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Chair of Risk, Safety and Uncertainty quantification

The Chair carries out research projects in the field of uncertainty quantification for engineering problems
with applications in structural reliability, sensitivity analysis, model calibration,

and reliability-based design optimization

Research topics
• Uncertainty modelling for engineering systems

• Structural reliability analysis

• Surrogate models (polynomial chaos expansions, Kriging, support vector
machines)

• Bayesian model calibration and stochastic inverse problems

• Global sensitivity analysis

• Reliability-based design optimization
http://www.rsuq.ethz.ch
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Computational models in engineering

Complex engineering systems are designed and assessed using computational models, a.k.a simulators

A computational model combines:

• A mathematical description of the physical phenomena (governing
equations), e.g. mechanics, electromagnetism, fluid dynamics, etc.

div σ + f = 0

σ = D · ε

ε =
1
2

(
∇u +T∇u

)
• Discretization techniques which transform continuous equations into

linear algebra problems

• Algorithms to solve the discretized equations
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Computational models in engineering

Computational models are used:

• To explore the design space (“virtual prototypes”)

• To optimize the system (e.g. minimize the mass) under performance constraints

• To assess its robustness w.r.t uncertainty and its reliability

• Together with experimental data for calibration purposes
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Computational models: the abstract viewpoint

A computational model may be seen as a black box program that computes quantities of interest (QoI)
(a.k.a. model responses) as a function of input parameters

Computational

modelM

Vector of input

parameters

x ∈ RM

Model response

y =M(x) ∈ RQ

• Geometry

• Material properties

• Loading

• Analytical formula

• Finite element model

• Comput. workflow

• Displacements

• Strains, stresses

• Temperature, etc.
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Real world is uncertain

• Differences between the designed and the real system:
– Dimensions (tolerances in manufacturing)

– Material properties (e.g. variability of the stiffness or resistance)

• Unforecast exposures: exceptional service loads, natural hazards (earthquakes, floods, landslides),
climate loads (hurricanes, snow storms, etc.), accidental human actions (explosions, fire, etc.)
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Global framework for uncertainty quantification

Step A

Model(s) of the system

Assessment criteria

Step B

Quantification of

sources of uncertainty

Step C

Uncertainty propagation

Random variables Computational model
Moments

Probability of failure

Response PDF

Step C’

Sensitivity analysis

Step C’

Sensitivity analysis

B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models – contributions to structural reliability and stochastic spectral methods (2007)
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Monte Carlo simulation in UQ

• Monte Carlo simulation allows one to assess the performance of a
large number of virtual systems featuring different realizations of the
input parameters

Source: www.monaco.mc

• The input random variables are sampled according to their joint PDF fX(x)
• For each sample x(i), the responseM(x(i)) is computed (possibly time-consuming)

• The response sample set M = {M(x(1)), . . . ,M(x(n))}T is used to compute statistical moments,
probabilities of failure or estimate the response distribution (histograms, kernel densities)
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Monte Carlo simulation in UQ
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Monte Carlo simulation

Advantages

• It is a universal method, i.e. it does not depend on the type of modelM
• It is statistically well defined: convergence, confidence intervals, etc.

• It is non intrusive, i.e. it is based on repeated runs of the computational model as a black box

• It is suited to distributed computing (clusters of PCs)

Drawbacks

• The “scattering” of Y is investigated point-by-point: if two samples x(i),x(j) are almost equal, two
independent runs of the model are carried out

• The convergence rate is low (∝ N−1/2)
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Surrogate models for uncertainty quantification

A surrogate model M̃ is an approximation of the original computational modelM with the following
features:
• It is built from a limited set of runs of the original modelM called the experimental design
X =

{
x(i), i = 1, . . . , N

}
• It assumes some regularity of the modelM and some general functional shape

Name Shape Parameters

Polynomial chaos expansions M̃(x) =
∑
α∈A

aα Ψα(x) aα

Low-rank tensor approximations M̃(x) =
R∑
l=1

bl

(
M∏
i=1

v
(i)
l

(xi)

)
bl, z

(i)
k,l

Kriging (a.k.a Gaussian processes) M̃(x) = β
T · f(x) + Z(x, ω) β , σ2

Z , θ

Support vector machines M̃(x) =
m∑
i=1

aiK(xi,x) + b a , b
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Ingredients for building a surrogate model

• Select an experimental design X that covers at best the domain of
input parameters: Latin hypercube sampling (LHS), low-discrepancy
sequences

• Run the computational modelM onto X exactly as in Monte Carlo
simulation

• Smartly post-process the data {X ,M(X )} through a learning algorithm

Name Learning method

Polynomial chaos expansions sparse grid integration, least-squares,

compressive sensing

Low-rank tensor approximations alternate least squares

Kriging maximum likelihood, Bayesian inference

Support vector machines quadratic programming
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Advantages of surrogate models

Usage
M(x) ≈ M̃(x)

hours per run seconds for 106 runs

Advantages

• Non-intrusive methods: based on runs of the
computational model, exactly as in Monte
Carlo simulation

• Suited to high performance computing:
“embarrassingly parallel”

Challenges

• Need for rigorous validation

• Communication: advanced mathematical
background

Efficiency: 2-3 orders of magnitude less runs compared to Monte Carlo
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Outline
Polynomial chaos expansions

Introduction
PCE basis
Isoprobabilistic transform and truncation

Computing and post-processing the PCE coefficients
Least-square minimization
Statistical moments and distribution
Global sensitivity analysis

Sparse polynomial chaos expansions
Error estimation
Curse of dimensionality
Sparse solvers

Application examples
Load bearing capacity
Subsurface flow: global sensitivity analysis
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Polynomial chaos expansions in a nutshell

