Active North Atlantic deepwater formation during Heinrich Stadial 1

Author(s): Repschläger, Janne; Zhao, Ning; Rand, Devin; Lisiecki, Lorraine; Muglia, Juan; Mulitza, Stefan; Schmittner, Andreas; Cartapanis, Olivier; Bauch, Henning A.; Schiebel, Ralf; Haug, Gerald H.

Publication Date: 2021-10-15

Permanent Link: https://doi.org/10.3929/ethz-b-000505317

Rights / License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Active North Atlantic deepwater formation during Heinrich Stadial 1

Janne Repschläger, Ning Zhao, Devin Rand, Lorraine Lisiecki, Juan Mligia, Stefan Mulitza, Andreas Schmittner, Olivier Cartapanis, Henning A. Bauch, Ralf Schiebel, Gerald H. Haug

Climate Geochemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128, Mainz, Germany
State Key Laboratory of Estuarine and Coastal Research & School of Marine Science, East China Normal University, Dongchuan Rd 500, 200241, Shanghai, China
Department of Earth Science, University of Bern, Bern, Switzerland; now at CEREGE, Aix Marseille Université, CNRS, IRD, INRAE, Coll. France, Technopole Arbres, 13545, Aix en Provence, Cedex 4, France
CESMAR, CENPAT-Conicet, 2915 Boulevard Brown, U9120ACD, Puerto Madryn, Argentina
MARUM — Center for Marine Environmental Sciences, University of Bremen, Leobener Str. 8, D, 28359, Bremen, Germany
College of Earth, Ocean, and Atmospheric Sciences, 104 CESAS Admin Bldg., Corvallis, OR, 97331-5503, USA
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland; now at CEREGE, Aix Marseille Université, CNRS, IRD, INRAE, Coll. France, Technopole Arbres, 13545, Aix en Provence, Cedex 4, France
Alfred Wegener Institute, Institute for Polar and Marine Research and GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148, Kiel, Germany
Department of Earth Sciences, ETH Zurich, Sonneggstrasse 5, 8092, Zurich, Switzerland

Abstract

Deepwater circulation significantly changed during the last deglaciation from a shallow to a deep-reaching overturning cell. This change went along with a drawdown of isotopically light waters into the abyss and a deep ocean warming that changed deep ocean stratification from a salinity-to-a temperature-controlled mode. Yet, the exact mechanisms causing these changes are still unknown. Furthermore, the long-standing idea of a complete shutdown of North Atlantic deepwater formation during Heinrich Stadial 1 (HS1) (17.5–14.6 ky BP) remains prevalent. Here, we present a new compilation of benthic δ13C and δ18O data from the North Atlantic at high temporal resolution with consistent age models, established as part of the international PAGES working group OC3, to investigate deepwater properties in the North Atlantic. The extensive compilation, which includes 105 sediment cores, reveals different water masses during HS1. A water mass with heavy δ13C and δ18O signature occupies the Iceland Basin, whereas between 20 and 50°N, a distinct tongue of 18O depleted, 13C enriched water reaches down to 4000 m water depths. The heavy δ13C signature indicates active deepwater formation in the North Atlantic during HS1. Differences in its δ18O signature indicate either different sources or an alteration of the deepwater on its southward pathway. Based on these results, we discuss concepts of deepwater formation in the North Atlantic that help to explain the deglacial change from a salinity-driven to a temperature-driven circulation mode.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The modern Atlantic Meridional Overturning Circulation (AMOC) in the North Atlantic is characterized by northward warm water transport near the surface, deepwater formation at high northern latitudes, and a southward return flow at depths. Modern thermohaline circulation and deep stratification are mainly driven by temperature differences between relatively warm North Atlantic Deep Water (NADW) that overlies cold Antarctic Bottom Water (AABW). Though salinity is higher in NADW, salinity differences of
Many studies have attempted to reconstruct glacial ocean circulation using compilations of benthic δ¹³C and δ¹⁸O data (Curry and Oppo, 2005; Duplessy et al., 1980, 2002; Duplessy, 1988; Labeyrie et al., 1992, 2005; Lund et al., 2011, 2015; Lynch-Stieglitz, 2014). Recent studies by Oppo et al. (2015, 2017) and Oppo and Lehman (1993) reveal that the δ¹²C values were more negative in the water below 2000 m than at 2000 m depth, indicating a larger amount of δ¹³C-depleted water at shallower depths.

Collectively, these studies show that glacial deepwater circulation significantly differed from the modern AMOC mode. Though the circulation pattern is still debated, the main picture that evolved from these studies is a shoaling (Gebbie, 2014; Mulligan and Schmittner, 2021) of the mid-depth ocean circulation (e.g., Lynch-Stieglitz, 2017) with AABW penetrating the atmosphere may have allowed more CO₂ storage in the abyssal Maximum (LGM). Reduced connectivity between deep waters and further north and to shallower depths during the Last Glacial Maximum (LGM) led to strong deepwater formation and created an AMOC overshoot (Knorr and Lohmann, 2007; Liu et al., 2009). Observed decreasing δ¹³C values are explained by a drawdown of the isotopically light meltwater by brine water formation (Waelbroeck et al., 2001) due to the formation of ice sheets. A decrease in meltwater discharge (including reduced basal melting of ice shelves) has led to a decrease in δ¹³C values.

In the North Atlantic, a major focus of attention has been on AMOC evolution, and models are based on data mass distribution and mixing patterns between NADW and AABW (e.g., Oppo et al., 2015). According to climate models, AMOC strength is mainly driven by the salinity of the surface waters in the deepwater convection regions, and density gradients between the North Atlantic and Southern Ocean (Haskins et al., 2019) and citations therein. Low latitude storage of salines waters during glacial cold events such as Heinrich Stadial 1 (HS1, 17.5 ka BP) and its subsequent northward transport have been proposed to have led to strong deepwater formation and created an AMOC overshoot (Knorr and Lohmann, 2007; Liu et al., 2009). Observed decreasing δ¹³C values are explained by a drawdown of the isotopically light meltwater by brine water formation (Waelbroeck et al., 2011) or by deepwater warming (Bauch and Bauch, 2001). Inferred from benthic foraminifera and ostracod Mg/Ca records (Cronin et al., 2000; Repschläger et al., 2015a; Skinner and Shackleton, 2006), an asymmetrical warming of the deep Atlantic during HS1, compared to the other Ocean Basins is also evident in numerical models (Zhang et al., 2017).

HS1 was the major climate event at the onset of the last deglaciation, associated with cold temperatures in the North Atlantic (Denton et al., 2010) and a strong meltwater outburst from various northern ice sheets (Broecker, 1994; Hemming, 2004; Naafs et al., 2013) that flushed the surface North Atlantic and capped deepwater convection sites. A long-standing concept is that deepwater convection in the North Atlantic and the associated AMOC were entirely shut down during HS1 (Dusseault, 1988; McManus et al., 2004; Rahmsdorf, 2002; Sarnthein et al., 1994) and Southern Ocean waters (Antarctic Bottom Waters) flushed the deeper whole Atlantic – a concept still prevalent in the recent literature (e.g., Böhm et al., 2015; Lynch-Stieglitz, 2017; Schmittner and Lund, 2015; Shackleton et al., 2012). However, this concept has recently been challenged. Combined δ¹³C and δ¹⁸O data indicate active convection in the North Atlantic (Oppo et al., 2015) reaching down to at least

Abbreviations

- AMOC: Atlantic Meridional Overturning Circulation
- AABW: Antarctic Bottom Water
- BWT: Bottom Water Temperature
- CGFZ: Charlie–Gibbs–Fracture–Zone
- DSOW: Denmark–Strait–Overflow–Water
- DWBC: Deep Western Boundary Current
- ENADW: Eastern North Atlantic Deep Water
- HS1: Heinrich Stadial 1
- ISOW: Iceland–Scotland Overflow Water
- LGM: Last Glacial Maximum
- LSW: Labrador-Sea Water
- LDW: Lower Deep Water
- LNADW: North Atlantic Deep Water
- LSW: Labrador-Sea Water
- MOW: Mediterranean Overflow Water
- NADW: North Atlantic Deep Water
- NWADW: Western North Atlantic Deep Water
- NAC: North Atlantic Current
- LSW: Labrador-Sea Water
3000 m water depth in the subtropics (Repschläger et al., 2015a). While these results have questioned the idea of a complete shutdown of North Atlantic deepwater convection during HS1, the magnitude and extent of HS1-AMOC and its importance for the deglacial deepwater stratification changes remain unknown.

