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We describe a many-body theory for interlayer dispersion forces between weakly disordered atomically thin
crystals and numerically investigate the role of disorder for different layer-separation distances and for different
densities of induced electrons and holes. In contrast to the common wisdom that disorder tends to enhance
the importance of Coulomb interactions in Fermi liquids, we find that short-range disorder tends to weaken
interlayer dispersion forces. This is in line with previous findings that suggest that transitioning from metallic
to insulating propagation weakens interlayer dispersion forces. We demonstrate that disorder alters the scaling
laws of dispersion forces and we comment on the role of the maximally crossed vertex-correction diagrams
responsible for logarithmic divergences in the resistivity of two-dimensional metals.
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I. INTRODUCTION

Even when two objects are each electrically neutral, forces
between the two objects which are mediated by the electro-
magnetic field can still be present. These dispersion forces
were named by London in his theoretical investigation of
forces between molecules [1]. Although each molecule has
zero total charge, quantum fluctuations in the charge density
of each molecule lead to an effective dipole-dipole inter-
molecular force. This mechanism was later generalized by
Lifshitz [2,3] to describe forces between solids, wherein he
discovered a force which scales like 1/d3 when the distance
d between two thick slabs becomes large. Depending on the
context, these forces also go under the name of van der Waals
or Casimir forces, where the former (latter) often indicates
that the force is mediated by the longitudinal (transverse)
component of the electromagnetic gauge field [4].

Dispersion forces are relatively weak and short ranged
compared to electrostatic forces, and are difficult to observe
in experiments on solids. Recently however, advances in x-ray
spectroscopy have allowed for atomic-level precision mea-
surements of interlayer strain in thin films and atomically thin
crystals [5,6], and signatures consistent with interlayer disper-
sion forces among optically induced electrons and holes have
been measured in transition-metal dichalcogenide multilayers
[7]. This adds a new, experimentally measurable quantity
to the class of phenomena which are sensitive to correla-
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tions among quasiparticles in neighboring layers of atomically
thin crystals like transition-metal dichalcogenides, graphene,
twisted bilayer graphene, and phosphorene. Coulomb drag
[8] is a notable example of the type of phenomena which
are sensitive to interlayer correlations. In these experiments
a current is driven in one layer and as a result of interlayer
Coulomb interactions an induced voltage drop appears in a
second (otherwise passive) nearby layer. Drag experiments
have led to a deeper understanding of the nature of the elemen-
tary excitations and ground-state wave functions of complex
phases of matter, from two-dimensional Fermi liquids to more
exotic phases like exciton condensates [9,10] and Luttinger
liquids [11]. Just like Coulomb drag, the interlayer dispersion
force between atomically thin crystals offers an interesting
test bed for the various many-body theories describing the
complex behavior of solids.

In this paper we construct many-body approximations
to explore the impact of weak disorder on the interlayer
dispersion forces which act between layers of a bilayer het-
erostructure after a finite density of electrons and holes are
induced in each layer as illustrated in Fig. 1. While ab ini-
tio methods for obtaining van der Waals contributions to
the ground-state energy exist [12–17], our diagrammatic ap-
proach is sensitive to the exchange-correlation effects which
density-functional theory usually deals with only on a mean-
field level using variations of the local-density approximation;
the approach discussed in this paper is complementary to
these existing tools and allows for the treatment of systems
with strongly correlated ground states or, as we investigate in
detail below, random disorder. Quasiparticle-impurity interac-
tions are known to be responsible for a number of fascinating
properties of metals, from weak-localization corrections to the
longitudinal conductivity [18] to anomalies in the tunneling
conductivity [19,20], and we will make use of some of these
well-developed many-body approximations in determining
the role of weak disorder on interlayer dispersion forces.
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FIG. 1. An illustration of the change in interlayer separation dis-
tance d (ρ ) − d (0), which results from the attractive forces between
layers that are induced by creating a finite density of electrons and
holes in each layer, ρ.

Our paper is organized as follows. In Sec. II we describe
a many-body theory for the interlayer dispersion force based
on a linked-cluster expansion for the correlation energy of
a bilayer in the absence of disorder as discussed previously
[21,22]. In the limit of high-quasiparticle density and large
separation distance d , one recovers the well-known d−5/2

scaling behavior [22–24] in agreement with predictions from
quantum Monte Carlo methods [25]. In Sec. III we describe
a leading-order-in-1/εFτ theory for interlayer forces. We
demonstrate that disorder qualitatively alters the scaling laws
and demonstrate that disorder tends to reduce the magnitude
of interlayer forces. In Sec. IV we discuss the impact on
interlayer forces by a class of Feynman diagrams known to
yield logarithmic divergences in the longitudinal resistivity of
two-dimensional metals. Finally, in Sec. V we summarize our
results and discuss interesting questions to be addressed in the
future.