Ghanem & Spanos (1991; 2003); Xiu & Karniadakis (2002); Soize & Ghanem (2004)

• We assume here for simplicity that the input parameters are independent with
Xi ∼ fXi , i = 1, . . . , d

• PCE is also applicable in the general case using an isoprobabilistic transform X 7→ Ξ

The polynomial chaos expansion of the (random) model response reads:

Y =
∑
α∈Nd

yα Ψα(X)

where:

• Ψα(X) are basis functions (multivariate orthonormal polynomials)

• yα are coefficients to be computed (coordinates)
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Sampling (MCS) vs. spectral expansion (PCE)

Whereas MCS explores the output space /distribution point-by-point, the polynomial chaos expansion
assumes a generic structure (polynomial function), which better exploits the available information (runs of
the original model)

Example: load bearing capacity as a function of (c, ϕ)

Thousands (resp. millions) of
points are needed to grasp the
structure of the response (resp.
capture the rare events)
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Visualization of the PCE construction

= “Sum of coefficients × basic surfaces”

Polynomial Chaos Expansions IIT Madras (streaming) - October 7, 2021 B. Sudret 17 / 88



Visualization of the PCE construction

=y0,0× +y0,1×

+y1,0× +y1,1× +y2,0×

+· · · +y0,2× +y3,3× +y4,2×
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Polynomial chaos expansion: procedure

Y PCE =
∑
α∈A

yα Ψα(X)

Four steps

• How to construct the polynomial basis Ψα(X) for given Xi ∼ fXi?
• How to compute the coefficients yα?

• How to check the accuracy of the expansion ?
• How to answer the engineering questions:

– Mean, standard deviation

– PDF, quantiles

– Sensitivity indices

Basis and coordinates in a 3D space
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Outline

Polynomial chaos expansions
Introduction
PCE basis
Isoprobabilistic transform and truncation

Computing and post-processing the PCE coefficients

Sparse polynomial chaos expansions

Application examples
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Univariate orthogonal polynomials

• Suppose the input random vector has independent components:

fX(x) =
M∏
i

fXi(xi)

• For each marginal distribution fXi(xi), we define the inner product:

〈φ1(xi), φ2(xi)〉 =
∫
Di

φ1(xi)φ2(xi) fXi(xi) dxi

• By classical algebra one can build a family of orthogonal polynomials {P (i)
k , k ∈ N}:〈

P
(i)
j (xi), P (i)

k (xi)
〉

=
∫
P

(i)
j (xi) P (i)

k (xi) fXi(xi) dxi = γ
(i)
j δjk

e.g. using the Gram-Schmit orthogonalization procedure of
{

1, x, x2, x3, . . .
}
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Classical orthogonal polynomials Xiu & Karniadakis (2002)

• Classical families of orthogonal polynomials have been discovered historically when solving various
problems of physics, quantum mechanics, etc.

• The name of the researcher who first investigated their properties is attached to them.
Type of variable Weight function Orthogonal polynomials PCE basisψk(x)

Uniform 1]−1,1[(x)/2 Legendre Pk(x) Pk(x)/
√

1
2k+1

Gaussian 1√
2π
e−x

2/2 HermiteHek (x) Hek
(x)/
√
k!

Gamma xa e−x 1R+(x) LaguerreLa
k

(x) La
k

(x)/
√

Γ(k+a+1)
k!

Beta 1]−1,1[(x) (1−x)a(1+x)b
B(a)B(b) Jacobi Ja,b

k
(x) J

a,b
k

(x)/Ja,b,k

J2
a,b,k

= 2a+b+1
2k+a+b+1

Γ(k+a+1)Γ(k+b+1)
Γ(k+a+b+1)Γ(k+1)

Legendre Hermite Laguerre Jacobi

See details in Appendix
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Multivariate polynomials

Tensor product of 1D polynomials

• One defines the multi-indices α = {α1, . . . , αM}, of degree |α| =
M∑
i=1

αi

• The associated multivariate polynomial reads:

Ψα(x) def=
M∏
i=1

Ψ(i)
αi (xi)

where Ψ(i)
αi (xi) is the univariate polynomial of degree αi from the orthonormal family associated to

variable xi

The set of multivariate polynomials {Ψα, α ∈ NM}
forms a basis of the appropriate space:

Y =
∑
α∈NM

yα Ψα(X)
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Example: multivariate polynomials in 2D (M = 2)

α = [3 , 3] Ψ(3,3)(x) = P̃3(x1) · H̃e3(x2)
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Polynomial chaos expansions
Introduction
PCE basis
Isoprobabilistic transform and truncation

Computing and post-processing the PCE coefficients

Sparse polynomial chaos expansions

Application examples
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Dealing with complex input distributions

• Classical orthogonal polynomials are defined for reduced variables, e.g. :
– Standard normal variables N (0, 1)

– Standard uniform variables U(−1, 1)

• In practical UQ problems the physical parameters are modelled by random variables that are:
– Not necessarily reduced, e.g. X1 ∼ N (µ, σ), X2 ∼ U(a, b), etc.

– Not necessarily from a classical family, e.g. lognormal variable

– May show dependence modelled by a joint PDF

How to handle these cases?
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Dealing with complex input distributions

Independent variables

Input parameters with given marginal CDFs Xi ∼ FXi , i = 1, . . . ,M
• Arbitrary PCE: orthogonal polynomial computed numerically on-the-fly

Wan & Karniadakis (2006); Oladyshkin & Nowak (2012)

• Isoprobabilistic transform through a one-to-one mapping to reduced variables, e.g. :

Xi = F−1
Xi

(
ξi + 1

2

)
if ξi ∼ U(−1 , 1)

Xi = F−1
Xi

(Φ(ξi)) if ξi ∼ N (0, 1)

General case: addressing dependence Sklar’s theorem (1959)

• The joint CDF is defined through its marginals and copula

FX(x) = C (FX1(x1), . . . , FXM (xM ))

• Rosenblatt or Nataf isoprobabilistic transform is used
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Standard truncation scheme
Premise
• The infinite series expansion cannot be handled in pratical computations
• A truncated series must be defined

Standard truncation scheme
Consider all multivariate polynomials of total degree |α| =

∑M

i=1 αi less than or equal to p:

AM,p = {α ∈ NM : |α| ≤ p} P ≡ card AM,p =
(
M + p

p

)
= (M + p)!

