Parse np as np := (Gg, v,rcm, memo)

PKd =ivk- Gd

if cm # Commit(Gq||PKg||v;rem), return L
7: return np

AN A AT

That is, if decrypting C succeeds (which means the user is the
transaction’s payee), the user checks that the Note plaintext
np contains a valid opening of the Note commitment cm.

4.2 Our Attacks

Our attacks — PING and REJECT — enable an adversary
to tell whether a remote Zcash node succeeded in decrypting
the Note ciphertext of a transaction. From this, the adversary
learns that this remote node belongs to the transaction’s payee.
The two attacks differ in their setup (REJECT only applies
to transactions crafted by the attacker, while PING applies to
any transaction), and in the side-channel they exploit (an error
message for REJECT, and a timing side-channel for PING).
As described in Section 3.2, identifying the P2P node of a
transaction payee further lets an adversary link transactions,

recover a user’s IP address, link diversified payment addresses,
and even open a timing side-channel that (in principle) enables
remote extraction of the victim’s private viewing key, ivk.

Both the PING and REJECT attacks exploit a (weak) form
of “decryption oracle” [14,41], that allows the adversary to
learn whether a given ciphertext was correctly decrypted by a
node. Yet, our setup is quite different from a standard chosen
ciphertext attack. Indeed, such attacks typically rely on the
ability to send arbitrary ciphertexts to a (single) victim, and to
learn some predicate of the decrypted plaintext (e.g., whether
the plaintext is correctly formatted or not [6,48]). As we
will see, in our case the adversary either already knows the
Note plaintext (for the REJECT attack) or lacks the ability
to create new valid authenticated Note ciphertexts (for the
PING attack). Instead of trying to break semantic security as
in a traditional CCA attack, our attacks use the decryption
oracle to identify which user, within a network, holds the key
to decrypt a transaction’s Note ciphertext.

Experimental Setup. We evaluate all our attacks on release
v2.0.7 of Zcash, before the vulnerabilities were fixed in re-
sponse to our disclosure. For experiments in a WAN setting,
the victim runs on a machine in Ziirich (quad-core Intel i7-
7700 CPU@3.60GHz with 8GB of RAM running Ubuntu
18.04.2) and the remote attacker runs on a Google cloud in-
stance in London (N1 standard instance). We measure an
average round-trip latency of 21 ms, with sub-millisecond
standard-deviation.

4.2.1 The PING Attack

Our first attack, PING, exploits the tight coupling between
wallet and P2P components in the Zcash client. More pre-
cisely, we exploit the fact that the Zcash client serially pro-
cesses all incoming P2P messages, including those that con-
tain new transactions. As a result, the fime taken to process a
transaction impacts the node’s processing of other messages.
A remote P2P adversary can thus build a timing side-channel
that leaks weather a node is the payee of a transaction.

The PING attack applies to any transaction, even those sent
by honest users and for which the adversary does not know
the payee’s public key.

A timing side-channel in transaction processing. If a
Zcash wallet successfully decrypts a Note ciphertext, it checks
that the opening of the Note commitment is valid (line 6 in
TrialDecrypt). This involves computing a Pedersen hash [27]
with two elliptic curve scalar multiplications. A TrialDecrypt
call thus takes longer (by about one millisecond on a desktop
machine) when the decryption succeeds.

A P2P adversary can measure the duration of the
TrialDecrypt call by sending a “ping” message to a Zcash

node immediately after it receives a new transaction.’
The node’s wallet first processes the transaction and calls
TrialDecrypt, before the node responds to the ping. The time
elapsed until the receipt of the ping response leaks informa-
tion about the success of the Note decryption, and therefore
on whether the node was the payee of the relayed transaction.

A timing side-channel in block processing. The above
attack applies to unconfirmed transactions that enter a victim
node’s memory pool. The same vulnerability also applies to
the processing of transactions included in a mined block.

Upon receiving a new block, a Zcash node sequentially
processes and trial-decrypts each transaction in it. The total
time to validate the block thus depends on the number of
transactions that pay the user. As above, a remote adversary
can leak this validation time by pinging the victim node right
after it receives a fresh block.

Applying the attack. The attacker first builds a baseline
by running the PING attack against a target node, using a
transaction that does not pay the target (the attacker can send
funds to itself). The timing of the ping responses from a
baseline for a TrialDecrypt call where decryption fails. The
attacker then compares this baseline to timings obtained from
attacks on new transactions.

The attack requires reliable measurements of a node’s trans-
action processing time. Note that for transactions sent by
honest users, the attack cannot be repeated to average out net-
work jitter, because, once a node has validated a transaction, it
ignores further messages containing it. One optimization con-
sists in running both above variants of the PING attack, once
when the transaction enters a node’s mempool and once when
itis included in a block (wallets re-process a transaction when
it is mined). The attacker thus gets two timing measurements,
thereby halving the variance caused by the network.

Evaluation. We run the attack in a WAN, with a victim
node in Ziirich and an attacker in London (21 ms round trip
latency). The attacker sends 200 transactions, half of which
pay the victim. Figure 2 plots the victim’s response time
to the attacker’s subsequent ping message. The attacker can
distinguish between the two scenarios with 100% precision.

We further validate the attack on block processing. The
adversary relays 20 blocks to the victim, each of which con-
tains a single transaction that either pays the victim or another
user. Figure 3 plots the delay of the victim’s ping response.
The attack achieves 100% precision. The attack extends to
blocks with N > 1 transactions, by using as baseline the time
to validate a block with N non-paying transactions.

5 A ping is a standard protocol message that Zcash P2P nodes send to their
neighboring peers at regular intervals, to confirm that their shared TCP/IP
connection is still valid. Upon receiving a ping message, the P2P node replies
with a “pong” message.

O
O

]

I
©
o

I
©
O

PING response time (ms)
F N
N N ®
o w o

S
o
5

—

Wallet is not Payee

46.0 -

Wallet is Payee

Figure 2: PING attack on unconfirmed Zcash transac-
tions in a WAN. For 200 transactions sent to a node, we time
the node’s response to a subsequent ping message. When the
node’s wallet is the transaction’s payee, the ping response is
delayed. The figure shows standard box plots with outliers.

fun
[
H

=
=
N

=
=
o

108

1

PING response time (ms)

fun
o
o

—T

104

Wallet ils Payee Wallet is ;mt Payee

Figure 3: PING attack on mined Zcash transactions in a
WAN. For 20 blocks (each containing a single transaction)
sent to a Zcash node, we time the node’s response to a subse-
quent ping message. When the node’s wallet is the payee of

the transaction in the block, the ping response is delayed.

4.2.2 The REJECT Attack

Our second attack, REJECT, exploits a flaw in the handling
of certain malformed transactions. It allows an adversary, in
possession of a user’s public key, to send a transaction that
causes the user’s P2P node to respond with a “reject” message.