II. INDUCED DISPERSION FORCES IN
BILAYER SYSTEMS

We consider a system governed by the following Hamilto-
nian:

H = H0 + He-e + He-imp (1)

which describes the kinetic energy of electrons and holes,
the Coulomb interaction, and the interaction of electrons and
holes with impurities, respectively. We assume, as is often
the case experimentally, that the density of induced electrons
and holes (quasiparticles) is such that the kinetic energy of
electrons and holes can be described by an effective mass
approximation

H0 =
∑
kαI

εα (k) â†
kαI âkαI , (2)

where εα (k) = h̄2k2/2mα and α is a composite index which
labels the spin, valley, and band (e.g., valence vs conduction
band) quantum numbers. In the following, we will consider
the limit in which interlayer hopping is weak compared to the
exchange-correlation energy per electron. Thus, the single-
particle wave functions have a which-layer quantum number

denoted by I . Interlayer hybridization of the conduction and
valence bands is notoriously weak in van der Waals crystals
(as the name suggests) and is often further weakened by
rotational misalignment of neighboring layers.

The charged quasiparticles in the various layers of the
system interact with each other via the Coulomb interaction

He-e = 1

2L2

∑
q IJ
k1k2
αβ

VIJ (q) â†
k1+qαI â

†
k2−qβJ âk2βJ âk1αI , (3)

where

VIJ (q) =
{

2πe2/(κq), I = J
2πe2e−qd/(κq), I �= J.

(4)

The material-specific parameter κ describes the dielectric con-
tributions of the elementary excitations outside of our model
[e.g., phonons and propagation of electric field outside of the
two-dimensional (2D) material]. The strength of Coulomb
interactions is traditionally [26] described by the value of
a parameter rs which expresses the ratio of average inter-
action energy to average kinetic energy in a disorder-free
two-dimensional electron gas (2DEG), rs ∝ 〈He-e〉/〈H0〉. The
parameter depends on the total density of electrons (and holes)
in each layer nI and is larger when the density is lower, rs =
[a∗

B
√

πnI ]−1. Here, a∗
B = κaB/me f f is the effective Bohr ra-

dius. When the system contains particle populations described
by different effective masses it is useful to define a∗

B using the
geometric mean of the masses me f f → √

memh. Interactions
of charged quasiparticles in different layers are ultimately
responsible for the induced van der Waals forces we describe.
In this paper we consider densities of induced quasiparticles
which are large enough to form electron liquids and hole
liquids rather than excitons, as was recently demonstrated at
room temperature [27].

The interaction between impurities of the crystal and elec-
trons as well as holes is obtained by assuming that each
impurity creates a deviation in the perfectly periodic scalar
potential created by the underlying lattice. This scalar poten-
tial couples linearly to the density of electrons and holes,

He-imp = 1

L2

∑
Q,I

uI (Q)ρI (Q)
∑
kα

â†
k+QαI âkαI , (5)

where ρI (Q) is the Fourier transform of the density of im-
purities in layer I , and uI (Q) is the Fourier transform of the
scalar potential of each impurity. We assume that electrons
and holes only scatter off the impurity potential in the same
layer, and we assume that the scalar potential is short ranged
so that uI (Q) is actually independent of wave vector. The
quasiparticle-impurity scattering time τk can be defined us-
ing the Born approximation for the self-energy [28] where
	(k, ω) = −ih̄/2τk. In the presence of finite disorder, the
scattering rate at the Fermi energy is used to define the small
parameter of our perturbation theory 1/(τεF) 	 1, where we
here (and will continue to) drop the subscript on τ .

Our method for evaluating the force between two atomi-
cally thin crystals consists of first calculating the ground-state
energy per layer as a function of interlayer separation distance
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FIG. 2. Feynman diagrams for the correlation energy of a bilayer
system whose quasiparticles interact via intralayer Coulomb interac-
tions (single wavy lines) and interlayer Coulomb interactions (double
wavy lines). Only the four lowest-order diagrams are shown here.
Solid lines with arrows represent noninteracting Green’s functions
of quasiparticles.

d , and then calculating the force by taking the first derivative

F = −1

2

∂E

∂d
. (6)

The ground-state energy can be evaluated by taking the zero-
temperature limit of the thermodynamic free energy �. The
latter has a well-known perturbative formulation in the linked-
cluster expansion [28]

� − �0 = − 1

β

∑
>0

1

!

