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A new lattice Boltzmann model for reactive ideal
gas mixtures is presented. The model is an extension
to reactive flows of the recently proposed multi-
component lattice Boltzmann model for compressible
ideal gas mixtures with Stefan–Maxwell diffusion
for species interaction. First, the kinetic model
for the Stefan–Maxwell diffusion is enhanced to
accommodate a source term accounting for the change
in the mixture composition due to chemical reaction.
Second, by including the heat of formation in the
energy equation, the thermodynamic consistency of
the underlying compressible lattice Boltzmann model
for momentum and energy allows a realization
of the energy and temperature change due to
chemical reactions. This obviates the need for
ad-hoc modelling with source terms for temperature
or heat. Both parts remain consistently coupled
through mixture composition, momentum, pressure,
energy and enthalpy. The proposed model uses the
standard three-dimensional lattices and is validated
with a set of benchmarks including laminar burning
speed in the hydrogen–air mixture and circular
expanding premixed flame.

This article is part of the theme issue ‘Progress in
mesoscale methods for fluid dynamics simulation’.

1. Introduction
The lattice Boltzmann method (LBM) is a recast of
fluid dynamics into a fully discrete kinetic system for
the populations fi(x, t) of designer particles, which are
associated with the discrete velocities ci fitting into
a regular space-filling lattice. As a result, the kinetic
equations for the populations fi(x, t) follow a simple

2021 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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algorithm of ‘stream along links ci and collide at the nodes x in discrete time t’. LBM has been
successfully applied to a range of problems in fluid dynamics including but not limited to
transitional flows, flows in complex moving geometries compressible flows, multiphase flows
and rarefied gas, to name a few [1,2].

Nevertheless, in spite of extensive development, the multicomponent reactive mixtures so far
resisted a significant advancement in the LBM context. Arguably, one of the main reasons was
the absence of a thermodynamically consistent LBM for mixtures. Early approaches such as [3,4]
suffer many limitations such as incompressible flow restriction, constant transport properties and
rudimentary diffusion modelling.

As a remedy, a number of recent works [5–10] abandoned the construction of a kinetic model or
LBM for multicomponent mixtures in favour of a so-called hybrid LBM where only the flow of the
mixture is represented by an (augmented) LBM equation while the species and the temperature
dynamics are modelled by conventional macroscopic equations. While the hybrid LBM approach
can be potentially useful, in particular for combustion applications, our goal here is to retain a
fully kinetic model and LBM for multicomponent reactive mixtures.

Recently, we proposed a novel lattice Boltzmann framework for compressible multi-
component mixtures with a realistic equation of state and thermodynamic consistency [11]. The
strongly coupled formulation consists of kinetic equations for momentum, energy and species
dynamics and was validated for a variety of test cases involving uphill diffusion, opposed jets
and Kelvin–Helmholtz instability. This extends the LBM to realistic mixtures and opens the
door for reactive flow applications with a fully kinetic approach, which is the subject of this
paper. We propose a fully kinetic, strongly coupled lattice Boltzmann model for compressible
reactive flows as an extension of [11]. To that end, a generic M-component ideal gas mixture
is represented by two sets of kinetic equations. A set of M kinetic equations is used to model
species undergoing Stefan–Maxwell diffusion. This set is now extended to include the reaction
source term. Furthermore, the mixture is described by a set of two kinetic equations, where one
accounts for the total mass and momentum of the mixture and another for the total energy of
the mixture. The kinetic equation for the mixture energy is extended to also include the internal
energy of formation in addition to the sensible internal energy. Thus, the approach presented
here can accurately model a reactive M-component compressible mixture with M + 2 kinetic
equations. The system is fully coupled through mixture composition, momentum, pressure and
enthalpy. The thermodynamic consistency of the model allows us to automatically account for
the energy changes due to chemical reactions. The Stefan–Maxwell diffusion is retained and thus
complicated phenomena such as reverse diffusion, osmotic diffusion or diffusion barrier can be
captured, as was already demonstrated in the non-reactive case in [11].