It is assumed that the HS1 AMOC shut-down led to the storage of warm saline waters in the upper tropical to subtropical North Atlantic. After HS1, the northward transport of warm saline tropical waters triggered the onset and overshoot of the AMOC during the Bolling-Allerød warm period (14.6–12.8 ka BP). The newly formed deepwater is supposed to have been relatively warm and saline, but this contradicts the general deglacial saline decrease proposed by Adkins et al. (2002). The latter involving a saline decrease of the newly formed deepwater would also prevent its sinking. To explain a deglacial freshening and warming and simultaneous increase in AMOC strength, a mechanism is needed that allows strong overturning despite the density loss by warming and freshening of the deepwater.

In order to better understand the role of the North Atlantic for water mass distribution and AMOC during the deglaciation, we have compiled published and unpublished epibenthic δ13C and δ18O data within the framework of the Past Global Changes (PAGES) Ocean Circulation and Carbon Cycling (OC3) working group. The improved spatial resolution of the dataset allows to trace deepwater distributions in the Atlantic Ocean and gain a better mechanistic understanding of ocean circulation changes. Here, we focus on HS1 as the major climate event in during the early deglaciation with the following research questions: (1) Was there active deepwater formation in the North Atlantic during HS1? (2) What role did HS1 in the North Atlantic play for the reconstructed changes in deepwater salinity and stratification?

2. Modern oceanography

Deepwater formation in the subpolar North Atlantic occurs in two main convection areas, the Nordic Seas, the Labrador Sea (Lherminier et al., 2010; Sarafanov et al., 2012; Schmitz and McCartney, 1993; Xu et al., 2010), supplemented by convection and subduction in the Irminger and Iceland basins (Pickart et al., 2003; Sarafanov et al., 2012). Additional deepwater formation occurs in the Mediterranean Sea, which contributes to the Atlantic mid depth circulation (Lozier and Stewart, 2008; van Aken, 2000a, 2001).

Deepwaters formed in the Nordic Seas leave the area via shallow sills, the Faroe Bank Channel (Chafik et al., 2020) and Denmark Strait as Iceland Scotland Overflow Water (ISOW) and Denmark Strait Overflow Water (DSOW), respectively (Hansen et al., 2016; Hansen and Østerhus, 2000; Lherminier et al., 2010; Macrander et al., 2005; Sarafanov et al., 2012; Schmitz and McCartney, 1993; Schott et al., 2004; Schott and Brandt, 2013; Våge et al., 2011; Xu et al., 2010). With a flux of about 3 Sv, ISOW flows southward across the Iceland-Scotland Ridge (Sarafanov et al., 2012; Chafik et al., 2020) into the Iceland Basin, propagates along the eastern flank of Reykjanes Ridge and mixes with and entrains deepwater formed in the Iceland Basin (0.6 Sv) (Sarafanov et al., 2012). At Charlie-Gibbs fracture zone (CGFZ), a minor portion of ISOW continues southward along the Mid Atlantic Ridge (MAR) and form Eastern North Atlantic Deep Water (ENADW), which occupies water depths of 1500–3000 m (Sarafanov et al., 2012; van Aken, 2000a; Van Aken and De Boer, 1995).

The main branch of ISOW (3.8 Sv) flows through CGFZ into the Irminger Basin (Sarafanov et al., 2012), where a smaller branch turns southward while the major volume flows northward along Reykjanes Ridge (Våge et al., 2011) into the Irminger Basin. This northward deepwater flow is deflected by the Greenland-Iceland Ridge, and partially mixes with the DSOW that spills into the Irminger Basin via the Denmark Strait. The combined water mass called Western North Atlantic Deep Water (WNADW) is underlain by the colder, denser pure DSOW. Both DSOW and WNADW get further mixed on their southward way along the contours of the Greenland slope, and anticlockwise circulation in the Labrador Basin. The combined outflow of DSOW and WNADW from the Labrador Sea combines partially with Labrador Sea Water and into the Deep Western Boundary Current (DWBC) (Fischer et al., 2004, 2015). The DWBC flows around the Flemish Cap back into the western North Atlantic basin and further along the continental slope of eastern North America. The combined northern source water described above, typically called Lower North Atlantic Deep Water (LNADW), fills the deep North Atlantic below about 2000 m to abyssal depths. To the south of about 40°N, and more prominently in the South Atlantic, LNADW is underlain by northward moving AABW (Curry et al., 2003). The boundary between LNADW and AABW progressively shoals towards the south. At about 50°S, NADW starts to resurface, is partially entrained into the Antarctic Circumpolar Current (ACC), and contributes to AABW formation (Marshall and Speer, 2012; Talley, 2013).

The cold dense WNADW is overlain by LSW forming in the Labrador Sea and the southwestern Irminger Sea (Pickart et al., 2003) from a mixture of saline Irminger Current and fresh cold East Greenland Current waters. LSW formation is favored by the cold dry winds originating from the partially ice-covered continental landmasses surrounding the Labrador Sea leading to winter convection. LSW is less dense than ISOW, typically occupies water depths between 500 m and 1500 m, but can even reach down to 2200 m during years with strong deepwater convection (Faure and Speer, 2005; Yashayaev, 2007; Yashayaev and Loder, 2009). LSW contributes 7.8 Sv to the total AMOC deep-water export of 13 Sv (Sarafanov et al., 2012).

Deepwater circulation in the eastern North Atlantic basin south of the CGFZ differs from its western counterpart by a lower contribution of ENADW. Mediterranean Outflow Water (Curry et al., 2003) occupies the mid water depth instead of LSW, and direct flushing with AABW into the eastern Atlantic Basin is prevented by the Walvis Ridge. Instead, AABW enters the East Atlantic Basin via Vema fracture zone at 11° N (Van Aken, 2000; Van Aken and De Boer, 1995). Entrainment of the overlying water masses modifies AABW slightly, thus is called Lower Deepwater (LDW) in the East Atlantic Basin. LDW and ENADW are overlain by Mediterranean Overflow Water. The latter is formed in Mediterranean Sea by high evaporation rates that lead to a salinity increase and the formation of a relatively warm (11 °C) and saline (36) (Locarnini et al., 2013) deep water mass (Marshall and Schott, 1999). MOW enters the Atlantic via the Strait of Gibraltar and typically occupies depth between 700 and 1700 m in the Eastern to Central North Atlantic between 30°N and 50°N (Baringer and Price, 1997; Lozier and Stewart, 2008).