(−1

h̄

)∫ h̄β

0
dτ1 . . .

∫ h̄β

0
dτ

× tr{ρ0Tτ [V̂ (τ1) . . . V̂ (τ)]}0, (7)

where ρ0 is the noninteracting density matrix, Tτ is the
(imaginary) time-ordering operator, and V̂ (τ ) = He-imp(τ ) +
He-e(τ ) is the sum of the two interactions in our model within
the interaction picture of time evolution [28]. By applying
Wick’s theorem, all contributions at order  can be expressed
in terms of integrals over noninteracting Green’s functions,
the Coulomb interaction V , and the electron-impurity in-
teraction uI . One can now make use of Feynman diagram
techniques to efficiently calculate these contributions. We now
have all the tools necessary to evaluate the interlayer force to
any order in perturbation theory.

Before we consider the effects of weak disorder on the
interlayer forces, we reproduce the well-known d−5/2 scal-
ing of energy [22–25,29] by examining the force between
two two-dimensional electron gases within the random-phase
approximation (RPA) [30–33] and taking the limit of large in-
terlayer distance d . We thus ignore disorder and take V̂ (τ ) =
He-e(τ ) within Eq. (7). The RPA can be understood as an
expansion of the ground-state energy in powers of the small
parameter rs, and therefore gives a criterion for selecting
which subset of Feynman diagrams at each order in  within
Eq. (7) must be included in an approximation to a given order
in rs. The four lowest-order diagrams which contribute to the
correlation energy are shown in Fig. 2. The full RPA approxi-
mation consists of summing all diagrams of this type, which at
each order in  contain  bubble subdiagrams. The degeneracy

10−1 100 101

rs

10−7
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10−3

10−1

101

−P
[R

y
d
∗ /

a
∗3 B
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d = 0.1a∗B
d = a∗B
d = 10a∗B

FIG. 3. A plot of interlayer forces vs the density of induced
quasiparticles in a disorder-free bilayer system. On the vertical axis
is the force per area in units of effective Rydbergs per effective Bohr
radius cubed. On the horizontal axis is the dimensionless parameter
rs which is inversely proportional to the square root of the density of
induced quasiparticles. Explicit definitions for rs and a∗

B can be found
in the main text, while Ryd∗ = e2/κa∗

B.

of the diagrams in Fig. 2 is such that the infinite series of
these types of diagrams can be resummed into a logarithm of a
simple function of the single bubble diagram. After taking the
derivative of the RPA approximation for the correlation energy
[22], we obtain the following integral expression for the force
per layer between a bilayer system containing a finite density
of electrons and holes in each layer

F = − h̄L2

4π2

∫ ∞

0
dq

∫ ∞

0
dω

q2V 2
12χ

2
0

(1 − V11χ0)(1 − V22χ0) − V 2
12χ

2
0

.

(8)

Here, χ0 is represented by the bubble subdiagrams found in
the four diagrams in Fig. 2 and describes the noninteracting
density-density response function of each layer. The zero-
temperature limit of χ0 can be evaluated for parabolic-band
effective mass models, and in the presence of both valence
and conduction bands, χ0 = ∑

α χα
0 , where χα

0 is the Lind-
hard function [34] of the α-particle species. The integral over
frequency in Eq. (8) is over the imaginary frequency axis, and
the arguments of χα

0 (q, iω) have been omitted for brevity.
The application of Eq. (8) assumes that thermal equi-

librium has been reached among the electrons and holes,
which is usually several orders of magnitude faster than the
electron-hole recombination time, and does not limit experi-
mental observations. For arbitrary electron/hole densities and
interlayer separation distances, Eq. (8) must be evaluated nu-
merically. Furthermore, it should be mentioned that Eq. (8)
leads to a nonvanishing force even in the absence of holes.

In Fig. 3 we present the results of numerical calculations
for the pressure (i.e., force per area) between two layers of
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atomically thin crystals with induced densities of electrons
and holes parametrized by rs. We immediately notice that
the force between layers is attractive and that the magnitude
varies dramatically with interlayer separation distance as V12

is dependent on d . This is a particular feature of the type of
dispersion force that derives from the instantaneous Coulomb
interaction (typically called van der Waals forces) instead of
forces originating from the transverse and retarded parts of the
electromagnetic field (typically called Casimir forces). While
Casimir forces act at larger distances than van der Waals
forces, they are significantly weaker and they are independent
of the amount of impurities in the materials, and therefore are
not addressed in this paper.

