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Rough Terrain Navigation for Legged Robots using Reachability Planning
and Template Learning

Lorenz Wellhausen and Marco Hutter

Abstract— Navigation planning for legged robots has distinct
challenges compared to wheeled and tracked systems due to
the ability to lift legs off the ground and step over obstacles.
While most navigation planners assume a fixed traversability
value for a single terrain patch, we overcome this limitation by
proposing a reachability-based navigation planner for legged
robots. We approximate the robot morphology by a set of
reachability and body volumes, assuming that the reachability
volumes need to always be in contact with the environment,
while the body should be contact-free. We train a convolutional
neural network to predict foothold scores which are used to
restrict geometries which are considered suitable to step on.
Using this representation, we propose a navigation planner
based on probabilistic roadmaps. Through validation of only
low-cost graph edges during graph expansion and an adaptive
sampling scheme based on roadmap node density, we achieve
real-time performance with fast update rates even in cluttered
and narrow environments. We thoroughly validate the proposed
navigation planner in simulation and demonstrate its perfor-
mance in real-world experiments on the quadruped ANYmal.

I. INTRODUCTION

Navigation planning for legged robots has distinct chal-
lenges which are not present for other types of robots.
While flying robots attempt to avoid any contact with the
environment, ground robots by definition require contact with
the ground to locomote. Compared to other types of ground
robots, which have a constant contact patch with the ground,
legged robots can overcome obstacles by lifting their legs.
Most traditional navigation planning approaches assume a
single traversability value for any given terrain patch, which
they check against the footprint of the robot [1], [2]. These
approaches are limiting for legged robots due to their ability
to change their footprint and choose contact locations with
the environment deliberately. Therefore, we have chosen
to apply a different, simplified robot representation when
planning for legged systems based on limb reachability
abstractions [3]. We represent a robot as one collision volume
for its torso, and one reachability volume for each of its
limbs. When checking the feasability of a given robot pose,
we expect the torso volume to be collision-free, while we
enforce collision for the reachability volume, to ensure that
the robot is able to make environment-contact with its legs.

While this approach relies purely on geometric terrain
information, it also enables the inclusion of semantically
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Fig. 1: Path generated by our navigation planner for the quadruped
ANYmal [4]. Blue boxes represent torso collision abstractions while
red boxes indicate reachability volumes.

derived quantities into the planning process by maintaining
separate maps for torso and reachability collision checking.
As we have shown in previous work [5], [6], we can learn
to predict non-geometric obstacles like slippery or unknown
terrain from visual semantic information. We can regard this
information as foothold feasibility classification and only
allow safe regions to support footholds by removing unsafe
terrain from the reachability collision map. We leverage this
by training a convolutional neural network (CNN) to predict
foothold scores from the planner map and geometrically
identify unsteppable regions.

Since we are interested in a navigation planner which can
work in possibly unknown environments, it will use informa-
tion from an onboard mapping pipeline which is continuously
updated as the robot moves. We therefore require a fast
update rate for our planner to keep up with map updates.
While frequent drastic map changes would favor a single-
query planner, like RRT* [7], we target environments with
few dynamic obstacles such that most map changes occur
through newly observed terrain while previously observed
map regions remain largely unchanged. Therefore, we base
our planner on PRM* [7], building a planning graph on-
line, while maintaining a persistent planning graph between
planning queries.

PRM* requires a nearest-neighbor lookup when inserting a
new sample into the planning graph, which grows in compu-
tational demand as the graph gets larger. Uniformly sampling
the map for new nodes risks bloating the graph in wide-open
”easy” map regions, risking failure to find a solution in more
difficult, narrow spaces. We therefore employ a sampling
distribution which uses the inverse density of graph nodes
as sampling probability to guide graph expansion towards



underexplored regions.
The main contribution of this work is a real-time naviga-

tion planning framework for legged robots. An open-source
implementation of our planning pipeline is available online1.
We show that our navigation planner is able to generate low-
cost feasible paths with fast query times and runs in the loop
with locomotion and mapping pipelines on our quadruped
ANYmal [4].

The main limitations of our work are two-fold. First,
our assumption that reachability collision abstractions must
be in contact prevents us from planning highly dynamic
maneuvers with long flight-phases, e.g. jumping over a large
gap. Second, due to computational constraints we restrict the
optimized cost function to shortest-path, without considering
foothold safety margins, e.g. the size of the steppable area
inside of the foot reachability. While this is partially compen-
sated for by our foothold score learning method, this means
that our planner can produce risky paths, especially if the
reachability volumes are set too big, which requires a highly
capable locomotion controller to successfully track them.

