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Adapting Footfall Rhythmicity to
Auditory Perturbations Affects
Resilience of Locomotor Behavior: A
Proof-of-Concept Study
Deepak K. Ravi, Caroline C. Heimhofer, William R. Taylor* and Navrag B. Singh

Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zürich, Switzerland

For humans, the ability to effectively adapt footfall rhythm to perturbations is critical
for stable locomotion. However, only limited information exists regarding how dynamic
stability changes when individuals modify their footfall rhythm. In this study, we recorded
3D kinematic activity from 20 participants (13 males, 18–30 years old) during walking on
a treadmill while synchronizing with an auditory metronome sequence individualized to
their baseline walking characteristics. The sequence then included unexpected temporal
perturbations in the beat intervals with the subjects required to adapt their footfall
rhythm accordingly. Building on a novel approach to quantify resilience of locomotor
behavior, this study found that, in response to auditory perturbation, the mean center of
mass (COM) recovery time across all participants who showed deviation from steady
state (N = 15) was 7.4 (8.9) s. Importantly, recovery of footfall synchronization with
the metronome beats after perturbation was achieved prior (+3.4 [95.0% CI +0.1,
+9.5] s) to the recovery of COM kinematics. These results highlight the scale of temporal
adaptation to perturbations and provide implications for understanding regulation
of rhythm and balance. Thus, our study extends the sensorimotor synchronization
paradigm to include analysis of COM recovery time toward improving our understanding
of an individual’s resilience to perturbations and potentially also their fall risk.

Keywords: time perception, motor control, fall risk, sensorimotor synchronization, sensory cues, recovery
potential, movement timing, rhythm perturbations

INTRODUCTION

The rhythmic alternation of the trunk and limbs is a distinctive, visibly apparent characteristic of
human walking. To achieve this, numerous muscles in the body are cyclically activated in a
coordinated sequence by neural commands. The precise location of the generation of these neural
commands still remains a matter of debate (Dougherty and Ha, 2019), but accumulating evidence
suggests the involvement of a distributed network of inter-neurons and motor-neurons in the
spinal cord (Takakusaki, 2017; Grillner and El Manira, 2020). Together with descending supraspinal
signals and other interacting sensory, vestibular pathways, this movement circuitry contributes to
the continuous regulation of our walking rhythm, even in the presence of perturbations (Rossignol
et al., 2006; Goulding, 2009; Aoi et al., 2010). Importantly, impaired regulation of rhythmic
walking patterns results in either random or stereotypical behavior that limits one’s ability to
adapt to perturbations, as observed in subjects with an increased risk of falling (Callisaya et al.,
2011; Hamacher et al., 2011), as well as in individuals suffering from movement disorders, e.g.,
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Parkinson’s disease (O’Boyle et al., 1996; Plotnik and Hausdorff,
2008; Ravi et al., 2020) or stroke (Balasubramanian et al., 2009;
Krasovsky et al., 2013).

To investigate and identify subtle impairments in rhythmicity
and its regulation related to clinical symptomatology, it is
necessary to move beyond experiments involving observations
during steady state walking, in order to challenge the underlying
neuromuscular mechanisms (Full et al., 2002). As a result,
one proposed approach has been to exploit the sensorimotor
synchronization paradigm (Repp, 2005; Torre et al., 2010),
which evaluates a subject’s ability to match the rhythmic
oscillations of a limb with an external (often auditory) stimulus,
including infrequent temporal perturbations (where beats are
presented earlier or later than expected). This paradigm therefore
challenges the individual’s inherent rhythmicity during walking
and assesses the elicited adaptive motor responses (Chen et al.,
2006; Roerdink et al., 2009; Pelton et al., 2010; Wagner et al.,
2016; Forner-Cordero et al., 2019). The methodology has, in
essence, several positive aspects: the effect of altering rhythms
on walking behavior can provide controlled and reproducible
access to non-steady-state behavior as encountered in the real-
world (e.g., walking on uneven terrains, negotiating obstacles,
etc.). Furthermore, listening to music or beats is able to activate
motor networks and compensate for impaired internal timing,
hence providing a viable vehicle for rehabilitation of movement
disorders (Damm et al., 2020). In fact, synchronizing walking to
steady metronome beats (without perturbation) has been shown
to increase overall balance ability, and be effective for functional
locomotor recovery of individuals with stroke (Lee et al., 2018),
Parkinson’s disease (Capato et al., 2020), and multiple sclerosis
(Maggio et al., 2021).