The REJECT attack is weaker than PING, in that it only
applies to transactions sent by the attacker to a known address.
At the same time, the REJECT attack does not rely on any
timing signals and is thus easier to mount and more reliable.

The flaw exploited by the attack is in the parsing of the
Note plaintext in TrialDecrypt (line 4). The first byte of a
plaintext encodes the protocol version (0x01 in the current
Sapling version). If the version byte is incorrect (i.e., other
than 0x01 for Sapling transactions), the parser throws an ex-
ception that is caught in the client’s main message-processing
thread, where it causes a “reject” message to be sent to the
peer that shared the transaction (see Figure 4).

This provides a P2P adversary with an oracle indicating the
successful decryption of a Note ciphertext with a specifically

SaplingNotePlaintext::decrypt in Note.cpp

pt = AttemptSaplingEncDecryption(C, ivk, epk);
if (!'pt) {
return boost::none; // decryption failed

}

CDataStream ss (SER_NETWORK, PROTOCOL_VERSION) ;
ss << pt.get(); // serialize the plaintext

SaplingNotePlaintext: :SerializationOp in Note.hpp

unsigned char leadingByte = 0x01;
READWRITE (leadingByte) ;

if (leadingByte != 0x01) {
throw std::ios_base::failure(...);

}

ProcessMessages in main.cpp

tr¥Rét = ProcessMessage (pfrom, strCommand, ...);
} catch (const std::ios_base::failure& e) {

) pfrom->PushMessage ("reject"”, ...);

Figure 4: Error handling exploited by the REJECT attack.
The code is from Zcash version 2.0.7, before the attack was
patched. Top: if decryption of a Note ciphertext C succeeds,
the decrypted stream is serialized into a Note plaintext. Mid-
dle: an exception is thrown if the plaintext’s first byte does
not encode the protocol version. Bottom: the client’s message-
processing thread catches the exception, and sends a “reject”

message to the peer that sent the malformed transaction.

malformed plaintext (e.g., with a version byte of 0x02).

Linking a public key to a node. Given a public key
(Gq, PKy), the attacker can identify the Zcash node that holds
this key. The attacker builds a Note plaintext with an incorrect
leading byte, encrypts it under a key derived from (Gq, PKy)
and adds it to a transaction. The attacker sends the transaction
to all P2P nodes and checks which one replies with a “reject”
message. We validated this attack in a local test network.

A potential issue is that a peer that receives the malformed
transaction could relay it to the payee before the attacker’s
own message reaches the payee. In this case, the payee will
send a “reject” message to the relaying peer, and ignore the
attacker’s later message. Yet, as nodes validate transactions
before relaying them, the attacker’s message is likely to reach
the payee first. In the event that the attacker does fail to receive
a “reject” message, the attack can simply be repeated.

4.2.3 Attacks beyond Recipient Discovery

The vulnerabilities underlying the above attacks can be further
exploited for adversarial goals beyond linking transactions
and de-anonymizing public keys.

Denial of service. A curious consequence of the REJECT
attack is that once a transaction containing a malformed Note
plaintext is included in a mined block, the transaction payee’s
client crashes when attempting to validate the block.

3000 A

2500 A

2000 A

1500

Number of Points

=
o
o
o

500

104 105 106 107

Time [us]
Figure 5: Time to compute ivk - P for a fixed ivk and one
million random points P in the elliptic-curve group.

This flaw is pernicious. Even if the Zcash client is manually
restarted, it re-crashes immediately while validating the block.

If an attacker were to get hold of payment addresses for a
large number of Zcash users, this flaw could lead to a strong
DoS attack vector. Worse, if an attacker knows the payment
addresses of many Zcash miners, such a DoS attack could be
exploited to stifle the network’s mining power (e.g., in prepa-
ration for a 51% attack or to remove mining competition).

Key recovery via ECDH timing. The PING and REJECT
attacks also yield a remote timing channel on Zcash’s imple-
mentation of the ECDH key exchange, in particular the Ellip-
tic curve multiplication ivk - EPK in TrialDecrypt (line 1).

The Zcash team was aware that the ECDH key exchange
is not constant time, and that this might be exploitable by a
co-located adversary [18]. The REJECT and PING attacks
further open up the possibility of this side-channel being ex-
ploited remotely.

Zcash’s Elliptic Curve multiplication routine is indeed not
constant-time: it uses a standard double-and-add procedure,
and the underlying field arithmetic is not constant time. We
adapted Kocher’s timing attack [29] to Zcash’s Elliptic Curve
multiplication routine. For a fixed secret ivk, we locally timed
the multiplication for 1 million random points. The timing
distribution is plotted in Figure 5, and is clearly not constant.

Assuming we have already recovered the j most significant
bits of ivk, we recover the (j+ 1)-th bit by correlating the
time of a point doubling or point multiplication with the total
multiplication time. Conditioned on all previous bits being
recovered, the following bit is recovered with 98.4% proba-
bility. Using a suitable backtracking mechanism to resolve
the few false guesses, the full key could thus be recovered
with about one million samples.

The query complexity of this attack is fairly high. The at-
tack was performed in an “idealized” setting that ignores the
time taken by the network and transaction verification, which
would add significant noise and further increase the sample
complexity of a full remote attack. Our proof-of-concept of
course also confirms the Zcash team’s suspicion that a co-

located adversary could exploit timing side-channels to re-
cover a user’s secret keys.

4.3 Remediation

Fixing the REJECT attack is simple: treat a plaintext parsing
failure as a decryption failure and ignore the offending cipher-
text. This fix was added in release 2.0.7-3 of Zcash [17,20].

The PING attack exploits a lack of isolation between a
Zcash node’s P2P and wallet components. Release 2.0.7-3
addresses this issue by refactoring the wallet into a separate
thread, that periodically pulls the list of recent transactions
and calls TrialDecrypt. The timing of the TrialDecrypt call
thus no longer affects the timing of other P2P functionalities.
Yet, release 2.0.7-3 only fixes the PING attack on unconfirmed
transactions. Refactoring the node’s processing of new blocks
was more complex, and ultimately fixed in release 2.1.1 [22].

A simple defense against the type of attacks we present is
to run two Zcash nodes, a “firewall” node that connects to the
P2P network and a local node holding the user’s keys that
only connects to the firewall. This setup requires storing and
validating the entire blockchain twice, yet prevents all our
attacks — except for the DoS attack in Section 4.2.3.

We note that running a Zcash node over Tor [19] does
not prevent our attacks. A P2P adversary with an active Tor
connection to a victim’s P2P node could still link transactions
that pay the victim, or link the victim’s diversified addresses.