The outline of the paper is as follows. In §2, we extend the lattice Boltzmann model of [11] to
the reactive multicomponent mixtures. This is achieved by supplying a reaction source term to
the kinetic equations for the species in such a way that the Stefan–Maxwell diffusion mechanism
already implemented by the model stays intact. In §3, we extend the two-population lattice
Boltzmann model for the mixture flow and energy to include the enthalpy of formation of
chemically reacting species. Thanks to the thermodynamic consistency featured by the original
model [11], this final step completes the construction of the lattice Boltzmann model for the
reactive mixtures. The derivation follows the path presented in detail in [11], and we indicate
the differences brought about by the thermodynamics of the chemical reaction. In §4, we outline
the coupling of the lattice Boltzmann solver with the open source chemical kinetics package
Cantera. Validation of the model is presented in §5 with the simulation of detailed hydrogen/air
combustion mechanism and the discussion is provided in §6.

2. Lattice Boltzmann model for the species
The composition of a reactive mixture of M ideal gases is described by the species densities ρa,
a = 1, . . . , M, while the mixture density is ρ =∑M

a=1 ρa. The rate of change of ρa due to chemical
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reaction ρ̇c
a satisfies mass conservation,

M∑
a=1

ρ̇c
a = 0. (2.1)

Introducing the mass fraction Ya = ρa/ρ, the molar mass of the mixture m is given by m−1 =∑M
a=1 Ya/ma, where ma is the molar mass of the component a. The equation of state of the mixture

provides a relation between the pressure P, the temperature T and the composition,

P = ρRT, (2.2)

where R = RU/m is the specific gas constant of the mixture and RU is the universal gas constant.
The pressure of an individual component Pa is related to the pressure of the mixture P through
Dalton’s Law of partial pressures, Pa = XaP, where the mole fraction of a component Xa is related
to its mass fraction Ya as Xa = mYa/ma. Combined with the equation of state (2.2), the partial
pressure Pa takes the form Pa = ρaRaT, where Ra = RU/ma is the specific gas constant of the
component. A kinetic model for the Stefan–Maxwell diffusion in the non-reactive mixture was
introduced in [11]. Here, we extend the formulation [11] to include the reaction. To that end, we
write the kinetic equation for the populations fai, a = 1, . . . , M, of the component a, corresponding
to the discrete velocities ci, i = 0, . . . , Q − 1,

∂tfai + ci · ∇fai =
M∑

b �=a

PXaXb

Dab

[(
f eq
ai − fai

ρa

)
−
(

f eq
bi − f ∗

bi
ρb

)]
+ ḟ c

ai. (2.3)

Here Dab are the binary diffusivity coefficients. The species’ densities ρa and partial momenta ρaua

are, respectively,

ρa =
Q−1∑
i=0

fai and ρaua =
Q−1∑
i=0

faici. (2.4)

The momenta of the components sum up to the mixture momentum, At variance with the non-
reactive mixture [11], kinetic equation (2.3) includes a source term ḟ c

ai which implements the rate
of change of ρa due to the reaction and satisfies the following conditions,

Q−1∑
i=0

ḟ c
ai = ρ̇c

a and
Q−1∑
i=0

ḟ c
aici = ρ̇c

au. (2.5)

The kinetic model (2.3) is realized on the standard three-dimensional D3Q27 lattice with the
discrete velocities ci = (cix, ciy, ciz), ciα ∈ {−1, 0, 1}. As in [11], the equilibrium f eq

ai and the quasi-
equilibrium f ∗

ai in (2.3) are constructed using the product-form [12]: we define a triplet of functions
in two variables, ξ and ζ > 0,

Ψ0(ξ , ζ ) = 1 − (ξ2 + ζ ), Ψ1(ξ , ζ ) = ξ + (ξ2 + ζ )
2

and Ψ−1(ξ , ζ ) = −ξ + (ξ2 + ζ )
2

. (2.6)

The equilibrium f eq
ai and the quasi-equilibrium f ∗

ai populations are evaluated as the products of the
functions (2.6), with ξ = uα and ξ = uaα , respectively, and with ζ = RaT in both cases,

f eq
ai (ρa, u, RaT) = ρaΨcix (ux, RaT) Ψciy

(
uy, RaT

)
Ψciz (uz, RaT) (2.7)

and
f ∗
ai(ρa, ua, RaT) = ρaΨcix (uax, RaT) Ψciy

(
uay, RaT

)
Ψciz (uaz, RaT) . (2.8)

The reaction source term ḟ c
ai in (2.3) is also represented by the product-form similar to (2.7),

ḟ c
ai(ρ̇

c
a , u, RaT) = ρ̇c

aΨcix (ux, RaT) Ψciy

(
uy, RaT

)
Ψciz (uz, RaT) . (2.9)

The analysis of the hydrodynamic limit of the kinetic model (2.3) follows the lines already
presented in [11]. Note that the constraint on the momentum of the source term (2.5) is required.
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The balance equations for the densities of the species in the presence of the source term are found
as follows:

∂tρa = −∇ · (ρau) − ∇ · (ρaδua) + ρ̇c
a , (2.10)

where the diffusion velocities, δua = ua − u, satisfy the Stefan–Maxwell constitutive relation,

P∇Xa + (Xa − Ya)∇P =
M∑

b �=a

PXaXb

Dab
(δub − δua) . (2.11)

Summarizing, kinetic model (2.3) recovers both the Stefan–Maxwell law of diffusion and the
contribution of the species mass change due to chemical reaction, as presented in equation (2.10).