3. Methods

This compilation of published and unpublished benthic foraminifera δ13C and δ18O data focusses on the Atlantic section north of the equator, yet records from the South Atlantic are also included. The compilation is a product of the PAGES OC3 working group (Schmittner et al., 2017), which aims to better understand past changes in ocean circulation and carbon storage. The presented North Atlantic dataset includes 105 cores. The compilation is updated from a personal raw data compilation by O. Cartapanis, supplemented with data from the PALMOD compilation (Jonkers et al., 2020), and additional published and unpublished (cores MSM58-52-02 and core KNR197–10_GGC5) deglacial sites. All data
were quality-controlled revisiting the original publications (Abrantes et al., 1998, 2018; Bauch et al., 2001; Bertram et al., 1995; Beveridge et al., 1995; Bickert and Mackensen, 2004; Boyle and Keigwin, 1985; Cacho et al., 2006; Came et al., 2008; Chi and Mienert, 2003; Collins et al., 2010; Curry et al., 1988, 1999; Curry and Oppo, 1997; Dickson et al., 2009; Duplessy, 1982, 1988; Elliot, 2017; Elmore and Wright, 2011; Elmore et al., 2015; Fink et al., 2013; Freudenthal et al., 2002; Frigola et al., 2008; Gersonde et al., 2003; Hagen et al., 2002; Hagen and Keigwin, 2017; Hillaire-Marcel et al., 1994; Hoffman and Lund, 2012; Hoogakker et al., 2015; Hüls, 1999; Jansen and Veum, 1990; Jonkers et al., 2015; Jung, 1996; Keigwin and Jones, 1994; Keigwin, 2004; Keigwin et al., 1991; Keigwin and Lehman, 1994; Keigwin and Schlegel, 2002; Keigwin and Swift, 1997; Kiefer, 1996; Labeyrie, 1995, 1999; Labeyrie, 1996; Lebreiro et al., 2009; Little et al., 1997; Lund et al., 2015; Lynch-Stieglitz et al., 2011; Mackensen, 2001; Manighetti et al., 1995; Members, 1976, 2004, 2004; Middlelet et al., 2016, 2018; Millo, 2005; Millo et al., 2008; Mulitza et al., 2008, 2017; Nam, 1997; Oppo et al., 2006, 2015; Oppo and Fairbanks, 1990; Oppo and Horowitz, 2000; Oppo and Lehman, 1995; Pichevin et al., 2005; Praetorius et al., 2008; Repschläger et al., 2015a; Richter, 1998; Rickaby and Elderfield, 2005; Sarnthein et al., 1988, 1994; Schwab et al., 2012; Shimmield, 2004; Sierro et al., 2005; Slowey and Curry, 1995; Telesiński et al., 2014; Thorvald et al., 2010, 2011; Tiedemann, 1991; Tjallingii et al., 2008; van Kreveld et al., 2000; Vidal et al., 1997; Voelker et al., 2006; Vogelsang et al., 2001; Voigt et al., 2017; Waelbroeck et al., 2001, 2006, 2011, 2019; Weinelt, 1993; Weldeab et al., 2016; Willamowski, 1999; Zabel et al., 2001; Zahn et al., 1987; Zariess et al., 2011; Zariess and Mackensen, 2011; Zhang et al., 2015). The detailed list for the quality check is given in the supplementary information and included revisiting the original data, controlling first authorship of data, species names standardization, control of potential species offset corrections and age model revisions.

For δ18O measurements, offsets have been reported (Hodell et al., 2003; Ostermann and Curry, 2000; Waelbroeck et al., 2005) and are discussed in detail in Waelbroeck et al. (2005). Several factors influence the measurements and lead to inter-laboratory offsets. These are differences in 1) sample treatment prior to analyses, 2) in measurement methods, and 3) in calibration against the standards. The influence of different cleaning methods, plasma ashing (roasting), chemical treatment with ethanol/methanol, oxygen peroxide (H2O2), sodium hypochlorite (NaOCl), sodium pyrophosphate or Calgon have been investigated (Feldmeijer et al., 1999, 2009; Serrano et al., 2008) and showed a systematic lowering of the δ18O value when cleaned with H2O2 (Serrano et al., 2008), with a maximal derivation of 0.18‰ in the δ18O signal.

Main differences between δ18O measurements have been reported between laboratories using a common acid bath (Shackleton and Opdyke, 1973) e.g. referred to as VG-ISOCARB and laboratories using a single acid aliquot method that is mainly referred to as automatic carbonate preparation device and coupled to a mass spectrometer. The single acid aliquot method is more recently also employed by the common acid bath and the timing of CO2 extraction (Hodell et al., 2003) and was solved by decreasing the extraction time (see summary in Waelbroeck et al., 2005). No additional publications on this matter have been issued, thus we assume that these inter-laboratory calibration problems have been solved internally and not been reported in any publications.

Problems with calibrations of internal vs in house standards versus quality control standards have been reported and solved (Ostermann and Curry, 2000). Sample size depending fractionation (Vonhof et al., 2020, and citations therein) as well as the lack of a standard that allows sample calibration for values higher than 4‰ may add additional uncertainty to the measurements.

To exclude an overinterpretation of the compiled datasets an error of 0.2‰ should generally be considered as also proposed by Waelbroeck et al. (2005). To test the dataset for laboratory offsets, we checked the δ18O records from the late Holocene times slice (Figure S1). Though the standard deviation of LH samples partially exceeded the 0.2‰ range, no systematic offset to lighter values from laboratories using a common acid bath could be detected.

The δ18O of C. wuellerstorfi and U. peregrina is characterized by an offset (Duplessy et al., 1984; Shackleton and Opdyke, 1973). It has been assumed that the epifaunal C. wuellerstorfi secretes its calcite in disequilibrium with ambient seawater due to vital effects. Therefore, the δ18O of C. wuellerstorfi is corrected for vital effects by 0.64‰ to match U. peregrina. More recently, this procedure has been revised as the infaunal U. peregrina has been found to also secrete its calcite in disequilibrium with ambient pore water (Marchitto et al., 2014). Vital effects and species offsets for δ13C are even stronger and less systematic in epifaunal and infaunal species (Fontanier et al., 2006). In order to avoid any systematic errors by corrections for vital effects, all data presented here are based on epifaunal Cibicidoides specimen δ18O and δ13C data without vital effect corrections. All δ18O and δ13C data are based on observations from foraminiferal calcite (δ18Ocalc and δ13Ccalc) and are displayed against the V-PDB scale for all stable isotope data hence forward. This signal still includes the effect of water temperature and global ice volume changes. To transfer δ18Ocalc into δ18O of seawater (δ18Osw), water temperature reconstructions would be needed. The latter are not available for most records, thus, δ18Osw distributions are presented in the results and the effect of temperature and ice volume changes is presented in the discussion.

δ13Ccalc of Cibicidoides represent the δ13C of dissolved inorganic carbon in the water column without vital effects and small secondary effects of carbonate ion concentrations and pressure (Schmittner et al., 2017).

All age models were updated and synchronized using Paleo-DataView (Langner and Mulitza, 2019) and its interface to the Bacon age modeling software (Blauw and Christen, 2011). Where available, age models are based on planktonic 14C dates, and reservoir age correction is carried out with reservoir ages derived from Butzin et al. (2017). We note that these reservoir age estimates are uncertain, especially for high latitudes (Alves et al., 2019), but they allow the same standard to be applied to records from the same region and result in a consistent dataset. Additionally, surface ocean δ18O records were regionally compared for consistence and aligned where needed. Cores that lack 14C dating were aligned using the software “BIGMACS” (Bayesian Inference Gaussian process regression for Multiproxy Alignment of Continuous Signals), described in (Lee et al., 2019).

