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The test of basic Mechanics Conceptual
Understanding (bMCU): using Rasch
analysis to develop and evaluate an
efficient multiple choice test on Newton’s
mechanics
Sarah I. Hofer1* , Ralph Schumacher2 and Herbert Rubin2

Abstract

Background: Valid assessment of the understanding of Newton’s mechanics is highly relevant to both physics
classrooms and research. Several tests have been developed. What remains missing, however, is an efficient and fair
test of conceptual understanding that is adapted to the content taught to secondary school students and that can
be validly applied as a pre- and posttest to reflect change. In this paper, we describe the development and
evaluation of the test of basic Mechanics Conceptual Understanding (bMCU), which was designed to meet these
requirements.

Results: In the context of test development, qualitative and quantitative methods, including Rasch analyses, were
applied to more than 300 Swiss secondary school students. The final test’s conformity to the Rasch model was
confirmed with a sample of N = 141 students. We further ascertained the bMCU test’s applicability as a change
measure. Additionally, the criterion validity of the bMCU test was investigated in a sample of secondary school
students (N = 66) and a sample of mechanical engineering students (N = 21). In both samples, the bMCU test was
a useful predictor of actual student performance.

Conclusions: The bMCU test proved to enable fair, efficient, and simultaneously rigorous measurement of
secondary school students’ conceptual understanding of Newton’s mechanics. This new instrument might fruitfully
be used in both physics classrooms and educational research.

Keywords: Test construction, Newtonian mechanics, Rasch model, Conceptual understanding,
Performance assessment

Background
A substantial part of students leaves school without
having developed a proper understanding of basic phys-
ics concepts (see, e.g., Beaton et al. 1996; Halloun and
Hestenes, 1985; McDermott, 1984). Science and particu-
larly physics literacy, however, is becoming increasingly
relevant in an environment that is based on scientific and
technological progress. Groundbreaking work has been

done by Halloun and Hestenes (1985) and Hestenes,
Wells, and Swackhamer (1992), who were the first to sys-
tematically investigate learners’ naïve conceptions of
mechanics, developed the well-known Force Concept In-
ventory (FCI; Hestenes et al. 1992), and thereby advanced
the idea of learning as conceptual change. According to
this line of research, when students enter the physics
classroom for the first time, they have already built naïve
conceptions of scientific phenomena to explain everyday
experiences. These conceptions often are inconsistent
with the scientifically accepted models that are taught at
school; thus, these previously constructed conceptions can
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hamper learning (e.g., Duit, 2004; Hardy et al. 2006;
Hestenes et al. 1992; Vosniadou, 1994). Familiar terms
from everyday language that mean something completely
different when used in the scientific context further lead
to confusion—consider, for example, “force” and “work”
(Brookes and Etkina, 2009; Rincke, 2011). With its many
overlaps with everyday life, understanding Newtonian
mechanics has proven particularly challenging (e.g.,
Halloun and Hestenes, 1985; Nieminen et al. 2010;
Shtulman and Valcarcel, 2012). At the same time, how-
ever, basic Newtonian mechanics, which addresses how a
body moves in response to forces acting upon it, provides
the basis for later physics content.
To be able to ensure the acquisition of conceptual

knowledge in basic Newtonian mechanics and to react
to the students’ actual knowledge state and intervene ap-
propriately, adequately assessing students’ understanding
of Newtonian mechanics is highly relevant. Accordingly,
in the following sections, we first introduce the general
idea of conceptual knowledge that is closely linked to
the best-known test of conceptual knowledge in physics,
the FCI, which is addressed thereafter. We then show
why there is need for a new instrument, ultimately set-
ting the stage for the introduction of the test of basic
Mechanics Conceptual Understanding (bMCU).

Conceptual knowledge
Conceptual knowledge can be described as abstract and
general knowledge of a domain’s main concepts and
their connections (Carey, 2000; Schneider and Stern,
2010a). There is no unified definition of the single
concepts that constitute conceptual knowledge (e.g., von
Aufschnaiter and Rogge, 2015; Vosniadou, 2008).
Researchers vary in the granularity that they apply when
they speak about concepts. In the domain of physics, for
example, “momentum conservation” or “force as deflec-
tor” have been considered concepts (see DiSessa, 1993;
Halloun and Hestenes, 1985). In basic Newtonian
mechanics, several interrelated concepts (e.g., “actio = reactio”
and “inertia”) can be expected to form a higher level struc-
ture of conceptual knowledge that refers to the broad un-
derstanding of how a body moves in response to forces
acting upon it. Following instruction in Newtonian me-
chanics, this knowledge structure is more or less elabo-
rated, and the degree of understanding across all concepts
reflects the state of a student’s conceptual knowledge of
basic Newtonian mechanics.
Because prior knowledge determines the processing of

new information (e.g., Carmichael and Hayes, 2001; Ohst et
al. 2014; Stern, 2009), understanding new concepts depends
upon the compatibility between the concept to be learned
and existing conceptual knowledge. To enable learning in
the event of incompatibility, conceptual change must occur
(e.g., Posner et al. 1982; M. Schneider et al. 2012).

Importantly, students’ prior conceptual knowledge that
might not comply with scientifically accepted concepts
must be considered important and productive in the
course of the learning process. Conceptual change can en-
compass not only the replacement of certain elements but
also the refinement and elaboration of existing knowledge
structures (see Smith III et al. 1994; Vosniadou, 2008). In-
formation about learners’ knowledge state is thus essential
for effective instruction to explicitly work with and on stu-
dents’ existing conceptual knowledge (c.f. M. Schneider
and Stern, 2010a). Information about learners’ conceptual
knowledge is important to judge whether they have truly
understood the content taught. Because of its abstract na-
ture, once acquired, conceptual knowledge enables flexible
problem-solving that is not bound to specific contexts
(see Hiebert, 1986). This type of deep understanding,
more than problem-bound calculation routines or mem-
orizing formulae, can be considered the essential element
of physics literacy.

Seminal role of the FCI
A major step in understanding students’ learning difficul-
ties in physics was achieved when Hestenes, Wells, and
Swackhamer (1992) presented their findings, which were
gathered using the Force Concept Inventory (FCI;
Hestenes et al. 1992; Halloun, Hake, Mosca, and Hestenes,
1995), a new type of assessment instrument. This test re-
quires a choice between Newtonian concepts and naïve
conceptions derived from everyday experience. Hestenes
et al. (1992) demonstrated that even university students’
beliefs about the physical world are largely derived from
personal experience and are often incompatible with
Newtonian concepts. Since its publication, the FCI has
been successfully applied in a large number of studies and
has raised awareness of both the existence and persistence
of naïve conceptions in diverse populations, including ad-
vanced physics students (e.g., Crouch and Mazur, 2001;
Domelen and Heuvelen, 2002; Hake, 1998; Savinainen and
Scott, 2002). To date, investigations of conceptual know-
ledge in a broad range of learning domains have been
conducted (e.g., Hardy et al. 2006; Vosniadou, 1994), and
further tests targeting heat and energy (Prince,
Vigeant, and Nottis, 2012) or conceptual knowledge in
biology (Klymkowsky and Garvin-Doxas, 2008) have
been developed.

Added value of a new instrument
Without undermining the FCI’s seminal contribution to
educational research, there are conditions under which
the FCI, along with a second well-known multiple-choice
test in mechanics, the Force and Motion Conceptual
Evaluation (FMCE; Thornton and Sokoloff, 1998), may be
less appropriate for gauging understanding and learning.
In the following sections, we refer to four criteria to
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demonstrate the need for an additional instrument that is
adequate in situations in which the use of existing tests
may be less appropriate.