Finally, we believe that Zcash should produce a side-
channel resistant implementation of their core cryptographic
primitives. Side-channel resistance may have seemed like a
secondary concern, given that the Zcash protocol is primarily
non-interactive. As our attacks have shown, a single bug in
the in-band secret distribution routine inadvertently allowed
for a two-way interaction between an attacker and victim,
thereby opening up a potential remote timing side-channel on
the Zcash non-interactive key-exchange mechanism.

S Attacks on Unlinkability and Anonymity in
Monero

We now describe side-channel attacks on unlinkability and
user anonymity in Monero. These attacks differ conceptually
from those we found in Zcash, as the Monero client separates
the wallet and P2P components into different processes.

While such a design is safer in principle, we found that
wallet actions still leak to a remote adversary through network
traffic and timing side-channels. First, we describe attacks that
infer receipt of a transaction by passively analyzing the traffic
between a wallet and remote node (Strategy 1 in Section 3.2).
Second, we show that even if a user’s wallet and node are co-
located, the local wallet-to-node interactions affect the node’s
P2P behavior, which leaks to a remote adversary via a timing
side-channel. This latter attack combines aspects from both
of the attack strategies described in Section 3.2.

10

5.1 Unlinkability in Monero

We first provide a high-level overview of Monero’s use of
stealth-addresses, a technique for deriving a re-randomized
public key for every transaction sent to the same recipient, so
as to guarantee unlinkability.

A Monero user, Alice, has a public key of the form

(A,B) = (aG,bG) ,

where G is a base point in an elliptic curve group. The pair
of scalars (a,b) € Zg is Alice’s secret key. To receive funds
from another user, Bob, Alice shares her public key (A, B)
with Bob.

When Bob sends a transaction to Alice, he produces a ran-
domized public key via a Diffie-Hellman key exchange with
the first half of Alice’ key (A), which is further mixed with the
second key half of the key (B). The goal is to produce a point
P such that only Alice can compute the discrete logarithm of
P with respect to G.

Concretely, Bob picks an ephemeral secret key r & Z4 and
computes

where A : {0,1}* — Z, is a hash function. The public keys P
and R = rG are included in the transaction. Note that P hides
Alice’s public key (A, B).

To later spend the received UTXO, Alice needs to prove
knowledge of a scalar x such that P = xG. Given (P,R), she
can compute this secret as

P=H(rA)-G+B= (H(aR)+b)-G.
~—_————

X

In-band secret distribution. As with Zcash’s in-band se-
cret distribution described in Section 4.1, the sender transmits
some secret information to the receiver as part of the trans-
action. In Monero, the only information the receiver needs
is the amount of transacted funds (which is hidden inside a
commitment). For this, the sender derives a symmetric key k
from the shared secret P and encrypts the transaction amount
under k. The ciphertext C is appended to the transaction.

Blockchain scanning. Upon seeing a transaction with keys
(P,R) and ciphertext C, a user with private key (a,b) and
public key (A, B) first computes

x=%H(aR)+b
P =xG,

and checks whether P’ = P. If the points match, the user is
the transaction’s payee. The user further decrypts C using a
symmetric key k derived from P. This extra decryption, and
some bookkeeping for received funds, is the basis for the
timing side-channel attacks described in Section 5.3.2.

5.2 Monero Deployments

Before introducing our attacks, we discuss typical deploy-
ments of the official Monero client. While all common setups
are subject to some form of our attacks, some are more vul-
nerable than others.

Remote nodes. Due to memory and computation re-
quirements of P2P nodes, many users connect their wal-
let to a remote node, possibly hosted by a third-party (e.g.,
moneroworld.com). By default, Monero wallets connect to a
third-party node upon creation, until a local node downloads
the blockchain (a process that can take several days).

Since a P2P node cannot access the wallet’s keys, using a
third-party node is safe in principle. Yet, some privacy risks
are known (e.g., the node’s host learns the wallet’s IP address
and can launch an easily detectable attack to trace the wallet’s
transactions [36]). However, there are no known attacks that
allow a third-party node to link transactions, nor any known
attacks on wallets that connect to a remote owned node or to
a local node. We show examples of such attacks.

Wallet types. The Monero client has three wallet imple-
mentations, whose distinct refresh policies impact our attacks.
The main RPC interface — and the GUI wallet built on top
of it — refresh at fixed intervals (every 20 or 10 seconds)
to fetch new blocks and unconfirmed transactions from the
P2P node. The command-line interface (CLI) wallet refreshes
every second, but only fetches new blocks of confirmed trans-
actions. While all wallet types are vulnerable, the CLI wallet
is susceptible to different attacks. We focus here on the RPC
and GUI wallets, and discuss the CLI wallet in Appendix A.

5.3 Our Attacks

Our attacks exploit differences in the interactions between
a wallet and node, when the wallet is the payee of a new
unconfirmed or mined transaction.

If the wallet connects to a remote node, a network adversary
(or a malicious remote node) can infer receipt of a payment by
passively monitoring the encrypted traffic between the wallet
and remote node (see Section 5.3.1 and Section 5.3.2).

Moreover, even if a user’s P2P node and wallet are co-
located, we show that a P2P adversary can still exploit side-
channels to infer when the wallet receives a payment. We
show an active attack that sends requests to a victim’s P2P
node and times the responses, in order to reveal lock con-
tention over the victim P2P node’s resources that indicates
the receipt of a payment (see Section 5.3.3).

As in Zcash, these attacks further enable linking a known
public key to the IP address of the owner’s P2P node or wallet,
as well as linking of a user’s diversified addresses.

11

£

get_hashes —

£

get hashes \ ’

L}
| |
| |
L}
.
| |
Hy, H, :
get_tx {H;, H,} :Pmcm Tx;
8et_tX iHy, My
TX:, TX, :
. Steep {} __get _hashes get hashes
get_hashes .
Hy, H, E[)IO((’W Tx; <—
—gettx () | . Slecp get_hashes
L}

Figure 6: Side-channels in the communication between a
Monero wallet and P2P node. Left: a traffic analysis side-
channel (Section 5.3.1). The wallet polls its node for new
transaction hashes, and requests transactions Tx; and Txj.
During its next refresh, the wallet re-requests Tx, which re-
veals that it is the payee. Right: a timing side-channel (Sec-
tion 5.3.2). Because the wallet is the payee of Tx, the process-
ing time for this transaction is increased. The delay before the
wallet’s next request reveals that it is the payee of Tx;.

Experimental Setup. Our experimental setup is similar to
the one we used for Zcash. We evaluate all our attacks on
release v0.14.1.0 of Monero, before the vulnerabilities were
fixed in response to our disclosure. For experiments in a WAN
setting, the victim runs on a machine in Ziirich (quad-core
Intel i7-7700 CPU@3.60GHz with 8GB of RAM running
Ubuntu 18.04.2) and the remote attacker runs on a Google
cloud instance in London (N1 standard instance). We measure
an average round-trip latency of 21 ms, with sub-millisecond
standard-deviation.