II. RELATED WORK

Navigation planning for mobile robots is a vast field of
research with a manifold of different approaches, both in
the sensors used to perceive the environment as well as the
environment representation used for planning.

Traditional navigation approaches for mobile robots use
a geometric environment representation as their basis for
planning [1], [2], [8], [9]. They use various different terrain
representations for planning, most commonly 2.5D height
maps [1], [8], point clouds [2] or truncated signed-distance
field (TSDF)s [9]. While only point clouds and TSDFs are
full 3D representations of the environment, current methods
do not support processing these at resolutions necessary
for planning with legged robots, which are highly mobile
and therefore require mapping resolutions of a few centime-
ters. Additionally, locomotion planning and control methods
which can leverage full 3D environments are not yet real-
time capable [10]. We therefore work with 2.5D height maps
as environment representation, which is also used by current
real-time capable locomotion controllers [11]. Most plan-
ning approaches compute a single geometric traversability
value per terrain patch [1], [2] as measure how easily the
terrain can be traversed, irrespective of robot orientation,
which works well for wheeled and tracked robots, which
have a continuously moving contact area while locomoting.
Legged robots, however, have much higher mobility and
can step over obstacles, which makes the notion of a single
traversability value impractical.

While we have argued in previous work [5], [6] that
purely geometric approaches are not sufficient for naviga-
tion in natural outdoor environments, approaches relying on
semantic information exhibit the same issues as traditional
geometric approaches. They, either implicitly through seman-
tic segmentation of the environment [12], [13], [14], [15],
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(a) Torso Collision World (b) Reachability Collision World

Fig. 2: Collision worlds for torso (a) and reachability (b) volumes.
The torso collision world (a) considers all geometry perceived by
the mapping algorithm. Regions considered unsuitable for footholds
are colored in black. This geometry is removed (b) when checking
reachability volumes for collision.

or explicitly [16], [17], [18] predict a traversability label.
However, we can instead reinterpret traversability labels as
foothold feasibility labels and use them to enhance geometric
planning.

While full kino-dynamic planning over long horizons
would be the most general and accurate planning method, ap-
plying these methods in real-time is not tractable on current
computational hardware [10], [19], [20]. Dynamic planning
using a reduced robot model has recently shown promis-
ing results [21] but has not been evaluated in deployment
scenarios. Other work on navigation planning specifically
for legged robots either only considers cases of obstacle
avoidance on flat terrain [22], [23] or does additional contact
planning, which pushes computational complexity past the
real-time mark [24], [25], [26].

Learning traversability [8] and motion cost [27] is an
interesting approach which can encapsulate locomotion ca-
pabilities of legged robots but due to the sequential querying
of neural networks during sampling-based planning they are
computationally inefficient. Concurrent work on a parallel
sampling planner [28] has produced promising results but
struggles with complex maneuvers in tight spaces due to sim-
plifications made to achieve faster sampling speeds. Meth-
ods which learn a sampling distribution [29] to accelerate
sampling-based planners or completely learned planners [30]
show promise for fast planning but require an already exist-
ing planner to generate training data.

We adopt a reachability-based robot representation [3]
which sufficiently approximates the locomotion capabilities
of legged robots, while allowing for computationally efficient
state validity checking.

III. METHOD

Our approach is based on a sampling-based planner, using
a reachability assumption for state validity checking and a
custom sampling scheme to bias graph expansion towards
difficult regions. A learned foothold score is used to restrict
geometry which is considered suitable to step on.

A. State Validity Checking

To check for validity of sampled robot poses, we use a
reachability-based approach [3]. It is based on the notion
that the ground support surface needs to be reachable for the
robot’s legs, while the torso remains collision-free. While this
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assumption can be broken by highly dynamic gaits with full
flight-phases we have found that in practice it is sufficient to
encapsulate the motions produced by current state-of-the-art
controllers [31], [11] which have no or very short flight-
phases.