Suitability for secondary school students
Because physics instruction in secondary school should
ascertain the acquisition of basic physics literacy, it is im-
portant to have good measurement instruments that are
specifically tailored to this group of learners in order to
adequately react to students’ actual knowledge state and
intervene appropriately. Both the FCI and the FMCE were
designed to measure the conceptual understanding of a
diverse population, from high school students to advanced
university students. Existing research, however, suggests
that these tests assess performance differences between
younger learners less precisely than they do in a more ad-
vanced population. The Rasch model (that is introduced
in more detail in the “Methods” section; Rasch, 1960) pro-
vides both a psychometric theory which can be used to
guide the development of an instrument and techniques
which can be used to investigate the measurement quality
of the instrument. Planinic and her colleagues (2010) ap-
plied the Rasch model to FCI data on 1676 Croatian high
school students with an average age of 17.5 years. They
conclude “[…] that all items work together, but several
problems are noticeable: poor targeting of the test on the
population, too small separation of items in the middle of
the test, too small width of the test, and the lack of easy
items” (2010, p. 7). Data on German Gymnasium1 stu-
dents from 13 classrooms who all worked on the FCI as
pre- and posttest showed that, even at the posttest,
Gymnasium students, on average, solved only 41% of the
items correctly (Wilhelm, 2005). The FMCE’s suitability
for secondary school students has not yet been specifically
investigated. However, according to Thornton, Kuhl,
Cummings, and Marx (2009), who compared the FCI and
the FMCE, students’ percentage scores on the FCI tend to
be higher than those on the FMCE suggesting that the lat-
ter could be the more difficult test (see also Redish, 2003,
p. 102). Because both the FCI and the FMCE seem to be
fairly difficult for secondary school students, they are not
perfectly suited to precisely reflect individual performance
differences at this school level.
To ascertain content validity at secondary school level,

we involved secondary school teaching experts in the
process of test development, avoided complex problem
contexts, and explicitly adjusted the content to the sub-
ject material taught in the higher tracks of secondary
school, which is where physics is more extensively
instructed for the first time.

Efficiency
From a practical perspective that considers physics
lessons lasting 40–45 min, crammed curricula, busy

teachers, comprehensive test batteries in the context of
educational studies, and respondent fatigue, efficient
testing can be highly relevant. A short instrument that
provides one index that validly measures conceptual un-
derstanding enables quick and exact testing, which is
beneficial for both test takers who do not get tired and
annoyed and for teachers or researchers who do not
have to spend an excessive amount of time on the as-
sessment, the analysis, and the interpretation of the test.
We developed a test that contains 12 items. The FCI, by

contrast, consists of 30 items, which implies a longer
working time and a higher level of mental effort both for
those working on the test and for the person who must
check the correctness and calculate the sum score of the
30 items. In addition, the FCI has been criticized as not
truly measuring either a force concept or the six concep-
tual dimensions (including kinematics, the first law, or the
superposition principle) that supposedly constitute the
force concept, as indicated by factor analyses (Henderson,
2002; Huffman and Heller, 1995; Saul, 1998; Wilhelm,
2005; for a response of the FCI authors, see Hestenes and
Halloun, 1995). Therefore, because it is not entirely clear
whether the FCI sum score truly reflects one underlying
construct, the sum score may not be a valid measure. The
FCI enables a fine-grained analysis of students’ conceptual
knowledge and naïve conceptions and thus unfolds its full
potential when teachers or researchers have the resources
and the intention to make use of this opportunity. How-
ever, if all they want is a single index that validly measures
the students’ degree of conceptual understanding, apply-
ing the FCI does not really pay off.
With its 47 items, the FMCE is also not intended to

provide an efficient, quick overview of students’ under-
standing but instead in-depth information about stu-
dents’ conceptual knowledge and naïve conceptions in
dynamics. It measures a conceptual understanding of
Newton’s laws of motion with the following three factors
(at least at the posttest; the factor analysis for the pretest
is undefined): (1) “Newton’s first and second law,
including acceleration,” (2) “Newton’s third law,” and (3)
“velocity concept” (Ramlo, 2008). The instrument is thus
best suited for analyses on either the factor level or even
the single item level (see Thornton and Sokoloff, 1998).
To achieve efficiency (i.e., a quick and exact test), we

aimed to choose a small number of items (quick) that con-
form to the Rasch model and therefore all measure the
same underlying dimension (exact). In the Rasch model,
simple sum scores can be used to easily determine a per-
son’s ability level (see Boone and Scantlebury, 2006).

Suitability for measurement of change and fair
measurement
Although both the FCI and the FMCE are routinely
applied at several measurement points (often as pre- and
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posttest) to measure knowledge gain (e.g., Crouch and
Mazur, 2001; Domelen and Heuvelen, 2002; Hake, 1998;
Savinainen and Scott, 2002; Thornton and Sokoloff,
1998), recent analyses suggest that neither the FCI
(Planinic et al. 2010) nor the FMCE (Ramlo, 2008) assess
the same construct when applied as a pretest (without
formal instruction on the topic or predominantly non-
Newtonian sample, respectively) and a posttest (after
instruction or predominantly Newtonian sample, re-
spectively). According to Planinic et al. (2010), item pa-
rameters differed considerably between a predominantly
non-Newtonian and a predominantly Newtonian sample,
which should not have occurred if the same construct
was measured in both samples. Ramlo (2008) reported
that only at posttest did the FMCE factor structure
closely resemble the factor structure found in earlier
evaluations of the instrument. The factor structure at
pretest was undefined, indicating that the FMCE mea-
sures two different constructs when applied as a pretest
vs. a posttest. Accordingly, when FCI or FMCE pre- and
posttest data are compared, change is assessed within
uncertain frames of reference (see Cronbach and Furby,
1970; Lohman, 1999). We give one example to illustrate
what we mean by uncertain frames of reference: the so-
lution rate of an item might be very low because the
meaning of certain language expressions is not yet
known to the learners. Once the meaning has been
clarified by the teacher, the solution rate might increase
considerably. Change on this test might then reflect not
only the test takers’ developing knowledge about the
topic at hand but also their improved language skills.
Closely related to the previous point, all of the items of

a test must measure the same construct for different
groups of test takers to draw conclusions about inter-
individual differences. When single items do not measure
the same construct across subgroups (e.g., girls and boys),
one speaks of differential item functioning (DIF). Using
Rasch analyses, several FCI items were identified that
function differently for males and females, for example
(Dietz et al. 2012; Madsen, McKagan, and Sayre, 2013;
Osborn Popp, Meltzer, and Megowan-Romanowicz, 2011).
In addition to ensuring gender-fair measurement, there are
also other groups of test takers (e.g., below-average and
above-average intelligent students) that should be exam-
ined using item response theory (IRT) or the Rasch model
to guarantee that an instrument enables fair inter-
individual comparisons. This has not yet been done based
on FCI or FMCE data.
We investigated whether our new test can provide fair

measurement and constitutes a valid change measure by
testing the fit of one uniform Rasch model both on data
from different groups of test takers (e.g., female and male
students) and on pre- and posttest data (see, e.g., Bond
and Fox, 2007; Hambleton and Jones, 1993; Lord, 1980).

Filling a gap: the test of basic Mechanics Conceptual
Understanding
To sum up, what is missing from the existing tests is an
instrument whose content is adapted to the secondary
school level in order to precisely assess performance dif-
ferences between secondary school students (content
validity at secondary school level). Because comprehen-
sive instruments that diagnose specific concepts and
naïve conceptions already exist, there is need for a user-
friendly, quick, and exact test of conceptual understand-
ing in mechanics (efficiency). We lack a test with
confirmed suitability for inter-individual comparisons in-
dependent of the test taker’s individual characteristics
(fair measurement), which not only enables one-time
measurement but also can reflect learning progress
(valid change measure). To satisfy these requirements,
we drew on the Rasch model while constructing and
evaluating a new instrument, the test of basic Mechanics
Conceptual Understanding (bMCU). There is a growing
number of studies on the evaluation of test instruments
in the science education literature that are based on
Rasch modeling (e.g., Cheng and Oon, 2016; Chiang,
2015; Kuo, Wu, Jen, and Hsu, 2015).
In addition, we inspected the bMCU test’s reliability

interpreting item information curves and investigated its
criterion validity. For the latter, we examined the bMCU
test’s relationship to mechanics grades and to the FCI in
a sample of secondary school students and a sample of
mechanical engineering students. The bMCU test fills a
gap and consequently complements and extends the
scope of existing tests.

Methods
Below, we first provide an overview of the Rasch model.
The R packages applied and the instrument’s develop-
ment, which consisted of two stages, item generation
and item selection, are presented next. We then describe
the strategy that we pursued to evaluate the final version
of the bMCU test. Figure 1 gives an overview of the
research agenda. For each of the three stages in the
process of test development and evaluation (item gener-
ation, item selection, and test evaluation), the associated
steps, the samples investigated, and the current number
of items in the test are summarized. We provide a de-
tailed description of the methods and analytic strategy to
facilitate replication.

