
ETH Library

MIIND : A Model-Agnostic
Simulator of Neural Populations

Journal Article

Author(s):
Osborne, Hugh; Lai, Yi-Ming; Lepperød, Mikkel Elle; Sichau, David; Deutz, Lukas; de Kamps, Marc

Publication date:
2021-07

Permanent link:
https://doi.org/10.3929/ethz-b-000499535

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
Frontiers in Neuroinformatics 15, https://doi.org/10.3389/fninf.2021.614881

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000499535
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fninf.2021.614881
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

TECHNOLOGY AND CODE
published: 06 July 2021

doi: 10.3389/fninf.2021.614881

Frontiers in Neuroinformatics | www.frontiersin.org 1 July 2021 | Volume 15 | Article 614881

Edited by:

Andrew P. Davison,

UMR9197 Institut des Neurosciences

Paris Saclay (Neuro-PSI), France

Reviewed by:

Padraig Gleeson,

University College London,

United Kingdom

Sandra Diaz Pier,

Julich-Forschungszentrum,

Helmholtz-Verband Deutscher

Forschungszentren (HZ), Germany

*Correspondence:

Marc de Kamps

m.dekamps@leeds.ac.uk

Received: 07 October 2020

Accepted: 24 May 2021

Published: 06 July 2021

Citation:

Osborne H, Lai YM, Lepperød ME,

Sichau D, Deutz L and de Kamps M

(2021) MIIND : A Model-Agnostic

Simulator of Neural Populations.

Front. Neuroinform. 15:614881.

doi: 10.3389/fninf.2021.614881

MIIND : A Model-Agnostic Simulator
of Neural Populations
Hugh Osborne 1, Yi Ming Lai 2, Mikkel Elle Lepperød 3, David Sichau 4, Lukas Deutz 1 and

Marc de Kamps 5*

1 Institute for Artificial Intelligence and Biological Computation, School of Computing, University of Leeds, Leeds,

United Kingdom, 2 School of Medicine, University of Nottingham, Nottingham, United Kingdom, 3Centre for Integrative

Neuroplasticity, University of Oslo, Oslo, Norway, 4Department of Computer Science, Eidgenössische Technische

Hochschule Zurich, Zurich, Switzerland, 5 School of Computing and Leeds Institute for Data Analytics, University of Leeds,

Leeds, United Kingdom

MIIND is a software platform for easily and efficiently simulating the behaviour of

interacting populations of point neurons governed by any 1D or 2D dynamical system.

The simulator is entirely agnostic to the underlying neuron model of each population and

provides an intuitive method for controlling the amount of noise which can significantly

affect the overall behaviour. A network of populations can be set up quickly and easily

using MIIND’s XML-style simulation file format describing simulation parameters such as

how populations interact, transmission delays, post-synaptic potentials, and what output

to record. During simulation, a visual display of each population’s state is provided for

immediate feedback of the behaviour and population activity can be output to a file or

passed to a Python script for further processing. The Python support also means that

MIIND can be integrated into other software such as The Virtual Brain. MIIND’s population

density technique is a geometric and visual method for describing the activity of each

neuron population which encourages a deep consideration of the dynamics of the neuron

model and provides insight into how the behaviour of each population is affected by the

behaviour of its neighbours in the network. For 1D neuron models, MIIND performs far

better than direct simulation solutions for large populations. For 2D models, performance

comparison is more nuanced but the population density approach still confers certain

advantages over direct simulation. MIIND can be used to build neural systems that bridge

the scales between an individual neuron model and a population network. This allows

researchers to maintain a plausible path back from mesoscopic to microscopic scales

while minimising the complexity of managing large numbers of interconnected neurons.

In this paper, we introduce the MIIND system, its usage, and provide implementation

details where appropriate.

Keywords: simulator, neural population, population density, software, Python, dynamical systems, network, GPU

1. INTRODUCTION

1.1. Population-Level Modeling
Structures in the brain at various scales can be approximated by simple neural population
networks based on commonly observed neural connections. There are a great number of
techniques to simulate the behaviour of neural populations with varying degrees of granularity
and computational efficiency. At the highest detail, individual neurons can be modelled with
multiple compartments, transport mechanisms, and other biophysical attributes. Simulators such

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2021.614881
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2021.614881&domain=pdf&date_stamp=2021-07-06
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:m.dekamps@leeds.ac.uk
https://doi.org/10.3389/fninf.2021.614881
https://www.frontiersin.org/articles/10.3389/fninf.2021.614881/full

Osborne et al. MIIND

as GENESIS (Wilson et al., 1988; Bower and Beeman, 2012)
and NEURON (Hines and Carnevale, 2001) have been used
for investigations of the cerebellar microcircuit (D’Angelo et al.,
2016) and a thalamocortical network model (Traub et al., 2005).
Techniques which simulate the individual behaviour of point
neurons such as in NEST (Gewaltig and Diesmann, 2007),
or the neuromorphic system SpiNNaker (Furber et al., 2014),
allow neurons to be individually parameterised and connections
to be heterogeneous. This is particularly useful for analysing
information transfer such as edge detection in the visual cortex.
They can also be used to analyse so called finite-size effects
where population behaviour only occurs as a result of a specific
realisation of individual neuron behaviour. There are, however,
performance limitations on very large populations in terms of
both computation speed and memory requirements for storing
the spike history of each neuron.

At a less granular level, rate-based techniques are a widely used
practice of modeling neural activity with a single variable, whose
evolution is often described by first-order ordinary differential
equations, which goes back to Wilson and Cowan (1972). The
Virtual Brain (TVB) uses these types of models to represent
activity of large regions (nodes) in whole brain networks to
generate efficient simulations (Sanz Leon et al., 2013; Jirsa et al.,
2014). TVB demonstrates the benefits of a rate based approach
with the Epileptor neural population model yielding impressive
clinical results (Proix et al., 2017). The Epileptor model is based
on the well-known Hindmarsh-Rose neuron model (Hindmarsh
and Rose, 1984). However, the behaviour of this and other
rate based models is defined at the population level instead of
behaviour emerging from a definition of the underlying neurons.
Therefore, these models have less power to explain simulated
behaviours at the microscopic level.

Between these two extremes of granularity is a research area
which bridges the scales by deriving population level behaviour
from the behaviour of the underlying neurons. So called
population density techniques (PDTs) have been used for many
years (Knight, 1972; Knight et al., 1996; Omurtag et al., 2000)
to describe a population of neurons in terms of a probability
density function. The transfer function of a neuronmodel or even
an experimental neural recording can be used to approximate
the response from a population using this technique (Wilson
and Cowan, 1972; El Boustani and Destexhe, 2009; Carlu et al.,
2020). However, analytical solutions are often limited to regular
spiking behaviour with constant or slowly changing input. The
software we present here, MIIND, provides a numerical solution
for populations of neurons with potentially complex behaviours
(for example bursting) receiving rapidly changing noisy input
with arbitrary jump sizes. The noise is usually assumed to be
shot noise, but MIIND can also be used with other renewal
processes such as Gamma distributed input (Lai and de Kamps,
2017). It contains a number of features that make it particularly
suitable for dynamical systems representing neuronal dynamics,
such as an adequate handling of boundary conditions that emerge
from the presence of thresholds and reset mechanisms, but is
not restricted to neural systems. The dynamical systems can be
grouped in large networks, which can be seen as the model of a
neural circuit at the population level.

The key idea behind MIIND is shown in Figure 1A. Here, a
population of neurons is simulated. In this case, the neurons are
defined by a conductance based leaky-integrate-and-fire neuron
model with membrane potential and state of the conductance
as the two variables. The neuron’s evolution through state space
is given by a two-dimensional dynamical system described by
Equation (1).

τ
dV

dt
= −gl(V − El)− ge(t)V ,

τe
dge

dt
= −ge + Isyn(t)

(1)

V is the membrane potential and ge is the conductance variable.
El (set to −65 mV in this example) is the reversal potential
and τ (20 ms) and τe (5 ms) represent the time scales for V
and ge, respectively. Isyn represents changes to the conductance
variable due to incoming spikes. If V is raised above a specified
threshold value (−55 mV), it is reset to a specified reset
membrane potential (−65 mV). The positions of individual
neurons change in state space, both under the influence of the
neuron’s endogenous dynamics as determined by the dynamical
system and of spike trains arriving from neurons in other
populations, which cause rapid transitions in state space that are
modeled as instantaneous jumps. For the simulation techniques
mentioned earlier involving a large number of individual model
neuron instances, a practice that we will refer to as Monte
Carlo simulation, the population can be represented as a cloud
of points in state space. The approach in MIIND, known as
a population density technique (PDT), models the probability
density of the cloud (shown in Figure 1 as a heat map) rather
than the behaviour of individual neurons. The threshold and
reset values of the underlying neuron model are visible in the
hard vertical edges of the density in Figure 1A. In Figure 1B, the
same simulation approach is used for a population of Fitzhugh-
Nagumo neurons (FitzHugh, 1961; Nagumo et al., 1962). The
dynamical system is defined in Equation (2).

dV

dt
= V −

V3

3
−W,

dW

dt
= 0.08(V + 0.7− 0.8W)

(2)

V represents the membrane potential and W is a recovery
variable. The Fitzhugh-Nagumo model has no threshold-
reset mechanism and so there are no vertical boundaries
to the density. As well as the density function being
informative in itself, common population metrics such as
average firing rate and average membrane potential can be
quickly derived. The MIIND model archive, available in
the code repository, contains example simulation files for
populations of both conductance based neurons and Fitzhugh-
Nagumo neurons (examples/model_archive/Conductance2D and
examples/model_archive/FitzhughNagumo).

Frontiers in Neuroinformatics | www.frontiersin.org 2 July 2021 | Volume 15 | Article 614881

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Osborne et al. MIIND

FIGURE 1 | (A) The state space of a conductance based point model neuron. It is spanned by two variables: the membrane potential and a variable representing how

open the channel is. This channel has an equilibrium potential that is positive. The green dots represent the state of individual neurons in a population. They are the

result of the direct simulation of a group of neurons. MIIND, however, produces the heat plot representing a density (normalised to the maximum density value) which

predicts where neurons in the population are likely to be: most likely in the white areas, least likely in the red areas and not at all in the black areas. The sharp vertical

cut of the coloured area at −55 mV represents the threshold at which neurons are removed from state space. They are subsequently inserted at the reset potential, at

their original conductance state value. (B) The state space of a Fitzhugh-Nagumo neuron model. The axes have arbitrary units for variables V and W. There is no

threshold-reset mechanism and the density follows a limit cycle. After a certain amount of simulation time, neurons can be found at all points along the limit cycle as

shown here by a consistently high brightness.

1.2. The Case for Population Density
Techniques
Why use this technique? Nykamp and Tranchina (2000),
Omurtag et al. (2000), Kamps (2003), Iyer et al. (2013) have
demonstrated that PDTs are much faster than Monte Carlo
simulation for 1D models; De Kamps et al. (2019) have shown
that while speed is comparable between 2D models and Monte
Carlo, memory usage is orders of magnitude lower because
no spikes need to be buffered, which accounts for significant
memory use in large-scale simulations. In practice, this maymake
the difference between running a simulation on anHPC cluster or
a single PC equipped with a general purpose graphics processing
unit (GPGPU).

Apart from simulation speed, PDTs have been important
in understanding population level behaviour analytically.
Important questions, such as “why are cortical networks stable?”
(Amit and Brunel, 1997), “how can a population be oscillatory
when its constituent neurons fire sporadically?” (Brunel and
Hakim, 1999), “how does spike shape influence the transmission
spectrum of a population?” (Fourcaud-Trocmé et al., 2003) have
been analysed in the context of population density techniques,
providing insights that cannot be obtained from merely running
simulations. A particularly important question, which has not
been answered in full is: “how do rate-based equations emerge
from populations of spiking neurons and when is their use
appropriate?” There are many situations where such rate-based
equations are appropriate, but some where they are not and their
correspondence to the underlying spiking neural dynamics is not

always clear (de Kamps, 2013; Montbrió et al., 2015). There is a
body of work suggesting that some rate-based equations can be
seen as the lowest order of perturbations of a stationary state,
and much of this work is PDT-based (Wilson and Cowan, 1972;
Gerstner, 1998; Mattia and Del Giudice, 2002, 2004; Montbrió
et al., 2015). MIIND opens the possibility to incorporate
these theoretical insights into large-scale network models. For
example, we can demonstrate the prediction from Brunel and
Hakim (1999) that inhibitory feedback on a population can cause
a bifurcation and produce resonance. Finally, for a steady state
input, the firing rate prediction of a PDT model converges to a
transfer function which can be used in artifical spiking neural
networks (De Kamps et al., 2008).

1.3. Population-Level Modeling
For the population density approach we take with MIIND, the
time evolution of the probability density function is described by
a partial integro-differential equation.We give it here to highlight
some of its features, but for an in depth introduction to the
formalism and a derivation of the central equations we refer to
Omurtag et al. (2000).

∂ρ

∂t
+

∂

∂Ev
· (

EF(Ev)ρ(Ev, t)

τ
) =

∫

M
dEv′

{

W(Ev | Ev′)ρ(Ev′)−W(Ev′ | Ev)ρ(Ev)
}

,

(3)

ρ is the probability density function defined over a volume of
state space,M, in terms of time, t, and time-dependent variables,

Frontiers in Neuroinformatics | www.frontiersin.org 3 July 2021 | Volume 15 | Article 614881

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Osborne et al. MIIND

Ev, under the assumption that the neuronal dynamics of a point
model neuron is given by:

τ
dEv

dt
= EF(Ev), (4)

where τ is the neuron’s membrane time constant. Simple
models are one-dimensional (1D). For the leaky-integrate-and-
fire (LIF) neuron:

F(v) = −v, (5)

For a quadratic-integrate-and-fire (QIF) neuron:

F(v) = v2 + I, (6)

where v is the membrane potential, and I can be interpreted
as a bifurcation parameter. More complex models require a
higher dimensional state space. Since such a space is hard to
visualise and understand, considerable effort has been invested
in the creation of effective models. In particular two-dimensional
(2D) models are considered to be a compromise that allows
considerably more biological realism than LIF or QIF neurons,
but which remain amenable to visualisation and analysis,
and can often be interpreted geometrically (Izhikevich, 2007).
Examples are the Izhikevich simple neuron (Izhikevich, 2003),
the Fitzhugh-Nagumo neuron (FitzHugh, 1961; Nagumo et al.,
1962), and the adaptive-exponential-integrate-and-fire neuron
(Brette and Gerstner, 2005), incorporating phenomena such as
bursting, bifurcations, adaptation, and others that cannot be
accounted for in a one dimensional model.

