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Abstract

The tools of probability theory have long been introduced to many fields,
including many areas of theoretical computer science. The following is
a quote, sometimes attributed to G.C. Rota:

"Probability is just combinatorics divided by n"

While there may be some theoretical truth to this statement, the number
of insights the probabilistic approach has given into areas of combina-
torics, extremal graph theory, and other computer science problems at
least suggests that there is some merrit to approaching a problem with
probability in mind. We will focus on the field of probabilistic combina-
torics, the study of combinatorial structures generated in a probabilistic
setting. It is a relatively new but also a highly active field in mathe-
matics.

This dates back to seminal work of Erdős in the 1950s to 60s when
he proved that combinatorial structures with nice properties exist, but
without explicitly constructing them. Instead, he used a probabilistic
argument to prove that one must exist. Interestingly, when trying to
deterministically reproduce these constructions this often proves chal-
lenging and for many problems, it still remains an open problem to find
an explicit solution.

v



vi Contents

In graph theory, considerable focus is placed on embedding problems,
raising the question, can we find substructure in graphs. Random graphs
and the probabilistic method have helped substantially here. But not
just in graph theory, also in algorithm design, probability and random-
ness have proven to be valuable for new proofs, new algorithms and a
better understanding of problems.

In this thesis, we present four results that use or have been inspired
by techniques from probability theory and show that not only do these
tools give clean and elegant proofs, but they also help us gain a deeper
understanding of the bottlenecks of the problem.

The first result discusses the chromatic number of a graph. Comput-
ing the chromatic number is generally NP-hard. However in random
graphs, the task is often much easier. In the Erdős-Rényi graph model,
G(n, p), the chromatic number is well studied and we extend the asymp-
totic value of the chromatic number to the stochastic block graph model.
This is a natural generalization of G(n, p) in which instead of having a
homogeneous probability for all edges, we allow a partition of the vertex
set into constantly many parts and may choose different probabilities p
for every part and in-between parts where clearly G(n, p) is then a spe-
cial case. The proof here uses well-known techniques and concentration
of random variables but we believe it is elegantly captured in a clean
and intuitive result on the exact behavior of independent sets and how
they tie to the chromatic number in this random graph model.

The second result we discuss is about embedding a Kr-factor in a graph
with some random-inspired property. Randomness gives us considerable
power and often in proofs, we do not need most properties of random
graphs instead focusing only on for example the expansion properties.
Here, we take the famous theorem of Hajnal and Szemerédi. It states
that if a graph has minimum degree δ(G) ≥

(
1− 1

r

)
n and r divides

n, it must also have Kr-factor, specifically it is possible to cover all
vertices with disjoint cliques of size r. It is easy to find an example that
shows that the theorem is tight. However in the random case a much
smaller number of edges is required. We restrict ourselves to graphs
with sublinear independence number. In this case we are able to find
new tight bounds on the minimum degree.

Remaining on the theme of randomness, in the third result we construct
a randomized algorithm for finding Hamilton cycles in random graphs
with high probability. As mentioned, randomness gives us considerable
power, and already in the late 70’s Angluin and Valiant observed that
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the NP hard problem of finding a Hamilton cycle becomes close to
linear time if we take a random graph. Specifically, we are able to bring
the runtime of this algorithm down to O(n).

In the last result, we present an algorithm to solve the mastermind prob-
lem. Mastermind is a game played against an adversary who chooses
an arbitrary hidden codeword in [n]k. The Player can ask questions
of the form of a string in [n]k and receives an answer revealing how
many of the positions were correct. This problem generalizes the coin
weighing problem and first appeared as Mastermind by Chvátal in1983.
Here, random queries play a central role in the strategy when k is small
compared to n. One of the interesting properties to observe here is the
Shannon entropy of a query. A query can receive an answer between
0 and n for the number of correct positions, so the entropy is at most
log2(n+1), which gives a natural lower bound of Ω(n) number of queries
needed. However a random query without any knowledge of the code-
word will recieve an answer distributed with a binomial distribution
Bin(n, 1/k), which has constant entropy when k is of order n and it has
been shown that non-adaptive strategies need at least Ω(n log n) many
queries. Therefore, while most existing strategies for small k used ran-
dom queries, and thus obtained an elegant solution matching the lower
bound, when k = n, this becomes no longer feasible. We show that by
using an adaptive strategy for k = n, we can use only O(n) queries.
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Zusammenfassung

Die Methoden der Wahrscheinlichkeitstheorie sind schon längst in ver-
schiedensten andern Gebieten eingeführt worden, dabei auch einige Ge-
biete der Theoretischen Informatik. Das folgende ist ein Zitat, wird
manchmal G.C. Rota zugeschrieben:

"Wahrscheinlichkeit ist einfach Kombinatorik dividiert
durch n"

Während es wohl einen gewissen theoretischen kern an Wahrheit an die-
ser Aussage hat, die Vielzahl an Einsichten die der Ansatz der Wahr-
scheinlichkeitstheorie eingebracht hat in Gebieten der Kombinatorik,
extremalen Graphen Theoie, und anderen Problemen der Informatik
deutet darauf hin dass es doch einen Mehrwert bringt, ein Problem von
der Perspektive der Wahrscheinlichkeitstheorie zu betrachten. Wir be-
schäftigen uns mit probabilistischer Kombinatorik, die Lehre der Kom-
binatorischen Objekten die stochastisch generiert wurden. Es ist ein
relativ neues aber höchst aktives Gebiet in der Mathematik.

Dies wurde ins Leben gerufen mit der wegweisenden Arbeit von Erdős in
den 1950er bis 69er Jahren. Er bewies mit der Probabilistischen Metho-
de, dass Kombinatorische Objekte mit wünschenswerten Eigenschaften
existieren, ohne diese explizit zu konstruieren. Interessanterweise, wenn

ix



x Zusammenfassung

man versucht auf deterministische weise diese Konstruktionen zu repro-
duzieren kann dies of schwierig sein und für viele Probleme bleibt es bis
heute eine offen solche konstruktive Lösungen zu finden.

In der Graphentheorie wird ein beträchtlicher Fokus auf einbettungs
Probleme gelegt; die Frage ob wir eine Substruktur in einem Graphen
finden können. Zufallsgraphen und die Probabilistische Methode haben
hier wesentlich geholfen. Aber nicht nur in der Graphentheorie, auch im
Algorithmen Design sind Wahrscheinlichkeitstheorie und Zufall wertvoll
für neue Beweise, neue Algorithmen und ein besseres Verständnis von
Problemen.

In dieser Thesis präsentieren wir vier Resultate die Methoden der Wahr-
scheinlichkeitstheorie benutzen oder davon inspiriert wurden. Wir möch-
ten zeigen dass diese Methoden nicht nur saubere und elegante Beweise
liefern, sondern dass sie auch jeweils besser Einsicht geben wo der Eng-
pass eines Problemes liegt.

Unser erstes Resultat beschäftigt sich mit der chromatischen Zahl eines
Graphen. Die chromatische Zahl eines Graphen zu bestimmen ist gene-
rellNP-schwer. Jedoch ist es für Zufallsgraphen oft einfacher. Im Erdős-
Rényi Graphen Model, G(n, p), ist die chromatische Zahl gut studiert
und wir erweitern indem wir den asymptotischen Wert der chromati-
schen Zahl des Stochastischen Block Graphen Model bestimmen. Dies
ist eine natürliche verallgemeinerung des G(n, p) bei dem wir statt einer
gleichbleibenden Wahrscheinlichkeit für alle Kanten wir eine Partition
erlauben in eine Konstante Anzahl Teile. In jedem Teil und zwischen
zwei Teilen dürfen verschiedene Wahrscheinlichkeiten p gewählt wer-
den. Es ist klar dass der G(n, p) der Spezialfall ist wenn die Partition
nur aus einem Teil besteht. Der Beweis hier benutzt bekannte Methoden
und Konzentration der Zufallsvariabeln aber wir glauben es der Beweis
ist sauber und intuitiv und erfasst hervorragend das Verhalten der un-
abhängigen Mengen und zeigt deren Zusammenhang zur Chromatischen
Zahl in diesem Zufallsgraphen Model.

Das zweite Resultat das wir präsentieren beschäftigt sich mit dem ein-
betten eines Kr-Faktors in einem Graphen mit einer zufalls-inspirierten
Eigenschaft. Der Zufall gibt uns beträchtliche Macht und oft in Beweisen
benötigen wir viele der Eigenschaften von Zufallsgraphen nicht. Statt-
dessen fokusieren wir uns zum Beispiel auf die Expansionseigenschaft.
Hier betrachten wir das berühmte Theorem von Hajnal und Szemeré-
di. Es besagt dass falls ein Graph einen Minimalgrad von mindestens
δ(G) ≥

(
1− 1

r

)
n hat und r teilt n, dann hat der Graph auch einen Kr-
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faktor, das heisst es ist möglich alle Knoten mit disjunkten Kliquen der
grösse r zu bedecken. Es ist einfach ein Beispiel zu finden welches zeigt
dass dieses theorem bestmöglich ist. Jedoch benötigen wir bei Zufalls-
graphen viel weniger Kanten. Wir betrachten den Fall wo die grösste un-
abhängige Menge des Graphen nur sublineare grösse haben darf. Dann
können wir neue bestmögliche Schranken finden für den minimalgrad.

Wir bleiben bei Zufallsgraphen und zeigen im dritten Resultat wel-
ches wir präsentieren, dass es einen randomisierten Algorithmus gibt
um einen Hamilton Kreis in einem Zufallsgraphen mit hoher Wahr-
scheinlichkeit findet. Wie bereits erwähnt gibt uns der Zufall vielseitige
Möglichkeiten. Bereits seit den 70ern beobachteten Angluin und Valiant
dass das NP-schwere Problem einen Hamilton cycle zu finden fast in
linearer Zeit lösbar ist wenn wir einen Zufallsgraphen haben. In unserem
Fall zeigen wir dass wir die Laufzeit des Algorithmuses weiter reduzieren
können bis O(n) mit hoher Wahrscheinlichkeit.

In unserem letzten Resultat präsentieren wir einen Algorithmus um das
Mastermind Problem zu lösen. Mastermind ist ein Spiel das gegen einen
Gegenspieler gespielt wird der ein beliebiges geheimes Codewort in [n]k

auswählt. Der Spieler darf Fagen stellen von der Form von Wörtern in
[n]k und erhält eine Antwort die preisgibt wie viele Positionen korrekt
waren. Diese Problem generalisiert das Münz wäge problem und ist das
erste Mal von Chvátal 1983 als Mastermind in der Literatur erschienen.
Im Werk von Chvátal spiele Zufallsgenerierte Fragen eine entscheidende
Rolle und sind asymptotisch optimal solange k klein ist verglichen zu
n. Eine der interessanten Eigenschaften die wir beobachten können ist
die Shannon Entropie einer Frage. Eine Frage kann eine Antwort zwi-
schen 0 und n erhalten für die Anzahl korrekter Positionen, also ist die
Entropie dieser Frage höchstens log2(n+ 1), welches uns eine natürliche
untere Schranke von Ω(n) für die Anzahl benötigte Fragen gibt. Jedoch
ist die Antwort auf eine zufällige Frage, ohne jegliches Wissen über das
geheime Codewort, binomial verteilt Bin(n, 1/k), welches nur eine kon-
stante Entropie hat wenn k die selbe Grössenordnung hat wie n und
zeigt dass Strategien welche nicht adaptiv sind mindestens Ω(n log n)
viele Fragen stellen müssen. Deshalb, während die meisten Strategien
für kleine k zufällig generierte Fragen benutzten und so eine elegante
Lösung liefern die asymptotisch optimal ist, ist dies für den Fall k = n
nicht mehr möglich. Wir zeigen das mithilfe einer adaptiven Strategie
O(n) viele Fragen genügen.
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Chapter 1
Introduction

The application of probabilistic tools is rather new but active and thriv-
ing in the field of combinatorics and theoretical computer science. Al-
though not the first to apply the probabilistic method, Paul Erdős and
Alfred Rényi [ER59] published many cornerstone papers in the 1950s
and 60s proving existence of structures in a non-constructive way. The
motivation was to attack combinatorial problems with the knowledge
provided by probability theory. This allowed to produce combinato-
rial structures, which were often graphs, that were hard to find with
traditional methods. Ideally, among other properties, such graphs have
edges which are spread evenly and do not contain large dense subgraphs.
These properties are difficult to put into a formal definition, and in
many ways, the constructions achieved are tough to replicate with a
deterministic approach and the standard tools from combinatorics.

1



2 Chapter 1. Introduction

The interest started mainly in the field of Ramsey theory, but the inter-
est in the methods has been an inspiration to many subsequent math-
ematicians. In general, embedding problems in graphs have become
increasingly well understood. Currently the probabilistic method is vi-
tal to proofs for a myriad of problems beyond extremal combinatorics.

Since probabilistic tools in graph theory and algorithms are now so
broadly applied it is difficult to both go into depth on a topic and
simultaneously cover all of the areas. Nevertheless, because the results
that we present here are spread out over multiple subareas, we would like
to attempt to give some insights into the progress that has been made
in a few selected fields of graph theory and some related to algorithms.
We will give a more indepth introduction to each problem at the start
of each of the following chapters.

We give an overview of the remaining chapters of the thesis at the end
of this chapter in Section 1.7. For clarity regarding notation, a table
that is useful to readers is included in Chapter 2.

1.1 Ramsey Theory

The probabilistic method was particularly successful in what we now call
Ramsey theory. In graph theory, Ramsey’s theorem is the equivalent
of stating that there can never exist complete chaos. More formally, a
graph G is Ramsey for a graph H if for any coloring of the edges of G
with two colors there exists a copy of H as a monochromatic subgraph
of G. As early as in the 1930s, Ramsey proved [Ram30] that there is an
integer n for every integer r such that Kn is Ramsey for Kr. Rephrased,
for any r, if we take a large enough complete graph, no matter how
complex we color it with two colors, we will always find a clique of size
r in one of the colors. The smallest such number n we call the diagonal
Ramsey number

R(r, r) = min{n ∈ N|Kn is Ramsey for Kr}.

While certainly an interesting proof on it’s own, Ramsey theory has
recieved a lot more attention due to it’s application to other problems.
A driving force here was Erdős and Szekeres combining it with other
areas and showing its usefulness in combinatorial geometry.

The proof that R(r, r) must be a finite number was found, but we are
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also interested in obtaining reasonable bounds on the diagonal Ramsey
numbers. Currently a part of many lectures on the topic is a bound by
Erdős and Szekeres [ES35] using simple induction:

R(r, r) ≤
(

2n− 2

n− 1

)
This bound is surprisingly difficult to improve. The best known current
bound was given only recently by Conlon [Con09]. The lower would
seem much easier to approach. We would only need to explicitly con-
struct a coloring which avoids cliques. But this is not how the problem
was solved. Erdős could prove R(r, r) is at least exponential [Erd47]
using the probabilistic method. This proof showed that a random col-
oring of the graph is actually the most efficient way to avoid a clique
and to date we have still not succeeded in proving the lower bound
constructively.

Determining the exact diagonal Ramsey numbers is quite out of reach
of our current methods, since there remains an exponential gap between
the upper and lower bound.

As always in a successful field, a multitude of variations of Ramsey num-
bers have been considered. We will mention Ramsey-Turán numbers in
a later section, and we refer interested readers to excellent literature on
Ramsey theory [Bur74, Prö13].

1.2 Random Graphs

Given the new approach of using random graphs in Ramsey theory,
naturally there was an urge urge to study them more, as at the time,
they were not nearly as well understood as they are now. The the-
ory of random graphs was born with the seminal work of Erdős and
Rényi [ER59] and in the following years was also heavily driven by the
same two authors.

They first consider G(n,m), the probability space containing all graphs
on n vertices and m edges with the uniform distribution. This model
was a very natural one to start with, as the condition on the number
of edges was a desirable property to avoid degenerate cases. However
analysis shows that the binomial random graph G(n, p), often called the
Erdős-Rényi graph, has a similar behavior for many applications, but is
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easier to analyze. In this graph model, we consider an n vertex graph,
and every edge is present with probability p independent of all other
edges. Exactly this independence is key to what makes it a good graph
to analyze. Most results for G(n, p) translate to G(n,m) and vice versa.

More formally, we define the probability space G(n, p) as the probability
space with the set of all simple unlabeled n vertex graphs as the sample
space, we take a discrete event space, and as the probability function,
for any graph G

Pr[G] = p|E(G)|(1− p)(
n
2)−|E(G)|.

Random graphs for many parameters, have highly predictable behav-
ior. Most problems we ask are of the type: "Given a graph property
P, an integer n ∈ N and p ∈ [0, 1], what is the probability that a graph
drawn from G(n, p) has the property P?". These properties we con-
sider are often monotone increasing or decreasing, meaning that they
are preserved under edge inclusion or removal respectively. For these
properties, a surprising phenomenon occurs that we call threshold be-
havior. More formally, we say a graph property P has a threshold if
there exists a function p0 = p0(n) such that

lim
n→∞

Pr[G(n, p) ∈ P] =

{
0, p� p0

1, p� p0.

Bollobas and Thomason [BT97] proved that in fact, all monotone in-
creasing properties have a threshold. Some interesting graph proper-
ties include being connected, having a chromatic number of at least k,
or containing H as a subgraph. Particularly for embedding problems,
many tools have been discovered for different application purposes, as
we discuss in the next section.

1.3 Embedding Problems

In graph theory we often want to know is whether a graph G contains H
as a subgraph. H can be a small graph, a triangle, or a spanning one,
such as a Hamilton cycle or a perfect matching. The question arises
of what is necessary for the graph to contain H and whether there are
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properties we can check faster than merely checking all possible sub-
graph combinations, since that is often an inefficient or even infeasible
solution.

A notorious embedding problem is determining whether a graph has a
Hamilton cycle. This problem is computationally NP -hard which im-
plies we do not expect to find a polynomial-time algorithm to determine
or find a Hamilton cycle in a graph. Nevertheless, if we do not require
a statement for all graphs, for some graph families it may be easier.

For Hamilton cycles, we started with Dirac’s theorem stating that every
graph with a minimum degree of at least n/2 is Hamiltonian. Although
this is tight, as in there exists a non-Hamiltonian graph with minimum
degree (n− 1)/2, it is weak in the sense that minimum degree alone is
maybe the wrong tool of measurement. Even with Ore’s theorem, G
is Hamiltonian if every pair of non-adjacent vertices together have an
added degree of at least n, these are all descriptions of dense graphs;
that is, graphs with order of Θ(n2) many edges. However, there exist
many graphs with many fewer edges that are also Hamiltonian. In fact,
one could say an ’average’ graph with lower density is Hamiltonian.

What we mean to say is that random graphs G(n, p) prove to be Hamil-
tonian as soon as p ≥ n(log n+ log log n+ ω(1))/2, which is an average
degree of only Θ(log n), bringing the edge count from Θ(n2) down to
Θ(n log n).

For random graphs the threshold for Hamiltonicity has been found ex-
actly, but more general questions have been answered, such as counting
Hamilton cycles, finding powers of Hamilton cycles, finding them in the
resilient setting, and many more. We refer the interested reader to an
excellent bibliography by Frieze [Fri19].

However it is not merely the Hamilton cycle here that is interesting; in
fact, a general statement was proven by Bollobás [Bol81]:

Theorem 1.1. For an arbitrary graph H with at least on edge,

lim
n→∞

Pr[G(n, p) ⊃ H] =

{
0 if p� n−1/m(H),

1 if p� n−1/m(H).

Where m(H) = maxH′⊆H{e(H ′)/v(H ′)} is the highest possible ratio of
edges to vertices in a non-empty subgraph of H.
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1.4 Szemerédi’s Regularity Lemma

A powerful and now a standard approach for embedding problems is Sze-
merédi’s Regularity Lemma. Szemerédi [Sze75] introduced this tool in
the 1970s in a somewhat weaker form than the one in which we present
in Chapter 4. It was invented to prove a conjecture of Erdős on se-
quences of integers [ET36] and since has seen many variations and some
strengthenings with additional properties tailored to specific use cases
as well as some adaptions for hypergraphs. However, in essence, the
lemma states that given any arbitrary dense graph G, we can partition
the vertex set into a constant number of parts such that almost all edges
between the parts are “ε-regular” meaning random-like. Therefore, this
can be seen as imposing structure on a graph.

Moreover, versions for the sparse case exist (see papers by Gerke and
Steger [GS05] and Bollobás and Riordan [BR07]). It is particularly use-
ful in embedding graphs of bounded degree. In particular, together
with the absorbing method introduced by Rödl, Ruciński, and Sze-
merédi [RSR08] it is possible to embed spanning graphs. Although the
absorbing method has produced many results forward in recent years,
we will not expand on it here. We present an application in Chapter 4.

For a more complete survey of Szemerédi’s Regularity Lemma see for
example [KS96] or [KSSS00].

1.5 Ramsey-Turán

An early version of Szemerédi’s Regularity Lemma is used to prove an
upper bound for the Ramsey-Turán numbers [Sze72], which is a more
recent field combining elements from Ramsey theory and Turán theory.

Turán studied the following question: if an n-vertex graph G may not
contain a clique of size r, how many edges can G have? This is known as
Turán’s theorem: that e(G) ≤

(
1− 1

r−1

)
· n

2

2 . The extremal graph is the
complete r−1 partite graph and is a stable extremal example, meaning
even ‘close’ to the bound, the graph must be similar to an r− 1 partite
graph. This was generalized to arbitrary graph families in a result by
Erdős, Stone and Simonovits [ES65] showing that the chromatic number
χ is essentially the bottleneck for how many edges we can have and the
extremal example is again a complete (χ− 1)-partite graph.
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Both Turán’s theorem and Ramsey’s theorem were groundbreaking re-
sults in graph theory, pioneering an entire branch of new research. In
the late 1960’s, Erdős and Sós [ES70] started connecting the two fields.
While Turán extremal examples are very structured we rather think of
Ramsey extremal examples as random-like, with probabilistic construc-
tions currently being our best lower bound. If we combine these we
obtain the following Ramsey-Turán type problem. The independence
number of a graph G, α(G), is the size of a largest independent set in
G.

Definition 1.2 (Ramsey-Turán number). For a graph G on n vertices
not containing a subgraph Kr and having independence number α(G) =
m we denote by

RT(n,Kr,m)

The maximum number of edges that G can have.

If m is larger than n/(r − 1) this is simply Turán’s theorem, which
gives us the best upper bound. However if m is smaller than that, in
particular if m = o(n), then the extremal example, the Turán graph, is
no longer allowed.

The study of 1
n2RT (n,Kr, o(n)) was of particular interest. Szemerédi

provided an upperbound of 1/8 for r = 4, whose optimality was long
debated until Bollobás and Erdős provided a fascinating matching con-
structive lower bound inspired by the geometry of spheres [BE76].

In Chapter 4, we prove a result in which the forbidden graph is not a
clique but instead a clique factor, a set of disjoint cliques covering the
graph completely. This was studied for triangles by Balogh, Molla and
Sharifzadeh [BMS16].

1.6 Algorithms and Entropy

As we increasingly understand the probabilistic tools, it becomes easier
to construct algorithms which actually find or calculate combinatorial
objects. Randomized algorithms and probabilistic arguments accom-
pany each other in combinatorics. Not only has randomness proven
useful in algorithms for making algorithms faster, because we have a
good understanding of how random variables work, this has proven to
be a method of proving statements which is quite unique. We use a
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measure for randomness called entropy. Informally entropy counts the
number of random bits needed to generate a random variable. This is
defined by specific rules.

Shannon defined the entropy H of a discrete random variable X as the
following expression:

H(X) = −
n∑
i=1

Pr[xi] logb Pr[xi]

Any random variable needs entropy to be generated. As an example, if
we can generate the equivalent of n random coin flips in an algorithm,
the algorithm must take n entropy from a source of randomness.

This can be applied to create lower bounds for runtimes. The entropy
lower bound of n log n for comparison based sorting an example thereof.
Entropy can be a tool for inspiration during algorithm design. Alterni-
tively, we can also prove upper bounds using the entropy compression
method. The method uses double counting on entropy to show that an
algorithm can not run for too long, without generating more entropy
than is used during the algorithm. The most famous application is a
proof by Moser [Mos09] to show an algorithmic version of the Lovász
Local Lemma. This technique is quite new but has already seen several
cases of success [EP13, DJKW16, Mol19].