M ! p!
M = 2 input variables

0 1 2 3 4 5 6

0

1

2

3

4

5

6

α1

α
2

0 1 2 3 4 5 6

0

1

2

3

4

5

6

α1

α
2

0 1 2 3 4 5 6

0

1

2

3

4

5

6

α1

α
2

0 1 2 3 4 5 6

0

1

2

3

4

5

6

α1

α
2

|α| ≤ 3 |α| ≤ 4 |α| ≤ 5 |α| ≤ 6
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Mixed Legendre/Hermite polynomials

Computational model Y =M(X1, X2)

Probabilistic model X1 ∼ N (µ, σ) ; X2 ∼ U(a, b)

Isoprobabilistic transform X1 = µ+ σ ξ1 ξ1 ∼ N (0, 1)
X2 = (a+ b)/2 + (b− a)ξ2/2 ξ2 ∼ U(−1, 1)

Univariate polynomials

• Hermite polynomials in ξ1, i.e. H̃en(ξ1)
• Legendre polynomials in ξ2, i.e. P̃n(ξ2)

Multivariate polynomials
Ψα1,α2(ξ1, ξ2) = H̃eα1(ξ1) · P̃α2(ξ2)
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Truncation example

Third order truncation p = 3

All the polynomials of ξ1, ξ2 that are product of univariate polynomials and whose total degree is less than 3
are considered

j α Ψα ≡ Ψj
0 [0, 0] Ψ0 = 1
1 [1, 0] Ψ1 = ξ1

2 [0, 1] Ψ2 =
√

3 ξ2
3 [2, 0] Ψ3 = (ξ2

1 − 1)/
√

2
4 [1, 1] Ψ4 = ξ1

√
3 ξ2

5 [0, 2] Ψ5 =
√

5/4 (3ξ2
2 − 1)

6 [3, 0] Ψ6 = (ξ3
1 − 3ξ1)/

√
6

7 [2, 1] Ψ7 =
√

3/2 (ξ2
1 − 1)ξ2

8 [1, 2] Ψ8 =
√

5/4(3ξ2
2 − 1)ξ1

9 [0, 3] Ψ9 =
√

7/4(5ξ3
2 − 3ξ2)

Ỹ ≡MPC(ξ1, ξ2) = a0 + a1 ξ1 + a2
√

3 ξ2

+ a3 (ξ2
1 − 1)/

√
2 + a4

√
3 ξ1ξ2

+ a5

√
5/4 (3ξ2

2 − 1) + a6 (ξ3
1 − 3ξ1)/

√
6

+ a7

√
3/2 (ξ2

1 − 1)ξ2 + a8

√
5/4(3ξ2

2 − 1)ξ1

+ a9

√
7/4(5ξ3

2 − 3ξ2)
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Conclusions

• Polynomial chaos expansions allow for an intrinsic representation of the random response as a series
expansion

• The basis functions are multivariate orthonormal polynomials (based on the input distribution)

• Arbitrary PCE expansions can be computed numerically

• The input vector may also be transformed into independent reduced variables for which classical
orthogonal polynomials are well-known

• A truncation scheme shall be introduced for pratical computations, e.g. by selecting the maximal
degree of the polynomials

• Next step is the computation of the expansion coefficients
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Outline

Polynomial chaos expansions

Computing and post-processing the PCE coefficients
Least-square minimization
Statistical moments and distribution
Global sensitivity analysis

Sparse polynomial chaos expansions

Application examples
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Various methods for computing the coefficients

Intrusive approaches

• Historical approaches: projection of the equations residuals in the Galerkin sense Ghanem & Spanos, 1991, 2003

• Proper generalized decompositions Nouy, 2007-2010

Non intrusive approaches

• Non intrusive methods consider the computational modelM as a black box

• They rely upon a design of numerical experiments, i.e. a n-sample X = {x(i) ∈ DX , i = 1, . . . , n}
of the input parameters
• Different classes of methods are available:

– Projection

– Stochastic collocation

– Least-square minimization

– Compressive sensing
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Statistical approach: least-square minimization

Principle Berveiller et al. (2006)

The exact (infinite) series expansion is considered as the sum of a truncated series and a residual:

Y =M(X) =
∑
α∈A

yαΨα(X) + εP ≡ YTΨ(X) + εP (X)

where : Y = {yα, α ∈ A} ≡ {y0, . . . , yP−1} (P unknown coefficients)

Ψ(x) = {Ψ0(x), . . . ,ΨP−1(x)}

Residual

εP (X) =M(X)−
P−1∑
j=0

yj Ψj(X)
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Least-squares minimization: continuous solution

Least-square minimization

The unknown coefficients are estimated by minimizing the mean square residual error:

Ŷ = arg min E
[
ε2
P (X)

]
= arg min E

[(
YTΨ(X)−M(X)

)2
]

Analytical solution (continuous case)

The least-square minimization problem may be solved analytically:

ŷα = E [M(X) Ψα(X)] ∀α ∈ A

Coefficient ŷα is the projection of the model onto polynomial Ψα(X)

See details in Appendix
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Least-square minimization: discretized solution

Principle

An estimate of the mean square error (sample average) is minimized:

Ŷ = arg min Ê
[(

YTΨ(X)−M(X)
)2
]

= arg min 1
n

n∑
i=1

(
YTΨ(x(i))−M(x(i))

)2

= arg min
n∑
i=1

(
M(x(i))−

P−1∑
j=0

yj Ψj(x(i))

)2

Notation

• Aij = Ψj

(
x(i)): experimental matrix of size n× P

• Mi =M(x(i)): output of the computational model

• Y = {y0, . . . , yP−1}: unknown coefficients
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Least-square minimization: discretized solution

• M− AY is the vector containing the residuals

• The mean-square error is equal to (M− AY)T · (M− AY)
Solution

∆ =
n∑
i=1

ε2
i = (M− AY)T · (M− AY)

= MTM− 2 YTATM + YT (ATA
)

Y

• The mean-square error is minimized when its derivative w.r.t each unknown coefficient yj vanishes:

∂∆
∂YT = −2 ATM + 2

(
ATA

)
Y = 0

• This reduces to a linear system:
Ŷ =

(
ATA

)−1 ATM

Polynomial Chaos Expansions IIT Madras (streaming) - October 7, 2021 B. Sudret 34 / 88



Least-square minimization in a nutshell

• Select an experimental design X =
{
x(1), . . . ,x(n)}T

that covers
at best the domain of variation of the parameters

• Evaluate the model response for each sample (exactly as in Monte carlo simulation)

M =
{
M(x(1)), . . . ,M(x(n))

}T

• Compute the experimental matrix
Aij = Ψj

(
x(i)) i = 1, . . . , n ; j = 0, . . . , P − 1

• Solve the resulting linear system

Ŷ = (ATA)−1ATM
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Choice of the experimental design

Random designs
• Monte Carlo samples obtained by standard random generators
• Latin Hypercube designs that are both random and “space-filling”
• Quasi-random sequences (e.g. Sobol’ sequence)

Monte Carlo Latin Hypercube Sampling Sobol sequence
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Post-processing of polynomial chaos expansions

Polynomial chaos
Y =M(X) =

∑
α∈NM

yα Ψα(X)

Truncated series
Y PC =

∑
α∈A

yα Ψα(X)

• The computed coefficients (“coordinates” of the random variable in the PCE basis) are not the
quantities of interest
• Depending on the situation, the PDF, the statistical moments or quantiles of Y are of interest (e.g. low

quantiles in structural reliability analysis)

The PC expansion must be post-processed in order to get relevant information on the
model response
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Mean value and variance

From the orthonormality of the polynomial chaos basis one gets:

E [Ψα(X)] = 0 E [Ψα(X)Ψβ(X)] = 0 α 6= β

Mean value

µ̂Y = y0 The mean value is the first coefficient of the series

Variance

σ̂2
Y

def= E
[(
Y PC − µ̂Y

)2
]

= E

 ∑
α∈A\0

yα Ψα(X)

2
σ̂2
Y =

∑
α∈A\0

y2
α

The variance is the sum of the squares of the remaining coeffi-
cients
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Higher order statistical moments

Skewness coefficient δ̂Y

E
[(
Y
PC − µ̂Y

)3
]

= E

[( ∑
α∈A\0

yα Ψα(X)

)3]
=
∑
α∈A\0

∑
β∈A\0

∑
γ∈A\0

yαyβyγ E [Ψα(X)Ψβ(X)Ψγ(X)]

Kurtosis coefficient κ̂Y

E
[(
Y
PC − µ̂Y

)4
]

= E

[( ∑
α∈A\0

yα Ψα

)4]
=
∑
α∈A\0

∑
β∈A\0

∑
γ∈A\0

∑
δ∈A\0

yαyβyγyδ E [Ψα(X)Ψβ(X)Ψγ(X)Ψδ(X)]

• Requires evaluating the expectation of products of 3, 4, etc. polynomials
• Analytical formulæ exist only in case of Hermite polynomials. Otherwise the expectation may be

computed exactly using sparse quadrature rules
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Probability density function

• The polynomial series expansion may be considered as a stochastic response surface, i.e. an
analytical function of the input variables ξ (after some isoprobabilistic transform), which may be
sampled easily using Monte Carlo simulation.

• A large sample set ξ of reduced variables is drawn, say of size nsim = 105 − 106:

Xsim =
{
ξj , j = 1, . . . , nsim

}
• The truncated series is evaluated onto this sample:

Ysim =

{
yj =

∑
α∈A

yα Ψα(ξj), j = 1, . . . , nsim

}
• The obtained sample set is plotted using histograms or kernel density smoothing
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Probability density function

Response sample set

Ysim =

{
yj =

∑
α∈A

yα Ψα(ξj), j = 1, . . . , nsim

}
Kernel smoothing

f̂Y (y) = 1
nsim h

nsim∑
j=1

K
(
y − yj
h

)

• Kernel function : K(t) = 1√
2π e
−t2/2

• Bandwidth:
h = 0.9nsim−1/5 min (σ̂Y , (Q0.75 −Q0.25)/1.34)

where (Q0.75 −Q0.25) is the inter-quartile range computed
from the sample
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Sensitivity analysis

Goal Sobol’ (1993); Saltelli et al. (2008)

Global sensitivity analysis aims at quantifying which input parameter(s) (or combinations thereof)
influence the most the response variability (variance decomposition)

Hoeffding-Sobol’ decomposition (X ∼ U([0, 1]M ))

M(x) =M0 +
M∑
i=1

Mi(xi) +
∑

1≤i<j≤M

Mij(xi, xj) + · · ·+M12...M (x)

=M0 +
∑

u⊂{1, ... ,M}

Mu(xu) (xu
def= {xi1 , . . . , xis})

