
DISS. ETH NO. 27739

Robust Visual Odometry

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH Zürich

(Dr. sc. ETH Zürich)

presented by

Peidong Liu

Master of Engineering
National University of Singapore

Born Oct 11, 1988
Citizen of Republic of China

accepted on the recommendation of

Examiner
Prof. Marc Pollefeys

Co-Examiners
Prof. Andreas Geiger

Prof. Davide Scaramuzza

2021

Abstract
Visual odometry (VO) is a technique used to estimate the camera mo-
tion from acquired images. As a fundamental block for many real-world
applications, such as robotics and virtual/mixed/augmented reality, great
progress has been made during the last decades. There have been many al-
gorithms being proposed in the literature: ranging from classical geometric
approaches, deep learning based approaches to hybrid approaches. Those
pipelines usually can achieve reasonable good performance in controlled
environments. While many state-of-the-art algorithms have been proposed,
robustness is still a remaining challenge for visual odometry methods. Poor
lighting conditions, motion blur, poor textured environment et al. can still
fail visual odometry methods easily, which would limit their deployments
to the challenging real-world environments.

In this dissertation, we propose methods to improve the robustness of
visual odometry algorithms from three different perspectives: 1) Due to
the low contrast of images captured at low-lighting conditions, visual
odometry methods would have difficulties to detect enough salient feature
points for motion estimation. One solution is to enlarge the field of view
of the camera, so that more salient feature points can be detected. We
therefore propose a visual odometry algorithm for a multi-camera rig to
cover 360◦ surrounding scene. Experimental results demonstrate that it
improves both the accuracy and robustness of visual odometry algorithm
at night conditions. 2) Instead of enlarging the field of view, we try to
further improve the robustness by enhancing the quality of input images via
a deep convolutional neural network. The enhanced images can then be fed
into a normal visual odometry pipeline for improved performance. Both
motion blur and rolling shutter effect are common artifacts that degrade
image qualities. Motion blur usually occurs in low-light conditions where
longer exposure times are necessary. Rolling shutter effect occurs in images

i

Abstract

captured by a CMOS camera while the camera is moving. It distorts the
captured images, which would degrade the performance of normal VO
methods. We thus propose deep neural networks to deblur the input images
and remove the rolling shutter distortions, so that the performance of vision-
based algorithms (e.g. visual odometry) can be improved. 3) To further
improve the robustness of visual odomtry against motion blurred images,
we propose a novel hybrid visual odometry method, which models the
image formation process of motion blur. This allows us to explicitly model
the motion blur in the image and leverage it for tracking. In experiments we
show that by directly modeling the image formation process, we are able
to improve robustness of the visual odometry, while keeping comparable
accuracy as that for images without motion blur.

We also study the limitations of existing learning based methods, which
aim to improve both the accuracy and robustness of VO methods by using
deep networks, in this dissertation. By demonstrating the fact that even
a single image motion estimation network can predict reasonable camera
motions on KITTI dataset [GLU12], which is commonly used by the
community, we conclude that the KITTI dataset might not be sufficient for
those learning based approaches to evaluate on. The reason is that a single
image from KITTI dataset already contains many semantic motion cues for
the network to exploit for motion prediction.

ii

Abstrakt
Visuelle Odometrie ist eine Technik, mit der die Kamerabewegung aus
aufgenommenen Bildern geschtzt wird. Es dient als grundlegender Block fr
viele reale Anwendungen wie Robotik und virtuelle/gemischte/erweiterte
Realitt und in den letzten Jahrzehnten wurden in diesem Gebiet groe
Fortschritte erzielt. In der Literatur wurden viele Algorithmen vorgeschla-
gen: von klassischen geometrischen Anstzen ber Deep-Learning-basierte
Anstze bis hin zu hybriden Anstzen. Diese Pipelines knnen normalerweise
in kontrollierten Umgebungen eine angemessen gute Leistung erzielen.
Obwohl bereits viele Algorithmen nach dem letzten Stand der Technik
vorgeschlagen wurden, bleibt die Robustheit eine Herausforderung fr vi-
suelle Odometrie-Verfahren. Wegen schlechten Lichtverhltnissen, Bewe-
gungsunschrfen und schlecht strukturierten Umgebungen knnen visuelle
Odometrie-Methoden schnell scheitern, was ihre Anwendbarkeit auf realen
Umgebungen einschrnkt.