Early studies investigating walking rhythm deficits using
auditory perturbations focused on the modality of temporal
correction, i.e., how quickly and/or accurately participants
are able to adapt the timing of their footfalls to recover
synchronization with the beat after perturbation (Roerdink
et al., 2009; Pelton et al., 2010). Here, the main observed
parameter is generally the rate or number of walking cycles to
achieve convergence to pre-perturbation footfall synchrony. In
synchronizing to rhythm-perturbed metronome beats, however,
the maintenance of stable whole-body (center of mass, COM)
movement patterns can directly influence the timing of footfall
correction response to the perturbation. Importantly, the inverse
effect of footfall corrections on the dynamic stability of walking
remains unaddressed, hence overlooking the critical aspect
inherent in this paradigm for understanding an individual’s
resilience to rhythm perturbations and falling (Ravi et al., 2021).
In this respect, recent empirical work suggests that individuals
may prioritize whole-body stability in the stepping process over
producing large synchronization corrections at the expense of
their balance control (Brauer et al., 2002; Chen et al., 2006;
Wright et al., 2014; Roy et al., 2017). However, it is not
immediately clear if corrections to footfall timing adjustments are
similarly to be expected for the dynamics of the COM, since the
position and velocity of the COM is constantly regulated relative
to the foot placement to maintain walking balance (Hof et al.,
2005, 2010; Wang and Srinivasan, 2014; Ignasiak et al., 2019).

Given the possibility that temporal corrections could
destabilize an individual and even induce a fall, it is clearly
necessary to better understand how rhythm perturbations affect
walking stability. To date, no study has attempted to explicitly test
this proposition. Importantly, the extent to which footfall rhythm
influences stability may also depend on the rhythm perception
ability of the participants [instructing poor rhythm perceivers to
synchronize could incur instability (Ready et al., 2019)] and the
magnitude of perturbations (Dotov et al., 2019). As more studies
including rhythm perturbations are now emerging (Krasovsky
et al., 2013; Wright et al., 2017; Geerse et al., 2020; Khan et al.,
2020; Nijs et al., 2020), it is timely to identify the governing
principles and detail the involvement of dynamic stability during
movement adaptation to rhythm perturbations: hence addressing
the fundamental question of how footfall rhythmicity interacts
with whole-body balance during walking.

A hallmark of successful movement adaptation is faster
return to steady state following a perturbation (Hadley et al.,
2017). The ability to reliably measure recovery of movement
behavior (i.e., resilience) would thus clearly provide an
improved understanding of the relationships between task level
synchronization outcomes (i.e., number of walking steps to
return to footfall synchrony) and dynamic stability of walking
(i.e., number of walking steps to return to steady state COM
kinematics). In order to address this underlying question,
we build upon the unique approach of Ravi et al. (2021)
for quantifying an individual’s COM recovery to steady-state
patterns after a perturbation. Toward understanding resilience
to rhythm perturbations during walking, this pilot study aimed
to investigate the relationships between footfall rhythmicity,
auditory perturbations, and dynamic stability. To achieve
this, the quantification of resilience was applied after young
adults were subjected to a beat delayed perturbation in a
metronome sequence.

MATERIALS AND METHODS

Study Participants
Twenty healthy young adults [13 males and 7 females; with
mean age: 24.9 (standard deviation SD: 2.3) years; height: 1.76
(0.07) m; mass: 72.7 (6.3) kg] with no history of neurological,
orthopedic or other disorders that would affect typical walking
patterns participated in this study. The protocol was approved by
the local institutional review board (protocol #EK 2019-N-178)
and all participants provided written informed consent prior to
participating, in accordance with the Declaration of Helsinki.

Experimental Protocol
A single-belt treadmill (h/p/cosmos sports & medical gmbh,
Nussdorf, Germany) and a 10-camera 3D optical motion
capture system (100 Hz; Vicon Motion Systems, Oxford,
United Kingdom) were used to record the participants’
movement patterns. A lower body marker set consisting of 37
reflective markers (see Supplementary Table 1 for anatomical
landmarks) was used. Participants wore comfortable shoes
and clothing, as well as headphones (Sennheiser HD280 pro,
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Sennheiser electronic GmbH & Co. KG, Wedemark, Germany)
to provide auditory cues and reduce background noise. They
were additionally secured with a ceiling-mounted harness (zero
bodyweight support) with chest and pelvis straps as a safety
precaution against trips and falls.