• The summands satisfy the orthogonality condition:∫
[0,1]M

Mu(xu)Mv(xv) dx = 0 ∀ u 6= v
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Sobol’ indices

Total variance:

D ≡ Var [M(X)] = Var

 ∑
u⊂{1, ... ,M}

Mu(Xu)

 =
∑

u⊂{1, ... ,M}

Var [Mu(Xu)]

• Sobol’ indices:

Su
def= Var [Mu(Xu)]

D
• First-order Sobol’ indices:

Si = Di
D

= Var [Mi(Xi)]
D

Quantify the additive effect of each input parameter separately

• Total Sobol’ indices:
STi

def=
∑
u⊃i

Su

Quantify the total effect of Xi, including interactions with the other variables.
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Link with PC expansions

Sobol decomposition of a PC expansion Sudret, CSM (2006); RESS (2008)

Obtained by reordering the terms of the (truncated) PC expansionMPC(X) def=
∑

α∈A yα Ψα(X)

Interaction sets

For a given u def= {i1, . . . , is} : Au = {α ∈ A : k ∈ u⇔ αk 6= 0}

MPC(x) =M0 +
∑

u⊂{1, ... ,M}

Mu(xu) where Mu(xu) def=
∑
α∈Au

yα Ψα(x)

PC-based Sobol’ indices
Su = Du/D =

∑
α∈Au

y2
α/

∑
α∈A\0

y2
α

The Sobol’ indices are obtained analytically, at any order from the coefficients of the PC
expansion
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Validation of the PC expansion

• The truncated series expansions are convergent in the mean-square sense. However one does not
know in advance where to truncate (problem-dependent)

• Most people truncate the series according to the total maximal degree of the polynomials, say
p = 2, 3, 4, etc. Several values of p are tested until some kind of convergence is “empirically” observed

• Recent research deals with the development of error estimates through cross-validation in the
least-square minimization approach
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Error estimators

Coefficient of determination
• The least-squares technique is based on the minimization of the mean-square error. The

generalization error is defined as:

Egen = E
[(
M(X)−MPC(X)

)2
]

MPC(X) =
∑
α∈A

yα Ψα(X)

• It may be estimated by the empirical error using the already computed response quantities
(Y =

{
M(x(i)), i = 1, . . . , n

}
):

Eemp = 1
n

n∑
i=1

(
M(x(i))−MPC(x(i))

)2

• The coefficient of determination R2 is often used as an error estimator:

R2 = 1− Eemp
Var [Y] Var [Y] = 1

n
(M(x(i))− Ȳ)2

This error estimator leads to overfitting
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Overfitting – Illustration of the Runge effect

• If the degree of the polynomial model is equal to
the size of the experimental design, one gets an
interpolating approximation

• The empirical error is zero whereas the
approximation gets worse and worse
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Leave-one-out cross validation

Principle

• In statistical learning theory, cross validation consists in splitting the experimental design Y into two
parts, namely a training set (which is used to build the model) and a validation set

• The leave-one-out cross validation technique consists in using each point of the experimental design
as a single validation point for the meta-model built from the remaining (n− 1) points

• n different meta-models are built, and for each of them the empirical error is estimated on the
remaining point. The resulting n errors are finally mean-square averaged
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Leave-one-out cross validation

x
(i)

• An experimental design X = {x(j), j = 1, . . . , n} is selected

• For each x(i), a polynomial chaos expansion is built using the
following experimental design:
X\x(i) = {x(j), j = 1, . . . , n, j 6= i}, denoted byMPC\i(.)

• The predicted residual is computed in point x(i):

∆i =M(x(i))−MPC\i(x(i))
• The procedure is used for each sample point in X and the results are averaged in the PRESS

coefficient (predicted residual sum of squares):

PRESS =
n∑
i=1

∆2
i
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Leave-one-out error estimation

Reminder

The relative generalization error εgen reads:

εgen = E
[(
M(X)−MPC(X)

)2
]
/Var [Y ]

Leave-one-out error

ELOO = 1
n

n∑
i=1

(
M(x(i))−MPC\i(x(i))

)2

εLOO =
∑n

i=1

(
M(x(i))−MPC\i(x(i))

)2∑n

i=1 (M(x(i))− µY)2 µY = 1
n

n∑
i=1

M(x(i))

Problem: Do we really need a new meta-model based on
X\x(i) =

{
x(1), . . . ,x(i−1) , x(i+1), . . . ,x(n)} to compute ∆2

i ?
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Leave-one-out: practical implementation

In practice one does not need to explicitly derive the n different modelsMPC\i(.)

• In contrast, a single least-square analysis using X is carried out. The predicted residual reads:

∆i =M(x(i))−MPC\i(x(i)) = M(x(i))−MPC(x(i))
1− hi

where hi is the i-th diagonal term of matrix A(ATA)−1AT, where:

Aij = Ψj(x(i))

• Thus:

ELOO = 1
n

n∑
i=1

(
M(x(i))−MPC(x(i))

1− hi

)2
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Conclusion

Given a truncation set A and an experimental design X =
{
x(1), . . . ,x(n)}:

• A polynomial chaos expansion can be computed, provided:

|X | ≥ k · |A| k = 2; 3

• An a posteriori error estimator allows one to check the accuracy of the approximation in the
mean-square sense

Adaptive polynomial chaos expansions

• Assume a prescribed tolerance, e.g. TOL = 10−3 is chosen

• An iterative algorithm may be run, increasing the candidate basis A until εLOO < TOL, e.g. with
different AM,p with p = 1, 2, 3, . . .
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Algorithm 1: Ordinary least-squares

1: Input: Computational budget n
2: Initialization
3: Experimental design X = {x(1), . . . ,x(n)}
4: Run model Y = {M(x(1)), . . . ,M(x(n))}
5: PCE construction
6: for p = pmin : pmax do
7: Select candidate basis AM,p
8: Solve OLS problem
9: Compute εLOO(p)

10: end
11: p∗ = arg min εLOO(p)
12: Return Best PCE of degree p∗
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Classical truncation scheme

Classical truncation scheme

• Polynomials Ψα with a total degree |α| = α1 + · · ·+ αM ≤ p are usually selected
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• The cardinality of such a truncated basis reads:

card AM,p =
(
M + p

p

)
= (M + p)!