Derivation of the lattice Boltzmann equation from the kinetic model (2.3) proceeds along
the lines of the non-reactive case [11]. Upon integration of (2.3) along the characteristics and
application of the trapezoidal rule, we arrive at a fully discrete lattice Boltzmann equation

fai(x + ciδt, t + δt) = fai(x, t) + 2βa[f eq
ai (x, t) − fai(x, t)] + δt(βa − 1)Fai(x, t) + δtḟ c

ai. (2.12)

The discrete equation (2.12) is used in the actual numerical implementation. Unlike equation (2.3),
the discrete equation does not contain species mass in the denominator. Therefore, no special
treatment is required for species masses going to zero. The short-hand notation Fai for the inter-
species interaction term and the relaxation parameters βa ∈ [0, 1] are,

Fai = Ya

M∑
b �=a

1
τab

(
f eq
bi − f ∗

bi

)
, βa = δt

2τa + δt
, (2.13)

where the characteristic times τab and the relaxation times τa are related to the binary diffusivities,

τab =
(

mamb

mRUT

)
Dab,

1
τa

=
M∑

b �=a

Yb

τab
. (2.14)

Furthermore, the quasi-equilibrium populations f ∗
bi = f ∗

bi(ρb, u + δub, RbT) in the expression Fai
(2.13) depend on the diffusion velocity δub. The latter are found by solving the M × M linear
algebraic system for each spatial component

(
1 + δt

2τa

)
δua − δt

2

M∑
b �=a

1
τab

Ybδub = ua − u. (2.15)

The linear algebraic system was already derived in [11] for the non-reactive mixtures and
is not altered by the presence of the reaction source term. The equilibrium population f eq

ai =
f eq
ai (ρa, u, RaT) and the reaction source term ḟ c

ai = ḟ c
ai(ρ̇a, u, RaT) in (2.12) and (2.13) are evaluated at

the mixture velocity u. Summarizing, the lattice Boltzmann system (2.12) delivers the extension of
the species dynamics subject to the Stefan–Maxwell diffusion to the reactive mixtures. We proceed
with the extension of the flow and energy dynamics of the mixture.

3. Lattice Boltzmann model of mixture momentum and energy
The mass-based specific internal energy Ua and enthalpy Ha of a species a are,

Ua = U0
a +

∫T

T0

Ca,v(T′) dT′ and Ha = H0
a +

∫T

T0

Ca,p(T′) dT′, (3.1)
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where U0
a and H0

a are, respectively, the energy and the enthalpy of formation at the reference
temperature T0, while Ca,v and Ca,p are specific heats at constant volume and at constant pressure,
respectively. The internal energy ρU and the enthalpy ρH of a mixture are

ρU =
M∑

a=1

ρaUa and ρH =
M∑

a=1

ρaHa. (3.2)

While the sensible heat was considered in the non-reactive case [11], by taking into account the
heat of formation we immediately extend the model to reactive mixtures. As in [11], we follow a
two-population approach. One set of populations (f -populations) is used to represent the density
and the momentum of the mixture

Q−1∑
i=0

fi = ρ and
Q−1∑
i=0

fici = ρu. (3.3)

Another set (g-populations) represents the total energy,

Q−1∑
i=0

gi = ρE, ρE = ρU + ρu2

2
. (3.4)

A coupling between the mixture and the species kinetic equations is established through energy
since the mixture internal energy (3.2) depends on the composition. Furthermore, the temperature
is evaluated by solving the integral equation, cf. (3.1) and (3.2),

M∑
a=1

Ya

[
U0

a +
∫T

T0

Ca,v(T′) dT′
]

= E − u2

2
. (3.5)