W(v | v′) in Equation (3) represents a transition probability
rate function. The right hand side of Equation (3) makes it a
Master equation. Any Markovian process can be represented by
a suitable choice ofW. For example, for shot noise, we have

W(v′ | v) = ν(δ(v′ − v− h)− δ(v− v′)), (7)

where ν is the rate of the Poisson process generating spike events.
The delta functions reflect that an incoming spike causes a rapid
change in state space, modeled as an instantaneous jump, h. It
depends on the particular neural model in what variable the
jumps take place. Oftenmodels use a so-called delta synapse, such
that the jump is in membrane potential. In conductance based
models, the incoming spike causes a jump in the conductance
variable (Figure 1A), and the influence of the incoming spike on
the potential is then indirect, given by the dynamical system’s
response to the sudden change in the conductance state.

MIIND produces a numerical solution to Equation (3) for
arbitrary 1D or 2D versions of EF(Ev) (support for 3D versions
is in development), under a broad variety of noise processes.
Indeed, the right hand side of Equation (3) can be generalised
to other renewal processes which cannot simply be formulated in
terms of a transition probability rate function W. It is possible
to introduce a right hand side that entails an integration over
a past history of the density using a kernel whose shape is
determined by a Gamma distribution or other renewal process
(Lai and de Kamps, 2017).

1.4. Quick Start Guide
Before describing the implementation details of MIIND, this
section demonstrates how to quickly set up a simulation for a
simple E-I network of populations of conductance based neurons
using the MIIND Python library. A rudimentary level of Python
experience is needed to run the simulation. In most cases,
MIIND can be installed via Python pip. Detailed installation
instructions can be found via the README.md file of the MIIND
repository and in the MIIND documentation (Osborne and
De Kamps, 2021). For this example, we will use a pre-written
script, generateCondFiles.py, to generate the required simulation
files which can be found in the examples/quick_start directory of
the MIIND repository or can be loaded into a working directory
using the following python command.

$ python -m miind.loadExamples

In the examples/quick_start directory, the generateCondFiles.py
script generates the simulation files, cond.model and cond.tmat.

$ python generateCondFiles.py

The contents of generateCondFiles.py is given in Listing 1. The
two important parts of the script are the neuron model function,
in this case named cond(), and the call to the MIIND function
grid_generate.generate() which takes a number of parameters
which are discussed in detail later.

Listing 1 | generateCondFiles.py

import miind.grid_generate as grid_generate

def cond(y,t):
E_r = -65e-3
tau_m = 20e-3
tau_s = 5e-3

v = y[0];
h = y[1];

v_prime = (-(v - E_r) - (h * v)) tau_m
h_prime = -h/tau_s

return [v_prime, h_prime]

grid_generate.generate(
func = cond,
timestep = 1e-04,
timescale = 1,
tolerance = 1e-6,
basename = ’cond’,
threshold_v = -55.0e-3,
reset_v = -65e-3,
reset_shift_h = 0.0,
grid_v_min = -72.0e-3,
grid_v_max = -54.0e-3,
grid_h_min = -1.0,
grid_h_max = 2.0,
grid_v_res = 200,
grid_h_res = 200,
efficacy_orientation = ’h’)

The cond() function should be familiar to those who have used
Python numerical integration frameworks such as scipy.integrate.
It takes the two time dependent variables defined by y[0] and

Frontiers in Neuroinformatics | www.frontiersin.org 4 July 2021 | Volume 15 | Article 614881

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Osborne et al. MIIND

y[1] and a placeholder parameter, t, for performing a numerical
integration. In the function, the user may define how the
derivatives of each variable are to be calculated. The generate()
function requires a suitable time step, values for a threshold
and reset if needed, and a description of the extent of the state
space to be simulated. With this structure, the user may define
any two dimensional neuron model. The generated files are
then referenced in a second file which describes a network of
populations to be simulated. Listing 2 shows the contents of
cond.xml describing an E-I network which uses the generated files
from generateCondFiles.py.

Listing 2 | cond.xml

<Simulation>
<WeightType>CustomConnectionParameters</

WeightType>
<Algorithms>

<Algorithm type="GridAlgorithm" name="
COND" modelfile="cond.model"
tau_refractive="0.0" transformfile="
cond_0_0_0_0_.tmat" start_v="-0.065"
start_w="0.0" >
<TimeStep>1e-04</TimeStep>

</Algorithm>
<Algorithm type="RateFunctor" name="

ExcitatoryInput">
<expression>800.</expression>

</Algorithm>
</Algorithms>
<Nodes>

<Node algorithm="ExcitatoryInput" name="
INPUT_E" type="EXCITATORY_DIRECT" />

<Node algorithm="ExcitatoryInput" name="
INPUT_I" type="EXCITATORY_DIRECT" />

<Node algorithm="COND" name="E" type="
EXCITATORY_DIRECT" />

<Node algorithm="COND" name="I" type="
INHIBITORY_DIRECT" />

</Nodes>
<Connections>

<Connection In="INPUT_E" Out="E"
num_connections="1" efficacy="0.1"
delay="0.0"/>

<Connection In="INPUT_I" Out="I"
num_connections="1" efficacy="0.1"
delay="0.0"/>

<Connection In="E" Out="I"
num_connections="1" efficacy="0.1"
delay="0.001"/>

<Connection In="E" Out="E"
num_connections="1" efficacy="0.1"
delay="0.001"/>

<Connection In="I" Out="E"
num_connections="1" efficacy="-0.1"
delay="0.001"/>

<Connection In="I" Out="I"
num_connections="1" efficacy="-0.1"
delay="0.001"/>

</Connections>
<Reporting>

<Display node="E" />
<Display node="I" />
<Rate node="E" t_interval="0.001" />

<Rate node="I" t_interval="0.001" />
</Reporting>
<SimulationRunParameter>

<SimulationName>EINetwork</
SimulationName>
<t_end>0.2</t_end>
<t_step>1e-04</t_step>
<name_log>einetwork.log</name_log>

</SimulationRunParameter>
</Simulation>

The full syntax documentation for MIIND XML files is given
in section 4. Though more compact or flexible formats are
available, XML was chosen as a formatting style due to its
ubiquity ensuring the majority of users will already be familiar
with the syntax. The Algorithms section is used to declare specific
simulation methods for one or more populations in the network.
In this case, a GridAlgorithm named COND is set up which
references the cond.model and cond.tmat files. A RateFunctor
algorithm produces a constant firing rate. In the Nodes section,
two instances of COND are created: one for the excitatory
and inhibitory populations, respectively. Two ExcitatoryInput
nodes are also defined. The Connections section allows us to
connect the input nodes to the two conductance populations. The
populations are connected to each other and to themselves with
a 1ms transmission delay. The remaining sections are used to
define how the output of the simulation is to be recorded, and to
provide important simulation parameters such as the simulation
time. By running the following python command, the simulation
can be run.

Listing 3 | Run the cond.xml simulation.

$ python -m miind.run cond.xml

The probability density plots for both populations will be
displayed in separate windows as the simulation progresses. The
firing rate of the excitatory population can be plotted using
the following commands. Figure 2 shows the probability density
plots for both populations and average firing rate of population E.

Listing 4 | Load the cond.xml simulation and plot the average firing rate of

population E.

$ python -m miind.miindio sim cond.xml
$ python -m miind.miindio rate E

Finally, the density function of each population can be plotted as
a heat map for a given time in the simulation.

Listing 5 | Plot the probability density of population I at time 0.12s.

$ python -m miind.miindio plot-density I 0.12

Later sections will show how the MIIND simulation can be
imported into a user defined Python script so that input can be
dynamically set during simulation and population activity can be
captured for further processing.

2. THE MIIND GRID ALGORITHM

MIIND allows the user to simulate populations of any 1D or
2D neuron model. Although much of MIIND’s architecture is
agnostic to the integration technique used to simulate each

Frontiers in Neuroinformatics | www.frontiersin.org 5 July 2021 | Volume 15 | Article 614881

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Osborne et al. MIIND

FIGURE 2 | The display output of a running E-I population network simulation of conductance based neurons. (A) The probability density heat map (normalised to the

maximum density value) of the excitatory population. (B) The probability density heat map of the inhibitory population. Brighter colours indicate a larger probability

mass. The axes are unlabelled in the simulation windows as the software is agnostic to the underlying model. However, the membrane potential and conductance

labels have been added for clarity. (C) The average firing rate of the excitatory population.

population, the system is primarily designed to make use of its
novel population density techniques, grid algorithm and mesh
algorithm. Both algorithms use a discretisation of the underlying
neuron model’s state space such that each discrete “cell,” which
covers a small area of state space, is considered to hold a
uniform distribution of probability mass. In both algorithms,
MIIND performs three important steps for each iteration. First,
probability mass is transferred from each cell to one or more
other cells according to the dynamics of the underlying neuron

model in the absence of any input. The probability mass is
then spread across multiple other cells due to incoming random
spikes. Finally, if the underlying neuron model has a threshold-
reset mechanic, such as an integrate and fire model, probability
mass which has passed the threshold is transferred to cells
along the reset potential. As it is the most practically convenient
method for the user, we will first introduce the grid algorithm.
We will discuss its benefits and weaknesses, indicating where it
may be appropriate to use the mesh algorithm instead.

Frontiers in Neuroinformatics | www.frontiersin.org 6 July 2021 | Volume 15 | Article 614881

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Osborne et al. MIIND

FIGURE 3 | The state space of a neuron model (shown here as a vector field) is discretised into a regular grid of cells. (A) The transition matrix for solving the

deterministic dynamics of the population is generated by applying a single time step of the underlying neuron model to each vertex of each cell in the grid and

calculating the proportion by area to each overlapping cell. Once the vertices of a grid cell have been translated, the resulting polygon is recursively triangulated

according to intersections with the original grid. Once complete, all triangles can be assigned to a cell and the area proportions can be summed. (B) For a single

incoming spike (with constant efficacy), all cells are translated by the same amount and therefore have the same resulting transition which can be used to solve the

Poisson master equation. In fact, the transition will always involve at most two target cells and the proportions can be calculated knowing only the grid cell width and

the efficacy.

2.1. Generating the Grid and Transition
Matrix
To discretise the state space in the grid method, the user can
specify the size and M × N resolution of a rectangular grid
which results in MN identical rectangular cells, each of which
will hold probability mass. In the grid algorithm, a transition
matrix lists the proportion of mass which moves from each cell to
(usually) adjacent cells in one time step due to the deterministic
dynamics of the underlying neural model. To pre-calculate the
transitions for each cell, MIIND first translates the vertices of
every cell by integrating each point forward by one time step
according to the dynamics of the underlying neuron model as
shown in Figure 3A. As the time step is small, a single Euler step
is usually all that is required to avoid large errors (although other
integration schemes can be used if required). Each transformed
cell is no longer guaranteed to be a rectangle and is compared to
the original non-transformed grid to ascertain which cells overlap
with the newly generated quadrilateral. An overlap indicates that

some proportion of neurons in the original cell will move to the
overlapping cell after one time step. In order to calculate the
overlap, the algorithm in Listing 6 is employed. This algorithm
is also used in the geometric method of generating transition
matrices for the mesh algorithm shown later.

Listing 6 | A pseudo-code representation of the algorithm used to calculate the

overlapping areas between transformed grid cells and the original grid (or for

translated cells of a mesh). The proportion of the area of the original cell gives the

proportion of probability mass to be moved in each transition.

For each transformed cell, A, in the grid:
Translate all four vertices according to a

single Euler step.
Split A into two triangles and add them to a

triangle list.
For each non-transformed cell, B:

Set the overlapping area sum to 0.
While the triangle list has changed:
For each triangle in the list:

Frontiers in Neuroinformatics | www.frontiersin.org 7 July 2021 | Volume 15 | Article 614881

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Osborne et al. MIIND

If the triangle is entirely outside B:
add 0 to the sum.

If the triangle is entirely within B: add
the triangle’s area to the sum.

If B is entirely within the triangle: add
B’s area to the sum.

Else: For each edge in B:
Calculate any intersection points with

the edges of the triangle.
Triangulate the polygon produced by the

original triangle points plus the
new intersection points.

Remove the original triangle from the
list.

Add the newly generated triangles to
the list.

Calculate the proportion of A taken by the
sum.

Add the transition from A to B with the
proportion to the transition matrix.

Though the pseudo-code algorithm is order N2, there are many
ways that the efficiency of the algorithm is improved in the
implementation. The number of non-transformed cells checked
for overlap can be limited to only those which lie underneath
each given triangle. Furthermore, the outer loop is parallelisable.
Finally, as the non-transformed cells are axis-aligned rectangles,
the calculation to find edge intersections is trivial. Figure 3A
shows a fully translated and triangulated cell at the end of the
algorithm. Once the transition matrix has been generated, it is
stored in a file with the extension .tmat. Although the regular grid
can be described with only four parameters (the width, height,
X, and Y resolutions), to more closely match the behaviour of
mesh algorithm, the vertices of the grid are stored in a .model
file. To simulate a population using the grid algorithm, the .tmat
and .model files must be generated and referenced in the XML
simulation file.