Baseline Condition
Participants first walked without any auditory stimulus (Baseline
walking 1, BW1, 6 min) at their pre-assessed self-selected walking
speed. Here, each individual’s baseline step time (defined as the
duration from the heel contact of one foot to the heel contact of
the contralateral foot, Figure 1A) was evaluated using a custom
algorithm based on foot velocity (O’Connor et al., 2007) to
inform the auditory conditions for the cued trial. In general,
5-min rest breaks were provided between the trials.

Stimulus Preparation
From BW1, a subject-specific metronome audio-track
(Supplementary Audio 1) was created in which the inter-
beat intervals (IBIs) of the auditory metronome (0.1 s of the
musical note A, sine wave with frequency 440 Hz) were matched
to the mean step time. To induce rhythm perturbations, the
created track was adjusted by embedding five perturbation
intervals, with the IBI increased by 20× the standard deviation
of the baseline step time (“perturbation magnitude”) and
introduced around 3 min into the track (Figure 1B).

Cued Condition
Participants were then explicitly instructed to maintain stepping
synchronicity with the beats and continue walking normally
despite possible alterations to the IBI timing throughout the trial.
After providing sufficient time for subjects to practice walking to
the provided beat, participants then completed 6 min of cued-
walking (CW) listening to the metronome track, which included
the planned auditory perturbation.

A further baseline walking trial (BW2, 6 min) without auditory
stimulus was then completed by the participants.

Data Analysis
Recovery of COM to Steady-State Patterns
The vertical displacement time series of the sacrum marker [used
as a simple approximation of the body COM (Yang and Pai, 2014)
and herein referred to as COM] from the three walking trials
[formulated as: XBW1(t), XCW (t) , and XBW2(t)] were used for
further analysis in this study. In order to minimize the start-
up effects on walking, the first 5 s of the data were removed
from analysis. The data were low pass filtered using a 4th order
Butterworth filter with a cut off frequency of 5 Hz and demeaned.

The resultant time series were reconstructed in state space
(Figure 1C) using the time delay embedding procedure
(Wurdeman, 2016; Supplementary Methods 1). State-space
reconstruction of movement time series offers a representation of
the underlying dynamics, as well as a geometric illustration of the
intrinsic steady-state behavior. An embedding dimension (d) and
time lag (τ) were determined from each time series and averaged
across the three trials to create the state space vectors [e.g.,
[XBW1(t), XBW1(t + τ), . . . ,XBW1(t +

(
d− 1

)
∗ τ)]]. Here, each

vector is a state that represents the walking behavior at a specific
time, t.

In order to determine each subject’s resilience to rhythm
perturbations and falling, the recovery of COM kinematics
to steady state movement patterns was evaluated [using the
methodology developed in Ravi et al. (2021)] as follows:

Determination of Steady State COM Using Baseline
Walking 1

1. A centroid and reference trajectory (M) was first
determined on a reduced state space [three dimensions:
[XBW1(t), XBW1(t + τ), XBW1(t + 2τ)]. The centroid was
found by taking the mean of the state space vectors, while
M was evaluated by fitting an eight-term Fourier model
to the reconstructed data. For every state space vector,
the corresponding angle relative to the centroid was then
calculated using the four-quadrant inverse tangent (Matlab
function: “atan2d”).

2. Around M, an ellipse at each integer angle (θ) between
0◦ and 359◦ was constructed (Figure 1C). Each ellipse
was defined using the 50 nearest state space vectors as
follows: The length of the semi-major axis of the ellipse was
set to the largest standard deviation of the enclosed state
space vectors from the three dimensions. The second largest
standard deviation gave the length of the semi-minor axis.

3. When schematized, the ellipses adopt the shape of a three-
dimensional torus that we term T1σ. Step 2 was repeated
to construct T2σ and T3σ using two and three times the
previously determined standard deviations, respectively.

4. In the context of our analysis, the torus is a steady state
region around the reference trajectory to which the COM
may return and settle after a perturbation.