M ! p!
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Curse of dimensionality: example

Size of the truncated PC basis P
def=
∣∣AM,p∣∣

M\p 2 3 5 7 10

2 6 10 21 36 66

3 10 20 56 120 286

5 21 56 252 792 3,003

10 66 286 3,003 19,448 184,756

50 1,326 23,426 3,478,761 264,385,836 75,394,027,566

100 5,151 176,851 96,560,646 26,075,972,546 46,897,636,623,981

• Using the least-square approach the computational cost is related to the size of the experimental
design:

n = k P where k = 2− 3
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Why are sparse representations relevant?

Example: Ishigami function

M(x) = sin(x1) + 7 sin2(x2) + 0.1x4
3 sin(x1)
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Other

1st order

2nd order

3rd order

4th order • M = 3 input variables
X1, X2, X3 ∼ U(−π, π)
• p = 12
• P = 455 coefficients
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Low-rank truncation schemes

Sparsity-of-effects principle

In most practical problems, only low-order interactions between the input variables are relevant. One shall
select PC approximations using low-rank monomials

Definition
The rank of a multi-index α is the number of active variables of Ψα, i.e. the number of non-zero terms in α:

||α||0 =
M∑
i=1

1{αi>0}

Example: M = 5, p = 5, Legendre polynomial chaos

α Ψα Rank

[0 0 0 3 0] P̃3(x4) 1

[2 0 0 0 1] P̃2(x1) · P̃1(x5) 2

[1 1 2 0 1] P̃1(x1) · P̃1(x2) · P̃2(x3) · P̃1(x5) 4
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Low-rank truncation set

Definition
AM,p,r = {α ∈ NM : |α| ≤ p, ||α||0 ≤ r} r ≤ p , r ≤M

All ranks ≤ 3
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Hyperbolic truncation sets

Definition Blatman (2009), Blatman & Sudret, J. Comp. Phys (2011)

• The q−norm of a multi-index α is defined by:

||α||q ≡

(
M∑
i=1

αqi

)1/q

, 0 < q < 1

• The hyperbolic truncation sets read:

AM,pq = {α ∈ NM : ||α||q ≤ p}

Limit cases

• q = 1 : standard truncation scheme (all polynomials of maximal total degree p)

• q → 0 : additive model (no interaction)
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Size of hyperbolic truncation sets

• For a given value of 0 < q ≤ 1, the index of sparsity tends to zero when M and p increase

Dim. input vector M
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p = 7

p = 7, q = 0.5
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Conclusions

• For practical computations PC expansions have to be truncated

• The classical truncation scheme selects all polynomials up to a certain total degree, which leads to:

P = (M + p)!
M ! p! terms

• This number blows up when M > 10 and / or p > 5

• The sparsity-of-effect principle allows one to select a priori truncation schemes with low-order
interaction terms

• This can be achieved by limiting the rank of the polynomials or using an hyperbolic truncation scheme
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Introduction

0 100 200 300 400 500
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Index of polynomials

|y
j
|/
y 0

 

 

Other

1st order

2nd order

3rd order

4th order

• Even when selecting a
reduced set of
polynomials a priori, most
coefficients are negligible

• How to compute only the
relevant basis function
and associated
coefficients?

Sparse polynomial chaos expansions
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How to get sparse expansions?

Blatman & Sudret, JCP (2011)

• Finding the significant coefficients in the PC expansion is a variable selection problem
• It can be addressed by regularized regression techniques:

yα = arg min 1
n

n∑
i=1

(
YTΨ(x(i))−M(x(i))

)2
+ λ ‖ yα ‖m

Interpretation
• The regularization term:

‖ yα ‖m=
|A|∑
j=1

|yj |m

corresponds to solving the least-square minimization under the constraint that the coefficients are “not
too big”

• This avoids overfitting
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Regularized regression: LASSO and least-angle regression

• Lasso corresponds to a L1-norm (m = 1) penalization term:

‖ yα ‖1=
|A|∑
j=1

|yj |

• By selecting L1 penalization, sparse solutions are favoured, i.e. solutions in which most of the
coefficients in {yα, α ∈ A} are zero

• Least Angle Regression (LAR) is an efficient algorithm that solves the Lasso problem for different
values of the penalty constant in a single run

• Various PC expansions are constructed with 1, 2, . . . ,min(n, |A|) terms

• Among those models the best one is retained by comparing the leave-one-out cross validation error
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Algorithm 2: LAR-based Sparse polynomial chaos expansion

1: Input: Computational budget n
2: Initialization
3: Sample experimental design X = {x(1), . . . ,x(n)}
4: Evaluate model response Y = {M(x(1)), . . . ,M(x(n)})
5: PCE construction
6: for p = pmin : pmax do
7: for q ∈ Q do
8: Select candidate basis AM,pq

9: Run LAR for extracting the optimal sparse basis A∗(p, q)
10: Compute coefficients {yα, α ∈ A∗(p, q)} by OLS
11: Compute εLOO(p, q)
12: end
13: end
14: (p∗, q∗) = arg min εLOO(p, q)
15: Return Optimal sparse basis A∗(p, q), PCE coefficients, εLOO(p∗, q∗)
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Conclusions

• Sparse PC expansions can be computed from a given experimental design using appropriate sparse
solvers

Lüthen, Marelli & Sudret, Sparse polynomial chaos expansions: Literature survey and benchmark, SIAM/ASA J. Unc. Quant., 2021.