In dieser Dissertation schlagen wir daher Methoden vor, welche die
Robustheit von visuellen Odometrie-Algorithmen aus drei verschiedenen
Perspektiven verbessert: 1) Aufgrund des geringen Kontrasts von Bildern,
die bei schlechten lichtverhltnissen aufgenommen wurden, haben visuelle
Odometrie-Methoden Schwierigkeiten, gengend hervorstechende Merk-
malspunkte fr die Bewegungsschtzung zu erkennen. Eine Lsung besteht
darin, das Sichtfeld der Kamera zu vergrern, damit mehr hervorstechendere
Merkmalspunkte erkannt werden knnen. Wir schlagen daher einen vi-
suellen Odometrie-Algorithmus fr ein Multi-Kamera-Rig vor, um die 360◦

umgebende Szene abzudecken. Experimentelle Ergebnisse zeigen, dass es
sowohl die Genauigkeit als auch die Robustheit des visuellen Odometrie-
Algorithmus bei Nachtbedingungen verbessert. 2) Anstatt das Sichtfeld zu
vergrern, versuchen wir, die Robustheit weiter zu verbessern, indem wir
die Qualitt der Eingabebilder ber ein tiefes Convolutional Neural Network

iii

Abstract

verbessern. Die verbesserten Bilder knnen dann in eine normale visuelle
Odometry-Pipeline eingespeist werden, was zur Leistungsverbesserungen
fhrt. Sowohl Bewegungsunschrfe als auch der Rolling-Shutter-Effekt sind
hufige Artefakte, die die Bildqualitt beeintrchtigen. Bewegungsunschrfe
tritt normalerweise bei schlechten Lichtverhltnissen auf, bei denen lngere
Belichtungszeiten erforderlich sind. Der Rolling-Shutter-Effekt tritt bei
Bildern auf, die von einer CMOS-Kamera aufgenommen wurden, whrend
sich die Kamera bewegt. Es verzerrt die aufgenommenen Bilder, was die
Leistung normaler VO-Methoden beeintrchtigen wrde. Wir schlagen daher
tiefe neuronale Netze vor, um die Eingabebilder zu verschrfen und die
Rolling-Shutter-Verzerrungen zu beseitigen, damit die Leistung von vi-
suellen Algorithmen (z. B. visuelle Odometrie) verbessert werden kann. 3)
Um die Robustheit der visuellen Odomtrie gegenber bewegungsunscharfen
Bildern weiter zu verbessern, schlagen wir eine neuartige hybride visuelle
Odometrie-Methode vor, die den Bilderzeugungsprozess von Bewegung-
sunschrfe modelliert. Auf diese Weise knnen wir die Bewegungsunschrfe
im Bild explizit modellieren und fr die Verfolgung nutzen. In Experi-
menten zeigen wir, dass wir durch direkte Modellierung des Bilderzeu-
gungsprozesses die Robustheit der visuellen Odometrie verbessern und
gleichzeitig eine vergleichbare Genauigkeit wie bei Bildern ohne Bewe-
gungsunschrfe beibehalten knnen.

In dieser Dissertation untersuchen wir auch die Grenzen bestehender lern-
basierter Methoden, die darauf abzielen, die Genauigkeit und Robustheit
von VO-Methoden durch die Verwendung tiefer Netzwerke zu verbessern.
Indem wir die Tatsache demonstrieren, dass selbst ein einziges Bildbe-
wegungsschtzungsnetzwerk vernnftige Kamerabewegungen auf dem von
der Community hufig verwendeten KITTI-Datensatz [GLU12] vorher-
sagen kann, schlieen wir, dass der KITTI-Datensatz fr lernbasierte Anstze
mglicherweise nicht ausreicht bewerten am. Der Grund dafr ist, dass ein
einzelnes Bild aus dem KITTI-Datensatz bereits viele semantische Be-
wegungshinweise enthlt, die das Netzwerk fr die Bewegungsvorhersage
nutzen kann.