The Rasch model
The dichotomous Rasch model2 is a psychometric model
for binomial (dichotomous) data. The model assumes local
stochastic independence and thus one-dimensionality,
which means that all items of a test measure the same
underlying construct. It further demands subgroup homo-
geneity, which means that all items of a test measure the
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same underlying construct across different subgroups (e.g.,
girls and boys). Moreover, the Rasch model claims that
every item must contribute equally to the estimated ability
level, implying equal item discrimination and thus, the ab-
sence of an item discrimination parameter. If all of these
requirements are satisfied, a test instrument can be evalu-
ated as unequivocally measuring a single underlying di-
mension (see, e.g., Bond and Fox, 2007; Strobl, 2010;
Wright and Stone, 1979).
The Rasch model’s basic equation (see Eq. 1) describes

the difference between the ability of a specific person n,
Bn, and the difficulty of a specific item i, Di, via a loga-
rithmic function that depends upon the probability Pni
of person n to correctly solve item i:

Bn−Di ¼ ln
�
Pni=ð1−PniÞ

� ð1Þ

Thus, the person parameter (Bn) represents a person’s
ability level, and the item parameter (Di) represents an
item’s difficulty. As indicated by the subtraction on the
left side of Eq. 1, person and item parameters are mea-
sured on a single scale. A specific person’s probability
Pni of solving item i (right side of Eq. 1) is dependent
upon the person’s ability Bn and the item’s difficulty Di

(left side of Eq.1). Consequently, if a specific person’s
ability Bn complies with a specific item’s difficulty Di, the
person’s probability of solving this item is Pni = .50.
There are several methods available to test both the

global fit of the Rasch model to the data and the fit
between the data and the model’s assumptions of

one-dimensionality, local stochastic independence, and
subgroup homogeneity (see Strobl, 2010).
When a test fits the Rasch model, more able test takers

on the trait that is measured are predicted to have a higher
likelihood of correctly solving a specific test item than will
lower-ability test takers attempting the same item. A per-
son’s ability can thus be estimated by the number of the
items of the test the person has solved correctly (i.e., the
sum score). Consequently, a person’s sum score can legit-
imately be used to indicate a person’s ability level. This
characteristic of a Rasch-scaled test instrument contrib-
utes to efficient testing because the test administrator can
obtain a valid estimate of a person’s ability by simply
counting the number of items solved correctly.
To obtain a conjoint measurement scale that applies to

both person ability and item difficulty parameters, in the
Rasch model, person and item parameters can be calcu-
lated by converting the raw scores into logits (logarithm
of odds units; for more detailed information on parameter
estimation, see, e.g., Linacre, 1998; Strobl, 2010).

R packages
Throughout the test development and evaluation, R
(R Core Team, 2013) was used to examine fit to the Rasch
model. We applied the packages eRm (Mair, Hatzinger,
and Maier, 2013) and ltm (Rizopoulos, 2006) for fitting
and evaluating the Rasch model and generating item in-
formation curves. With the package nFactors (Raiche,
2011) and the R Stats Package, we confirmed one-
dimensionality by means of factor analysis. We used the

Fig. 1 Schematic representation of the research agenda. Time flows from left to right. Corresponding information is vertically aligned. Rows provide
information on the stage within the research process (first row), on the associated steps (second row), on the samples examined in each step (third,
gray row), and on the number of items the respective sample worked on (fourth row)
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package WrightMap (Torres Irribarra and Freund, 2016)
to draw Wright Maps and the package sirt (Robitzsch,
2014) to calculate Yen’s Q3.

Item generation
The bMCU test was developed in a stepwise procedure
with qualitative methods complementing quantitative
item analyses. The following sections describe the con-
struction of the items of the bMCU test, their adaption
based on students’ answering patterns, explanations,
sketches, and their refinement in reaction to think-aloud
protocols of students’ reasoning (see Fig. 1). Whereas
questions and answer alternatives were developed in the
first step, the item adaption and item refinement steps
were intended to optimally adapt the text of the ques-
tions and answer alternatives to the target population, to
avoid ambiguities and misunderstandings, but not to se-
lect and exclude items. These two steps combined quan-
titative and qualitative analyses. The selection of the
final number of items in the test (see section “Item se-
lection”), however, should be based on a rigorous quanti-
tative approach that assumes a strict measurement
model (i.e., Rasch model analyses). This is why the num-
ber of items did not change during the item generation
process (see Fig. 1).

Item construction
In the first step of test development, the focus was on
arriving at a set of items with high content validity at
secondary school level. Initially, a group of physics and
secondary school teaching experts and educational
psychology experts constructed a pool of 22 multiple-
answer, multiple-choice items targeting introductory
Newtonian mechanics. The physics and secondary
school teaching experts provided a wealth of problem
contexts and wrong answer alternatives inspired by their
teaching experience. In addition, there is a great deal of
research on naïve conceptions, particularly in Newtonian
mechanics (e.g., Halloun and Hestenes, 1985; Hestenes
et al. 1992; Thornton and Sokoloff, 1998). The 22
multiple-answer, multiple-choice items were constructed
based on these resources. In this process, our group of
physics experts, secondary school teaching experts, and
educational psychologists discussed and estimated the
difficulty of each item that was a function of the com-
plexity of problem context and answer alternatives. We
made sure that the items varied in difficulty.
Because the bMCU test should be particularly adapted

to secondary school students, the problem contexts of
the single items were less complex than were some of
the problem contexts in the FCI, for instance. Problem
contexts that require a great deal of information pro-
vided a priori were avoided. We aimed to construct
items as concise as possible without hampering their

comprehensibility. Because the bMCU test was also
intended to serve flexibly as a pretest, it was important
to avoid specific terminology that is difficult to under-
stand without previous mechanics instruction (e.g., net
force, normal force, and constant acceleration).
The items covered the topics “inertia and motion”, “force

and acceleration”, “balance of forces”, and “reciprocal ac-
tion”, which are routinely taught in introductory Newtonian
mechanics at Swiss Gymnasiums that provide higher sec-
ondary education. These topics are also part of the recom-
mendations and directives that define the secondary school
physics curriculum in Switzerland (Gymnasium; e.g.,
Arbeitsgruppe HSGYM, 2008), Germany (Gymnasium; e.g.,
Bildungsstandards Physik Gymnasium, 2004; Lehrplan für
das Gymnasium in Bayern-Physik 9, 2004; Lehrplan für das
Gymnasium in Bayern-Physik 10, 2004), the UK (key stages
3 and 4; National curriculum in England-Science pro-
grammes of study: key stage 3, 2013; National curriculum
in England-Science programmes of study: key stage 4,
2014), the US (high school; National Research Council,
2012), or Australia (high school; Physics senior secondary
curriculum-unit 2: linear motion and waves, 2015; Science:
Sequence of content, 2015). Therefore, Newtonian mechan-
ics and the topics listed above are a regular feature of sec-
ondary school curricula.
To impede guessing, we built multiple-answer, multiple-

choice items instead of single-answer, multiple-choice
items. This approach enables us to survey deep conceptual
understanding because students must detect all of the cor-
rect answers and omit all of the incorrect answers. Only
then is an item scored xni = 1; otherwise, the item is
scored xni = 0. If a student detects all of the correct an-
swers and omits all of the incorrect answers of an item,
the student can be expected to understand movement in
response to forces in the particular problem context pro-
vided by the item. Only in this case, the item is scored 1.
The selection of wrong answer alternatives and/or the
omission of correct answer alternatives, in contrast, signify
that a student does not yet possess the conceptual under-
standing necessary to solve the item correctly and the re-
spective item is scored 0. Consequently, an item is either
correct (1) or wrong (0). Due to the dichotomous
categorization of bMCU test items as either correct or
wrong, a person’s probability and complementary prob-
ability of solving each bMCU test item can be derived
from counting correct items. Under the dichotomous
Rasch model, the probability whether an item is solved
correctly or not is determined by the ability of the person
and the difficulty of the item (see Eq. 1). To estimate each
person’s ability and each item’s difficulty, we can conse-
quently apply the dichotomous Rasch model to the di-
chotomous bMCU test data.
For illustration, Fig. 2 shows two sample items that are

included in the final version of the test. For item 8
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(“Stone”), for instance, the last two answer alternatives
are correct. Only if a student selects exactly these two
answer alternatives, item 8 is scored 1. If the students
select only the last answer alternative, for example, the
item is scored 0.
The consistency with which a student can solve the

items that address movement in response to forces
across different problem contexts is assumed to reflect
the student’s degree of conceptual understanding in
Newtonian mechanics.

Item adaption
When the test was delivered to students, they always re-
ceived the following general instruction: “In the follow-
ing questions, more than one answer alternative may be
correct. Check all correct answer alternatives. Please
clearly mark your answers by checking the correspond-
ing boxes. Please use a pencil and apply some pressure,
ensuring that the cross is clearly recognizable. If you
want to correct an answer, fully erase the cross in the
box belonging to the wrong answer. Try to solve all
questions. Do not dwell too long on a single question.”