Though different deglacial time slices have been analyzed in the project, here we concentrate on the time slice HS1 that we defined for our study to last from 17.5 to 14.8 ka BP. To account for uncertainties associated with age models and climate transitions (e.g., between the LGM and HS1), the boundaries between time episodes were avoided in our study. Only records covering at least part of the glacial and deglacial time slices (i.e., from the LGM to the YD) are included in the dataset of this study. For quality control, the number of datapoints included from each core for HS1 were plotted and are shown in Figure S1.
4. Results

4.1. Isotope signatures in the eastern North Atlantic basin

During HS1, high benthic $\delta^{13}C_{cc}$ (1.25–0.75‰) indicate the presence of ^{13}C enriched water that occupies the upper 3000 m of the water column at latitudes between 60° N and 40° N in the eastern NA basin (Fig. 2c, S2). A strong boundary between ^{13}C enriched (0.5–1.5‰) and ^{13}C depleted (0.0%‰) waters to the south is observed between 20° N and 30° N. Below 3000 m water depth, the basin is filled with ^{13}C depleted (0.25 to –1‰) waters. In the upper 2000 m, a tongue with a depleted benthic $\delta^{18}O_{cc}$ signature (2.75–3.25‰) is observed between 40° N and 50° N (Fig. 2d, S2). The $\delta^{18}O_{cc}$ signal below 2000 m water depth is relatively homogeneous throughout the basin with values between 3.5‰ and 4‰. The $\delta^{18}O_{cc}$ signature does not coincide with that of $\delta^{13}C_{cc}$.

4.2. Western basin

In the western Atlantic basin, ^{13}C enriched waters (0.5–1.5‰) (Fig. 2a,b, S2) fill the upper 3000 m from 60°N southward. The southernmost extent of this ^{13}C enriched water mass is not well constrained due to the sparsity of data in the South Atlantic, but it seems to extend to ~25° S. This water mass is underlain by ^{13}C depleted waters (0.5 to –1‰). A tongue of waters with a depleted $\delta^{18}O_{cc}$ signature (3–3.5‰) is evident between 60° N and 20° N. It reaches down to about 4000 m at 40° N and shoaling southwards. North of 20° N, the $^{18}O_{cc}$ depleted waters are surrounded by waters with an enriched benthic $^{18}O_{cc}$ signature (3.5–4.5‰). At the equator, a $\delta^{13}C_{cc}$ enrichment to 0–0.25‰ below 3000 m water depth is observed.

4.3. HSI eastern Atlantic water masses

The Irminger and Nordic Seas are filled with deep waters with an enriched ^{18}O and ^{13}C signature, which indicates active deepwater convection in this region and contradicts previous studies suggesting a complete AMOC shut-down (Lund et al., 2015; Rahmstorf, 2002; Sarthein et al., 1994; Schmitz and Lund, 2015). Modeling suggests a shut-down AMOC would lead to a $\delta^{13}C$ minimum at 1–2 km depth and 60° N in the North Atlantic due to the accumulation of isotopically-light respired carbon (Schmitz and Lund, 2015), a feature inconsistent with the distribution of $\delta^{13}C_{cc}$ in our HS1 compilation. The HSI $\delta^{13}C_{cc}$ signature in the eastern North Atlantic basin, shows a depletion of ^{13}C south of 20° N, consistent with previous studies (Duplessy, 1988; Sarthein et al., 1994). A significant weakening of deepwater formation and AMOC during HSI and stronger Southern Ocean contributions have been favored as a reason for decreasing $\delta^{13}C_{cc}$ values in the North Atlantic (Duplessy, 1988; Sarthein et al., 1994; Schmitz and Lund, 2015, and many others), yet already questioned by (Bauch, 2013). More recent studies using combined $\delta^{18}O_{cc}$ and $\delta^{13}C_{cc}$ records from the North Atlantic (Andrews et al., 1999; Campos et al., 2020; Keigwin and Swift, 2017; Repschläger et al., 2015a), show heavy $\delta^{18}O_{cc}$ values during the LGM and HSI in the deep North Atlantic indicating a northern source of these deep waters (Keigwin and Swift, 2017; Repschläger et al., 2015a) and further questioned the collapsed HSI AMOC hypothesis.

Data presented here (Fig. 2d) indicate a layer of waters with a depleted $\delta^{18}O_{cc}$ signature in the eastern Atlantic during HSI between 20° N and 50° N. Yet, these ^{18}O depleted waters are restricted to the upper 2000 m water depth, and seem to reach no further south than 20° N, and thus do not appear to have contributed to deepwater export in the eastern Atlantic. The ^{18}O enriched waters below 3000 m water depth and south of 20° N indicate the existence of another deepwater mass that may have a different origin.

4.3.2. ^{18}O depleted waters

A remarkable tongue of waters with a low $\delta^{18}O_{cc}$ signature enters both the eastern and western Atlantic between 45° N and 20° N. It stays above 2000 m water depth in the eastern basin, whereas in the western North Atlantic it reaches down to 4000 m. These $\delta^{18}O_{cc}$ signatures are not observed south of 20° N. This water mass bears a $\delta^{13}C_{cc}$ enriched signature that is indistinguishable from the water mass signature farther north.

5. Discussion

5.1. Origin of water masses

To better identify the origin and spatial distribution of the different water masses, $\delta^{18}O_{cc}$ and $\delta^{13}C_{cc}$ distributions are plotted along the flow path of the three modern deep- and intermediate water masses, ISOW/NADW, LSW, and MOW (Figs. 1 and 3) (Lherminier et al., 2010; Sarafanov et al., 2012; Schmitz and McCartney, 1993; Xu et al., 2010). Additionally, binned data with 1000–2000 m water-depth bins are used to investigate the spatial extension of the water masses (Fig. 4). Surprisingly, at stations close to the sills to the GIN Seas, $^{18}O_{cc}$ and $^{13}C_{cc}$ enriched signatures are traced (Figs. 3, 4, S3), our interpretation is that these correspond to the classical ISOW and DSOW waters.

Yet, below 1500 m water depth in the eastern Atlantic basin a ^{13}C depleted, ^{18}O enriched waters are observed and correspond to ENADW. The $\delta^{13}C_{cc}$ depletion may have been caused by several mechanisms: a stronger admixture of stronger ^{13}C depleted (Khatiwala et al., 2019; Martínez-García et al., 2014) southern sourced LDW/AAWB to ENADW as previously proposed (Duplessy, 1988; Sarthein et al., 1994), a general weaker deepwater convection in both the North Atlantic and the Southern Ocean (Zhang et al., 2017) that led to a general increase in residence times of the deepwaters and associated uptake of isotopically-light respired carbon in the ENADW (Crocker et al., 2016; Thornalley et al., 2015) and LDW. The light ISOW $\delta^{13}C_{cc}$ signature in the $\delta^{18}O_{cc}$ vs $\delta^{13}C_{cc}$ cross-plot (Fig. 4) and $\delta^{18}O_{cc}$ signatures similar to AABW in the shallower northern Iceland Basin and the Irminger Sea exclude a southern origin of these waters and indicates that the deepwater filling the abyssal eastern North Atlantic are of Northern origin.