iv

Acknowledgement
I sincerely thank all of you, who gave me support and help during my PhD
study in ETH Zürich. First of all, I would like to thank my supervisor,
Prof. Marc Pollefeys. Without him, I will not have the opportunity to join
ETH Zürich for my PhD study. Marc is always supportive and patient with
my research. I am grateful that Marc provides me such a great platform
from which I can work together with so many excellent researchers. I
would also like to thank Dr. Lionel Heng, who collaborated with me for
my first publication. Lionel is so kind that always answers my questions
and replies with different suggestions at first time, even he is also very busy.
He helped me walk out the confused period during the early stage of my
PhD study. Another mentor that I want to thank is Prof. Andreas Geiger.
Andreas joined our group as a visiting professor, while Marc was on leave
for sabbatical to Microsoft. Andreas taught me many things. One of the
most valuable lessons that I learnt from him is his research taste. He told
me that we should aim high and tackle problems which would have high
impact to the community. I am also grateful for his guidance on how to
write good academic papers for top-tier conferences. He is so patient that
helped revise my paper together with me, so that I can learn how to write
in future. I would also like to thank other collaborators and colleagues: Dr.
Torsten Sattler, Dr. Viktor Larsson, Dr. Zhaopeng Cui, Dr. Joel Janai, Dr.
Lubor Ladicky, Dr. Martin Oswald, Dr. Thomas Schöps, Mr. Xingxing
Zuo, Mr. Marcel Geppert, Mr. Songyou Peng and Mr. Zuoyue Li. Thank
you for all the fruitful discussions and encouragements for my research.
I am also grateful to those responsible anonymous reviewers, who either
rejected or accepted my submissions. It is you who taught me what a good
work should be and drive me to improve my work to be better and better. I
also appreciate the help from our supporting staff, Mr. Thorsten Steenbock,
Mrs. Susanne Keller, Mrs. Danielle Luterbacher and Mrs. Ayse Johannes.

v

Acknowledgement

I would also like to thank other colleagues from CVG. It is you who make
my PhD life to be interesting. I still remember the time that we hangout
together for social Thursday, Super Kondi and Ski retreat. I am also grateful
to Prof. Davide Scaramuzza for his interests in my work and agrees to be
my external independent examiner.

Lastly, I would like to thank the support and company from my family.
Especially the understandings and encouragements from my wife, Mrs.
Yali Song. Thank you for your encouragements and comforts when I feel
depressed with my research. I would also like to thank my parents, who
give me the chance to have the best education since I was a child.

It has been one of the most important and memorable periods in my life,
which teaches me how to deal with uncertainties, challenges and failures.
It is my luck to have all of you during this special journey. Thank you very
much to all of you, who make me become a better person and help me
acquire the skills to be an independent researcher.

vi

Contents

Abstract i

Acknowledgement v

1. Introduction 1
1.1. A classical VO pipeline 2
1.2. Contributions of the dissertation 4
1.3. Related work . 7

1.3.1. Visual odometry 8
1.3.2. Image motion deblurring 13
1.3.3. Rolling shutter effect removal 14

1.4. Overview of the dissertation 16

2. Preliminaries 19
2.1. Camera models . 19
2.2. Exponential map . 22
2.3. Logarithm map . 24
2.4. State marginalization . 26

I. Hardware Perspective 33

3. Direct Visual Odometry for a Fisheye-Stereo Camera 35
3.1. Introduction . 35
3.2. Notations . 36
3.3. Method . 37

3.3.1. Semi-dense image alignment 38
3.3.2. Plane-sweeping stereo 41

vii

Contents

3.3.3. Temporal motion stereo 43
3.4. Experimental evaluation 44
3.5. Conclusion . 49

4. Robust VO with a Multi-Camera System 51
4.1. Introduction . 51
4.2. Notations . 52
4.3. Method . 53

4.3.1. Tracker . 54
4.3.2. Keyframe and feature selections 56
4.3.3. Local mapper . 57

4.4. Experimental evaluation 61
4.5. Conclusion . 67

II. Deep CNN Enhanced Images 69

5. Self-supervised Motion Deblurring 71
5.1. Introduction . 71
5.2. Method . 73

5.2.1. Deblurring and optical flow 74
5.2.2. Reblurring . 75
5.2.3. Image warping 78
5.2.4. Relationship between ua→b/ub→a and u 79
5.2.5. Loss functions 79
5.2.6. Occlusion handling 80
5.2.7. Differences with the method proposed by Chen et al. 80