As demonstrated in the quick start guide (section 1.4), to
generate a .model and .tmat file, the user must write a short
Python script which defines the underlying neuron model and
makes a call to the MIIND API to run the algorithm in listing
6. In the python directory of the MIIND source repository (see
Supplementary Section 1 in the Supplementary Material), there
are a number of examples of these short scripts. The script
used to generate a grid for the Izhikevich simple model is listed
in the Supplementary Section 9.1. The required definition of
the neuron model function is similar to those used by many
numerical integration libraries. The function takes a parameter,
y, which represents a list which holds the two time dependent
variables and a parameter, t, which is a placeholder for use in
integration. The function must return the first time derivatives of
each variable as a list in the same order as in y. Once the function
has been written, a call to grid_generate.generate is made which
takes the parameters listed in Table 1.

When the user runs the script, the required .model and .tmat
files will be generated for use in a simulation. In the quick
start guide, the conductance based neuron model requires that
efficacy_orientation is set to “h” because incoming spikes cause an
instantaneous change in the conductance variable instead of the
membrane potential. By default, however, this parameter is set

TABLE 1 | Parameters for the grid_generate.generate function.

Parameter name Notes

func The underlying neuron model function.

timestep The desired time step for the neuron model

timescale A scale factor for the timescale of the underlying

neuron model to convert the time step into seconds.

tolerance An error tolerance for solving a single time step of

the neuron model.

basename The base name with which all output files will be

named.

threshold_v The spike threshold value for integrate and fire

neuron models.

reset_v The reset value for integrate and fire neuron models.

reset_shift_h A value for increasing the second variable during

reset for integrate and fire neuron models with some

adaptive shift or similar function.

grid_v_min The minimum value for the first dimension of the

grid (usually membrane potential).

grid_v_max The maximum value for the first dimension of the

grid.

grid_h_min The minimum value for the second dimension of the

grid.

grid_h_max The maximum value for the second dimension of

the grid.

grid_v_res The number of columns in the grid.

grid_h_res The number of rows in the grid.

efficacy_orientation The direction, “v” or “h,” in which incoming spikes

cause an instantaneous change.

to “v.” When choosing values for the grid bounds (grid_v_min,
grid_v_max, grid_h_min, and grid_h_max), the aim is to estimate
where in state space the population density function might be
non-zero during a simulation. In the conductance based neuron
model, because of the threshold-reset mechanic, the grid_v_max
parameter need only be slightly above the threshold to ensure that
there is at least one column of cells on or above threshold to allow
probability mass to be reset. The grid_v_min value should be
below the resting potential and reset potential. However, we must
also consider that the neurons could receive inhibitory spikes
which would cause the neurons to hyperpolarise. grid_v_min
should therefore be set to a value beyond the lowest membrane
potential expected during the simulation. Similarly for the
conductance variable, space should be provided for reasonable
positive and negative values. If it is known beforehand that no
inhibition will occur, however, then the state space bounds can
be set tighter in order to improve the accuracy of the simulation
using the same grid resolution (grid_v_res and grid_h_res). If,
during the simulation, probability mass is pushed beyond the
lower bounds of the grid, it will be pinned at those lower
bounds which will produce incorrect behaviour and results. If
the probability mass is pushed beyond the upper bounds, it
will be wrapped around to the lower bounds which will also
produce incorrect results. The choice of grid resolution is a
balance between speed of simulation and accuracy. However,
even very coarse grids can produce representative firing rates
and behaviours. Typical grid resolutions range between 100 ×

Frontiers in Neuroinformatics | www.frontiersin.org 8 July 2021 | Volume 15 | Article 614881

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Osborne et al. MIIND

100 and 500 × 500. It can also be beneficial to experiment with
different M and N values as the accuracy of each dimension can
have unbalanced influence over the population level metrics.

2.2. The Effect of Random Incoming Spikes
The transition matrix in the .tmat file describes how probability
mass moves to other cells due to the deterministic dynamics of
the underlying neuron model. The transition matrix is sparse as
probability mass is often only transferred to nearby cells. Solving
the deterministic dynamics is therefore very efficient. The mesh
algorithm is even faster and, as demonstrated later, is significantly
quicker than direct simulation for this part of the algorithm.
Another benefit to the modeler is that by rendering the grid with
each cell coloured according to its mass, the resultant heat map
gives an excellent visualisation of the state of the population as a
whole at each time step of the simulation as shown in Figure 2.
This provides particularly useful insight into the sub-threshold
behaviour of neurons in the population.

The second step of the grid algorithm, which must be
performed every iteration, is to solve the change in the probability
density function due to random incoming spikes. It is assumed
that a spike causes an instantaneous change in the state of
a neuron, usually a step wise jump in membrane potential
corresponding to a constant synaptic efficacy. In the conductance
based neuron example, this jump is in the conductance. When
considering each cell in the grid, a single incoming spike will
cause some proportion of the probability mass to shift to at most,
two other cells as shown in Figure 3. Because all cells in the grid
are equally distributed and the same size, the relative transition
of probability mass caused by a single spike is the same for them
all. A sparse transition matrix, M, can be generated from this
single transition so that applying M to the probability density
grid applies the transition to all cells. MIIND calculates a different
M for each incoming connection to the population based on the
user defined instantaneous jump, which we refer to as the efficacy.
In the mesh algorithm, the relative transitions are different for
each cell and so a transition matrix (similar to that of the .tmat
file) is required to describe the effect of a single spike. As with
many other population density techniques, MIIND assumes that
incoming spikes are Poisson distributed, although it is possible to
approximate other distributions. MIIND uses M to calculate the
change to the probability density function, ρ, due solely to the
non-deterministic dynamics as described by Equation 8.

dρ/dt = λMρ (8)

λ is the incoming Poisson firing rate. The boost numeric library
is used to integrate dρ/dt. The solution to this equation describes
the spread of the probability density due to Poisson spikes.
This “master process” step amounts to multiple applications of
the transition matrix M and is where the majority of time is
taken computationally. However, OpenMP is available in MIIND
to parallelise the matrix multiplication. If multiple cores are
available, the OpenMP implementation significantly improves
performance of the master process step. More information
covering this technique can be found in de Kamps (2013),
De Kamps et al. (2019).

2.3. Threshold-Reset Dynamics
Many neuron models include a “threshold-reset” process such
that neurons which pass a certain membrane potential value
are shifted back to a defined reset potential to approximate
repolarisation during an action potential. To facilitate this in
MIIND, after each iteration, probability mass in cells which
lie across the threshold potential is relocated to cells which lie
across the reset potential according to a pre-calculated mapping.
Often, a refractory period is used to hold neurons at the reset
potential before allowing them to again receive incoming spikes.
In MIIND this is implemented using a queue for each threshold
cell as shown in Figure 4. The queues are set to the length of
the refractory period divided by the time step, rounded up to
the nearest integer value. During each iteration, probability mass
is shifted one position along the queue. A linear interpolation
of the final two places in the queue is made and this value is
passed to the mapped reset cell. The interpolation is required
in case the refractory period is not an integer multiple of the
time step. The total probability mass in the threshold cells each
iteration is used to calculate the average population firing rate.
For models which do not require threshold-reset dynamics,
setting the threshold value to the maximal membrane potential
of the grid, and the reset to the minimal membrane potential
ensures that no resetting of probability mass will occur.

2.4. How MIIND Facilitates Interacting
Populations
The grid algorithm describes how the behaviour of a single
population is simulated. The MIIND software platform as a
whole provides a way for many populations with possibly many
different integration algorithms to interact in a network. The
basic process of simulating a network is as follows. The user must
write an XML file which describes the whole simulation. This
includes defining the population nodes of the network and how
they are connected; which integration technique each population
uses (grid algorithm, mesh algorithm etc.); external inputs to the
network; how the activity of each population will be recorded and
displayed; the length and time step of the simulation. As shown
in the quick start guide, the XML file can be passed as a parameter
to the miind.runmodule in Python. When the simulation is run,
a population network is instantiated and the simulation loop is
started. For each iteration, the output activity of each population
node is recorded. By default, the activity is assumed to be an
average firing rate but other options are available such as average
membrane potential. The outputs are passed as inputs to each
population node according to the connectivity defined in the
XML file. Each population is evolved forward by one time step
and the simulation loop repeats until the simulation time is up.
The Python front end, miind.miindio, provides the user with
tools to analyse the output from the simulation. A custom run
script can also be written by the user to perform further analysis
and processing.

The simplicity of the XML file means that a user can set up
a large network of populations with very little effort. The model
archive in the code repository holds a set of example simulations
demonstrating the range of MIIND’s functionality and includes

Frontiers in Neuroinformatics | www.frontiersin.org 9 July 2021 | Volume 15 | Article 614881

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Osborne et al. MIIND

FIGURE 4 | For each time step, probability mass in the cells which lie across the threshold (threshold cells) is pushed onto the beginning of the refractory queue.

There is one queue per threshold cell. During each subsequent time step, the probability mass is shifted one place along the queue until it reaches the penultimate

place. A proportion of the mass, calculated according to the modulo of the refractory time and the time step, is transferred to the appropriate reset cell. The remaining

mass is shifted to the final place in the queue. During the next time step, that remaining mass is transferred to the reset cell.

an example which simulates the Potjans-Diesmann model of a
cortical microcircuit (Potjans and Diesmann, 2014), which is
made up of eight populations of leaky integrate and fire neurons.
Figure 5 shows a representation of the model with embedded
density plots for each population.

2.5. Running MIIND Simulations
The quick start guide demonstrated the simplest way to run
a simulation given that the required .model, .tmat, and .XML
files have been generated. The miind.run script imports the
miind.miindsim Python extension module which can also be
imported into any user written Python script. Section 6 details
the functions which are exposed by miind.miindsim for use in a
python script. The benefit of this method is that the outputs from
populations can be recorded after each iteration and inputs can
be dynamic allowing the python script to perform its own logic
on the simulation based on the current state.

There is also a command line interface (CLI) program
provided by the Python module, miind.miindio. The CLI can be
used for many simple work flow tasks such as generating models
and displaying results. Each command which is available in the
CLI, can also be called from the MIIND Python API, upon which
the CLI is built. A full list of the available commands in the CLI is
given in section 9.3 of the Supplementary Material and a worked
example using common CLI commands is provided in section 7.

2.6. When Not to Use the Grid Algorithm
For many underlying neuron models, the grid algorithm will
produce results showing good agreement with direct simulation
to a greater or lesser extent depending on the resolution of the
grid (see Figure 6). However, for models such as exponential
integrate and fire, a significantly higher grid resolution is required
than might be expected because of the speed of the dynamics

across the threshold (beyond which, neurons perform the action
potential). When the input rate is high enough to generate
tonic spiking in an exponential integrate and fire model, the
rate of depolarisation of each neuron reduces as it approaches
the threshold potential then once it is beyond the threshold,
quickly increases producing a spike. Because the grid discretises
the state space into regular cells, if cells are large due to a low
resolution, only a small number of cells will span the threshold,
as shown in Figure 7A. When the transition matrix is applied
each time step, probability mass is distributed uniformly across
each cell. Probability mass can therefore artificially cross the
threshold much faster than it should leading to a higher than
expected average firing rate for the population. Using the grid
algorithm for suchmodels where the firing rate itself is dependent
on sharp changes in the speed of the dynamics should be
avoided if high accuracy is required. Other neuron models, like
the busting Izhikevich simple model, also have sharp changes
in speed when neurons transition from bursting to quiescent
periods. However, the bursting firing rate is unaffected by these
dynamics and the oscillation frequency is affected only negligibly
due to the difference in timescales. The grid algorithm is therefore
still appropriate in cases such as this. For exponential integrate
and fire models, however, MIIND provides a second algorithm
which can more accurately capture the deterministic dynamics:
mesh algorithm.

3. THE MIIND MESH ALGORITHM

Instead of a regular grid to discretise the state space of
the underlying neuron model, the mesh algorithm requires a
two dimensional mesh which describes the dynamics of the
neuron model itself in the absence of incoming spikes. A

Frontiers in Neuroinformatics | www.frontiersin.org 10 July 2021 | Volume 15 | Article 614881

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Osborne et al. MIIND

FIGURE 5 | (A) A representation of the connectivity between populations in the Potjans-Diesmann microcircuit model. Each population shows the probability density

at an early point in the simulation before all populations have reached a steady state. All populations are of leaky-integrate-and-fire neurons and so the density plots

show membrane potential in the horizontal axis. The vertical axis has no meaning (probability mass values are the same at all points along the vertical). (B) The firing

rate outputs from MIIND (crosses) in comparison to those from DiPDE for the same model (solid lines).

Frontiers in Neuroinformatics | www.frontiersin.org 11 July 2021 | Volume 15 | Article 614881

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Osborne et al. MIIND

FIGURE 6 | Comparison of average firing rates from four simulations of a single population of conductance based neurons. The black solid and dashed lines indicate

MIIND simulations using the grid algorithm with different grid resolutions. The red crosses show the average firing rate of a direct simulation of 10,000 neurons.

FIGURE 7 | (A) In the grid algorithm, large cells cause probability mass to be distributed further than it should. This error is expressed most clearly in models where

the average firing rate of the population is highly dependent on the amount of probability mass passing through an area of slow dynamics. (B) In the mesh algorithm,

when cells become shear, probability mass which is pushed to the right due to incoming spikes also moves laterally (downwards) because it is spread evenly across

each cell.

mesh is constructed from strips which follow the trajectories
of neurons in state space (Figure 8). The trajectories form so-
called characteristic curves of the neuron model from which this
method is inspired (de Kamps, 2013; De Kamps et al., 2019).

These trajectories are computed as part of a one-time
preprocessing step using an appropriate integration technique
and time step. Strips will often approach or recede from nullclines
and stationary points and their width may shrink or expand
according to their proximity to such elements. Each strip is split
into cells. Each cell represents how far along the strip neurons
will move in a single time step. As with the width of the strips,
cells will become more dense or more sparse as the dynamics

slow down and speed up, respectively. The result of covering the
state space with strips is a precomputed description of the model
dynamics such that the state of a neuron in one cell of the mesh
is guaranteed to be in the next cell along the strip after a single
time step. Depending on the underlying neuron model, it can
be difficult to get full coverage without cells becoming too small
or shear. However, once built, the deterministic dynamics have
effectively been “pre-solved” and baked into the mesh.