The temperature is used as the input for the equation of state (2.2) and hence in the equilibrium,
the quasi-equilibrium and the reaction source term of the species lattice Boltzmann system which
leads to a two-way coupling between the species and the mixture kinetic systems. As in [11],
the lattice Boltzmann equations for the f - and g-populations are realized on the D3Q27 discrete
velocity set

fi(x + ciδt, t + δt) − fi(x, t) = ω(f eq
i − fi) + Ai · X (3.6)

and

gi(x + ciδt, t + δt) − gi(x, t) = ω1(geq
i − gi) + (ω − ω1)(g∗

i − gi), (3.7)

where relaxation parameters ω and ω1 are related to the viscosity and thermal conductivity. The
equilibrium f -populations f eq

i in (3.6) are evaluated using the product-form, with ξα = uα and
ζ = RT in (2.6),

f eq
i (ρ, u, RT) = ρΨcix (ux, RT) Ψciy

(
uy, RT

)
Ψciz (uz, RT) . (3.8)

The last term in (3.6) is a correction needed to compensate for the insufficient isotropy of the
D3Q27 lattice in the compressible flow setting [11,13–15]: X is the vector with the components

Xα = −∂α

[(
1
ω

− 1
2

)
δt∂α(ρuα(1 − 3RT) − ρu3

α)
]

, (3.9)

while the components of vectors Ai are defined as

Aiα = 1
2

ciα for c2
i = 1; Aiα = 0 otherwise. (3.10)

The equilibrium and the quasi-equilibrium g-populations, geq
i and g∗

i in (3.7), are defined with the
help of Grad’s approximation [16],

geq
i = wi

(
ρE + qeq · ci

θ
+ (Req − ρEθI) : (ci ⊗ ci − θI)

2θ2

)
(3.11)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

18
 O

ct
ob

er
 2

02
1 



6

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200402

................................................................

and

g∗
i = wi

(
ρE + q∗ · ci

θ
+ (Req − ρEθI) : (ci ⊗ ci − θI)

2θ2

)
. (3.12)

Here, the weights wi = wcix wciy wciz are the products of the one-dimensional weights w0 = 1 − θ ,
w1 = w−1 = θ/2, and θ = 1/3 is the lattice reference temperature. The equilibrium mixture energy
flux qeq and the second-order moment tensor Req in (3.11) and (3.12) are

qeq =
Q−1∑
i=0

geq
i ci =

(
H + u2

2

)
ρu (3.13)

and

Req =
Q−1∑
i=0

geq
i ci ⊗ ci =

(
H + u2

2

)
Peq + Pu ⊗ u, (3.14)

where H is the specific mixture enthalpy (3.2). The quasi-equilibrium energy flux q∗ in (3.12) has
the following form:

q∗ =
Q−1∑
i=0

g∗
i ci = q − u · (P − Peq) + qdiff + qcorr. (3.15)

The first two terms in (3.15) include the energy flux q and the pressure tensor P,

q =
Q−1∑
i=0

gici, P =
Q−1∑
i=0

fici ⊗ ci. (3.16)

Their contribution maintains a variable Prandtl number and is patterned from the single-
component case [13]. The remaining two terms in the quasi-equilibrium energy flux (3.15), qdiff

and qcorr pertain to the multicomponent case. The interdiffusion energy flux qdiff is

qdiff =
(

ω1

ω − ω1

)
ρ

M∑
a=1

HaYaδua, (3.17)

where the diffusion velocities δua are defined according to equation (2.15). The flux (3.17)
contributes the enthalpy transport due to diffusion and hence it vanishes in the single-component
case but is significant in reactive flows. Finally, the correction flux qcorr, which also vanishes in
the single-component case, is required in the two-population approach to the mixtures in order
to recover the Fourier law of thermal conduction, see [11] for details,

qcorr = 1
2

(
ω1 − 2
ω1 − ω

)
δtP

M∑
a=1

Ha∇Ya. (3.18)

Prefactors featured in (3.17) and (3.18) were found in [11] based on the analysis of the
hydrodynamic limit of the lattice Boltzmann system (3.6) and (3.7) and are not affected by the
present reactive mixture case. Second-order accurate isotropic lattice operators proposed in [17]
were used for the evaluation of spatial derivatives in the correction flux (3.18) as well as in the
isotropy correction (3.9). Following [11], the continuity, the momentum and the energy equations
for a reactive multicomponent mixture [18] are obtained as follows:

∂tρ + ∇ · (ρu) = 0, (3.19)