1.7 Overview of the Thesis

In Chapter 3 we provide a classical application of concentration bounds
on a variant of the random graph. We study the chromatic number of
the random block graph model. Applying tools of concentration, here
the Janson inequality, we learn the deeper connection of the chromatic
number and the maximal independent sets of this graph, a phenomenon
already well known for the Erdős-Rényi Random graph model. Here,
however, there are interesting transitions to observe for different relative
edge probabilities in and between the blocks of the graph. We give
proofs for tight upper and lower bounds for the chromatic number of
the stochastic block graph model. The work in this chapter is from
a submitted paper by Martinsson, Panagiotou, Trujić and the author
([MPST20]).
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In the next Chapter 4 we discuss an embedding problem in a random-
like graph but without the randomness. Here we use the tools developed
for random graphs, the Szemeredi Regularity Lemma. We take the
famous theorem of Hajnal and Szemerédi. It states that if a graph has
minimum degree δ(G) ≥

(
1− 1

r

)
n and r divides n, it must also have

Kr-factor. It is easy to find an example that shows that the theorem is
tight, however, in the random case a much smaller number of edges is
required. We restrict ourselves to graphs with sublinear independence
number. We are able to find new tight bounds on the minimum degree
conditioned on a sublinear independence number. This is tightly related
to Ramsey-Turán theory. This chapter is from a paper by Knierim and
the author ([KS21]).

In Chapter 5 we move to an application of randomness in algorithms.
Still in the realm of graphs we study the problem of finding a Hamilton
cycle in a graph. This is a problem well known to be NP -hard, so
it would be surprising to find a general solution. However, in random
graphs, the existence of Hamilton cycles has long been proven with
help from the probabilistic method. Moreover, finding and outputting
the Hamilton cycle was a major breakthrough [Fri88] and is known to
be possible in polynomial time. We give an algorithm to improve the
runtime to linear in the number of vertices. This result is from a paper
by Nenadov, Steger and the author ([NSS21]).

As a last result in Chapter 6 we present an algorithm to solve the mas-
termind problem. Mastermind is a well known generalization of the
coin weighing problem and has some ties to other problems such as re-
solving sets in graph theory [JP19]. Mastermind was first studied by
Chvátal in 1983 [Chv83]. The first strategy was to query randomly and
to prove that this is in fact the best you can do asymptotically. This
works whenever the number of available colors k is small compared to
n, the number of positions. Using the intuition we get from entropy we
devise a strategy which finds the hidden codeword in a linear number
of queries in the case when k = n. Every other case is then reducible
to this strategy so we asymptotically solve Mastermind for all k and n.
This chapter is from a submitted paper by Martinsson and the author
([MS20]).
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Chapter 2
Preliminaries

In this chapter, we introduce the basic notation and tools that will be
used throughout this thesis.

2.1 Basic Notation

We use log n for the base two logarithm and lnn for the natural loga-
rithm. For an integer k ∈ N, we use [k] to denote the set {1, . . . , k}.
As we are often interested in limits, we use the standard Landau symbols
O,Ω,Θ, o and ω to denote the asymptotic behavior of functions. If a
hidden constant γ depends on some other constant ε, we write γ(ε)
unless it is clear from the context. We write a� b and a� b to express
that a = o(b) and a = ω(a), respectively. We interchangeably use with

11
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high probability (abbreviated by w.h.p) and asymptotically almost surely
(abbreviated by a.a.s) to denote that an event holds with probability
1− o(1) as n→∞.

2.1.1 Graph theory notation

A number of notation standards exist to make it easier to write proofs in
graph theory. Most of these conventions have become standard, we fol-
low the notation standards of [Wes01]. All our graphs are simple graphs
involving no multiedges and no loops. We will, with few exceptions use
the variables G and H for a graph. The letters u, v and w will usually
denote vertices and e an edge.

In the following notation we will omit subindices if they are clear from
the context.

Symbol Definition

V (G) Vertex-set of G
E(G) Edge-set of G
v(G), vG Number of vertices of G, v(G) = |V (G)|
e(G), eG Number of edges of G, e(G) = |E(G)|
NG(v) Neighborhood of a vertex v ∈ V (G) in G,

NG(v) = {u ∈ V (G) : {u, v} ∈ E(G)}

NG(U) Neighborhood of the set of vertices v ∈ U ⊆ V (G) in
G,

NG(U) =
⋃
v∈U

NG(v)

degG(v) Degree of a vertex v in G, degG(v) = |NG(v)|
δ(G) Minimum degree of G, δ(G) = minv∈V (G) degG(v)

∆(G) Maximum degree of G, ∆(G) = maxv∈V (G) degG(v)
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Symbol Definition

EG(U) All the edges of G with both endpoints in U

EG(U) = {{u,w} ∈ E(G) : u, v ∈ U}

EG(U,W ) All the edges of G with one endpoint in U and W

EG(U,W ) = {{u,w} ∈ E(G) : u ∈ U,w ∈W}

eG(U,W ) Size of EG(U,W ), eG(U,W ) = |EG(U,W )|
NG(v,W ) Set of all neighbors of v in W ⊆ V (G) in the graph G
NG(U,W ) Set of all neighbors of U in W ,

NG(U,W ) = {w ∈W : ∃u ∈ U s.t. {u,w} ∈ E(G)}

degG(u,W ) Degree of a vertex u in W , degG(u,W ) = |NG(u,W )|

2.2 Probabilistic Tools and Estimates

The reason we can obtain useful properties from random variables is
that despite the chaotic randomness observed, well-defined bounds ex-
ist in the form of concentration inequalities. Therefore, in theory a
random variable can deviate far from it’s average, however with a high
probability it does not.

We start with the first moment inequality.

Lemma 2.1 (Markov’s Inequality). Let X be a non-negative random
variable. For all t > 0 we have Pr[X ≥ t] ≤ E[X]

t .

Naturally, we have the second moment estimate by Chebyshev and the
most commonly used inequality in our work, Chernoffs inequality. This
is most useful when trying to show that the sum of many small random
variables is not overly large, because they are more or less independent.
The Chernoff and Chebyshev inequality are described for example in
the book [JLR11].
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Theorem 2.2 (Chebyshev Inequality). For any random variable X for
which the variance V ar[X] exists,

Pr[|X − E[X]| ≥ t] ≤ V ar[X]

t2

Theorem 2.3 (Chernoff’s inequality). Let X =
∑n
i=1Xi be the sum of

n independent Bernoulli distributed variables and 0 < ε ≤ 3/2. Then

Pr[|X − E[X]| ≥ εE[X]] ≤ 2e−
ε2E[X]

3

Given the absence of perfect independence, many inequalities attempt
to deal with this. There are the well-known Azuma’s inequality and
Janson’s inequality. In this thesis we will be using the second of the
two.

The following version of Janson’s inequality, tailored for graphs, will
suffice for our purposes. This statement follows immediately from The-
orems 8.1.1 and 8.1.2 in [AS04]. This inequality will be used and restated
in Chapter 3.

Theorem 2.4 (Janson’s inequality). Let k ∈ N, α ∈ (0, 1]k with |α| =
1, and let P = (pij)i,j∈[k] be a symmetric matrix with all pij ∈ (0, 1).
Consider a family {Si}i∈I of subsets of the vertex set [n] and let G ∼
G(n,α, P ). For each i ∈ I, let Xi denote the indicator random variable
for the event {Si is an independent set in G} and, for each ordered pair
(i, j) ∈ I × I, write Xi ∼ Xj if E(Si) ∩ E(Sj) 6= ∅. Let

X :=
∑
i∈I

Xi, µ := E[X], and ∆ :=
∑

(i,j)∈I×I
Xi∼Xj

E[XiXj ].

Then
Pr[X = 0] ≤ e−µ

2/(2∆).

For the convenience of some results, we state some known facts about
specific distributions. We use the term negative binomial distribution in
the analysis, and since this term varies in its definition in the literature
we provide here the definition we use.

Definition 2.5. Let Xi be independent Bernoulli random variables
with the probability of being one is p for any i ∈ N. For any r ∈ N,
let Y be the index of the r-th Xi that evaluates to 1. Then, Y has a
negative binomial distribution NB(r, p).
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A negative binomial distribution Y ∼ NB(r, p) is equivalent to Y being
distributed as the sum of r geometric random variables with success
probability p. A simple corollary from the Chebyshev inequality is as
follows:

Corollary 2.6. For a negative binomially distributed variable
Y ∼ NB(r, p)

Pr

[
Y ≥ 2

r

p

]
≤ 1

r

Proof. We calculate E[Y ] = r/p and V ar[Y ] = r(1 − p)/p2 and apply
Chebyshev.

Pr

[
Y ≥ 2

r

p

]
≤ Pr

[
|Y − E[Y ]| ≥ r

p

]
Chebyshev

≤ 1− p
r
≤ 1

r
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Chapter 3
The Chromatic Number of

Dense Random Block Graphs

3.1 Introduction

In this chapter, we prove the asymptotic value of the chromatic number
in the dense random block graph model. This is a very classic appli-
cation of concentration bounds to a problem in random graph theory.
The content of this chapter is from a submitted paper with Martinsson,
Panagiotou, Trujić and the author ([MPST20]).

For a more general overview we give more thorough background infor-
mation on the chromatic number of the binomial random graph G(n, p)

17
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Chromatic Number of Random Graphs

The chromatic number is one of the most central graph parameters in
graph theory and has applications in various other areas of computer
science. Formally, in a graph G, the chromatic number χ(G) is defined
as the smallest number of colors required for coloring the vertices such
that no two adjacent vertices of G are assigned the same color. There
are a myriad of results for the chromatic number in the binomial ran-
dom graph G(n, p). Nevertheless, the answer to the question is not yet
conclusive and is still an active area of research.

The study started with seminal work of Erdős and Rényi [ER59, ER60]
when they first introduced random graphs. In a breakthrough paper
from 1978, Bollobás [Bol88] obtained the first asymptotically tight re-
sult: he established that for p ∈ (0, 1), w.h.p.

χ(G(n, p)) = (1 + o(1))
n

c(p) lnn
, where c(p) = − 2

ln(1− p)
. (3.1)

This result in fact only represents half the picture, because we also
know the structure of how the chromatic number is formed. It has
long been known that w.h.p. the independence number α(G(n, p)), the
size of the largest independent set, in G(n, p) equals (1 + o(1))c(p) lnn
(see [Mat76]). Therefore, in addition to proving the value of the chro-
matic number, Bollobás [Bol88] also proved that we can optimally color
the graph asymptotically by covering essentially all vertices of G(n, p)
with almost maximum independent sets; that is, independent sets that
are of roughly of size α(G(n, p)). In other words, w.h.p. any (almost)
optimal coloring of G(n, p) consists of color classes with asymptotic size
c(p) lnn that cover n− o(n/ lnn) vertices. This naturally gives a lower
bound that matches the upper bound since all color classes must be in-
dependent sets and an independent set can be of size at most α(G(n, p)).

The paper of Bollobás initiated a long line of research concerned with
studying various properties of the distribution of the chromatic number.
The currently most accurate result on the asymptotic value of χ(G(n, p))
for p ∈ (0, 1) is due to Heckel [Hec18], who improved previous results
by several authors, e.g. [FKM08, McD89, McD90, PS09], and showed
upper and lower bounds for χ(G(n, p)) that are within o(n/ ln2 n).

Apart from the probable asymptotic value of χ(G(n, p)), other parame-
ters of it have been of considerable interest and difficulty. Most notably,
the question about the concentration of χ(G(n, p)), that is, the smallest



3.1. Introduction 19

size of an interval in which χ(G(n, p)) is located w.h.p. has been a point
of focus since the seminal papers of Erdős and Rényi (see also [Bol04]).
In a recent remarkable breakthrough, Heckel [Hec19] showed polyno-
mial non-concentration bounds for χ(G(n, p)), thus answering a long-
standing open question.

Stochastic Block Model

Here we study the chromatic number of random graphs in the so-called
stochastic block model (also known as the planted partition model). The
model is a generalization of G(n, p) and is defined as follows. Given k ∈
N, let P = (pij)i,j∈[k] be a symmetric matrix with all entries pij ∈ (0, 1).
Moreover, let α = (α1, . . . , αk) be a vector of (1-)norm |α| = 1 and with
all αi ∈ (0, 1]. For an integer n ∈ N we let G(n,α, P ) be a random graph
(V,E) obtained as follows. The vertex set V = V1∪· · ·∪Vk consists of k
disjoint parts such that |Vi| = αin for every i ∈ [k] and

∑
i∈[k] αin = n.

Furthermore, for i, j ∈ [k], two distinct vertices u ∈ Vi and v ∈ Vj
form an edge uv ∈ E with probability pij independently. We think of
k ≥ 1 as a fixed integer; specifically, the number of parts Vi is fixed and
independent of n, and P as a fixed matrix, that is, we only consider
(dense) graphs that have Ω(n2) edges w.h.p.. We call G ∼ G(n,α, P ) a
random block graph. That this is a direct generalization of the Erdős-
Rényi binomial random graph G(n, p) should be clear when we choose
k = 1.

The stochastic block model is more flexible and it enables the model-
ing of communities. The model also is particularly important for other
fields; specifically in physics, statistics, machine learning, networks, and
other areas of computer science. Its applications range from social net-
works to image processing and to genetics (see e.g. [NWS02, PSD00,
SM00] for some influential papers in this context), and various properties
of the model have been studied in physics [DKMZ11, HLL83] and math-
ematics and computer science [Bop87, BCLS87, CO10, JS98, MNS15].
For further history, reference, and discussion, we refer to the following
remarkable survey [Abb17].

Recently several papers have established generalizations of well-known
results about properties of the binomial random graph in the more gen-
eral stochastic block model. For instance, Hamiltonicity [AFG19] and
the size of the largest independent set/clique [DHM17]. Our focus here
is to determine the asymptotic value of the chromatic number of random
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block graphs. As we will see shortly, similar to the consequences of the
paper of Bollobás mentioned above, we will not only obtain the value
of the chromatic number but also see a clear interdependence with the
maximal independent sets of the graph.

3.1.1 Main results

As we previously mentioned, an (almost) optimal coloring of the bino-
mial random graph G(n, p) for p ∈ (0, 1) typically has a rather simple
structure and can be constructed greedily : almost all n vertices are cov-
ered by independent sets that are of nearly maximum size, that is, of
size roughly c(p) lnn, where c(p) = −2/ ln(1 − p) is defined in (3.1).
As we shall see, the structure of optimal colorings is more intricate and
diverse when we consider the broader model of random block graphs.

The first result towards the chromatic number that we have is actually
a result on independent sets that exist in the graph G(n,α, P ). This
result is heavily inspired by [DHM17] but more generalized for our needs.

Let k ∈ N and G = G(n,α, P ) where α ∈ Rk and P ∈ Rk×k. For a
vector c ∈ Rk and I ⊆ [k] define the map

g(c, I) :=
∑
i∈I

ci +
1

2

∑
i,j∈I

cicj ln(1− pij). (3.2)

Then we define

A :=
{
c ∈ Rk≥0 : g(c, I) ≥ 0 for all ∅ 6= I ⊆ [k]

}
, (3.3)

With A defined we can state the types of independent sets that exist in
the graph G(n,α, P ) w.h.p..

Let Xc be the number of independent sets in G that intersect each Vi,
i ∈ [k], at roughly ci lnn vertices. Then we expect Xc to be zero w.h.p.
if and only if c is outside of A. In other words, with high probability
A categorizes which type of independent sets appear in the the graph
G(n,α, P ). See Figure 3.1 for an illustration when k = 2.

Additionally we prove that not only can we find independent sets of the
types which are in A but we can find them in abundance, including in
smaller subgraphs of G(n,α, P ) . Therefore, similarly to the approach
by Bollobás, we can show for the chromatic number the following theo-
rem which is the main result of this chapter.
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A for k = 2

Figure 3.1: Case for k = 2. Here p2,2 ≥ p1,1 ≥ p1,2. A determines
possible independent sets.

Theorem 3.1. Let k ≥ 1, α ∈ (0, 1]k with |α| = 1, and let P =
(pij)i,j∈[k] be a symmetric matrix with all pij ∈ (0, 1). Consider a ran-
dom block graph G ∼ G(n,α, P ). Then w.h.p.

χ(G) = (1 + o(1))
n

c? lnn
,

where c? is given as

c? = c?(α, P ) = max
{
|c| : c ∈ conv(A) ∩ {t ·α : t ∈ R≥0}

}
. (3.4)

Consider an optimal coloring of a typical instance of G, which is merely
a partition of the vertices of G into independent sets S1, . . . , Sχ(G). We
assume that χ(G) = n/(c lnn) and want to determine c. As already
mentioned, the Si’s are in lnn ·A. Moreover, each |Vi| can be recovered
as
∑

1≤j≤χ(G) |Vi∩Sj |. Thus, the average intersection of the color classes
with the part Vi is si := αin/χ(G) = cαi lnn. In conclusion, in any (in
particular, in an optimal) coloring, the average intersection of the color
classes with each Vi is proportional to lnn·α and is furthermore a convex
combination of some types in lnn · A. Hence, it comes as no surprise
that to determine χ(G), c should be chosen to be maximal under these
side constraints, and this is exactly (3.4).

To get the intuition behind the coloring we construct one should analyze
the possible types of independent sets that are achievable by evaluating
A. In the appropriate ratio, we pick independent sets of the correspond-
ing type, where here we choose greedily, ignoring the rest of the graph,
until we cover all but at most o(n/ lnn) vertices. In particular, our find-
ings depend heavily on the shape of A, which in turn depends on the
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matrix P as well as the vector α. This implies that the final coloring can
follow different schemes. It may be optimal to color V1, . . . , Vk indepen-
dently with different colors, or we may choose just a single type t such
that ti/tj ∼ αi/αj for all i, j ∈ [k] and thus cover (almost) all vertices
just with sets of type t or any interpolation in between. Because of
linear dependency, we need at most k+ 1 different types of independent
sets to cover almost all vertices.

As a remark, by taking k = 1, α1 = 1, and p11 = 1/2, we recover
the classic result of Bollobás [Bol88]. In Section 3.4 we present various
applications of the result. Among others, we study the case k = 2 in
detail and characterize explicitly in all cases the structure of the optimal
colorings. Moreover, for general k ∈ N we characterize the cases in which

χ(G) ∼
∑

1≤i≤k

χ(G[Vi]),

that is, an optimal coloring of G is essentially obtained by coloring each
of the k subgraphs individually; as we show, this happens if and only if
pij ≥ 1−

√
(1− pi)(1− pj) for all pairs i 6= j. Our last application con-

cerns one further relevant case, namely when there is some homogeneity
with respect to the edge probabilities. In particular, we assume that all
inter-class probabilities pij , for i 6= j, are equal, and that all intra-class
probabilities are also equal. In that case, we explicitly determine the
asymptotic value of the chromatic number.

Note that we determine χ(G) in the case when pij ’s and αi’s are fixed
and independent of n. And although some of our results naturally ex-
tend for P and α being some functions of n, in general extending this
for pij = pij(n) and αi = αi(n) remains an open problem for further
research.

3.2 Independent Sets

In this section we study the distribution of independent sets in the
random block graph G(n,α, P ). This serves as a main ingredient to-
wards deriving the desired bounds on the chromatic number later on.
Throughout, for t ∈ Nk0 we say that a set S ⊆ V (G) is a t-set or of type
t in G(n,α, P ) if S ∩ Vi = ti for every i ∈ [k]. Vectors are denoted by
lower-case bold letters. Given vectors u,v ∈ Nk≥0, we write u ≤ v if
ui ≤ vi for all i ∈ [k].
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Our starting point and main technical tool in this section is a simple
consequence of Janson’s inequality already mentioned in Chapter 2. We
restate it here for convenience.

Theorem 3.2 (Janson’s inequality). Let k ∈ N, α ∈ (0, 1]k with |α| =
1, and let P = (pij)i,j∈[k] be a symmetric matrix with all pij ∈ (0, 1).
Consider a family {Si}i∈I of subsets of the vertex set [n] and let G ∼
G(n,α, P ). For each i ∈ I, let Xi denote the indicator random variable
for the event {Si is an independent set in G} and, for each ordered pair
(i, j) ∈ I × I, write Xi ∼ Xj if E(Si) ∩ E(Sj) 6= ∅. Let

X :=
∑
i∈I

Xi, µ := E[X], and ∆ :=
∑

(i,j)∈I×I
Xi∼Xj

E[XiXj ].

Then
Pr[X = 0] ≤ e−µ

2/(2∆).

The next lemma is the central result of this section. In simple terms, it
states that w.h.p. whenever we take a sufficiently large subset of vertices
of G ∼ G(n,α, P ), there is an independent t-set, for any t that “falls”
within the set A, that is, t ∈ (1−o(1)) lnn ·A. This lemma alone allows
us to greedily take out independent sets (color classes) from G(n,α, P )
as long as there is some “large” set of vertices remaining in each Vi.

Lemma 3.3. Let G ∼ G(n,α, P ). Let s ∈ Nk0 be such that si ≥
αin/ ln2 n for all i ∈ [k] and S ⊆ V (G) be an s-set. Then, for every
t ∈ (lnn− 7 ln lnn) ·A∩Nk0 and Xt being the random variable denoting
the number of independent t-sets in G[S]

Pr[Xt = 0] = e−Ω(n2/ ln8 n).

Proof. Let us write Xt =
∑
I∈S XI , where S is the family of all subsets

of S that intersect each Vi, i ∈ [k], in exactly ti vertices, and XI is an
indicator random variable for the event that I is an independent set in
G[S]. Set now µ := E[Xt] and ∆ :=

∑
(I,J)∈S×S E[XIXJ ]. This puts

us directly into the setup of Janson’s inequality (Theorem 3.2) with the
goal to show

Pr[Xt = 0] ≤ e−µ
2/(2∆) !

= e−Ω(n2/ ln8 n).
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The whole proof boils down to showing that the ∆ term can be bounded
by

∆ = O
(
µ2 · ln8 n

n2

)
, (3.5)

which is what we accomplish in the remainder.

Firstly, it is convenient to determine µ = E[Xt] as it helps simplify some
calculations. For each i ∈ [k], there are

(
si
ti

)
choices for the intersection

of a t-set with S ∩ Vi. Additionally, in order for such a t-set to be an
independent set in G[S], none of the

(
ti
2

)
pairs can form an edge, which

happens with probability (1− pi)(
ti
2 ). Lastly, no two vertices u, v in the

t-set with u ∈ Vi and v ∈ Vj can form an edge in G[S], which happens
with probability (1 − pij)titj . Putting all of this together, we directly
get

µ =
∏

1≤i≤k

(
si
ti

)
·
∏

1≤i≤k

(1− pi)(
ti
2 ) ·

∏
1≤i<j≤k

(1− pij)titj . (3.6)

We now turn our attention in bounding the ∆ term as promised. Note
that the ∆ term depends only on those sets which “overlap” in at least
two vertices. We denote this “overlap” vector by o and note that o ≤ t
and |o| ≥ 2. Each oi, for i ∈ [k], measures the “overlap” of the sets
inside of the part Vi. For a fixed overlap vector o and a fixed i ∈ [k],
there are at most (

si
ti

)(
ti
oi

)(
si − ti
ti − oi

)
choices for two t-sets which intersect in exactly oi vertices within Vi.
Similarly as above when deriving the expectation, the probability of
both such t-sets being independent is given by a term for intra-class
edges and inter-class edges and is exactly

(1− pi)2(ti2 )−(oi2 ) ·
∏
j 6=i

(1− pij)2titj−oioj .