To demonstrate how the RPA theory obtains the known
d−5/2 scaling for the energy [22–25,29], Eq. (8) is now eval-
uated in the limit of large interlayer separation. Specifically,
we will find the leading-order contribution to the interlayer

force in the small parameter 1/(kFd ), where kF =
√

ke
Fkh

F is the
Fermi wave vector of the electron and hole Fermi seas which
are present in each layer after excitation and thermalization.
The presence of e−2qd in the numerator of Eq. (8) restricts the
relevant range of q in the integral to q � 1/d , which bears the
physical interpretation that 2D in-plane charge perturbation
waves at wavelengths which are short compared to the inter-
layer distance appear averaged out on the adjacent plate and
thus will not contribute to forces. Long wavelengths, however,
will not appear as averaged out and will therefore contribute
to interlayer forces. In the limit kFd � 1, the dominant contri-
bution to interlayer forces will then come from long in-plane
wavelengths and this thus restricts the relevant part of phase
space to small values of q. In this region of phase space we are
permitted to approximate χα

0 by its dynamic long-wavelength
limit (i.e., ω > q, q → 0) which gives the leading-order con-
tribution to the force. In the dynamic long-wavelength limit
the noninteracting density-density-response function of band
α is given by

χα
0 (q, iω) = − ρα

mα

q2

ω2
, (9)

where ρα is the two-dimensional density of charged quasipar-
ticles in band α. It is then straightforward to evaluate Eq. (8)
analytically to obtain the leading order in 1/(kFd ):

F7/2 = − h̄eξ1L2

8
√

2πm

( √
ρ

d7/2

)
, (10)

which corresponds to the d−5/2 scaling for the energy. Here,
ξ1 ≈ 0.315, ρ is the total two-dimensional quasiparticle den-
sity in each layer, and we have taken mh = me = m, and κ = 1
for simplicity. Interestingly, in the case of infinitely many
parallel plates (superlattice), the scaling of force per layer is
identical to Eq. (10) up to redefinition of ξ1 [7]. By randomly
choosing two adjacent plates and identifying the gap between
them as the gap between two semi-infinite thick slabs sepa-
rated by a distance d , one can connect this result to Lifshitz’
theory for thick, semi-infinite slabs. Introducing the three-
dimensional density ρ3D = ρ/d , in Eq. (10) to compare with
Lifshitz’ theory, we immediately see that we have reproduced
the power law for the interlayer force in terms of interlayer
separation and quasiparticle density (i.e., F ∝ √

ρ3Dd−3).

10−1 100 101 102

kFd

0.0

0.2

0.4

0.6

0.8

1.0

F R
P

A
/F

7
/
2

rs = 0.1

rs = 1

rs = 10

FIG. 4. Ratio of the interlayer force in the random-phase approx-
imation (RPA) FRPA, calculated numerically using Eq. (8), to the
interlayer force in the leading-order-in-(kFd )−1 approximation F7/2,
given by Eq. (10). The more accurate RPA approximation predicts
much smaller interlayer attraction unless kFd � 1, in which case
both approximations yield the same result.

Despite the obvious utility of simple formulas like Eq. (10),
the derivation demonstrates that only the long-wavelength
excitations (i.e., plasmons) are accounted for, while finite-q
excitations (e.g., noncoherent particle-hole excitations) are
neglected. Indeed, Eq. (10) is only reasonable in the limit
1/(kFd ) 	 1, and outside of this regime the interlayer forces
are more accurately described by numerically evaluating
Eq. (8). This is demonstrated in Fig. 4, where we show the
ratio of pressure in the RPA approximation of Eq. (8) to
the asymptotic form of Eq. (10). In the limit of kF d � 1
the predictions coincide, while for smaller values of kF d
the asymptotic form gives much higher interlayer attraction
than the RPA form. In subsequent sections we will describe
how these power-law scalings are altered by the presence of
impurities.