∂t(ρu) + ∇ · (ρu ⊗ u) + ∇ · π = 0 (3.20)

and ∂t(ρE) + ∇ · (ρEu) + ∇ · q + ∇ · (π · u) = 0. (3.21)
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The pressure tensor π in the momentum equation (3.20) reads

π = PI − μ

(
∇u + ∇u† − 2

D
(∇ · u)I

)
− ς (∇ · u)I, (3.22)

where the dynamic viscosity μ and the bulk viscosity ς are related to the relaxation parameter ω,

μ =
(

1
ω

− 1
2

)
Pδt and ς =

(
1
ω

− 1
2

)(
2
D

− R
Cv

)
Pδt, (3.23)

where Cv =∑M
a=1 YaCa,v is the mixture specific heat at constant volume. The heat flux q in the

energy equation (3.21) reads

q = −λ∇T + ρ

M∑
a=1

HaYaδua. (3.24)

The first term is the Fourier law of thermal conduction, with the thermal conductivity λ related to
the relaxation parameter ω1,

λ =
(

1
ω1

− 1
2

)
PCpδt, (3.25)

where Cp = Cv + R is the mixture specific heat at constant pressure. The second term in (3.24)
is the interdiffusion energy flux. The dynamic viscosity μ and the thermal conductivity λ of the
mixture are evaluated as a function of the local composition, temperature and pressure using the
chemical kinetics solver Cantera [19], wherein a combination of methods involving interaction
potential energy functions [20], hard sphere approximations and the methods described in [21,22]
are employed to calculate the mixture transport coefficients. Finally, in accordance with a principle
of strong coupling [11], the excess conservation laws arising due to a separated construction of the
species diffusion model in §2 and the two-population mixture model are eliminated by removing
one set of species populations (here, the component M),

fMi = fi −
M−1∑
a=1

fai. (3.26)

Thus, the component M is not an independent field any more but is slaved to the remaining
M − 1 species and the mixture f -populations. Summarizing, the thermodynamically consistent
framework of [11] allows for a straightforward extension to reactive mixtures provided the
sensible energy and enthalpy are extended to include the energy and the enthalpy of formation.

4. Coupling between lattice Boltzmann and chemical kinetics
In this work, the lattice Boltzmann code is coupled to the open source code chemical kinetics
solver Cantera [19]. The Cantera solver is supplied with the publicly accessible GRI-Mech 3.0
mechanism [23] as an input data file. The communication between the lattice Boltzmann solver
and the Cantera chemical kinetics solver can be summarized as follows:

(i) An input from the lattice Boltzmann solver to Cantera is provided during the collision
step in terms of internal energy, specific volume and mass fractions.

(ii) Cantera internally solves numerically the integral equation (3.5) and thus the temperature
at that state is obtained.

(iii) Cantera calculates the production rates of species ρ̇c
a and the transport coefficients

including dynamic viscosity, thermal conductivity and the Stefan–Maxwell diffusivities
as a function of the current state.

(iv) The temperature obtained from Cantera is used to evaluate the equilibrium and quasi-
equilibrium moments and populations. The transport coefficients are used to calculate
the corresponding relaxation times and thus the collision step is complete.
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initialize

Stefan-Maxwell collision

mixture collision

advect fai, fi and gi

no

stop

yes

start

• get and store ma from Cantera
• set state in Cantera with T, P, Ya
• get U from Cantera
• calculate f i

eq with equation (3.8)
• calculate gi

eq with equation (3.11)
• calculate fai

eq  with equation (2.7)

• calculate r, u from fi
• calculate rE from gi
• calculate ra, ua from fai
• set state in Cantera with U, r, Ya
• get T, Cp, Cv from Cantera
• get m, l, Dab from Cantera
• get ra

c from Cantera
• calculate dua with equation (2.15)
• calculate f *

ai , fai   with equations (2.8), (2.7) resp.
• calculate relaxation times with equations (2.13) and (2.14)
• collide fai with R.H.S. of equation (2.12)

• calculate r, u, P from fi
• calculate rE, q from gi
• calculate ra, ua from fai
• set state in Cantera with U, r, Ya
• get T, Cp, Cv, Ha from Cantera
• get m, l, Dab from Cantera
• calculate dua and qdiff with equation (2.15) and (3.17)
• calculate qcorr

 and Xa
 with equation (3.18) and (3.9)

• calculate gi*, f i ,  gi     with equations (3.12), (3.8), (3.11) resp.
• calculate relaxation time with equations (3.23) and (3.25)
• collide fi with R.H.S of equation (3.6) 
• collide gi with R.H.S. of equation (3.7)

t ≥ tend? t = t + d t

eq eq

eq

Figure 1. Flowchart for the coupled lattice Boltzmann–Cantera solver. (Online version in colour.)