Lüthen, Marelli & Sudret, A benchmark of basis-adaptive sparse polynomial chaos expansions for engineering regression problems, Int. J. Uncertainty Quantification 2021.

• Problems with up to O(100) variables can be solved nowadays with 100− 1000 model runs

• Fully automated algorithms allow to get “the best PCE surrogate” given the data, and a fair estimate of
the mean-square error

• Values of εLOO ≤ 10−2 are sufficient in most engineering applications
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Example: strip foundation

Load bearing capacity

Pcr = B σcr = B
[
cNc + γtNq + 1

2γ BNγ
]

with the load bearing factors:

Nq = eπ tanϕ 1 + sinϕ
1− sinϕ

Nc = (Nq − 1)/ tanϕ
Nγ = 2 (Nq − 1) tanϕ

V

B

t
c, ϕ
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Strip foundation – probabilistic model

Variable Description Distribution Moments

γ Self-weight Gaussian µγ = 21 kN/m3, COVγ = 5%
c Cohesion Lognormal µc = 5 kPa, COVc = 30%
ϕ Effective friction angle Lognormal µϕ = 30◦, COVϕ = 8%
B Width Deterministic 3 m
t Depth Gaussian µt = 0.5 m, COVt = 20%

Polynomial Chaos Expansions IIT Madras (streaming) - October 7, 2021 B. Sudret 68 / 88



Load bearing capacity

• A sparse polynomial chaos expansion is built from an experimental design of size NED = 100
• Mean, standard deviation and PDF are computed

% ------------ Polynomial chaos output ------------%
Number of input variables: 5
Maximal degree: 4
q-norm: 1.00
Size of full basis: 70
Size of sparse basis: 33
Full model evaluations: 100
Leave-one-out error: 1.8327657e-05
Mean value: 3123.5136
Standard deviation: 1168.5662
Coef. of variation: 37.412%
% --------------------------------------------------%
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Distribution

The (kernel smoothing) density of the polynomial chaos expansion is plotted and compared to the one
obtained from the original model (105 points)

NED = 100 points

PDF Validation plot
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PCE vs. Monte Carlo simulation (moments)

Reminder

NMCS 100 1, 000 10, 000 100, 000 1, 000, 000
Mean 3216 3082 3121 3125 3124
95% CI [2942− 3378] [3057− 3201] [3105− 3150] [3115− 3133] [3122− 3127]
Std. dev 1109 1080 1188 1173 1174
95% CI [966− 1565] [1099− 1313] [1145− 1207] [1163− 1185] [1171− 1178]

Polynomial chaos expansion

Experimental design of size NED = 100
Mean 3123
95% CI [3121− 3125]
Std. dev 1169
95% CI [1162− 1171]
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PCE vs. Monte Carlo simulation: Sobol’ indices

NMCS 100 1,000 10,000 100,000 1,000,000

γ [0.007− 0.020] [0.013− 0.017] [0.014− 0.015] [0.015− 0.015] [0.015− 0.015]
c [0.006− 0.018] [0.013− 0.019] [0.013− 0.015] [0.014− 0.015] [0.015− 0.015]
ϕ [0.917− 1.201] [0.872− 1.014] [0.965− 1.003] [0.958− 0.969] [0.963− 0.966]
t [0.004− 0.012] [0.009− 0.013] [0.011− 0.012] [0.011− 0.012] [0.012− 0.012]

NTOT 600 6,000 60,000 600,000 6,000,000

Experimental design of size NED = 100
γ [0.015− 0.016]
c [0.014− 0.014]
ϕ [0.962− 0.964]
t [0.011− 0.012]

NTOT 100
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Example: sensitivity analysis in hydrogeology

Source: http://www.futura-sciences.com/

Source: http://lexpansion.lexpress.fr/

• When assessing a nuclear waste
repository, the Mean Lifetime Expectancy
MLE(x) is the time required for a molecule
of water at point x to get out of the
boundaries of the system

• Computational models have numerous
input parameters (in each geological layer)
that are difficult to measure, and that show
scattering

Polynomial Chaos Expansions IIT Madras (streaming) - October 7, 2021 B. Sudret 73 / 88



Geological model Joint work with University of Neuchâtel

Deman, Konakli, Sudret, Kerrou, Perrochet & Benabderrahmane, Reliab. Eng. Sys. Safety (2016)

• Two-dimensional idealized model of the Paris Basin (25 km long / 1,040 m depth) with 5× 5 m mesh
(106 elements)

• Steady-state flow simulation with Dirichlet boundary conditions:

∇ · (K · ∇H) = 0

• 15 homogeneous layers with uncertainties in:
– Porosity (resp. hydraulic conductivity)
– Anisotropy of the layer properties (inc. dispersivity)
– Boundary conditions (hydraulic gradients)

78 input parameters
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Sensitivity analysis
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Question

What are the parameters (out of 78) whose uncertainty drives the uncertainty of the
prediction of the mean life-time expectancy?
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Sensitivity analysis: results
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φ (resp. Kx) 0.8664

AK 0.0088

θ 0.0029

αL 0.0076

Aα 0.0000

∇H 0.0057

Conclusions

• Only 200 model runs allow one to detect the 10 important parameters out of 78

• Uncertainty in the porosity/conductivity of 5 layers explain 86% of the variability

• Small interactions between parameters detected
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Bonus: univariate effects

The univariate effects of each variable are obtained as a straightforward post-processing of the PCE

Mi(xi)
def= E [M(X)|Xi = xi] , i = 1, . . . ,M
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Conclusions

• Polynomial chaos expansions are a mature, powerful technique for uncertainty propagation

• Nonintrusive methods are based on repeated runs of the computational model over an experimental
design (similar to Monte Carlo simulation)

• Coefficients may be computed by least-square minimization, which has opened the path to sparse
solvers

• Post-processing the coefficients gives the mean, variance, higher moments and global sensitivity
indices. The output PDF is obtained by sampling the PC expansion

• All the algorithms described in this talk are available in UQLab (www.uqlab.com) !

