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Abstract. We consider the Landau-Lifshitz flow on a bounded planar domain. An ε-
regularity type a-priori estimate provides the analytic tool for the subsequent geometric
description of the flow at isolated singularities. At forward isolated singularities where the
energy is not left continuous the flow concentrates energy and develops bubbles. As in
J.Qing’s bubbling-energy-equality for the harmonic map flow, the energy loss at such a sin-
gularity can be recovered as a finite sum of energies of tangent bubbles. We then clarify
a known uniqueness result for the Landau-Lifshitz flow and show how non-uniqueness of
extensions of the flow after point singularities is related to backward bubbling. Finally the ε-
regularity estimate also yields a partial compactness result for sequences of smooth solutions
to the Landau-Lifshitz flow with uniformly bounded energy, defined on a planar domain.

Mathematics Subject Classification (2000): 58E20, 35B65, 35B60, 35K55

1. Introduction

The Landau-Lifshitz flow u : Ω × R+ → S2 is defined by

∂tu = −α u × (u × �u) + β u × �u in Ω × R+ ,(1)

u = u0 on (Ω × {0}) ∪ (∂Ω × R+) ,(2)

where α > 0, β ∈ R and where “×” denotes the usual vector product in R3. Here
Ω ⊂ R2 denotes a smooth bounded domain and S2 ⊂ R3 is the standard sphere.

In physics these equations describe an isotropic Heisenberg spin chain phe-
nomenon in non-equilibrium magnetism (see [22]). The map u describes the spin
density, α > 0 is the Gilbert damping constant and β ∈ R is an exchange constant.

By using that |u| ≡ 1, from the identity a × (b × c) = (a · c) b − (a · b) c for
a, b, c ∈ R3 it is easy to see that for sufficiently regular solutions equation (1) is
equivalent to

γ1 ∂tu − γ2 u × ∂tu = �u + |∇u|2u in Ω × R+ ,(3)

where γ1 := α
α2+β2 > 0 and γ2 := β

α2+β2 ∈ R. (See [17].) By scaling the time
variable, we may assume γ1 = 1 and γ := γ2 ∈ R.

P. Harpes: ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
(e-mail: pharpes@math.ethz.ch)
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For β = 0, or equivalently γ = 0, equation (3) is a harmonic map flow into S2

with time scaled by α > 0. (Compare [17].)
All our results also hold for the harmonic map flow with a general Riemannian
manifold N as target. This flow is given by

∂tu − �u = A(u)
(∇u, ∇u

)
in Ω × R+(4)

u = u0 on (Ω × {0}) ∪ (∂Ω × R+) ,(5)

where A(u)
(∇u, ∇u

)
=

∑2
i=1 A(u)

(
∂iu, ∂iu

)
and A denotes the second fun-

damental form of N ↪→ Rn. If N = S2 ↪→ R3 is the standard sphere, then
A(u)

(∇u, ∇u
)

= |∇u|2 u and we recover (3) for γ1 = 1 and γ2 = 0.

Standard methods imply the existence of a smooth “short-time” solution

u ∈ C∞(Ω×]0, T [;N)

to (2)-(3) for initial and boundary data u0 ∈ H1,2(Ω, N) and for sufficiently small
T = T (u0, N) > 0 (See [18,31,32,17,19]).

At the maximal existence time there are at most finitely many point singularities
(compare Section 3, but also [31] and [18] for the harmonic map flow and [17] or
[19] for the Landau-Lifshitz flow). By iterating the above short time existence result,
a short time smooth solution can be extended to a global weak solution which is
smooth except for finitely many point singularities and has decreasing energy

t �→ E
(
u(t)

)
:=

1
2

∫
Ω

∣∣∇u
∣∣2(x, t) dx .(6)

We will refer to this extension as the Struwe-solution. It was first constructed
by M.Struwe in [31] for the harmonic map flow on Riemann surfaces. The con-
struction was generalized to two dimensional domain manifolds with boundary by
K.C.Chang in [2] and to the Landau-Lifshitz flow by B.Guo and M.C.Hong in [17].
See also [19] for the case with boundary.

Like the harmonic map flow (see [31] and [28]), at isolated singularities, where
the energy is not left continuous, the Landau-Lifshitz flow splits off “bubbles”,
i.e. non-constant harmonic maps ϕ : S2 → S2, which account for the loss of
energy at the singular time.

The Struwe-solution is unique in the class of solutions that are smooth except
for isolated point singularities and with decreasing energy. A.Freire showed in [15]
and [16] that it is still unique in the class

H1,2
loc

(
Ω × R+; N

) ∩ L∞(
R+; H1,2(Ω; N)

)
with initial and boundary data

u0 ∈ H1,2(Ω; N) ∩ H3/2,2(∂Ω; N) ,

if the energy (6) is decreasing.

This uniqueness result was extended by Y. Chen and by B. Guo and S. Ding in
[10,9,14,5] to the Landau-Lifshitz flow, but the essential assumption that the energy
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should be decreasing is erronously omitted. Note that neither C∞(M × [0, T ], R3)
nor L∞([0, T ];C1(M, R3)) are dense in L∞([0, T ], H1,2(M, S2)), with the usual
norm

‖u‖L∞(H1,2) := sup
t∈[0,T ]

‖u(., t)‖H1,2(Ω) .