5.3.1 Traffic Analysis Attacks for Remote Nodes

We first describe attacks that exploit the communication pat-
terns between a wallet and remote node. Upon an automatic
refresh, the wallet first requests the list of unconfirmed trans-
actions from the node, and receives a list of hashes. It then
requests the bodies for two types of transactions: (1) those
that the wallet has not processed before; and (2) previously
seen transactions of which the wallet is the payee.

A malicious remote node thus trivially learns which trans-
actions pay the wallet, by reading the wallet’s requests. Even
if the remote node is trusted, a passive network adversary can
detect the wallet’s transaction request (the communication
between wallet and node is easy to fingerprint, as the wallet
refreshes at fixed intervals). The mere presence of this request
can leak that the wallet was the payee of a transaction. With
Monero’s traffic in May 2020 (10,000 transactions per day,
or one every 9 seconds on average) it is common that no new
transaction enters the mempool between two wallet refreshes.
If the wallet issues a transaction request even though the mem-
pool has not changed, the request must be for a previously
seen unconfirmed transaction that pays the wallet.

moneroworld.com

e ¥ °
OO

wv
L

—
S

Wallet is not Payee

Time between RPC requests (ms)

Ey
L

Wallet is Payee

Figure 7: Timing of block requests in Monero. Plots the
delay between block requests from a wallet to a remote node,
when the first block has one transaction for the wallet (left), or
for another user (right). The experiment is repeated 20 times.

We validated the attack in a local Monero network, but note
that the attack succeeds with 100% accuracy regardless of
the network type, because it relies only on the presence or
absence of transaction messages and not timing signals.

5.3.2 Timing Attacks for Remote Nodes

In addition to the number of network requests exchanged
between a wallet and node, we now show that the time elapsed
between requests also leaks whether a wallet was paid.

For each new transaction, the wallet checks if it is the trans-
action’s payee. If so, it further decrypts the obtained value
(see Section 5.1 for more details). As a result, processing a
transaction takes more time if the wallet is the payee of that
transaction (the delay on a desktop machine is about 2-3 ms).

This difference in processing time leads to two timing
attacks. The first targets the processing of new blocks. Upon
a refresh, the wallet serially downloads a new block from
the node and processes its transactions. The time between
two block requests thus leaks the processing time of the first
block’s transactions. The second attack targets unconfirmed
transactions. Recall that the wallet refreshes at fixed intervals
(e.g., every 20 seconds for the RPC wallet). More precisely,
the wallet sleeps for a fixed amount of time at the end of a
refresh. Thus, the time at which the wallet wakes and sends
a new request depends on the time it took to process the
transactions received in the previous refresh.

Evaluation. Figure 7 plots the delay between block re-
quests made by a user’s wallet when the first received block
contains a single transaction. If the wallet is the transaction’s
payee, the next block request is delayed by 3.4 ms on aver-
age. A similar delay is observed between two wallet refresh
periods when the wallet processes a transaction of which it
is the payee. These timing differences are large enough to be
reliably observable in a WAN setting.

12

The attack extends to blocks with N > 1 transactions. The
adversary first estimates the time taken to process N trans-
actions that do not pay a wallet, and compares this estimate
to the observed delay. Even though the time to process non-
paying transactions varies slightly from one transaction to
another, this variation is negligible compared to the multi-
millisecond delay incurred when processing a payment.

5.3.3 Timing Attacks for Local Nodes

The attacks from Section 5.3.1 and Section 5.3.2 require
that the victim’s wallet connects to a remote node. We now
describe a more complex attack that applies even to a co-
located wallet and node.

In this case, a remote adversary cannot observe communi-
cation patterns between the victim’s node and wallet. Yet, we
develop an attack that lets a P2P adversary infer these commu-
nication patterns. Specifically, we show that an attacker can
detect when a remote wallet issues a transaction request to its
node. As we described in Sections 5.3.1 and 5.3.2, the pres-
ence of this request (or the time between two requests) leaks
that the wallet is the payee of an unconfirmed transaction.

Our attack exploits overly-coarse locking in Monero’s P2P
nodes. When processing a transaction request — sent either
by a wallet or by a peer via a get_objects message — the
P2P node acquires a global lock on its mempool. Thus, if a
P2P adversary sends a get_objects message right after a
request from the victim wallet, lock contention in the P2P
node will delay the response to the attacker. The chances of
lock contention are high as the P2P node validates requested
transactions before releasing the lock, which results in the
lock being held for tens of milliseconds upon a wallet request.
To reduce the risk of the attacker’s request locking out the wal-
let’s request, the attacker only sends requests for non-existing
transactions so that the lock duration is small. Observing the
size of the response delay indicates to the attacker whether
the wallet has issued a transaction request to its node, or not.
In turn this tells the attacker if a particular transaction is a
payment to the target wallet or not.

Evaluation. The timing difference induced by the lock con-
tention depends on the current size of the node’s memory pool.
With 20 transactions in the mempool, the lock is acquired for
about 15-20 ms upon a request from the wallet.

‘We ran the attack in a WAN, with the victim’s wallet and
node co-located in Ziirich, and an attacker in London. The
memory pool contains 20 transactions one of which pays the
wallet.” Every 10 seconds, the wallet refreshes and sends a
transaction request (as there is a payment for the wallet in the

6 According to https://moneroblocks.info, during May 2020, Mon-
ero’s blocks contained over 18 transactions on average, with about 35% of
blocks containing at least 20 transactions. Thus, the memory pool contained
at least 20 transactions when those blocks were mined. Note that an adversary
can artificially increase the mempool size by sending dummy transactions
with the minimum transaction fee.

https://moneroblocks.info

--- Wallet transaction request
40 X Delay of get_objects response
P P Lx
=35 i X i i i i
3 £ A S B A
> 1 1 1 1 1 1
g] : : : : : :
: I S A
i i X X i i
I T
1 1 i i 1 1 : >|<
20— L L L o L L—
0 10 20 30 40 50 60
Time [s]

Figure 8: Remote lock timing attack on Monero. Plots the
response time of a victim’s local P2P node to get_objects
requests from a P2P adversary in a WAN. The attacker sends
2365 requests in one minute. The dotted red lines indicate
when the victim’s wallet issued a request for a transaction of
which it is the payee. The wallet’s requests cause lock con-
tention which delays the P2P node’s response to the attacker.

mempool). The attacker continuously sends get_objects
messages to the victim’s node and times the response.’ Our
experimental results are shown in Figure 8. The correlation
between timing delay and wallet requests is abundantly clear.