The instruction is also included in the test that is avail-
able as supplementary material accompanying the article
(Additional file 1). In the first draft of the test, the 22
multiple-answer and multiple-choice items were supple-
mented by requests to explain the choice or to draw a
sketch. The test was given to N = 82 Swiss Gymnasium
students with and without instruction in mechanics. Stu-
dents’ answering patterns, pictures, and comments were
used to modify the items.
With regard to the answering patterns, we checked

whether single answer alternatives were consistent with
the averaged behavior of all answer alternatives. The so-
lution rate of single answer alternatives was accordingly
correlated with the averaged solution rates of all other
answer alternatives. Answer alternatives with a low (or
negative) correlation, which may indicate that an answer
alternative is inconsistent with the other answer alterna-
tives of the test (see, e.g., Everitt, 2002), were reformu-
lated. Inconsistent answer alternatives were dropped
only if there remained other answer alternatives that tar-
geted the same content. If answer alternatives were
chosen by almost all students or no student (i.e., very

Fig. 2 Two sample items of the Test of basic Mechanics Conceptual Understanding (bMCU) translated into English. For item 8 (“Stone”), the last
two answer alternatives are correct, and for item 11 (“Balls”), all three answer alternatives are correct
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high or very low solution rate), they were critically revis-
ited and dropped if they were considered too easy or too
difficult for secondary school students. The students’
pictures and comments enabled conclusions about stu-
dents’ naïve conceptions. Frequent naïve conceptions
that had not yet been included in the test were added.
The students’ drawings and explanations indicated that
students sometimes misinterpreted the information
given in the answer alternatives or questions. Critical
text passages were reformulated to avoid ambiguities.
The analysis of the students’ comments and sketches

in combination with their answering patterns further
suggested that in some problem contexts, several stu-
dents could correctly identify the correct result without
having a correct understanding of the reason for that re-
sult. When it was not possible to reformulate or add an-
swer alternatives to reflect these inconsistencies without
creating highly complex answer alternatives, we decided
to split the respective items into two parts (a and b). In
the first part, students are thus asked what happens and
in the second part, students are asked why it happens.
Only if both parts are answered correctly can students
be expected to have a correct conceptual understand-
ing of Newtonian mechanics in the problem context
at hand. Only in that situation is the item scored as
one point.
The entire procedure was repeated several times until

there were no remaining answer alternatives that were
inconsistent, too easy, or too difficult, and no more
pictures and comments that suggested insufficient intel-
ligibility, ambiguities in the wording, or inconsistent
measurement of conceptual understanding.

Item refinement
To finally ensure that our answer alternatives truly
reflected students’ way of thinking, interviews were con-
ducted with a sample of N = 6 (3 girls) Gymnasium
students between 13 and 17 years with and without in-
struction in Newtonian mechanics. In the fashion of
think-aloud protocols, the repeatedly modified set of 22
items was presented to the individual students without
offering any answer alternatives (i.e., as open-ended
items). Their answers and considerations were recorded
and checked against the answer alternatives that we had
constructed. We aimed to verify that all items could un-
ambiguously differentiate between faulty thoughts and
conceptual understanding. If the answers of at least one
student indicated that an item could not clearly
differentiate between faulty thoughts and conceptual
understanding, we refined the respective item to unam-
biguously capture correct understanding.
The students’ thoughts reflected the answer alterna-

tives constructed and suggested only minor further
modifications. For instance, when examining item 8

(“Stone”), which is presented in Fig. 2, a student without
prior instruction in mechanics and two students with
prior instruction suggested that the water displaced by
the stone moves the boat in the direction opposite to
the direction the stone was thrown. They had a correct
intuition for what is going to occur (boat moves in the
opposite direction), but an incorrect explanation (waves).
To be able to detect these faulty thoughts, we included a
second correct answer alternative (“In principle, the
same thing is happening when the nozzle of an inflated
balloon is opened, and the balloon is whizzing through
the air.”) to assess deep understanding of the underlying
abstract principle. One student expected that nothing is
going to occur, and two students expressed the correct
idea. The students’ thoughts about the presented prob-
lem situation could hence be well mapped by the answer
alternatives we had constructed, completed by the
balloon analogy. Thus, we analyzed each item and the
students’ thoughts about it.
Our group of physics experts, secondary school

teaching experts, and educational psychologists again
discussed and estimated the difficulty of each item to
ascertain that the resulting set of items still covered dif-
ferent difficulty levels.

Item selection
Having achieved a fixed set of good items based on the
analyses applied in the first stage, in the second stage of
test development, the aim was to ensure a fair, exact,
and quick measurement of conceptual understanding of
Newtonian mechanics (efficiency and fair measurement).
Consequently, we checked the items for compliance with
the Rasch model and excluded divergent items. Items
could violate the Rasch model because they unintention-
ally assessed characteristics or abilities in addition to
conceptual understanding of Newtonian mechanics or
because of remaining ambiguities in the meaning of
phrases or words, for instance. Testing for Rasch model
fit enabled a quantitative examination of qualities of the
items such as subgroup homogeneity, which could not
be examined by the analyses in the first stage of test devel-
opment. When single items do not measure the same
underlying dimension across subgroups (e.g., native
speakers and non-native speakers or girls and boys), one
speaks of differential item functioning (DIF). Accordingly,
to ascertain subgroup homogeneity, DIF must be avoided.
For this last step, the 22 items were distributed to a

sample of N = 239 (150 girls) Swiss Gymnasium stu-
dents with an average age of M = 16.34 (SD = 1.40,
range 14–20) years. Information on age, gender, mother
tongue, potential areas of specialization at school, and
prior instruction in Newton’s mechanics were gathered.
To detect DIF, we started with global tests and thus
inspected Pearson’s χ2-goodness-of-fit (bootstrap) test
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(which assesses general model fit) and Andersen’s condi-
tional likelihood ratio test (Andersen, 1973) along with
the analogous non-parametric T10-statistic (Ponocny,
2001)3 with different splitting criteria. Andersen’s condi-
tional likelihood ratio test and the T10-statistic examine
the hypothesis that the item parameter estimation does
not vary among subgroups. As splitting criteria, we used
the bMCU mean, the bMCU median, the age median,
gender, mother tongue (native speaker and non-native
speaker), specialization (science and non-science), and
prior instruction (yes and no). With the splitting criter-
ion gender, for instance, item parameter estimates were
compared between boys and girls. We expected no sig-
nificant differences, given that the Rasch model holds.
The splitting criterion bMCU mean, for example, im-
plied that students scoring above average and students
scoring below average on the bMCU test were compared
in terms of item parameters.
When at least one of the global tests indicated viola-

tions of the assumption of subgroup homogeneity, we
continued with item-specific analyses (Additional file 2
“Additional Information on the Item Selection Process”
that also includes a justification of our strategy to start
with global and continue with local (i.e., item-specific)
analyses is available as supplementary material). On the
individual item level, the graphical model test with 95%
confidence regions was conducted. This analysis esti-
mates item difficulties separately for the two groups pro-
duced by the respective splitting criterion. The estimated
item difficulties are plotted on two axes (i.e., each group
on one axis) surrounded by confidence regions. An
item’s subgroup heterogeneity is then indicated by sig-
nificant deviation from the diagonal. Figure 3 provides
an exemplary illustration of the graphical model test
with the splitting criterion gender on the 22 items. It be-
comes clear that items 3 and 7 do not measure the same
construct for males and females. Furthermore, the item-
specific Wald test, which provides a significance test of
the subgroup homogeneity assumption for each item,
was inspected.
Whenever an item showed marked significant devi-

ation or only slight discrepancies but on more than one
statistic, the item was excluded. In a stepwise procedure,
we eliminated the least fitting item first, repeated all of
the tests and eliminated the next item. We stopped as
soon as the tests indicated no further violations of the
Rasch model. The resulting test consisted of 12 items
with 3 to 10 answer alternatives each (item 4 “Train”
and item 12 “Skaters” each comprise two parts, a and b).
For students’ ease of processing, the final items were or-
dered by increasing difficulty. The ordering based on the
item difficulty parameters was in line with the ordering
based on the estimation of the items’ difficulties by our
expert group, and the easy, moderate, and difficult items

were included in the final version. The final version of
the bMCU test, which still covers all of the topics “iner-
tia and motion”, “force and acceleration”, “balance of
forces”, and “reciprocal action”, is available as supple-
mentary material (Additional file 1) accompanying the
article.4