Evaluation of COM Recovery Using Cued Walking
5. The reconstructed trajectory of XCW (t): [XCW(t), XCW(t+

τ), XCW(t+2τ)] were now projected onto the tori
(Figure 1C). The position of each state space vector was
labeled according to the smallest constructed torus, T1σ,
T2σ, or T3σ that enclosed that vector. Subsequently, the
Euclidean distance,D(t), of each state space vector toM was
calculated (Figure 2A).

6. D(t) was then parameterized using four variables adapted
from Hadley et al. (2017), Figures 2B–E:
Lag time (s) – interval between the start of the perturbation
to the instant the reconstructed trajectory of XCW (t) leaves
the torus T2σ for at least 0.1 s.
Peak time (s) – interval after the lag time until the
timepoint of maximum deviation of D (t).
Peak magnitude (mm) – magnitude of the
maximum deviation.
COM recovery time (s) – time interval from the time point
of maximum deviation until the point of recovery. The
point of recovery of COM was defined as the time point
after which the trajectory no longer left the torus T2σ for
five consecutive walking cycles (one walking cycle is equal
to the duration between two consecutive heel contacts of the
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B

C

FIGURE 1 | Experimental procedure. (A) Extraction of average (mean and standard deviation) step time characteristics from baseline walking 1 (BW1) shown in an
exemplary participant. The timing of heel strike and toe off, the events that mark the step time of walking were identified using a custom foot velocity algorithm.
(B) Generation of subject-specific metronome audio-tracks using BW1 step time characteristics. The inter-beat intervals of the metronome were matched to the
mean step time. To induce perturbations, the created track was adjusted by embedding five perturbation intervals, where the inter-beat intervals were increased by
20× the standard deviation of the step time and introduced around 3 min into the track. (C) Observation of perturbation response in an exemplary participant’s
center of mass movement (approximated in our study using the vertical displacement time series of the sacrum marker) with respect to their steady state boundaries
given by the toruses (see section “Determination of Steady State COM Using Baseline Walking 1” in the manuscript for methodological details).

foot), permitting four outliers lasting no more than 0.01 s
each (Ravi et al., 2021).

Participants’ Aggregate Response to the Auditory
Perturbation
In order to understand participants’ aggregate response, the
proportion of vector counts that were within (T1σ, T2σ, T3σ) vs.

those outside the boundaries (>T3σ) were evaluated using the
following additional steps:

7. Step 5 was repeated to evaluate D(t) for the reconstructed
data of BW2: [XBW2(t), XBW2(t + τ), XBW2(t + 2τ )].

8. CW was divided into three phases: (1) start of the walking
trial until the onset of the auditory perturbation (CW1); (2)
onset of auditory perturbation until COM recovery (CW2);
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A

B C D E

FIGURE 2 | Resilience characteristics. (A) Evaluation of lag time, peak time, center of mass (COM) recovery time, and peak magnitude in an exemplary participant
who showed deviation from steady state patterns in response to the auditory perturbation. Refer to Section “Evaluation of COM Recovery Using Cued Walking” in
the manuscript for the definition and calculation of these characteristics. (B–E) Showcasing aggregate data for these characteristics using box plots with median,
25th and 75th percentiles, extreme values, and data from individual participants (N = 15).

(3) point of COM recovery until the end of the trial (CW3).
The vector counts from CW, CW1, CW2, CW3, and BW2
were aggregated for determining the duration within each
torus (T1σ, T2σ, or T3σ) and compared.

Recovery of Footfall Synchrony to Pre-perturbation
Limits
Asynchronies were evaluated as the difference in time between
the IBIs (i.e., mean step time from the BW1) and the step
times obtained in CW. Pre-perturbation limits were quantified

using the SD of the asynchrony from the 10 steps immediately
preceding the perturbation [similar to the approach presented
by Bank et al. (2011)]. To assess recovery of footfall synchrony
following the auditory perturbation, a moving average window
analysis was performed. For each window of three steps, mean
asynchrony was calculated. The point of recovery of footfall
synchronization corresponded to the middle step of the window
for which the asynchrony fell within the reference range ± 2 SD
of the pre-perturbation asynchrony and stayed within this range
for at least eight consecutive windows (corresponding to 5 gait
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cycles or 10 steps). Synchrony recovery time was calculated as the
period between the maximum step time adjustment (given by the
peak of the asynchrony after the start of the perturbation) and the
point of recovery of footfall synchronization.