5.3. Experimental evaluation 81
5.4. Conclusion . 87

6. Deep Shutter Unrolling Network 101
6.1. Introduction . 101
6.2. Method . 104

6.2.1. Rolling shutter image formation model 104
6.2.2. Rolling shutter effect removal 105

viii

Contents

6.2.3. Differentiable forward warping block 106
6.2.4. Network architecture 109
6.2.5. Loss functions 113

6.3. Datasets . 113
6.4. Experimental evaluation 115
6.5. Conclusion . 121

III. Algorithmic Perspective 125

7. Motion Blur Aware Robust Visual Odometry 127
7.1. Introduction . 127
7.2. Preliminaries . 129
7.3. Method . 130

7.3.1. Motion blur image formation model 131
7.3.2. Direct image alignment with sharp images 131
7.3.3. Motion trajectory modeling 133
7.3.4. Direct image alignment with blurry images 136
7.3.5. More details on the transfer 137

7.4. Datasets . 142
7.5. Experimental evaluation 144
7.6. Conclusion . 153

8. Is Single Image Motion Estimation Possible? 155
8.1. Introduction . 155
8.2. Single image motion estimation network 157
8.3. Upper bound motion cues that a single image motion esti-

mation network can exploit 162
8.4. How is the performance of existing networks on dataset

with complex motions? 164
8.5. Clarification . 169
8.6. Conclusion . 169

9. Conclusion and Outlook 171
9.1. Conclusion . 171

ix

9.2. Future works . 173

Bibliography 175

1. Introduction
Visual odometry (VO) is a technique used to determine the position and
orientation of a camera (or a multi-camera rig) by using acquired im-
ages. As a fundamental block for many applications (e.g. robotics, aug-
mented/virtual/mixed reality), VO has achieved great progress in both
robotic and computer vision communities over the last decades. Many
methods have been proposed to improve its accuracy, efficiency and ro-
bustness, which range from classical geometric approaches, deep learning
based approaches to hybrid approaches.

Classical geometric approaches recover the camera motion from multi-
view constraints. These methods can be further divided into direct ap-
proaches and sparse feature-based approaches. Direct approach relies on
the photometric consistency assumption across multiple views within a
short time interval. They jointly optimize the camera poses, 3D scene
structure as well as camera intrinsic parameters by maximizing the photo-
metric consistency. The representative works are LSD-SLAM [ESC14],
DSO [EKC17] and their many variants [SDU+18, SDvS+19, LHSP17,
LGH+18, MvSU+18, GWDC18]. Different from direct method, sparse
feature-based methods extract a sparse set of keypoints from the raw images
which are then matched across different views. Both the camera poses and
3D scene geometry are estimated by enforcing consistency between the
keypoint locations and the projections of the scene structure.

End-to-end deep learning-based approaches usually formulate the prob-
lem as an end-to-end regression problem. The inputs to the network are
usually a short sequence of consecutive frames. The network then pre-
dicts the relative poses between a target frame and other frames. The
networks are trained either from ground truth motions (e.g. can be ob-
tained from accurate real-time kinematic positioning system or other ap-
proaches) [UZU+17, XWL+19] or via self-supervision [ZBSL17, YS18].

1

1. Introduction

Although many state-of-the-art algorithms have been proposed in the lit-
erature, their performance is still infancy compared to classical geometric
based approaches. It is challenging for current state-of-the-art methods to
achieve competitive performance for large-scale environments as classical
approaches.