As described, the attack assumes that the mempool is un-
changed for at least two wallet refreshes (i.e., for 20-40 sec-
onds) after the payment to the wallet enters the pool. Since
Monero has about one transaction every 17 seconds and a new
block every 2 minutes, such periods of inactivity are common.

5.4 Remediation

Our attacks were fixed in Monero’s v.0.15.0 release. The wal-
let now only requests unseen transactions from its P2P node,
thus preventing the attacks in Section 5.3.1 and Section 5.3.3.
The wallet also requests and processes new blocks in batches
of 1,000 blocks. Thus, the timing attack on block processing
from Section 5.3.2 can at best infer that a wallet was paid by
some transaction in a batch. A stronger defense would be to
issue block requests on a fixed schedule, as described below.

Decoupling refresh time from processing time. The tim-
ing attack on the processing of unconfirmed transactions in
Section 5.3.2 is due to a design flaw that has the wallet sleep
for a fixed amount of time after a refresh. The start time of a
refresh thus leaks the duration of the previous refresh period,
which itself reveals if a payment was processed.

7 A technical issue is that the attacker cannot send get_objects requests
at too high of a rate, as this causes the victim’s TCP congestion control
mechanism to delay the sending of some responses, thereby adding significant
noise to the timing measurements. Specifically, the attacker waits for one
round-trip time between each request it sends, so as to leave sufficient time
for the victim’s response message to receive an ACK.

13

This issue is pernicious. Zcash’s recently released mobile
SDKSs [21] have the same flaw: the mobile wallet repeatedly:
(1) requests new transactions from a remote node; (2) pro-
cesses these transactions; and (3) sleeps for a fixed duration.

An incomplete fix, which was originally proposed by both
Monero and Zcash, randomizes the sleep duration after a
refresh. This fix may suffice against an adversary that targets
a transaction sent by an honest user, and is thus limited to a
single timing measurement. However, randomized delays are
insufficient against an adversary that targets a known public
key. In this case, the adversary can create multiple payments
for this public key, and time the duration between refreshes
of a target wallet for each transaction. If the wallet holds the
public key, the average refresh time will be larger.

A better fix consists in fully decoupling the starting times
and processing times of wallet refreshes. A simple approach
is to have the wallet wake at fixed time intervals (e.g., at the
start of every minute). Since an adversary can tell when a
refresh period starts but not when it ends, this prevents our
attacks. Both Zcash and Monero implemented this solution.

Our attacks on Monero’s CLI wallet (see Appendix A) have
only been partially addressed as the current fix uses a variant
of the above incomplete randomization defense.

6 Timing Attacks on zZkSNARK Provers

The side-channel attacks we described in Section 4 and Sec-
tion 5 circumvent unlinkability and anonymity guarantees
by exploiting flaws in the system design of P2P clients and
wallets. In this section, we further investigate the potential
for side-channel vulnerabilities in one of the fundamental
cryptographic primitives used in these systems: succinct zero-
knowledge arguments (zkSNARKSs).

Following the strategy outlined in Section 3.3, we aim to
recover information about the confidential transaction amount,
from a single timing measurement of the proof generation. In
Section 6.1, we demonstrate that such timing attacks reveal
information about transaction amounts in Zcash. In contrast,
we show in Section 6.2 that similar attacks are ineffective for
the special-purpose proofs implemented in Monero.

6.1 Timing Side-Channels
Prover

in the Zcash

We show that for Zcash’s zkSNARK system, proving times
heavily depend on the value of the prover’s witness. In partic-
ular, for anonymous transactions, we show that proving times
are heavily correlated with a transaction’s confidential value.

To send a transaction, the sender creates two proofs, one
that proves ownership of the spent UTXOs, and one that
proves that new UTXOs are well-formed. In both proofs,
the witness is a vector that contains, among other terms, a
binary decomposition of the transacted value.

Proof Time [s]
w
w
~
o

i

520

230 240
Value in ZEC

0 510 250 260

Figure 9: Correlation between transaction amount and
prover time in Zcash. For each of 200 random values, we
plot the mean and standard deviation in proof time for 20
transactions of that amount. The correlation coefficient be-

tween the value (in log-scale) and proof time is R = 0.57.

Zcash uses the Groth16 proof system [25]. For our pur-
poses, it suffices to know that the prover encodes the witness
as a vector (aj,...,a,) of field elements, and that the prover’s
main computation is a “multi-exponentiation” of the form:

m
Y aiG;,
i=1

where the G; are fixed elliptic curve points. Importantly,
Zcash’s implementation optimizes away terms a@;G; where
a; = 0. The proof time thus correlates with the number of
non-zero field elements in the prover’s witness.

Since the transaction amount is encoded in binary in the
witness, its Hamming weight influences the proving time. And
since the weight of a number’s binary representation is cor-
related with the number’s absolute value, the proof duration
leaks information about confidential transaction amounts.

ey

Evaluation. To evaluate the timing attack, we picked 200
transaction amounts of the form 2’ for # uniformly random in
[0,64). Note that the proof witness contains other ephemeral
terms besides the amount (e.g., commitment openings), which
also contribute to the variability in proving time. For each of
the 200 random amounts, we thus create 20 transactions by
randomizing over all other ephemeral witness components.
We then time the prover for each of these 4,000 transactions.

Figure 9 shows the mean and standard deviation of proving
times for each amount. Proving time and transaction amount
are strongly correlated (R = 0.57). While the timing leaks
only a coarse approximation of the amount, this could suffice
to confidently identify rare transactions of large value.

The left-most proof timings in Figure 9 correspond to trans-
action amounts of zero. Fingerprinting such proofs is partic-
ularly interesting due to Zcash’s “dummy Notes” (see [27]):
to obfuscate the number of UTXOs in a transaction (e.g., to
resist the attacks from [4]), users can create dummy UTXOs

14

with zero value. An adversary capable of timing a prover
could thus re-identify dummy UTXOs with good accuracy.

Discussion Compared to the attacks described in Section 4
and Section 5, the above timing attack is not easy to apply.
It requires that an adversary can time a proof generation, an
assumption that depends on users’ common usage patterns
(e.g., recurring payments) or deployment strategies (e.g. out-
sourcing proofs to a remote service). If a timing opportunity
does exist, we show that the resulting leakage allows for a
coarse approximation of the private transaction amount.

Of course, local side-channel attacks would be much more
effective. Yet, Zcash explicitly discounts this threat and makes
no claims of security against a co-located adversary [18].