Thus, we developed a test of conceptual understanding
of mechanics that is adapted to the content taught to
secondary school students (content validity at secondary
school level). By ascertaining Rasch model conformity,
we identified a small number of items that nonetheless
exactly measure understanding of Newton’s mechanics
(efficiency) independent of several individual characteris-
tics of the test taker (fair measurement).
The fit to the Rasch model (implying efficiency and

fair measurement when homogeneity across different
subgroups is ensured), however, had to be confirmed
with a new sample of students who took the final 12-
item version of the bMCU test. We also had to demon-
strate the valid application of the bMCU test both as a
pre- and a posttest to reflect learning progress (valid
change measure) and examine the test’s reliability by
interpreting item information curves. In addition, we
had to rule out effects of re-testing that could influence
the measurement. To finalize the instrument’s

Fig. 3 Exemplary graphical model test with 95% confidence regions
and gender as splitting criterion. Item numbering does not correspond
to the final item numbering. The estimated item parameters for males
are plotted on the x-axis, and the estimated item parameters for
females are plotted on the y-axis. Item parameter estimates are
surrounded by 95% confidence regions. Significant deviation from the
diagonal indicates an item’s subgroup heterogeneity. For items 3 and 7,
parameter estimations differed markedly between males and females.
Item 3, which addressed the deceleration of a car that is moving with
constant speed, was easier to solve for males. Item 7, however, which
addressed the interaction between the Earth and the Moon, was easier
to solve for females
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evaluation, the bMCU test’s criterion validity had to be
ascertained. Consequently, we describe below our strat-
egy to evaluate the bMCU test step by step (see Fig. 1).

Test evaluation
Fit of the Rasch model, validity as a change measure, and
reliability
In the following, we first present the student sample that
was used to investigate the test’s fit to the Rasch model,
its validity as a change measure, and its reliability. The
steps taken to assess the final instrument’s fit to the
Rasch model, substantiating its efficiency and its poten-
tial to provide fair measurement, and the strategy to
examine the bMCU test’s validity as a change measure
are delineated next. Finally, we briefly describe how we
evaluated the bMCU test’s reliability.

Sample The sample to confirm the fit of the bMCU test
to the Rasch model, to investigate its applicability as a
change measure, and to evaluate its reliability was taken
from an ongoing research project. This research project
implements cognitively activating Newtonian mechanics
instruction (details follow in the next section) and com-
pares this instruction with conventional instruction in
real physics classrooms. All N = 141 (69 girls) partici-
pants with a mean age of M = 15.87 (SD = 1.10, range
14–19) years were Swiss Gymnasium students who took
the bMCU test under supervision and without time
pressure. In a maximum of 30 min, all of the students
managed to work through the 12-item test. The bMCU
test was administered before instruction (pretest) and
after instruction in Newtonian mechanics (posttest). Un-
less otherwise specified, we always refer to the students’
bMCU posttest measure.

Assessing the fit of the Rasch model Pearson’s χ2-
goodness-of-fit (bootstrap) test assessed general model
fit, whereas Andersen’s conditional likelihood ratio test
and the nonparametric T10-statistic5 were applied to
gauge subgroup homogeneity. We decided to examine
DIF (i.e., homogeneity across different subgroups) using
gender, type of instruction, and the medians of the
bMCU measure, of age, and of intelligence as split
variables.

Gender
It was considered especially important that the bMCU
test measures boys and girls on the same scale. Gender-
fair testing is essential in the context of performance as-
sessment. Thus, we investigated DIF in terms of gender.

Type of instruction
A part of the sample (n = 58) received 18 lessons of
introductory Newtonian mechanics instruction focusing

on the conveyance of conceptual understanding. Methods
such as metacognitive questions, self-explanations, holistic
mental model confrontation, and inventing were imple-
mented in this unit to help students grasp the meaning of
the underlying concepts. We examined DIF between stu-
dents who had received this type of cognitively activating
instruction and students who had received conventional
instruction (n = 83). We wanted to check whether differ-
ent types of instruction differentially influence the prob-
ability of solving single items, which would ultimately
change the meaning of the underlying construct that
should be unambiguously measured independent of type
of instruction. Generally, we ensured that there was no
teaching to the test and that the content of the single
items was not addressed during instruction.

bMCU measure
The median of the bMCU measure was used as a split
variable to ascertain that the instrument does not func-
tion differently for students who have developed a rela-
tively good understanding of the content compared to
students with little or no such understanding.

Age
We also checked for DIF concerning age differences.
Thus, younger students could be expected to solve items
differently than older students, who might be further
ahead in terms of their general cognitive development.
The bMCU measure, however, should be directly related
to conceptual understanding of mechanics, with any
other influences ruled out.

Intelligence
Finally, a student’s intelligence level should not influence
the items’ difficulty ranking and the test’s structure. Al-
though intelligent students are expected to perform bet-
ter than less intelligent students, differences in general
intelligence should not lead to qualitative differences in
how single items are solved. Intelligence was estimated
using the set II score of Raven’s Advanced Progressive
Matrices (Raven, Raven, and Court, 1992; maximum
score = 36).
Another assumption of the Rasch model, one-

dimensionality, was checked using the non-parametric
version of the Martin-Löf test, which assesses whether
different item-subsets all measure the same underlying
dimension (see Verguts and De Boeck, 2000). This as-
sumption could be violated, for instance, when effects of
fatigue in the second half of the test systematically influ-
ence the measurement or when students learn from the
first items. Thus, the first and second halves of the items
were compared. The median of the item-specific solu-
tion rates was used as another criterion to split the
items. In addition, odd items were compared with even
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items. A maximum-likelihood factor analysis with varimax
rotation and the global non-parametric T11-statistic
(Ponocny, 2001) that specifically tests for local stochastic
independence were inspected to examine further whether
a one-factor-solution fits the data and one-dimensionality
can be warranted. Moreover, we calculated Yen’s Q3
(Yen, 1984) and followed the recommendations by
Christensen, Makransky, and Horton (2017) for evaluating
local stochastic independence.
Additional file 3 “Additional Information on the Test

Evaluation Process” that provides further details on how
Rasch model conformity was evaluated is available as
supplementary material. Finally, item parameters (i.e.,
item difficulties) were estimated using the conditional
maximum-likelihood method as implemented in the R
package eRm (see Mair, Hatzinger, and Maier, 2013).

The bMCU test as a change measure To examine
whether the bMCU test measures the same latent di-
mension when applied as a pretest (without prior in-
struction) vs. posttest (with prior instruction in
Newtonian mechanics), Andersen’s conditional likeli-
hood ratio test and the non-parametric T10-statistic,
which we had previously used as standard procedures to
examine DIF, were inspected to compare the item par-
ameter estimation between pretest and posttest data.
Parameter estimation must not vary significantly as a
function of time of measurement. When evaluating the
bMCU test’s validity as a change measure, it was import-
ant to avoid dependencies in the data. Using random as-
signment, only the pretest data were analyzed for half of
the participants, whereas only the posttest data were an-
alyzed for the other half of the participants.

Reliability In IRT and the Rasch model, measurement
error can be computed for every level of person ability.
By calculating a traditional reliability index, however,
some information is lost because the possibly varying
measurement error is averaged over different levels of
person ability. Because the Rasch model enables consid-
eration of the measurement error (or in other words, the
precision of the measurement) at different levels of per-
son ability, we present so-called item information curves
that display the information provided by each item at
each level of person ability. The interpretation of these
curves is recommended over traditional approaches to
evaluate reliability in IRT and Rasch models (see, e.g.,
Nicewander, 1993; Reise, Ainsworth, and Haviland, 2005;
Robins, Fraley, and Krueger, 2009; Samajima, 1994; This-
sen, 2000). Higher information corresponds to higher
precision. For a dichotomous item in the Rasch model,
the item information is Pi × (1 − Pi), where Pi is the
probability of correctly solving item i. Accordingly, the
maximum value of each item information curve in the

dichotomous Rasch model is 0.25 at Pi = .50. This means
that an item’s information and thus its precision of
measurement is highest for those persons whose ability
complies with the item’s difficulty and who consequently
have a probability of Pi = .50 of solving that item (see sec-
tion “The Rasch model”). The inspection of the information
curves of all items enables us to evaluate whether the test
can provide precise measurement in the ability range of the
target population or whether there are information gaps.

Effects of re-testing
In a pre-post instruction design, students complete the
bMCU test repeatedly, as a pre- and as a posttest, which
would be problematic if re-testing differentially influ-
enced the probability of solving single items. To rule out
effects of re-testing, we assessed DIF when one-time and
repeated testing are compared.