Other thermodynamic parameters necessary for the simulations such as the specific heats and
molecular masses are also obtained through Cantera. The reference standard state temperature
is T0 = 298.15 K and the reference standard state pressure is P0 = 1 atm. The data required by the
lattice Boltzmann solver during runtime is obtained by querying Cantera through its C++ API
using the ‘IdealGasMix’ and ‘Transport’ classes. A flowchart of the coupling between the lattice
Boltzmann solver and the chemical kinetics solver Cantera is sketched in figure 1. The diffusivities
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obtained from Cantera are converted to lattice units through the non-dimensional Prandtl number
Pr = ν/α and the Lewis number Leab = α/Dab. Here, α = λ/(ρCp) is the thermal diffusivity of the
mixture.

5. Results
To test the coupling between the lattice Boltzmann solver and the chemical kinetics solver, we
begin by verifying the perfectly stirred reactor set-up with homogeneous hydrogen/air mixture.
Next, as a second validation, probing the basic validity of our model, we compute the flame
speed in a premixed hydrogen/air mixture with the reactive Stefan–Maxwell formulation in a
wide range of equivalence ratios φ. Subsequently, in order to test the isotropy of the model, the
problem of outward expanding circular flame [24,25] is solved for the premixed hydrogen/air
mixture. For both test cases, we use the detailed chemical kinetics mechanism [26] involving the
following nine species: N2, O2, H2, H, O, OH, H2O, HO2, H2O2. It is worthwhile to mention
that the model is not restricted to the detailed mechanisms. Reduced mechanisms available in the
literature such as the five-species propane mechanism have also been tested with this model. In
this paper, we will restrict ourselves to the more interesting detailed hydrogen/air mechanism
which forms sharper and faster propagating flames. While this benchmark not only probes the
model’s behaviour in two dimensions, it is also a stringent isotropy test where it is crucial that
the circular shape of the flame is preserved and not contaminated or distorted by the errors of
the discrete numerics on the underlying Cartesian grid. Finally, the model’s ability to capture
nonlinear instabilities is probed by simulations of wrinkled flames, which form as a result of
monochromatic perturbations.

(a) Perfectly stirred reactor
To verify the coupling between the lattice Boltzmann solver and the chemical kinetics solver, we
simulate a constant volume reactor. The set-up consists of a three-dimensional domain of 4 ×
4 × 4 lattice points with periodic boundary conditions in all directions. Stagnant hydrogen/air
mixture at an equivalence ratio φ = 1 is initialized with the pressure Pin = 1 atm and the
temperature T = 1400 K. The results are compared to the ‘IdealGasReactor’ class of Cantera using
the ‘advance’ method to march the state of the reactor forward in time. Figure 2a shows the history
of the temperature and the mass fraction of hydroxide OH. Accurate match with the results
obtained from Cantera shows that the coupling has been done correctly. For this problem, since
all the boundaries are periodic, the total energy of the system has to remain constant while no
kinetic energy should develop over time. Figure 2b verifies that in the absence of kinetic energy,
the total energy of the solver equals the kinetic energy. Also, the total energy does not deviate
from its initial value in this set-up, as expected.

(b) Laminar flame speed
In order to validate our model, we calculate the burning velocity of a hydrogen/air mixture in a
one-dimensional set-up. As illustrated in figure 3, the set-up consists of a one-dimensional tube
initialized with unburnt mixture at Tu = 300 K throughout from the left end up to 80% of the
domain towards the right. The remaining 20% of the domain is initialized with the adiabatic
flame temperature Taf and with the equilibrium burnt composition at the respective equivalence
ratio. The pressure is initialized uniformly at Pin = 1 atm. Zero gradient boundary conditions are
used at both ends for all variables using equilibrium populations. At the left end, the velocity
is imposed to be zero so that the flame propagates from right to left into the stationary unburnt
mixture. The set-up is used to calculate the burning velocity of the premixed H2N2O2 system.
Nitrogen is considered as an inert gas and thus does not split or form any radicals like nitrous
oxides. However, the heat capacity of the inert gas has a strong influence on the flame temperature
and consequently on the burning velocity. This is naturally accounted for in the formulation. The
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Figure 2. Simulation of hydrogen/air constant volume perfectly stirred reactor. (a) Time evolution of temperature and OHmass
fraction, (b) time evolution of the kinetic, internal and total energy. All quantities are scaled by the initial total energy E0. (Online
version in colour.)