Ultimately, this attack serves as a warning about potential
future dangers arising from non-constant-time cryptographic
implementations. A more mature implementation of Zcash’s
elliptic curve arithmetic is in development [7] and likely to
be incorporated into the main client in the future. We note
that the use of constant-time cryptography need not introduce
a large computation overhead. In Figure 9 for example, we
observe that the best-case and worst-case prover times differ
by less than 20 milliseconds, which is less than 1% of the
total prover time. Thus, even if all proofs were to take the
constant worst-case time, the overhead would remain small.

6.2 Absence of Timing Side-Channels in the
Monero Prover

In contrast to Zcash, Monero does not make use of a general-
purpose zk-SNARK system. Instead, the spender of a Monero
transaction only proves that the confidential transaction con-
tains a commitment to a value that is in the range [0,2%4).
This “range proof™ is based on Bulletproofs [10].

At a first glance, we may expect Monero’s proofs to ex-
hibit a similar timing side-channel as in Zcash. Indeed, Mon-
ero’s range proof also performs a multi-exponentiation over
a binary decomposition of the transaction value, similarly
to equation 1. However, a crucial difference is that Bullet-
proofs operate not only on the binary decomposition of a
value but also on its bit-wise complement. More specifically,
given a transaction amount v € [0,2"), the prover computes
the vector a; € {0, 1}" as the binary decomposition of v, and
sets ag = a;, — 1" € {—1,0}". The prover then computes a
Pedersen commitment of the form

=

(av)i-Gi+(ar)i-H;,
1

where the G; and H; are fixed base points in an elliptic curve
group. All further prover operations are on randomized values
independent of v. As a result, the number of computed elliptic
curve operations is a constant independent of the transaction
amount v. We note that this property is inherent to the proof

21.3 R=0.04
21.2 4
=
E 11
£
= 21.01 g
o
o
® 20.91
20.8
0 210 520 230 540 250 260

Value in pico-monero

Figure 10: Correlation between transaction amount and
prover time in Monero. For each of 200 random values,
we plot the mean and standard deviation in proof time for
20 transactions of that amount. The correlation coefficient
between the value (in log-scale) and proof time is R = 0.04.

protocol described by Biinz et al. [10] and was not included
as an explicit countermeasure against side-channel attacks.

Similarly to our Zcash experiment in Section 6.1, for a
range of random transaction values, we timed 20 proofs with
other witness elements chosen at random (in Monero’s case,
the witness consists of the transaction amount and a random
blinding vector). Figure 10 shows that proof times are es-
sentially independent of the transaction amount (the slight
correlation can be attributed to measurement noise). Never-
theless, we do observe that proof times are not constant, with
variations of up to 0.5 milliseconds between proof times. This
can be attributed to the fact that Monero’s implementation of
the elliptic curve multi-exponentiation is not constant-time,
with some data-dependent operations and memory-access pat-
terns. However, the small resulting timing differences seem
insufficient to reliably extract secret information from a sin-
gle remote timing measurement. Of course, performing local
attacks would be a much simpler matter.

7 Related Work

Several protocol-level issues with the privacy of anonymous
transactions were previously studied. In Monero, biases in
the choice of anonymity set were shown to enable transaction
tracing [37]. In Zcash, the low volume of anonymous transac-
tions was shown to enable tracing of many transactions via
usage pattern heuristics [4,28]. These works suggest protocol-
level issues with these schemes, which is very different to the
side-channel information leakage studied in this paper.

Our side-channel attacks complement a large body of work
on de-anonymization of crypto-currency transactions. Many
authors have shown that analyzing Bitcoin’s public transac-
tion graph breaks users’ pseudonymity [2,24,34,42,44]. In
privacy-focused currencies, common usage patterns can be
exploited to link and trace certain transactions in Zcash [4,28,

15

40] and Monero [30,37]. These attacks exploit protocol-level
leakage and are agnostic to the protocol’s system-level im-
plementation. As a consequence, these attacks are ineffective
against transactions with particularly strong cryptographic
anonymity guarantees, such as Zcash’s fully shielded trans-
actions. In contrast, our side-channel attacks exploit imple-
mentation flaws and bypass these cryptographic protections
to link or break confidentiality of arbitrary transactions.

Closest to our work are early attacks on Bitcoin by
Lerner [31]. These attacks — which are similar in spirit to
our attacks on Zcash — let an attacker link a Bitcoin address
to the IP address of the owner’s P2P node.

Our attacks further relate to the larger study of remote side-
channels in anonymization tools such as Tor [3,26,38,39] or
mix-networks [32,46].

Our remote timing attacks on zk-SNARKSs extend the rich
literature on similar attacks for other cryptographic primitives
or protocols [1,9,29]. Dall et al. [13] proposed a cache-timing
attack on a special-purpose zero-knowledge proof used for
anonymous attestation in Intel SGX. The challenges for tim-
ing of provers in anonymous transactions (see Section 3.3) do
not apply in this setting: the adversary can trigger arbitrarily
many attestations in a co-located enclave and perform high-
precision local cache-timing measurements of the prover.

8 Conclusion

We have presented a number of remote side-channel attacks
on anonymous transaction systems such as Zcash and Monero.
We have shown powerful attacks on transaction unlinkability
and user anonymity that exploit timing side-channels and
communication patterns leaked by a user’s P2P node upon
receipt of a payment. We have demonstrated that a remote
adversary can use this leakage to identify the P2P node used
by the secret payee of any transaction, and bootstrap this
ability to break user anonymity, transaction unlinkability, and
diversified address unlinkability.

We have further studied the impact of timing side-channels
on the zero-knowledge proof systems used in these currencies.
We have shown that Zcash’s implementation leaks secret
transaction data through the timing of a proof generation.
In principle, an attacker that can time a proof generation can
exploit this leakage to extract information about the transacted
amount, thereby breaking transaction confidentiality.

Our attacks reveal a new facet of the difficulty of designing
secure systems for anonymous transactions. We hope that
this work will help inform privacy-oriented crypto-currencies
about the dangers of side-channel leakage. In particular, our
results motivate the need for system designs that proactively
isolate user wallets from public P2P interfaces, as well as for
the development of constant-time implementations of crypto-
graphic primitives such as zkSNARK provers.

Acknowledgments

We thank the Zcash and Monero security teams for their pro-
fessional handling of the vulnerability disclosure process, for
insightful discussions, and for the prompt deployment of re-
mediations.

Dan Boneh'’s research was supported in part by NSF, ONR,
the Simons Foundation and a Google faculty fellowship. Ken-
neth G. Paterson’s research was supported in part by a gift
from VMware.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Nadhem J Al Fardan and Kenneth G Paterson. Lucky
thirteen: Breaking the TLS and DTLS record proto-
cols. In 2013 IEEE Symposium on Security and Privacy,
pages 526-540. IEEE, 2013.

Elli Androulaki, Ghassan Karame, Marc Roeschlin, To-
bias Scherer, and Srdjan Capkun. Evaluating user pri-
vacy in Bitcoin. In International Conference on Fi-
nancial Cryptography and Data Security, pages 34-51.
Springer, 2013.