For C∞(M × [0, T ], R3) this is obvious and for L∞([0, T ];C1(M, R3)) we will
give a counterexample in the appendix. These density statements are however used
in [6,14,9] (see [6] (3.31)–(3.33) p.118; [14] p.150; [9], (3.6)–(3.7) p.429). If the
energy is assumed to be decreasing, the proof can however be restored by the same
argument as in [16] p.331.

If the energy is not assumed to be decreasing, then weak H1,2
loc ∩ L∞(H1,2)-

solutions can no longer be expected to be unique. In Section 5 we show how non-
uniqueness of extensions of solutions after point sigularities is related to “backward
bubbling”. Recently explicit examples of non-uniqueness and backward bubbling
have been constructed for the case of the harmonic map flow in two space dimen-
sions by M.Bertsch, R.Dal Passo and R.Van der Hout in [1] and independently by
P.Topping in [36].

2. The energy estimates

While the harmonic map flow (4) can be interpreted as the L2-gradient flow of the
energy functional u �→ E(u) on H1,2(Ω; N) with fixed boundary data u0, the
Landau-Lifshitz flow does not appear to be a gradient flow. The energy is however
still decreasing along a regular Landau-Lifshitz flow. Let

E
(
u(t), BΩ

R (x)
)

:=
1
2

∫
BR(x)∩Ω

|∇u|2(y, t) dy

be the local energy. Then we have the following straightforward but fundamental
estimates.

Lemma 1. Let u ∈ C2(Ω × [0, T [;S2) be a solution of (2)-(3). Then we have the
energy equality

d

dt
E

(
u(t)

)
= − γ1

∫
Ω

|∂tu|2 dx for 0 ≤ t < T ,(7)

and the local energy estimate

E
(
u(t2), BΩ

R (x0)
) ≤ E

(
u(t1), BΩ

2R(x0)
)

+
C

γ1 R2

∫ t2

t1

E
(
u(t), BΩ

2R(x0)
)
dt,

(8)

for 0 ≤ t1 ≤ t2 < T and with BΩ
R (x) := BR(x) ∩ Ω.

Proof. (7) is obtained by multiplying (3) with ∂tu and integrating by parts. (8)
follows from (3) by multiplying with ∂tu ϕ2, where ϕ is a standard cut-off function,
and then integrating by parts and absorbing the ∂tu-term, similar to [31,32].
Note that ∂tu ≡ 0 on ∂Ω × R+; thus we may still integrate by parts and the usual
proofs are still valid in the case ∂Ω �= ∅. (Compare [31,17] for the case ∂Ω = ∅.)
��
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3. An a priori estimate, higher regularity and extensions

We start with higher regularity. Set

PR(z) := BR(x)×]t − R2, t[ and PΩ
R (z) :=

(
BR(x) ∩ Ω

)×]t − R2, t[ .

The following Proposition says that any L∞(H1,2)-solution of (2)-(3) with bounded
gradient is actually smooth.

Proposition 2. Consider u0 ∈ H1,2(Ω; N) ∩ Ck+λ(Ω; N) for k ≥ 2 and λ ∈
]0, 1[. Let u ∈ L∞([0, T ], H1,2(Ω; N)) be a solution of (2)-(3) (or (4)-(5)). Assume

sup
P Ω

R (z0)
|∇u| ≤ C0

for z0 ∈ Ω×]0, T ] and some fixed R ∈]0,
√

T [. Then for any 0 < δ < 1, we have

u ∈ Ck+λ,(k+λ)/2
(
PΩ

δR(z0)
)

∩ C∞
(
PΩ

R (z0)
)

,

with bounds depending only on δ, R, C0, the parameters γ1, γ2 of equation (3), the
curvature of ∂Ω and the geometry of the target (i.e. the metric of the target and its
covariant derivatives).

Proof. The proof is a standard bootstrap argument applied to the system (3) with
initial and boundary data (2). This system is strongly parabolic. Indeed, it may be
written as

∂tu − M(u)�u = |∇u|2 M(u) u ,(9)

where the matrix valued function

u �→ M(u) =


γ1I − γ2


 0 −u3 u2

u3 0 −u1
−u2 u1 0







−1

is continuous and bounded and M(u)�u is strictly elliptic. More precisely

α |ξ|2 < ξT M(u) ξ <
1
γ1

|ξ|2 ∀ξ ∈ R
2 .

(See [13] p.12, and [19]. Compare also [21] section VII.8 for definitions and results
on parabolic systems.) Theorem 10.4 in Section VII.10 of [21] (see also Theorem
9.1 in Section IV.9 of [21]) then provides Sobolev estimates with constants that
still depend on the modulus of continuity of the coefficients and thus of u. The
assumption supP Ω

R (z0) |∇u| ≤ C0 however does not include time derivatives.
To obtain bounds on the modulus of continuity with respect to time, observe that
equation (9) may be written in divergence form with bounded coefficients, i.e. the
map v := u solves

∂tv − div
(
M(u) ∇v

)
+

(
DM(u)∂ku) ∂kv = |∇u|2 u .
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Then, still under the assumption

sup
P Ω

R (z0)
|∇u| ≤ C0

Theorem 3.1 in Section VII.3 or Theorem 1.1 in Section V.1 of [21] yield Hölder-
estimates for v = u, that provide adequate bounds for the modulus of continuity
of u in the previous Sobolev-estimates. Upon differentiating (3), we obtain an
equation of the same type. The above Sobolev estimates may then be iterated to
obtain smoothness. ��
By using scaling properties of the equation, we may now derive an a-priori sup-
estimate for ∇u from the previous higher estimates.
C2,λ(∂Ω; N) will denote the space of maps v : ∂Ω → N that admit an extension
to C2,λ(Ω; N).