Hybrid methods try to embed deep networks into classical geomet-
ric frameworks [TTLN17a, YWSC18a, YSWC20, BCC+18b, ZBLD19].
These frameworks aim to leverage the benefits of both approaches to im-
prove the performance of visual odometry. For example, both Tateno
et al. [TTLN17a] and Yang et al. [YWSC18a] leverage the learned priors
on the metric scale of surrounding objects to address the metric scale ambi-
guity issue of a classical monocular visual odometry algorithm. Bloesch
et al. [BCC+18b] and Zhi et al. [ZBLD19] try to improve the estimated
dense depth map or semantic labels by taking advantages of the priors
learned by a deep neural network. Those algorithms still adopt the clas-
sical pipeline as the main backbone and then augment/replace part of the
modules by a deep network. They usually can achieve state-of-the-art
performance compared to their classical counterpart.

1.1. A classical VO pipeline

Since our work mainly focuses on classical geometric based VO algorithms,
let us review the common blocks for a classical VO pipeline. Classical
VO algorithms typically can be categorized to filtering based approach
and batch optimization based approach. Batch optimization based ap-
proach usually can achieve more accurate motion estimations, while is
also more computational intensive. State-of-the-art methods (e.g. ORB-
SLAM [MAT17a] and DSO [EKC17]) usually adopt the batch optimization
approach nowadays.

Fig. 1.1 demonstrates the typical architecture of batch optimization based
approaches. The pipeline usually consists of two main parts, i.e. a front-end
motion tracker and a back-end mapper. The front-end usually estimates the
camera pose of the latest frame in real time. To reduce pose drifts, keyframe
mechanism is ususally adopted [KM07]. The back-end then builds new 3D

2

1.1. A classical VO pipeline

Motion	
Predictor

Pose	Estimator

Bundle	
Adjustment

Stereo	Matcher

KF?

Local	Map

Tracker Mapper
Refinement

Insert

Yes

Estimated	pose

Figure 1.1.: Overview of a classical VO pipeline. The pipeline usually
consists of two parts, i.e. a front-end motion tracker and a
back-end local mapper. The tracker estimates the camera pose
of latest frame in real-time. The local mapper jointly optimizes
the camera poses and scene structures of recent keyframes,
such that the pose drifts can be minimized.

maps for unexplored scenes and optimizes both the camera poses and scene
structure jointly. Due to the high computational complexity of the back-end,
it usually runs at a much lower frame rate (e.g. 2 ∼ 3 Hz) compared to the
front-end.

The tracker usually consists of a motion predictor and a pose estimator.
Constant velocity model is normally used to predict the camera pose of the
latest frame, such that the pose estimator can have a good initial solution for
least-square optimization. The pose estimator estimates the latest camera
pose based on the information stored in the local map. Sparse feature based
approach (e.g. ORB-SLAM [MAT17a]) usually extracts salient feature
points from the latest frame, and then builds up correspondences with
3D landmarks stored in the local map for pose estimation. Different from
sparse feature based approach, direct method (e.g. DSO [EKC17]) estimates
the camera pose of current frame with respect to the latest keyframe via
direct image alignment [BM04]. Forster et al. [FPS14] also propose a
hybrid approach, which removes the feature extraction and matching step

3

1. Introduction

in current frame. Instead, they track the sparse keypoints against current
frame by appearance matching (i.e. direct approach). Once the positions of
sparse keypoints are tracked successfully in the current frame, they build
up 2D-3D correspondences with the 3D landmarks from the local map.
Conventional re-projection errors are then used to estimate the camera
pose. The experimental results demonstrate that it can effectively reduce
the computational cost required by feature extraction and feature matching.

The back-end mapper typically consists of a stereo matcher and a sliding
window optimizer. The stereo matcher is used to populate new 3D land-
marks for un-explored areas. Depending on the hardware set-up, either
temporal motion stereo or static stereo are used to estimate the 3D posi-
tions. To reduce pose drifts for long-term operation, the sliding window
optimizer is usually used to refine both camera poses and scene structures
jointly. For efficiency, the sliding window usually covers several latest
keyframes. The information contained within the older keyframes can
be retained by the state marginalization method [EKC17] or approach by
graph optimization [MAT17a].