As with the grid algorithm, when the simulation is running,
each cell is associated with a probability mass value which
represents the probability of finding a neuron from the
population with a state in that cell. When a probability density

Frontiers in Neuroinformatics | www.frontiersin.org 12 July 2021 | Volume 15 | Article 614881

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Osborne et al. MIIND

FIGURE 8 | (A) A vector field of the FitzHugh-Nagumo neuron model (FitzHugh, 1961). Arrows show the direction of motion of states through the field according to

the dynamics of the model. The red broken dashed nullcline indicates where the change in V is zero. The blue dashed nullcline indicates where the change in W is

zero. The green solid line shows a potential path (trajectory) of a neuron in the state space. (B) A vector field for the adaptive exponential integrate and fire neuron

model (Brette and Gerstner, 2005). Two strips are shown which follow the dynamics of the model and approach the stationary point where the nullclines cross. A strip

is constructed between two trajectories in state space. Each time step of the two trajectories is used to segment the strip into cells. Because the strips approach a

stationary point, they get thinner as the trajectories converge to the same point and cells get closer together as the distance in state space travelled reduces per time

step (neurons slow down as they approach a stationary point). Per time step, probability mass is shifted from one cell to the next along the strip. (C) The state space

of the Izhikevich simple neuron model (Izhikevich, 2003) which has been fully discretised into strips and cells.

function (PDF) is defined across the mesh, computing the change
to the PDF due to the deterministic dynamics of the neurons is
simply a matter of shifting each cell’s probability mass value along
its strip. In the C++ implementation, this requires no more than
a pointer update and is therefore quicker than the grid algorithm
for solving the deterministic dynamics as no transition matrix is
applied to the cells.

Mesh algorithm does, however, still require a transitionmatrix
to implement the effect of incoming spikes on the PDF. This
transition matrix describes how the state of neurons in each cell
are translated in the event of a single incoming spike. Unlike the
grid algorithm, cells are unevenly distributed across themesh and
are different sizes and shapes. What proportion of probability
mass is transferred to which cells with a single incoming spike
is, therefore, different for all cells. During simulation, the total
change in the PDF is calculated by shifting probability mass one

cell down each strip and using the transition matrix to solve the
master equation every time step. The combined effect can be
seen in Figure 9. The method of solving the master equation is
explained in detail in de Kamps (2013).

3.1. When Not to Use the Mesh Algorithm
Just as with the grid algorithm, certain neuron models are
better suited to an alternative algorithm. In the mesh algorithm,
very little error is introduced for the deterministic dynamics.
Probability mass flows down each strip as it would without the
discretisation and error is limited only to the size of the cells.
When the master equation is solved, however, probability mass
can spread to parts of state space which would see less or no
mass. Figure 7B demonstrates how in the mesh algorithm, as
probability mass is pushed horizontally, very shear cells can allow
mass to be incorrectly transferred vertically as well. In the grid

Frontiers in Neuroinformatics | www.frontiersin.org 13 July 2021 | Volume 15 | Article 614881

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Osborne et al. MIIND

FIGURE 9 | Heat plots for the probability density functions of two populations in MIIND. Brightness (more yellow) indicates a higher probability mass. Scales have

been omitted as the underlying neuron models are arbitrary. (A) When the Poisson master equation is solved, probability mass is pushed to the right (higher membrane

potential) in discrete steps. As time passes, the discrete steps are smoothed out due to the movement of mass according to the deterministic dynamics (following the

strip). (B) A combination of mass travelling along strips and being spread across the state space by noisy input produces the behaviour of the population.

FIGURE 10 | The MIIND processes and generated files required at each stage of pre-processing for the mesh algorithm. The shaded green rectangles represent

automated processes run via the MIIND CLI.

algorithm, error is introduced in the opposite way. Solving the
master equation pushes probability mass along horizontal rows
of the grid and error is limited to the width of the row. The grid
algorithm is preferable over the mesh algorithm for populations
of neurons with one fast variable and one slow variable which can
produce very shear cells in a mesh, e.g., in the Fitzhugh-Nagumo
model (De Kamps et al., 2019). In both algorithms, the error can
be reduced by increasing the density of cells (by increasing the
resolution of the grid, or by reducing the timestep and strip width

of the mesh). However, better efficiency is achieved by using the
appropriate algorithm.

3.2. Building a Mesh for the Mesh
Algorithm
Before a simulation can be run for a population which uses
the mesh algorithm, the pre-calculation steps of generating a
mesh and transition matrices must be performed. Figure 10
shows the full pre-processing pipeline for mesh algorithm.

Frontiers in Neuroinformatics | www.frontiersin.org 14 July 2021 | Volume 15 | Article 614881

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Osborne et al. MIIND

TABLE 2 | Parameters for the generate-model command in the CLI.

Parameter name Notes

basename The shared name of the .mesh, .stat, .rev and

generated .model files.

reset The value (usually representing membrane potential)

which probability mass will be transferred to having

passed the threshold.

threshold The value (usually representing membrane potential)

beyond which probability mass will be transferred to

the reset value.

The mesh is a collection of strips made up of quadrilateral
cells. As mentioned earlier, probability mass moves along a
strip from one cell to the next each time step which describes
the deterministic dynamics of the model. Defining the cells
and strips of a 2D mesh is not generally a fully automated
process and the points of each quadrilateral must be defined
by the mesh developer and stored in a .mesh file. When
creating the mesh, the aim is to cover as much of the state
space as possible without allowing cells to get too small or
misshapen. An example of a full mesh generation script for the
Izhikevich simple neuron model (Izhikevich, 2003) is available in
Supplementary Section 9.1 of the Supplementary Material.
MIIND provides miind.miind_api.LifMeshGenerator,
miind.miind_api.QifMeshGenerator, and
miind.miind_api.EifMeshGenerator scripts to automatically
build the 1D leaky integrate and fire, quadratic integrate and fire,
and exponential integrate and fire neuron meshes, respectively.
They can be called from the CLI. The scripts generate the three
output files which any mesh generator script must produce: a
.mesh file, a .stat file which defines extra cells in the mesh to
hold probability mass that has settled at a stationary point, and
a .rev file which defines a “reversal mapping” indicating how
probability mass is transferred from strips in the mesh to the
stationary cells. More information on .mesh, .stat, and .rev files is
provided in the Supplementary Section 6.

Once the .mesh, .stat, and .rev files have been generated by
the user or by one of the automated 1D scripts, the Python
command line interface, miind.miindio, provides commands to
convert the three files into a single .model file and generate
transition matrices stored in .mat files. The model file is what will
be referenced and read byMIIND to load amesh for a simulation.
To generate this file, use the CLI command, generate-model. The
command parameters are shown in Table 2. All input files must
have the same base name, for example: lif.mesh, lif.stat, and lif.rev.
If the command runs successfully, a new file will be created:
basename.model. A number of pre-generatedmodels are available
in the examples directory of theMIIND repository to be used “out
of the box” including the adaptive exponential integrate and fire
and conductance based neuron models.

Listing 7 | Generate a Model in the CLI

> generate-model lif -60.0 -30.0

The generated .model file contains the mesh vertices, some
summary information such as the time step used to generate

the mesh and the threshold and reset values, and a mapping of
threshold cells to reset cells.

In the mesh algorithm, transition matrices are used to solve
the Poisson master equation which describes the movement
of probability mass due to incoming random spikes. In the
mesh algorithm, one transition matrix is required for each post
synaptic efficacy that will be needed in the simulation. So if a
population is going to receive spikes which cause jumps of 0.1 and
0.5 mV, two transition matrices are required. It is demonstrated
later how the efficacy can be made dependent on the membrane
potential or other variables. Each transition matrix is stored in
a .mat file and contains a list of source cells, target cells, and
proportions of probability mass to be transferred to each. For a
given cell in the mesh, neurons with a state inside that cell which
receive a single external spike will shift their location in state
space by the value of the efficacy. Neurons from the same cell
could therefore end up inmany other different cells, though often
ones which are nearby. It is assumed that neurons are distributed
uniformly across the source cell. Therefore, the proportion of
neurons which end up in each of the other cells can be calculated.
MIIND performs this calculation in two ways, the choice for
which is given to the user.

The first method is to use a Monte Carlo approach such
that a number of points are randomly placed in the source
cell then translated according to the efficacy. A search takes
place to find which cells the points were translated to and the
proportions are calculated from the number of points in each.
For many meshes, a surprisingly small number of points, around
10, is required in each cell to get a good approximation for
the transition matrix and the process is therefore quite efficient.
As shown in Figure 10, an additional process is required when
generating transition matrices using Monte Carlo which includes
two further intermediate files, .fid and .lost. All points must be
accounted for when performing the search and in cases where
points are translated outside of the mesh, an exhaustive search
must be made to find the closest cell. The lost command allows
the user to speed up this process which is covered in detail in
Supplementary Section 6.1 of the Supplementary Material.

The second method translates the actual vertices of each cell
according to the efficacy and calculates the exact overlapping area
with other cells. The method by which this is achieved is the
same as that used to generate the transition matrix of the grid
algorithm, described in section 2.1. This method provides much
higher accuracy than Monte Carlo but is one order of magnitude
slower (it takes a similar amount of time to perform Monte
Carlo with 100 points per cell). For some meshes, it is crucial to
include very small transitions between cells to properly capture
the dynamics which justifies the need for the slower method. It
also benefits from requiring no additional user input in contrast
to the Monte Carlo method.

Inmiind.miindio, the command generate-matrix can be used
to automatically generate each .mat file. In order to work,
there must be a basename.model file in the working directory.
The generate-matrix command takes six parameters which
are described in Table 3. Listing 8 shows an example of the
generate-matrix command. If successful, two files are generated:
basename.mat and basename.lost.

Frontiers in Neuroinformatics | www.frontiersin.org 15 July 2021 | Volume 15 | Article 614881

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Osborne et al. MIIND

TABLE 3 | Parameters for the generate-matrix command in the CLI.

Parameter name Notes

basename The shared name of the .model, .fid (if required), and

generated .mat files.

v_efficacy The efficacy value in the v (membrane potential)

direction. If the parameter h_efficacy is used, this

should be zero.

points / precision For Monte Carlo, this gives the number of points per

cell to use for approximating the transition matrix.

For the geometric method, transitions are stored in

the .mat file to the nearest 1
precision

h_efficacy The efficacy value in the h direction. If the parameter

v_efficacy is used, this should be zero.

reset-shift The shift in the h direction which neurons take when

being reset.

use_geometric A boolean flag set to “true” if the geometric method

is used and “false” for Monte Carlo.

Listing 8 | The miind.miindio command to generate a matrix using the

adex.model file with an efficacy of 0.1 in v and a jump of 5.0 in w when a neuron

spikes. The Monte Carlo method has been chosen with 10 points per cell.

> generate-matrix adex 0.1 10 0.0 5.0 false

Once generate-matrix has completed, a .mat file will have been
generated and the .model file will have been amended to include
a <Reset Mapping> section. Similar to the reversal mapping in
the .rev file, the reset mapping describes movement of probability
mass from the cells which lie across the threshold potential to
cells which lie across the reset potential. If the threshold or reset
values are changed but no other change is made to the mesh, it
can be helpful to re-run the mapping calculation without having
to completely re-calculate the transition matrix. miind.miindio
provides the command regenerate-reset which takes the base
name and any new reset shift value (0 if not required) as
parameters. This will quickly replace the reset mapping in the
.model file.

Listing 9 | The user may change the <Threshold> and <Reset> values in the

.model file (or re-call generate-model with different threshold and reset values)

then update the existing Reset Mapping. In this case, the adex.model was

updated with a reset w shift value of 7.0.

> regenerate-reset adex 7.0

With all required files generated, a simulation using the mesh
algorithm can now be run in MIIND.

3.3. Jump Files
In some models, it is helpful to be able to set the efficacy
as a function of the state. For example, to approximate
adaptive behaviour where the post synaptic efficacy lowers as
the membrane potential increases. Jump files have been used
in MIIND to simulate the Tsodyks-Markram (Tsodyks and
Markram, 1997) synapse model as described in De Kamps
et al. (2019). In the model, one variable/dimension is required
to represent the membrane potential, V , of the post-synaptic
neuron and the second to represent the synaptic contribution,
G. G and V are then used to derive the post-synaptic potential
caused by an incoming spike. Before generating the transition

matrix, each cell can be assigned its own efficacy for which the
transitions will be calculated. During generation, Monte Carlo
points will be translated according to that value instead of a
constant across the entire mesh. When calling the generate-

matrix command, a separate set of three parameters is required
to use this feature. The base name of themodel file, the number of
Monte Carlo points per cell, and a reference to a .jump file which
stores the efficacy values for each cell in the mesh.

Listing 10 | Generate a transition matrix with a jump file in the CLI

> generate-matrix adex 10 adex.jump

As with the files required to build the mesh, the jump file must
be user generated as the efficacy values may be non-linear and
involve one or both of the dimensions of the model. The format
of a jump file is shown in listing 11. The <Efficacy> element of the
XML file gives an efficacy value for both dimensions of the model
and is how the resulting transition matrix will be referenced in
the simulation. The <Translations> element lists the efficacy in
both dimensions for each cell in the mesh.

Listing 11 | The format of the jump file. Each line in the <Translations> block gives

the strip,cell coordinates of the cell followed by the h efficacy then the v efficacy.

The <Efficacy> element gives a reference efficacy which will be used to reference

the transition matrix built with this jump file. It must therefore be unique among

jump files used for the same model.

<Jump>
<Efficacy>0.0 0.1</Efficacy>
<Translations>
0,0 0.0 0.1
1,0 0.0 0.1
1,1 0.0 0.10012
1,2 0.0 0.10045
...
</Translations>
</Jump>

After calling generate-matrix, as before, the .mat file will be
created with the quoted values in the <Efficacy> element of
the jump file. As with the vanilla Monte Carlo generation, the
additional process of tracking lost points must be performed.

4. WRITING THE XML FILE

MIIND provides an intuitive XML style language to describe
a simulation and its parameters. This includes descriptions
of populations, neuron models, integration techniques, and
connectivity as well as general parameters such as time step
and duration. The XML file is split into sections which
are sub elements of the XML root node, <Simulation>.
They are Algorithms, Nodes, Connections, Reporting, and
SimulationRunParameter. These elements make up the major
components of a MIIND simulation.