Theorem 3. Consider u0 ∈ H1,2(Ω; N) ∩ C2,λ(∂Ω; N) for 0 < λ < 1. Let
u ∈ W 2,1

2 (Ω × [0, T ];N) be a solution of (2)-(3). Then there are constants

ε0 = ε0(Ω, ‖u0‖C2(∂Ω)) > 0 and C0 = C0(Ω, ‖u0‖C2(∂Ω)) > 0

such that, if for z0 = (x0, t0) ∈ Ω×]0, T ] and 0 < R0 < min{1,
√

t0} there holds

∇u is continuous on PΩ
R0

(z0) and sup
t0−R2

0<t<t0

E
(
u(t), BΩ

R0
(x0)

)
< ε0 ,

then

sup
P Ω

δR0
(z0)

|∇u| ≤ C0

(1 − δ) R0
,

for any δ ∈]0, 1[. If γ2 = 0 and the target is a manifold N , the constants C0 and
ε0 also depend on the geometry of N .

Proof. Without loss of generality (x0, t0) = 0. We set PR := PΩ
R (0) and

e(u) :=
1
2
|∇u|2 .

We would like to consider z1 = arg supPR0
e(u). Difficulties however arise if

z1 ∈ ∂PR. This is elegantly avoided by considering (10) below, as in Schoen [30],
proof of Theorem 2.2. (Schoen’s method was extended to the parabolic context in
[33,34].)
Since ∇u is continuous, there is σ0 ∈ [0, R0[ such that

(R0 − σ0)2 sup
Pσ0

e(u) = max
0≤σ≤R0

(
(R0 − σ)2 sup

Pσ

e(u)
)
.(10)

Moreover there is z∗ = (x∗, t∗) ∈ Pσ0 such that

e0 := e(u(z∗)) = sup
Pσ0

e(u) .
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Set ρ0 := 1
2 (R0 − σ0). Since Pρ0(z∗) ⊂ Pσ0+ρ0 ⊂ PR0 , we have

sup
Pρ0 (z∗)

e(u) ≤ 1
(R0 − (σ0 + ρ0))2

(R0 − (σ0 + ρ0))2 sup
Pρ0+σ0

e(u)

≤ 4
(R0 − σ0)2

(R0 − σ0)2e0 ≤ 4e0 .

Let r0 :=
√

e0ρ0 and consider the rescaled map

v(y, s) := u(x∗ + e
−1/2
0 y, t∗ + e0

−1s) for (y, s) ∈ PΩ∗
r0

,

where Ω∗ := e
1/2
0 (Ω − x∗) and PΩ∗

r0
:= Pr0 ∩ (Ω∗ × R). By scaling invariance v

satisfies (3) on P ∗
r0

:= PΩ∗
r0

with boundary data

v(y, s) = v0(y) := u0(x∗ + e
−1/2
0 y) on Pr0 ∩ ∂Ω∗ .

Moreover, by construction,

e(v)(0, 0) = 1 , sup
P ∗

r0

e(v) ≤ 4(11)

and also

e(v0) =
1
2

|∇v0|2 ≤ 4 .

We may choose coordinates on the target such that v0(0) = 0 and then
supP ∗

r0
|v0| ≤ 4 r0 .

Now we claim r0 ≤ 2. This will prove the theorem, since by definition of r0, we
then have (R0 − σ0)2 e0 ≤ 16.

Assume r0 > 2. Then e0 = r2
0

ρ2
0

≥ 4 2
R2

0
> 8, since 0 < R0 < 1.

Since r0 > 2, by (11) and Proposition 2 with δ = 1
2 , all higher derivatives of v

are bounded on P ∗
1 . In particular for a constant C depending only on α > 0, the

curvature of ∂Ω∗ and possibly the geometry of N , there holds,√
|∂te(v)|, |∇e(v)| ≤ C < ∞ on P ∗

1 .

Therefore

inf
P ∗

r1

e(v) ≥ 1
2

for r1 := min{ 1
4C

, 1} .(12)

Since e0 > 8 by assumption, the curvature of ∂Ω∗ is bounded in terms of the
maximum of the curvature of ∂Ω.

Moreover since Ω is compact, there is c0 > 0, such that

|Br(x) ∩ Ω| ≥ c0 r2 for all x ∈ ∂Ω , 0 < r < 1

and also
|Br(y) ∩ Ω∗| ≥ c0 r2 for all y ∈ ∂Ω∗ , 0 < r < 1 .
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Set C∗ = 2
c0r2

1
and ε0 := min{ 1

2 , 1
2C∗

}. Since r0 =
√

e0ρ0 > 2 > r1, we have
r1√
e0

+ σ0 ≤ ρ0 + σ0 ≤ R0 and ( r1√
e0

)2 + σ2
0 ≤ (ρ0 + σ0)2 ≤ R2

0. The above
lower bound (12) then implies

1 = e(v)(0, 0) ≤ 2
c0r2

1
sup

−r2
1<s<0

∫
Br1∩Ω∗

e(v)(y, s) dy

≤C∗ sup
t∗−r2

1e−1
0 <t<t∗

∫
B

e
−1/2
0 r1

(x∗)∩Ω

e(u)(x, t) dx

≤C∗ sup
−(

r2
1

e0
+σ2

0)<t<0

∫
B r1√

e0
+σ0

e(u)(x, t) dx .