1.2. Contributions of the dissertation

While many state-of-the-art algorithms have been proposed, robustness
is still a problem for visual odometry methods. To make VO useful for
real-world applications, it should work robustly under various conditions.
For example, to serve as a fundamental block for autonomous driving,
robust vehicle motion estimation is critical for path/trajectory tracking, and
environment perception. Motion estimation errors and failures might cause
tragic accidents and limit wide-scale deployment of VO algorithms.

Several approaches have been proposed to improve the robustness of VO
for specific environments. Alismail et al. [ABL16b] propose a dense binary
descriptor that can be integrated within a multi-channel Lucas Kanade
framework to improve illumination change robustness. Park et al. [PSP17]
perform a systematic evaluation of real-time capable methods for illumi-
nation change robustness in direct visual SLAM. Zhang et al. [ZCS17]
propose an active exposure control method for robust visual odometry in

4

1.2. Contributions of the dissertation

high dynamic range (HDR) environments. For each frame, they choose
an exposure time that maximizes an image quality metric. In the work
from Pascoe et al. [PMT+17], a direct monocular SLAM algorithm based
on the Normalized Information Distance (NID) metric is proposed. They
show that the information-theoretic NID metric provides robustness to
appearance variations due to lighting, weather, and structural changes in the
scene. The early works from Pretto et al. [PMB+09] and Lee et al. [LKL11]
have been proposed to improve the robustness of sparse keypoint based
VO against motion blur. Pretto et al. [PMB+09] propose to detect motion
blur robust sparse invariant features. The work from Lee et al. [LKL11]
assumes the motion between neighbouring frames is smooth and try to
linearly interpolate the motion within the exposure time. For each frame the
initial motion is extrapolated from previous frames using a motion model
and this prediction is used to re-blur the patches from the keyframe. The
re-blurred patches are used to establish explicit sparse correspondences
between the new frame and the keyframe. The camera poses and scene
structure are then estimated from these correspondences.

In this dissertation, we propose methods which make VO robust from
different perspectives, such that it can be better deployed to various real
world scenarios. In particular, we improve the robustness of VO methods
from the hardware perspective, the perspective of deep network enhanced
input images, and the algorithmic perspective.

Hardware perspective: Large field of view is usually beneficial for
environments with poor textures or dynamic environments. For example, in
low-lighting environments (e.g. autonomous driving at night), the captured
images usually have low contrast. It challenges both the feature based
methods and direct methods, which usually rely on large image contrast
(e.g. edge or corner features) for reliable motion estimation. A large field
of view can thus increase the number of reliable features for a VO pipeline.
Under this perspective, we explore the usuages of fisheye cameras and a
multi-camera rig to improve the robustness of VO algorithms. Experimental
results demonstrate that VO algorithm with a rig of multiple fisheye cameras
can still estimate the camera motion reliably in dark environments at night;
in contrast, a single stereo configuration is prone to failure due to the lack

5

1. Introduction

of good texture.

Deep CNN enhanced input images perspective: Almost all VO algo-
rithms assume the input images are of good quality. However, due to the
environmental conditions, low image quality is sometimes unavoidable in
real world applications, which can then drastically reduce the performance
of VO systems. For example, one of the most common challenging cases,
motion blurred images occur often in low-light environments where longer
exposure times are necessary. This affects both feature based approaches
(e.g. ORB-SLAM [MAT17a], SVO [FPS14]), which struggle to detect
keypoints, and direct method (e.g. DSO [EKC17]) which rely on strong
image gradients for their alignment. While relocalization strategies can
partially mitigate the problem by allowing the VO to recover after losing
track, there are many applications where it is critical to get camera pose
estimates for each frame. For example to provide smoother user expe-
riences in augmented reality. Another common challenging case is the
image distortion due to rolling shutter effect. In contrast to a global shutter
camera, which captures all pixels at the same time, a rolling shutter camera
sequentially captures the image pixels row by row. Therefore, different
types of distortions, e.g. skew, smear or wobble, will appear if the camera is
moving during the image capture. Since most of the VO algorithms assume
the input images are captured by global shutter cameras, rolling shutter
distorted images would thus affect the performance of VO algorithms. Un-
der this perspective, we propose to improve the quality of the captured
images (i.e. image deblurring and rolling shutter effect correction) by deep
convolutional neural networks (CNN). All the input images can thus be
preprocessed before they are fed into a normal VO pipeline.