Daniel Arp, Fabian Yamaguchi, and Konrad Rieck. Tor-
ben: A practical side-channel attack for deanonymizing
Tor communication. In Proceedings of the 10th ACM
Symposium on Information, Computer and Communica-
tions Security, pages 597-602. ACM, 2015.

Alex Biryukov, Daniel Feher, and Giuseppe Vitto. Pri-
vacy aspects and subliminal channels in Zcash. In ACM
SIGSAC Conference on Computer and Communications
Security, 2019.

Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran
Tromer. From extractable collision resistance to succinct
non-interactive arguments of knowledge, and back again.
In Innovations in Theoretical Computer Science, pages

326-349, 2012.

Daniel Bleichenbacher. Chosen ciphertext attacks
against protocols based on the rsa encryption standard
pkes# 1. In Annual International Cryptology Confer-
ence, pages 1-12. Springer, 1998.

Sean Bowe. Rust crate bls12_381 v0.1.0. https://
github.com/zkcrypto/blsl2_381, 2019.

Billy Bob Brumley and Nicola Tuveri. Remote timing
attacks are still practical. In European Symposium on Re-
search in Computer Security, pages 355-371. Springer,
2011.

David Brumley and Dan Boneh. Remote timing attacks
are practical. Computer Networks, 48(5):701-716, 2005.

16

[10]

(11]
(12]
[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

Benedikt Biinz, Jonathan Bootle, Dan Boneh, Andrew
Poelstra, Pieter Wuille, and Greg Maxwell. Bulletproofs:
Short proofs for confidential transactions and more. In
2018 IEEE Symposium on Security and Privacy (SP),
pages 315-334. IEEE, 2018.

Chainalysis. https://www.chainalysis.com/.
Ciphertrace. https://www.ciphertrace.com/.

Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth,
Daniel Genkin, Nadia Heninger, Ahmad Moghimi, and
Yuval Yarom. Cachequote: Efficiently recovering long-
term secrets of SGX EPID via cache attacks. IACR
Transactions on Cryptographic Hardware and Embed-
ded Systems, pages 171-191, 2018.

Danny Dolev, Cynthia Dwork, and Moni Naor. Non-
malleable cryptography. SIAM review, 45(4):727-784,
2003.

Electric Coin Company. Zcash pull request #2120: Ex-
perimental feature: remote proving service. https:
//github.com/zcash/zcash/pull/2120, 2017.

Electric Coin Company. [ZIP 305] best practices
for hardware wallets supporting Sapling. https://
github.com/zcash/zcash/issues/3038, 2018.

Electric Coin Company. Security announcement
2019-09-24. https://z.cash/support/security/
announcements/security-announcement-2019-
09-24/,2019.

Electric Coin Company. Zcash documentation—
security warnings—side-channel attacks. https:
//zcash.readthedocs.io/en/latest/rtd_pages/
security_warnings.html#side-channel-attacks,
2019. Revision fe830a5a.

Electric Coin Company. Zcash documentation—Tor
support in Zcash. https://zcash.readthedocs.io/
en/latest/rtd_pages/tor.html, 2019. Revision
fe830a5a.

Electric Coin Company. Zcash release v2.0.7-
3. https://github.com/zcash/zcash/releases/
tag/v2.0.7-3, 2019.

Electric Coin Company. ECC releases resources
for building mobile, shielded-Zcash wallets.
https://electriccoin.co/blog/ecc-releases—
resources-for-building-mobile-shielded-
zcash-wallets/, 2020.

Electric Coin Company. Zcash release v2.1.1. https:
//github.com/zcash/zcash/releases/tag/v2.1.1,
2020.

https://github.com/zkcrypto/bls12_381
https://github.com/zkcrypto/bls12_381
https://www.chainalysis.com/
https://www.ciphertrace.com/
https://github.com/zcash/zcash/pull/2120
https://github.com/zcash/zcash/pull/2120
https://github.com/zcash/zcash/issues/3038
https://github.com/zcash/zcash/issues/3038
https://z.cash/support/security/announcements/security-announcement-2019-09-24/
https://z.cash/support/security/announcements/security-announcement-2019-09-24/
https://z.cash/support/security/announcements/security-announcement-2019-09-24/
https://zcash.readthedocs.io/en/latest/rtd_pages/security_warnings.html#side-channel-attacks
https://zcash.readthedocs.io/en/latest/rtd_pages/security_warnings.html#side-channel-attacks
https://zcash.readthedocs.io/en/latest/rtd_pages/security_warnings.html#side-channel-attacks
https://zcash.readthedocs.io/en/latest/rtd_pages/tor.html
https://zcash.readthedocs.io/en/latest/rtd_pages/tor.html
https://github.com/zcash/zcash/releases/tag/v2.0.7-3
https://github.com/zcash/zcash/releases/tag/v2.0.7-3
https://electriccoin.co/blog/ecc-releases-resources-for-building-mobile-shielded-zcash-wallets/
https://electriccoin.co/blog/ecc-releases-resources-for-building-mobile-shielded-zcash-wallets/
https://electriccoin.co/blog/ecc-releases-resources-for-building-mobile-shielded-zcash-wallets/
https://github.com/zcash/zcash/releases/tag/v2.1.1
https://github.com/zcash/zcash/releases/tag/v2.1.1

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

Elliptic forensics software.

www.elliptic.co.

https://

Michael Fleder, Michael S Kester, and Sudeep Pillai.
Bitcoin transaction graph analysis. arXiv preprint
arXiv:1502.01657, 2015.

Jens Groth. On the size of pairing-based non-interactive
arguments. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
pages 305-326. Springer, 2016.

Dominik Herrmann, Rolf Wendolsky, and Hannes Fed-
errath. Website fingerprinting: attacking popular pri-
vacy enhancing technologies with the multinomial naive-
Bayes classifier. In Proceedings of the 2009 ACM work-
shop on Cloud computing security, pages 31-42. ACM,
20009.

Daira Hopwood, Sean Bowe, Taylor Hornby, and
Nathan Wilcox. Zcash protocol specification. Tech-
nical report, Electric Coin Company, 2019. Ver-
sion 2019.0.1 https://github.com/zcash/zips/
blob/d39%ed0/protocol/protocol.pdf.

George Kappos, Haaroon Yousaf, Mary Maller, and
Sarah Meiklejohn. An empirical analysis of anonymity
in Zcash. In 27th USENIX Security Symposium, pages
4634717, 2018.

Paul C Kocher. Timing attacks on implementations
of Diffie-Hellman, RSA, DSS, and other systems. In
Annual International Cryptology Conference, pages 104—
113. Springer, 1996.