III. IMPACT OF DISORDER ON VDW FORCES:
THE “DIFFUSON”

In this section we lay out the basic elements of a many-
body theory for the impact of weak disorder on the interlayer
van der Waals (VDW) forces between atomically thin crystals.
Specifically, we begin by introducing the small parame-
ter (i.e., 1/εFτ ) of the electron-impurity and hole-impurity
interactions within the context of the first-order Born ap-
proximation (1BA) for the self-energy. We then identify the
most relevant Feynman diagrams which contribute to inter-
layer dispersion forces within the regime of rs < 1/εFτ . These
diagrams contain an infinite series of ladder diagrams, and
we discuss the solution of the Bethe-Salpeter equation for the
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= +
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+ D

D = + D

(a)

(b)

(c)

(d)

FIG. 5. Feynman diagrams [36,37] for the leading-order-in-
1/εFτ corrections to interlayer dispersion forces from impurity-
quasiparticle interactions. (a) Shows the diagrams for the Dyson
equation for the self-energy. Single lines with arrows are nonin-
teracting Green’s functions and double lines with arrows are the
noninteracting Green’s functions dressed by scattering with impuri-
ties. (b) Shows the proper self-energy in the first Born approximation.
Each dashed line with a single cross represents the (disorder-
averaged) scattering off of the impurity potential. (c) Shows the
diagrams which contribute to the noninteracting density-response
function in the leading order in 1/εFτ . (d) Shows the diagrammatic
representation of the Bethe-Salpeter equation for the diffuson contri-
bution, i.e., the ladder-diagram vertex correction �D(q, ω).

vertex correction of the density-response function in the limit
of short-ranged impurity potentials. In contrast to the effect
of disorder on other phenomena which arise due to interlayer
interactions (e.g., Coulomb drag [35]), we find that disorder
tends to weaken the magnitude of van der Waals forces.

The electron-impurity and hole-impurity scattering rates
can be defined by the 1BA for the self-energy. In this ap-
proximation the self-energy is purely imaginary 	(k, ω) =
−ih̄/2τk. For simplicity, we will take the hole’s and electron’s
impurity scattering rates to be equal, although this condition
is easily relaxed if required. The 1BA is given by the Feynman
diagrams depicted in Figs. 5(a) and 5(b). Explicitly, the 1BA
for the q-independent scattering rate at the Fermi energy is

1

τ
= να

2h̄π
ρ imp|u|2, (11)

where να is the two-dimensional density of states at the
Fermi surface of a single spin- and valley-resolved band, and
ρ imp = limQ→0[ρI (Q)]. In obtaining Eq. (11) we have made
two standard approximations for treating quenched disorder
in solids [28]. First, we assume that the impurity potential is
short ranged, such that the Fourier transform of the poten-
tial which appears in Eq. (5), uI (Q), becomes independent
of wave vector. Second, the impurity potential at any two
different points is uncorrelated, such that the average over
the probability distribution governing the impurity potential
leads to 〈ρI (Q)ρI (−Q)〉imp = Nimp, where Nimp is the number
of impurities in layer I .

Next, we consider how to incorporate quasiparticle-
quasiparticle interaction diagrams and quasiparticle-impurity

interaction diagrams into an approximation for the disper-
sion force between atomically thin crystals. In the previous
section we identified the leading-order-in-rs contribution to
interlayer forces as the derivative of the RPA diagrams for the
ground-state energy. In order to work with a well-controlled
perturbation theory we will restrict our selection of diagrams
to the case when rs 	 1/(τεF). This allows us to obtain a
well-controlled theory in both small parameters. The key is to
not alter the order in rs of a diagram when adding any particu-
lar quasiparticle-impurity interaction line. We can accomplish
this by adding to the RPA diagrams a nearly identical set of di-
agrams in which the noninteracting density-density response
function bubble is dressed by quasiparticle-impurity interac-
tion lines between the electron propagator and hole propagator
which form each bubble. As long as these vertex-correction
quasiparticle-impurity lines do not cross each other, they can
be summed to infinite order and together they give the leading
order in 1/(τεF). The sum of all ladder Feynman diagrams for
the density-density response function of each layer I is repre-
sented in Figs. 5(c) and 5(d). The latter is the diagrammatic
representation of the Bethe-Salpeter equation

�D
k,k′ (q, ω) = �0

k,k′ +
∑

k′′
�0

k,k′′�k′′ (q, ω)�D
k′′,k′ (q, ω), (12)

where

�k′′ (q, ω) = 1

h̄2L2
GR(k′′ + q, εF + ω)GA(k′′, εF) (13)

and where GR/A(k, ω) = [ω − h̄−1ξkα ± i/2τ ]−1 and ξkα =
εkα − εF. The Bethe-Salpeter equation must usually be solved
self-consistently for an arbitrary impurity potential. However,
here it can be solved directly as a result of the bare-scattering
amplitude being independent of momentum �0

k,k′ = ρ imp|uI |2.
In the regime where disorder gives significant contributions
to the density-density response of a system, ω < 1/τ and q <

1/vFτ , straightforward calculations [38–40] yield �D(q, ω) =
�0(q)/[−iωτ + τDq2] where the diffusion constant is defined
in two dimensions as D = v2

Fτ/2. The diffusion pole present
in �D(q, ω) at ω = −iDq2 is also present in the disordered
density-density response function of layer I that is obtained
by summing the diagrams in Fig. 5(c) and yields

χD(q, ω) = −ν0
Dq2

−iω + Dq2
, (14)

where ν0 is the total density of states at the Fermi energy in
layer I .