Algorithmic perspective: The above decoupled approaches for motion
blur aware VO algorithm have several drawbacks: 1) Although recent deep
network achieves remarkable performance on image deblurring, they still
struggle to recover high quality sharp images from severely motion blurred
input. In experiments we show that these recovery artifacts can still degrade
the performance of visual odometry and lead to tracking failures. 2) State-
of-the-art image deblurring networks require significant computation effort
and usually cannot run in real time even with a high-end GPU [NKL17,

6

1.3. Related work

TGS+18, KBM+18]. This excludes their use for most visual odometry
application scenarios. Recently Kupyn et al. [KMWW19] proposed a more
efficient network for deblurring. However, we experimentally found that
it has limited generalization performance for VO applications due to its
reduced model capacity. Under this perspective, we propose a hybrid novel
visual odometry method with direct approach that explicitly models and
estimates the camera’s local trajectory within exposure time. This allows
us to actively compensate for any motion blur that occurs due to the camera
motion, in a coupled way.

As the recent advances of deep learning technique in many computer
vision tasks, several pioneering networks have been proposed to tackle the
VO problem, with the aim to explore a new research direction to further
improve the performance (e.g. in terms of accuracy and robustness) of VO
algorithms. In this dissertation, we also try to study the limitations of exist-
ing learning based methods, such that it can provide beneficial insights for
future research. By demonstrating the fact that a single image motion esti-
mation network is sufficient to predict reasonable camera motions on KITTI
dataset [GLU12], we conclude that KITTI odometry dataset [GLU12] might
not be sufficient for those networks to evaluate on (those learning based
pipelines are usually evaluated on KITTI dataset [GLU12] only). The
reason is that the camera motions from KITTI dataset [GLU12] are usually
constrained by the street directions, from which a single image already
embeds many motion cues for the network to exploit.

1.3. Related work

Before we dive into the details of our methods, let us have a brief review on
the related work. We present the related work from three different research
areas, i.e. classical geometric based visual odometry, motion deblurring and
rolling shutter effect removal, which are the most related to our dissertation.

7

1. Introduction

1.3.1. Visual odometry

We define four different taxonomies, i.e., number of used cameras, inference
techniques, feature representations, and methods with additional sensors.
Furthermore, we would like to focus on conventional RGB cameras only
(instead of depth cameras and event cameras). VO is an integral part of
visual Simultaneous Localization and Mapping (SLAM). When we refer to
VO in the context of a SLAM algorithm, we refer to the algorithm ignoring
the loop-closure and re-localization parts. Since there are numerous papers
on this problem, we focus on a subset of representative state-of-the-art
algorithms instead of listing all related techniques. A more detailed review
on VO and SLAM techniques can be found in [SF11, FS12, CCC+16].

Number of used cameras: The two most commonly used configurations
are the monocular and the stereo settings. Approaches which use multiple
cameras to build up a generalized camera system have also been proposed
in the literature. We will describe their details in the following.

To the best of our knowledge, the first work in real-time monocular
camera SLAM can be attributed to Davison et al. [Dav03, DRMS07]. They
propose a filtering-based algorithm which runs at 30 Hz using a single
CPU thread on standard PC hardware. In contrast to [Dav03, DRMS07],
Nister et al. [NNB04] propose a pure visual odometry algorithm using
an iterative optimization approach. The proposed algorithm runs at video
rates on a single thread. Later, a system to separate localization and map-
ping on two parallel threads is proposed by Klein et al. [KM07], which
becomes a standard paradigm for future VO algorithms. This separation
enables the system to produce high-quality maps by using more advanced
but computational expensive inference techniques, while simultaneously
achieving real-time localization and mapping. The proposed system is
mainly designed for a small AR workspace. Muartal et al. [MAMT15] fur-
ther improve the system to handle large scale environments by incorporating
re-localization and loop closure modules into the system. Concurrently,
Engel et al. [ESC14] propose another novel monocular SLAM systems.
They also follow the two-thread paradigm, but with new feature representa-
tions and inference techniques in contrast to the aforementioned algorithms.
In particular, instead of using conventional sparse corner features, Engel