Thus, the contribution to the ∆ term of a fixed overlap vector o is given
by

∏
1≤i≤k

(
si
ti

)(
ti
oi

)(
si − ti
ti − oi

)
·
∏

1≤i≤k

(1−pi)2(ti2 )−(oi2 )·
∏

1≤i<j≤k

(1−pij)2titj−oioj .
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Then, by summing up over all choices of o, we get

∆ =
∑
o≤t
|o|≥2

( ∏
1≤i≤k

(
si
ti

)(
ti
oi

)(
si − ti
ti − oi

)
·
∏

1≤i≤k

(1− pi)2(ti2 )−(oi2 )

·
∏

1≤i<j≤k

(1−pij)2titj−oioj
)

(3.6)
= µ2·

∑
o≤t
|o|≥2

( ∏
1≤i≤k

(
ti
oi

)(
si−ti
ti−oi

)(
si
ti

) ·
∏

1≤i≤k

(1− pi)−(oi2 ) ·
∏

1≤i<j≤k

(1− pij)−oioj︸ ︷︷ ︸
:=f(o)

)

= µ2 ·
∑
o≤t
|o|≥2

f(o). (3.7)

To complete the proof we aim to give a bound on
∑

o≤t,|o|≥2 f(o) of
the order ln8 n/n2. We first show this the whole sum is essentially
dominated by those f(o) with |o| = 2.

Consider an arbitrary o and let ez ∈ {0, 1}k be a unit vector with
(ez)z = 1 for some z ∈ [k]. We derive

f(o)

f(o + ez)
≥

(
tz
oz

)(
sz−tz
tz−oz

)(
tz

oz+1

)(
sz−tz

tz−(oz+1)

) ·(1−pz)(oz+1
2 )−(oz2 )·

∏
j 6=z

(1−pzj)(oz+1)oj−ozoj .

Using the fact that ti ≤ c(pi) lnn (by definition (3.3) of A) and si ≥
αin/ ln2 n, this can be simplified (by standard manipulations of binomial
coefficients) to

f(o)

f(o + ez)
≥ δn

ln4 n
· (1− pz)oz ·

∏
j 6=z

(1− pzj)oj , (3.8)

for some constant δ > 0 which depends only on αi’s and pi’s. Let õ ≤ t
be such that |õ| = 2 and õ = ex+ey, for some (not necessarily distinct)
x, y ∈ [k]. Then from (3.8), for every õ ≤ o ≤ t with |o| ≥ 3, we obtain

f(õ)

f(o)
≥
( δn

ln4 n

)|o|−2

·
∏

1≤i≤k

(1− pi)(
oi
2 ) ·

∏
1≤i<j≤k

(1− pij)oioj .
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This can be further bounded from below by

exp
(

(|o| − 2)(ln δ − 4 ln lnn)− 2 lnn

+
∑

1≤i≤k

oi lnn+
1

2

∑
1≤i≤k

o2
i ln(1− pi) +

∑
1≤i<j≤k

oioj ln(1− pij)︸ ︷︷ ︸
:=h(o)

)
.

(3.9)

Let d = o − õ and ε = 7 ln lnn/ lnn. Since d ≤ o ≤ t and t ∈
(1− ε) lnn · A, using the definition of A, we get

∑
1≤i≤k

di
(1− ε) lnn

+
1

2

∑
1≤i≤k

d2
i

(1− ε)2 ln2 n
ln(1− pi) +

∑
1≤i<j≤k

didj

(1− ε)2 ln2 n
ln(1− pij) ≥ 0. (3.10)

Multiplying the whole inequality by (1− ε)2 ln2 n gives

h(d) :=
∑

1≤i≤k

di lnn+
1

2

∑
1≤i≤k

d2
i ln(1− pi) +

∑
1≤i<j≤k

didj ln(1− pij)

≥ ε|d| lnn. (3.11)

On the other hand, since d = o− õ and õ = ex + ey, we have

h(o)− 2 lnn ≥ h(d)− 2 lnn+ (|ex|+ |ey|) lnn

+
1

2

(
2ox ln(1− px) + 2oy ln(1− py)

)
+
∑
j 6=x

exoj ln(1− pxj) +
∑
j 6=y

eyoj ln(1− pyj).

Therefore, h(o) − 2 lnn ≥ h(d) − O(|o|). By plugging in (3.11) into
(3.9), and as |o| ≥ 3, we get

f(õ)

f(o)
≥ exp

(
(|o| − 2)(ln δ − 4 ln lnn) + 7(|o| − 2) ln lnn−O(|o|)

)
≥ ln3(|o|−2) n+ o(ln|o|−2 n). (3.12)
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Clearly, by the fact that t ∈ (1 − ε) lnn · A and as A is bounded, the
norm of o is at most C lnn for some (large) constant C > 0 depending
only on αi’s and pi’s. (We may, e.g., choose C as C =

∑
1≤i≤k c(pii).)

This finally implies

∑
o≤t
|o|≥2

f(o) = O
( |t|∑
i=2

ki−2 ln−3(i−2) n
∑
|õ|=2

f(õ)
)

= O
( ∑
|õ|=2

f(õ)
)
.

Hence, it remains to show that f(õ) = O(ln8 n/n2). Note that each such
õ with |õ| = 2 can be represented as õ = ex + ey for some x, y ∈ [k],
where ei stands for a unit vector ei ∈ {0, 1}k with (ei)i = 1. In case
x 6= y with õx = 1 and õy = 1, we have

f(õ) ≤ tx

(
sx−tx
tx−1

)(
sx
tx

) · ty

(
sy−ty
ty−1

)(
sy
ty

) · (1− pxy)−1.

Simple manipulations with binomial coefficients give

f(õ) ≤ (txty)2

sxsy(1− pxy)
.

On the other hand, if x = y and õx = 2, then

f(õ) =

(
tx
2

)(sx−tx
tx−2

)(
sx
tx

) · (1− px)−1 ≤ t4x
s2
x(1− px)

.

Recalling that si ≥ αin/ ln2 n and ti = O(lnn) shows the desired bound
and completes the proof of the lemma.

The next lemma establishes the fact that G(n,α, P ) w.h.p. contains no
independent t-sets which lie “outside” of A. We start by making a useful
observation about A.
Claim 3.4. There exists a constant C = C(P ) > 0 such that any vector
c ∈ Ak≥0 with |c| ≤ C is contained in A.

Proof. For any I ⊆ [k], we have

g(c, I) ≥
∑
i∈I

ci+
1

2

∑
i′,j′

ci′cj′ ln(1−max
i,j

pij) ≥ |c|+
1

2
|c|2 ln(1−max

i,j
pij).

It follows that g(c, I) ≥ 0 for all I ⊆ [k] if |c| ≤ C := −2/ ln(1 −
maxi,j pij).
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Lemma 3.5. Let G ∼ G(n,α, P ). Let X be the random variable de-
noting the number of independent t-sets in G with t ∈ Nk0 \ (lnn · A).
Then

Pr[X > 0] ≤ O
(
n−1

)
.

Proof. Fix any t /∈ Nk0 \ (lnn · A) and let Xt count the number of
independent t-sets for that fixed t. Observe that, by the definition
(3.3) of A, there is a I ⊆ [k] such that g

(
(ti/ lnn)i∈I , I

)
< 0. Let

t̃ = (t̃1, . . . , t̃k) be defined as

t̃i =

{
ti, if i ∈ I,
0, otherwise,

and let Xt̃ be the random variable denoting the number of independent
t̃-sets in G. Then

E[Xt̃] =
∏
i∈I

(
αin

ti

)
·
∏
i∈I

(1− pi)(
ti
2 ) ·

∏
i,j∈I
i6=j

(1− pij)titj .

Since αi < 1, using that
(
n
k

)
≤ ( enk )k, this can further be bounded by

E[Xt̃] ≤ exp
(∑
i∈I

ti+
∑
i∈I

ti lnn−
∑
i∈I

ti ln ti+
1

2

∑
i∈I

t2i ln(1−pi)+
∑
i,j∈I
i 6=j

titj ln(1−pij)
)
.

Recall, g
(
(ti/ lnn)i∈I , I

)
< 0, and thus

∑
i∈I

ti
lnn

+
1

2

∑
i∈I

t2i
ln2 n

ln(1− pi) +
∑
i,j∈I
i 6=j

titj

ln2 n
ln(1− pij) < 0.

which yields

1

2

∑
i∈I

t2i ln(1− pi) +
∑
i,j∈I
i 6=j

titj ln(1− pij) < −
∑
i∈I

ti lnn.

By Jensen’s inequality and the fact that |̃t| = Ω(lnn) by Claim 3.4, it
further follows that

E[Xt̃] ≤ exp
(
− |̃t| ln(|̃t|/k) + |̃t|

)
≤ O(n−2).
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Hence, by Markov’s inequality Pr[Xt̃ > 0] ≤ E[Xt̃] ≤ O(n−2).

LetM be the set of minimal t’s in Nk0 \ (lnn · A). Then if there is any
independent set in Nk0 \ (lnn · A) it must also contain an m-set as a
subset, for some m ∈M. Similarly as in the proof of Lemma 3.3 (as A
is bounded), we know |m| ≤ C lnn for some C > 0 depending only on
αi’s and pi’s. Therefore, |M| ≤ (C lnn)k and by a union bound over all
vectors inM, we get

Pr[X > 0] ≤
∑

m∈M
Pr[Xm > 0

]
≤ O(n−1).

In particular, w.h.p. there is also no independent t-set for any t ∈
Nk0 \ (lnn · A), which completes the proof.

3.3 Chromatic Number

In this section we provide the proof of our main theorem. Recall, the
goal is to give a precise (up to lower order terms) bound on the chromatic
number of a random block graph G(n,α, P ). For the convenience of the
reader we restate our main result.

Theorem 3.1. Let k ≥ 1, α ∈ (0, 1]k with |α| = 1, and let P =
(pij)i,j∈[k] be a symmetric matrix with all pij ∈ (0, 1). Consider a ran-
dom block graph G ∼ G(n,α, P ). Then w.h.p.

χ(G) = (1 + o(1))
n

c? lnn
,

where c? is given as

c? = c?(α, P ) = max
{
|c| : c ∈ conv(A) ∩ {t ·α : t ∈ R≥0}

}
. (3.4)

3.3.1 Upper bound

Set ε = 7 ln lnn/ lnn and let c? = arg max
{
|c| : c ∈ conv(A)∩{αt : t ∈

calA≥0}
}
. While constructing a coloring to give an upper bound on

χ(G) we need to distinguish two cases: c? ∈ A and c? /∈ A.
Assume the former, that is, c? ∈ A and let t = (1 − ε) lnn · c?. The
probability that there is a set S ⊆ V (G) with si := |S∩Vi| = αin/ ln2 n
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for all i ∈ [k] and such that G[S] does not contain an independent t-set
is, by Lemma 3.3 and a union bound over all choices for S, at most∏

1≤i≤k

(
αin

si

)
e−Ω(n2/ ln8 n) ≤ e

∑k
i=1 si lnn · e−Ω(n2/ ln8 n) = o(1).

As a direct consequence, w.h.p. as long as there are at least αin/ ln2 n
vertices remaining in every Vi, there is an independent t-set where t =
(1− ε) lnn · c?. We construct the coloring in the usual way: repeatedly
take out an independent t-set and assign all the vertices in it a new
color. By the argument above, this is possible until there are n/ ln2 n
vertices left in total, at which point we assign to each of those uncolored
vertices a color different from all the previously used ones. Therefore,
the total number of colors used is at most

n

|t|
+

n

ln2 n
=

n

|c?|(lnn− 7 ln lnn)
+

n

ln2 n
= (1 + o(1))

n

c? lnn
,

as claimed.

On the other hand, if c? /∈ A, w.h.p. no independent (c? lnn)-set exists
in G by Lemma 3.5. In order to circumvent this, we represent c? as a
convex combination

c? =
∑

1≤i≤k+1

λiti, (3.13)

where ti ∈ A, λi ∈ [0, 1] for all i ∈ [k + 1], and
∑

1≤i≤k+1 λi = 1.

We then construct a coloring of G as follows. Greedily and sequentially
select λin/(c? lnn) independent (ti(1 − ε) lnn)-sets and assign all the
vertices in it a new color. We can indeed do this as even after taking
all such sets, the number of vertices remaining in every Vi is

αin−
∑

1≤j≤k+1

λjn

c? lnn
·(tj)i·(1−ε) lnn = αin−

(1− ε)n
c?

·
∑

1≤j≤k+1

λj(tj)i

(3.13)
= αin−

(1− ε)n
c?

· (c?)i =
7αin ln lnn

lnn
, (3.14)

where the last equality follows from the fact that c? = c? · α and our
choice of ε.

Let Qi be the set of uncolored vertices in every Vi. Since G[Vi] is dis-
tributed as G(αin, pi) and Qi is a subset of Vi of size |Qi| ≥ εαin w.h.p.
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by Lemma 3.3 it follows that as long as there are at least αin/ ln2 n ver-
tices remaining, generously rounding for α, we find an independent set
of size at least c(pi) lnn/2 in G[Qi]. We greedily take such sets one by
one and assign all the vertices in each a new color. Lastly, assign every
uncolored vertex a new color which was previously unused. Therefore,

χ(G[Qi]) ≤
14αin ln lnn

c(pi) ln2 n
+

n

ln2 n
= o
( n

lnn

)
.

Consequently, the number of different colors used for the whole graph
G is at most∑

1≤i≤k+1

λin

c? lnn
+
∑

1≤i≤k

χ(G[Qi]) =
n

c? lnn
+ o
( n

lnn

)
,

as
∑

1≤i≤k+1 λi = 1. This confirms the claimed upper bound.

3.3.2 Lower bound

Set N = χ(G) and consider any coloring with color classes S1, . . . , SN .
Trivially, for every j ∈ [k] we have

∑
1≤i≤N |Si ∩ Vj | = αjn. So by

Lemma 3.5 we may assume every color class is an independent t-set for
some t ∈ lnn · A. Let t = 1

N

∑
i∈[N ] ti and note that t ∈ {t · α} for

some t ∈
calA≥0 and t ∈ conv(A). Therefore,

N =
n

|t| lnn
≥ n

c? lnn
,

by maximality of c? (see (3.4)).

3.4 Special Cases

3.4.1 Two-block case

Throughout this subsection we assume that k = 2 and try to in detail
describe the possible structure of the set A and independent sets of
G(n,α, P ). Recall, the set A is defined in order to describe “feasible”
sizes of independent sets the graph G(n,α, P ) can have and in the case



32
Chapter 3. The Chromatic Number of

Dense Random Block Graphs

k = 2 is given as follows:

A =
{

0 ≤ c1 ≤ c(p1), 0 ≤ c2 ≤ c(p2),

c1 + c2 +
c21
2

ln(1− p1) +
c22
2

ln(1− p2) + c1c2 ln(1− p12) ≥ 0
}
.

The first two equations determine the size of the largest independent
set inside each of the parts V1 and V2 on their own by treating them as
G(α1n, p1) and G(α2n, p2), respectively. The third inequality is what
determines the shape of A.
In particular, having p1 and p2 fixed, the shape of A varies significantly
depending on p12. Note that, by using (3.1), the inequality

c1 + c2 +
c21
2

ln(1− p1) +
c22
2

ln(1− p2) + c1c2 ln(1− p12) ≥ 0

can be rewritten as

(c1 + c2)
(

1− c1
c(p1)

− c2
c(p2)

)
+ c1c2

(
ln(1− p12) +

1

c(p1)
+

1

c(p2)

)
≥ 0.

(3.15)
If we set c1 or c2 to 0 we quickly see that (c(p1), 0) and (0, c(p2)) are
points on the boundary of A. If we set (3.15) to be zero we get the
boundary between (c(p1), 0) and (0, c(p2)), which must be part of a
conic section as it satisfies a quadratic equation. So it must be concave
or convex. In particular it is enough to check whether the points on
the line between (c(p1), 0) and (0, c(p2)), the line represented by 1 −
c1/c(p1)−c2/c(p2) = 0, are in A or not. Because we are only considering
points where c1 and c2 are positive, this line is contained in A if and
only if the second term of (3.15) is positive, that is, if ln(1 − p12) +
1/c(p1) + 1/c(p2) ≥ 0, or, equivalently, p12 ≤ 1 −

√
(1− p1)(1− p2).

Then and only then is A convex. In this case, the constant c? defined
as

c? = max
{
|c| : c ∈ conv(A) ∩ {αt : t ∈ R≥0}

}
is given by a vector c? which actually belongs to the set A itself. In
other words, independent t-sets with t1 = c?1(1 − o(1)) lnn and t2 =
c?2(1− o(1)) lnn w.h.p. exist in G(n,α, P ), and a coloring can be found
by greedily picking these sets as long as possible and then coloring all
remaining vertices with a new color.

On the other hand, if p12 > 1−
√

(1− p1)(1− p2), the situation is quite
different. In this case, the set A is concave and the vector c? which
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determines the constant c? does not belong to the set A, but lies on its
convex hull. In particular, it is given by

c? =
( α1

α1

c(p1) + α2

c(p2)

,
α2

α1

c(p1) + α2

c(p2)

)
.

The optimal coloring is then achieved by looking at the “extremal points”
c1 = (c(p1), 0) and c2 = (0, c(p2)) and using independent (c1(1 −
ε) lnn)-sets and (c2(1 − ε) lnn)-sets as color classes. Perhaps unsur-
prisingly, it is shown in Proposition 3.6 below that w.h.p. the chromatic
number of G(n,α, P ) is then and only then the sum of the chromatic
number of the two parts G[V1] and G[V2], that is

χ(G(n,α, P )) =
(
1 + o(1)

)(
χ(G(α1n, p1)) + χ(G(α2n, p2))

)
=
(
1 + o(1)

)α1c(p2) + α2c(p1)

c(p1)c(p2)

n

lnn
. (3.16)

For p12 = 1 −
√

(1− p1)(1− p2) we have that A is both convex and
concave since it is limited by a line—so any convex combination of c-
sets along this line yields a correct chromatic number asymptotically.

The shape of the set A for fixed 0 < p1 ≤ p2 < 1 and depending on
p12 ∈ (0, 1) is depicted on Figure 3.2 below.

Clearly, the constant c? and the vector c? that defines it do not only
depend on the set A but also on the vector α. In Figure 3.3 we show
how the vector c? is defined.

Worth noting is that if p12 < 1−
√

(1− p1) or p12 < 1−
√

(1− p2) the
inequalities ci < c(pi) become relevant for the shape of A. What this
means for the chromatic number is that if

p12 ≤ 1−
√

(1− p1) and α1 ≤ c(p1)
(

ln(1− p12)− 1

2
ln(1− p2)

)
,

then the vertex set V1 has become so sparse and small, that we can color
it for free. So the chromatic number of G(n,α, P ) is asymptotically
bounded by the chromatic number of G[V2] and is therefore

χ(G(n,α, P )) =
(
1 + o(1)

) α2n

c(p2) lnn
.

The equivalent holds if p12 ≤ 1 −
√

(1− p2) and α2 ≤ c(p2)
(

ln(1 −
p12)− (1/2) ln(1− p1)

)
for the vertex set V2.
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c1

c2

A

0 < p12 < 1−
√

1− p1

c1

c2

A

1−
√

1− p1 ≤ p12 < 1−
√

1− p2

c1

c2

A

1−
√

1− p2 ≤ p12 <
1−

√
(1− p1)(1− p2)

c1

c2

A

p12 =

1−
√

(1− p1)(1− p2)

c1

c2

A

1−
√

(1− p1)(1− p2) <
p12 < 1

Figure 3.2: Possibilities for A in case k = 2, assuming p1 ≤ p2 and
then varying p12. The dashed lines correspond to c(p1) and c(p2), that

is, c1 = 2
− ln(1−p1) and c2 = 2

− ln(1−p2) .

c1

c2

A

c?

c1

c2

A

c?

c1

c2

A
c?

conv(A)

Figure 3.3: The red line represents the vector α. The red point
represents its intersection with conv(A), i.e. the vector c?.
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3.4.2 Concave set and the union of random graphs

In this subsection we further explore how the random block graph
G(n,α, P ) behaves in the general case k ≥ 2 and when

pij > 1−
√

(1− pi)(1− pj) for all 1 ≤ i < j ≤ k.

In other words, when all of the bipartite graphs between the parts
G[Vi, Vj ] are significantly denser than the densest graph G[Vi]. In case
k = 2, this is depicted on the rightmost parts of Figure 3.2 and Fig-
ure 3.3.

Proposition 3.6. With high probability

χ(G(n,α, P )) =
(
1 + o(1)

)( ∑
1≤i≤k

χ(G(αin, pi))
)

if and only if pij ≥ 1−
√

(1− pi)(1− pj) for all 1 ≤ i < j ≤ k.

Proof. We first show that pij ≥ 1 −
√

(1− pi)(1− pj) for all 1 ≤ i <
j ≤ k implies the desired bound on the chromatic number. Recall, for
a vector c ∈
calAk and I ⊆ [k], the function g(c, I) is defined as

g(c, I) =
∑
i∈I

ci +
1

2

∑
i,j∈I

cicj ln(1− pij).

Note that we can reformulate this as

g(c, I) =
(∑
i∈I

ci

)(
1−
∑
i∈I

ci
c(pi)

)
+
∑
i 6=j∈I

cicj

(
ln(1−pij)+

1

c(pi)
+

1

c(pj)

)
.

By assumption of pij ≥ 1 −
√

(1− pi)(1− pj) we have that the term
ln(1− pij) + 1/c(pi) + 1/c(pj) is negative or zero for all i, j ∈ [k]. Con-
sequently, A ⊆ B := {c ∈
calAk≥0 : 1−

∑
i∈[k]

ci
c(pi)

≥ 0} and B has as boundary a hyperplane and
therefore is a convex set.

For every i ∈ [k], let

ti = c(pi) · ei, h =
∑

1≤j≤k

αj
|tj|

, and λi =
αi
h|ti|

(3.17)
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Note that each λi ∈ [0, 1] and
∑

1≤i≤k λi = 1. We claim that we can
represent c? as a convex combination of ti’s like

c? =
∑

1≤i≤k

λiti.

Observe that, by definition

c? = |c?| =
∑

1≤i≤k

λi|ti| =
∑

1≤i≤k

αi
h

=
1

h
. (3.18)

Each ti ∈ A ⊆ B is the intersection point of the hyperplane of B with
the corresponding axis. So, in fact, A ⊆ conv(A) = B and since c? is
a linear combination of the ti’s it must lie on the boundary of B. That
gives the upper bound on c? and c? ∈ B gives the lower bound. The
rest now follows from the same strategy as in Theorem 3.1 and the fact
that the number of different colors used is at most∑

1≤i≤k

αin

(1− ε)|ti| lnn
+ o
( n

lnn

)
(3.17)

= h · n

(1− ε) lnn
+ o
( n

lnn

)
(3.18)

=
n

c? lnn
+ o
( n

lnn

)
. (3.19)

As for the other direction, whenever there is a pij < 1−
√

(1− pi)(1− pj)
for a fixed i 6= j ∈ [k] we can color G(n,α, P ) in the following way. For
every h ∈ [k]\{i, j} color each Vh separately with χ(G(αhnh, ph)) colors.
Then look at the graph induced by Vi ∪ Vj . Clearly, G[Vi ∪ Vj ] is dis-
tributed as the block graph G(αini +αjnj ,α

′, P ′), where α′ = (αi, αj)
and P ′ =

( pii pij
pji pjj

)
. Our observations from analyzing the two-block case

in Section 3.4.1 tell us that we can w.h.p. color this graph with asymp-
totically less colors than the sum of the chromatic numbers of the parts
thus proving the proposition.

3.4.3 Convex set with homogeneous balanced parti-
tion

The case whereA is convex can quickly turn out to be quite complicated.
Perhaps one of the cases worth mentioning is when the probability ma-
trix P contains only two different values, one for the diagonal and one
for the off-diagonal, and additionally |V1| = · · · = |Vk| = n/k. So, for P
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we have

pii = p ∀i ∈ [k] and pij = q ∀i 6= j ∈ [k],

with p ≥ q. Then A takes a convex shape since all the equations form
convex sets and the vector c? must on the boundary of A. In other
words, c? = ( c

?

k , . . . ,
c?

k ) where c? = |c?| and, in particular, it must hold
that∑

i∈[k]

c?

k
+

1

2

∑
i∈[k]

(c?
k

)2

ln(1− p) +
∑

1≤i<j≤k

(c?
k

)2

ln(1− q) ≤ 0.

By rearranging we get that c? ≤ −2/
(

1
k ln(1 − p) + k−1

k ln(1 − q)
)
.