When plotted along the modern NADW flow path, a water mass enriched in $^{18}O_{cc}$ and $^{13}C_{cc}$ can be traced back to the Iceland Sea/Nordic Seas below 1000 m water depth (Fig. 3a and b). Its reconstructed southward flow crosses the Iceland Basin and CGFZ, and seems to be interrupted in the region of the Irminger Sea, Labrador Sea, and the east coast of North America between 50 and 35°N (7000–15,000 km) (Figs. 3 and 4). Within this area, a ^{18}O depleted ^{13}C enriched water mass reaches down to more than 3000 m water depth. This area resembles the area of HSI meltwater extent reconstructed by the distribution of ice rafted debris (IRD) (Hemming, 2004; Ruddiman, 1977). A potential origin of the ^{18}O depleted water is the relatively warm and saline MOW. Under modern conditions, the ^{18}O depleted, ^{13}C enriched waters sourced from the Mediterranean overflow (Fig. 3e and f, Fig. 4) reach down to 2500 m water depth in the eastern Atlantic basin. Although this is slightly deeper than MOW distribution (Curry et al., 2003), this indicates that ^{18}O depleted waters in the eastern North Atlantic basin could be affected by MOW. This is also evident from the $\delta^{13}C_{cc}/\delta^{18}O_{cc}$ cross plots (Fig. S5).

In the western North Atlantic basin, the ^{18}O depleted water mass reaches down to 3500 m depth, which is far deeper than its counterpart in the eastern basin (2000 m). The question arises,
whether this water mass is affected by MOW or represents an altered DSOW/ISOW or LSW. Along the modern flow path of LSW (Fig. 3), these waters are mainly found along the east coast of North America and the southern tip of Greenland. Data resolution does not allow to prove any admixture of MOW, and densities of modern MOW do not allow these waters to sink below 2000 m. Therefore, we assume that the observed light $\delta^{18}O$ in the western North Atlantic basin originates from a western source and not from MOW directly.

A clear boundary between the ^{18}O depleted ^{13}C enriched water mass signature to the north and ^{13}C depleted ^{18}O enriched water to the south is observed at 20°C14N in the western Atlantic basin below about 2 km depth (Fig. 2). The origin of the ^{13}C depleted and ^{18}O enriched water masses can be traced back to the southernmost sites of our study (Fig. 2a and b, 3a, b), indicating its origin from the Southern Ocean. The extremely light $\delta^{13}C$ signature (Figure S4e, Supplementary Information) is associated with the uptake of respired carbon during the long residence time of the deepwater in the abyssal Southern Ocean and/or an increase in the biological pump in the Southern Ocean, for example, by iron fertilization.

Surprisingly, below 3500 m water depth $\delta^{13}C$ depleted waters from the North and the South are separated by relatively $\delta^{13}C$ enriched waters at the equator (Fig. 2a). Waters below 4000 m at the equator are lighter in its $\delta^{13}C$ signature than the waters to the North of it (Figure S4e). With up to 0.75‰, the signal is statistically significant and may indicate that the abyssal water mass north of the equator originates from the North Atlantic. The boundary is probably formed by well-ventilated mid-depth waters being mixed down to the abyssal ocean at the interface between deep waters of southern and northern origins. Our hypothesis is supported by benthic ^{14}C AMS data compiled by Zhao et al. (2018) that reveal younger ages in the deep North Atlantic than its southern counterpart, in agreement with data and modeling studies for HS1 (Repschlager et al., 2015a) and the LGM (Gebbie, 2014; Krigvin and Swift, 2017; Zhao et al., 2018). Consequently, the existence of northern and southern sources of abyssal waters during HS1 argues against the classical suggestion that southern sourced deep waters filled the entire abyssal ocean during the LGM and HS1 (Curry and Oppo, 2005; Oppo et al., 2018; Rahmstorfer, 2002; Sarnthein et al., 1994).

Based on the above properties and distribution patterns, we distinguish seven different deepwater masses filling the North Atlantic during HS1:

- **ISOW** is characterized by relatively high benthic $\delta^{18}O_{cc}$ and $\delta^{13}C_{cc}$ values. Its formation area is situated in the Nordic Seas and/or Iceland Basin. Its water mass signature is similar to modern ISOW, indicating a deepwater formation process similar to the modern situation. The early disruption of its classical flow path at 50°N in the western Atlantic basin points either to a weak deepwater formation, in agreement with previous studies (Duplessy, 1988; Sarnthein et al., 1994), or to an alteration of ISOW on its southward flow path. The latter would be in agreement with relative strong ISOW formation during HS1 (Crocker et al., 2016), and is discussed in chapter 5.3.

- **DSOW** is characterized by relatively high benthic $\delta^{18}O_{cc}$ and $\delta^{13}C_{cc}$ values and only traceable in the Irminger Basin close to Denmark Strait. Its water mass signature is similar to modern DSOW, indicating a deepwater formation process similar to the modern situation. The early disruption of its classical flow path at 50°N in the western Atlantic basin points either to a weak deepwater formation, in agreement with previous studies (Duplessy, 1988; Sarnthein et al., 1994), or to an alteration of ISOW on its southward flow path. The latter would be in agreement with relative strong ISOW formation during HS1 (Crocker et al., 2016), and is discussed in chapter 5.3.

- **ENADW** is characterized by $^{18}O_{cc}$ enriched $^{13}C_{cc}$ intermediate to depleted signatures and fills the eastern North Atlantic basin close to Denmark Strait.

- **MOW** is characterized by benthic $\delta^{18}O_{cc}$ depletion and $\delta^{13}C_{cc}$ enrichment and its flow path corresponds to the classical MOW.
spreading into the North Atlantic.

HS1-NADW is characterized by low-δ^{18}OCc high-δ^{13}Ccc benthic signatures and situated in the subtropical to subpolar North Atlantic between 20°N and 50°N. The wide distribution of δ^{18}O-depleted signatures below 3000 m water depth (Figs. 2b and 3b) and occupation of the deep western North Atlantic basin, as well as its occurrence at the southern tip of Greenland, argues against its origin from MOW. Though HS1 NADW occupies the space that in modern days is filled with LSW, LSW formation is supposed to have been absent until 7 ka BP (Hoogakker et al., 2011; Kissel et al., 2013; Solignac et al., 2004; Thornalley et al., 2013). Thus, in the following, this water mass is called HS1-NADW. The δ^{18}O signature of this water mass significantly differs from ISOW signature. Thus, a deepwater formation process different from the Nordic Seas or an alteration of the ISOW must have occurred in the region between 45°N and 50°N, as is discussed in chapter 5.3.

Below 4000 m water depth and to the north of 20°N, the western North Atlantic Basin is filled with LNADW with a δ^{13}Cc-depleted, δ^{18}Oc-enriched (Fig. 2a and b) signature. This water mass probably originated from the north and is poorly ventilated due to weaker abyssal ocean circulation than the mid-depths.

South of the equator, below 2000 m depth, both the eastern and western Atlantic basins are filled with AABW/LDW with high-δ^{18}Oc, low-δ^{13}Cc signature, which are likely of southern origin (e.g., Oppo et al., 2015; Oppo et al., 2018) and correspond to modern AABW and LDW. They will not be further addressed in this study.

5.2. Water mass formation mechanisms during HS1

5.2.1. Formation of ISOW

Modern ISOW is formed by the cooling of warm saline North Atlantic Current (NAC) waters. Classical circulation patterns for HS1 suggest blocking of the northward warm water transport by a meltwater lens and cessation of subpolar deepwater formation. These scenarios are in contradiction with the δ^{18}O and δ^{13}C signatures observed in this study that indicate active deepwater formation in the Iceland Basin during HS1. The latter was previously reported also for HS1 in the Nordic Seas (Bauch, 2013). Though potentially subject to changes in the erosion patterns (Struve et al., 2019), εNd and sortable silt records from the Irminger Sea (Crocker et al., 2016 and citations therein) further support the export of deepwater from the Irminger Sea during HS1. Thus, a mechanism needs to be found that can explain northward NAC transport and ISOW formation during HS1.