Sample To assess DIF when one-time and repeated test-
ing are compared, we extended the sample of the
N = 141 students by including parts of the sample of the
N = 239 students whose data had been used in the stage
of item selection in the test development process (see
Fig. 1). Of the N = 239 students, only those with prior
instruction in Newtonian mechanics were considered
(n = 108). The sample to investigate effects of re-testing
consequently consisted of N = 249 Swiss Gymnasium
students with prior instruction in mechanics. Whereas the
n = 108 students had worked on the bMCU test only once
(i.e., one-time testing), the n = 141 students had already
worked on the bMCU pretest (i.e., repeated testing).

Examining effects of re-testing Again, Andersen’s con-
ditional likelihood ratio test and the non-parametric
T10-statistic were inspected to gauge DIF. If the item
parameter estimation did not vary significantly between
the two subsamples, it could be inferred that re-testing
had no effect on Rasch model conformity. This informa-
tion would guarantee that the test always measures the
same underlying construct, whether applied as a posttest
in a pre-post instruction design or for educational pur-
poses only once at the end of a school year, for instance.
However, note that the n = 108 students taken from the
item selection sample had worked on the 22-item ver-
sion of the instrument (see Fig. 1). Although we included
the students’ scores on only the final 12 items, these 12
items could have measured a slightly different construct
in the context of 10 additional items. Therefore, if item
parameter estimation varied between the two subsam-
ples, we could not infer whether this variation was
caused by effects of re-testing or by effects of the use of
different versions of the test instrument. Importantly,
however, if item parameter estimation did not vary be-
tween the two subsamples, we could conclude that re-
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testing and the usage of the two versions of the test had
no effect on the construct measured.

Criterion validity
To examine the criterion validity of the bMCU test, we in-
vestigated how the test predicted grades in Newtonian
mechanics and how the test correlated with another con-
cept test in the domain of Newtonian mechanics, the FCI.
The successful prediction of grades, compared against the
FCI, and a substantial correlation with the FCI can pro-
vide evidence that the bMCU test validly assesses stu-
dents’ conceptual understanding of Newtonian mechanics.

Samples For the evaluation of the bMCU test’s criterion
validity, we used two samples, a sample of secondary
school students and a sample of mechanical engineering
students. Secondary school students were investigated
because they are the target population of the bMCU test.
University students were also considered to obtain a first
idea of how the test functions in this more advanced
sample. The secondary school student sample comprised
N = 66 (38 girls) Swiss Gymnasium students from three
physics classrooms with a mean age of M = 16.53
(SD = 0.66, range 15–18) years. The mechanical engin-
eering students sample comprised N = 21 (2 girls) stu-
dents in their first semester at the Swiss Federal
Institute of Technology in Zurich. Both the secondary
school students and the university students had recently
addressed Newtonian mechanics in their classes.

Evaluating criterion validity All of the participants
worked on the final bMCU test and the German transla-
tion of the FCI by Gerdes and Schecker (1999) without
time pressure. The order of the two tests was randomly
interchanged so that half of the students in each school
class and the university student sample initially worked
on the bMCU test, whereas the other half worked on
the FCI first. The number of items solved correctly (i.e.,
the sum score) for each test was used to predict the
grade in Newton’s mechanics in the school student sam-
ple and the semester grade in Mechanics 1 (targeting
Newton’s mechanics) in the university student sample.
We also calculated the correlation between the two tests
in both samples.

Results
In the following sections, we present the findings of the
evaluation of the bMCU test. First, the results concerning
the fit of the Rasch model are provided. For readability,
the finding concerning effects of re-testing on Rasch
model conformity is included in this first section. The
evaluation of the bMCU test as a change measure is
outlined next. This chapter closes with the results of the

reliability analysis and the assessment of the bMCU test’s
criterion validity.

Fit of the Rasch model
Concerning general model fit, Pearson’s χ2-goodness-of-
fit (bootstrap) test suggested conformity of the data to
the Rasch model (p = .19). Andersen’s conditional
likelihood ratio tests and all of the nonparametric T10-
statistics (including the examination of the effects of re-
testing) indicated subgroup homogeneity, with all ps ≥ .07
(see Table 1). Consequently, there were no significant
differences in the estimation of the item parameters be-
tween the subgroups that were compared (e.g., between
girls and boys or between students who had worked on
the test once and students who had worked on the test
repeatedly). The test seemed to measure the same
construct (i.e., conceptual knowledge in Newtonian
mechanics) independent of the students’ gender, the type
of instruction, the students’ performance on the bMCU
test, the students’ age, the students’ intelligence, and
one-time vs. repeated testing.
The non-parametric version of the Martin-Löf test

confirmed that all item-subsets tested against one an-
other measured the same underlying dimension. Hence,
the exact p value was estimated at p = .42 when compar-
ing the first half of the items to the second half. Using
the median of the item-specific solution rates as a split
criterion, an exact p value of p = .13 resulted. The exact
p value was p = .89 when comparing odd items to even
items. In line with these results, a maximum-likelihood
factor analysis with varimax rotation could substantiate
the fit of the data of the bMCU test to a one-factor solu-
tion (χ2 = 59.63, df = 54, p = .28). The corresponding

Table 1 Results of Andersen’s conditional likelihood ratio tests
and the nonparametric T10-statistics with different split variables

Split variable Subgroup size p value
Andersen

p value T10

n1 n2

Gender 69 72 .10 .08

Type of instruction 83 58 .23 .35

bMCU measure
median

65 76 .07 .11

Age median 48 93 .71 .66

Intelligence (set II)
median

61 64 .85 .67

Re-testing 108 141 .18 .18

Notes: Andersen’s conditional likelihood ratio test and the nonparametric
T10-statistic gauge the homogeneity in the item difficulty parameter estimates
between subgroups. The subgroups are determined by the six split variables.
All non-parametric statistics are based on n = 5000 sampled matrices. A
non-significant p value indicates no significant differences between subgroups in
the item difficulty parameter estimation. N = 16 students of the total sample of
N = 141 students were missing when intelligence was assessed. In the last row,
the results of the examination of the effects of re-testing are presented. DIF is
examined in a sample of N = 249 students when one-time (n1 = 108) vs. repeated
testing (n2 = 141) are compared
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Scree plot (Additional file 4: Figure S1) and the factor load-
ings of the 12 items of the bMCU test given a one-factor, a
two-factor, and a three-factor solution (Additional file 5:
Table S1) are available as supplementary material accom-
panying the article. Moreover, the global non-parametric
T11-statistic (p = .29) and Yen’s Q3 (maximum value of
Q3 < .17) suggested model fit when testing for local sto-
chastic independence. Consequently, how a student solved
the items of the bMCU test depended solely upon the stu-
dent’s ability. Other systematic influences on the student’s
responses were ruled out and the assumption of one-
dimensionality could be warranted. These findings con-
cerning one-dimensionality further underpinned the valid-
ity of using only one index (i.e., one latent dimension)
when conceptual understanding of basic Newtonian me-
chanics is assessed with the bMCU test.
The results concerning the item parameter estimation

are presented in Table 2. To base the item parameter es-
timation on a sufficiently large dataset, we applied the
sample used to examine the effects of re-testing
(N = 249) because no influence of repeated vs. one-time
testing on the estimation of the item parameters could
be observed (see Table 1).
Figure 4 provides a Wright Map or person-item map

(see, e.g., Bond and Fox, 2007; Boone, Staver, and Yale,
2014). This plot visualizes the location of each item’s
difficulty parameter (right panel) together with the dis-
tribution of all person parameters (left panel) along the
same latent dimension. The ordering of the items based
on their locations on the latent dimension (i.e., their dif-
ficulty; see also Table 2) is in line with the ordering
based on the estimation of the items’ difficulties by our

expert group in the test development process. Compar-
ing the item parameter distribution and the person par-
ameter distribution, it becomes apparent that the items,
which are reasonably spread across the latent dimension,
cover large parts of the ability range of the students in
the sample suggesting good test-item targeting. As indi-
cated by the mean and standard deviation of the item
difficulty (M = 0.00, SD = 1.10) and the mean and
standard deviation of the person ability (M = − 0.34,
SD = 1.20), with approximately 68% of all items being
located between − 1.10 and 1.10 on the latent dimension
and approximately 68% of the students’ ability parame-
ters being located between − 1.54 and 0.86 on the latent
dimension, the items concentrate on measuring the
ability of a slightly more able student sample than the
sample investigated. In the present student sample, how-
ever, the bMCU test was administered without relevant
external incentives. The mean ability of average second-
ary school students could hence be expected to increase
slightly when the test is applied in a situation that is
more relevant to the students, resulting in an increased
fit between item difficulty and person ability. Moreover,
the bMCU test is also intended to be used for research
purposes. Interventions may be designed to enhance the
students’ performance. Therefore, good differentiation in
average to higher ability ranges is important. Neverthe-
less, also in the present sample, the items are well suited
to measure the ability of and differentiate between stu-
dents in the average ability range, which is the range that
is the most relevant. Simultaneously, a few items located
at both the lower and upper ends of the latent dimen-
sion allow differentiation among especially low- and