4.1. Algorithms
An <Algorithm> in the XML code describes the simulation
method for a population in the network. The nodes of
the network represent separate instances of these algorithm
elements. Therefore, many nodes can use the same algorithm.
Each algorithm has different parameters or supporting files

Frontiers in Neuroinformatics | www.frontiersin.org 16 July 2021 | Volume 15 | Article 614881

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Osborne et al. MIIND

TABLE 4 | Compatible weight types for each algorithm type defined in the

simulation XML file.

Algorithm name Double Delayed

Connection

CustomConnection

Parameters

RateAlgorithm X X X

MeshAlgorithm X

MeshAlgorithmCustom X

GridAlgorithm X

GridJumpAlgorithm X

OUAlgorithm X

WilsonCowanAlgorithm X

RateFunctor X X X

but as a minimum, all algorithms must declare a type and
a name. Each algorithm is also implicitly associated with a
“weight type.” All algorithms used in a single simulation must
be compatible with the weight type as it describes the way
that populations interact. The <WeightType> element of the
XML file can take the values, “double,” “DelayedConnection,” or
“CustomConnectionParameters.” Which value the weight type
element takes influences which algorithms are available in the
simulation and how the connections between populations will
be defined. The following sections cover all Algorithm types
currently supported inMIIND. Table 4 lists these algorithms and
their compatible weight types.

4.1.1. RateAlgorithm
RateAlgorithm is used to supply a Poisson distributed input (with
a given average firing rate) to other nodes in the simulation. It
is typically used for simulating external input. The <rate> sub-
element is used to define the activity value which is usually a
firing rate.

Listing 12 | A RateAlgorithm definition with a constant rate of 100 Hz.

<Algorithm name="Cortical Background Algorithm"
type="RateAlgorithm">

<rate>100.0</rate>
</Algorithm>

4.1.2. MeshAlgorithm and MeshAlgorithmCustom
In section 3.2, we saw how to generate .model and .mat files.
These are required to simulate a population using the mesh
algorithm. Algorithm type=MeshAlgorithm tells MIIND to use
this technique. The model file is referenced as an attribute to the
Algorithm definition. The TimeStep child element must match
that which was used to generate the mesh. This value is quoted
in the model file. As many MatrixFile elements can be declared
as are required for the simulation, each with an associated .mat
file reference.

Listing 13 | A MeshAlgorithm definition with two matrix files.

<Algorithm type="MeshAlgorithm" name="ALG_ADEX"
modelfile="adex.model" >

<TimeStep>0.001</TimeStep>
<MatrixFile>adex_0.05_0_0_0_.mat</MatrixFile>
<MatrixFile>adex_-0.05_0_0_0_.mat</MatrixFile>

</Algorithm>

MeshAlgorithm provides two further optional attributes in
addition to modelfile. The first is tau_refractive which enables
a refractory period and the second is ratemethod which takes
the value “AvgV” if the activity of the population is to be
represented by the average membrane potential. Any other value
for ratemethod will set the activity to the default average firing
rate. The activity value is what will be passed to other populations
in the network as well as what will be recorded as the activity for
any populations using this algorithm.

When the weight type is set to CustomConnectionParameters,
the type of this algorithm definition should be changed to
MeshAlgorithmCustom. No other changes to the definition
are required.

4.1.3. GridAlgorithm and GridJumpAlgorithm
For populations which use the grid algorithm, the following
listing is required. Similar to the MeshAlgorithm, the model file
is referenced as an attribute. However, there are no matrix files
required as the transition matrix for solving the Poisson master
equation is calculated at run time. The transition matrix for the
deterministic dynamics, stored in the .tmat file, is referenced as
an attribute as well. Attributes for tau_refractive and ratemethod
are also available with the same effects as for MeshAlgorithm.

Listing 14 | A GridAlgorithm definition using the AvgV (membrane potential) rate

method.

<Algorithm type="GridAlgorithm" name="GRIDALG_FN"
modelfile="fn.model" tau_refractive="0.0"
transformfile="fn_0_0_0_0_.tmat" start_v="-1.0"
start_w="-0.3" ratemethod="AvgV">

<TimeStep>0.00001</TimeStep>
</Algorithm>

GridAlgorithm also provides additional attributes start_v and
start_w which allows the user to set the starting state of all
neurons in the population which creates an initial probability
mass of 1.0 in the corresponding grid cell at the start of
the simulation.

GridJumpAlgorithm provides a similar functionality as
MeshAlgorithm when the transition matrix is generated using
a jump file. That is, the efficacy applied to each cell
when calculating transitions differs from cell to cell. In
GridJumpAlgorithm, the efficacy at each cell is multiplied by the
distance between the central v value of the cell and a user defined
“stationary” value. The initial efficacy and the stationary values
are defined by the user in the XML <Connection> elements.
GridJumpAlgorithm is useful for approximating populations of
neurons with a voltage dependent synapse.

Listing 15 | A GridJumpAlgorithm definition and corresponding Connection with a

“stationary” attribute. The efficacy at each grid cell will equal the original efficacy

value (−0.05) multiplied by the difference between each cell’s central v value and

the given stationary value (−65)

<Algorithm type="GridJumpAlgorithm" name="ALG_ADEX"
modelfile="adex.model" tau_refractive="0.0"
transformfile="adex_0_0_0_0_.tmat" start_v="
-65.0" start_w="0.0">

<TimeStep>0.0001</TimeStep>
</Algorithm>

Frontiers in Neuroinformatics | www.frontiersin.org 17 July 2021 | Volume 15 | Article 614881

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Osborne et al. MIIND

...
<Connection In="BG_NOISE" Out="ADEX_NODE"

num_connections="1" efficacy="-0.05" delay="0.0
" stationary="-65.0"/>

4.1.4. Additional Algorithms
MIIND also provides OUAlgorithm and
WilsonCowanAlgorithm. The OUAlgorithm generates an
Ornstein–Uhlenbeck process (Uhlenbeck and Ornstein,
1930) for simulating a population of LIF neurons. The
WilsonCowanAlgorithm implements the Wilson-Cowan model
for simulating population activity (Wilson and Cowan, 1972).
Examples of these algorithms are provided in the examples
directory of the MIIND repository (examples/twopop and
examples/model_archive/WilsonCowan).

One final algorithm, RateFunctor, behaves similarly to
RateAlgorithm. However, instead of a rate value, the child value
defines the activity using a C++ expression in terms of variable, t,
representing the simulation time.

Listing 16 | A RateFunctor algorithm definition in which the firing rate linearly

increases to 100 Hz over 0.1 s and remains at 100 Hz thereafter.

<Algorithm type="RateFunctor" name="ExternalInput">
<expression><![CDATA[t < 0.1 ? (t/0.1)*100 :

100]]></expression>
</Algorithm>

A CDATA expression is not permitted when using MIIND in
Python or when calling miind.run. However, RateFunctor can
still be used with a constant expression (although this has no
benefit beyond what RateAlgorithm already provides). CDATA
should only be used when MIIND is built from source (not
installed using pip) and the MIIND API is used to generate C++
code from an XML file.

4.2. Nodes
The <Node> block lists instances of the Algorithms defined
above. Each node represents a single population in the network.
To create a node, the user must provide the name of one
of the algorithms defined in the algorithm block which will
be instantiated. A name must also be given to uniquely
identify this node. The type describes the population as
wholey inhibitory, excitatory, or neutral. The type dictates
the sign of the post synaptic efficacy caused by spikes
from this population. Setting the type to neutral allows the
population to produce both excitatory and inhibitory (positive
and negative) synaptic efficacies. For most algorithms, the
valid types for a node are EXCITATORY, INHIBITORY, and
NEUTRAL. EXCITATORY_DIRECT and INHIBITORY_DIRECT
are also available but mean the same as EXCITATORY and
INHIBITORY, respectively.

Listing 17 | Three nodes defined in the Nodes section using the types NEUTRAL,

INHIBITORY, and EXCITATORY, respectively.

<Nodes>
...
<Node algorithm="GRIDALG_FN" name="POP_1" type="

NEUTRAL" />
<Node algorithm="ALG_ADEX" name="ADEX_NODE" type="

INHIBITORY" />

<Node algorithm="RATEFUNC_BACKGROUND" name="
BG_NOISE" type="EXCITATORY" />

...
</Nodes>

Many nodes can reference the same algorithm to use the same
population model but they will behave independently based on
their individual inputs.

4.3. Connections
The connections between the nodes are defined in the
<Connections> sub-element. Each connection can be thought
of as a conduit which passes the output activity from the “In”
population node to the “Out” population node. The format
used to define the connections is dependent on the choice of
WeightType. When the type is double, connections require a
single value which represents the connection weight. This will be
multiplied by the output activity of the In population and passed
to the Out population. The sign of the weight must match the In
node’s type definition (EXCITATORY, INHIBITORY,NEUTRAL).

Listing 18 | A simple double WeightType Connection with a single rate multiplier.

<WeightType>double</WeightType>
<Connections>
...
<Connection In="RATEFUNC_BACKGROUND" Out="WC_POP">

0.1</Connection>
...
</Connections>

Many algorithms use the DelayedConnection weight type which
requires three values to define each connection. The first is
the number of incoming connections each neuron in the Out
population receives from the In population. This number is
effectively a weight and is multiplied by the output activity of
the In population. For example, if the output firing rate of an In
population is 10 Hz and the number of incoming connections
is set to 10, the effective average incoming spike rate to each
neuron in the Out population will be 100 Hz. The second value
is the post synaptic efficacy whose sign must match the type
of the In population. If the Out population is an instance of
MeshAlgorithm, the efficacy must also match one of the provided
.mat files. The third value is the connection delay in seconds. The
delay is implemented in the same way as the refractory period
in the mesh and grid algorithms. The output activity of the In
population is placed at the beginning of the queue and shifted
toward the end of the queue over subsequent iterations. The input
to the Out population is taken as the linear interpolation between
the final two values in the queue.

Listing 19 | A DelayedConnection with number of connections = 10, efficacy =

0.1, and delay of 1ms.

<WeightType>DelayedConnection</WeightType>
<Connections>
...
<Connection In="RATEFUNC_BACKGROUND" Out="BURSTER">

10 0.1 0.001</Connection>
...
</Connections>

With the addition of GridAlgorithm, there was a need
for a more flexible connection type which would allow

Frontiers in Neuroinformatics | www.frontiersin.org 18 July 2021 | Volume 15 | Article 614881

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Osborne et al. MIIND

TABLE 5 | The required sub-elements for the SimulationRunParameter section of

the XML simulation file.

Element Notes

SimulationName The name of the simulation.

t_end The simulation end time.

t_step The time step of the simulation.

name_log A file name for logging. The file is stored in the

output directory of the simulation.

master_steps The number of Euler iterations per time step used to

solve the mater equation in the GPGPU

implementation.

custom parameters to be applied to each connection.
When using the CustomConnectionParameters weight
type, the key-value attributes of the connections are
passed as strings to the C++ implementation. By default,
custom connections require the same three values as
DelayedConnection: num_connections, efficacy, and delay.
CustomConnectionParameters can therefore be used with mesh
algorithm nodes as well as grid algorithm nodes although
MeshAlgorithm definitions must have the type attribute set to
MeshAlgorithmCustom instead.

Listing 20 | A MeshAlgorithmCustom definition for use with

WeightType=CustomConnectionParameters and a Connection using the

num_connections, efficacy, and delay attributes.

<WeightType>CustomConnectionParameters</WeightType>

<Algorithms>
...
<Algorithm type="MeshAlgorithmCustom" name="

ALG_ADEX" modelfile="adex.model" >
<TimeStep>0.001</TimeStep>
<MatrixFile>adex_0.05_0_0_0_.mat</MatrixFile>
<MatrixFile>adex_-0.05_0_0_0_.mat</MatrixFile>

</Algorithm>
...
</Algorithms>

<Connections>
...
<Connection In="ALG_ADEX" Out="RG_E"

num_connections="1" efficacy="0.05" delay="0.0"
/>

...
</Connections>

Other combinations of attributes for connections using
CustomConnectionParameters are available for use with specific
specialisations of the grid algorithm which are discussed in
Supplementary Section 4 of the Supplementary Material. Any
number of attributes are permitted but they will only be used if
there is an algorithm specialisation implemented in the MIIND
code base.

4.4. SimulationRunParameter
The <SimulationRunParameter> block contains parameter
settings for the simulation as a whole. The sub-elements listed in

Table 5 are required for a full definition. Although most of the
sub-elements are self explanatory, t_step has the limitation that it
must match or be an integer multiple of all time steps defined by
any MeshAlgorithm and GridAlgorithm instances. master_steps
is used only for the GPGPU implementation of MIIND (section
5). It allows the user to set the number of Euler iterations per
time step to solve the master equation. By default, the value is
10. However, to improve accuracy or to avoid blow-up in the
case where the time step is too large or the local dynamics are
unstable,master_steps should be increased.

4.5. Reporting
The <Reporting> block is used to describe how output is
displayed and recorded from the simulation. There are three
ways to record output from the simulation: Density, Rate, and
Display. The <Rate> element takes the node name and t_interval
as attributes and creates a single file in the output directory.
t_interval must be greater than or equal to the simulation time
step. At each t_interval of the simulation, the output activity
of the population is recorded on a new line of the generated
file. Although the element is called “Rate,” if average membrane
potential has been chosen as the activity of this population,
this is what will be recorded here. <Density> is used to record
the full probability density of the given population node. As
density is only relevant for the population density technique, it
can only be recorded from nodes which instantiate the mesh or
grid algorithm types. The attributes are the node name, t_start,
t_end, and t_interval which define the simulation times to start
and end recording the density at the given interval. A file which
holds the probability mass values for each cell in the mesh or
grid will be created in the output directory for each t_interval
between t_start and t_end. Finally, the <Display> element can be
used to observe the evolution of the probability density function
as the simulation is running. If a Display element is added in
the XML file for a specific node, when the simulation is run, a
graphical window will open and display the probability density
for each time step. Again, display is only applicable to algorithms
involving densities. Enabling the display can significantly slow
the simulation down. However, it is useful for debugging the
simulation and furthermore, each displayed frame is stored in
the output directory so that a movie can be made of the node’s
behaviour. How to generate this movie is discussed later in
section 7.1.