u = 0 Tu, Pin Taf , Pin

Figure 3. Set-up for the D= 1 burning velocity simulation. (Online version in colour.)

burning velocity is measured for various equivalence ratios ranging from φ = 0.5 to φ = 2.25. We
use the laminar flame thickness δf at φ = 1 for defining the reference length, where δf = (Taf −
Tu)/ max(|dT/dx|). In order to accurately calculate the burning velocity, we use a long domain of
N ≈ 90δf, which corresponds to 104 lattice points. In order to avoid the effect of the boundaries
and transients due to initial acceleration, the flame speed SL is measured when the flame front
approaches the middle of the domain. The results are compared to the data provided by [27] from
multiple experimental and computational sources in figure 4. It can be seen that flame speed
computed by our model agrees well with the data available in the literature. Although there is
considerable dispersion in the literature for the flame speed values for fuel-rich mixtures φ > 1,
the location of the peak burning velocity between φ = 1.5 and φ = 2.0 has been correctly captured.
As is evident in figure 5, the profiles of temperature and mass fractions for φ = 0.5 show a good
match compared to the corresponding solution obtained from the ‘FreeFlame’ class of Cantera.
This test case indicates that the present model is a promising candidate for simulating reactive
flows with the lattice Boltzmann method.

(c) Circular expanding premixed flame
After confirming the one-dimensional behaviour of the model, we compute the two-dimensional
circular expanding flame in a premixed hydrogen/air mixture with detailed chemistry. Similarly
to the study [24,25], due to symmetry, only a quarter of the flame is solved. Symmetry boundary
conditions are used on the left and bottom edges of the square domain while the characteristic
based outlet boundary conditions [28,29] are imposed at the right and top edges of the domain.
The bottom left corner is initialized with a burnt quarter sector at the adiabatic flame temperature
Taf = 1844.27 K corresponding to the equivalence ratio φ = 0.6. The rest of the domain is initialized
with an unburnt mixture at the temperature Tu = 298 K. The composition in the burnt section
is set to the equilibrium composition and the pressure in the entire domain is initialized to a
uniform pressure P = 5 atm. For this premixed initial condition, the burning velocity is obtained
as SL = 38.11 cm s−1 from solving a one-dimensional flame propagation set-up in Cantera. The
flame thickness at these initial conditions is obtained as δf = 8.8 × 10−3 cm. A square domain with
the side N ≈ 51δf was considered, which corresponds to 1200 × 1200 lattice points. The radius of
the region initialized with the burnt equilibrium conditions is Rig ≈ 8.5δf .
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(Online version in colour.)
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Figure 5. Profiles of temperature and mass fractions for one-dimensional planar flame atφ = 0.5. (Online version in colour.)

The characteristic flame transit time is defined as τ = δf /SL = 2.31 × 10−4 s [25]. Contours of
temperature, velocity and mole fractions of oxygen and the hydroxide radical are shown at
t = 0.082τ in figure 6b. As can be verified from figure 6b, the solution is not contaminated by
numerical noise or anisotropies and the contours do not contain any other spurious features. The
thin interface of the hydroxide radical at the flame front is captured correctly and the curvature
of the flame is maintained. This is in contrast to e.g. [25], where the errors of the underlying
numerical discretization leading to a spurious behaviour were reported when using Cartesian
grids.

Next, we study the response of this set-up to a deterministic perturbation to validate the model
with the Direct Numerical Simulation (DNS) of [25]. The initial circular profile of the flame is

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

18
 O

ct
ob

er
 2

02
1 



12

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200402

................................................................

0

2  × 10–5 –2.6 × 10–34

3 × 10–2 1.9 × 10–3 6 × 10–2 1.7 × 10–10.11000

7.6 × 10–3 4.3 × 10–8 4.0 × 10–40.0002

velocityOH

O2temperature

4  × 10–5

6  × 10–5

8  × 10–5

0.0001
1.1 × 10–4

H
2O

2

(a) (b)

Figure6. Premixedhydrogen/air circular outward expandingflame. (a) Contour plot of themole fraction ofH2O2 at t = 0.082τ
obtained by reflecting about the left edge and the bottom edge of the domain, (b) Contours of temperature, mole fractions of
O2, OH and velocity at t = 0.082τ . (Online version in colour.)