Statistical Analysis
One-way repeated measures ANOVA was used to test for
statistical differences in the d and τ values (dependent variables)
of each participant between the trials (independent variable).
Results were considered to be significant at an alpha of <0.05.

Aggregate data of Lag time, Peak time, Peak magnitude, and
COM recovery time were reported as Mean (SD) and visualized
using box plots. A stacked bar graph was used to represent relative
vector counts between the tori and compared among CW, CW1,
CW2, CW3, and BW2.

Mean difference [confidence intervals] between COM
recovery time and Synchrony recovery time were estimated. The
bootstrap confidence intervals obtained using estimation stats
gives a measure of precision and confidence about our estimate
(Ho et al., 2019). All analyses were conducted in Matlab (v2020a,
The MathWorks, Inc., Natick, MA, United States).

RESULTS

The average preferred treadmill walking speed was 3.7 (SD: 0.5)
Km/h. The participants’ mean step time during BW1 was 0.6
(0.01) s. Accordingly, the average perturbation magnitude and
perturbation time were 0.26 (0.06) and 4.3 (0.5) s, respectively.

Effects of Filtering and Walking
Conditions on Tau and Dim
There was no difference in τ and d between unfiltered and filtered
data in any of the three walking trials, hence supporting the use of
filtered data for state space reconstruction. The one-way ANOVA
test confirmed that the differences in τ between walking trials did
not reach statistical significance (τ: F-ratio value: 0.87, p-value:
0.43), while d remained unchanged. The average τ and d across
walking trials was found to be 0.2 (0.02) s and 4, respectively.

Resilience Characteristics
Of the 20 participants analyzed, 5 did not show evidence of the
effects of perturbation to COM kinematics (i.e., no deviation
from T2σ), and thus were excluded from further analysis. The
remaining 15 participants showed an average lag time of 1.4
(0.7) s, peak time of 2.7 (1.3) s, and peak magnitude of 28.0 (13.5)
mm. The perturbation resulted in an average COM recovery time
of 7.4 (8.9) s (Figure 2B and Table 1).

Synchronization Characteristics
The attention and effort to synchronize to the perturbed
auditory cues (and step adjustment responses) appeared to
induce perturbations to the COM kinematics in the 15
participants who showed COM deviation from steady state
patterns (Figures 3A,B). The maximum step time adjustment
during CW (given by the peak of the asynchrony, section

TABLE 1 | Demographics, walking, resilience, and asynchrony characteristics.

Demographics (N = 20)

Age (years) Mean: 24.9 (SD: 2.3)

Height (m) 1.76 (0.07)

Mass (kg) 72.7 (6.3)

Male/female (n) 13/7

Treadmill speed (km/h) 3.7 (0.5)

First time on treadmill
yes/no (n)

4/16

Baseline walking 1 characteristics (N = 20)

Step time (s) 0.6 (0.01)

Perturbation magnitude (s) 0.26 (0.06)

Perturbation time (s) 4.3 (0.5)

Cued walking: resilience characteristics (N = 15)

Lag time (s) 1.4 (0.7)

Peak time (s) 2.7 (1.3)

Peak magnitude (mm) 28 (13.5)

COM recovery time (s) 7.4 (8.9)

Proportion of total vector counts within T1σ; T2σ; T3σ;> T3σ (N = 15)

CW (%) 74.9 (14); 22.6 (11.6); 1.9 (2.3); 0.6 (0.5)

CW1 (%) 77.8 (13.7); 20.8 (11.8); 1.3 (2); 0.1 (0.2)

CW2 (%) 25.5 (9.8); 36.6 (13.4); 21.1 (8.6); 16.9 (12.8)

CW3 (%) 74.6 (15); 23.8 (12.2); 1.6 (2.8); 0.1 (0.2)

BW2 (%) 75.9 (7); 22.9 (6.4); 1.2 (0.8); 0.1 (0.1)

Asynchrony characteristics (N = 15)

Synchrony recovery time (s) 4 (2.1)

Differences in COM recovery
time relative to synchrony
recovery time (s)

Mean difference: +3.4 [CI: +0.1, +9.5]

Perturbation magnitude: 20× SD of Step time. Perturbation time: total time
for the five perturbed cues, 5× Mean + 20× SD of Step time. SD, standard
deviation; COM, center of mass; CW, cued walking; BW, baseline walking; CI,
confidence intervals.