Listing 21 | A set of reporting definitions to record the probability densities and

rates of two populations, S and D. The densities will also be displayed during

simulation.

<Reporting>
...

<Density node="S" t_start="0.0" t_end="6.0"
t_interval="0.01" />

<Density node="D" t_start="0.5" t_end="1.5"
t_interval="0.001" />

<Display node="S" />
<Display node="D" />
<Rate node="S" t_interval="0.0001" />
<Rate node="D" t_interval="0.0001" />

...
</Reporting>

Frontiers in Neuroinformatics | www.frontiersin.org 19 July 2021 | Volume 15 | Article 614881

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Osborne et al. MIIND

4.6. Variables
The <Simulation> element can contain multiple <Variable>
sub-elements each with a unique name and value. Variables
are provided for the convenience of the user and can replace
any values in the XML file. For example, a variable named
TIME_END can be defined to replace the value in the t_end
element of the SimulationRunParameter block. When the
simulation is run, the value of t_end will be replaced with the
default value provided in the Variable definition. Using variables
makes it easy to perform parameter sweeps where the same
simulation is run multiple times and only the variable’s value is
changed. How parameter sweeps are performed is covered in the
Supplementary Section 8. All values in aMIINDXML script can
be set with a variable name. The type of the Variable is implicit
and an error will be thrown if, say, a non-numerical value is
passed to the tau_refractive attribute of a MeshAlgorithm object.

Listing 22 | A Variable definition. TIME_END has a default value of 18.0 and is

used in the t_end parameter definition.

<Variable Name=’TIME_END’>18.0</Variable>
...
<t_end>TIME_END</t_end>

5. MIIND ON THE GPU

The population density techniques of the mesh and grid
algorithms rely on multiple applications of the transition matrix
which can be performed on each cell in parallel. This makes
the algorithms prime candidates for parallelisation on the
graphics card. In the CPU versions, the probability mass is
stored in separate arrays, one for each population/node in the
simulation. For the GPGPU version, these are concatenated into
one large probability mass vector so all cells in all populations
can be processed in parallel. From the user’s perspective,
switching between CPU and GPU implementations is trivial.
In the XML file for a simulation which uses MeshAlgorithm
or GridAlgoirithm, to switch to the vectorised GPU version,
the Algorithm types must be changed to MeshAlgorithmGroup
and GridAlgorithmGroup. All other attributes remain the
same. Only MeshAlgorithmGroup, GridAlgorithmGroup, and
RateFunctor/RateAlgorithm types can be used for a vectorised
simulation. When running a MIIND simulation containing a
group algorithm from a Python script, instead of importing
miind.miindsim, miind.miindsimv should be used. The Python
module miind.run is agnostic to the use of group algorithms so
can be used as shown previously.

Listing 23 | A MeshAlgorithmGroup definition is identical to a MeshAlgorithm

definition except for the type.

<Algorithm type="MeshAlgorithmGroup" name="ALG_ADEX
" modelfile="adex.model" >

<TimeStep>0.001</TimeStep>
<MatrixFile>adex_0.05_0_0_0_.mat</MatrixFile>
<MatrixFile>adex_-0.05_0_0_0_.mat</MatrixFile>

</Algorithm>
<Algorithm type="GridAlgorithmGroup" name="OSC"

modelfile="fn.model" tau_refractive="0.0"
transformfile="fn_0_0_0_0_.tmat" start_v="-1.0"
start_w="-0.3" ratemethod="AvgV">

<TimeStep>0.00001</TimeStep>
</Algorithm>

The GPGPU implementation uses the Euler method to
solve the master process during each iteration. It is, therefore,
susceptible to blow-up if the time step is large or if the local
dynamics of the model are stiff. The user has the option to set the
number of euler steps taken each iteration using themaster_steps
value of the SimulationRunParameter block in the XML file. A
higher value reduces the likelihood of blow-up but increases the
simulation time.

In order to run the vectorised simulations, MIIND must
be running on a CUDA enabled machine and have CUDA
enabled in the installation (CUDA is supported in the Windows
and Linux python installations). Supplementary Section 3 in
the Supplementary Material goes into greater detail about the
systems architecture differences between the CPU and GPU
versions of the MIIND code. Using the “Group” algorithms is
recommended if possible as it provides a significant performance
increase. As shown in De Kamps et al. (2019), with the use of the
GPGPU, a population of conductance based neurons in MIIND
performs comparably to a NEST simulation of 10,000 individual
neurons but using an order of magnitude less memory. This
allows MIIND to simulate many thousands of populations on a
single PC.

6. RUNNING A MIIND SIMULATION IN
PYTHON

As demonstrated in the quick start guide, the command python

-m miind.run takes a simulation XML file as a parameter
and runs the simulation. A similar script may be written by
the user to give more control over what happens during a
simulation and how output activity is recorded and processed.
It even allows MIIND simulations to be integrated into other
Python applications such as TVB (Sanz Leon et al., 2013) so
the population density technique can be used to solve the
behaviour of nodes in a brain-scale network (see section 9.2).
To run a MIIND simulation in a Python script, the module
miind.miindsim must be imported (or miind.miindsimv if the
simulation uses MeshAlgorithmGroup or GridAlgorithmGroup
and therefore requires CUDA support). Listing 24 shows an
example script which uses the following available functions to
control the simulation.

Listing 24 | A simple python script for running a MIIND simulation and plotting the

results.

import matplotlib.pyplot as plt
import miind.miindsim as miind

miind.init(1, "lif.xml")

timestep = miind.getTimeStep()
simulation_length = miind.getSimulationLength()
print(’Timestep from XML : {}’.format(timestep))
print(’Sim time from XML : {}’.format(

simulation_length))

miind.startSimulation()

Frontiers in Neuroinformatics | www.frontiersin.org 20 July 2021 | Volume 15 | Article 614881

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Osborne et al. MIIND

constant_input = [2500]
activities = []
for i in range(int(simulation_length/timestep)):

activities.append(miind.evolveSingleStep(
constant_input)[0])

miind.endSimulation()

plt.figure()
plt.plot(activities)
plt.title("Firing Rate.")

plt.show()

6.1. init(node_count,simulation_xml_file,…)
The init function should be called first once the MIIND
library has been imported. This sets up the simulation ready
to be started. The node_count parameter allows for multiple
instantiations of the simulation to be run simultaneously. The
Nodes, Connections, and Reporting blocks from the simulation
file will be duplicated, effectively running the same model
node_count times simultaneously in the same simulation. This
functionality was included to allow TVB to run the simulation
defined in the XML file multiple times (see section 9.2). The
simulation_xml_file parameter gives the name of the simulation
xml file to be run. If the file has any variables defined, these are
made available in Python as additional parameters to the init
function. In this way, the use of XML variables can be used for
parameter sweeps. All variables must be passed as strings. If a
variable is not set in the call to init, the default value defined in
the XML file will be used.

Listing 25 | Calling init for a MIIND simulation lif.xml with the Variable SIM_TIME

set to 0.4.

miind.init(1, "lif.xml", SIM_TIME="0.4")

6.2. getTimeStep() and
getSimulationLength()
Once init has been called, the functions getTimeStep and
getSimulationLength can be used to extract the time step and
simulation length in seconds from the simulation, respectively.
The Python script controls when each iteration of the MIIND
simulation is called and so it needs to know the total number of
iterations to make. Furthermore, it can be useful for integration
with other systems to know these values.

6.3. startSimulation()
startSimulation indicates in the Python script that the simulation
should be initialised ready for the simulation loop to be called.

6.4. evolveSingleStep(input)
By calling evolveSingleStep in the Python script, the MIIND
simulation will move forward one time step. This function takes
a list of numbers as a parameter. The list corresponds to inputs to
the population nodes in the MIIND simulation. In this way, the
usermay control the behaviour of the simulation from the Python
script during the simulation. The evolveSingleStep function also
returns a list of numbers which are the output activities of the

population nodes. Section 6.6 provides more information about
how to use the input and output of this function. evolveSingleStep
should be called in a loop which will run the same number
of iterations as would be expected if the XML file were run in
MIIND directly, that is, the simulation length divided by the
time step.

6.5. endSimulation()
It is good practice to call endSimulation once all iterations of the
simulation have been performed. This allows MIIND to clean up
and to print the performance statistics to the console.

6.6. Additional XML Code for Python
Support
Although it is still possible to use RateFunctor or RateAlgorithm
to set input rates to populations in a Python MIIND simulation,
evolveSingleStep() provides a means to pass the input rates as a
parameter so that more complex input patterns can be used. In
order to indicate that a population will receive input externally
from the Python script [via the list input to evolveSingleStep()]
a special connection type must be defined in the <Connections>
section of the XML.

Listing 26 | Special connection types for use in Python.

<Connections>
...
<IncomingConnection Node="E">1 0.01 0</

IncomingConnection>
<OutgoingConnection Node="E"/>
...
</Connections>

Listing 26 defines an input to node E which will be interpreted
as a DelayedConnection with the number of connections equal
to 1 and a post synaptic efficacy of 0.01. No delay is defined
here although it is permitted. OutgoingConnections are used
to declare which nodes in the population network will pass
their activity back to the Python script after each iteration.
If the two connections in the listing are the only instances
of IncomingConnection and OutgoingConnection, then the
evolveSingleStep function will expect as a parameter, a list with
one numeric value to represent the incoming rate to node E.
evolveSingleStep will return a list with a single numeric value
representing the activity of node E. In cases where there are
more than one IncomingConnection, the order of values in the
Python list parameter to evolveSingleStep is the same as the order
of IncomingConnections defined in the XML. Similarly with
OutgoingConnections, the order of the list of activities returned
from evolveSingleStep is the same as the order of declaration in
the XML file.

7. USING THE CLI TO QUICKLY VIEW
RESULTS

Once a simulation has been run, either usingmiind.run or from a
user written Python script, the miind.miindio CLI can be used to
quickly plot the recorded results. As mentioned, the commands
used inmiindio are based on themodulemiind.miind_api and are

Frontiers in Neuroinformatics | www.frontiersin.org 21 July 2021 | Volume 15 | Article 614881

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Osborne et al. MIIND

reproducible in a Python script. However, it can be convenient
to be able to run them directly from the command line to aid
fast prototyping and bug fixing of models and simulations. The
following section lists some common commands in the CLI and
their usage. The accompanying files for this example are in the
examples/cli_plots directory. The following command starts the
CLI and presets the user with a prompt:

Listing 27 | Run the CLI.

$ python -m miind.miindio

When miind.miindio is called for the first time in a working
directory, the user must identify the XML file which will describe
the current working simulation. MIIND stores a reference to this
file in a settings file in the working directory so that all subsequent
commands will reference this simulation. Even if miind.miindio
is quit and restarted, the current working simulation will be
used as the context for commands until a new current working
simulation is defined or if it is called in a different directory.
The user can set the current working simulation with the
sim command.

Listing 28 | Load a simulation file in the CLI.

> sim example.xml

Calling sim without a parameter will list information about the
current working simulation such as the output directory, XML
file name and provide a list of the defined variables and nodes.

During the simulation, MIIND generates output files
according to the requirements of the <Recording> object of the
XML file which could include the average firing rate of population
nodes or their densities at each time interval. The average firing
rate can be plotted from the CLI using the rate command
followed by the name of the population node. To be reminded of
the node names, the user can call sim or ratewithout parameters.

Listing 29 | Plot the rate of population POP1 in the CLI.

> rate POP1

Even while a simulation is running, calling rate in the CLI
will plot the recorded activity up to the latest simulated time
point. This is useful to keep an eye on the simulation as it
progresses without waiting for completion. An example of the
plots produced by rate is shown in Figure 11A.

For populations using the grid or mesh algorithms, the user
can call the plot-density command with parameters identifying
the required node name and simulation time.

Listing 30 | Plot the probability density of population POP1 at time 0.42 s in the

CLI.

> plot-density POP1 0.42

This command renders the mesh or grid and its population
density at the given simulation time. When reading the
simulation time parameter in the command, MIIND expects the
time to be an integer multiple of the time step and to be expressed
up to its least significant figure (for example, 0.1 instead of 0.10).
Again, this command can be run during a simulation providing
the time has been simulated. An example of a density plot is
shown in Figure 11B.

Similar to plot-density, plot-marginals can be used to display
the marginal densities of a given population at a given time.
Both marginals are plotted next to each other. The details
of how marginal densities are calculated are explained in the
Supplementary Section 5. Figure 11C shows an example of a
marginal density plot.

Listing 31 | Plot the marginal distributions of population POP1 at time 0.42s in

the CLI.

> plot-marginals POP1 0.42

7.1. Generate a Density Movie
If, in the XML file <Recording> section, the <Display> element
is added for a given population, the output directory will be
populated with still images of density plots at each time step.
Once the simulation is complete, calling generate-density-movie

in the CLI will produce an MP4 movie file made from the still
images. The parameters are the node name followed by the
size of the square video frame in pixels. The third parameter is
the desired time to display each image (every time step of the
simulation) in seconds. If the video should be the same length
as the simulation time, then this parameter should match the
time step of the simulation. By changing the value, the video time
can be altered. For example, if the parameter is set to 0.01 for a
simulation with time step 0.001, then the video length will be 10
times the length of the simulation. Finally, a name for the video
file must be given.

Listing 32 | Generate a movie from the display images of population POP1 with a

size of 512 pixels at a simulation replay time step of 0.1 s.

> generate-density-movie POP1 512 0.1 pop1_mov

The movie file will be created in the working directory of the
simulation. A movie of the marginal density plots can also be
created using the generate-marginal-movie command which
takes the same parameters. As each marginal plot must be
generated from the density output, this takes a considerably
longer time than for the density movie.