We can now evaluate the effect of weak disorder on the
dispersion force between two atomically thin crystals by
numerically evaluating Eq. (8) after replacing χ0(q, iω) by
χD(q, iω) in the region of phase space where ω < 1/τ and
q < 1/vFτ . In Fig. 6 we plot the ratio of the interlayer force
in the presence of disorder Fdirty to the force in the absence
of disorder Fclean. We find that the interlayer attraction is re-
duced in magnitude by the presence of quasiparticle-impurity
interactions, which we will analyze in more detail below. We
also find that Fdirty/Fclean is reduced as d increases. This
occurs due to the presence of e−2qd in Eq. (8) which orig-
inates from the form of the 2D in-plane Fourier transform
of the interlayer Coulomb interaction. This factor restricts
the density fluctuations which contribute to interlayer forces
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FIG. 6. Ratio of the interlayer force in the presence of disorder
Fdirty to the interlayer force with no disorder Fclean plotted against
the interaction parameter rs which is inversely proportional to the
square root of the induced quasiparticle density in each layer of a
bilayer. The three curves are for three different values of the inter-
layer separation distance d , in units of the effective Bohr radius a∗

B.
The degree of disorder is given by h̄/εF τ = 1

2 . The values of both
Fdirty and Fclean are calculated numerically using Eq. (8). In Fdirty,
the density response is given by the disordered limit χD(q, ω) for
ω < 1/τ and q < 1/vFτ .

to wave vectors q � 1/2d , and as d is increased, more of
this region of phase space lies in the region governed by the
disordered density-density response q < 1/vFτ . We will now
show that this phase-space effect is also responsible for a
change in the power laws for the dispersion forces at large
interlayer separation distances. In other words, in the presence
of disorder, the asymptotic limit for forces between 2D planes
presented in Eq. (10), F ∝ d−7/2, is altered.

The numerical results presented in Fig. 6 show that dis-
order decreases the magnitude of interlayer forces. This is
in contrast to the effect of disorder on other phenomena,
like Coulomb drag [35], which also originates from inter-
layer quasiparticle-quasiparticle interactions. In the case of
Coulomb drag, this conventional cartoon picture of the ef-
fect of disorder is that the change in the density-density
response function from the noninteracting limit χ0(q, iω) to
the disordered limit χD(q, iω) represents a change from bal-
listic to diffusive motion of the quasiparticles. Indeed, the
disordered density-density response function can be derived
from semiclassical arguments using the diffusion equation
[26], which is equivalent to the relaxation time approximation
(RTA) [41] in the region ω < 1/τ, q < 1/vFτ in the dynamic
limit. Since quasiparticles in neighboring layers which ex-
perience diffusive motion tend to spend longer periods of
time near each other, they interact more strongly and this
increases the Coulomb drag (i.e., disorder tends to enhance

the transresistivity). However, since the interlayer forces are
decreased in magnitude by the presence of disorder, we find
that the cartoon picture of the effect of disorder cannot be
imported to understand our case of interest. The reason why
disorder decreases interlayer forces while increasing the in-
terlayer Coulomb drag is most simply identified by again
examining the large-d limit of the two quantities. Specifically,
while both Coulomb drag and the interlayer force depend on
the density-density response function, the leading-order-in-
1/(kFd ) contribution to Coulomb drag comes from the static
limit (ω < q, q → 0) of χ (q, iω) while the analogous contri-
bution to the interlayer force comes from the dynamic limit
(ω > q, q → 0) of χ (q, iω).

In the large-d limit our numerical results for the correlation
energy per layer can be compared to previous investiga-
tions of disordered correlation energies within single-layer
systems [42] where it was found that the introduction of
disorder increases exchange energies in magnitude but de-
creases correlation energies in magnitude. By following
similar steps as we took to derive the disorder-free expression
presented in Eq. (10), we find the following leading-order
expression:

Fdirty = − h̄e2ξ2L2τ

4πm

( ρ

d4

)
, (15)

where ξ2 ≈ 0.768 and ρ is the total two-dimensional density
of quasiparticles in each layer and we have again taken me =
mh = m, κ = 1 for simplicity. Notice that the interlayer force
now decays more quickly with distance than in the absence
of disorder. This qualitative change is a direct result of the
transition of electron and hole propagation from ballistic to
diffusive.

