Doctoral Thesis

Taxonomic and functional diversity of biocontrol fluorescent Pseudomonas spp. associated with disease-suppressiveness of soils

Author(s):
Frapolli, Michele N.

Publication Date:
2007

Permanent Link:
https://doi.org/10.3929/ethz-a-005484467

Rights / License:
In Copyright - Non-Commercial Use Permitted
Taxonomic and functional diversity of biocontrol fluorescent Pseudomonas spp. associated with disease-suppressiveness of soils

A dissertation submitted to the
Swiss Federal Institute of Technology, Zürich

For the degree of
Doctor of Sciences

Presented by

Michele Nicola FRAPOLLI
Dipl. Natw. ETH
Born August 20th, 1976
Citizen of Valcolla, TI

Accepted on the recommendation of

Prof. Dr. Geneviève Défago, examiner
Prof. Dr. Yvan Moënne-Loccouz, co-examiner
Prof. Dr. Bruce McDonald, co-examiner

2007
Fluorescent pseudomonads are ubiquitous bacteria. In the rhizosphere of crop plants, they are able to suppress diseases caused by soil-borne fungi, bacteria and nematoda. Soils that are naturally suppressive (i.e. which provide protection to susceptible plants in the presence of a pathogen) to black root rot disease of tobacco (mediated by the fungal pathogen *Thielaviopsis basicola*) in the Swiss region of Morens were shown to harbor biocontrol pseudomonads producing the antimicrobial compound 2,4-diacetylphloroglucinol (Phl). However, fluorescent pseudomonads that display biocontrol activity and are genetically very similar to those from the suppressive soils were also isolated from conducive soils (i.e. soils that allow the spread of the disease). The culture-dependent methods used so far have not permitted to identify strains specifically present in suppressive soils, but the diversity of these *Pseudomonas* populations remains poorly understood.

Therefore, the objective of the Ph.D. project was to characterize the taxonomic and functional diversity of Phl-producing *Pseudomonas* populations involved in biocontrol interactions, in relation to soil suppressiveness to *T. basicola*. To reach this objective, multilocus approaches were developed based on the analysis of several housekeeping genes (Chapter 2) or biocontrol-relevant genes (Chapter 3) to assess the taxonomy, phylogeny and genetic diversity of biocontrol pseudomonads from world-wide origin. On this basis, a culture-independent fingerprinting approach targeting gene *phlD* was then validated and used to compare indigenous *Pseudomonas* rhizosphere populations in Morens soils suppressive or conducive to black root rot of tobacco (Chapter 4).

First, MLST performed on 58 Phl-producing pseudomonads divided them into 6 phylogenetic groups based on the analysis of concatenated DNA and deduced protein sequences from all 10 housekeeping genes. The same groups were not always found when the analysis was performed on single loci. Linkage disequilibrium analysis indicated that the community of Phl-producing pseudomonads was clonal although intragenetic recombination was evidenced in genes *gyrB*, *rpoD* and *fdxA*.

Second, 12 biocontrol-relevant loci were studied using a multilocus approach with a subset of 16 strains representing the six phylogenetic groups mentioned above. While the
Summary

Phylogenetic analysis of each single housekeeping or biocontrol-relevant locus produced incongruent topologies, the tree inferred from concatenated sequences from all biocontrol-relevant loci was congruent with that inferred from concatenated housekeeping sequences, showing the usefulness of biocontrol-relevant loci for phylogeny.

Third, a novel phlD-based denaturing gradient gel electrophoresis (DGGE) approach was designed, and direct PCR analysis of rhizosphere DNA gave lower phlD diversity in comparison with rhizosphere suspensions of cells incubated in semi-selective medium. DGGE was then used to compare consortia of phlD+ pseudomonads from T. basicola-inoculated and non-inoculated tobacco plants grown in two suppressive and two conducive soils of Morens. The DGGE patterns differed from one soil to the next, pointing to endemic distributions. The DGGE differences due to T. basicola inoculation were of less magnitude.