The last estimate yields the desired contradiction, since the right hand side is smaller
than C∗ ε0 ≤ 1

2 . ��

The regularity assumption for u0|∂Ω can (at least) be reduced to u0 ∈ C2(∂Ω; N)
(compare [19], Theorem 2.7).
By combining the above estimates, we obtain a simple criterion that tells us when
a solution in C∞(Ω×]0, T [;N) admits an extension to C∞(Ω×]0, T ];N).

Corollary 4. Consider u0 ∈ H1,2(Ω; N) ∩ Ck+λ(Ω; N) and let

u ∈ W 2,1
2 (Ω×]0, T [, N) ∩ Ck+λ,(k+λ)/2(Ω×]0, T [, N)

be a solution of (2)-(3) for k ≥ 2 and λ ∈]0, 1[. Let ε0 > 0 be the constant from
Theorem 3 and suppose for x0 ∈ Ω and 0 < R0 < min{1,

√
T} there holds

sup
T−R2

0<t<T

E
(
u(t), BΩ

R0
(x0)

)
< ε0 .

Then u admits an extension

u ∈ Ck+λ,(k+λ)/2((BδR0(x0) ∩ Ω)×]0, T ]; R3)
∩C∞(

(B(1/2)R0(x0) ∩ Ω)×]0, T ]; R3)

for any δ ∈]0, 1/2[.

Proof. By Theorem 3 we have

sup
P Ω

(1/2)δR0
(z̃0)

|∇u| ≤ 2C0

(1 − δ) R0
,

for any δ ∈]0, 1[ and any z̃0 = (x0, t̃) with t̃ ∈]T − 1/2R2
0, T [, with constant

C0 independent of t̃. By Proposition 2 the corresponding Höldernorms of u are
bounded on (BδR0(x0) ∩ Ω)×]T − 1/2R2

0, T [ for any δ ∈]0, 1/2[, which proves
the claim. ��
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4. Bubbling at parabolically isolated point singularities

Corollary 4 combined with the local energy estimate in Lemma 1 implies that at
the maximal smooth existence time T∗ > 0 of the Landau-Lifshitz flow (2)-(3)
with initial data u0 ∈ H1,2(Ω, S2) ∩ C2,λ(∂Ω; S2), there are at most finitely
many singular points (xk, T∗) ∈ Ω, k = 1, . . . , K over which the flow does not
admit a smooth extension. Each singular point (xk, T∗) is characterized by energy
concentration in the sense that for any R > 0

lim sup
t↗T∗

E
(
u(t), BΩ

R (xk)
) ≥ ε0 .

(See [31,32].) Note that the above singularities are isolated in the following sense.
We call z0 = (x0, t0) ∈ Ω × R+ parabolically isolated for u, if there is R > 0,
such that

PΩ
R (z0) \ {z0} ⊂ Reg(u) ,

where Reg(u) denotes the set of regular points of u, that is the points z ∈ Ω × R+
for which u is smooth on a neighborhood of z. The complement Sing(u) :=(
Ω × R+

)
� Reg(u) is the set of singular points.

The following is the analogue for the Landau-Lifshitz flow of J.Qing’s result in
[28] for the harmonic map flow.

Theorem 5. Assume u0 ∈ H1,2(Ω; S2) ∩ C2,λ(∂Ω; S2) for 0 < λ < 1. Let
u ∈ H1,2

loc (Ω × R+; S2) be a distributional solution of (2)-(3) with E
(
u(t)

) ≤ E0
for a.e. t ∈ [0, T ].
Consider a parabolically isolated point z0 = (x0, t0) ∈ S(u), such that u does not
admit any smooth extension to PΩ

R (z0) for any R > 0.

Then there are R0 > 0 and finitely many non-constant harmonic maps ϕl :
S2 → S2 (l = 1 . . . K), such that for any 0 < R ≤ R0

lim
t↗t0

E
(
u(t), BΩ

R (x0)
)

= E
(
u(t0), BΩ

R (x0)
)

+
K∑

l=1

E(ϕl) ,

and 1
4π

∑K
l=1 E(ϕl) ∈ N. Letting ωl : R2 ∪ {∞} → S2 be the pullback to R2 of

ϕl : S2 → S2 by stereographic projection and ωl(∞) the image under ϕl of the
north-pole, there are sequences tj ↗ t0, xl

j → x0, 0 ≤ λl
j → 0 as j → ∞ for

l = 1, . . . , K, such that

u(x, tj) −
K∑

l=1

(
ωl(

x − xl
j

λl
j

) − ωl(∞)
)

(j→∞)→ u(x, t0)

strongly in H1,2(BΩ
R0

(x0), R3).

If x0 ∈ ∂Ω, then limj
dist(xl

j ,∂Ω)
λl

j

= ∞.