“Recovery of Footfall Synchrony to Pre-perturbation Limits”)
averaged at 0.16 (0.09) s.

In two of the five participants who did not show deviation
from steady state, there was no noticeable adjustment of the
step time to achieve the alignment of the footsteps with the
perturbed cues. The remaining three exhibited no measurable
COM deviation from steady state patterns despite synchronizing
to the perturbed cues.

In the evaluation of footfall timing adaption to recover
synchronization with the beat, the average synchrony recovery
time was 4.0 (2.1) s. Overall, the differences in recovery time
for COM kinematics relative to footfall synchrony was +3.4
[95.0% CI +0.1, +9.5] s (Figure 3C). However, 7 out of the 15
participants recovered the COM kinematics ahead of the recovery
of footfall synchrony.

Comparison of Vector Counts Between
Trials
The reconstructed COM trajectory was outsideT3σ on average for
16.8% of CW2 (period from onset of auditory perturbation until
COM recovery) in comparison to <1% for the rest of the trial
(CW1 and CW3, Figures 4A,B). The differences between CW and
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A B

C

FIGURE 3 | Footfall asynchrony characteristics. Adjustment of step time to align the footsteps with perturbed cues (i.e., synchronization) was achieved in 18 out of
20 participants. Exemplary data are presented to demonstrate the asynchrony (refer to section “Recovery of Footfall Synchrony to Pre-perturbation Limits” in the
manuscript for calculation details) characteristics in panel (A) a participant who did not adjust their step time to achieve the alignment of the footsteps with the
perturbed cues and (B) a participant who did synchronize to the perturbed auditory cues. (C) Comparison of center of mass (COM) and synchrony recovery times in
all the participants who showed deviation from steady state patterns in response to the auditory perturbation (N = 15).

BW2 were T1σ :−0.9%; T2σ :−0.9%; T3σ :+0.8%; >T3σ :+0.5%,
Table 1.

DISCUSSION

The pilot study was designed to investigate whether and
how rhythmic auditory perturbations in a sensorimotor
synchronization paradigm influence the dynamic stability of
walking. This aim was achieved by subjecting 20 healthy young
adults to a beat delayed perturbation in a metronome sequence

to manipulate their footfall rhythmicity and characterize the
resulting COM kinematics. Our results show that in all but
five participants, the imposed perturbation modified each
individual’s walking rhythm and resulted in COM deviations
(average maximum deviation of ∼28 mm) away from steady
state patterns. In response to the perturbation, the mean COM
recovery time across all participants who showed deviation
from steady state (N = 15) was 7.4 s (equivalent to approx. 12
steps). Importantly, recovery of footfall synchronization with
the metronome beats after perturbation was achieved more
rapidly (by 3.4 s) on average compared to COM kinematics. In
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A

B

FIGURE 4 | Participants’ aggregate response to the auditory perturbation. (A) Comparison of an exemplary participant’s aggregate response in the cued walking
(CW) trial during the period of recovery (CW2, onset of auditory perturbation until center of mass recovery) to before (CW1, start of the walking trial until the onset of
the perturbation) and after this period (CW3, point of center of mass recovery until the end of the trial). The proportion of vector counts within the steady state
boundaries (Torus T1σ, T2σ, T3σ ) and outside (>T3σ ) determined the aggregate response. (B) Comparison of participants’ aggregate response between the different
phases of CW, CW itself, and baseline walking 2 (BW2) in all the participants who showed deviation from steady state patterns in response to the auditory
perturbation (N = 15).

conclusion, the quantification of an individual’s COM recovery
time to steady-state movement patterns after rhythmic auditory
perturbations has showcased an experimental framework for
assessing an individual’s resilience to rhythm perturbations, and
potentially also their fall risk.