Despite blocking of the NAC by the meltwater lens and asynchronous warming of the subtropics (Benway et al., 2010), and
widespread cooling at the Iberian Margin and subpolar North Atlantic (40°–55° N) (Bard et al., 2000; Chapman et al., 2000; Heinrich, 1988; Maslin et al., 1995; Naafs et al., 2011; Penaud et al., 2016; Pérez-Folgado et al., 2003), north of 55° N surface water warming of at least 2°C between the LGM and HS1 is apparent in Mg/Ca and MAT data from core ODP 980 (Benway et al., 2010) situated at Rockall Plateau, as well as in Mg/Ca SST records of planktonic foraminifera in core RAPID-15P south of Iceland (Thornalley et al., 2011). Mg/Ca records of G. bulloides (Peck et al., 2008) indicate strong warming during HS1 and are suggested to be caused by sporadic northward warm water transport with advection of G. bulloides from warmer areas (Peck et al., 2008) and is in agreement with studies from the Nordic Seas (Bauch, 2013) and the North Atlantic (Bauch et al., 2000). This warm (and presumably salty) water advection may have fueled sporadic deep-water formation in the subpolar North Atlantic. Yet, the warm NAC waters would need to be transported across the meltwater lens. Two scenarios are possible for the latter: a) surface transport and mixing with the meltwater, and b) subduction of the NAC waters underneath the meltwater, and resurfacing and cooling of the meltwater lens on its transport to the north (Fig. 6). To comprehend this process, analyses of the surface processes including detailed spatial SST and SSS analyses of surface and subsurface dwelling foraminifers would be needed.

5.2.2. Formation of MOW
MOW formation in the Mediterranean may have been increased during HS1 due to higher salinities and regional surface water cooling. Assuming a reduced formation of ISOW during the same time interval, MOW may even have contributed more to the deepwater export than under modern conditions (Bauch, 2013; Rogerson et al., 2010; Schönfeld, 1997; Schönfeld and Zahn, 2000; Voelker et al., 2006). Consequently, MOW may have transported over longer distances and penetrated greater depth in the eastern and western North Atlantic.

5.2.3. Formation of NADW
In the following, we discuss four different mechanisms that may explain the occurrence of the light δ18O water signature during HS1 at 1000 to 4,000 m water depths in the western North Atlantic between 20° N and 50° N. As discussed, pure MOW probably can be ruled out as the primary origin for the δ18O depleted water mass signature in the Western Atlantic Basin. The origin of the light δ18O signature can either be admixture of isotopically light waters during active deepwater formation within this area or warming of the deepwater. We first present different mechanisms of NADW

![Fig. 3. a) benthic δ13C, and b) benthic δ18O, distribution during HS1 along the flow path of NADW, c) d) LSW (white circles), and e) f) MOW (red circles).]
formation and deepwater warming, and then discuss their feasibility based on the $\delta^{18}O_{\text{ice}}$ signatures, temperature, salinity, and resulting density.

Mechanism A (Fig. 6a) - convection at the southern edge of the meltwater lens: HS1 was associated with a strong cooling of mid-latitudes (Bard et al., 2000; Chapman et al., 2000; Heinrich, 1988; Maslin et al., 1995; Naafs et al., 2011; Penaud et al., 2016; Pérez-Folgado et al., 2003) and an extreme southward displacement of the Arctic Front (e.g. Bard et al., 1987; Eynaud et al., 2009 and citations therein) as well as a southward displacement of the North Atlantic Subtropical Gyre (Repschlager et al., 2015b). Glacial iceberg scours found on the eastern US shelf indicate that the meltwaters from these bergs potentially also during HS1 reached as far into the subtropical ocean as the Florida Strait (Hill and Condron, 2014), consequently leading to cooling of that region. Under such cold conditions, strong cooling of the Gulf Stream and NAC waters could have appeared along the southern extension of the meltwater lens, and the southern boundary of the winter sea ice extent (Fig. 7). Cold and strong winds during HS1 could have enhanced such a cooling and eventually have led to deepwater formation. Admixture or entrainment of meltwater into the downwelling water mass during destratification events may have transported the ^{18}O depleted waters into the deep ocean. Although deepwater formation off the coast of the eastern US has not been investigated so far, our proposed open-ocean convection at the southern edge of the meltwater lens (Fig. 7, Mechanism A) is in agreement with reconstructed destratification of the upper water column based on stable oxygen isotope records from different planktonic foraminifera at 40° N during HS1 (Rashid and Boyle, 2007).

Mechanism B (Fig. 7b) - warm polynyas: Warm NAC waters could have been subducted underneath the freshwater and sea ice lens, similar to modern circulation in the Arctic Ocean (Polyakov et al., 2012, and citations therein). Sporadic break-up of sea ice by subsurface warming would lead to the opening of polynyas and cause deepwater convection by cooling of the warm and saline surfacing waters. Similar mechanisms are reported from the Arctic and subpolar North Atlantic (Morales Maqueda et al., 2004) and have been discussed previously (Bauch and Bauch, 2001; Bauch et al., 2001). Presumably, this process includes entrainment of meltwaters into the newly formed deepwaters, and would lead to a stepwise erosion of the meltwater lens, similar to the mechanism proposed by Krebs and Timmermann (2007) that preconditioned the AMOC resumption at the onset of the Bølling-Allerød.

Mechanism C (Fig. 7c) - cold polynyas: This scenario is similar to modern deepwater formation in the Southern Ocean, i.e., freezing of sea ice and increasing the salinity of the surface waters.
Additional opening of polynyas would lead to heat loss and favor deep water formation by brine water rejection. This scenario is most likely to occur on the Greenland shelf and/or the Labrador Sea, and has previously been proposed (Meland et al., 2008; Waelbroeck et al., 2011) and discussed (Bauch et al., 2001; Bauch and Bauch, 2001).

Mechanism D (Fig. 7d) describes deepwater formation within the Irminger and/or Iceland Basin, its southward transport, and abyssal warming underneath the meltwater lens. This scenario would be consistent with a diffusive heat transport within the water column as published by (de Lavergne et al., 2017). As low δ^{18}O is mainly occurring underneath the meltwater lid, a connection between both meltwater lid and abyssal warming is likely. The latter may be caused by two different mechanisms: subsurface warming caused by the subduction of NAC waters underneath the meltwater lens, or increased heat transport from enhanced MOW.

5.3. 18O-depleted deep waters—a density paradox?

The signature of low δ^{18}O in the deep Atlantic during HS1 has been reported previously (Campos et al., 2020; Waelbroeck et al., 2011) and is assumed to show the drawdown of the 18O-depleted signal from waters stored in the global ice sheets that are released during the deglaciation into the global ocean. The isotopically light

Fig. 5. δ^{18}O versus δ^{13}O cross plots for the dataset for HS1.

Fig. 6. Mechanism for deepwater formation in the Iceland Basin during HS1 assuming subduction of the NAC underneath the meltwater lens, its northward transport, resurfacing, cooling and convection north of the meltwater lens.
\(^{18} \text{O} \) signals are caused by the extreme isotopic depletion of the melting ice and resulting fresh water (Vetter et al., 2017). Increased salinity and cooling of these waters would be needed to form waters that are dense enough for deep convection. Both processes increase the \(^{18} \text{O} \) values, thus preventing the light \(^{18} \text{O} \) signal from being transported into the deep sea.