In conclusion, this work enabled to redefine and assess the diversity and the taxonomy of an important functional group of rhizosphere bacteria used as biocontrol crop inoculants and implicated in protection of plants from soil-borne diseases in Morens and other suppressive soils.
Gli *Pseudomonas* fluorescenti sono batteri diffusi negli ambienti più variegati e alcuni tra quelli che vivono nella rizosfera di piante da coltivazione sono in grado di sopprimere malattie causate da agenti patogeni del suolo, batteri e nematodi. Si è potuto dimostrare che suoli naturalmente soppressivi (vale a dire che sono in grado di proteggere piante suscettibili in presenza di un patogeno) al marciume nero delle radici del tabacco (causato dal fungo patogeno *Thielaviopsis basicola*) nella regione svizzera di Morens, ospitano specie di *Pseudomonas* attive nel biocontrollo che producono l’antimicrobico 2,4-diacetifloroglucinolo (Phl). Ciononostante, *Pseudomonas* fluorescenti che possiedono attività di biocontrollo e che sono geneticamente molto simili a quelli dei suoli soppressivi, sono stati isolati anche da suoli conduci (ossia suoli che permettono la diffusione della malattia). I metodi usati finora dipendenti dalla coltivazione d’isolati non hanno permesso di identificare ceppi specificamente presenti in suoli soppressivi, ma comunque sia la diversità di queste popolazioni di *Pseudomonas* non è ancora ben conosciuta.

Per questo motivo, l’obiettivo di questo lavoro di dottorato era quello di caratterizzare la diversità tassonomica e funzionale delle popolazioni di *Pseudomonas* produttori di Phl implicate nelle interazioni di biocontrollo, riguardo alla soppressività a *T. basicola*. Per raggiungere questo scopo è stato sviluppato un approccio “multilocus” basato sullo studio di diversi geni di “housekeeping” (capitolo 2) o importanti per il biocontrollo (capitolo 3) in modo da valutare la tassonomia, filogenia e diversità genetica degli *Pseudomonas* di biocontrollo su scala mondiale. Su questa base, un metodo di “fingerprinting” indipendente da coltura e basato sul gene *phlD* è stato convalidato e usato per confrontare popolazioni indigene e rizosferiche di *Pseudomonas* in alcuni suoli di Morens soppressivi o conduci al marciume nero delle radici del tabacco (capitolo 4).

Per prima cosa, un’analisi “MLST” eseguita su 58 *Pseudomonas* che producono Phl ha diviso questi ultimi in 6 gruppi filogenetici in conformità a sequenze nucleiche e proteiche appartenenti a 10 geni “housekeeping”. Gli stessi gruppi sono stati ritrovati solo parzialmente quando l’analisi è stata eseguita su loci singoli. Un’analisi di “linkage disequilibrium” ha indicato che la comunità di *Pseudomonas* produttori di Phl era clonale.
sebbene sia stata evidenziata la possibile presenza di ricombinazione intergenica nei geni gyrB, rpoD e fdxA.

Come seconda cosa, 12 loci coinvolti nel biocontrollo sono stati studiati con un approccio “multilocus” usando 16 ceppi rappresentanti i sei sopraccitati gruppi filogenetici. Sebbene l’analisi filogenetica d’ogni singolo gene “housekeeping” o coinvolto nel biocontrollo abbia generato topologie incongruenti, l’albero dedotto da sequenze concatenate a partire dai loci coinvolti nel biocontrollo si è rivelato essere congruente con quello dedotto da sequenze concatenate a partire da geni “housekeeping”. Questo dimostra l’utilità dei geni coinvolti nel biocontrollo per studi a scopo filogenetico.

Come terza cosa, un metodo d’elettroforesi denominato “denaturing gradient gel electrophoresis” basato sul gene phlD è stato sviluppato per studiare le comunità di Pseudomonas in suoli soppressivi e conducivi. L’analisi PCR a partire dal DNA rizosferico ha prodotto meno diversità rispetto ad sospensioni di cellule incubate in un medio semi-selettivo. Il metodo DGGE è stato poi utilizzato per confrontare consorzi di phlD+ Pseudomonas provenienti da piante di tabacco (inoculate e non inoculate con T. basicola) cresciute in due suoli soppressivi e due suoli conducivi di Morens. I profili di bande prodotti da DGGE erano diversi da un suolo all’altro, mostrando una distribuzione endemica di Pseudomonas. Le differenze tra i profili DGGE di piante inoculate con T. basicola e non inoculate si sono dimostrate d’importanza minore.

In conclusione, questo lavoro ha permesso di ridefinire la diversità e la tassonomia di un importante gruppo funzionale di batteri della rizosfera che è in grado di proteggere le piante da malattie del suolo quando ceppi produttori di Phl sono (i) presenti in suoli soppressivi a Morens e altrove nel mondo o (ii) inoculati nel suolo come agenti di biocontrollo.