Listing 33 | Generate a marginals movie from the density files of population POP1

with a size of 512 pixels at a simulation replay time step of 0.1 s.

> generate-marginal-movie POP1 512 0.1
pop1_marginal_mov

8. DESCRIPTION OF MIIND’S
ARCHITECTURE AND FUNCTIONALITY

The main architectural concerns in MIIND relate to the two
C++ libraries, MPILib and TwoDLib. MPILib is responsible for
instantiating and running the simulation. TwoDLib contains the
CPU implementations of the grid and mesh algorithms. It is also
responsible for generating transition matrices. Of the remaining
libraries, GeomLib contains a population density technique
implementation of neuron models with one time dependent
variable, although it is also possible and indeed preferable to
use the TwoDLib code for one dimensional models. EPFLLib
and NumtoolsLib contain helper classes and type definitions.
Figure 12 shows a reduced UML diagram of the MIIND C++

Frontiers in Neuroinformatics | www.frontiersin.org 22 July 2021 | Volume 15 | Article 614881

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Osborne et al. MIIND

FIGURE 11 | (A) The average firing rate of a population produced by calling the rate command. (B) A density plot (normalised to the maximum density value) of the

population produced by calling the plot-density command. (C) The marginal density plots produced by calling the plot-marginals command.

architecture. The aim of this section is to give a brief overview
of the C++ MIIND code as a starting point for developers.
The CUDA implementation of MIIND is similar in structure
to the CPU solution and is available in the CudaTwoDLib and
MiindLib libraries. A description of the differences is given in
Supplementary Section 3 of the Supplementary Material.

8.1. MPILib
The MPINetwork class in MPILib represents a simulation
as a whole and is instantiated in the init function of
the SimulationParserCPU class which is a specialisation of
MiindTvbModelAbstract. init is called from the Python module
and, as the name suggests, MiindTvbModelAbstract was
originally written with the aim of Python integration into
TVB. MPINetwork exposes member functions for building
a network of nodes where each node is an instance of a
neuron population which can be connected together so that
the output activity from one population is input to another.
The class also contains all of the simulation parameters

such as the simulation length and time step. Finally, the
MPINetwork class exposes a function to run the simulation in
its entirety or take a single evolve step for use in an external
control loop.

Each node in the population network is represented by an
instance of the MPINode class. A node has a name and an ID
which is used to uniquely identify it in the simulation. A node also
contains an implementation of AlgorithmInterface performing
the integration technique required for this population (for
example, GridAlgorithm or MeshAlgorithm). The NodeType
describes whether a population should be thought of as
excitatory or inhibitory. As discussed earlier, MIIND performs
a validation check that the synaptic efficacy from a node
is positive or negative, respectively (or neutral). During
each iteration, each node is responsible for consolidating
the activity of all input connections, calling the integration
step in the AlgorithmInterface implementation, and reporting
the density and output activity (the average firing rate or
membrane potential).

Frontiers in Neuroinformatics | www.frontiersin.org 23 July 2021 | Volume 15 | Article 614881

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Osborne et al. MIIND

FIGURE 12 | A minimal UML diagram of MIIND. The two major libraries, MPILib and TwoDLib, are represented.

In MPILib, a number of implementations of
AlgorithmInterface are defined which can be instantiated in a
node. Implementations of AlgorithmInterface are responsible
for the lion’s share of the computation in MIIND as this is
where the integration of the model is performed. The interface
is extremely simple, providing a function to set parameters,
an optional function for a preamble before each iteration,
and the evolveNodeState function to be called every time step.
GridAlgorithm and MeshAlgorithm are implementations of this
interface defined in TwoDLib. MPILib and GeomLib hold the
implementations of the remaining algorithms available to the
user which were discussed in section 4. Finally, the weight types,
DelayedConnection and CustomConnectionParameters are also
defined in MPILib. All classes are C++ templates which take
the weight type as a parameter to avoid code duplication and to
enforce that only algorithms with the same weight type can be
used together.

8.2. TwoDLib
As with the population models in MPILib and GeomLib,
GridAlgorithm and MeshAlgorithm are implementations of
the AlgorithmInterface. We will focus here on the grid

algorithm implementation although the mesh algorithm uses
the same structures or specialisations of those structures to
perform similar tasks as set out in section 3. GridAlgorithm
is supported by two important classes. Ode2DSystem transfers
probability mass according to the reset mapping of the
.model file and calculates the average firing rate of the
population. In MeshAlgorithm, Ode2DSystem also performs
the pointer update for shifting probability mass down the
strips of the mesh. MasterGrid is responsible for solving the
Poisson master equation using a transition matrix calculated
at simulation time based on the desired efficacy and grid
cell size. For each iteration, the function evolveNodeState
is called which performs the main steps of the population
density algorithm.

First, in GridAlgorithm, the deterministic dynamics are solved
by applying the pre-generated transitionmatrix once. The second
step is a call toOde2DSystem.RedistributeProbability() to perform
any reset mappings for probability mass which appeared in
the threshold cells last iteration. This step is useful for neuron
models, such as leaky integrate and fire, which contain an
instruction to reset one or more variables to a different value
upon reaching a threshold.

Frontiers in Neuroinformatics | www.frontiersin.org 24 July 2021 | Volume 15 | Article 614881

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Osborne et al. MIIND

The third step calls on the MasterGrid class to solve the
master equation for the incoming Poisson spike rates from
every incident node. MasterGrid begins with the current state
of the probability mass distribution across the grid, that is, the
probability mass values of each cell in the grid. As described in
section 2, every cell has the same relative transition of probability
mass due to a single incoming spike. For the whole grid, this
single transition is duplicated into a transition matrix which
can be applied to the full probability mass vector. Because there
are at most two cells into which probability mass is transferred,
this matrix is extremely sparse and can be stored efficiently in a
compressed sparse row (CSR) matrix. In the mesh algorithm, this
matrix is loaded from the .mat file.

MeshAlgorithm requires a fourth step to transfer probability
mass from the ends of strips to stationary cells subject to a
reversal mapping generated during the pre-processing phase.
This is discussed in the Supplementary Section 6.

Finally, SimulationParserCPU is an extension of the
MiindTvbModelAbstract class used to parse the simulation XML
file and instantiate an MPINetwork object with the appropriate
nodes and connections. Its extensions of the functions declared
in MiindTvbModelAbstract are exposed to the Python module to
be called from a Python script.

9. DISCUSSION

9.1. MIIND Fulfills a Need for Insight Into
Neural Behaviour at Mesoscopic Scales
The MIIND population density technique allows researchers to
simulate population level behaviour by defining the behaviour
of the underlying neurons. This is in contrast to many rate
based models which describe the population behaviour directly.
An example of how population behaviour can differ from the
underlying neuron model can be seen in the behaviour of a
population of bursting neurons such as the Izhikevich simple
model. A single Izhikevich neuron with a constant input current
or input spike rate oscillates between a bursting period of
repeated firing and a quiescent period of no firing. The average
behaviour of a population of Izhikevich neurons is different.
Initially, all neurons are synchronised, they burst and quiesce
at the same time producing an oscillatory pattern of average
firing rate in the population. However, due to the random nature
of Poisson input spikes, the neurons de-synchronise over time
and the average firing rate of the whole population damps to a
constant value because only a subset of neurons are bursting at
any one time. Figure 11A shows the damping of the output firing
rate oscillations and the “desynchronised” density of a population
of Izhikevich simple neurons.

9.2. TVB Integration
The Virtual Brain (Sanz Leon et al., 2013) and MIIND are
both systems which facilitate the development of neural mass
or mean field population models with explicit descriptions of
how multiple populations are connected. Using these systems,
the complex dynamics arising from the interaction of populations
can be studied. TVB provides a framework to describe a network
of nodes (the connectivity) which, while it can be abstract,

generally represents regions of the human or primate brain.
Connections between nodes represent white matter tracts which
transfer signals from one node to the next based on length and
propagation speed. TVB also allows the description of “coupling”
functions which modulate these signals as they pass from one
node to another. Typically, the number of nodes is in the order
of 100 or so. However, TVB also allows for the definition of a
“surface” which can be associated with 10s of thousands of nodes
to simulate output from common medical recording techniques
such as EEG and BOLD fMRI. TVB has impressive clinical
relevance as well as supporting more theoretical neuroscience
research. Users can build simulations using the graphical user
interface or directly using the Python source code.

While MIIND and TVB have many functional similarities,
both have differing strengths with respect to the underlying
simulation techniques and surrounding infrastructure. It was
therefore clear that integrating the smaller system, MIIND, into
the more developed infrastructure of TVB might yield benefits
from both.

Although it is possible to model delayed connections
and synaptic dynamics between populations in MIIND, TVB
provides a comprehensive method of defining such structures
and behaviours through the connectivity network and coupling
functions. Some users of MIIND may find it useful and
appropriate to house their simulations in such a structure.

TVB uses a number of model classes to describe the behaviour
of the nodes in a network. When the simulation is run,
an instantiation of a specified model class takes the signals
which have passed through the network to arrive at each node
and integrates forward by one time step (depending on the
integration method). In order to use MIIND nodes in TVB, a
specialised model class was created to import the MIIND Python
library, instantiate it, then make a call to evolveSingleStep() in
place of the integration function. The inputs and outputs of
evolveSingleStep() are treated by TVB as any other model. As
the MIIND Python library takes a simulation file name as a
parameter to its init function, a single additional model class is
all that is required to expose any MIIND simulation to TVB.
Figure 13 shows the results from a simulation of the TVB default
whole-brain connectivity with populations of Izhikevich simple
neurons in MIIND. The script and simulation files are available
in the examples/miind_tvb directory of the MIIND repository.
Both TVB and MIIND must be installed to successfully run
the example.

9.3. Reasoning About Probability Density
Instead of Populations of Individual
Neurons Simplifies Output Analysis
The output firing rate or membrane potential of a MIIND
population which uses the mesh algorithm or grid algorithm is
devoid of any variation which you would see from a population
of individual neurons. This is because the effect of Poisson
generated input spike trains is applied to a probability density
function, effectively an infinite population of neurons. Spike
train inputs to a finite population of neurons produces variation
in how individual neurons move through state space resulting

Frontiers in Neuroinformatics | www.frontiersin.org 25 July 2021 | Volume 15 | Article 614881

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Osborne et al. MIIND

FIGURE 13 | The firing rates of 76 nodes from the default TVB connectivity simulation. Each node is a population of Izhikevich simple neurons simulated using MIIND.

The majority of nodes produce oscillations which decay to a constant average firing rate. However, a subset of nodes remain in an oscillating state.

in noisy output rates at the population level. While this can
be mitigated using a larger number of neurons, the use of
smoothing techniques, or curve fitting, MIIND requires none
of these methods to produce an output which is immediately
clear to interpret. For example, MIIND was used to build and
simulate a spinal circuit model using populations of integrate
and fire neurons (York et al., 2021). The average firing rates of
the populations were used to compare patterns of activity with
results from an EMG experiment. As the patterns to be observed
were on the order of seconds, there was no need to capture
faster variation in activity from the simulation and indeed, a
direct simulation would have produced output which may have
obscured these patterns.

MIIND has also been used to simulate central pattern
generator models which rely on mutually inhibiting populations
of bursting neurons. The interaction of the two populations
significantly influences their sub-threshold dynamics. In
particular, it can be difficult to identify the dynamics responsible
for the swapping of states from bursting to quiescent (escape or
release). Observing the changing probability density function
during the simulation makes it very clear how the two
populations are behaving.

9.4. Handling Noise
A major benefit of MIIND’s population density technique is the
ability to observe the effect of noise on a population, and to
manipulate noise in an intuitive way. For a given simulation,

the Poisson distributed input to a population causes a spread
of probability mass across the state space as some neurons
receive many spikes, and some receive fewer. It is explained in
de Kamps (2013) how the Poisson input causes a mean increase
in membrane potential equal to the product of the post synaptic
efficacy, h, and the average input rate, ν. It causes a variance equal
to νh². h and ν can therefore be set such that the mean remains
the same but the variance changes to observe the effect of noise
on the population.

Another simple way to increase the variance of the population
is to introduce two additional inputs with equal rates and
opposite post-synaptic efficacies. Again, the mean increase
caused by the input remains unchanged but the variance can be
increased significantly and this requires only a small change to
the XML simulation file.

9.5. A Model Agnostic System at the
Population Level Makes Prototyping Quick
and Intuitive
Because MIIND provides insight of how a neuron model
produces behaviour at the population level, it is beneficial that
the grid algorithm enables the user to quickly reproduce the
.model and .tmat files if the underlying neuron model needs to
be changed. An example of this can be observed in a half-centre
oscillator made of a pair of mutually inhibiting populations of
bursting neurons. The frequency of oscillation can be made

Frontiers in Neuroinformatics | www.frontiersin.org 26 July 2021 | Volume 15 | Article 614881

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Osborne et al. MIIND

FIGURE 14 | A density plot of a population of Hindmarsh-Rose neurons. The density is contained in a three dimensional volume such that each axis represents one of

the time-dependent variables of the model. The volume has been rendered from a rotated and elevated position to more easily visualise the density.

dependent or independent of the input spike rate by including
a limit on the slow excitability variable of the underlying neuron
model. To make this change, the user can alter the neuron model
then rebuild the .model and .tmat file and no change to the
population level network is required.

9.6. DiPDE
DiPDE (Iyer et al., 2013; DiPDE, 2015) is an alternative
implementation of the population density technique for one
dimensional neuron models. It does not employ the “mesh”
discretisation method used in the MIIND mesh algorithm and
has primarily been used with populations of leaky integrate
and fire neurons. DiPDE can be used to simulate the Potjans-
Diesmann microcircuit model (Cain et al., 2016) which shows
good agreement withMIIND (Figure 5). MIIND is a much larger
application than DiPDE because it allows users to design their
own underlying neuron models for each population using either
the mesh or grid algorithms.