To check for this condition, we decompose the robot body
into volumes representing torso collisions and leg reacha-
bility. Reachability volumes can be obtained by sampling
random joint configurations for the robot, computing the
end-effector position with forward kinematics and then using
alpha-shape [32] computation to obtain an accurate polygon.
While this yields the most accurate representation for reach-
ability, most locomotion controllers do not use the full range-
of-motion available to them. Therefore, we use a simple
box to represent reachability, as done in other work [20],
which represents the actual capabilities of current locomotion
controllers better and improves collision checking speed
significantly. The abstraction used for the ANYmal [4] robot
is shown in Figure 1. Body collision models are typically
available as part of a robot model or can be abstracted by
simple primitive shapes.

A downside of this reachability-based approach is that in
its basic form it does not have a notion of dynamic feasibility.

It would consider poses valid which stand vertically on
a wall or upside down on the ceiling. While other work
exists, which extends the reachability-based model [3] with
dynamic feasability [19], this method is not currently real-
time capable. To overcome this problem, we segment the
environment into two separate collision worlds, shown in
Figure 2, one for the torso and one for reachability. The
torso collision world contains all geometry as provided by
the mapping pipeline. For the reachability collision world
we remove geometry which is considered unsuitable for
supporting a foothold, by thresholding a learned foothold
score, further detailed in Section III-B.

A valid pose is therefore a pose where all reachability
volumes are in contact with geometry in the reduced reach-
ability world, while the torso volume is collision free in the
full torso collision world. To check validity of transitions
between two poses we linearly interpolate between both
and check state validity at intermediate states with a fixed
resolution.

B. Learning Foothold Scores

Information about valid footholds can come from different
sources, like semantic information [5], [6] or geometric
analysis of the environment [1]. In this work we use a ge-
ometric template-learning approach which predicts foothold
scores ∈ [0, 1] from height maps and can both be computed
rapidly and trained with very little data. An overview of our
method is shown in Figure 3.

Previous methods define hand-tuned filters to score
footholds, like terrain roughness, step height and inclina-
tion [1] which are applied to every grid cell of the map
and then combined into a score using a weighted sum.
Because these filters are position-invariant, applying them
can be regarded as convolving templates over the height

map. Instead of defining them by hand, we learn both these
templates and weights for the weighted sum using a CNN
and gradient-based optimization. This allows for fast and
intuitive definition of invalid footholds, because they can
directly be selected on a few training height maps, instead
of iteratively tuning heuristic weights and thresholds.

We use a single convolutional layer with 12 kernels of
size 3× 3 without activation function or bias, followed by a
1× 1 convolution which acts as a weighted sum. The 3× 3
convolutions use different dilation sizes ∈ [1, 2, 3] to increase
receptive field size while keeping the number of parameters
low. We enforce the weights of the 3× 3 convolution filters
to be zero-sum to ensure invariance to the absolute terrain
height. In the same fashion, we enforce the weights of the
weighted sum to be positive. Because of these constraints,
uneven terrain which is unsuitable for footholds will generate
a strong response and possibly large output values while
perfectly flat terrain will have zero response. To obtain an
output between zero for invalid footholds and one for good
footholds, we use the exponential of the negated weighted
sum output as our final foothold score.

As we refrain from using biases in the convolutional
layers, this network has only 12 · 3 · 3 + 12 = 120 learnable
parameters, which can be trained rapidly and with very
little manually labelled training data. The small number of
parameters also makes the network less prone to overfitting
to training data. As Figure 3 shows, the model learns generic
filter kernels akin to corner and edge detectors, such that it
generalizes well.

C. Planner

Algorithm 1: Graph Expansion Method
Input: Graph G
do // Sample valid pose.

p3D ← samplePose();
while ¬valid(p3D);
Ngoal ← addPoseToGraph(p3D,G);
do // Find start node.
Nstart ← selectRandomNode(G);

while ¬connected(Nstart, Ngoal, G);
do
E ←constructSolution(Nstart, Ngoal, G);
success ← True;
foreach e ∈ E do // Validate solution.

if ¬valid(e) then
removeEdge(e,G);
success ← False;

end
end

while ¬success and connected(Nstart, Ngoal, G);

We base our planner on the LazyPRM* [33] algorithm,
customizing it for our application of continuous replanning
in a mostly unchanged map. LazyPRM* is a variant of PRM*
which builds a planning graph without checking connectivity
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Fig. 3: We train a very shallow convolutional network to predict foothold scores from height maps, using only 20 manually labelled
training examples. The center shows the actual learned convolutional weight parameters of different dilations and their resulting activation
on an example input height map. The absolute value of each filter channel is multiplied with a learned weight. Finally, the negative
exponential of the sum over all channels comprises the foothold score, which is trained using manually labelled examples.