Previous studies have shown that synchronizing movement
with metronome beats may not be automatic and require
some attention and volition (Repp and Keller, 2004; Miyake,
2009; Peper et al., 2012; Terrier and Deriaz, 2013; Mendonca

et al., 2014; Hove and Keller, 2015; Leow et al., 2018;
Moumdjian et al., 2019). In this respect, metronome beats
seem to draw participants’ attention toward the target event in
the movement (e.g., footfall) timing, thereby making walking
less automatic (Repp, 2005; Peper et al., 2012). This suggests
that guided stepping with external auditory cues may require
additional frontoparietal structures to be engaged, including
networks responsible for attention, e.g., the prefrontal cortex
(Wagner et al., 2016, 2019). Interestingly, it has previously been
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demonstrated that higher attentional demands to perceive a
beat and accurately synchronize movement does not negatively
influence overall walking stability and balance performance
(Nanhoe-Mahabier et al., 2012; Terrier and Deriaz, 2013). Yet
this finding does not rule out the risk of instability due to
the adjustment of footfall timing at instances when deviations
from synchrony occur (naturally: e.g., participants lose attention,
desynchronize and attempt to resynchronize, or experimentally:
perturbations similar to those imposed in the current study).
In line with these expectations, our study substantiates the
hypothesis that rhythmic auditory perturbations are able to alter
an individual’s stable movement patterns. Here, we observed
large inter-individual variability in the maximum deviation (SD:
13.5 mm) and recovery time (SD: 8.9 s) of COM kinematics to
relatively small differences in the perturbed time (SD: 0.5 s).

Two participants did not adjust their step time to achieve
the alignment of the footsteps with the perturbed cues. It seems
that these participants consciously followed and maintained
the rhythmic cues before perturbation and not adapted to the
variations. Three participants maintained a consistent COM
movement pattern within steady state boundaries, despite
modifying their footfall rhythm to perturbations. While we
cannot be exactly sure how these individuals were able to
maintain stable COM kinematics, we would argue that it involves
prioritization of different balance strategies or flexible vs. rigid
movement responses. On the neurophysiological side, these
participants may have allocated less attentional resources toward
synchronization (and used the internal cueing from basal ganglia)
and more toward the maintenance of balance. Ensuring motor
actions in time with perturbed cues may require attention and
error-correction processes. The neural mechanisms underlying
these processes are continuing to be debated. Neuroimaging
studies have linked them to a broader network of brain areas
including the auditory cortex, basal ganglia, cerebellum, pre-
motor, and Supplementary Motor Areas (Grahn and Brett,
2007; for a review, see also Koshimori and Thaut, 2018; Damm
et al., 2020). Further, a recent electrophysiological study suggest
signatures of step adaptation to auditory perturbations in the
cortical beta activity: beta band supression in the central and
parietal cortex and an increase of beta power in the prefrontal
regions (Wagner et al., 2016). The authors suggest that the former
may be involved in the readiness and voluntary execution of
movements and the latter may allow the cognitive flexibility
to adapt the movements. And in so doing, these research
promises to enrich our understanding of the neural mechanisms
underlying movement adaptation to auditory perturbations.

Prior research advocates a close connection between the
process of synchronization correction and maintaining stable
movement patterns during adaptation to rhythm perturbations
(Chen et al., 2006; Wright et al., 2014; Hove and Keller, 2015).
When a perturbation occurs in the auditory sequence, a subject’s
behavioral response to restore synchrony with the cues may be
constrained by the position of their COM relative to their feet
to maintain balance and prevent falling. In the present study,
we additionally tested whether the participants prioritized the
recovery of COM kinematics over footfall synchronization after
perturbation. However, we found no substantial evidence for

this expectation, i.e., no significant differences between COM
and synchrony recovery times. A caveat of these findings may
be the young and healthy composition of our cohort, as it has
been shown that such subjects may not be as susceptible to
dual-tasking interference as older adults and clinical populations
(Brauer et al., 2001, 2002). Here, older populations might
prioritize COM kinematics over task synchrony in order to
reduce their propensity to fall (Bleom et al., 2006). While these
issues remain to be elucidated in future studies, the findings
may have important implications regarding task prioritization in
real-life walking scenarios.