The classical explanation for this paradox is deepwater formation by brine rejection. Freezing of sea ice is a process with little isotope fractionation that leaves salt behind in the ocean, thus decoupling \(^{18} \text{O} \) from salinity. This mechanism illustrated in deepwater formation Scenario C (Fig. 7c) is widely used to explain the deglacial drawdown of the light \(^{18} \text{O} \) signal during the deglaciation. While explaining the depleted \(^{18} \text{O}_{\text{oc}} \) signature, this concept does not explain deglacial warming and salinity decrease of NADW proposed by Adkins et al. (2002). In the following, we will discuss different mechanisms that explain the occurrence of \(^{18} \text{O} \) depleted benthic signals under the consideration of decaglacial deep ocean temperature and salinity changes: mixing of low \(^{18} \text{O} \) meltwaters with high \(^{18} \text{O} \) tropical waters, and abyssal warming of the deepwater.

Mixing of isotopically depleted cold meltwaters and isotopically enriched warm and salty subtropical (NAC) waters is illustrated in Fig. 8 using the \(^{18} \text{O}_{\text{oc}} \) values, thus preventing the light \(^{18} \text{O} \) from salinity. This mechanism illustrated in deepwater formation Scenario C (Fig. 7c) is widely used to explain the deglacial drawdown of the light \(^{18} \text{O} \) signal during the deglaciation. While explaining the depleted \(^{18} \text{O}_{\text{oc}} \) signature, this concept does not explain deglacial warming and salinity decrease of NADW proposed by Adkins et al. (2002). In the following, we will discuss different mechanisms that explain the occurrence of \(^{18} \text{O} \) depleted benthic signals under the consideration of decaglacial deep ocean temperature and salinity changes: mixing of low \(^{18} \text{O} \) meltwaters with high \(^{18} \text{O} \) tropical waters, and abyssal warming of the deepwater.

The salinity of the resulting mixed water mass was calculated as follows. For the HS1 meltwater dinocyst-based salinity reconstructions from the inner Labrador Sea in front of Hudson Strait were used (Gibb et al., 2014). Its reconstructed salinities of 31 are in good agreement with modern meltwater signatures from the Hudson Strait (Locarnini et al., 2013). No direct salinity reconstructions exist for the Gulf Stream/NAC waters. Thus, we calculated the latter using the ice volume and Mg/Ca temperature corrected \(^{18} \text{O}_{\text{sw}} \) record of core JPC26 (Schmidt and Lynch-Stieglitz, 2011) using the equations of Fairbanks et al. (1992). To visualize the entire possible range of salinities, we used the regression line for slope waters as well as Sargasso Sea waters. The only existing deepwater salinity reconstructions independent of \(^{18} \text{O}_{\text{sw}} \) were generated from porewaters on a LGM time slice (Adkins et al., 2002). The LGM data represent the saltiest endmember of NADW (Fig. 8b). A water mass mixed from about 50% subtropical and 50% meltwaters would have a salinity between 33.8 and 36. When cooled down to 2.5 °C its density would lie within the range of glacial NADW reconstructed by Adkins et al. (2002).

These results in general indicate the feasibility of deepwater formation with low \(^{18} \text{O}_{\text{oc}} \) signatures by pure mixing of water masses without evoking any brine water formation. Yet, these results highly depend on the assumed \(^{18} \text{O} \)-salinity relationship of the subtropical water masses and have a very high uncertainty. To fully assess the salinity changes involved in this process, independent surface and deepwater salinity reconstructions would be needed.

To test whether NADW was formed independently from ISOW or originates from an altered ISOW or MOW, in the following we discuss different mechanisms that could explain the \(^{34} \text{S} \) signature of foraminifers bathed in ISOW. The \(^{18} \text{O}_{\text{oc}} \) signature of 4.2‰ as observed in the Iceland Basin can be generated by deepwater formation from a mixture of 75% subtropical waters and 25% meltwater (cooling line B) under the assumption of Bottom Water Temperature (BWT) of 2 °C, or by cooling a mixture of 50%...
subtropical waters and 50% meltwater (cooling line A) to \(-1.5\) °C. Thus, NADW and ISOW during HS1 either originate from the same water mass and only differ in temperatures, or originate from two different deepwater sources that differ in meltwater admixtures. Surface \(\delta^{18}O_w\) from the Iceland Basin (Thorndyke et al., 2011) better match mixing line A, as well as the average BWT of \(-0.5\) to \(-1\) °C reconstructed from the Iceland Basin (Thorndyke et al., 2011) and the Iberian Margin (Skinner and Shackleton, 2006) at 2400 m water depth. Therefore, the \(\delta^{18}O_w\) signature of 4\% can be explained by the cooling of a 50% subtropical and 50% meltwater mixture to the reconstructed temperatures.

5.4. The role of MOW and diabatic heat transport during HS1

The draw-down of isotopically light water to the deep Atlantic can be explained with simple mixing and cooling, as shown above. The reconstructed deepwater warming of 2 °C toward the end of HS1 (Barker et al., 2011; Repschläger et al., 2015a; Skinner and Shackleton, 2006; Thorndyke et al., 2015) would lead to a density loss of about 0.2 kg m\(^{-2}\) that argues against a drawdown by active deepwater convection. To keep the density high enough for convection, either additional salt would be needed, or deep ocean warming and increased mixing rates would need to be assumed. MOW with modern salinities of 37.4 could act as a source of salt to the deep water. Yet, under modern conditions, downward mixing of MOW is restricted to the upper 2000 m of the water column. Therefore, stronger vertical mixing of the water column due to heating and or stronger tidal energy dissipation (Wilmes et al., 2019) of the deep ocean would probably be needed (see 5.5).

Three different sources of heat are conceivable: (1) geothermal heating, as has been proposed for the Southern Ocean (Miller et al., 2012), (2) diabatic warming by heat transported downward from the subducted NAC, or (3) from MOW. The distribution pattern of depleted \(\delta^{18}O_w\) with a major decrease at intermediate depths argues against (1) geothermal heating at the seafloor. An average heat flux of 116.3 mW m\(^{-2}\) in the North Atlantic region (Bullard and Day, 1961; Davies, 2013) is not sufficient to heat a water column of 3000 m by 2 °C even under the assumption of a complete shutdown of AMOC and stagnation of deepwater flow in the North Atlantic and the a potentially higher geothermal heating at the termination of the LGM because of lower sea level (Lund et al., 2016). (2) Subduction of the NAC underneath the meltwater lens is comparable to the modern situation in the Nordic Seas and Arctic (Polyakov et al., 2012). No modern deepwater warming is reported from this region, therefore, we suppose that warming from the NAC played a subordinate role. (3) Under modern conditions, MOW brings 11 °C warm waters down to a depth of 1,500 m. Therefore, diabatic heat transport from this source to the abyssal ocean may have played a major role in the deepwater warming, especially when considering an MOW strengthening during the later part of this period (Bahr et al., 2014, 2015; Lebreiro et al., 2018; Voelker et al., 2006).

If our hypothesis is correct, and heating resulted from diabatic warming, the deepwater would not have warmed immediately at the beginning of HS1, but would have started sometime later. Indeed, a time delay is also apparent in \(\delta^{18}O_w\) time series data, with the \(\delta^{18}O_w\) decrease not starting before 16 ka BP (Waelbroeck et al., 2011), yet would need to be tested with benthic bottom water temperature reconstructions.

5.5. The role of vertical mixing

Traditionally, the strengthening of the AMOC after HS1 is explained by a salinity kick-off caused by the onset of the northward transport of warm saline waters, and its cooling and sinking. The production of saline deep waters argues against successive freshening needed to leave the glacial deepwater circulation mode (Adkins et al., 2002). To replace the glacial saline deepwater, a process is required that mixes down freshwaters into the abyssal ocean.