Table 2 Item difficulty Di, standard error of Di, 95% confidence interval of Di, and outfit mean-square (MNSQ) for the 12 items

Item Item difficulty Di Standard error 95% CI Outfit MNSQ

LL UL

1. Water glass −2.12 0.17 − 2.46 − 1.79 0.92

2. Book −1.24 0.14 − 1.52 − 0.97 0.97

3. Bus −0.80 0.13 − 1.07 − 0.54 1.00

4. Train −0.43 0.13 − 0.69 − 0.17 1.04

5. Hiker −0.25 0.13 − 0.51 0.01 0.83

6. Cart −0.04 0.13 − 0.30 0.22 1.12

7. Object motion 0.05 0.13 − 0.21 0.31 0.98

8. Stone 0.37 0.14 0.10 0.64 1.11

9. Inclined plane 0.58 0.14 0.30 0.85 0.96

10. Motorcycle 0.62 0.14 0.34 0.90 0.87

11. Balls 1.33 0.17 1.00 1.65 0.78

12. Skaters 1.95 0.20 1.57 2.34 0.84

Notes: CI confidence interval, LL lower limit, UL upper limit. Item difficulty parameter Di and its standard error estimated according to the Rasch model. Higher
positive values indicate higher difficulty. Confidence intervals provide an idea of the precision of the difficulty parameter estimation. Outfit MNSQ is a fit statistic
comparing expected (based on the model) with observed data patterns that is sensitive to outliers. Values of approximately 1.00 (~ 0.50–1.50) indicate reasonable
fit. The values obtained for the 12 items all fall within this range, indicating reasonable fit of the item data to the Rasch model (for information on less well-known
conditional fit statistics, see Christensen and Kreiner, 2013; Müller and Kreiner, 2015)
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high-performing students. However, the more extreme
regions of the latent dimension are less well covered.

The bMCU test as a change measure
Andersen’s conditional likelihood ratio test and the non-
parametric T10-statistic were inspected to compare the
item parameter estimation under the Rasch model be-
tween pretest and posttest data. The p values resulting
from both tests (all ps < .001) disproved the notion of
one uniform (prior instruction-independent) Rasch
model. The item-specific Wald test and the graphical
model test, with 95% confidence regions, indicated that
particularly for one item (item 2 “Book”), parameter
estimations differed markedly (p < .001) between pre-
test and posttest. This item, which addresses normal
force and its effect on a book lying on a table, was
difficult for all of the students to solve correctly with-
out instruction, but it was easy to solve correctly after
instruction. In their everyday lives, students usually
do not consciously recognize phenomena related to

normal force. Without being introduced to this type
of force in physics instruction, most students seem to
have no idea about it. After this item was excluded,
Andersen’s conditional likelihood ratio test and the
non-parametric T10-statistic suggested conformity in
the item parameter estimations between pretest and
posttest (all ps ≥ .10). With the exception of item 2
(“Book”), the test therefore measures conceptual un-
derstanding of basic Newtonian mechanics on the
same scale, or on the same latent dimension, for
pretest and posttest data. Consequently, changes
between pretest and posttest should be assessed with
the 11-item version of the bMCU test. Following the
previously described procedure, Rasch model conform-
ity could also be ascertained for the 11-item version
of the bMCU test. An additional “Results” section
(Additional file 6 “Fit of the Rasch model for the 11-item
version of the bMCU test”) and the corresponding
Figures S2 and S3 (Additional files 7 and 8), along
with the corresponding Tables S2, S3, and S4

Fig. 4 Wright Map on the 12 items of the bMCU test and the N = 249 students. The left panel provides the distribution of the students’ person
parameters (ability), and the right panel depicts the location of each item’s difficulty parameter along the same latent dimension. From bottom to
top, person ability and item difficulty increase. The gray bar on the latent dimension axis in the left panel indicates the range of values where
approximately 68% of all person parameters are located. The black square in the middle of the bar marks the mean of all person parameters, the
black squares at the upper and lower end of the bar correspond to the mean plus and minus one standard deviation. The two more extreme
black squares on the latent dimension axis correspond to the mean plus and minus two standard deviations. Approximately 95% of all person
parameters are located between these two squares. The two horizontal lines in the right panel correspond to the mean of the item parameters
(i.e., M = 0) plus and minus one standard deviation, indicating the range of values where approximately 68% of all item parameters are located.
The map shows that the items are reasonably spread across the students’ ability range, with most items covering the average ability range, in
which most students are located
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(Additional files 9, 10, and 11), are available as sup-
plementary material accompanying the article.

The reliability and criterion validity of the bMCU test
Figure 5 presents the item information curves for all
items of the bMCU test. For students with an ability
(i.e., person parameter) between − 1 and 1 on the latent
dimension, the bMCU test measures conceptual under-
standing with high precision. From − 2.5 to − 1 and 1 to
2.5, there are also no gaps in the information about per-
son ability. In this range, however, the precision of the
entire test is lower because fewer items provide informa-
tion about person ability. The precision of the entire test
at a certain level of person ability results from adding
the information of each item at this level of person
ability. For person parameters higher than 2.5 and in
particular, lower than − 2.5, information decreases con-
siderably. Consequently, in this range, person parameters
are estimated less reliably and with a larger standard
error of estimation. Referring to the Wright Map, how-
ever, we can conclude that the ability of most secondary
school students is estimated reliably with approximately
68% of the students’ ability parameters being located be-
tween − 1.54 and 0.86 on the latent dimension and ap-
proximately 95% of the students’ ability parameters
being located between − 2.74 and 2.06 on the latent dimen-
sion. The item information curves for the 11-item version
of the bMCU test (see Additional file 12: Figure S4)

closely resemble the item information curves for the
12-item version.
To examine the criterion validity of the bMCU test,

we investigated how the test predicted grades in
Newtonian mechanics, how this prediction compared
against the prediction by the FCI, and how the bMCU
test correlated with the FCI. We evaluated the bMCU
test’s criterion validity in two samples. In the secondary
school student sample, the bMCU measure and the FCI
score correlated significantly with the grade in Newton’s
mechanics (r = .48 and r = .38) and with one another
(r = .63). The bMCU measure alone explained 23% of
the variance in the grades (p < .001). When we added
the FCI score, no significant change in the prediction
was achieved. In comparison, the FCI score alone ex-
plained 14% of the variance in the grades (p < .01).
When we included the bMCU measure in the regres-
sion, an additional 10% of the variance in grades could
be explained (pchange < .01). In the regression with both
predictors, only the bMCU measure significantly pre-
dicted grades.
In the mechanical engineering student sample, the

bMCU measure but not the FCI score correlated signifi-
cantly with the semester grade in Mechanics 1 (r = .56
and r = .26). The two tests again correlated significantly
with one another (r = .67). The bMCU measure alone
explained 32% of the variance in the grades (p < .05).
When we added the FCI score, no significant change in
the prediction was achieved. In comparison, the FCI
score alone explained 7% of the variance in the grades
(p = .26). When we included the bMCU measure in the
regression, an additional 26% of the variance in the
grades could be explained (pchange < .05). In the regres-
sion with both predictors, only the bMCU measure sig-
nificantly predicted grades.

Discussion
In this paper, we described the development and evalu-
ation of a multiple-answer, multiple-choice test assessing
fundamental conceptual understanding of Newton’s me-
chanics. The construction and evaluation of the instru-
ment enabled us to create a fair, user-friendly, short, and
exact test of conceptual knowledge (fair measurement
and efficiency) that is adapted to the content taught to
secondary school students (content validity at secondary
school level) and that can be validly applied both as a
pre- and posttest to reflect learning progress (valid
change measure). The bMCU test can reliably estimate
the ability of secondary school students in the average
ability range in which most students are located. Because
we aimed to provide an efficient test instrument with a
small number of items, good coverage of the average
ability range was considered more important than good
coverage of the extreme regions.