While it might be surprising that the effect of disorder
on the interlayer forces is opposite to its effect on interlayer
Coulomb drag, this behavior actually fits nicely into a trend
observed in other systems [43,44]: the less metallic a system
is, the faster its energy (and therefore its pressure) decreases
with interlayer separation. Concretely, for a metallic sample,
the energy scales as d−5/2 [22–25,29] while for a combination
of a graphene and a metallic plate it scales as log(d )d−3 [43]
and for two graphene plates is scales as d−3 [43]. Finally,
for two insulator system it scales as d−4 [13]. The change of
the scaling of the distance-dependent part of the correlation
energy from d−5/2 to d−3 upon changing from ballistic to
diffusive propagation thus confirms this picture.

IV. QUANTUM INTERFERENCE EFFECTS ON VDW
FORCES: THE “COOPERON”

In the previous section we developed a theory for interlayer
dispersion forces between the layers of a bilayer system of
atomically thin crystals which have uncorrelated and short-
ranged disorder. We summed an infinite set of Feynman
diagrams by solving the Bethe-Salpeter equation and thus
obtained the diffuson vertex correction of the density-density
response function to leading order in 1/(εFτ ). In this sec-
tion we will sum the class of diagrams which correspond
to the subleading-order terms for the interlayer dispersion
force in powers of 1/εFτ . These diagrams are familiar from
the theory of weak localization and together they constitute
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(a)

(b)

(c)

c c c

= + D

c = + c

FIG. 7. Feynman diagrams representing the cooperon contribu-
tions to the noninteracting density-response function from scattering
of electron and holes off of the impurity potential. (a) Shows the three
diagrams that contribute at subleading order in 1/εFτ . (b) Shows the
diagrams describing the diffuson dressing of the density-fluctuation
operator. (c) Shows the Bethe-Salpeter representation of the maxi-
mally crossed diagrams that represent the vertex correction �C (q, ω).

the cooperon vertex correction. Despite being of lower order
in the small parameter governing the impurity-quasiparticle
interaction, they are known to be responsible for a logarithmic
divergence in the longitudinal resistivity of two-dimensional
conductors [18], which motivates us to consider them here
as well.

The cooperon contributions to the density-density response
function are obtained by summing the “maximally crossed”
vertex correction; this infinite set of diagrams is illustrated in
Fig. 7(c). These diagrams represent the quantum interference
of a wave packet of charge density which interferes with itself
while traversing along the time-reversed path. This requires
the system to have a time-reversal symmetry present in order
for phase coherence to be maintained in-between collisions
of the wave packet with different impurities. As previously
mentioned, these diagrams give a logarithmic divergence in
the resistivity (which is proportional to the current-density
response function), and indeed a similar phenomenon hap-
pens in our case of interest. Specifically, the subleading-order
contribution to the density-density response function yields a
logarithmic divergence in the diffusion constant. When both
the diffuson and cooperon contributions to the density-density
response function are included [45], the functional form of
χD(q, ω) remains the same as presented in the last section
except that D gets an additional contribution which depends
on frequency

δD(ω) = − 1

4π2h̄ν0
log

[
1 + 2τω

(τ/τ0)2 + 2τω

]
, (16)

where ν0 is the total two-dimensional density of states of all
quasiparticles in layer I . Just as in the case of the cooperon
contribution to the longitudinal resistivity, the logarithmic
divergence we obtain is cut off at long distances, or small
momenta, by the inelastic scattering time of the quasiparti-
cles τ0. This timescale is determined, for example, by the

FIG. 8. The fractional change in the interlayer dispersion force
when the maximally crossed (i.e., weak-localization) diagrams are
included. Notably, the logarithmic divergence which appears in the
longitudinal resistivity of two-dimensional conductors is not present
here. Instead, the cooperon diagrams have a similar, but weaker,
effect as the diffuson diagrams, where both tend to reduce the magni-
tude of interlayer attractive forces. The fractional changes are shown
at h̄/εF τ = 1/2, kF d = 10 as a function of rs for different values of
τ/τ0.

quasiparticle-quasiparticle scattering rate, and is responsi-
ble for destroying the phase coherence of the propagating
(and time-reversed propagating) wave packet on very long
timescales τ0 > τ . This form of the disordered response func-
tion is only a reasonable approximation in the range where
ω < 1/τ and q < 1/vFτ .