Finally for k �= l, max
{λk

j

λl
j

,
λl

j

λk
j

,
|xl

j−xk
j |

λk
j +λl

j

} → ∞ as j → ∞.
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The proof is almost literally the same as in [28] and we therefore omit it. (For more
details see [19].)
The maps ϕl often are referred to as “bubbles”, the phenomenon described by
Theorem 5 as “bubbling”.
The assumption that u should not admit a smooth extension to PΩ

R (z0) for any
R > 0 may be replaced by the condition that the function

t �→ E
(
u(t); BR(x0)

)
is not left-continuous at t0 for any R > 0. Without these assumptions, the case
K = 0 is not excluded. Indeed, as we will indicate in Theorem 6 and as the examples
of M.Bertsch et al. [1] and also of P.Topping [36] demonstrate, it is possible that
there are parabolically isolated singularities without “forward” bubbling.

5. Non-Uniqueness and backward bubbling

In the following the map u should be thought of as a smooth continuation after a
(first) singularity t0 of a solution of the Landau-Lifshitz or of the harmonic map
flow with point singularities at t0. By relaxing the initial condition

lim
t↘t0

u( . , t) = u( . , t0) in H1,2(Ω, N) ,

continuations different from the Struwe-solution can be found, whose energy is not
right continuous at time t0. The following theorem is the analogue of Theorem 5
in this setting. We may shift time so that t0 = 0. Set

a0 := inf{E(v) | v : S2 → N is harmonic and non-constant} .

If N is compact, we have a0 > 0 (see [29], Theorem 3.3).

Theorem 6. Letu ∈ C∞(
Ω×]0, T ];N

)∩C∞(
(Ω�{x1, . . . , xK})×[0, T ];N

)∩
H1,2

(
Ω×]0, T [;N

)
be a solution of (2)-(3) for u0 ∈ C∞(

Ω�{x1, . . . , xK}; N
)∩

H1,2(Ω; N). Assume
E(u(t)) ≤ C0 ∀t ∈ [0, T ] .

(i) If lim supt↘0 E
(
u(t)

)
> E(u0), then lim supt↘0 E

(
u(t)

) ≥ E(u0) + a0.
More precisely for any x ∈ {x1, . . . xK}, there either exists R0 > 0, such that

lim sup
t↘0

E
(
u(t), BΩ

R0
(x)

)
= E(u0, B

Ω
R0

(x))

or
lim sup

t↘0
E

(
u(t), BΩ

R (x)
) ≥ E(u0, B

Ω
R (x)) + a0 for all R > 0 .

In the second case the {u( . , t)}t>0 has a 2-bubble in C∞ at x as t ↘ 0 in the
sense that for suitable a > 0 and sequences Rj ↘ 0, tj ↘ 0, xj → x as j → ∞,
there holds

vj(y, s) := u(xj + Rjy, tj + R2
js)

(j→∞)→ v ∈ C∞(
R

2 × [0, a];N
)
,
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where v is independent of time. The limit v : R2 → N is a non-constant smooth
harmonic map with finite energy and thus extends to a smooth harmonic map
ϕ : S2 → N .
If x ∈ ∂Ω, then dist(xj ,∂Ω)

Rj
→ +∞ as j → ∞.

(ii) If lim supt↘0 E
(
u(t)

) ≤ E(u0), then limt↘0 E
(
u(t)

)
= E(u0) and u is the

Struwe-solution on Ω × [0, T ].

In the case of the harmonic map flow, there are examples of solutions with non right
continuous energy and backward bubbling as in (i). Indeed, M. Bertsch, R. Dal Passo
and R. van der Hout have constructed a rotationally symmetric solution u to the
2-dimensional harmonic map flow that concentrates energy and bubbles at a time
t∗ > 0 as t ↘ t∗ (see [1]). More precisely for rotationally symmetric initial and
boundary data u0 : B → S2 ⊂ R3 defined on the unit ball B = B1 ⊂ R2 similar to
those considered in [4] by K.C. Chang, W.Y. Ding and R.Ye, they found particular
times t1 < t2, such that for any τ > t2 there is a solution to the harmonic map flow
which is smooth on (B × [0,∞)) � ({0} × {t1, τ}), concentrates energy at (0, t1)
as t ↗ t1, has right continuous energy at t1 and left continuous energy at τ , but
concentrates energy and bubbles backwards as t ↘ τ . In particular they thereby
constructed infinitely many solutions to the given initial and boundary value prob-
lem and each of them corresponds to the Struwe-solution on B × [0, τ ].
Independently P. Topping also constructed a solution of the two dimensional har-
monic map flow with backwards bubbling. He further sketched the construction of
a solution with neither left nor right continuous energy at an isolated singularity
(x∗, t∗), where energy concentrates at x∗ both for t ↗ t∗ and t ↘ t∗ (see [36]
Paragraph 5). Note that the energy bound does not “forbid” such singularities to
accumulate.
It is not known whether “Bertsch-DalPasso-VanDerHout-type” point singularities
with left but not right continuous energy or “Topping-type” singularities with nei-
ther left nor right continuous energy, as described above, also arise for the Landau-
Lifshitz flow.
We now return to the proof of Theorem 6:

Proof. (ii) follows from A.Freire’s uniqueness result (see [15,16]) and its exten-
sions to the Landau-Lifshitz flow (see [10,9,14,5]).
(i) Fix x ∈ {x1, . . . , xK}. Assume we do not have

lim
t↘t0

∇u( . , t) = ∇u0( . ) in L2(BR(x); R2n)

for any R > 0. By the Vitali Convergence Theorem there is ε1 = ε1(x) > 0 such
that for all R > 0 there holds

lim
δ↘0

sup
0<t<δ

E
(
u(t), BΩ

R (x)
) ≥ ε1 > 0 .(13)

Since u is smooth on Ω × [δ, T ] for any 0 < δ < T , we have

lim
R→0

sup
x∈Ω,t∈[δ,T ]

E
(
u(t), BΩ

R (x)
)

= 0 .(14)
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Choose R0 > 0 such that B4R0(x) ∩ {x1, . . . , xK} = {x}. We will write BR for
BR(x).
By (13) and (14) there are sequences 0 < tn → 0 and 0 < Rn → 0 as n → ∞,
such that

sup
x∈B2R0

E
(
u(tn), BΩ

2Rn
(x)

)
=

1
4

min{ε1, ε0},(15)

where ε0 is the constant from Theorem 3. We may assume R0 > Rn for all n and
also ε1 ≤ ε0. By the local energy inequality for u, for any x we have

E
(
u(t), BΩ

Rn
(x)

) ≤ E
(
u(tn), BΩ

2Rn
(x)

)
+ c

t − tn
R2

n

C0 for t > tn .(16)

For t ∈ [tn, tn + δn] and δn := ε1R2
n

4cC0
, this leads to

sup
x∈BΩ

2R0
, tn≤t≤tn+δn

E
(
u(t), BΩ

Rn
(x)

) ≤ ε1

2
.(17)

By (15) there is a sequence (xn)n ⊂ B2R0 , such that

ε1

4
= E

(
u(tn), BΩ

2Rn
(xn)

)
.(18)

By compactness we may assume it converges. We now claim that the limit is x.
Indeed if xn → x∗ �= x, then B2Rn

(xn) ⊂ B4R0 � Br(x) for a r ∈]0, R0[ and
sufficiently large n. Therefore

E
(
u(tn), BΩ

2Rn
(xn)

) ≤ 2R2
n sup

(B4R0�Br(x))×[0,T ]
|∇u|2 → 0

as n → ∞ , since u is assumed to be smooth away from its point singularities
at t = 0. This is in contradiction with (18). Thus xn → x and may assume
BRn(xn) ⊂ BΩ

R0
= BΩ

R0
(x) for all n.

Consider now the rescaled maps

vn(y, s) := u(xn + Rny, tn + R2
ns)

for
(y, s) ∈ (

BR0/Rn
(0) ∩ Ωn

) × [0, (T − tn)/R2
n] ,

where Ωn := (1/Rn)(Ω − xn).
By construction vn is smooth on (BR0/Rn

(0) ∩ Ωn) × [0, T−tn

R2
n

]. Also

∫ τ

0
,

∫
BR0/Rn (0)∩Ωn

|∂tvn|2dyds =
∫ tn+τR2

n

tn

∫
BR0 (xn)∩Ω

|∂tu|2dxdt
(n→∞)→ 0

for any τ > 0. Here we used that ∂tu ∈ L2
(
Ω × [0, T ];N

)
, which follows from

the energy estimate for u. Set a = ε1
4C0c . Then we conclude
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ε1

4
= E

(
vn(0), BΩn

2 (0)
)

(19)

and

sup
(y,s)∈BΩn

R0/Rn
(0)×[0,a]

E
(
vn(s), BΩn

1 (y)
)

(20)

≤ sup
(x,t)∈BΩ

R0
(xn)×[tn,tn+δn]

E
(
u(tn + R2

ns), BΩ
Rn

(xn + Rny)
) ≤ ε1

2
,

uniformly in n.
Finally the maps vn are smooth solutions of either the Landau-Lifshitz or of the
harmonic map flow on (BR0/Rn

(0) ∩ Ωn) × [0, a] for sufficiently large n.
Now we show that the sequence (vn)n admits a subsequence that converges
smoothly to a bubble.

First assume B2R0(x)∩∂Ω = ∅. Then also B1∩∂Ωn = ∅ and Theorem 3 combined
with Proposition 2 provide uniform Ck-estimates for (vn)n on B1/2(y)× [δ, a] for
any δ > 0 that only depend on δ > 0 and a and R = 1.
Thus there is a subsequence again denoted by (vn)n and some

v ∈ C∞(
R

2×]0, a];N
)
,

such that vn → v in C∞
loc(R

2×]0, a]; Rn) and ∂svn → 0 in L2
loc(R

2 × [0, a]; Rn).
(Here “loc” means that for any R > 0 and sufficiently large n0 = n0(R), so that
R0/Rn0 > R, the sequence (vn)n≥n0 convergences on any BR(0) × [δ, a] for
δ > 0 in the respective norm (actually on BR(0) × [0, a] for L2

loc).)
By construction v is a time independent solution of the Landau-Lifshitz or harmonic
map flow with finite energy (bounded by C0).
Assume next that v is a trivial solution, i.e. v ≡ const. on R2×]0, a]. By (19)
the limit v( . , 0) is non-constant, but convergence is not necessarily uniform in a
neighborhood of s = 0. However by the local energy estimate for vn (which is
smooth on B3(0) × [0, a] for n such that R0