when adding new nodes. Validity of a graph edge is only
checked when it is part of the optimal solution at query
time. This helps increase planning speeds in applications
where validity checking is expensive to compute. While
state validity checking using our reachability abstraction is
fast, checking motions between states is not, since we do
discrete motion validation at a fine resolution which makes
LazyPRM* the more appropriate choice for our task. While
continuous collision checking would be faster and applicable
to the torso collision shape, this is not possible for the
reachability shapes, which need to be in contact at each step,
not only once along the motion path. The downside of this
approach is that the planning graph can accumulate large
numbers of possibly invalid but unchecked graph edges in
regions which have not been part of the optimal solution for
planner queries. If they later become relevant for a planner
query, this large backlog of invalid edges needs to be worked
off, which can take a long time if many invalid edges have
accumulated. We combat this issue by adjusting our planner
as detailed in Algorithm 1.

In our implementation we check some, but not all, graph
edges for validity when expanding the graph. Our aim is to
identify the newly added graph edges which are most relevant
for optimal path planning and only check validity for these.
We achieve this by submitting an A* query from a randomly
selected graph node to the newly added node. This means
that only the edges offering lowest cost connectivity to the
new node are checked. This prevents excessive accumulation
of unchecked invalid edges while maintaining the LazyPRM*
concept of only validating optimal connections between
nodes.

D. Sampling

We employ a custom sampling scheme to increase the
likelihood of drawing valid samples and bias graph expansion
towards unexplored regions.

1) 2D-assisted 3D sampling: Sampling the full 6-degrees
of freedom (DoF) pose space uniformly during planning is
inefficient because only a narrow range of height values and
pitch and roll angles can fulfil the reachability requirements.
Therefore, we leverage the knowledge that all reachability
volumes need to be in contact with the ground by first
sampling a 2D pose which is then augmented to a 3D pose
using map information. Note that in order to simplify the fol-
lowing equations we consider the pose of the center between
reachability volumes, which is the torso pose vertically offset
by the nominal stance height.

First, we sample a 2D pose p2D using the sampling
distribution described in Section III-D.2:

p2D =
[
x, y, φ

]T
(1)

Knowing that the reachability volumes need to be in
contact with the ground, we obtain the height value z from
the terrain map at p2D. Assuming that the robot needs to
be aligned with the terrain, we then obtain the roll and pitch
angle for the 3D pose using the terrain normal np2D of a
smoothed version of the map at position p2D. We first align
np2D with the sampled yaw angle using its rotation matrix
R(φ)

nφ = R−1(φ) · np2D =
[
xφn, y

φ
n, z

φ
n

]T
(2)

and then extract roll and pitch angles from nφ

p∗
3D =


x
y
z

−atan2(yφn, z
φ
n)

atan2(xφn, z
φ
n)

φ

 (3)

to obtain a 3D anchor pose p∗
3D which would guarantee

a valid pose in a fully planar world.



(a) Planner Graph
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Fig. 4: ANYmal exploring a narrow environment in simulation.
The planner graph (a) has low node density in narrow corners
and high density in wide-open spaces. Accordingly, the sampling
probability (b) is highest in narrow spaces and low in open areas,
while unobserved space is completely ignored.

Since height, roll and pitch of p∗
3D are not randomly

sampled, we need to introduce additional perturbations to
maintain probabilistic completeness of the planner and to
enable valid pose discovery in rough terrain. We perturb
the height by applying a uniformly sampled offset wpos ∈
[−σn, σn] along the terrain normal np2D , where σn is the
standard deviation of terrain height inside the robot footprint.
This means we apply a small offset in flat terrain and a larger
offset in rough terrain. Finally, we apply random perturba-
tions wroll ∈ [−ωroll, ωroll] and wpitch ∈ [−ωpitch, ωpitch],
where ωroll and ωpitch are tuning parameters. This gives us
our final 3D sample:

p3D = p∗
3D +


np2D · wpos

wroll
wpitch

0

 (4)

2) Adaptive Sampling Distribution: Since both the A* al-
gorithm used to solve planner queries, as well as the nearest-
neighbor search for node insertion scale non-linearly with the
number of graph nodes, reducing this is a major concern for
maintaining fast planning speeds. Uniform sampling tends to
accumulate nodes in wide-open spaces, where most drawn
samples are valid, while node density in narrow spaces is
low (see Figure 4). This leads to issues when transitioning
between open and narrow spaces. Therefore, we compute the
sample probability as the inverse density of graph nodes.