We numerically evaluate the interlayer dispersion forces
using the disordered density-density response function includ-
ing the renormalized diffusion constant D → D + δD(ω). The
results are shown in Fig. 8. They demonstrate that the maxi-
mally crossed diagrams tend to further reduce the magnitude
of interlayer forces. More surprisingly, perhaps, there is no
logarithmic divergence in the interlayer force, in contrast to
what happens when using the analogous approximation for
the longitudinal conductivity. This is surprising in light of
the well-known relationship σdc = limq→0(q2/ω2)χD(q, ω),
which follows from the presence of global gauge symmetry.
However, while the conductivity is the response of the system
to an external electric field whose frequency we can always
fix to zero, in contrast, the interlayer dispersion force is an
integral over all frequencies of density fluctuations in both
layers (it is the Coulomb interaction between these density
fluctuations which yields the dispersion force). And when
the logarithmic divergence in χD(q, ω) is integrated over fre-
quency, it results simply in a finite reduction (on the order of
�10%) of the interlayer force’s magnitude.
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V. SUMMARY AND DISCUSSION

We developed a many-body theory for the dispersion forces
between atomically thin crystals with weak disorder. Such
systems can be realized within van der Waals crystals [46]
(e.g., graphene, transition-metal dichalcogenides, etc.) which
form multilayer systems with very weak interlayer hybridiza-
tion, a property which has allowed for optically induced
interlayer strain, originating from dispersion forces, to be
observed recently [7]. In these systems dispersion forces
arise due to Coulomb interactions between fluctuations in
the charge density of neighboring layers. The linked-cluster
expansion method was used to approximate the correlation
energy of a bilayer system and the force between the layers
of the bilayer system was obtained by taking a derivative of
the correlation energy with respect to interlayer separation
distance.

In the high-density limit, the random-phase approximation
bubble diagrams give the leading-order contribution to the
disorder-free interlayer dispersion force. To account for disor-
der, we have summed an infinite series of ladder diagrams by
solving the Bethe-Salpeter equation. These ladder diagrams
form the diffuson contribution to the vertex correction of the
density-density response function (i.e., the bubble), and yield
the leading-order-in-1/(εFτ ) theory. Numerical evaluation of
the interlayer dispersion force shows that interlayer forces are
weakened by disorder. On one hand, this is in contrast to the
more conventional case [47] in which Coulomb interactions
become more important when electron motion becomes dif-
fusive rather than ballistic. On the other hand, this behavior
is in accordance with previously observed changes in scaling
laws as one transitions from metallic to insulating electron
propagation.

We explain this behavior by considering the analytic
structure of the density-response function in the small fre-
quency and wave-vector limit. We find that the diffusive
motion of electrons and holes leads to a qualitative change
in the scaling laws for the interlayer dispersion force as a
function of quasiparticle density and interlayer separation

distance. Subsequently, the impact of the higher-order vertex-
correction diagrams was investigated. Specifically, maximally
crossed diagrams which are known to produce logarithmic
divergences in the longitudinal resistivity of two-dimensional
metals (i.e., weak localization diagrams) are found to be much
less important for interlayer dispersion forces.

All the calculations shown in this paper were carried out
within a bilayer system consisting of two parallel plates. It
should be mentioned, however, that the effects of the theories
developed in this paper were all at the level of “same-layer”
density-density response functions. As the theory of the bi-
layer system can easily be generalized to the theory of a
superlattice system [7], the results of this paper can easily be
transferred to the superlattice system with similar effects (e.g.,
same power laws and qualitative effects).

Optical control of electron and hole populations yields a
convenient control knob for manipulating the interlayer sepa-
ration distance of van der Waals crystals. In future calculations
one may investigate the possibility of inducing interlayer dis-
persion forces by doping heterostructures with electrostatic
gates. While these systems include interlayer electrostatic
forces which compete with dispersion forces, the latter are
not reliant on equal populations of electrons and holes and
can hopefully still be observed. Through electrostatic gating
the role of the excitonic spectrum in the formation of strains
could be differentiated from the induced strains presented in
our work. In order to complement this investigation of the
role of excitons, it would furthermore be interesting to study
the qualitative changes in interlayer dispersion forces which
are present in multilayer systems with more exotic ground-
state wave functions, such as are present in bilayer exciton
condensates.
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