Thank you very much for your attention
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Questions ?

Chair of Risk, Safety & Uncertainty Quantification
www.rsuq.ethz.ch

The Uncertainty Quantification
Software

www.uqlab.com

The Uncertainty Quantification
Community

www.uqworld.org

Thank you very much for your attention !
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APPENDIX
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Legendre polynomials

Legendre polynomials are defined over [−1, 1] so as to be or-
thogonal with respect to the uniform distribution:

w(x) = 1/2 x ∈ [−1, 1]

• Notation: Pn(x), n ∈ N
• 3-term recurrence

P0(x) = 1 ; P1(x) = x

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x)
• Pn is solution of the ordinary differential equation[

(1− x2) P
′
n(x)

]′
+ n(n+ 1) Pn(x) = 0
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First Legendre polynomials

• The norm of the n-th Legendre polynomial reads:

‖ Pn ‖2=< Pn , Pn >

∫ 1

−1
P2
n(x) · 1

2dx = 1
2n+ 1

• The orthonormal Legendre polynomials read:

P̃n(x) =
√

2n+ 1 Pn(x)

n Pn(x) ‖ Pn ‖2 P̃n(x)
0 1 1 1
1 x 1/3

√
3 P1

2 1
2 (3x2 − 1) 1/5

√
5 P2

3 1
2 (5x3 − 3x) 1/7

√
7 P3

4 1
8 (35x4 − 30x2 + 3) 1/9

√
9 P4

5 1
8 (63x5 − 70x3 + 15x) 1/11

√
11 P5
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First Legendre polynomials
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Hermite polynomials

Hermite polynomials are defined over R so as to be orthogonal
with respect to the Gaussian distribution:

w(x) = 1√
2π
e−x

2/2 x ∈ R

• Notation: Hen(x), n ∈ N
• 3-term recurrence:

He0(x) = 1 ; He1(x) = x

Hen+1(x) = xHen(x)− nHen−1(x)
• Normalization

‖ Hen ‖2=
+∞∫
−∞

He2
n(x) 1√

2π
e−x

2/2dx = n! n! = 1 · 2 · 3 . . . n
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Hermite polynomials

• Hen is solution of the ordinary differential equation:

He
′′
n(x)− xHe

′
n(x) + nHen(x) = 0

and satisfies:

Hen(x) = (−1)n ex
2/2 dn

dxn

(
e−x

2/2
)

He
′
n(x) = nHen−1(x)

Important remark

In the literature, two families of Hermite polynomials (HP) are known:

• The “physicist” HP are orthogonal w.r.t e−x
2

• The “probabilistic” HP are orthogonal w.r.t the standard normal PDF e−x
2/2/
√

2π
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First “probabilistic” Hermite polynomials

n Hen(x) ‖ Hen ‖2 H̃en(x)
0 1 1 He0

1 x 1 He1

2 x2 − 1 2 He2/
√

2
3 x3 − 3x 6 He3/

√
6

4 x4 − 6x2 + 3 24 He4/
√

24
5 x5 − 10x3 + 15x 120 He5/

√
120
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First Hermite polynomials
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Orthonormality of multivariate polynomials

Thus:

E [Ψα(X)Ψβ(X)] =
∫
DX

M∏
i=1

[
P (i)
αi (xi)P (i)

βi
(xi) fXi(xi)

]
dx

=
M∏
i=1

[∫
DXi

P (i)
αi (xi)P (i)

βi
(xi) fXi(xi)dxi

]

=
M∏
i=1

δαiβi where δαiβi = 1 if αi = βi and 0 otherwise

As a consequence the orthogonality of the univariate polynomials propagates to the multivariate ones:

E [Ψα(X)Ψβ(X)] = δαβ
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PCE coefficients as a projection

ε
2
P (X) =

(
P−1∑
j=0

yj Ψj(X)−M(X)

)2

=

(
P−1∑
j=0

yj Ψj(X)

)2

+M2(X)− 2M(X)
P−1∑
j=0

yj Ψj(X)

=
P−1∑
j=0

P−1∑
k=0

yj ykΨj(X) Ψk(X) +M2(X)− 2
P−1∑
j=0

yjM(X) Ψj(X)

E
[
ε
2
P (X)

]
=
P−1∑
j=0

P−1∑
k=0

yj yk

δjk︷ ︸︸ ︷
E [Ψj(X) Ψk(X)] +E

[
M2(X)

]
− 2

P−1∑
j=0

yj E [M(X)Ψj(X)]

=
P−1∑
j=0

y
2
j − 2

P−1∑
j=0

yj E [M(X)Ψj(X)] + E
[
M2(X)

]
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PCE coefficients as a projection (cont’)

E
[
ε2
P (X)

]
=
P−1∑
j=0

y2
j − 2

P−1∑
j=0

yj E [M(X)Ψj(X)] + E
[
M2(X)

]

This is a quadratic function of the unknowns {yj , j = 0, . . . , P − 1}

• The mean-square error is minimized when its derivative w.r.t each unknown coefficient yj vanishes:

∂E
[
ε2
P (X)

]
∂yj

= 2 yj − 2E [M(X)Ψj(X)] = 0

which reduces to:
ŷj = E [M(X) Ψj(X)] ∀ j = 0, . . . , P − 1
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