Therefore, in case the previous is satisfied with an equality, since p ≥ q
and due to αi = 1/k, the equations g(·, I) are automatically satisfied
for all subsets of the indices I ⊆ [k], and hence c? is maximal and in A.
Applying Theorem 3.1, we get

χ(G(n,α, P )) =
(
1 + o(1)

) n

2 lnn

(
− 1

k
ln(1− p)− k − 1

k
ln(1− q)

)
.
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Chapter 4
Kr-Factors in Graphs with

Low Independence Number

In this chapter we prove minimum degree conditions for existence of a
Kr-factor in a graph with independence number α(G) = o(n). We apply
tools from random graph theory and also implicitly the Szémeredi’s
Regularity Lemma. This shows how the tools extend to applications
in problems which have a priori nothing to do with randomness. The
content of this chapter is based on a paper published by Knierim and
the author ([KS21]).

39
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4.1 Introduction

The problem we look at in this chapter comes from taking a closer look
at the Hajnal and Szemerédi theorem for graph factors. As mentioned
in Chapter 1 an H-factor in a graph G is a subgraph of G such that the
subgraph covers all vertices of G and is the disjoint union of graphs H.
A perfect matching therfore corresponds to a K2-factor, thus the notion
of H-factors is a natural generalization of perfect matchings from edges
to arbitrary graphs. For perfect matchings, necessary and sufficient
conditions are well-known by Hall’s and Tutte’s theorems. Ideally we
want to formulate such conditions for other subgraph problems.

Often, global properties such as factors and Hamilton cycles have local
necessary conditions. Dirac [Dir52] showed that if an n-vertex graph G
has minimum degree at least n/2, then it has a Hamilton cycle, in par-
ticular if n is even then G has a perfect matching. This was extended to
triangle factors by Corrádi and Hajnal [CH63] in 1963 and later general-
ized to Kr-factors in a classical result by Hajnal and Szemerédi [HS70],
who gave the sufficient minimum degree for Kr-factors.

Theorem 4.1 (Hajnal and Szemerédi). For every graph on n vertices,
given an integer r ≥ 2, if r divides n and the minimum degree of G is
at least

(
1− 1

r

)
n, then G contains a Kr-factor.

A short proof was later found by Kierstead and Kostochka [KK08]. The
divisibility condition in this theorem is necessary as the vertex set must
be divisible by |H| if we want to have an H-factor. The theorem is also
tight in a sense that we can not lower the minimum degree condition
and still hope to cover any n-vertex graph.

Different results relating to the theorem of Hajnal and Szemerédi have
been published. A degree sequence version of the result was published
by Treglown [Tre16] proving that, for a (1/r)-fraction of the vertices,
the degrees can be smaller than prescribed by the Hajnal-Szemerédi
theorem. Other results include the minimum degree condition in a 3-
partite [MM02], 4-partite [MS08] or multi-partite [KM13] host graph. In
each of these results, the known extremal examples all have one or more
large independent sets. Naturally the question arises, what happens if
we forbid these large independent sets?

To cover any n-vertex graph with independence number at least n/r+1
with cliques of arbitrary size we need at least n/r+1 cliques, as no clique
can contain more than one vertex from the independent set. Taking an
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independent set of size exactly n/r + 1 and adding edges from each of
the remaining vertices to all other vertices gives a graph that does not
have a Kr-factor and minimum degree n− (n/r + 1) = (1− 1/r)n− 1.

Problems of this form were first studied in Ramsey-Turán theory, elab-
orated on in Section 1.5, Continuing this line of research, Balogh, Molla
and Sharifzadeh [BMS16] proved that the minimum degree requirement
for a triangle factor in G decreases if the independence number of G
is small showing that δ(G) ≥ 1/2 + ε suffices in this case. Nenadov
and Pehova [NP18] extended their result to larger cliques and a gen-
eralization of the independence number. They show that instead of
δ(G) ≥

(
1− 1

r

)
n one only needs roughly δ(G) ≥

(
1− 1

r−1

)
n for the

existence of a Kr-factor if we restrict the independence number of G to
be sub-linear.

We further improve the minimum degree condition, doubling the clique
size compared to the Hajnal-Szemerédi theorem. We see in the following
that this is best possible.

Theorem 4.2. For every r ≥ 4 and µ > 0 there are constants γ and
n0 ∈ N such that every graph G on n ≥ n0 vertices where r divides n,
with δ(G) ≥

(
1− 2

r + µ
)
n and α(G) < γn has a Kr-factor.

Note that the bound is not true for r = 2, 3. Balogh, Molla and Shar-
ifzadeh [BMS16] observed that a minimum degree of (1/2+ε)n is needed
in the case r = 3. This can be seen by considering graphs with a bipar-
tition such that there are no triangles which span over both parts. In
particular, for n divisible by 4, the graph Kn/2+1∪Kn/2−1, the union of
two disjoint cliques, has independence number 2 and minimum degree
n/2 − 2 but does not contain a perfect matching nor a triangle factor
because n/2− 1 and n/2 + 1 are both odd and cannot both be divisible
by three. Balogh, McDowell, Molla and Mycroft [BMMM18] showed
that the minimum degree condition can be lowered if an additional di-
visibility condition on the triangle connected components is added to
avoid exactly this case.

The tightness of the Hajnal-Semerédi theorem comes from large inde-
pendent sets. So what is the bottleneck if we forbid these? By definition,
α(G) = o(1) implies that every set of linear size has at least one edge
inside, but if we have a large triangle-free set then we can take at most
two vertices from this set for every clique. In particular, if we have an
n-vertex graph with a triangle-free set of size 2n/r + 1 then we cannot
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Triangle-free set of size 2n
r + 1

Figure 4.1: An extremal example showing that we cannot improve the
degree condition below

(
1− 2

r

)
n.

hope to find a Kr-factor. The existence of triangle-free graphs with
sub-linear independence number is related to the asymmetric Ramsey
number R(3, n). This is well studied, results can be found e.g. in [Erd61],
[Kim95].

The above construction shows that Theorem 4.2 is asymptotically tight.
Look at the following example of an n-vertex graph. Take a triangle-free
graph of size 2n/r+ 1 and add

(
1− 2

r

)
n− 1 vertices each connected to

all other vertices. The triangle-free subgraph of size 2n/r+1 becomes a
bottleneck since we can take at most to two vertices from it to complete
to a Kr and we cannot cover the graph with n/r many Kr (see Fig-
ure 4.1). So in this graph we have δ(G) >

(
1− 2

r

)
n and α(G) = o(1)

but there is no Kr-factor. This construction was first given in [BMS16].

Our proof combines well-known methods like the Regularity Lemma
and embedding techniques with new ideas that use the low indepen-
dence number. The rest of this chapter is structured as follows. In
Section 4.2 we introduce some lemmas related to the Regularity Lemma
which might be of general interest. The remainder of the chapter con-
tains the proof of Theorem 4.2. The proof consists of two parts.

First, in Section 4.3, we use the absorbing method. This is a technique
mainly pushed forward by Rödl, Ruciński and Szemerédi [RRS06a,
RRS06b, RSR08]. The method implies that, under the appropriate
circumstances, it is enough to find a Kr-tiling covering everything but
a small fraction. The method sets aside a small set of vertices at the
beginning which we can cover flexibly enough so that we can “absorb”
any small fraction of the other vertices which may remain. For the more
precise definition see Definition 4.11.
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Second, in Section 4.4, we prove that the minimum degree and inde-
pendence number conditions are enough to cover everything but a small
ξ-fraction of all vertices with a Kr-tiling. This is also known as an al-
most cover of the vertices. To show that there is an almost cover with
Kr’s in the graph we find a fractional tiling in the reduced graph after
applying the Regularity Lemma and convert this back.

We adapt some well-known techniques to make use of the fact that the
independence number of G is low. Embedding independent sets into a
cluster of the reduced graph of the Regularity Lemma is standard, but
we sometimes want to embed edges instead of single vertices. In fact
we use that the low independence number implies we can find paths
of small length in any small linear sized subset of the vertices. We
are required to differentiate between edges in the reduced graph which
represent densities above 1/2 + β and those only above β. We believe
this approach might also work for embedding other graphs into a host
graph with a low independence number.

4.2 Embedding lemma for low independence
number

Since many of our constructions are specifically built for making use
of the low independence number we first introduce some definitions,
including the statement of a version of Szemerédi’s Regularity Lemma.
We begin with the notion of ε-regular.

Definition 4.3 (ε-regular). Given a graph G and disjoint subsets
V1, V2 ⊆ V (G), we say that the pair (V1, V2) is ε-regular if for all X ⊆
V1, |X| ≥ ε|V1| and Y ⊆ V2, |Y | ≥ ε|V2| we have |d(X,Y )−d(V1, V2)| ≤ ε
where d(X,Y ) = deg(X,Y )/|X||Y |

The following fact is an easy consequence from the definition of regu-
larity. It is sometimes known as the Slicing Lemma (cf.[KS96]).

Fact 4.4. Let B = (V1 ∪ V2, E) be an ε-regular bipartite graph, let
α > ε and let V ′1 ⊂ V1 and V ′2 ⊂ V2 be subsets with |V ′1 | ≥ α|V1| and
|V ′2 | ≥ α|V2|. Then for ε′ ≥ max{ε/α, 2ε} the graph B′ = B[V ′1 ∪ V ′2 ]
induced by V ′1 and V ′2 is ε′-regular with |dB(V1, V2)− dB′(V ′1 , V ′2)| < ε.

Our proof builds upon the famous Regularity Lemma by Szemerédi.
Originally from [Sze78] there have been many variants making it slightly
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stronger or adapted to a particular problem. The following is the degree
variant of the Regularity Lemma.

Lemma 4.5 (Regularity Lemma [KS96], Theorem 1.10). For every ε >
0 there is an M = M(ε) such that if G is a graph on n ≥M vertices and
β ∈ [0, 1] is a real number, then there exists a partition V (G) = V0 ∪
. . . ∪ Vk and a spanning subgraph G′ ⊆ G with the following properties:

1. k ≤M ,

2. |V0| ≤ εn,

3. |Vi| = m for all 1 ≤ i ≤ k with m ≤ εn,

4. degG′(v) > degG(v)− (β + ε)n for all v ∈ V (G),

5. Vi is an independent set in G′ for all i ∈ [k],

6. all pairs (Vi, Vj) are ε-regular with density 0 or at least β.

What is new in our case is that we must differentiate between dense
and very dense pairs of partitions. The following definition replaces the
usual reduced graph of the Regularity Lemma. We call it the reduced
multigraph throughout Chapter 4.

Definition 4.6 (reduced multigraph). For a graph G and β, ε > 0 let
V (G) = V0∪ . . .∪Vk be a partition and G′ ⊆ G and a subgraph fulfilling
the properties of Lemma 4.5. We denote by Rβ,ε the reduced multigraph
of this partition, which is defined as follows. Let V (Rβ,ε) = {1, . . . , k}
and for two distinct vertices i and j we draw two edges between i and
j if dG′(Vi, Vj) ≥ 1/2 + β, one edge if dG′(Vi, Vj) ≥ β and no edge
otherwise.

In this reduced multigraph we sometimes refer to the vertices as clusters
because of the correspondence to sets of vertices in the original graph.
We omit the subscripts β and ε whenever it is clear from the context or
the parameters are not used.

The following fact connects a minimum degree condition in G to a min-
imum degree condition in reduced multigraph.

Fact 4.7. Let G be a graph with δ(G) ≥
(
1− 2

r + µ
)
n and V1∪ . . .∪Vk

be the partition given by the Regularity Lemma with the corresponding
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reduced multigraph Rβ,ε for ε and β smaller than µ/10. Then for every
i ∈ V (Rβ,ε) we have

degRβ,ε(i) ≥ 2

(
1− 2

r
+ µ/2

)
k.

Proof. For every i ∈ V (Rβ,ε) we have degG′(Vi,
⋃
j 6=i Vj) is at least

|Vi|
((

1− 2

r
+ µ− (ε+ β)

)
n− |V0|

)
≥
(

1− 2

r
+ µ− 2ε− β)

)
nm.

Every edge in Rβ,ε represents less than (1/2 + β)m2 edges in G′ \ V0.
So Rβ,ε must have minimum degree at least

degRβ,ε(i) ≥
(
1− 2

r + µ− 2ε− β
)
nm

(1/2 + β)m2
≥ 2

(
1− 2

r
+ µ/2

)
k,

where in the last step we use the upper bounds on β and ε, m ≤ n/k
and (1/2 + β)−1 ≥ 2(1− 2β).

Then to formalize the intuition of embedding two vertices into a cluster
of the reduced graph we define a multi-embedding.

Definition 4.8 (H-multi-embedding). Let R be a reduced multigraph.
We say that a simple graph H is embeddable into the multigraph R if
there is a mapping f : V (H)→ V (R) such that the following holds:

1. For any i ∈ V (R) the induced subgraph on the vertices f−1(i) in
H is either an isolated vertex, an edge or a path of length 2.

2. If {u, v} ∈ E(H), then f(u) and f(v) are connected by at least
one edge in R (as long as f(u) and f(v) differ).

3. If for i, j ∈ V (R) we have that f−1(i) and f−1(j) have at least
two vertices and are connected in H, then i and j are connected
with two edges.

4. The joint neighborhood of the vertices embedded into a single
cluster has at most two vertices embedded in any other cluster.
That is

|NH(f−1(i)) ∩ f−1(j)| ≤ 2 ∀i, j ∈ V (R) (i 6= j)

where NH(f−1(i)) =
⋃
w∈f−1(i)NH(w) is the combined neighbor-

hood of all vertices embedded in cluster i.
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We call f a multi-embedding of H.

K4-diamond path Reduced multigraph

Figure 4.2: Multi-embedding of a K4-diamond path

Note here that in point 1. we allow for paths of length two, which is
needed specifically for our construction later as we may embed paths of
length 2 into a single cluster. We could easily adapt the lemma below to
also allow constant sized trees instead of paths of length two if it were
necessary. We prove that this embedding is useful in the intended way.
Whenever we can find a multi-embedding of a graph H in a reduced
multigraph of G then we can also find many copies of H as a subgraph
of G.

Lemma 4.9 (Embedding Lemma). For every graph H with |H| = h
and β > 0 there exist ε, γ > 0 and n0 ∈ N such that the following holds
for every graph G on n > n0 vertices and with independence number
α(G) ≤ γn and the sets V1 ∪ . . . ∪ Vk with |Vi| = m given by the Reg-
ularity Lemma with the corresponding reduced multigraph Rβ,ε. Let f
be a multi-embedding of H into Rβ,ε with f(V (H)) = I = {i1, . . . , it}
for some 1 ≤ t ≤ |H|. Then let V ′i1 , . . . , V

′
it

be subsets of Vi1 , . . . , Vit
respectively of size at least (2/β)hεm. There exists a copy of H as a
subgraph of G such that v ∈ V ′f(v) for each vertex v in H ⊂ G.

Proof. Ensure βh ≥ (h+1)ε and εm ≥ 3γn. The subgraph can be chosen
greedily and we show this by induction on the size of I. The base case is
clear, if we only have |I| = 1 the multi-embedding can be at most a path
of length two. But since V ′i1 is of size at least (2/β)hεm ≥ 3γn ≥ 3α(G)
there is always a path of length two in V ′i1 .
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For the induction we first check if there is any vertex of R which
has a single vertex embedded. If so choose one of these, say iv and
f−1(iv) = v ∈ H. By the Property (2) of a multi-embedding, there are
edges between cluster-vertices in R if their vertices inH are in the neigh-
borhood of v. Consider any of these edges {iw, iv}. This means that Viw
and Viv must be ε-regular with density at least β. This means that at
most εm vertices of V ′iv have a neighborhood smaller than (β − ε)|V ′iw |
in V ′iw . This holds for any neighbor of v in H. As εmh < m, there
is at least one vertex in V ′iv which has at least (β/2)|V ′ij | neighbors in
V ′ij for all ij ∈ f(NH(v)), choose one arbitrarily say sv. Choose V ′′ij to
be the neighborhood of sv if f−1(ij) contains a neighbor of v or set it
equal to V ′ij if not. Note that |V ′′j | ≥ (2/β)h−1εm for all j ∈ I and that
f restricted to H \ v is still a multi-embedding into I \ iv. So we can
apply the induction hypothesis and find the subgraph H \ v of G such
that the vertices are chosen from V ′′ij . Since all of the necessary V ′′ij are
in the neighborhood of sv, we have that the graph from the induction
together with sv form H ⊂ G as desired.

The case where each cluster has at least two vertices embedded works
analogously. Choose a vertex in I ⊂ R arbitrarily, say iv, and let f−1(iv)
be the vertices v1, v2 and possibly v3 ofH. We call f(NH(f−1(iv))) ⊂ R,
excluding iv, the set of corresponding neighbors of iv. Because there are
double-edges between iv and its corresponding neighbors, for any of the
corresponding neighbors iw we have that Viv and Viw are regular with
density at least 1/2+β. So all but at most εm vertices of V ′iv have degree
at least (1/2 + β − ε)|V ′iw | in V ′iw . Since removing these bad vertices,
which are at most εmh many, from V ′iv still leaves us with at least 3γn
vertices and there must exist a 2-path (or edge). We choose one of these
arbitrarily. By Property (4) of the multi-embedding, at most two of its
vertices need to suffice a neighboring condition to any other cluster V ′iw
and since the degree of each is at least (1/2+β−ε)|V ′iw | also the common
neighborhood of these two vertices is larger than (β/2)|V ′iw |. Take this
neighborhood to be V ′′iw for all corresponding neighbors of iv (and V ′j =
V ′′j where there is no neighborhood condition to be fulfilled). We apply
the induction hypothesis on the remaining graph H \ {v1, v2, v3} with
its restricted multi-embedding and the sets V ′′j ∀j ∈ I \ {iv1 , iv2 , iv3}
to find H \ {v1, v2, v3} as a subgraph of G which we can extend by the
path we chose in V ′iv to get graph H ⊂ G.

Corollary 4.10. For every graph H with |H| = h and β > 0 there
exist ε, γ > 0 and n0 ∈ N such that the following holds for every graph
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G on n > n0 vertices and with independence number α(G) ≤ γn and
the sets V1 ∪ . . .∪ Vk with |Vi| = m given by the Regularity Lemma with
the corresponding reduced multigraph Rβ,ε. Let f be a multi-embedding
of H into Rβ,ε with f(V (H)) = I = {i1, . . . , it} for some 1 ≤ t ≤ |H|.
Then let V ′i1 , . . . , V

′
it
be subsets of Vi1 , . . . , Vit respectively of size at least

(2/β)hεm. Additionally, let u, v ∈ V (H) and uG, vG ∈ V (G). Then
there is an embedding of H in G such that u is mapped to uG and v is
mapped to vG if the following holds.

(i) There is a multi-embedding f of H \ {u, v} into Rβ,ε.

(ii) For all edges of the form {u, x} and {v, y} in H also deg(uG, Vf(x)) ≥
β|Vf(x)| and deg(vG, Vf(y)) ≥ β|Vf(y)| in G respectively.

(iii) u and v have distance at least 3 in H.

Proof. The embedding works the same as Lemma 4.9. First fix u and
v as uG and vG, and then for each neighbor x of u choose V ′f(x) =

N(uG) ∩ Vf(x), same for neighbors of v. For all other vertices in H
simply choose V ′f(i) = Vf(i). So all |V ′i | ≥ β|Vi| and by Lemma 4.9 we
can find an embedding of H \ {u, v} and the embedding of neighbors u
and v will also be neighbors of uG and vG respectively. The distance 3
is used to ensure no vertex in H is neighbor to both u and v.

4.3 Absorbers

Absorbers are a well known tool and they allow us to prove statements
about spanning subgraph structures. Often when working with the
Regularity Lemma, we only find subgraph structures which cover almost
all of the vertices, so all but a small linear fraction. Absorbers allow
us to go the last step, they are structures we set aside in advance and
which can “absorb” this small fraction of leftover vertices.

Definition 4.11. Let H be a graph with h vertices and let G be a
graph with n vertices.

• We say that a subset A ⊆ V (G) is ξ-absorbing for some ξ > 0 if
for every subset R ⊆ V (G) \ A such that h divides |A| + |R| and
|R| ≤ ξn the induced subgraph G[A ∪R] contains an H-factor.
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• Given a subset S ⊆ V (G) of size h and an integer t ∈ N, we say
that a subset AS ⊆ V (G) \ S is (S, t)-absorbing if |AS | = ht and
both G[AS ] and G[AS ∪ S] contain an H-factor.

We use the following lemma which gives a sufficient condition for the
existence of ξ-absorbers based on abundance of disjoint (S, t)-absorbers.
The proof of Lemma 4.12 is based on ideas of Montgomery [Mon14] and
relies on the existence of ‘robust’ sparse bipartite graphs.

Lemma 4.12 (Nenadov, Pehova [NP18]). Let H be a graph with h
vertices and let ϕ > 0 and t ∈ N. Then there exists ξ and no ∈ N
such that the following is true. Suppose that G is a graph with n ≥ n0

vertices such that for every S ∈
(
V (G)
h

)
there is a family of at least ϕn

vertex-disjoint (S, t)-absorbers. Then G contains an ξ-absorbing set of
size at most ϕn.

We define the following structure as it will be used as the main building
block in the remainder of this section.

Definition 4.13 (Kr-diamond path). A Kr-diamond path between
vertices u and v is the graph formed by a sequence of disjoint ver-
tices u = v1, v2, .., v` = v and disjoint cliques of size r − 1 in the joint
neighborhood of each pair of consecutive vertices. The length of the
Kr-diamond path is `, the number of vertices in the sequence.

Kr−1
Kr−1

Kr−1

u v

v2 v3

Figure 4.3: Kr-diamond path

4.3.1 Finding Kr-diamond paths

To make use of this lemma we additionally need to find vertex-disjoint
(S, t)-absorbers in our graph. Observe that if we can find a Kr with
disjoint Kr-diamond paths attached to each of its vertices, then this
structure is (S, t)-absorbing for the set S of r free endpoints of the Kr-
diamond paths. To find vertex-disjoint (S, t)-absorbers it is sufficient to
find many disjoint Kr-diamond paths between any two vertices.
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Lemma 4.14. For every r ≥ 4 and µ > 0 there exist γ > 0 and
n0 ∈ N such that in every graph G on n ≥ n0 vertices with minimum
degree δ(G) ≥

(
1− 2

r + µ
)
n and α(G) ≤ γn, after deleting (µ/2)n

many vertices we can still find a Kr-diamond path of length at most 7
between any two remaining vertices.

Note that, for connectivity issues, the lemma only holds for r ≥ 4. To
prove this lemma we find a multi-embedding of a Kr-diamond path in
a reduced multigraph and then extract from that a Kr-diamond path
in the original graph. We introduce the notion of a Kr-neighborhood
Υr(v). These are the neighbors of v such that additionally we can find
a multi-embedding of a Kr into the reduced multigraph covering both
the vertex and v.

Definition 4.15. Let R be a reduced multigraph. Then for any vertex
v the Kr-neighborhood Υr(v) is defined as follows.

Υr(v) = {w ∈ V (R)|∃ a multi-embedding ψ : V (Kr)→ V (R) s.t.

ψ−1(v) 6= ∅ and ψ−1(w) 6= ∅} (4.1)

Further Υ2
r(v) =

⋃
u∈Υr(v) Υr(u) is the second-Kr-neighborhood.

Note that by definition any vertex v is in its own Kr-neighborhood
assuming there is at least one Kr multi-embedding containing v. Then
also Υr(v) ⊆ Υ2

r(v).

In order to find Kr-diamond paths we first show that, for every vertex
in the reduced graph, the Kr+1-neighborhood is large.

Proposition 4.16. For r ≥ 4, let R be a reduced multigraph on k
vertices with δ(R) > (1− 2/r)2k then we have∣∣Υ2

r+1(v)
∣∣ > k

2
∀v ∈ V (R).

Before we prove this proposition, we prove a series of lemmas about the
size of Kr-neighborhoods. Note that this is easier for large r thus we
have to consider some special cases for small values of r. We start with
some general lemmas that hold for all r.

In the following, a clique of double-edges denotes a clique where all
edges are double-edges and the double-edge-neighborhood of a vertex v
is the set of neighbors connected to v with a double-edge.
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Lemma 4.17. For r ≥ 4, let R be a reduced multigraph on k vertices
with δ(R) > (1 − 2/r)2k. For any vertex v the vertices connected to v
by double-edges are contained in the Kr+1-neighborhood Υr+1(v).