Rn
> 3 ), we have for any ϕ ∈ C∞(R2)

with sptϕ ⊂ B3(0), ϕ ≡ 1 on B2(0), 0 ≤ ϕ ≤ 1

1
2

∫ s

0

∫
R2

∂t|∇vn|2 ϕ2 dydt

= −
∫ s

0

∫
R2

∇vn ∂tvn ∇ϕϕ dydt − γ1

∫ s

0

∫
R2

|∂tvn|2 ϕ2 dydt
(n→∞)→ 0 ,

since ∂tvn → 0 and ∇vn → ∇v = 0 in L2
(
B3(0) × [0, a];N

)
. Thus

∫
R2

(|∇vn|2(y, s) − |∇vn|2(y, 0)
)
ϕ2 dy

(n→∞)→ 0 ∀s ∈ [0, a] ,

which is in contradiction with
∫

R2 |∇vn|2(y, 0) ϕ2 dy ≥ ε0
4 for all n and

∫
R2

|∇vn|2(y, s) ϕ2 dy
(n→∞)→ 0 for all s ∈]0, a] .
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Note that in the case of the Landau-Lifshitz flow ∂sv = 0 implies −�v = |∇v|2v
and in particular v × �v = 0.
Further for any Ω̃ ⊂ Ω

E
(
u(t), Ω̃

)
=

∫
Ω̃�∪K

j=1BR(xj)

1
2

|∇u|2(x, t)dx +
∫

⋃K
j=1 BR(xj)

1
2
|∇u|2(x, t)dx ,

for all R > 0. The first term converges for t ↘ 0 and

lim sup
t↘0

∫
⋃K

j=1 BR(xj)

1
2
|∇u|2(x, t)dx ≥ lim

n→∞

∫
BR/2Rn (xj)

1
2
|∇vn|2(y)dy ≥ a0

Thus

lim sup
t↘0

E
(
u(t), Ω̃

) ≥
∫

Ω̃�∪K
j=1BR(xj)

1
2

|∇u|2(x, t0) dx + a0 for any R > 0 .

After passing to the limit R → 0, we obtain the claim, if we choose Ω̃ = Ω or
Ω̃ = BR1(x) for any R1 > 0.

If x ∈ ∂Ω, the above construction also works. Note that we may still integrate by
parts to obtain the energy inequality, since ∂tu ≡ 0 on ∂Ω × [0, T ]. Moreover the
rescaled solutions vn satisfy

vn(y, s) = v0,n(y, s) := u0(xn + Rny) on Ωn ∩ BR0/Rn
(x − xn) .

The uniform Ck-estimates on (B1/2(y) ∩ Ωn) × [δ, a] now also depend on the
curvature of ∂Ωn and on ‖v0,n‖Ck . The boundary ∂Ωn is however “flattened” by
the scaling and its curvature tends to 0 as n → ∞. On the other hand ‖v0,n −
u0(x)‖Ck(B1) → 0 as n → ∞ on any ball B1 contained in the domain.

After passing to subsequences, we may assume

dist(xn, ∂Ω)
Rn

= dist(0, ∂Ωn) → δ∗ ∈ [0,∞] as n → ∞ .

If δ∗ = ∞ , the limit v of the locally rescaled sequence (vn)n is defined on all of
R2 and the proof may be completed as in the interior case.
If δ∗ < ∞ , then after a rotation of the coordinates, we may assume the x1-axis
is parallel to the tangent space of ∂Ω at x and the x2-axis points to the interior
of Ω. Then the limit v of the locally rescaled sequence vn is defined on the upper
half plane R2

δ∗ := {y ∈ R2 | y2 ≥ −δ∗} and has constant boundary value u0(x).
Since R2

δ∗ is conformal to a closed disk B1(0) ⊂ C, the pullback of v to B1(0) is
harmonic and by J.Sacks and K.Uhlenbeck’s Removable Singularity Theorem (see
[29]), it extends to a non-constant harmonic map with constant boundary values.
This is in contradiction with a result by L. Lemaire ([23], Theorem 3.2), which says
that any harmonic map with constant boundary values from a contractible surface
with boundary, is itself constant.
This rules out the case δ∗ < ∞. Thus dist(xn,∂Ω)

Rn
→ ∞ as n → ∞. ��
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6. Partial compactness of sequences of smooth flows

The estimates from Section 3 can also be applied in the following situation. Let
(uk)k be a sequence of smooth solutions of the harmonic map flow or Landau-
Lifshitz flow on a smooth bounded domain Ω ⊂ R2

γ1∂tuk − γ2uk × ∂tuk − �uk = |∇uk|2uk in Ω × R+ ,(21)

u = u0,k on (Ω × {0}) ∪ (∂Ω × R+) ,(22)

with uniformly bounded energy

sup
k

E(u0,k) ≤ E0 ,(23)

and convergence at the boundary

u0,k
(k→∞)→ u0 in C2,λ(∂Ω; S2) ,(24)

for some λ ∈]0, 1[. Assumption (23) together with the energy estimate (Lemma 1)
imply

sup
k

sup
t∈R+

E(uk(t)) ≤ E0 .