We overlay a grid over the planning space and count
the number of graph nodes per grid cell, which is then
average-filtered with a kernel the size of the robot footprint
to obtain the smoothed sample density D(x, y). The sample
probability density p(x, y) is computed as the maximum
sample density over the sampling space, minus the local
sample density, with a small bias ε to prevent numerical
issues with constant density and to maintain probabilistic

(a) Without learned foothold scores. (b) With learned foothold scores.

Fig. 5: Comparison when planning with and without learned
foothold scores. When invalid foothold geometry (colored dark
grey) is considered for foothold placement (a) the robot ”climbs
up” the side-wall of the stairs. When foothold scores are taken into
account (b), a feasible path is planned.

completeness.

p(x, y) ≈ max
x,y

(D(x, y))−D(x, y) + ε (5)

The yaw angle φ is sampled uniformly from [0, 2π[.

IV. EXPERIMENTAL RESULTS

We validate individual elements of our approach in sim-
ulation and demonstrate deployment of the entire method
on the quadruped ANYmal. It is equipped with four Intel
Realsense D435 depth cameras which are used to build a
robocentric 2.5D elevation map of the environment [34].
We use a blind learning-based locomotion controller [31],
which is able to overcome obstacles up to 17cm in height
and moves at an average speed of 0.68m s−1. We plan on
a 12m×12m grid with 4cm resolution using a shortest-path
objective and a simple P-controller as path follower. The
robot pose is obtained from onboard localization.

A. Simulation

Simulation experiments were run on a Desktop computer
with an Intel i7-8700K CPU, a Nvidia RTX 2080 GPU and
32 GB of RAM. Figure 6 shows paths planned in simulation
over various challenging terrain. We are able to plan in very
narrow spaces, over uneven terrain and over features which
have been unapproachable by existing methods [1], like
negative obstacles and winding stairs, even with incomplete
map information caused by online mapping. Additionally,
we show the effect the learned foothold score has on the
resulting paths and finally, how our extensions to LazyPRM*
improve worst-case performance over the original algorithm
and other commonly used planning algorithms.

1) Foothold Score Learning: We manually labelled 26
height maps of size 200×200 obtained from log data of real
robot deployments on a diverse set of terrains, and trained
the foothold score network using a binary cross-entropy loss.
20 maps were used for training and 6 for validation. The
network fully converged in 32 seconds using the Adam op-
timizer [35]. Inference times are 0.35 milliseconds on GPU



and 3 milliseconds on CPU for a map of the aforementioned
size. We use a foothold score threshold of 0.5 to classify
terrain as steppable or not.

Figure 5 shows how using our foothold score to restrict
available collision geometries for the reachability volumes
results in a more realistic, feasible path, when planning up
the side of a set of stairs. In the basic configuration without
using foothold scores, the side-wall of the stairs is considered
a valid object to step onto and the planner consequently
plans a path which climbs up the side of the stairs, which
is not practically achievable by the robot. When we use the
foothold score to remove invalid foothold geometry, colored
dark grey in figure 5, the result is a feasible path, which
avoids the side-wall and high steps on the right side of the
staircase.

2) Planning Time: We determine a real-time planning
threshold Tthres based on the maximal locomotion speed of
our target platform, 0.68m/s, and the size of the robocentric
planning map, 12×12m, or 6m in each direction around the
robot, Tthres = 6m

0.68m s−1 ≈ 8.8s. We compare the worst-
case planning times of each method against this threshold,
instead of the average time, because any outlier which
significantly exceeds the target update interval even once
during continuous operation will cause either mission delays
or lead to unsafe robot paths and is therefore not real-world
ready.