Proof. In order to embed Kr+1 we need a clique of double-edges of size
` and a clique of size r+ 1− 2` in the neighborhood of this clique. Note
that the double-edge itself is already a clique of size 2. In the following,
we show that for every 2 ≤ ` ≤ (r+1)/2 we can find such an embedding
given that ` is the size of a maximal clique of double-edges.

Fix any double-edge of v and take the largest clique of double-edges
containing the double-edge. Let ` be the size of the clique, and let S be
the set of all vertices which lie in the joint neighborhood of all vertices
of the clique. As we assumed the clique of double-edges to be maximal
we know that every vertex in S has at most 2`−1 edges into the clique.
Every vertex that is not in S has to have at least one non-neighbor
in the clique and can thus not have more than 2(` − 1) edges into the
clique. Moreover, by our minimum degree condition in R we know that
every vertex in the clique has at least (1 − r/2)2k edges. Combining
this, we get

(2`− 1)|S|+ 2(`− 1)(k − |S|) > `

(
1− 2

r

)
2k,

from which we conclude that

|S| > 2k − 4k`

r
. (4.2)

For any vertex v ∈ R it holds that the neighborhood

|N(v)| ≥ deg(v)/2 >

(
1− 2

r

)
k.

In particular the number of vertices not in the neighborhood of a vertex
is less than 2k

r . So by greedily picking vertices one by one we can choose
at least ⌈

|S|
2k
r

⌉
≥ r − 2`+ 1

many vertices. This gives us a clique of double-edges of size ` and in
the joint neighborhood a clique of size r− 2`+ 1 into which we can find
a multi-embedding of Kr+1.
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Lemma 4.18. For r ≥ 3, let R be a reduced multigraph on k vertices
with δ(R) > (1− 2/r)2k. For any vertex v in the R, if the neighborhood
of v is of size at least (1− 1/r)k, then N(v) ⊆ Υr+1(v).

Proof. We apply induction on r by looking at the neighborhood of a
vertex finding that the appropriate minimum degree conditions hold.
The lemma is true for r = 3 since then any neighbor u of v has at
least one vertex w in the joint neighborhood with v and we can create
a multi-embedding ψ which maps one vertex of a K4 to v and u and
maps the two remaining vertices to w. This is a valid multi-embedding
of a K4 and proves N(v) ⊆ Υ4(v). This builds our induction base.

For r > 3 consider for any vertex u ∈ N(v) the joint neighborhood with
v.

deg(u,N(v)) > (1− 2/r)2k − 2(k − |N(v)|) ≥ (1− 2/(r − 1))2|N(v)|,

where in the last step we use that |N(v)| ≥ r−1
r k. To prove that

u ∈ Υr+1(v) it suffices to show that there is a Kr multi-embedding con-
taining u in R[N(v)], the subgraph induced by N(v). Now δ(R[N(v)]) >
(1 − 2/(r − 1))2|N(v)| so for any vertex u ∈ R[N(v)], by counting the
edges, there must be either a double-edge containing u, in which case
Lemma 4.17 gives at least one Kr multi-embedding, or u has a large
neighborhood, (1− 2/(r− 1))2|N(v)| ≥ (1− 1/(r− 1))|N(v)|, in which
case we apply the induction on the subgraph R[N(v)] so, in fact, in the
subgraph R[N(v)] any neighbor of u is in Υr(u) and also u is contained
in a Kr.

Lemma 4.19. For r = 4, let R be a reduced multigraph on k vertices
with δ(R) > (1− 2/r)2k, then N(v) ⊆ Υr+1(v).

Proof. For any neighbor of v we want to find a multi-embedding of K5

mapping to v and that neighbor.

By Lemma 4.17, every double-edge-neighbor of v is in Υr+1(v). For all
other vertices w ∈ N(v) we claim that either there is an edge between
w and a vertex x in the double-edge-neighborhood of v, in which case
we can map two vertices to x, two vertices to v and one to w to get
a multi-embedding of K5 or, in the other case, there is a double-edge
between w and another vertex x in N(v) and then we can map two
vertices to x and w and one to v to get a multi-embedding of K5.
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Let D be the double-edge-neighborhood of v and S = N(v)\D. Then
for any vertex w ∈ N(v), if w has no edge to any vertex in D and at
most one edge to any vertex in S, then

deg(w) ≤ |S|+ 2(k − |S| − |D|) ≤ 2k − (2|D|+ |S|)
(2|D|+ |S|) = deg(v)

< k

which is a contradiction to the assumption that every vertex in the
reduced graph R has degree greater than (1− 2/r)2k = k for r = 4.

Lemma 4.20. For r = 5, let R be a reduced multigraph on k vertices
with δ(R) > (1− 2/r)2k then N(v) ⊆ Υ2

r+1(v).

Proof. Let D be the double-edge-neighborhood of v. If |D| ≤ 2k/5 we
have N(v) ≥ 4k/5 and by Lemma 4.18 again we have that N(v) ⊆
Υr+1(v), so we assume |D| ≥ 2k/5.

Let u ∈ N(v). We show that u ∈ Υ2
r+1(v). If u has a double-edge

to D, then by Lemma 4.17 it has distance two with regards to the
Kr-neighborhood Υr+1 and we are done. So we can assume it has only
single edges or no edges to vertices in D. In particular, the double-edge-
neighborhood of u does not intersect D so its size is at most k − |D|.
So since |D| ≥ 2k/5, we have that

|N(u)| ≥ 6k

5
− (k − |D|) ≥ k

5
+ |D| ≥ 7k

5
− |N(v)|,

where the last step follows from |N(v)| > 6k/5 − |D|. Since the mini-
mum neighborhood of any other vertex is 3k/5, the common intersection
of u with any other vertex x ∈ N(u) must be more than 7k/5−|N(v)|+
3k/5 − k = k − |N(v)|, so we can choose a vertex y in the joint neigh-
borhood of v, u and x.

Now choose x in D ∩ N(u). The multi-embedding of K6 follows by
embedding two vertices each in v and x, and one vertex each in u and
y. So then u ∈ Υr+1(v). In any case u ∈ Υ2

r+1(v) and the lemma
follows.

Combining the previous lemmas, we are now ready to prove Proposition
4.16.

Proof of Proposition 4.16. For r ≥ 8 the double-edge-neighborhood of
every vertex is greater than k/2 so by Lemma 4.17 this follows imme-
diately. For r ≥ 6 by looking at the degree, for each vertex either the
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double-edge-neighborhood is greater than k/2 or the total neighborhood
is greater than (1−1/r)k, so by Lemma 4.17 or Lemma 4.18 the propo-
sition follows. For r = 4, 5 we have Lemmas 4.19 and 4.20 respectively,
where in both cases it is easy to see that |N(v)| ≥ k/2.

The next lemma is about connecting one fixed vertex v in G to Kr+1-
embedable structures as follows. Given v, we want to find a multi-
embedding of Kr−1 into the neighborhood of v i.e. clusters that v has
many edges to. We then want to extend this Kr−1 to a Kr by finding a
vertex in the joint neighborhood of the clique (not necessarily in N(v)).
This is a preparation step to apply Corollary 4.10.

Lemma 4.21. Let G be a graph as above with minimum degree δ(G) ≥(
1− 2

r + µ
)
n and α(G) ≤ γn. Fix a vertex v in G and a reduced

multigraph Rβ,ε of G. Let Qv be the set of vertices i ∈ V (Rβ,ε) such
that for their corresponding clusters Vi ⊆ V (G) it holds that deg(v, Vi) ≥
β|Vi|. Then there exists a multi-embedding of a Kr into Rβ,ε embedding
at most one vertex into V (Rβ,ε) \Qv.

Proof. Note that the number of edges from v to V0 or any cluster not
in Qv is at most εn and βkm ≤ βn respectively. The degree of v is at
least (1− 2/r+µ)n in G and choosing β, ε < µ/10 the number of edges
from v to clusters of Qv is at least (1−2/r+2µ/3)n. In particular since
every cluster has size at most n/k this means

|Qv| ≥
(

1− 2

r
+ µ/2

)
k. (4.3)

The proof follows similar arguments as the proof of Lemma 4.17. Let
the largest clique with double-edges in Qv be C of size `. Let S ⊆ Qv
be the joint neighborhood of the vertices from this clique inside Qv and
T ⊆ V (R) \ Qv all vertices which are in the joint neighborhood of the
clique but not in Qv. We want to find a Kr−2` in S ∪ T with at most
one vertex in T .

Because C is maximal every vertex in S has at most 2`− 1 edges to C
and every other vertex in Qv has at most 2` − 2 edges to C. But also
every vertex in C has degree greater than (1 − 2

r )2k. So we get two
bounds for deg(C,Qv), the sum of degrees between C and Qv.

deg(C,Qv) > ` ((1− 2/r)2k − 2(k − |Qv|)) > (1− 2/(r − 2)) 2`|Qv|,

where in the last step we use from (4.3) that k < r
r−2 |Qv|.
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deg(C,Qv) ≤ deg(C, S) + deg(C,Qv\S)

≤ (2`− 1)|S|+ (2`− 2)(|Qv| − |S|)
< |S|+ (2`− 2)|Qv|.

Together we get a bound on |S|. Namely

|S| > (1− 2`/(r − 2)) 2|Qv| > (r − 2`− 2)
2k

r
. (4.4)

Next, we bound the size of S ∪ T with a similar argument. Counting
the edges deg(C, V (R)). Again, vertices in V (R) but not in S ∪ T can
have at most 2`− 2 edges to C.

(1− 2/r)2k` ≤ deg(C, V (R))

= deg(C, S) + deg(C, T ) + deg(C, V (R) \ (S ∪ T ))

≤ (2`− 1)|S|+ 2`|T |+ (2`− 2)(k − |S| − |T |)
< |S|+ 2|T |+ (2`− 2)k.

We get a bound on |S∪T |. Namely |S|+2|T | > (1−2`/r)2k = (r−2`) 2k
r

and in particular since |T | ≤ k−|Qv| < 2k/r because of (4.3) this means

|S|+ |T | > (1− 2`/r)2k − 2k/r = (r − 2`− 1)
2k

r
. (4.5)

Furthermore, observe that for every vertex w ∈ V (R) we have N(w) ≥
k − 2k/r, thus every vertex has at most 2k/r non-neighbors. This di-
rectly implies we can sequentially choose⌈

|S|
2k
r

⌉
(4.4)
≥ r − 2`− 1

many vertices from S to form a clique and still have at least one vertex
from S ∪ T because of (4.5) to form the Kr−2`. This together with the
K` of double-edges allows for a multi-embedding of Kr and concludes
the proof.

We now prove Lemma 4.14.
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Proof of Lemma 4.14. Choose two arbitrary vertices s, t ∈ V (G) for
which we want to find aKr-diamond path. For s and t, apply Lemma 4.21
to find two multi-embeddings of Kr’s such that at most one of the ver-
tices in R has deg(s, Vi) < β|Vi| and deg(t, Vj) < β|Vj | respectively. Call
these vertices s1 and t1 respectively. With Proposition 4.16 we find a
multi-embedding of at most four Kr+1’s connecting s1 and t1 since the
second Υr+1 neighborhoods overlap.

This almost gives a multi-embedding of aKr-diamond path connecting s
and t. It remains to deal with the multi usage of a cluster in the reduced
graph. For the mapping to be a multi-embedding as in Definition 4.8
we need that each vertex/cluster in the reduced graph has only a single
vertex, edge or 2-path mapped to it. For this we partition each cluster
arbitrarily into enough parts such that we can assign each vertex, edge
or 2-path to a unique part. Note that as we have at most six Kr’s we
only need to split the clusters into constantly many parts.

If we arbitrarily split each cluster of the reduced graph into 6r equal
parts, then the new partition still satisfies the conditions of the Reg-
ularity Lemma because ε-regularity is inherent by Fact 4.4 just with
slightly different ε′ and β′. So we can have a reduced multigraph R′ of
this new partition which is just a blowup of R. In particular, we can
embed each isolated vertex, edge or 2-path into a separate cluster. In
R′ the consecutive Kr multi-embedding is in fact a multi-embedding of
a Kr-diamond path of length at most seven excluding the endpoints s
and t. It follows by Corollary 4.10 that we get a Kr-diamond path in
G.

With Lemma 4.14 we can find Kr-diamond paths from any tuple of r
vertices matching them to a different vertex of a Kr somewhere else
in the graph. This is now a (S, t)-absorber from Definition 4.11 and
together with Lemma 4.12 this is enough to find an absorber of the first
kind as in Definition 4.11.

4.4 Almost Spanning Structure

For the second part of the proof we want to show that we can cover
most of the vertices with a Kr-tiling. Combining this with the absorber
gives a Kr-factor.
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Lemma 4.22. For every r ∈ N and ξ, µ > 0, there exist γ > 0 and n0 ∈
N such that every graph G on n > n0 vertices with δ(G) ≥

(
1− 2

r + µ
)
n

and α(G) ≤ γn, we can find a Kr-tiling which covers at least (1 − ξ)n
vertices in G.

We make use of a known result for small subgraphs in the same setting.
To find a Kr in a graph with small independence number we only need
a certain average degree. The following lemma states this

Lemma 4.23 (Erdős, Sós [ES70]). For every r ∈ N and µ > 0 there
exist γ > 0 and n0 ∈ N such that for every graph G on n > n0 vertices
with average degree d(G) ≥

(
1− 2

r−1 + µ
)
n and α(G) ≤ γn, then

Kr ⊆ G.

First we would like to show, that there exists at least a fractional almost
cover of the vertices. A fractional cover is defined as follows:

Definition 4.24. A fractional Kr-tiling T of a graph G is a weight
function from the set S of all Kr ⊆ G to the interval [0, 1] such that for
vertices of G it holds that

wT (v) =
∑
Ki∈S,
v∈Ki

wT (Ki) ≤ 1 ∀v ∈ G.

We call
∑
v∈G wT (v) the total weight of a tiling and it is a perfect

fractional tiling if equality holds for every vertex.

Fractional Kr-tilings are somehow easier to find and we will prove the
following lemma later in this section.

Lemma 4.25. For every r ∈ N and η, µ > 0 there exist γ > 0 and n0 ∈
N such that every graph G on n ≥ n0 vertices with δ(G) ≥

(
1− 2

r + µ
)
n

and α(G) < γn has a fractional Kr-tiling T such that

|{v ∈ G : wT (v) < 1− η}| ≤ ηn.

Observe that the weight of this tiling is at least (1 − 2η)n. We would
like to transform the fractional into an actual tiling. We construct a
fractional tiling in the reduced multigraph first, then transfer it to the
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original graph greedily. We will slightly abuse notation for the fractional
tiling to extend the definition to the reduced multigraph. By a fractional
tiling with Kr-embeddable structures we mean we assign the weights to
all possible multi-embeddings of Kr onto the reduced multigraph and
require that the for every vertex all multi-embeddings mapping to that
vertex have a total weight of at most one, counting multiplicity.

Lemma 4.26. For every r ∈ N and η, β > 0 there exist ε, γ > 0 and
n0 ∈ N such that for every graph G on n ≥ n0 vertices, if a reduced
multigraph Rβ,ε of G has a fractional tiling with Kr-embeddable struc-
tures of total weight at least (1 − η)k, then G has an Kr-factor that
covers all but (1− 2η)n vertices.

Proof. Set ε and γ small enough for Lemma 4.9 and such that (2/β)rε ≤
η/2. The first step is to rescale the tiling. Let T be the fractional
tiling of R as given by the statement. Construct T ′ by scaling every
Kr-embeddable structure with a factor of (1 − (2/β)rε) i.e. for any
Kr-multi-embedding K we have wT ′(K) = (1 − (2/β)rε)wT (K). We
construct the Kr-tiling in G by greedily taking wT ′(K)|Vi| many Kr

given by Lemma 4.9 and remove them from G. Note that, because of
the rescaling, the sum of the weights of all Kr-embeddable structures
touching one vertex is at most (1− (2/β)rε). Thus, in every step of the
greedy removal we have at least (2/β)rε|Vi| vertices left which ensures
that we can always apply Lemma 4.9. Even after rescaling, T ′ has total
weight at least (1−(2/β)rε−η)k and |V0| has at most εn many vertices.
So the greedy Kr-tiling of G covers at least a (1− ((2/β)rε+ η + ε)) ≥
(1− 2η) fraction of the vertices which concludes the proof.

For our proof, we need triangle free graphs with low independence num-
ber that we can connect with relatively high density without creating
a copy of K4. A construction by Bollobás and Erdős shows that these
graphs exist. We state their results in a slightly different way, but it
directly follows from their construction.

Lemma 4.27 ([BE76]). For ζ, γ > 0 there is a n0 ∈ N such that for
n ≥ n0 there is a graph G on 2n vertices with a split into V1, V2 has the
following properties.

1. |V1| = |V2| = n,

2. G[V1] is isomorphic to G[V2] and they are triangle free,
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3. G is K4 free,

4. G[V1, V2] has density at least 1/2− ζ,

5. α(G) ≤ γn

The next lemma connects almost tilings and fractional tilings. In order
to find an almost tiling in a graph G we apply the Regularity Lemma
and need a fractional tiling in the reduced graph. We make use of a
second auxiliary graph Γ, which is similar to a blow-up of the reduced
graph.

Lemma 4.28. For every r ∈ N and µ, η > 0 there exist β, ε, γ > 0 and
n0 ∈ N such that for every graph G on n ≥ n0 vertices with minimum
degree δ(G) ≥

(
1− 2

r + µ
)
n and α(G) ≤ γn there is a graph Γ with

δ(Γ) ≥
(
1− 2

r + µ
4

)
|Γ| and α(Γ) ≤ γ|Γ| such that the following holds.

If Γ has a fractional Kr-tiling with weight at least (1−η)|Γ|, then G has
a Kr-tiling covering at least (1− 2η)n vertices.

Proof. Choose β, ε and γ small enough such that Lemma 4.9 and
Lemma 4.26 are satisfied and smaller than µ/10. Apply the Regularity
Lemma (Lemma 4.5) to G with β and ε. Let V0∪V1∪. . .∪Vk be the reg-
ular partition resulting from the Regularity Lemma and let Rβ,ε be the
reduced multigraph of this partition. Let y1 be a constant that is larger
than n0 from Lemma 4.27 with γ4.27 = γ and ζ4.27 = µ/8. Construct Γ
by taking y0 = k ·y1 vertices and split V (Γ) intoW1, . . . ,Wk each of size
y1 where we associate Wi with Vi from the regular partition. On every
vertex set Wi we put a triangle-free graph from Lemma 4.27. Then add
a complete bipartite graph between two clusters Wi and Wj if i and j
are connected by a double-edge in R. Add a K4-free construction given
by Lemma 4.27 between Wi and Wj if i and j are connected by a single
edge and the empty graph otherwise. Note that as the graphs inside the
clusters are all isomorphic, we are guaranteed that the K4-free graph
construction of Lemma 4.27 is possible between any two clusters.

We consider the minimum degree of Γ. As G has minimum degree
δ(G) ≥ (1−2/r+µ)n, using Fact 4.7 we get δ(Rβ,ε) ≥ 2 ((1− 2/r + µ/2)) k
which finally means in Γ every edge from a cluster-vertex i in Rβ,ε con-
tributes to at least (1/2−ζ)y1 = (1/2−ζ)|Γ|/k many edges for a vertex
in the corresponding set Wi of Γ. Thus Γ has minimum degree

δ(Γ) ≥ (1− 2/r + µ/2− 2ζ)|Γ| = (1− 2/r + µ/4)|Γ|
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where ζ = µ/8 as we chose for Lemma 4.27.

The important observation now is that every Kr in Γ corresponds to
a multi-embedding of Kr in R. This is an easy consequence of the
construction of Γ. For every Kr in Γ take the mapping which maps to
the vertex i if the vertex of Kr lies in the set Wi in Γ. We never embed
three vertices into a vertex of R because all Wi’s are triangle free and
if there are two clusters Wi and Wj into which we embed two vertices
each, these vertices form a K4 which means in R, i and j must be
connected by a double-edge. By construction, the largest independent
set of every cluster Wi of Γ is at most γ|Wi| so α(Γ) ≤ γ|Γ|. Then by
the assumption of the lemma we have a fractional Kr-tiling T of Γ. We
convert the fractional Kr-tiling of Γ into a fractional Kr-tiling T ′ of R
by applying the mapping from Kr’s to Kr-multi-embeddings of R. So,
for every multi-embedding K of a Kr into R we can define the set LK
to be the set of all Kr in Γ such that the multi-embedding K maps to
the same partitions Vi corresponding to Wi in Γ. Then

wT ′(K) ≥
∑
K∈LK

wT (K)

y1
.

So the total weight of T ′ must be at least (1 − η)k in R. Then by
Lemma 4.26 we can convert the fractional tiling into an almost cover of
G that covers at least (1− 2η)n vertices.

For the proof of Lemma 4.25 we need the following lemma which gives
us a stepwise improvement of any tiling we have as long as we do not
cover a (1− η) fraction of the vertices yet. Here a {Kr,Kr+1}-tiling is
a disjoint union of Kr’s and Kr+1’s as subgraph.

Lemma 4.29. For every r ∈ N and η, µ > 0 there exist ρ, γ > 0
and n0 ∈ N such that every graph G on n ≥ n0 vertices with δ(G) ≥(
1− 2

r + µ
)
n and α(G) < γn has the following property:

Let T be a maximum Kr-tiling in G with |V (T )| ≤ (1−η)n. Then there
is a {Kr,Kr+1}-tiling which covers at least |V (T )|+ ρn vertices.

Proof. Let R = V (G) \ V (T ) be the set of all uncovered vertices in G.
By Lemma 4.23 we know that the average degree inside R is less than
(1− 2/(r − 1) + µ) |R| as else there would be a Kr inside R that we
could add to T contradicting the maximality of T . We show that this
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implies that we can extend at least ρn of the Kr’s in T to Kr+1 where
ρ is some constant to be chosen later.

Let T = V (T ) and we are guaranteed that |T | ≥ µn as otherwise
every vertex in R would have deg(v,R) ≥ (1 − 2/r + µ)n − µn >
(1−2/(r−1))|R| contradicting our upper bound on the average degree.
Moreover, as every vertex in R has degree at least (1 − 2/r + µ)n and
inside R we have an average degree less than (1−2/(r−1))|R| we know
that the edges in between, deg(R, T ), are at least

(
1− 2

r
+ µ

)
n|R|−

(
1− 2

r − 1

)
|R|2 ≥

(
1− 2

r
+ µ

)
|T ||R|+ 2

r(r − 1)
|R|2.

Let R′ ⊆ R be the set of all vertices in R that have deg(v, T ) >(
1− 2

r + µ
)
|T | as we know that deg(v, T ) ≤ |T | ≤ n, we conclude that

|R′| ≥
2

r(r−1) |R|
2

n
≥ ϕ|R|

for ϕ = 2
r(r−1)η.

T R

R′

Figure 4.4: Greedy extending to Kr+1

We now use vertices or edges from R′ to extend some Kr from T to
a Kr+1. Let T ′ be the set of all Kr that we did not yet extend in
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this process and R′′ ⊆ R′ the set of unused vertices in R′ so far. The
following claim asserts that the greedy process works.

Claim 4.30. If R′′ ⊆ R′ is such that (µ/2r)|R′′| ≥ γn and for every
vertex v ∈ R′′ we have T ′ = V (T ′) ⊆ T with

deg(v, T ′) ≥
(

1− 2

r
+
µ

2

)
|T ′|,

then we can find a Kr in T ′ which can be extended to a Kr+1.

Proof. If there is a Kr in T ′ such that there is a vertex in R′′ which is
connected to all vertices from this Kr, then we can extend it to a Kr+1.
We can thus assume that every vertex in R′′ has at most r− 1 edges to
any Kr in T ′. Then, the minimum degree condition implies that every
vertex has at least (µ/2)|T ′| copies of Kr in T ′ such that v is connected
to exactly r − 1 vertices of this Kr.