Neural feedback mechanisms for sensing and responding
to rhythm perturbations naturally involve latencies (Wagner
et al., 2019; Zhang et al., 2020). When combined with timing
constraints to integrate information from sensory and motor
systems in higher brain centers for movement planning and
execution, such latencies may be critical for the recovery time
of movement to perturbations (Repp and Su, 2013; Hove et al.,
2014; Daley, 2018; Koshimori and Thaut, 2018). Our previous
experimental work (Ravi et al., 2021) and the results from
the current study have largely detailed how humans recover
COM kinematics (i.e., resilience) gradually to steady-state
patterns in subsequent steps after perturbation. One might ask,
therefore, whether individuals are unstable during the apparently
long period of recovery. To elucidate this, we analyzed each
participant’s COM trajectory composition within different steady
state boundaries and found that movement patterns during the
period of recovery (CW2, Figure 4A) exhibited a noticeable
proportion of time outside T3σ (16%, Figure 4B) in comparison
to other phases of CW.

The magnitude of perturbations to the auditory stimuli used
in the majority of published literature to date has been selected
somewhat arbitrarily and discordantly: phase shifts of 50 ms
(Chen et al., 2006); 60◦ (Roerdink et al., 2009; Nijs et al., 2020);
100 ms (Wright et al., 2014); and 15% of step cycle (Khan et al.,
2020). In the present study, we perturbed the metronome cues
based on each individual’s step time variability (measured in
standard deviations). This approach is arguably less susceptible
to participant bias due to its insight into each individual’s
walking performance, rather than at arbitrarily chosen levels.
However, further study should be carried out to investigate the
advantages and disadvantages of this approach. Future work
must also address the differences in COM recovery time between
lengthening (as used in the current study) and shortening the IBI
of the perturbed cues. Encouragingly, there is previous evidence
that participants make larger footfall corrections (that could incur
larger instability) when the perturbation IBIs are shortened as
opposed to lengthening the intervals (Wright et al., 2014).

It has been suggested that individuals rely on cycle-to-
cycle corrections to maintain coordination with an auditory
stimulus (Vaz et al., 2019). As such, studies typically analyze
only discrete events in the walking cycle (e.g., heel contact),
but corrective adjustments are likely to occur continuously
throughout different phases of a gait cycle. Here, the analysis
of footfall synchrony recovery time could be further extended
to characterize the distribution of timing correction across a
walking cycle. When combined with our analyses to quantify
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resilience to perturbations, such approaches provide a valuable
insight into gait phase-specific variation in balance response
and its interaction with external sensory cues and perturbations.
Moreover, these approaches could lay the foundations for
understanding rhythm deficits in neuromotor pathologies and
rehabilitation, and thereby support clinical decision making.

A number of limitations of this pilot investigation should
be acknowledged. First, our experimental protocol was limited
to recording only a few body segments. Notably, we could
not determine the body’s actual COM, but rather used only
an approximation based on the sacral marker. Additionally, it
was not possible to provide a characterization of upper body
rhythmic movement response (i.e., timing of arm swing or head
bobbing) to auditory stimulation and perturbation. Second, we
did not collect subjective feedback about the experiment. In
this study, two participants missed the perturbed cues, despite
prior instruction to synchronize to the auditory cues. While this
was unexpected, post-experiment feedback would have allowed
us to better understand whether these participants perceived
the perturbation in the auditory cues or misunderstood the
instructions. Third, while the minimum number of dimensions
required to form properly a state-space of the COM was evaluated
to be 4, we used only three dimensions in the current study. This
is a limitation of our 3D torus-based approach but the sensitivity
of our findings to such differences need further exploration.
Fourth, we could not align the audio track and motion capture
data in the time axis, because we failed to account a temporal
delay in one of the data streams. However, this temporal delay
did not affect the analyses and results of the present study.

In summary, locomotion in complex, dynamic real-world
environments is an integral part of daily life of humans. While
walking in such environments, individuals modulate their footfall
timing and rhythmicity to maintain the body’s COM, which is
a critical factor in their successful and continuous ambulation
(i.e., fall avoidance). The present study extended the sensorimotor
synchronization paradigm to include analysis of COM recovery
time and has provided a novel framework for improving our
understanding of an individual’s resilience to perturbations. It
also provides a starting point in the use of these techniques
toward understanding an individual’s ability to avoid falls. At a
fundamental level, we show not only differences between COM
and synchrony recovery times, but that even young adults took up
to 12 steps to recover stable movement patterns from a relatively
innocuous perturbation.
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