perturbed with a sinusoidal profile,

R(θ ) = Rig(1 + A0 cos(4n0θ )), (5.1)

where n0 = 4 corresponds to the number of modes of the perturbation per π/2 sector of the
flame and A0 = 0.05 is the amplitude of the perturbation. The evolution of the perturbation is
shown in figure 7. The heat release rate, ḣc = −∑M

a=1 Haρ̇
c
a , is a measure of the reactivity of the

mixture. As it is evident in figure 7a, during the initial stages of the evolution, the perturbed
modes are continuous and the heat release rate is uniform along the circumference of the flame.
As explained in [25], the reactivity and therefore the heat release rate reduces at the crest due
to diffusion and more consumption of the deficient reactant. This, along with the hydrodynamic
instability due to the density ratio and the thermal-diffusive instability due to the heat and mass
imbalance of the deficient reactant, leads to splitting of the peak of the crests into smaller cells,
as is visible in figure 7b. A snapshot of the temperature contours over time shown in figure 7c
verifies that the splitting of the flame indeed occurs from crests. Therefore, the splitting stems
from the deterministic perturbation as expected, and not because of numerical noise. The mean
radius of the flame is calculated by integrating along the flame front circumference,

R̄ = A−1
∫

R dA. (5.2)

Here A is the circumferential length and R is the distance of the mean temperature isoline from
the centre. On fitting R̄ = atα , the growth exponent was found to be α = 1.16, in agreement with
the results from DNS in the literature wherein the value of the exponent was found to be between
almost linear [25] and 1.25 [30]. The local displacement speed [24,25] is calculated as

Sd = 1
ρCp|∇T|

[
−

M∑
a=1

Haρ̇
c
a + ∇ · (λ∇T) − ρ

( M∑
a=1

Ca,pYaδua

)
· ∇T

]
. (5.3)

With the local flame normal n = −∇T/|∇T|, the absolute propagation speed is calculated as
Sa = Sd + u · n. The density weighted displacement speed is defined as Ŝd = ρSd/ρu, where ρu is
the density of the unburnt mixture. The flame speeds are calculated as a mean over the flame
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Figure 7. Contours of temperature and heat release rate. (a) t = 0.024τ , (b) t = 0.082τ , (c) line contours of T = 1510.28 K
form t = 0.041τ to t = 0.115τ . The domain has been reflected about the left and the bottom edge for plotting. (Online version
in colour.)

interface isoline of T = 3Tu in a way similar to equation (5.2). After the initial transients, the
absolute propagation speed was found to reach a value of 6.2SL, whereas the density weighted
displacement speed was found to fluctuate about 1.3SL. The corresponding values from the DNS
results [25] are 7SL and 1.5SL, respectively. The difference could be attributed to a number of
factors including the type of grid, resolution, type of diffusion model, etc. Overall, the results
agree well with the DNS [24,25].

6. Conclusion
In this paper, we proposed a lattice Boltzmann framework to simulate reactive mixtures. The
novelty of the model lies in the fact that temperature and energy changes due to chemical reaction
are handled naturally without the need of additional ad-hoc modelling of the heat of reaction.
This was possible because of the thermodynamic consistency of the underlying multi-component
model [11], which was extended to compressible reactive mixtures. The species interaction is
modelled through the Stefan–Maxwell diffusion mechanism which has been extended in this
work to accommodate the creation and destruction rates of the species due to chemical reaction.
Computational efficiency has been achieved through reduced description of energy which makes
it possible to describe the physical system by only M + 2 kinetic equations instead of 2M kinetic
equations while retaining necessary physics such as the inter-diffusion energy flux. The model
has been realized on the standard D3Q27 lattice, which not only reduces the computational costs
compared to multispeed approaches but also possesses a wide temperature range, which is crucial
for combustion applications.

The proposed model was validated in one and two dimensions with the 9-species 21
steps detailed hydrogen–air reaction mechanism. The accuracy of the model was assessed by
calculating the burning velocity of a premixed hydrogen-air mixture in one dimension. The
calculated flame speed agrees well with the results in the literature. The ability of the model to
capture complex physics was tested by simulating a two-dimensional expanding circular flame.
The circular flame simulation exhibited good isotropy and low numerical noise. The set-up was
then subjected to monochromatic perturbations in order to study the evolution of the perturbed
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flame. Good agreement with DNS simulations demonstrates viability of the proposed LBM for
complex reactive flows.
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