Fig. 5 Item information curves for all items of the bMCU test as a
function of the person parameters of the N = 249 students. Item
information curves display the information provided by each item
(y-axis) at each level of person ability (x-axis). Higher information
corresponds to higher precision. The precision of the test at a
certain level of person ability results from adding the information
of each item at this level of person ability

Hofer et al. International Journal of STEM Education  (2017) 4:18 Page 15 of 20



We showed that the bMCU test significantly predicted
mechanics grades not only in a sample of secondary
school students but also in a sample of mechanical en-
gineering students. Consequently, the bMCU test also
proved to be a valuable predictor of university students’
understanding of mechanics, although it was not expli-
citly designed for this more advanced student group.
Moreover, the bMCU test correlated significantly with
another test of conceptual knowledge in Newtonian me-
chanics, the FCI. The strong correlation (r ~ .65) with
this established test further underpinned the validity of
the new instrument. In addition, the strong correlation
between the bMCU test and the FCI was higher than
the correlation between the bMCU test and grades. This
finding suggests that differences in conceptual under-
standing, as measured by the two tests, are indeed
reflected in grade differences but cannot fully explain
the inter-individual variation in the grades (approxi-
mately 67% of the variance remains unexplained). This
finding shows that the bMCU test has more in common
with the FCI than with grades. While grades can be ex-
pected to capture additional components of achievement
in physics (e.g., calculation skills), the bMCU test seems
to focus on the students’ conceptual knowledge, similarly
to the FCI. Moreover, the bMCU test proved a better
predictor of grades than did the FCI in both samples,
possibly indicating that the bMCU test is better adapted
to the content taught to secondary school students. The
mechanical engineering students were in their first se-
mester at university. It seems that also the content cov-
ered in the introductory course they had attended
(Mechanics I) is more closely related to the content cov-
ered by the bMCU test than to the content covered by
the FCI. The finding that the bMCU test was a particu-
larly useful predictor of student performance in both
samples suggests a good coverage of introductory
Newtonian mechanics that can be managed at the second-
ary school level. Interpreted together, these results offer
sound arguments for the bMCU test’s validity. Below, we
discuss the bMCU test’s implementation in educational
practice and research before considering its limitations.

Conclusions
The bMCU test’s potential for physics instruction
The bMCU test can be easily implemented in the phys-
ics classroom. Test instructions are short and readily
understandable by secondary school students. The test
can be processed in approximately 20 min and analyzed
in 1 min per test by simply checking answer alternatives
and summing all of the items solved without mistakes
(all of the correct answer alternatives and no wrong
answer alternative marked). The distribution of the item
parameters that represents each item’s difficulty enables
a differentiated measurement of secondary school

students’ abilities in the average achievement range with
most items covering this area. Simultaneously, there are
two easily solvable, encouraging items and two particu-
larly difficult items that allow assessment at the top end
and prevent ceiling effects. We ascertained that the in-
strument assesses the same underlying ability for girls
and boys and for different age and intelligence groups.
The test seems to measure conceptual understanding of
Newton’s mechanics unambiguously, independent of
both the quality of physics instruction and whether the
test has been taken only once or repeatedly. Conse-
quently, whenever fair and efficient assessment of under-
standing of Newton’s mechanics is required, the bMCU
test may be considered. The test could not only comple-
ment summative assessments but also be highly valuable
in the context of formative assessment (e.g., Centre for
Educational Research and Innovation, 2005; Wiliam,
2010), in which efficiency is especially important.

The bMCU test’s potential for research
Because the bMCU test provides efficient and fair one-
time measurement as well as measurement of change in
samples of secondary school students, it can be broadly
applied in research on physics learning as outcome or
predictor variable, for instance. The new instrument
constitutes a valuable instrument for assessing the
effects of interventions in the context of Newton’s
mechanics. It can be used to compare different instruc-
tional approaches, guaranteeing a fair measurement
without qualitative differences in item processing and
conceivability. Fair measurement results from Rasch
conformity and has been tested, for example, when com-
paring item parameter estimates for students who had
received cognitively activating instruction vs. conven-
tional instruction. One major advantage of the bMCU
test compared to existing instruments is its confirmed
applicability as a change measure. There is evidence that
item 2 “Book” might be inappropriate when comparisons
over time are intended. To measure change, this ques-
tion should be excluded. The resulting 11-item version
of the bMCU test, however, measures the same under-
lying construct independent of students’ prior instruc-
tion. Thus, the 11-item version can be validly applied as
both a pre- and a posttest to reflect learning progress.
There is no need to eliminate item 2 in general. When

the bMCU test is applied only once and no comparisons
over time are intended (which is probably most often
the case when the test is used in physics instruction),
item 2 is valuable because it provides further informa-
tion about the students’ conceptual understanding. In
such cases, the 12-item version is applicable. Researchers
and practitioners must decide which version to use de-
pending on the area of application and the correspond-
ing requirements on the instrument.
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In this paper, we show that it is legitimate to consider
conceptual understanding of basic Newtonian mechanics
on one dimension, resulting in a single index. This char-
acteristic of the bMCU test recommends the instrument
for all types of research projects that require a single, ef-
ficient measure of students’ conceptual understanding of
mechanics.6

Hofer, Schumacher, Rubin, and Stern (2017) describe a
classroom intervention study where the bMCU test was
used to assess secondary school students’ conceptual un-
derstanding in mechanics. The bMCU test was also ap-
plied to measure the prior conceptual knowledge in
Newtonian mechanics of first-year students at the Swiss
Federal Institute of Technology in Zurich (see the on-
going project EQUATES—“equal talent, equal success”).

Limitations and outlook
Although our results seem quite stable, our sample sizes
were only moderate. When item parameter estimates are
to be used to define competence levels or thresholds for
later use, for instance, item difficulties must be highly
precise. With larger samples, the difficulties of all items
can be estimated more precisely. Nevertheless, it has
been shown that the Rasch model is applicable to small
sample sizes. Even sample sizes of approximately 35 have
been considered sufficient to calibrate an instrument
based on the Rasch model (see Linacre, 1994; Lord,
1980; Wright and Stone, 1979).
Whereas the total sample sizes used to fit the Rasch

model (N = 239) and confirm the fit of the Rasch model
(N = 141) can accordingly be considered appropriate,
the results concerning DIF might need further valid-
ation. The subgroup sample sizes have been reported as
partially insufficient to guarantee reliable detection of
DIF (see Koller, Maier, and Hatzinger, 2015; Scott et al.
2009). However, we also applied non-parametric statis-
tics that facilitate reliable detection of DIF even in small
samples (see Ponocny, 2001). We provide a first positive
evaluation of the bMCU test, but we hope that future
uses of the test will consolidate our findings.
Moreover, we primarily investigated secondary school

students from Switzerland. Examining additional sec-
ondary school student populations from other countries
is thus needed. In particular, it remains to be determined
whether the psychometric properties of the English ver-
sion of the bMCU test, applied to an English-speaking
population, are comparable to the psychometric properties
of the original German version, applied to a Swiss-German
population. The bMCU test’s potential for application at
the university level could also be investigated further with
larger and more diverse samples.
We have already initiated follow-up data collection in

high schools and college in the USA, in the UK, in
Australia, and in Germany. The results of this large

international comparison study will be reported in detail
in a separate paper. After the first step of sharing this new
instrument and communicating its development and
evaluation, we (and others who consider the test useful,
we hope) will apply it and advance our knowledge.
In conclusion, the bMCU test proved to enable fair, ef-

ficient, and simultaneously rigorous measurement of
secondary school students’ conceptual understanding of
Newton’s mechanics. This new instrument might
fruitfully be used in both physics classrooms and educa-
tional research.

Endnotes
1In Germany and in Switzerland, the Gymnasium is a

public school that provides higher secondary education
to above-average achieving students. The Gymnasium
constitutes the highest track of the German and Swiss
educational system. Gymnasium students (approximately
20–25% of all Swiss students) are comparable to US high
school students attending college preparatory classes.

2When we discuss the Rasch model in the following,
we always refer to the dichotomous Rasch model.
However, there are also other applications of Rasch the-
ory (e.g., the polytomous Rasch model).

3Non-parametric tests, which make no assumptions
about underlying probability distributions, provide re-
sults that are more robust than the usual parametric
tests against violations of common assumptions of infer-
ential statistical tests.

4The test is provided in the original German version
and in a translated English version. The English version
was translated by professionals in both languages with a
science background. In addition, an English native
speaker with expertise in physics was consulted to dis-
cuss the translation.

5All of the non-parametric statistics were based on n
= 5000 sampled matrices.

6If desired and if efficiency is no issue, the bMCU test
can, of course, also be interpreted on the single answer al-
ternative level. In that event, more specific diagnoses about
students’ conceptions regarding the contents and problem
contexts covered by the respective item are possible.
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