We can construct an auxiliary bipartite graph where the vertices in one
partition are the copies of Kr in T ′ and the other partition is formed
by the vertices in R′′. Then the previous observation implies that this
bipartite graph has at least (µ/2)|T ′||R′′| edges and we can thus find
a Kr in T ′ such that at least (µ/2)|R′′| vertices from R′′ have exactly
r − 1 edges to this particular Kr. Call the set of these vertices R′′′ we
can then further partition R′′′ into R′′′1 , . . . ,R′′′r where we put a vertex
v ∈ R′′′ in R′′′i if and only if v does not have an edge to the ith vertex
in the Kr (where the order of the vertices is arbitrary but fixed). Then
there is some index j such that |R′′′j | ≥ (µ/2r)|R′′|. As we required
that α(G) < γn ≤ (µ/2r)|R′′| ≤ |R′′′j |, there is an edge e in R′′′j . We
can thus construct a Kr+1 by removing the jth vertex from the Kr and
adding the edge e to the Kr.

Note that for every Kr+1 we construct we remove one Kr from T ′
and at most two vertices from R′′. We choose ρ maximal such that
ρn ≤ (µ/2r)|T | and 2ρn ≤ |R′| − (2r/µ)γn. After the removal of at
most ρn greedily formed Kr+1’s we are thus left with at least |R′|−2ρn
vertices in R′′ each of these vertices has deg(v, T ′) ≥ (1−2/r+µ/2)|T ′|.
Then Claim 4.30 gives that we can chose the Kr+1’s in a greedy manner
until we extend ρn many Kr’s.

Now we are ready to prove Lemma 4.25. We restate the lemma for
convenience of the reader.
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Lemma 4.25. For every r ∈ N and η, µ > 0 there exist γ > 0 and n0 ∈
N such that every graph G on n ≥ n0 vertices with δ(G) ≥

(
1− 2

r + µ
)
n

and α(G) < γn has a fractional Kr-tiling T such that

|{v ∈ G : wT (v) < 1− η}| ≤ ηn.

Proof of Lemma 4.25. We start by taking a maximum Kr-tiling in G.
If this covers more than (1−η)n vertices, then we are done immediately.
Else we repeatedly apply Lemma 4.29 while at every step blowing up
each vertex of our graph G with r vertices. This follows the idea which
emerged from [Tre16]. After a constant number of blowups we can cover
all but a η2 fraction of the vertices withKr’s. We then convert this tiling
of the blown up graph into a fractional tiling of the original graph which
misses at most η2n of total weight, which directly implies that at most
ηn vertices can have wT (v) < 1− η.
In each of the steps we blow up the graph by a factor of r, that is we
replace every vertex in the previous graph with a set of r vertices and
put complete bipartite graphs between all clusters that were connected
by an edge in the previous graph. Note that this implies that for a Kr+1

in the previous graph we can find a perfect Kr tiling in the blown up
graph. We will repeat two steps:

• In the first step the enlargement step here we start with a Kr

tiling which covers a λ fraction of the vertices into a {Kr,Kr+1}
tiling that covers a λ′ > λ+ ρ4.29(η2, µ, r) fraction

• The second step, the blow up step blows up the graph and con-
verts the given {Kr,Kr+1}-tiling into a Kr-tiling that covers a λ′
fraction.

Note that a Kr-tiling of any graph corresponding to a constant blow
up by a factor of s of G which covers a λ fraction of the vertices can
be converted into a fractional Kr-tiling in G with weight λn. This can
be done as follows. Let T ′ be a Kr-tiling in the blown up graph. We
construct the fractional Kr-tiling T in G in the following way. For every
Kr ∈ T ′ by construction there is a copy ofKr in G which corresponds to
this Kr (in particular we cannot have two vertices which originate from
the same vertex in G as these vertices would come from an independent
set). We add this Kr to T with weight 1/s. When there are multiple
instances that correspond to the same Kr in G we just increase the
weight by 1/s for each copy in the blown up graph. Let Gs be the
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blowup of G by factor of s, as the tiling we constructed covers λ|Gs|
vertices in Gs we get that∑

v∈V (G)

wT (v) =
∑

Kr∈T ′
r

1

s
= λ|Gs|1

s
= λ|G|.

It thus suffices to show that for some number s, independent of γ and n
we can find a Kr-tiling that covers (1− η2)|Gs| vertices in Gs. Let γ =
γ4.29(η2, µ, r) and ρ = ρ4.29(η2, µ, r). Every time we apply Lemma 4.29
we newly cover a ρ fraction of the vertices. We thus need to apply this
lemma at most 1/ρ times. In each blow up step we replace one vertex
from the previous graph by r vertices. As we have to do at most 1/ρ
blow up steps we know that s ≤ r1/ρ.

Lemma 4.22 follows directly by applying Lemma 4.25 with µ4.25 = µ/4
to Γ from Lemma 4.28 with µ and η = ξ/4.

4.5 Finishing the proof

All that is left to do is to combine the results from the previous sections
to prove the Theorem 4.2.

Proof of Theorem 4.2. Choose ϕ ≤ µ/14r2 but independent from all
other variables. Let ξ = ξ4.12 where we apply Lemma 4.12 with ϕ,
h = r and t = 6r + 1. Choose γ small enough such that it satisfies
Lemma 4.14 as well as Lemma 4.22 dependent on the parameters µ, ϕ
and ξ.

In order to apply Lemma 4.14 to get a ξ-absorbing set, we show that
for every choice of a r-vertex subset S of V (G) we can find ϕn vertex
disjoint (S, 6r + 1)-absorbers. We do this as follows. Start with an
arbitrary Kr that does not share any vertex with S using Lemma 4.23.
Take an arbitrary bijection g : V (Kr)→ S of the vertices of this Kr to
the vertices in S. Then use Lemma 4.14 to find disjoint Kr+1-diamond
paths of length at most 7 between each pair (v, g(v)) for all v ∈ V (Kr).
Add arbitrary Kr’s in case some paths where shorter until there are
exactly 6r2 + r vertices in total. We can repeat this ϕn times without
removing more than (6r2 + r)ϕn < (µ/2)n vertices from the graph.
Having these ϕn many (S, t)-absorbers implies by Lemma 4.12 that



4.5. Finishing the proof 65

there is some constant ξ such that there is a ξ-absorbing set of size at
most ϕn. Take such a set A and put it aside.

Note that as |A| ≤ ϕn we know that for G′ = G \ A we have δ(G′) ≥
(1 − 2/r + µ′)n′ and α(G′) ≤ γ′n′ where n′ = |V (G′)|, µ′ = µ/2 and
γ′ = 2γ. We then apply Lemma 4.22 with ξ from Lemma 4.12 to G′
to get a tiling that covers all but at most ξn′ vertices. Let VR be the
set of vertices that remain uncovered in Lemma 4.22. By construction
we have |VR| ≤ ξn′ ≤ ξn and thus we can use the absorber A to cover
A ∪ VR.
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Chapter 5
An O(n) Time Algorithm for Finding

Hamilton Cycles with High Probability

In this chapter we provide an algorithm for finding Hamilton cycles
in time linear in the number of vertices. The content of this chap-
ter is based on a paper published by Nenadov, Steger and the author
([NSS21]).

5.1 Introduction

We have touched briefly on the topic of Hamilton cycles in Chapter 1.
As discussed, determining whether a graph has a Hamilton cycle is a
notoriously difficult problem that has been tackled in various ways. In
general, it is known to be NP-hard, putting it in a bag of complexity

67
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theory together with colorability or SAT, problems for which one has
tried to find polynomial time algorithms for a long time without any
success so far.

While the Hamilton cycle problem is a difficult problem in general, it
turns out that for most graphs it is much easier in the Erdős-Rényi
random graph G(n, p). The existence question of the Hamilton cy-
cle problem is very well understood, cf. the comprehensive survey by
Frieze [Fri19]. We have the following precise bounds for when Hamil-
ton cycles exist in G(n, p). Let H be the set of Hamiltonian graphs,
then for G(n, p) it holds that (Komlós and Szemerédi [KS83] and Kor-
shunov [Kor76])

Pr[G(n, p(n)) ∈ H] =


0, p(n) = log(n)+log log(n)−ω(1)

n

e−e
−c
, p(n) = log(n)+log log(n)+c+o(1)

n

1, p(n) = log(n)+log log(n)+ω(1)
n

Which is limitwise the same as the threshold for when G(n, p) has min-
imum degree 2. So really vertices of degree one are the bottleneck for
random graphs. In fact, it is known that if we add the edges ran-
domly one by one, the moment we reach minimum degree 2 is the same
as the moment the graph becomes Hamiltonian with high probability
[AKS85]. And this threshold is also robust (e.g. [NST19, Mon19]).
For other random graph models like the random graph with m edges
G(n,m), the random regular graph G(n, r) or the k-out which takes k
random edges from every vertex the corresponding thresholds for Hamil-
tonicity are also known [FF84, BFF90, BF09, RW94, SV08]. Similar to
the classical random graph case also in these cases the thresholds co-
incides with a local obstruction such as minimum degree two or any
two vertices have a neighborhood of size at least 3. And this is not a
coincidence. Randomness gives us such nice expansion properties that
only the small structures can be an obstruction to the Hamilton cycle.
This phenomenon has been observed also for other properties such as
connectivity, containing a perfect matching or colorability.

The proofs of Komlos and Szemeredi and Korshunov are just existential,
i.e. they determine the threshold for the existence of Hamilton cycle,
but do not provide an efficient algorithm for finding it. In a seminal
paper, Angluin and Valiant [AV79] show that with the input given as
a random adjacency list one can find Hamilton cycles in G(n, p) for
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p ≥ C log n/n in O(n log2 n) time with high probability. There are
two ways in which this result is possibly non-optimal: the lower bound
on p and the runtime. The first point was considered by Shamir and
then Bollobas, Fenner and Frieze, who brought the bound down to the
existence threshold of G(n, p). In more recent works the runtime has
also been optimized for graphs given in adjacency matrix form, assuming
a pair of vertices can be queried in constant time. We summarize these
results in the table below. There are various related results that are
hard to compare, as their setting is slightly different [FKSV16, ABKP15,
FJM+96, Fri88]. Some of the results are assuming the graph is given as
an adjacency matrix with black box queries and the runtime O(n/p) is
optimal in that model.

Authors Year Time p(n)
Angluin, Valiant [AV79] ‘79 O(n log2(n)) p ≥ C log(n)

n

Shamir [Sha83] ‘83 O(n2) p ≥ log(n)+o(log(n))
n

Bollobas et al. [BFF87] ‘87 n4+o(1) p ≥ Threshold
Gurevich, Shelah [GS87] ‘87 O(n/p) p const.
Thomason [Tho89] ‘89 O(n/p) p ≥ Cn−1/3

Alon, Krivelevich [AK20] ‘20 O(n/p) p ≥ 70n−1/2

In this chapter we consider the second question that was left open in
the Angluin-Valiant paper: can the runtime be improved. Note that a
graph with p ≥ C log n/n has Θ(n log n) edges. Thus, improving the
runtime below this bound requires a sublinear algorithm, i.e. sublinear
in the input size. These are algorithms that produce an output without
reading the input completely (see e.g. [RS11] for an overview of the
topic). Such algorithms are less restrictive than those designed for online
or a (semi-)streaming model as they allow some control over which part
of an input is used. However for graphs with n vertices and m � n
edges the algorithm is only allowed to read o(m) edges, i.e., a negligible
fraction of the input — but nevertheless has to compute the desired
output correctly.

5.1.1 Our contribution

In this chapter we show that given a random graph with edge probability
p ≥ C log n/n, for an appropriately chosen constant C, we can find a
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Hamilton cycle in O(n) time with high probability. This time is clearly
optimal, as the algorithm has to return Ω(n) edges. We assume that the
graph is given to us with randomly ordered adjacency lists, such that
we can query the next neighbor in those lists for any vertex in constant
time.

Theorem 5.1. There exists a randomized algorithm R which finds a
Hamilton cycle in a random graph G(n, p) in O(n) time with high prob-
ability, provided p ≥ C log n/n for a sufficiently large constant C.

Note that ‘with high probability’ is always meant to mean with probabil-
ity 1− o(1) tending to one as n tends to infinity and takes into account
all sources of randomness: i.e., the randomness of the algorithm, the
random graph and the randomness of the datastructure used to store
the graph (random ordering of the adjacency lists).

The chapter is organized as follows. Section 5.2 contains the algorithm
and the proof of Theorem 5.1. It is based on three technical lemmas
that we prove in Section 5.3.

5.2 Algorithm

The most commonly used technique for efficient cycle extensions is Posa
rotations. This is also the case for the original algorithm of Angluin
and Valiant [AV79], which we outline in Section 5.2.1 below, cf. also
Figure 5.2. To reduce the runtime to O(n) we reduce the total num-
ber of Posa rotations that are required and simultaneously also restrict
ourselves to certain types of Posa rotations so that we can realize each
of them in O(log n) time.

5.2.1 Finding A Hamilton Cycle via Posa Rotations

We sketch here the algorithm of Angluin and Valiant. The main idea of
their algorithm is to perform a greedy random walk until all vertices are
incorporated in the path/cycle. This means we start from an arbitrary
vertex and query a neighbor of that vertex. If the neighbor is already
contained in the path we have built so far we consider this a failure and
we query a new neighbor. Otherwise we add the neighbor to the path
and continue from the new endpoint vertex (see Figure 5.1).
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Figure 5.1: Algorithm uses a random walk like strategy, blue edge is
the newneighbor().

Figure 5.2: Posa rotation, detaching a large cycle.

Figure 5.3: Reincorporating the large cycle.

Once the path is long enough (at least n/2) we add possible Posa ro-
tations. Assume we start with a path P = (v1, . . . , vs), then if we find
two edges such that for some index i ∈ [s] the edges are of the form
{vi+1, vs} and {vi, vj} for some j > i + 1, we can rearrange the path
to form a new path P ′ = (v1, . . . , vi, vj , vj+1, . . . , vs, vi+1, . . . , vj−1) and
now the new path has the same vertex set but a different endpoint ver-
tex. This we call a Posa rotation. Additionally we will always want long
Posa rotations meaning s− i must be at least n/2 to ensure that we can
find the second edge needed quickly with high probability.

So during our Algorithm if the neighbor (vi+1) of the endpoint of the
path (vs) has distance at least n/2 from the endpoint along the path we
use that edge to build a cycle and continue from the vertex preceding
the neighbor (vi) on the path (see Figure 5.2). This leaves a cycle of
size at least n/2 and if we ever find one of the vertices on the cycle to
be the neighbor of the current endpoint we reincorporate the large cycle
by appending it to the path (again giving a new endpoint).

Many details need to be considered on how random variables interact,
etc., but leaving those aside one can easily convince oneself that on av-
erage the current vertex changes after a constant number of queries to
a new random vertex, and that the number of queries until the path
length increases by one is geometrically distributed and has an expec-
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tation of n/(n− i) where i is the current length of the path. The total
number of Posa rotations is thus bounded by

O

(
n∑
i=1

n

i

)
= O(n log n).

As each Posa rotation takes time log n to realize this gives a total run-
ning time of O(n log2 n).

5.2.2 Our Algorithm

We give a short overview of the new algorithm we propose. The al-
gorithm comes in two phases. In phase 1 we find two random perfect
matchings. The union of these two random perfect matchings forms a
two regular graph, i.e., a set of disjoint cycles or double edges covering
all vertices. It is not difficult to show that the number of cycles is with
high probability bounded by 2 log n. In phase 2 of the algorithm we
stitch these 2 log n cycles together.

For the analysis of the algorithm it is very helpful to assume that a
query for a new neighbor of some vertex v returns a vertex w that is
uniformly distributed over all vertices in V − v and independent from
all previous queries. Of course such an assumption a priori does not
hold if we simply return the next vertex from the adjacency list of v.
We realize this by directing the edges and resampling. More formally,
we will show the following lemma in Section 5.3; in the remainder of
Section 5.2 we will use the corresponding function newneighbor() as a
black box.

Lemma 5.8 (newneighbor). It is possible to interact with the graph
G(n, p), p ≥ C logn

n , with an algorithmic procedure newneighbor(v)
which has the following properties with high probability:
(i) Calling newneighbor(v) returns a neighbor of v distributed uni-
formly among V − v and independent of all calls so far – as long as we
make at most O(n) calls to newneighbor() altogether and every vertex
is queried at most 100 log n times. (ii) The total run time of all O(n)
calls is O(n).

Note that this algorithm uses both internal randomness as well as the
randomness of G(n, p). If newneighbor(v) ever returns ’there are no
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more neighbors’ we immediately terminate the entire algorithm and re-
turn failure. To avoid this, we will prove that we query newneighbor(v)
from any vertex at most 100 log n times w.h.p. and choose C large
enough so that with high probability the minimum degree of the random
graph is large enough.

Phase 1: Perfect Matching

In the first phase of the algorithm we show that we can find a perfect
matching in O(n) time. We call the algorithmic procedure described
in this section FastPerfectMatching, see Algorithm 1. In fact, for an
easier understanding of the required ideas, we work in this section with a
random bipartite random graph. This can easily be done by partitioning
the vertex set V into two equal sets A and B arbitrarily (if n is odd
we set one vertex aside and include it in phase 2) and only considering
the edges between A and B. Formally, the function newABneighbor(v)
calls newneighbor(v) until we receive a neighbor which is in B (resp.
A).

Claim 5.2. If we call newABneighbor() for a sequence of O(n) vertices,
in which every vertex v ∈ A ∪ B occurs at most log n times, then with
high probability this results in at most O(n) calls to newneighbor() with
at most 6 log n calls per vertex.

The claim holds because any call of newneighbor() has probability at
least 1/2 to be in the correct partition and, by our assumptions on
newneighbor(), the calls are independent. We can thus apply concen-
tration bounds for binomial distributions and union bound for every
vertex. Clearly, newABneighbor() still has a uniform and independent
distribution over all vertices of the opposite partition.

Let G be the balanced bipartite graph with partitions A and B. During
the algorithm we will maintain a matching M which covers some of the
vertices and is empty at first. At any point in time, we denote by AM
the vertices in A that are covered by the matching and with A0 the
unmatched vertices. Equivalently for BM and B0.

Additionally we need a set of edges that expand well from the ver-
tices of A. And we need to be able to keep track of them efficiently
and on the fly. So for any vertex v we define the d-neighborhood of
v, Nd(v) ⊆ V (G), to be the set of the first dde calls to the function
newABneighbor(v). In particular this implies that for any d′ < d the
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A0

B0

AM

M
d− neighborhood

newneighbor(v)

v
BM

a)b)

c)

u

Figure 5.4: For IncreaseMatching three things can happen. Either a)
the vertex is already in the neighborhood of A0, in which case we

match immediatly, b) the vertex newABneighbor(v) is in A0, which
also gets matched, or c) newABneighbor(v) is in AM . Then we swap
the matching and continue from the partner of the newABneighbor(v).

d′-neighborhood is contained in the d-neighborhood of v. Similarly, the
d-neighborhood of a set of vertices S, denoted byNd(S), is defined as the
union of the d-neighborhoods of all vertices in S. We expose and keep
track of the d-neighborhood of the unmatched vertices A0, Nd(|A0|)(A0),
for the function d(t) = min(

√
n/t, log n). This gives us a neighborhood

large enough for the random walks to be effective, but small enough so
that we do not need too much time to update/expose.

To increase the matching we call a subroutine IncreaseMatching.

IncreaseMatching takes as argument the current matching M and an
unmatched vertex v ∈ B0. It proceeds as follows. If v is in Nd(A0) we
add the corresponding neighbor in A0 and v to the matching. If not we
take w = newABneighbor(v). If w is in A0 we add the edge {w, v} toM .
If neither of the two is the case, then w ∈ AM and there exists a unique
u such that {w, u} is currently inM . We swap {w, u} for {w, v}, thereby
making u a new unmatched vertex, and repeat IncreaseMatching with
u, cf. Figure 5.4.

Clearly, during the run of the algorithm we also have to dynamically
update the d-neighborhood of A0. In particular this means removing
Nd(w) of a newly matched vertex w and, if d(|A0|) increases, adding
vertices from additional calls to newABneighbor() for every vertex in
A0.
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Algorithm 1 FastPerfectMatching(G)

1: B0 ← B; BM ← {}; A0 ← A; AM ← {};
2: d ← 0; M ← {}
3: while B0 6= {} do
4: v ← arbitrary vertex from B0 . and remove from B0

5: IncreasingMatching(G,M, v); . see Algorithm 2

6: while d < min

(√
n
|A0| , log(n)

)
do

7: d← d+ 1
8: Add newABneighbor(v) to the d-neighborhood for every ver-

tex in v ∈ A0

9: return Matching M

To bound the runtime of Algorithm 2, FastPerfectMatching, we ob-
serve first that we increase the matching exactly n times, which is inline
with our desired bound of O(n). We can thus concentrate on bounding
the recursive calls to IncreaseMatching in line 13 of IncreaseMatching.

Lemma 5.3. Let Li denote the number of calls IncreaseMatching in
line 13, while |A0| = i for any i ∈ [n]. Then the Li are dominated by
independent geometric distributions with success probability pi = i·d(i)

100n .

Proof. Whenever we are at a vertex v in B we expose an edge to a
random neighbor in the set A. If that vertex is in A0 we match v
and |A0| decreases by one so we end the count of L|A0|. Otherwise we
swap with a matched vertex and get a new starting point in B0. As
newABneighbor() is independent and uniform, and the matching forms
a bijection between AM and BM , the fact that the vertex is not in A0,
implies that we get a new random vertex u in BM for the next call. If
this vertex is in the exposed d-neighborhood of A0 we stop and match
to a vertex in A0 also ending the count of L|A0|.

To assess the probability of stopping, we use the expansion proper-
ties of the d-neighborhood of A0 that are inherited from the random
graph. This means in particular that the exposed neighborhood of A0,
Nd(|A0|)(A0), has size at least 1

100 |A0| · d(|A0|), cf. Lemma 5.9 in Sec-
tion 5.3 for a proof. The probability of hitting a vertex in A0 or the
d-neighborhood of A0 (while looking at the matched vertex of w in
BM ) is thus at least |A0|·d(|A0|)

100n . Every new call of newABneighbor()
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Algorithm 2 IncreaseMatching(G,M, v)

1: if v ∈ Nd(A0) then
2: w ← [neighbor of v] ∈ A0

3: Add {v, w} to M
4: Remove w from A0 and update Nd(A0)
5: return
6: w ← newABneighbor(v)
7: if w ∈ A0 then
8: Add {v, w} to M
9: Remove w from A0 and update Nd(A0)

10: return
11: u← unique vertex with {u,w} ∈M
12: Remove {u,w} from M and replace with {v, w}
13: IncreaseMatching(G, M, u)
14: return

is independent by Lemma 5.8, thus Li is dominated by an independent
geometric distribution with success probability as claimed.

We are now ready to proof the desired complexity bound:

Proposition 5.4. FastPerfectMatching finds a perfect matching in a
balanced random bipartite graph in time O(n) with high probability.

Proof. There are two main contributions to the running time of the
Algorithm. First the subroutine IncreaseMatching, which we prove
to be fast with the help of Lemma 5.3, and secondly the updating and
revealing of the d-neighborhood.

Recall that Li is the random variable corresponding to the number
of calls of IncreaseMatching in line 13, while |A0| = i for any i ∈
[n]. We set L =

∑n
i=1 Li. Note that we can ignore the calls in line

5 of FastPerfectMatching, as these add only at total of O(n) to the
run time. From Lemma 5.3 we know that there exists a coupling to a
geometrically distributed random variable L′ such that L′i � Li and
L′i is geometrically distributed with pi = i·d(i)

100n .

From the definition of L′i we know that E[L′i] = 100n
i·d(i) and V ar[L′i] =

1−pi
p2i
≤ 1

p2i
≤ ( 100n

i·d(i) )2. Recall that d(i) =
√
n/i whenever i ≥ n

(logn)2 .
The total time used for those sets can thus be bounded in expectation
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by
n∑

i= n
(logn)2

E[L′i] = O

(
n∑
i=1

√
n√
i

)
= O(n),

as
∑n
i=1 i

−1/2 ≤
∫ n

0
x−1/2 dx = 2

√
n. If i ≤ n

log(n)2 , then d(i) = log n,
and the total expected time used for these sets is thus bounded by

n
(logn)2∑
i=1

E[L′i] = O

(
n∑
i=1

n

i · log(n)

)
= O(n).