By Proposition 2 and Theorem 3, we obtain uniform estimates on the following
“regular set”:
Reg

(
(uk)k

)
is the set of points z0 = (x0, t0) ∈ Ω×]0,∞[ for which there is

R0 > 0 with

lim sup
k→∞

sup
t0−R2

0<t<t0

E
(
uk(t), BΩ

R0
(x0)

)
< ε0 ,(25)

where ε0 > 0 is the constant from Proposition 3.
The complement, denoted as

Sing
(
(uk)k

)
=

(
Ω × R+

)
� Reg

(
(uk)k

)
,

is the “energy concentration” set. Note that Reg
(
(uk)k

)
is open, which easily

follows from the local energy estimate (Lemma 1).

Corollary 7. The sequence (uk)k of smooth solutions of (21)-(22) with (23) and
(24) is uniformly bounded in

C∞(Reg
(
(uk)k

) ∩ (Ω×]0,∞[), R3) and C2,λ(Reg
(
(uk)k

)
, R3)

and a subsequence converges smoothly to a solution of the Landau-Lifshitz flow on
Reg

(
(uk)k

) ∩ (Ω×]0,∞[).
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The local energy estimate (26) implies

�

(
Sing

(
(uk)k

) ∩
(
Ω × {t}

))
≤ K0 for all t ≥ 0 ,

where K0 does not depend on t ≥ 0. (See [19]. Compare also [34] and [11].)
Remember that by Lemma 1, we have for any 0 ≤ s < t

E
(
uk(t), BΩ

R (x0)
) ≤ E

(
uk(s), BΩ

2R(x0)
)

+
C(t − s)E0

γ1R2 .(26)

Set δ0 := γ1ε0
2CE0

, where ε0 is the constant from Theorem 3. After increasing C if
necessary, we may assume 0 < δ0 < 1.

Lemma 8. Let (uk)k be a sequence of smooth solution as in (21)-(22) with (23)
and (24). Then the following assertions are equivalent:

(i) z0 = (x0, t0) ∈ Reg
(
(uk)k

)
.

(ii) ∃δ, R > 0 : lim supk→∞ supt0−δ<t<t0 E
(
uk(t), BΩ

R (x0)
)

< ε0 .

(iii) ∃δ > 0 : limR↘0 lim supk→∞ supt0−δ<t<t0 E
(
uk(t), BΩ

R (x0)
)

= 0 .

(iv) ∃R > 0 : lim supk→∞
1

R2

∫ t0
t0−R2

∫
BΩ

R (x0)
|∇uk|2 dx dt < 1

4 δ0 ε0 .

(v) ∃δ, R > 0 : lim supk→∞ supt0−δ<t<t0+δ E
(
uk(t), BΩ

R (x0)
)

< ε0 .

Following (i) ⇔ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (ii), the proof uses (26) and
Theorem 3 and is straightforward (see [19]).
From characterization (iv) of the regular set in Lemma 8, it is easy to see that
Sing

(
(uk)k

)
has locally finite 2-dimensional parabolic Hausdorff measure (see

[19]). It then follows that the accumulations points of sequences as in Corollary 7
are weak solution of the Landau-Lifshitz flow on all Ω × R+ in

H1,2(Ω × R+; S2) ∩ L∞(
R+; H1,2(Ω; S2)

)
.

A description of the bubbling behaviour of smooth sequences of the Landau-Lifshitz
flow on planar domains with uniformly bounded energy, as in [19], will be presented
elsewhere.
In [12,13] and [14] partial compactness for a similar problem is studied. Their
arguments are however not conclusive.
Interesting results on the dynamics of the energy concentration set in the case of
the harmonic map flow also in higher dimensions are found in [25–27] and [24].

Appendix

Let Ω ⊂ R2 be open. We will give an example showing that the space

L∞(C1) := L∞(
[0, T ];C1(Ω; R3)

)
is neither dense in

L∞(
[0, T ];H1,2(Ω; S2)

)
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with norm ‖u‖L∞(H1,2) := sup[0,T ]‖u‖H1,2(Ω), nor in

L∞(
[0, T ];H1,2(Ω; R3)

)
.

For ϕ ∈ L∞(
[0, T ], C1(Ω; R3)

)
, we require sup[0,T ]‖ϕ(., t)‖C1(Ω) < ∞ .

Set Ω = B1 = B1(0) ⊂ R2 and T = 2. Let N = (0, 0, 1) be the north pole of the
standard sphere S2 ⊂ R3 centered at the origin and S = (0, 0,−1) the south pole.
Set

u0(x) :=
{N, if x ∈ B1 � B1/2 ,

S, if x = 0 ,

and extend u0 smoothly to B1, such that u0(B1) covers all of S2. Then E(u0) ≥
Area(S2) = 4π (see [35], Proposition 1.1). We can also extend u0 outside B1 by
u0 ≡ N . Further set

u(x, t) :=
{u0( x

1−t ) if t ∈ [0, 1[,
N if t ∈ [1, 2].

Then for any ϕ ∈ L∞([0, 2];C1(B1; R3)), letting supB1×[0,2] |∇ϕ| = C < ∞,
we have

sup
t∈[0,2]

‖∇ϕ(., t) − ∇u(., t)‖2
L2(B1)

≥ sup
t∈[0,1[

∫
B1

(|∇u|2(x, t) − 2C|∇u|(x, t)
)
dx

≥ 2E0 − inf
t∈[0,1[

2C(1 − t)
∫

B1

|∇u0| dx = 2E0 ,

showing
inf

ϕ∈L∞(C1)
‖u − ϕ‖L∞(H1,2) ≥

√
8π
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