9.7. Future Work
A limitation on the MIIND population density technique is that
a maximum of two time-dependent variables can be used to

describe the underlying neuron model of each population. In
the mesh algorithm, for higher dimensions, mesh building would
need to be automated but this is not a trivial problem to solve.
The grid algorithm, however, is entirely automated and work has
been done to extend MIIND for 3D neuron models. Figure 14
shows the 3D density plot of a population of Hindmarsh-Rose
neurons in MIIND. The technique used to generate the 2D
transition matrices outlined in section 2 extends to N dimensions
so there is theoretically no limit to the dimensionality of the
underlying neuron model in the grid algorithm. However, both
the grid algorithm and mesh algorithm suffer from “the curse
of dimensionality” such that with each additional variable,
the number of cells to cover the state space increases to the
point where the memory and processing requirements are too
high. Luckily, a great number of neuron behaviours can be
captured with only two or three time-dependent variables with
appropriate approximations.

Large networks can be built up quickly in MIIND. To add a
node to a simulation file requires just a single line. Integrating
the node into the rest of the network with requisite connections is
equally convenient. As mentioned, the Potjans-Diesmann model
has been implemented as a single cortical column but this is by

Frontiers in Neuroinformatics | www.frontiersin.org 27 July 2021 | Volume 15 | Article 614881

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Osborne et al. MIIND

no means the limit of the size of network which can be built.
It is feasible that a patch of cortex made of perhaps hundreds
of cortical columns can be simulated efficiently in MIIND. The
benefit of such a network would be to demonstrate how cortical
columns interact together under different connectivity regimes
and inputs as well as providing the ability to quickly and easily
“swap out” the underlying neuron model of each population.
Typically, LIF is used but adaptive integrate and fire would be
a closer approximation to pyramidal neurons in cortex.

10. CONCLUSION

We have presented the mesh and grid algorithms, MIIND’s
population density techniques for simulating populations of
neurons, and given a full account of the software features
available to users. While the mesh algorithm was developed some
time ago, the grid algorithm which was added to MIIND recently
has precipitated amore accessible, user friendly software package.
We hope that the explanations given here along with a lower
technical barrier to entry will encourage researchers to make use
of the tool.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are
included in the article/Supplementary Material. The MIIND
source code and installation packages are available as a github
repository at https://github.com/dekamps/miind. MIIND can
be installed for use in Python using “pip install miind” on
many Linux, MacOS, and Windows machines with python

versions >= 3.6. Documentation is available at https://miind.
readthedocs.io/.

AUTHOR CONTRIBUTIONS

HO and MK contributed to the text of this article. YL, ML, DS,
and LD contributed to the development of the population density
technique and MIIND software. All authors contributed to the
article and approved the submitted version.

FUNDING

This project received funding from the European Union’s
Horizon 2020 research and innovation programme under
Grant Agreement No. 720270 (HBP SGA1) and Specific Grant
Agreement No. 785907 (Human Brain Project SGA2) (MK; YL).
HO was funded by EPSRC (EP/N509681/1). The funders had
no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

ACKNOWLEDGMENTS

The authors wish to thank Frank van der Velde and Martin
Perez-Guevara for their continued support of theMIIND project.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2021.614881/full#supplementary-material

REFERENCES

Amit, D. J., and Brunel, N. (1997). Model of global spontaneous activity and local
structured activity during delay periods in the cerebral cortex. Cere. Cortex 7,
237–252. doi: 10.1093/cercor/7.3.237

Bower, J. M., and Beeman, D. (2012). The Book of GENESIS: Exploring Realistic

Neural Models With the GEneral NEural SImulation System. New York, NY:
Springer Science & Business Media New York.

Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model
as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642.
doi: 10.1152/jn.00686.2005

Brunel, N., and Hakim, V. (1999). Fast global oscillations in networks of
integrate-and-fire neurons with low firing rates.Neural Comput. 11, 1621–1671.
doi: 10.1162/089976699300016179

Cain, N., Iyer, R., Koch, C., and Mihalas, S. (2016). The computational properties
of a simplified cortical column model. PLoS Comput. Biol. 12:e1005045.
doi: 10.1371/journal.pcbi.1005045

Carlu, M., Chehab, O., Dalla Porta, L., Depannemaecker, D., Héricé, C., Jedynak,
M., et al. (2020). A mean-field approach to the dynamics of networks
of complex neurons, from nonlinear integrate-and-fire to hodgkin-huxley
models. J. Neurophysiol. 123, 1042–1051. doi: 10.1152/jn.00399.2019

D’Angelo, E., Antonietti, A., Casali, S., Casellato, C., Garrido, J. A., Luque, N.
R., et al. (2016). Modeling the cerebellar microcircuit: new strategies for
a long-standing issue. Front/ Cell. Neurosci. 10:176. doi: 10.3389/fncel.2016.
00176

de Kamps, M. (2013). A generic approach to solving jump diffusion equations with
applications to neural populations. arXiv [Preprint] arXiv:1309.1654.

De Kamps, M., Baier, V., Drever, J., Dietz, M., Mösenlechner, L., and Van
Der Velde, F. (2008). The state of MIIND. Neural Netw. 21, 1164–1181.
doi: 10.1016/j.neunet.2008.07.006

De Kamps, M., Lepperød, M., and Lai, Y. M. (2019). Computational geometry for
modeling neural populations: from visualization to simulation. PLoS Comput.

Biol. 15:e1006729. doi: 10.1371/journal.pcbi.1006729
Di,PD. E. (2015). 2015 Allen Institute for Brain Science. DiPDE Simulator. Available

online at: https://github.com/AllenInstitute/dipde
El Boustani, S., and Destexhe, A. (2009). A master equation formalism

for macroscopic modeling of asynchronous irregular activity
states. Neural Comput. 21, 46–100. doi: 10.1162/neco.2009.02-
08-710

FitzHugh, R. (1961). Impulses and physiological states in theoretical models of
nerve membrane. Biophys. J. 1:445. doi: 10.1016/S0006-3495(61)86902-6

Fourcaud-Trocmé, N., Hansel, D., Van Vreeswijk, C., and Brunel, N.
(2003). How spike generation mechanisms determine the neuronal
response to fluctuating inputs. J. Neurosci. 23, 11628–11640.
doi: 10.1523/JNEUROSCI.23-37-11628.2003

Furber, S., Galluppi, F., Temple, S., and Plana, L. (2014). The spinnaker project.
IEEE Proc. 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Gerstner, W. (1998). Spiking Neurons. Technical report, MIT-Press.
Gewaltig, M.-O., and Diesmann, M. (2007). Nest (neural simulation tool).

Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430
Hindmarsh, J. L., and Rose, R. (1984). A model of neuronal bursting using three

coupled first order differential equations. Proc. R. Soc. Lond. Ser. B Biol. Sci. 221,
87–102. doi: 10.1098/rspb.1984.0024

Hines, M. L., and Carnevale, N. T. (2001). Neuron: a tool for neuroscientists.
Neuroscientist 7, 123–135. doi: 10.1177/107385840100700207

Iyer, R., Menon, V., Buice, M., Koch, C., and Mihalas, S. (2013). The influence of
synaptic weight distribution on neuronal population dynamics. PLoS Comput.

Biol. 9:e1003248. doi: 10.1371/journal.pcbi.1003248
Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural

Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Frontiers in Neuroinformatics | www.frontiersin.org 28 July 2021 | Volume 15 | Article 614881

https://github.com/dekamps/miind
https://miind.readthedocs.io/
https://miind.readthedocs.io/
https://www.frontiersin.org/articles/10.3389/fninf.2021.614881/full#supplementary-material
https://doi.org/10.1093/cercor/7.3.237
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1162/089976699300016179
https://doi.org/10.1371/journal.pcbi.1005045
https://doi.org/10.1152/jn.00399.2019
https://doi.org/10.3389/fncel.2016.00176
https://doi.org/10.1016/j.neunet.2008.07.006
https://doi.org/10.1371/journal.pcbi.1006729
https://github.com/AllenInstitute/dipde
https://doi.org/10.1162/neco.2009.02-08-710
https://doi.org/10.1016/S0006-3495(61)86902-6
https://doi.org/10.1523/JNEUROSCI.23-37-11628.2003
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1098/rspb.1984.0024
https://doi.org/10.1177/107385840100700207
https://doi.org/10.1371/journal.pcbi.1003248
https://doi.org/10.1109/TNN.2003.820440
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Osborne et al. MIIND

Izhikevich, E. M. (2007). Dynamical Systems in Neuroscience: The Geometry of

Excitability and Bursting. Cambridge, MA: MIT Press.
Jirsa, V. K., Stacey, W. C., Quilichini, P. P., Ivanov, A. I., and Bernard,

C. (2014). On the nature of seizure dynamics. Brain 137, 2210–2230.
doi: 10.1093/brain/awu133

Kamps, M., and d. (2003). A simple and stable numerical solution for
the population density equation. Neural Comput. 15, 2129–2146.
doi: 10.1162/089976603322297322

Knight, B. W. (1972). Dynamics of encoding in a population of neurons. J. Gen.
Physiol. 59, 734–766. doi: 10.1085/jgp.59.6.734

Knight, B.W., Manin, D., and Sirovich, L. (1996). Dynamical models of interacting
neuron populations in visual cortex. Robot Cybern 54, 4–8.

Lai, Y. M., and de Kamps, M. (2017). Population density equations for
stochastic processes with memory kernels. Phys. Rev. E 95:062125.
doi: 10.1103/PhysRevE.95.062125

Mattia, M., and Del Giudice, P. (2002). Population dynamics of interacting spiking
neurons. Phys. Rev. E 66:051917. doi: 10.1103/PhysRevE.66.051917

Mattia, M., and Del Giudice, P. (2004). Finite-size dynamics of inhibitory
and excitatory interacting spiking neurons. Phys. Rev. E 70:052903.
doi: 10.1103/PhysRevE.70.052903

Montbrió, E., Pazó, D., and Roxin, A. (2015). Macroscopic description
for networks of spiking neurons. Phys. Rev. X 5:021028.
doi: 10.1103/PhysRevX.5.021028

Nagumo, J., Arimoto, S., and Yoshizawa, S. (1962). An active pulse
transmission line simulating nerve axon. Proc. IRE 50, 2061–2070.
doi: 10.1109/JRPROC.1962.288235

Nykamp, D. Q., and Tranchina, D. (2000). A population density approach that
facilitates large-scale modeling of neural networks: analysis and an application
to orientation tuning. J. Comput. Neurosci. 8, 19–50. Nykamp, D. Q., and
Tranchina, D. (2000). A population density approach that facilitates large-scale
modeling of neural networks: analysis and an application to orientation tuning.
J. Comput. Neurosci. 8, 9–50. doi: 10.1023/A:1008912914816

Omurtag, A., Knight, B. W., and Sirovich, L. (2000). On the simulation
of large populations of neurons. J. Comput. Neurosci. 8, 51–63.
doi: 10.1023/A:1008964915724

Osborne, H., and De Kamps, M. (2021). MIIND Documentation. Available online
at: https://miind.readthedocs.io

Potjans, T. C., and Diesmann, M. (2014). The cell-type specific cortical
microcircuit: relating structure and activity in a full-scale spiking network
model. Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/bhs358

Proix, T., Bartolomei, F., Guye, M., and Jirsa, V. K. (2017). Individual brain
structure and modelling predict seizure propagation. Brain 140, 641–654.
doi: 10.1093/brain/awx004

Sanz Leon, P., Knock, S. A., Woodman, M. M., Domide, L., Mersmann, J.,
McIntosh, A. R., et al. (2013). The virtual brain: a simulator of primate
brain network dynamics. Front. Neuroinform. 7:10. doi: 10.3389/fninf.2013.
00010

Traub, R. D., Contreras, D., Cunningham, M. O., Murray, H., LeBeau,
F. E., Roopun, A., et al. (2005). Single-column thalamocortical
network model exhibiting gamma oscillations, sleep spindles, and
epileptogenic bursts. J. Neurophysiol. 93, 2194–2232. doi: 10.1152/jn.0098
3.2004

Tsodyks, M. V., and Markram, H. (1997). The neural code between
neocortical pyramidal neurons depends on neurotransmitter release
probability. Proc. Natl. Acad. Sci. U.S.A. 94, 719–723. doi: 10.1073/pnas.9
4.2.719

Uhlenbeck, G. E., and Ornstein, L. S. (1930). On the theory of the brownian
motion. Phys. Rev. 36:823. doi: 10.1103/PhysRev.36.823

Wilson, H. R., and Cowan, J. D. (1972). Excitatory and inhibitory interactions
in localized populations of model neurons. Biophys. J. 12, 1–24.
doi: 10.1016/S0006-3495(72)86068-5

Wilson, M. A., Bhalla, U. S., Uhley, J. D., and Bower, J. M. (1988). “GENESIS: a
system for simulating neural networks,” in Proceedings of the 1st International

Conference on Neural Information Processing Systems (Morgan Kaufmann),
485–492.

York, G., Osborne, H., Sriya, P., Astill, S., De Kamps, M., and Chakrabarty, S.
(2021). Muscles recruited during an isometric knee extension task is defined
by proprioceptive feedback. BioRxiv. doi: 10.1101/802736

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Osborne, Lai, Lepperød, Sichau, Deutz and de Kamps. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 29 July 2021 | Volume 15 | Article 614881

https://doi.org/10.1093/brain/awu133
https://doi.org/10.1162/089976603322297322
https://doi.org/10.1085/jgp.59.6.734
https://doi.org/10.1103/PhysRevE.95.062125
https://doi.org/10.1103/PhysRevE.66.051917
https://doi.org/10.1103/PhysRevE.70.052903
https://doi.org/10.1103/PhysRevX.5.021028
https://doi.org/10.1109/JRPROC.1962.288235
https://doi.org/10.1023/A:1008912914816
https://doi.org/10.1023/A:1008964915724
https://miind.readthedocs.io
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.1093/brain/awx004
https://doi.org/10.3389/fninf.2013.00010
https://doi.org/10.1152/jn.00983.2004
https://doi.org/10.1073/pnas.94.2.719
https://doi.org/10.1103/PhysRev.36.823
https://doi.org/10.1016/S0006-3495(72)86068-5
https://doi.org/10.1101/802736
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