We thus have that E[L′] = Θ(n) as well. To show that the actual
run time is concentrated around the expectation we apply Chebyshev’s
inequality. A similar case distinction as above gives us

V ar[L′] ≤
n∑

i= n
(logn)2

10000n

i
+

n
(logn)2∑
i=1

10000n2

i2 · (log n)2
= O

(
n2

(log n)2

)
.

By Chebyshev’s inequality we thus get

Pr[L ≥ 2E[L′]] ≤ Pr[L′ ≥ 2E[L′]] ≤ V ar[L′]
(E[L′])2 ≤ O

(
1

(log n)2

)
,

which concludes the first part of the proof.

To bound the time needed to expose the d-neighborhoods, we observe
first that we can order the vertices in A by the order in which they
join the matching. As Nd′(v) ⊆ Nd(v) ∀d′ ≤ d, we thus have to expose
for the i-th vertex in this ordering at most d(n − i) + 1 edges, where
d(x) = min{

√
n/x, log n}. Thus, the total number of exposed edges is

bounded by

n∑
i=1

(d(n− i) + 1) =

n
(logn)2∑
i=1

(d(i) + 1) +

n∑
i= n

(logn)2

(d(i) + 1)

≤

n
(logn)2∑
i=1

(log n+ 1) +

n∑
i= n

(logn)2

√
n

i
≤ 4n.



78
Chapter 5. An O(n) Time Algorithm for Finding

Hamilton Cycles with High Probability

Additionally we show the number of calls to the newABneighbor() func-
tion is at most log n for every vertex w.h.p.. For any v ∈ B we call
newABneighbor(v) exactly once for each time it appears as the matched
partner of newABneighbor(v). As the distribution on the neighbors is
uniform on A and we only use IncreaseMatching O(n) many times in
total, the probability that v ∈ B occurs at least log n times is at most

(
O(n)

log n

)(
1

n

)logn

= O(n−2),

with room to spare. We can thus apply a union bound over all vertices
in B to see that w.h.p. no vertex in B has more than log n calls to
newABneighbor(). Clearly the same holds for vertices in A, as we only
expose the d-neighborhood and d(|A0|) ≤ log n always. This concludes
the proof of Proposition 5.4.

Phase 2: Incorporating the Cycle Factor

In the previous section we have seen that we can find a perfect match-
ing in O(n) time. In this section we show how we can extend this
algorithm to find a Hamilton cycle. To do this we first call the perfect
matching algorithm twice, reseting the d-neighborhoods after the first
run. By our assumption on the independence on the calls to the func-
tion newneighbor(), we thereby get two independent random perfect
matchings. Their union forms a union of cycles (or double edges) cov-
ering all vertices (if the number of vertices was odd we add the single
vertex excluded in phase 1 here back as a cycle with one vertex). Our
task in this phase is to join these cycles into a single cycle. We start
with a lemma that bounds the number of cycles that we need to join.

Lemma 5.5. The union of two random independent perfect matchings
from a complete bipartite graph contains at most 2 log n cycles with high
probability.

Proof. We claim that the two independent perfect matchings can be
seen as a random permutation of [n/2]. Indeed, without loss of gener-
ality we may assume that M1 is just the identity (by renumbering the
vertices appropriately). M1 and M2 are independent which implies M2

corresponds to a random assignment of B to A. The union of the two
matchings thus defines a random permutation of A.
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For random permutations the number of cycles has been well studied
and is related to the Stirling numbers of the first kind. Using a double
counting argument one can easily see that the expected number of cycles
of length 2k will be 1/k. The total expected number of cycles is thus
equal to the nth harmonic number. It is also well-known that this
random variable is concentrated, see e.g. [ABT03] or [AT92, MNZ12].
Thus, with high probability the number of cycles is bounded by 2 log n,
as claimed.

Description of Algorithm 3 JoinCycles. To glue the cycles together
we proceed in three phases. First we greedily combine cycles into a
path, until this path has length at least 3n/4. Then we incorporate
the remaining cycles one by one using Algorithm 4 AddSingleCycle.
Finally, we close the Hamilton path into a Hamilton cycle (Lemma 5.7).

The idea behind the first phase is straightforward. We start with an
arbitrary cycle and break it apart into a path P . Consider the endvertex
pend of that path. We use newneighbor() to query a new neighbor
of pend. If that neighbor is in a new cycle (which will happen with
probability at least 1/4, as long as the path P contains at most 3n/4
vertices), we attach that cycle to P , thereby also getting a new endpoint
pend. If the latter did not happen, we query a new neighbor. In order
to ensure that we do not query to many vertices from a single vertex,
we repeat the query for new neighbors at most 40 log n times. If we
have not been successful by then, we give up. It is easy to see that the
probability for ever giving up at this stage of the algorithm is bounded
by o(1). It is also easy to see that the total time spent until the path
has length at least 3/4n is bounded by O(n).

Once the path has length at least 3n/4, the probability that a new
neighbor is in one of the remaining cycles gets too small (for our pur-
pose) and we thus change strategy. In particular, we add long Posa
rotations, so that we can try various endpoints. This is the purpose of
the procedure AddSingleCycle (Algorithm 4).

We use a set U to keep track of used vertices. Those are vertices for
which we already queried neighbors within the algorithm JoinCycles.
We denote the current path by P = (pstart, .., pend). We also assume
that we have access to a function predP (v) that determines the vertex
before v on the path (null for pstart), and a function halfp(v) which
is true iff v is in the first half of P . We denote the cycle C that we
want to add as C = (cstart, ..., cend), where cstart is an arbitrary vertex
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at which we cut C into a path. We now explore neighborhoods of ver-
tices at once. To do this we denote by newneighbor(v, 40 log n) the set
of vertices that we obtain if we apply newneighbor(v) 40 log n times.
Let Nstart = P ∩ newneighbor(cstart, 40 log n) and Nend = P ∩
newneighbor(cend, 40 log n) denote the intersections of these neighbor-
hood vertices with the path P . Until the cycle C is part of the path P we
do the following (Figure 5.5). LetN(pend) = newneighbor(pend, 40 log n)
and check for all v ∈ N(pend) if predP (v) ∈ Nstart. If so we also check
if halfp(v) is true.

If we find a vertex v for which both conditions hold, we join the cycle
here. Consider Nend and take a vertex q ∈ newneighbor(cend, 40 log n)
such that halfP (q) is false and predP (q) 6∈ U . Then we add the cycle to
the path by constructing the new path Pnew = (pstart, ..., predP (v)) +
(cstart, ..., cend) + (q, ..., pend) + (v, ..., predP (q)). Then add pend, cstart
and cend to the used vertices U . (If we cannot find q we abort the
algorithm; it will be easy to show that the probability that this happens
is negligible.)

If the check fails for all v ∈ N(pend) we perform a Posa rotation. Con-
sider a v ∈ N(pend), v 6= pstart, such that halfP (v) is true and such that
predP (v) 6∈ U , and then take a q ∈ newneighbor(predP (v), 40 log n)
such that both halfp(q) is false and predP (q) is unused. We then
use v and q to construct a new path with a new endpoint, namely
Pnew = (pstart, ..., predP (v)) + (q, ..., pend) + (v, ..., predP (q)). Now
we can repeat the above procedure with Pnew and the new endpoint
pnewend = predP (q). (If we cannot find v or q we abort the algorithm;
again it will be easy to show that the probability that this happens is
negligible.)

To store the path and cycles we use AVL trees with a linked list. The
linked list just stores the vertices in the order as they appear in the path
resp. cycle. For the AVL tree we take the ordering in the path/linked
list as an ordering of the vertices. With this ordering at hand, the AVL
tree is well defined, and it allows for searching resp. answering the
query half(v) in O(log n) time. In addition, splitting the path resp.
concatenating two paths correspond to splitting an AVL tree at a given
vertex (into a tree containing all smaller vertices and a tree containing
the remaining vertices) resp. concatenate two AVL trees in which the
largest vertex in one tree is smaller than the smallest vertex in the other
tree. It is well known that both of these operations can be done for AVL
trees in O(log n) time, cf. Lemma 5.10 in Section 5.3 for more details.
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newneighbor(cstart, log n)

newneighbor(pend, log n)

a) success b) failure: Posa rotate and repeat

Figure 5.5: Incorporating a single new cycle with AddSingleCycle.
The dark red path indicating the new Path after an iteration of the

while loop.

Proposition 5.6. Applying the procedure AddSingleCycle at most
2 log n times will run in time O(n) with high probability.

Proof. We want to bound the number of Posa rotations we need to
perform while we add at most 2 log n cycles. Each Posa rotation occurs
at the end of a while loop in the pseudocode.

To incorporate a cycle we want to find a vertex v which, in the order of
the path, is right after a vertex in Nstart and is in the first half of P .
P has size at least 3n/4 so the number of vertices in the first half is at
least n/4. A random vertex therefore has a chance of at least 1/4 to be
in the first half of P . So every vertex in newneighbor(cstart, 40 log n)
has probability at least 1/4 independently of being in the first half of
P and different from the other vertices. This implies that the number
of vertices in Nstart which are also in the first half of P dominates a
binomial distributed random variable F ∼ Bin(40 log n, 1/4). For F we
know the expectation to be 10 log n and by a Chernoff bound (2.3) the
probability that F is less than log n is O(n−2). We observe that where
the Posa rotation happens is independent of Nstart. So we apply a union
bound that on fixed O(n) many rotations of P the probability that there
are less than log n vertices of Nstart in the first half of P is in O(n−1).
This implies that any call to newneighbor(pend) has a chance of at least
log n/n to be right after a vertex in Nstart and also in the first half of P .
As each call to newneighbor() is independent, the number of tries we
must make is geometrically distributed with success probability log n/n
and we must succeed at most 2 log n many times. This means the num-
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Algorithm 3 JoinCycles(G, C = M1 ∪M2)

1: U ← {}
2: C0 ← first cycle of M1 ∪M2, (c0,start, ..., c0,end);
3: P ← (c0,start, ..., c0,end);
4: pend ← last vertex of P;
5: while |P | ≤ 3n

4 do
6: N ← newneighbor(pend, 40 log n);
7: U ← add pend;
8: v ← Search N for v such that v 6∈ P
9: (v, ..., ci,end)← cycle of v;

10: P ← P + (v, ..., ci,end);
11: pend ← ci,end;
12: while |P | 6= n do
13: Ci ← any cycle not in P
14: AddSingleCycle(G,P,Ci, U) . See Algorithm 4
15: return
16: // If any of the ‘Search’ parts of the algorithm fail, we abort the

algorithm and return failure.

ber of Posa rotations is dominated by a negative binomial distributed
random variable R ∼ NB(2 log n, log n/n). So by the concentration of
the negative binomial distribution (Lemma 2.6) the probability that we
need to try more than 4n times is at most O(log−1 n). Before every
Posa rotation we try newneighbor(pend, 40 log n) so 40 log n tries. This
proves an upper bound on the number of Posa rotations of O(n/ log n)
with high probability.

Posa rotation: We summarize the operations we need to do per Posa
rotation. This assumes that we already failed to find v which is both
after a vertex in Nstart and also in the first half of P . We expose
40 log n new neighbors of pend and 40 log n of the vertex before v on
the path, we need to Posa rotate by splitting the path twice and then
joining twice. Checking whether a vertex is in U and adding vertices
to U is a constant time operation with a lookup table. All of these
operations by choice of proper datastructure (Lemma 5.8 and 5.10) are
done in O(log n). So over all Posa rotations these sum up to a runtime
of at most O(n). Additionally we need to find the vertex v in the
first half of P with predP (v) 6∈ U . Since U is much smaller than n/8
and |P | ≥ 3n/4 the number of possible vertices is at least n/4. This
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Algorithm 4 AddSingleCycle(G,P,Ci, U)

// Function halfP (v) returns true if and only if v is in the first half
of P ;
// For any vertex v ∈ P , predP (v) denotes the vertex before v on
the path P ;

1: pend ← last vertex of P ;
2: Nstart ← newneighbor(cstart, 40 log n) ∩ P ;
3: Nend ← newneighbor(cend, 40 log n);
4: U ← add cstart and cend;
5: while true do
6: N ← newneighbor(pend, 40 log n);
7: U ← add pend;
8: if ∃v ∈ N s.t. predP (v) ∈ Nstart and halfP (v) = true then
9: q ← Search Nend for q such that halfp(q) = false and
predP (q) 6∈ U ;

10: P ← (pstart, ..., predP (v)) + (cstart, ..., cend) + (q, ..., pend) +
(v, ..., predP (q));

11: return
12: else
13: v ← Search N for v such that halfP (v) = true ;
14: N ← newneighbor(predP (v), 40 log n);
15: U ← add predP (v);
16: q ← Search N for q such that halfP (q) = false and

predP (q) 6∈ U ;
17: P ← (pstart, ..., predP (v)) + (q, ..., pend) + (v, ..., predP (q));
18: pend ← predP (q);
19: // If any of the ‘Search’ parts of the algorithm fail, we abort the

algorithm and return failure.

means that if we test a random vertex, the probability that halfp()
returns true and its predecessor is not in U is at least 1/4. So the
number times we need to call halfP () is dominated by a geometric
distribution with success probability 1/4. Similarly to find the vertex
q in the second half of P with predP (q) 6∈ U , the number of times we
need to call halfP () is also dominated by a geometric distribution with
success probability 1/4. So over all rotations, the number of times we
need to call halfP () is dominated by a negative binomial distribution
H ∼ NB(2 · O(n/ log n), 1/4). So by the concentration of the negative
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binomial distribution (Lemma 2.6) the probability that we need to call
halfP more than O(n/ log n) times is O(log n/n). And since we can
perform halfP () in time O(log n) by Lemma 5.10 these have a total
runtime of O(n) with high probability.

Incorporating cycles: Very similarly we bound the time we need to
incorporate the cycles. To find the vertex v which in the order of the
path is right after a vertex in Nstart and is in the first half of P we
need to call halfP until we succeed. Note that since |Nstart| ≤ 40 log n
and as we proved above at least log n vertices of them are in the first
half of P , every call to halfP () from a random vertex after a vertex
in Nstart has a chance of succeeding of at least 1/40. This means the
number of times we call halfP is again dominated by a negative binomial
distribution NB(2 log n, 1/40) and this runtime is negligible with high
probability. As we only incorporate a cycle 2 log n times, also the join
and split operations as well as the exposing of Nend and searching for q
are negligible compared to the O(n) runtime.

Note also that we only call newneighbor() of vertices we then add
to U and then not again during the entire algorithm so no vertex has
newneighbor() called more than 40 log n times. At most O(n/ log n)
many vertices are added to U , and U is small enough so that it is always
much smaller than n/8.

This concludes the proof of Proposition 5.6.

Lemma 5.7. Given a Hamilton path we can transform it to a Hamilton
cycle in O(n) time.

Proof. Calling the algorithm AddSingleCycle with the cycle being pstart,
but instead looking for v such that a vertex after v is in the neighborhood
of pstart instead of a predecessor gives us a cycle C = (pstart, ..., v) +
(pend, ..., afterP (v)). The analysis of the runtime is equivalent to the
analysis of AddSingleCycle.

Propositions 5.4 and 5.6 as well as Lemma 5.7 show that all components
of the algorithm run in time O(n). It is also easy to check that both
phases together require at most 50 log n calls to newneighbor() from
any fixed vertex, so the assumptions of Lemma 5.8 do hold. So choosing
C large enough, say C = 200, suffices to guarantee that with high prob-
ability the random graph is such that all vertices have more neighbors
than we query. This thus concludes the proof of Theorem 5.1.
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5.3 Datastructures

In this section we give the details of the data structures that we used
within our algorithm for finding the Hamilton cycle.

5.3.1 Querying a new vertex

As explained above, we assumed throughout the analysis of our algo-
rithm that we have access to a function newneighbor(v), that returns
for a given vertex v a neighbor w that is uniformly distributed in V − v
and whose result is independent from all previous calls.

Lemma 5.8 (newneighbor). It is possible to interact with the graph
G(n, p), p ≥ C logn

n , with an algorithmic procedure newneighbor(v)
which has the following properties with high probability:
(i) Calling newneighbor(v) returns a neighbor of v distributed uni-
formly among V − v and independent of all calls so far – as long as we
make at most O(n) calls to newneighbor() altogether and every vertex
is queried at most 100 log n times. (ii) The total run time of all O(n)
calls is O(n).

Proof. To realize such a function newneighbor(), it is important to
make the adjacency lists independent of each other. To realize this we
transform the graph G (which is distributed as a random graph G(n, p))
into a directed graph G′ distributed asD(n, p/2) (in which each directed
edge is present independently with probability p/2). It is well know how
this can be done. In particular, we can sample D(n, p/2) from G(n, p)
as a subgraph such that every edge in the directed graph is also an
undirected edge in the G(n, p). More precisely, we do the following for
every edge {i, j} of G: with probability

1

2
− p

4
set (i, j) ∈ G′ and (j, i) 6∈ G′

1

2
− p

4
set (i, j) 6∈ G′ and (j, i) ∈ G′

p

4
set (i, j) ∈ G′ and (j, i) ∈ G′

p

4
set (i, j) 6∈ G′ and (j, i) 6∈ G′
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In order to be consistent with the transformation from G to G′ and to
not lose too much time we only direct the edges once we see it for the
first time. To recall the made decision, we store the random choices of
the edges that we have we encountered so far into a hashtable. Thus,
we can check for each edge that we obtain from querying the adjacency
list of a vertex in G, whether we have seen this edge already and if so,
which orientation we have chosen. The hash table has size n and we
use a hashfunction which is 4-wise independent. This way the variance
of the number of collisions is equal to a random function, and therefore
the time we need for hashing is O(n) + O(number of collisions) =
O(n), which can be seen by applying Chebyshev’s inequality. A more
detailed argument of why linear probing with hash functions works in
this context can be found in [PPR07, TZ04].

Finally, we want the distribution of the next edge to be uniform among
the vertices. For this we need to resample from the already seen edges.
Assuming we have revealed d many edges from v we flip a biased coin.
With probability d/(n − 1) we retake an old neighbor and output it,
one chosen uniformly at random, and with probability 1 − d/(n − 1)
we take the next vertex in the adjacency list (which is also in D(n, p)).
Otherwise, we return one of the previously seen neighbors uniformly at
random. In this way any vertex has probability exactly 1/(n− 1) to be
returned by newneighbor(v).

5.3.2 Expansion

What we need from the random graph are properties of good expansion.
Given the adjacency list of a vertex v we define the d-neighborhood
Nd(v) ⊆ V (G) to be the set of the first dde calls to the function
newABneighbor(v). In the analysis of the algorithm we make use of
the following lemma.

Lemma 5.9 (Neighborhood Lemma). Let G(n/2, n/2, p) be a random
bipartite graph with p ≥ C log(n)

n and partitions A and B. Then with
high probability we have for all subsets A′ ⊆ A that the d-neighborhood
of A′ is of size at least

|Nd(A′)(A
′)| ≥ 1

100
|A′| · d(A′), (5.1)
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where d(A′) = min(
√

n
|A′| , log(n)).

Proof. The proof follows from a straight forward calculation of prob-
abilities. Let us assume by contradiction there exists a set A′ ⊆ A
with |Nd(A′)(A

′)| < 1
100 |A

′| · d(A′). Then there is a set B′ ⊆ B of size
|B′| = 1

100 |A
′| · d(A′) containing this d-neighborhood, Nd(A′)(A

′) ⊆ B′.
So this is a probability we want to bound from above. The probabil-
ity for a single vertex in A′ to have its d-neighborhood contained in

a fixed set B′ is
(
|B′|
n

)d(A′)

since the d-neighborhood is d(A′) vertices
chosen from B uniformly and independently at random. The probabil-
ity for two specific sets A′ ⊆ A and B′ ⊆ B to have this property is
(|B′|/n)

|A′|·d(A′). Now take the union bound over all possible sets A′
and B′ (with |B′| = 1

100 |A
′| · d(A′)):

Pr[(5.1) false] ≤
∑
A′,B′

Pr[B′ contains Nd(A′)(A
′)]

=

n∑
i=1

(
n

i

)(
n

1
100 i d(i)

)( 1
100 i · d(i)

n

)i·d(i)

(5.2)

Then we apply an approximation for the binomial coefficients:
(
n
k

)
≤(

en
k

)k. We see that 1
4 log 100n

i·d(i) ≥ log(e · n/i)/d(i) so

Pr[(5.1) false] ≤
n∑
i=1

exp

(
i · d(i) ·

(
−1

2
log

(
100n

i · d(i)

)))
Now d(i) is a known function of i. So we distinguish between two cases.
When i ≥ n/ log2(n), then d(i) =

√
n/i. And we can calculate (i ≤ n)

n∑
i=1

(
i1/4 · n1/4

10 · n1/2

)√n i

≤
n∑
i=1

(
1

10

)√n i

≤ O(n−2)

On the other hand if i ≤ n/ log2(n), then d(i) = log(n). And we can
calculate

n/ log2(n)∑
i=1

(
i1/2 · log(n)1/2

10 · n1/2

)i log(n)

≤
n/ log2(n)∑

i=1

(
1

10 · log(n)1/2

)i log(n)

≤ O(n−2) (5.3)
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Together this implies that the lemma holds for random graphs with
probability ≥ 1−O(n−2).

5.3.3 AVL Trees

Lemma 5.10 (AVL Trees). We can store a path (or cycle) in an AVL
tree joint with a linked list datastructure and can perform the following
operations (where we view the cycle as a path split at an arbitrary point):

• For any vertex v find the vertex preceding or succeeding it in the
path in constant time O(1)

• For any vertex v searching the path it is in and determining whether
it is in the first or second half of it in time O(log n)

• Split the path into two paths in time O(log n)

• Concatenate two paths into one by adding the endpoint of one to
the start of the other in time O(log n)

Proof. We combine an AVL tree, which is a balanced binary search tree,
with a linked list. The AVL tree is built on the order sequence of the
path as if numbering the vertices along the path from 1 to |P |. The
linked list ensures that going forward and backward on the path is done
in constant time, where the AVL tree can perform search (for the half
function) in O(log n). A split of the path is nothing other than splitting
the AVL tree at a leaf node into two trees such that all the nodes
smaller go into one tree and all the nodes larger go into the other. The
concatenate is the inverse of the split and only requires attaching the
smaller tree to the larger one at the appropriate node and rebalancing
up to the root. Both operations run in O(log n) time.AVL trees are by
now a part of basic datastructure lectures and in particular the split and
concatenate operations can be found e.g. in the book by Knuth [Knu98]
see page 473, which also cites from [Cra72] or more generally on AVL
trees see [Pfa98].



Chapter 6
Mastermind with a

Linear Number of Queries

In this chapter, we provide an algorithm (sequence of queries) for solving
mastermind with linearly many queries. The content of this chapter is
from a submitted paper by Martinsson and the author ([MS20]).

6.1 Introduction

Mastermind is a famous code-breaking board game for two players. One
player, code-maker, creates a hidden codeword consisting of a sequence
of four colors. The goal of the second player, the codebreaker, is to
determine this codeword in as few guesses as possible. After each guess,
codemaker provides a certain number of black and white pegs indicating
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how close the guess is to the real codeword. The game is over when
codebreaker has made a guess identical to the hidden string. The board
game version was first released in 1971, though older pen-and-paper
versions (e.g. bulls and cows) were known before it.

Guessing games such as Mastermind have gained much attention in the
scientific community. This is in part out due to their popularity as
recreational games, but importantly also as natural problems in the
intersection of information theory and algorithms. In particular, it is
not too difficult to see that two-color Mastermind is equivalent to coin
weighing with a spring scale. This problem was first introduced in 1960
by Shapiro and Fine [SF60]. In subsequent years, a number of different
approaches have been devised which solves this problem up to a constant
factor of the information-theoretic lower bound.

The general k color n slot Mastermind first appeared in the scien-
tific literature in 1983 in a paper by Chvátal [Chv83]. By extending
ideas of Erdős and Rényi [ER63] from coin-weighing he showed that
the information-theoretic lower bound is sharp up to constant factor for
k ≤ n1−ε.

Surprisingly, for a larger number of colors, the number of guesses needed
to reconstruct the codeword has remained unknown. In particular, for
k = n, the best-known algorithm by Doerr, Doerr, Spöhel, and Thomas
[DDST16] reconstructs the codeword in O(n log log n) guesses, whereas
no significant improvement on the information-theoretic lower bound of
Ω(n) is known.