The southern extent of the waters with light \(\delta^{18}O_w\) confined to 20°N indicates a reduced southward transport of NADW and ISOW and has been associated with a weak AMOC in previous studies (e.g., Rahmsdorf, 2002; Sarntthein et al., 1994). This weak AMOC mode probably led to an increased residence time of deepwaters in
the North Atlantic, and increased the proportion of diabatic heat transport (de Lavergne et al., 2017) and diffusive vertical mixing over the meridional mixing component as calculated previously for the South Atlantic (Lund et al., 2011). Increased dissipation of tidal energy may also have contributed to an increase in diapycnal mixing, particularly in the North Atlantic (Wilmes et al., 2019). Such an increased vertical mixing would have led to an increased ventilation that is supported by heavy $\delta^{13}C_{cc}$ signatures. Furthermore, vertical mixing would have favored NADW freshening by downward mixing as well as diabatic warming of the deepwater indicated by light $\delta^{18}O_{oc}$ signatures. This has been shown in a modeling study as asymmetrical warming of the North Atlantic (Zhang et al., 2017), and also explains the deglacial stratification reversal.

5.6. Importance of HS1 in setting the deglacial climate

The sum of our arguments supports Scenario D (Fig. 7d) and explains deepwater formation in HS1. During HS1, tropical warm and saline waters accumulated within the subtropics and were partially exported northward underneath the HS1 meltwater lens. On its northward path, NAC waters entrained overlying meltwaters (about 50°S–50°S mixing), thereby decreasing its $\delta^{18}O$ signature. In the Irminger/Iceland Basin, NAC waters resurfaced, cooled down, and formed ISOW. The cooling process led to an increase of $\delta^{18}O_{oc}$ in foraminifera, masking the freshening signal of the waters. ISOW slowly propagated into the western Atlantic basin on a flow path similar to modern. In the area between 50°N and 20°N, the deepwater was warmed by diabatic heat transport. The heat originated from MOW as well as warm surface waters that accumulated in the subtropics. The reduction of deepwater flow and thus longer residence times favored the deepwater warming and its vertical mixing. This process would have led to a weakening of the salinity driven stratification of the water column, and, at the same time, transport of both heat and freshwater into the abyssal ocean. Consequent weakening of the stratification eventually also allowed deepwater formation Scenarios A and B (Fig. 7), and mixing may have also led to an entrainment of MOW.

The strong vertical mixing and stratification weakening, which is traceable in our dataset by the drawdown of isotopically light $\delta^{18}O$ in wide parts of the North Atlantic, may have set the conditions for the massive deepwater formation during the Bolling-Allerød. This proposed new mechanism shows that the HS1 meltwater outburst is not only an important driver of Southern Ocean ventilation during the BA. To test the proposed mechanisms, deepwater salinity and temperature reconstructions with proxies independent of oxygen isotope composition would be needed. The new reconstruction also presents a challenge for future modeling studies to reproduce carbon and oxygen isotope distributions during HS1.

Author contribution

Janne Repschläger: project administration, conceptualization, methodology, formal analyses, investigation, resources, writing - original draft, funding acquisition (PAGES) Ning Zhao: Methodology, data curation, software, resources, writing - original draft, Lorraine Lisiecki: Formal analysis, software, writing - review & editing, Devin Rand: Formal analyses, Juan Muglia: methodology, data curation, writing - review & editing, Stefan Mulitza: software, methodology, writing - review & editing, Henning Bauch: resources, writing - review & editing, Andreas Schmittner: project administration, Funding acquisition, writing - review & editing, Olivier Cartapanis: data curation, writing - review & editing, Ralf Schiebel: writing - discussion, review & editing, Gerald Haug: Funding acquisition.

Data availability

All data in PDF file format is uploaded to Pangaea and will be made available upon publication. Furthermore, this dataset will be part of the global Pages OC 3 data compilation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The work was supported by the PAGES. AS, JM and OC3 meetings were supported by the National Science Foundation (grants 1634719 and 1924215). OC was funded by the Swiss National Science Foundation (grant PP00P2-144811) and by the Canadian Institute for Advanced Research (CIFAR).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.quascirev.2021.107145.

References

Kiefer, T. 1998. ProdschichtaktivitŠt und Temperaturen im subtropischen Nordatlantik-
zyklische und abrupte Veränderungen im spŠtnen Quartar, Berichte - Reports,
Geologisch-Paläontologisches Institut und Museum, Christian-Albrechts-Uni-
versität, Kiel. Geologisch-Paläontologisches Institut und Museum, Christian-
Albrechts-Universität, Kiel, Germany, pp. 1–127.

Kissel, C., Van Toer, A., Laj, C., Cortijo, E., Michel, E. 2013. Variations in the strength of

Knoet, C., Lohmann, G., 2007. Rapid transitions in the atlantic thermohaline cir-
clution triggered by warming and meltwater during the last deglaciation.

Kwon, E.Y., Hain, M.P., Sigman, D.M., Galbraith, E.D., Sarmiento, J.L., Toggweiler, J.R.,
Lozier, M.S., Stewart, N.M., 2008. On the temporally varying northward penetration
of mediterranean over

Kiefer, T., 1998. ProduktivitŠt und Temperaturen im subtropischen Nordatlantik-
zyklische und abrupte Veränderungen im spŠtnen Quartar, Berichte - Reports,
Geologisch-Paläontologisches Institut und Museum, Christian-Albrechts-Uni-
versität, Kiel. Geologisch-Paläontologisches Institut und Museum, Christian-
Albrechts-Universität, Kiel, Germany, pp. 1–127.

Kissel, C., Van Toer, A., Laj, C., Cortijo, E., Michel, E. 2013. Variations in the strength of

Knoet, C., Lohmann, G., 2007. Rapid transitions in the atlantic thermohaline cir-
clution triggered by warming and meltwater during the last deglaciation.

Kwon, E.Y., Hain, M.P., Sigman, D.M., Galbraith, E.D., Sarmiento, J.L., Toggweiler, J.R.,
Lozier, M.S., Stewart, N.M., 2008. On the temporally varying northward penetration
of mediterranean over

Kiefer, T., 1998. ProduktivitŠt und Temperaturen im subtropischen Nordatlantik-
zyklische und abrupte Veränderungen im spŠtnen Quartar, Berichte - Reports,
Geologisch-Paläontologisches Institut und Museum, Christian-Albrechts-Uni-
versität, Kiel. Geologisch-Paläontologisches Institut und Museum, Christian-
Albrechts-Universität, Kiel, Germany, pp. 1–127.

Kissel, C., Van Toer, A., Laj, C., Cortijo, E., Michel, E. 2013. Variations in the strength of

Knoet, C., Lohmann, G., 2007. Rapid transitions in the atlantic thermohaline cir-
clution triggered by warming and meltwater during the last deglaciation.

Kwon, E.Y., Hain, M.P., Sigman, D.M., Galbraith, E.D., Sarmiento, J.L., Toggweiler, J.R.,
Lozier, M.S., Stewart, N.M., 2008. On the temporally varying northward penetration
of mediterranean over

Kiefer, T., 1998. ProduktivitŠt und Temperaturen im subtropischen Nordatlantik-
zyklische und abrupte Veränderungen im spŠtnen Quartar, Berichte - Reports,
Geologisch-Paläontologisches Institut und Museum, Christian-Albrechts-Uni-
versität, Kiel. Geologisch-Paläontologisches Institut und Museum, Christian-
Albrechts-Universität, Kiel, Germany, pp. 1–127.

Kissel, C., Van Toer, A., Laj, C., Cortijo, E., Michel, E. 2013. Variations in the strength of

Knoet, C., Lohmann, G., 2007. Rapid transitions in the atlantic thermohaline cir-
clution triggered by warming and meltwater during the last deglaciation.

Germany, pp. 1–13.