To evaluate planning time performance mimicking a real
deployment scenario, we sequentially plan to three goal
points, while continuously replanning, in an environment
where a narrow corridor with an extremely tight corner
just the size of the robot branches off of an open area,
shown in Figure 7(a). This environment showcases two key
factors which can cause planning time outliers for planning
algorithms, narrow passages and planning into previously
observed but not planned to regions. The experiment is
repeated for four algorithms, RRT*, PRM*, LazyPRM* and
our extension to LazyPRM*, all of which are probabilis-
tically complete and asymptotically optimal. All methods
use our foothold score predictor for collision checking and
sample using our proposed 2D-assisted 3D sampling. We run
each algorithm for at least one second, to allow for a low-cost
path to be found, and until a solution is found. We therefore
want the planner to ideally find a solution in one second, to
allow for continuous and fast replanning and to never exceed
Tthres. Results of worst-case performance per algorithm are
shown in Figure 7(b). RRT* needs over a minute to plan into
the tight turn of goal 1 and therefore fails to accomplish this.
Similarly, PRM* takes 52 seconds to find an initial solution
but allows for fast replanning once a graph has been built.
While LazyPRM* finds an initial solution in 8.0 seconds due
to lazy validating of graph edges, this leads to a single very
long planning time of 68 seconds when planning from goal 2
to goal 3. Many unchecked edges between the left and right
passages have accumulated which need be validated during
a single planner query. Finally, our method finds an initial
solution in 3.1 seconds, faster than LazyPRM*, due to the
density-based sampling scheme, which leads to more graph

(a) Narrow (b) Ramps

(c) Gap (d) Winding Stairs

Fig. 6: Example paths planned over various terrain in simulation.
Our method can plan in (a) very narrow environments, (b) uneven
terrain, (c) over gaps and (d) over winding stairs, even with
incomplete maps.
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Fig. 7: We sequentially navigate the robot to three goal points
(a) while continuously replanning. Other planning algorithms have
excessive planning time outliers (b), which make continuous re-
planning impossible in practical applications.

nodes in difficult regions, as shown in Figure 8. At the same
time, unchecked edges do not accumulate due to our graph
expansion scheme, and therefore, planning between goal 2
and goal 3 does not exceed the real-time threshold. In sum-
mary, while density-based sampling helps increase planning
speed through narrow passages, our graph expansion scheme
is the crucial component to avoid excessive planning times.

B. Real Robot

The ANYmal-C quadruped used for our experiment is
equipped with an Intel i7-8850H processor with 16GB of
RAM which in addition to our planner was running camera
drivers, elevation mapping and ICP-based SLAM.

Our method has been tested over several months during
multiple fully autonomous mission tests for the DARPA
Subterranean Challenge in various challenging underground
environments. In this context, goal poses were provided to
our planner by a high-level exploration planner [36], which
finds map frontiers to maximize information gain. Hereafter
we present results for one specific test conducted in an
abandoned industrial facility in Rümlang, Switzerland. An



(a) Uniform Sampling (b) Density-based Sampling (Ours)

Fig. 8: Valid edges of the planning graph after sampling for 5
seconds using (a) uniform sampling and (b) our density-based
sampling. The graph does not connect through the narrow corner
on the left with uniform sampling while our method does.

overview of the environment is shown in Figure 9(a), which
consists of narrow corridors and trip hazards on the ground.

Our planner was able to safely navigate over steps up
to 17cm in height and corridors 90cm in width, even in
the presence of incomplete maps corrupted with artifacts, as
shown in Figure 9(b). For real deployment, we changed the
planning scheme to query a new path every 2 seconds instead
of always sampling for a fixed time before returning, even if
a solution was found earlier. This helps to achieve consistent
path update intervals, which consistently stay below the real-
time threshold of 8.8s, as shown in Figure 9(c), and improves
path tracking performance.

V. CONCLUSION

In this work we presented an approach capable of real-
time path planning over challenging terrain for legged robots.
It uses a reachability-based robot abstraction enhanced by
a learned foothold score prediction network to evaluate
whether a robot can negotiate a given terrain without re-
quiring an explicit traversability measure. We expand the
LazyPRM* algorithm with a custom graph expansion scheme
which alleviates issues with accumulating unvalidated graph
edges, which can lead to spikes in planning time. Our
sampling scheme based on node graph density favors sam-
pling in underexplored map regions, thereby accelerating
planning in narrow environments. Finally, we demonstrated
our approach on the ANYmal quadruped both in simulation
and in reality, showcasing real-time in-the-loop performance.
Future work will focus on further improving the sampling
scheme with a learned sampling distribution, introducing
a more sophisticated cost measure to replace the shortest
path objective and combining it with our previous work on
semantic foothold score prediction [5], [6].
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