In this chapter, we resolve this problem after almost 40 years by show-
ing how the n color n slot Mastermind can be solved in O(n) guesses,
matching the information-theoretic lower bound up to constant factor.
By combining this with a result by Doerr et al., we determine asymp-
totically the number of guesses for any combination of k and n.

6.1.1 Related work

The study of two-color Mastermind dates to an American Mathematical
Monthly post in 1960 by Shapiro and Fine [SF60]: “Counterfeit coins
weigh 9 grams and genuine coins all weigh 10 grams. One is given n
coins of unknown composition, and an accurate scale (not a balance).
How many weighings are needed to isolate the counterfeit coins? ”

It can be observed, already for n = 4, that fewer than n weighings are
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required. The authors consequently conjecture that o(n) weighings suf-
fice for large n. Indeed, the entropy lower bound states that at least
n/ log2(n+ 1) weighings are necessary. In subsequent years, many tech-
niques were independently discovered that attain this bound within a
constant factor [ER63, CM66, Lin64, Lin65], see also [ER63] for fur-
ther early works. Erdős and Rényi [ER63] showed that a sequence of
(2 + o(1))n/ log2 n random weighings would uniquely identify the coun-
terfeit coins with high probability, and by the probabilistic method there
is a deterministic sequence of O(n/ log n) weighings that identifies any
set of counterfeit coins.

Cantor and Mills [CM66] proposed a recursive solution to this problem.
Here it is natural to consider signed coin weighings, where, for each coin
on the scale, we may choose whether it contributes with its weight or
minus its weight. We call a {−1, 0, 1} valued matrix A an identification
matrix if any binary vector x of compatible length can be uniquely
determined by Ax. It is simple to show that if A is an identification
matrix, then so is (

A A I
A −A 0

)
. (6.1)

By putting A0 = (1) and recursing this formula, we obtain an identi-
fication matrix Ak with 2k rows and (k + 2)2k−1 columns. Thus, we
can identify which out of n = (k + 2)2k−1 coins are counterfeit by us-
ing 2k ∼ 2n/ log2 n signed weighings, or, by weighing the +1s and −1s
separately, using 4n log2 n (unsigned) weighings. Using a more careful
analysis, the authors show that ∼ 2n/ log2 n weighings suffice.

It was shown in [ER63] that 2n/ log2 n is best possible, up to lower
order terms, for non-adaptive strategies. It is a central open problem to
determine the optimal constant for general strategies, but it is currently
not known whether adaptiveness can be used to obtain a leading term
improvement.

In 1983 Chvátal [Chv83] proposed the generalized version of Mastermind
with k colors and n slots. Here the entropy lower bound states that
Ω(n log k/ log n) guesses are necessary. For k ≤ n1−ε, he showed that
a simple random guessing strategy uniquely determines the codeword
within a constant factor of the entropy bound.

For larger k, less is known. For k between n and n2, Chvátal showed
that 2n log2 k + 4n guesses suffice. For any k ≥ n, this was improved
to 2n log2 n + 2n + dk/ne + 2 by Chen, Cunha, and Homer [CCH96],
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further to ndlog2 ke+d(2−1/k)ne+k by Goodrich [Goo09b], and again to
ndlog2 ne−n+k+1 by Jäger and Peczarski [JP11]. As a comparison, we
note that if k = k(n) is polynomial in n, then the entropy lower bound
is simply Ω(n). This gap is a very natural one as Doerr, Doerr, Spöhel,
and Thomas [DDST16] showed in a relatively recent paper that if one
uses a non-adaptive strategy, there is in fact a lower bound of Ω(n log n)
when k = n. In the same paper they also use an adaptive strategy to
significantly narrow this gap, showing that O(n log log n) guesses suffice
for k = n. Moreover, by proving a general relation between n = k
Mastermind with only black pegs and k ≥ n Mastermind with both
black and white pegs, they show that O(n log log n+k/n) guesses suffice
for any k ≥ n.
The special case of n = 4 and k = 6, being the most common commer-
cial version of Mastermind, has received some special attention. Knuth
[Knu77] showed that the optimal deterministic strategy needs 5 guesses
in the worst case. In the randomized setting, it was shown by Koyama
[Koy93] that optimal strategy needs in expectation 5625/1296 = 4.34 . . .
guesses for the worst case distribution of codewords.

Stuckman and Zhang [SZ06] showed that it is NP-hard to determine
whether a sequence of guesses with black and white peg answers is con-
sistent with any codeword. The analogous result was shown by Goodrich
[Goo09b] assuming only black peg answers are given. It was shown by
Viglietta [Vig12] that both of these results hold even for k = 2.

Mastermind has furthermore been proposed to model attacks on ge-
nomic data [Goo09a] and cracking bank pins [FL10].

6.1.2 Results

Our contribution lies in resolving the black-peg Mastermind game for
k = n where we have as many possible colors as positions.

Theorem 6.1. For n colors and n positions we can solve black-peg
Mastermind with O(n) many queries and in polynomial time with high
probability.

The above result is best possible up to a constant factor as the natural
entropy lower bound shows. Moreover, if we additionally assume that
the codeword can only be a permutation of the colors, that is each color
must appear exactly once, then we can solve it deterministically with
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O(n) queries.

Combining our results with earlier results by Doerr, Doerr, Spöhel, and
Thomas we are able to resolve the randomized query complexity of Mas-
termind in the full parameter range, thus finally resolving this problem
after almost 40 years. Recall that the randomized query complexity is
the minimum (over all strategies) maximum (over all codewords) ex-
pected number of queries needed to win the game.

Theorem 6.2. For k colors and n positions, the randomized query
complexity of Mastermind is

Θ(n log k/ log n+ k/n),

if codebreaker receive both black-peg and white-peg information for each
query, and

Θ(n log k/ log n+ k),

if codebreaker only receives black-peg information.

We believe that the same result holds true the deterministic query com-
plexity, but we will not attempt to prove it here.

6.2 Game of Mastermind

We define a game of Mastermind as a two player game, where one
player, the codemaker, chooses a hidden codeword c = (c1, ..., cn) in
[k]n, where c is an n-tuple or string of colors in [k]. The other player,
the codebreaker, may submit queries of the form q = (q1, ..., qn) ∈ [k]n

which are also stings of n colors. We call k the number of colors and n
the number of positions.

For each query q, we associate two integers, which we call the number
of black and white pegs respectively. The number of black pegs is the
number of correct positions in which the codeword matches the query
string. The number of white pegs is often referred to as the number of
correctly guessed colors which do not have the correct position. More
formally, the number of white pegs is the number of additional correct
positions one can maximally obtain by permuting the entries of q. We
denote the number of black and white pegs by b(q) = bc(q) and w(q) =
wc(q) respectively.
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We differentiate between two versions of Mastermind, we call black-
peg Mastermind the game when codemaker gives only the number of
black pegs as an answer to every query and we call black-white-peg
Mastermind as the Mastermind game when codemaker gives both the
number of black and the number of white pegs as answer to every query.

The game is over as soon as codebreaker makes a query such that bc(q) =
n, that is, q = c. The goal of the codebreaker is to make the game ends
after as few queries as possible.

6.3 Preliminaries

Doerr, Doerr, Spöhel, and Thomas [DDST16] showed that the case
k = n is the last remaining case to be able to get tight asymptotic
bounds for all k. For this reason we focus on this case only except for
Section 6.5. We first run a randomized algorithm so that we can assume
afterwards that the codeword is a permutation which makes the analysis
cleaner. We believe it is possible to adapt the algorithm to deal with
non-permutation codewords deterministically but we will not prove it
here.

6.3.1 Finding a zero vector

For constructing our Mastermind queries below, it turns out to be useful
to guess “blank” in certain positions of the string. To achieve this, it
suffices to find a query z such that b(z) = 0, which can be done as
follows.

Lemma 6.3. Let k ≥ 2. With n+ 1 many queries we can find a string
z ∈ [k]n which results in bc(z) = 0.

Proof. Query the string of all 1s, t(0), as well as the strings t(i) for all
i ∈ {1, .., n} where t(i) is the string of all ones except at the ith position
it has a 2. Now if bc(t(i)) = bc(t

(0)) − 1, then ci 6= 2, otherwise ci 6= 1
and we have at every position a color that is incorrect, so we have a
string z which satisfies bc(z) = 0.

Note that if k = n and we are content with a randomized search then
we can find an all zero string by choosing queries z ∈ [n]n uniformly
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Algorithm 5 Permutation

Output: n pairwise disjoint strings f (1), . . . , f (n) such that each
string contains exactly one correct position

1: for i ∈ [n] do
2: S

(1)
i = [n];

3: k = 1;
4: while k ≤ n do
5: rand← Choose a random color for each position i from S

(k)
i for

each i ∈ [n];
6: if b(rand) == 1 then
7: f (k) ← rand;
8: for i ∈ [n] do
9: S

(k+1)
i = S

(k)
i \ {randi};

10: k = k + 1;
11: return f (1), . . . , f (n)

at random until a query is obtained with bc(z) = 0. As the success
probability of one iteration (1 − 1/n)n ≥ 1/4, this takes on average at
most 4 guesses.

6.3.2 Permutation

The following lemma is due to Angelika Steger (from personal commu-
nication).

Lemma 6.4. The Algorithm 5 will, with high probability, need at most
O(n) many queries to find n different strings such that every correct
position is contained in exactly one of the strings.

Proof. The finding of these strings is done by random queries. Let
S(1) = [n]n start out to be the entire space of possible queries. Sam-
ple uniform random queries rand from S(1) until one of them gives
b(rand) = 1. Set this query to be f (1). Now set aside all colors
at the corresponding positions and keep querying. That is S(2)

1 =

[n]\f (1)
1 × ...× [n]\f (1)

n and sample again random queries rand from S(2)

until one of them gives b(rand) = 1. In this way set aside f (i) which was
received by querying randomly from S(i) = [n]\{f (1)

1 , .., f
(i−1)
1 } × ... ×
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[n]\{f (1)
n , .., f

(i−1)
n }. Let us analyze how many queries this takes. The

sets S(i) have n− i+ 1 many possible colors at every position and also
n− i+ 1 many positions at which there is still a correct color available.
So every position with a still available correct color will have chance of
1/(n − i + 1) chance of being in rand and this independently of every
other position. So the probability that b(q) = 1 for a random query is

Pr[b(rand) = 1] = (n− i+ 1) · 1

n− i+ 1

(
1− 1

n− i+ 1

)n−i
≥ e−1

(6.2)

Let Xi be the number of queries it takes to find the ith string to set
aside. Then Xi is geometrically distributed and the total time is the
sum of all Xi, i ∈ [n], which is an independent sum of geometrically
distributed random variables with success probabilities as in (6.2), so
expected at most e−1. Applying the Chebychev inequality gives us that,
w.h.p. we can find f (1) to f (n) with O(n) many queries.

6.3.3 Signed Permutation Mastermind

By treating the strings in Lemma 6.4 as colors, we may assume that the
codeword is a permutation of [n], i.e. each color appears exactly once.
To simplify the presentation of our main algorithm below, we will in
addition modify Mastermind to allow for signed queries, as follows.

Definition 6.5. For a given n, we define signed permutation Master-
mind as the variation of black-peg Mastermind on n slots and colors
where the codeword is a permutation of [n] and where codebreaker is
allowed to make signed queries. Each signed query consists of a string
q ∈ {−n, . . . , n}n, and we define b(q) = bc(q) := |{i ∈ [n]|ci = qi}|−|{i ∈
[n]|ci = −qi}|.

We denote by spmm(n) the minimum number of guesses needed by any
deterministic strategy to win signed permutation Mastermind.

Lemma 6.6. Black-peg Mastermind with n colors and slots can be
solved in O(n+ spmm(n)) guesses with high probability.

Proof. We apply Lemma 6.4 to get n disjoint strings each with one
correct position and we can remap the colors to these strings. Then
instead of colors in [n] we have colors in {f (1), . . . , f (n)}. And then
there is a correct position in every one of the new colors.
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Figure 6.1: Information Tree for n = 8. Every node corresponds to an
interval, here marked in red.

Then we apply Lemma 6.3 to get an all zero string. Every query in
the signed permutation Mastermind we can simulate in the black-peg
Mastermind with two queries. For every query q we make in the signed
permutation Mastermind we can make a q+ and a q− query in the black-
peg Mastermind where q+ is all the positive positions of q and replacing
positions which are negative or zero by the corresponding entry at the
same position of the zero query we get from Lemma 6.3, and q+ is in the
same way all negative positions. Then b(q+) − b(q−) in the black-peg
Mastermind is equal to the query answer of b(q) in the signed permuta-
tion Mastermind. This transformation can be done in polynomial time
and proves the reduction to signed permutation Mastermind.

6.4 Proof of Theorem 6.1

With the reduction from the previous section at hand, we may assume
that each color appears in the hidden codeword exactly once. It remains
to show that we can determine the position of every color by using O(n)
signed queries. Before presenting our algorithm, we will first present a
token sliding game which will be used to housekeep, at any point while
playing signed permutation Mastermind, the information we currently
have for each color.

Definition 6.7. Given an instance of signed permutation Mastermind,
we define the corresponding information tree T as a rooted complete
balanced binary tree of depth dlog2 ne. We denote by nT the number of
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1
4

2

7 8 6 5 3

2 1 7 4 8 6 5 3

2 4 7 1 8 6 5 3

1 2 7 4 8 6 5 3

4 2 7 1 8 6 5 3

Figure 6.2: Example configuration for n = 8. Tokens of colors 1
through 8 are at different positions in the information tree and there

are 4 remaining possibilities for the codeword.

leaves of the tree. In other words, nT is the smallest power of two bigger
than or equal to n. For each vertex in T , we associate a (sub-)interval
of [nT ] as follows. We order the vertices at depth d in the canonical way
from left to right, and associate the jth such vertex with the interval
[(nT /2

d)(j − 1) + 1, (nT /2
d)j].

Note that if n is not a power of two, some vertices will be associated
to intervals that go outside [n]. An example of an information tree for
n = 8 is illustrated in Figure 6.1.

We introduce handy notation for the complete binary tree T . The root
of T is denoted by r. For any vertex we denote by vL and vR its left and
right child respectively if they exist and if we descend multiple vertices
we write vLR for (vL)R. Further TL denotes the induced subtree rooted
at rL, similarly T∗ is the the induced subtree rooted at r? for ? being
any combination of R and L such that r? exists.

For any instance of signed permutation Mastermind, we perform the
following token game on the information tree as follows. We initially
place n colored tokens at the root r, one for each possible color in our
Mastermind instance. At any point, we may take a token at position v
and slide it to a either vL or vR, if we can prove that the position of its
color in the hidden codeword lies in the corresponding sub-interval.

Observation 6.8. When all tokens are positioned on leaves of T , we
know the complete codeword.
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Algorithm 6 Preprocess(T)

Input: Tree T
Output: Preprocessed tree T

1: if nT ≤ 2 then
2: Use 1 query to move all tokens to leafs of T ;
3: return T;
4: for each token t at r do
5: Query t and slide token to either rL or rR;
6: for each token t at rL do
7: Query t and slide token to either rLL or rLR;
8: Run Preprocess(TLL);
9: Run Preprocess(TLR);

10: return T;

The simplest way to move a token is by performing a query that equals
that color on, say, the left half of its current position, and zero every-
where else. We call this step querying a token.

Definition 6.9. For a color f with token at non-leaf node v, we say we
query the color f if we make a query of the color f only in the left half
of the interval corresponding to v (zero everywhere else).

We note that any query of this form can only give 0 or 1 as output. We
will refer to any such queries as zero-one queries.

6.4.1 Solving Signed Permutation Mastermind

We are now ready to present our main strategy to solve signed permu-
tation Mastermind by constructing a sequence of entropy dense queries
that allows us to slide all tokens on T from the root to their respective
leafs. This will be done in two steps, which we call Preprocess(T) and
Solve(T).

As intervals corresponding to vertices close to the root of T are so large,
there is initially not much room to include many colors in the same
query. Thus the idea of the preprocessing step is to perform O(n)
simple queries, in order to move some of the tokens down the tree and
thus allow the solve step to query many colors in parallel.

Preprocess(T), see Algorithm 6, takes the tree, weighs (Definition 6.9)
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16 tokens

1 token each 1 token each

4 tokens4 tokens

Figure 6.3: Tree preprocessed for n=32, all black vertices have been
emptied, tokens are at red vertices.

all colors whose tokens are at the root r and slides the tokens accord-
ingly. Then repeats for the left child of the root rL . Then we recusivly
apply the algorithm to the subtrees of the left two grandchildren of the
root TLL and TLR. If the tree has depth 2 or less, we skip all the steps
on vertices which do not exist.

Proposition 6.10. The Algorithm 6 Preprocess(T) requires at most
3nT zero-one queries and runs in polynomial time.

Proof. Clearly if the depth of the tree is ≤ 2 this holds, as we make
only a single zero-one query. Then the rest follows by induction, if we
analyze the number of queries needed we see, at the root r we need to
query at most nT tokens, and at the left child rL we query at most
nT /2. In the left grandchildren we recurs. So if a(nT ) is the maximum
number of queries we need for Preprocess(T) for a tree with nT leafs,
then it holds that

a(nT ) ≤ nT+nT /2+a(nTLL)+a(nTLR) = nT+nT /2+a(nT /4)+a(nT /4)

From which follows that a(nT ) ≤ 3nT . Since we only query tokens all
queries we do are zero-one queries and this can be done in polynomial
time concluding the proof.

The result of running Preprocess(T) is illustrated in Figure 6.3. All
tokens have either been moved to leafs, or to a vertex of the form
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rR, r∗R, r∗∗R, . . . where each ‘∗’ denotes either LL or LR. This we call
a preprocessed tree.

Once T is preprocessed we can run the second algorithm Solve(T),
see Algorithm 7. Due to the preproccessing, we know which colors are
contained in the leftmost two quarters as well as the rightmost half
of the codeword. Thus we can now solve the subproblems formed by
TLL, TLR, and TR independently of each other. Moreover, TLL and TLR
are already preprocessed. We now use this observation to construct
Solve(T) recursively. If the depth of the tree is at most 2, we already
know the codeword from the preprocessing. For larger trees, we recur-
sively simulate Solve() on the subtrees TLL and TLR and also simulate
the algorithm Preprocess(TR). Here, simulating a function mean that
they are still allowed to move tokens in the information tree, but when-
ever they try to make a query, the string will instead be pushed to the
parent process.

In order to get a speedup from this parallelism, we employ an idea
similar to the Cantor-Mills construction (6.1) for coin-weighing.

Lemma 6.11. Define the support of a query q as the set of indices
i ∈ [n] such that qi 6= 0. For any three queries q(1), q(2), and s with
disjoint supports and such that s is a zero-one query, we can determine
b(q(1)), b(q(2)), and b(s) by making only two queries.

Proof. We query w(1) = q(1) + q(2) + s and w(2) = q(1) − q(2), where
+ and − denote element-wise addition subtraction respectively. Then
we can retrieve the answers from just the information of b(w(1)) and
b(w(2)). If we combine the queries, b(w(2)) + b(w(2)) = 2b(q(1)) + b(s).
So we can retrieve b(s) = b(w(2)) + b(w(2)) mod 2. And then also the
queries, b(q(2)) = (b(w(1)) + b(w(2)) − b(s))/2 and b(q(2)) = (b(w(1)) −
b(w(2))− b(s))/2 are recoverable.

Proposition 6.12. Calling Algorithm 7, Solve(), for a preprocessed
tree will move all the tokens to leaves. Moreover, the algorithm will use
at most 6nT queries and runs in polynomial time.

Proof. The first statement follows by induction. If nT ≤ 2 a prepro-
cessed tree already has all its tokens at leaves, so nothing needs to be
done. The induction step follows by correctness of Lemma 6.11.
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Algorithm 7 Solve(T)

Input: Preprocessed Tree T
Output: Tree T where all tokens have been queried down to the
leaves

1: if nT ≤ 2 then
2: return T;
3: Simulate: Solve(TLL), Solve(TLR) and Preprocess(TR);
4: while at least one simulated process has not finished do
5: Get the next queries q(1), q(2), and s requested by the processes;
6: Compute the answers using two queries, as in Lemma 6.11, and

return to the respective process;
7: Solve(TR);
8: return T;

For the runtime analysis, also use induction. If the depth nT ≤ 2
then clearly the statement holds. Then if nT > 2 we must simulate
Solve(TLL), Solve(TLR) and Preprocess(TR) where we only need
two queries for every three and we must run Solve(TR). In total we get
the following recursion where c(nT ) is the maximum number of queries
we must make during Solve(T) and a(nT ) the maximum number of
queries that Preprocess(T) must make in a tree with nT leafs.

c(nT ) ≤ 2 ·max(c(nTLL), c(nTLR), a(nTR)) + c(nTR)

= 2 ·max(c(nT /4), a(nT /2)) + c(nT /2)

By Proposition 6.10 we know a(nT /2) ≤ 3nT /2 so by induction we get
that c(nT ) ≤ 6nT . All the operations are clearly in polynomial time so
this concludes the proof.

Now we have all the tools at hand to prove the main Theorem 6.1.

Theorem 6.1. For n colors and n positions we can solve black-peg
Mastermind with O(n) many queries and in polynomial time with high
probability.

Proof. We have Lemma 6.6 which reduces the problem of solving black-
peg Mastermind to solving signed permutation Mastermind. For the
new instance of signed permutation Mastermind that results from this
we consider the information tree. We move the tokens of this tree to



6.5. Playing Mastermind with arbitrarily
many colors 103

the leaves with first the algorithm Preprocess(T) and then Solve(T)
on the preprocessed tree. By Propositions 6.10 and 6.12 this takes at
most 9nT signed queries and is done in polynomial time. By Observa-
tion 6.8 we have found the hidden codeword of the signed permutation
Mastermind, and therefore also the hidden codeword of the black-peg
Mastermind game. The transformation can be done in polynomial time
and by Lemma 6.6 we need at most O(n+9nT ) = O(n) queries to solve
black-peg Mastermind.

6.5 Playing Mastermind with arbitrarily
many colors

We briefly make some remarks on other ranges of k and n for Master-
mind. By combining Theorem 6.1 with results of Chvátal [Chv83] and
Doerr, Doerr, Spöhel, and Thomas [DDST16], we determine up to con-
stant factors the smallest expected number of queries needed to solve
mastermind for any n and k.

Theorem 6.2. For k colors and n positions, the randomized query
complexity of Mastermind is

Θ(n log k/ log n+ k/n),

if codebreaker receive both black-peg and white-peg information for each
query, and

Θ(n log k/ log n+ k),

if codebreaker only receives black-peg information.

For any n and k, let bmm(n, k) denote the minimum (over all strategies)
worst-case (over all codewords) expected number of guesses to solve
Mastermind if only black peg information can be used. Similarly, denote
bwmm(n, k) the smallest expected number of queries needed if both
black and white peg information can be used. The following relation
between was shown by Doerr, Doerr, Spöhel, and Thomas.

Theorem 6.13 (Theorem 4, [DDST16]). For all k ≥ n ≥ 1,

bwmm(n, k) = Θ (bmm(n, n) + k/n) .



104
Chapter 6. Mastermind with a

Linear Number of Queries

Proof of Theorem 6.2. For small k, say k ≤
√
n, the result follows by

the results of Chvátal [Chv83]. Moreover, for k ≥ n the white peg
statement follows directly by combining Theorems 6.1 and 6.13. Thus
it remains to consider the case of

√
n ≤ k ≤ n, and the case of k ≥ n

for black-peg Mastermind.

For
√
n ≤ k ≤ n, the leading terms in both bounds in Theorem 6.2

is of order n, which matches the entropy lower bound. On the other
hand, using Lemma 6.3 we can find a query such that b(z) = 0 in O(n)
queries. Having found this, we simply follow the same strategy as for n
color black-peg Mastermind by replacing any color > k in a query by
the corresponding entry of z. Thus finishing in O(n) queries.

Finally, for black-peg Mastermind with k ≥ n, the leading term in
Theorem 6.2 is of order k. This can be attained by using k guesses
to determine which colors appear in the codeword, and then reduce
to the case of n colors. On the other hand, Ω(k) is clearly necessary
as this is the expected number of queries needed to guess the correct
color in a single position, provided the codeword is chosen uniformly at
random.
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