Amrit Kumar, Clément Fischer, Shruti Tople, and Pra-
teek Saxena. A traceability analysis of Monero’s
blockchain. In European Symposium on Research in
Computer Security, pages 153—173. Springer, 2017.

Sergio Lerner. About my new Bitcoin vulnerability: get
your peer public addresses. https://bitslog.com/
2013/01/23/new-bitcoin-vulnerability-get—
your-peer-public-addresses/, 2013.

Brian N Levine, Michael K Reiter, Chenxi Wang, and
Matthew Wright. Timing attacks in low-latency mix sys-
tems. In International Conference on Financial Cryp-
tography, pages 251-265. Springer, 2004.

Greg Maxwell. Confidential transac-
tions. https://people.xiph.org/~greqg/
confidential_values.txt, 2016.

Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kir-
ill Levchenko, Damon McCoy, Geoffrey M Voelker, and
Stefan Savage. A fistful of Bitcoins: characterizing pay-
ments among men with no names. In Proceedings of the

17

[35]

(36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

2013 conference on Internet measurement conference,
pages 127-140. ACM, 2013.

Monero. Monero Pull Request #6074: Fix info leak
when using a remote daemon. https://github.com/
monero-project/monero/pull/ 6074, 2019.

Monero-Hax123. Corrupt RPC responses from remote
daemon nodes can lead to transaction tracing. https:
//hackerone.com/reports/304770, 2018.

Malte Moser, Kyle Soska, Ethan Heilman, Kevin Lee,
Henry Heffan, Shashvat Srivastava, Kyle Hogan, Ja-
son Hennessey, Andrew Miller, Arvind Narayanan, and
Nicolas Christin. An empirical analysis of traceabil-
ity in the Monero blockchain. Proceedings on Privacy
Enhancing Technologies, 2018(3):143-163, 2018.

Steven J Murdoch and George Danezis. Low-cost traffic
analysis of Tor. In 2005 IEEE Symposium on Security
and Privacy (S&P’05), pages 183-195. IEEE, 2005.

Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and
Thomas Engel. Website fingerprinting in onion routing
based anonymization networks. In Proceedings of the
10th annual ACM workshop on Privacy in the electronic
society, pages 103—114. ACM, 2011.

Jeffrey Quesnelle. On the linkability of Zcash transac-
tions. arXiv preprint arXiv:1712.01210, 2017.

Charles Rackoff and Daniel R Simon. Non-interactive
zero-knowledge proof of knowledge and chosen cipher-
text attack. In Annual International Cryptology Confer-
ence, pages 433—444. Springer, 1991.

Fergal Reid and Martin Harrigan. An analysis of
anonymity in the Bitcoin system. In Security and pri-
vacy in social networks, pages 197-223. Springer, 2013.

Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to
leak a secret. In Advances in Cryptology - ASIACRYPT,
pages 552-565, 2001.

Dorit Ron and Adi Shamir. Quantitative analysis of the
full Bitcoin transaction graph. In International Con-
ference on Financial Cryptography and Data Security,
pages 6-24. Springer, 2013.

Eli Ben Sasson, Alessandro Chiesa, Christina Garman,
Matthew Green, Ian Miers, Eran Tromer, and Madars
Virza. Zerocash: Decentralized anonymous payments
from Bitcoin. In 20714 IEEE Symposium on Security and
Privacy, pages 459—474. IEEE, 2014.

Vitaly Shmatikov and Ming-Hsiu Wang. Timing analy-
sis in low-latency mix networks: Attacks and defenses.
In European Symposium on Research in Computer Se-
curity, pages 18-33. Springer, 2006.

https://www.elliptic.co
https://www.elliptic.co
https://github.com/zcash/zips/blob/d39ed0/protocol/protocol.pdf
https://github.com/zcash/zips/blob/d39ed0/protocol/protocol.pdf
https://bitslog.com/2013/01/23/new-bitcoin-vulnerability-get-your-peer-public-addresses/
https://bitslog.com/2013/01/23/new-bitcoin-vulnerability-get-your-peer-public-addresses/
https://bitslog.com/2013/01/23/new-bitcoin-vulnerability-get-your-peer-public-addresses/
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://github.com/monero-project/monero/pull/6074
https://github.com/monero-project/monero/pull/6074
https://hackerone.com/reports/304770
https://hackerone.com/reports/304770

[47] Nicolas Van Saberhagen. Cryptonote v2.0, 2013.

[48] Serge Vaudenay. Security flaws induced by CBC
padding—applications to SSL, IPSEC, WTLS... In In-
ternational Conference on the Theory and Applications
of Cryptographic Techniques, pages 534-545. Springer,
2002.

A Side-Channel Attacks on the Monero CLI

Wallet

The command-line interface (CLI) for the Monero wallet has
a slightly different behavior than the RPC and GUI versions
analyzed in Section 5. As a result, the side-channel attacks
that apply to the CLI wallet are also different.

The CLI wallet makes use of a Monero privacy feature
known as a tracking key. Note that in the description of
blockchain scanning in Section 5.1, a user only needs “half”
of her secret key (the scalar a) to check whether she is the
recipient of a transaction. To compute the secret value x re-
quired to later spend the received funds further involves the
use of the second half of the key, the scalar b. The CLI wallet
only keeps the “tracking key”” a in memory, to determine when
the user has received transactions. At that point, it prompts
the user for a password to decrypt the “spending key” b. This
behavior differs from the RPC and GUI wallets that hold both
keys in memory (or in a hardware wallet).

18

The attacks described in Section 5 do not directly apply to
the CLI wallet. The CLI wallet only refreshes its copy of the
memory pool of unconfirmed transactions on an explicit user
prompt, so the attacks from Section 5 that target unconfirmed
transactions do not apply. Instead, the wallet is vulnerable to
a much more pernicious timing attack on block processing,
in a setting where the wallet connects to a remote node.

Indeed, recall that the CLI wallet requires a user password
in order to obtain the user’s spending key. When processing
new blocks, if the wallet detects that it is the payee of a trans-
action (using the tracking key), it displays a password prompt
to the user and interrupts any further refreshes until the user
responds. This is trivially observable by a remote node or by
a network adversary as this interrupts the flow of requests for
new blocks, potentially for several seconds, minutes or hours
depending on the user’s activity.

This attack vector has only been partially fixed. As of re-
lease v0.15.0, the CLI wallet refreshes at randomized intervals,
to obfuscate delays between refreshes caused by an unan-
swered password prompt. Yet, as noted in Section 5.4, such
arandomized defense approach is likely insufficient against
a determined adversary that aims to identify the owner of a
specific public key. Such an attacker can send multiple trans-
actions to this key, and obtain multiple timing measurements
that would average out the variability caused by the random-
ized delays between refreshes.