8

1.3. Related work

et al. [ESC14] uses all high gradient pixels for pose estimation directly.
Camera pose is tracked by minimizing the photometric intensity errors.
Engel et al. [EKC17] also proposed a new monocular camera VO system,
which shares the same front-end as [ESC14] but has a more advanced and
novel back-end for both pose and structure estimation.

One of the main drawbacks of monocular camera VO is its inability to
recover metric scale. Therefore, to make them more useful for robotic appli-
cations, additional sensor modalities [ZS15] or cameras [LFP11, CLFP10]
are typically employed to capture scale information. For most of the
above mentioned monocular systems, there exists a stereo version which
allows for metric scale recovery. For example, [MAT17a] extends ORB-
SLAM from [MAMT15] to stereo camera configurations. Both [ESC14]
and [FPS14] have also been extended to the stereo setting as proposed
in [ESC15, FZG+17, LHSP17]. For most robotic applications, a wide field
of view (FoV) or even 360◦ FoV is necessary for better situational aware-
ness and perception abilities. Therefore, a generalized camera system com-
prising more than two cameras is favorable. For example, [HLP15,HLP14]
successfully demonstrated a multi-camera SLAM system for a micro aerial
vehicle (MAV). [FSR+13, HLP13] employed a multi-camera system, made
up by four fisheye cameras to provide 360◦ FoV for a ground vehicle.

Inference techniques: There are two main types of techniques to infer
latent camera poses and 3D structures given observed images. The first is
the filtering-based technique. A representative for filtering-based technique
is the MonoSLAM system from Davison et al. [Dav03]. In this system, an
extended Kalman filter (EKF) is utilized for simultaneous localization and
mapping. The camera poses, velocities and 3D feature positions are com-
bined to form a high-dimensional state vector. As for most filtering-based
techniques, this inference technique contains two steps, i.e. a prediction step
and an update (correction) step. Prediction is performed by the underlying
dynamic motion model and is used for the blind interval when no image
observations are available. The update step is used to correct accumulated
errors (and minimize corresponding variances) from the prediction step
using new observations. In contrast to filtering-based approaches, which
usually track only a small subset of camera poses and 3D structure, batch

9

1. Introduction

optimization-based methods (bundle adjustment) iteratively refine the full
structure and the poses of all keyframes. Therefore, Klein et al. [KM07]
advance the technique by separating localization and mapping into two
threads, so that they can use a computational intensive but more accurate
bundle adjustment approach to refine the estimated camera poses and 3D
structures. While the localization thread runs at frame rate, the mapping
thread runs at a much lower frequency.

In the following, we provide an overview over batch optimization based
approaches for state estimation. There are two variants of the batch opti-
mization based approach. Depending on the used feature representations,
which will be described in next section, they can be classified into two
categories, i.e. geometry based approaches and photometric based ap-
proaches. Geometry based approaches refine either camera poses or 3D
structures by minimizing feature re-projection errors. Representative sys-
tems include PTAM [KM07] and ORB-SLAM [MAMT15]. Photometric-
based approaches minimize the pixel intensity errors directly to estimate
either camera poses or 3D geometry. Representative systems include
LSD-SLAM [ESC14] and DSO [EKC17]. Similar to [EKC17], Alismail
et al. [ABL16a] also propose a photometric bundle adjustment algorithm for
visual SLAM. Forster et al. [FPS14] also propose a hybrid approach, which
combines both photometric based approach and geomtry based approach.

Both variants possess advantages and disadvantages. Geometry-based
approaches are usually more robust to illumination changes which photo-
metric approaches suffer from. Furthermore, geometry-based approaches
are also more robust to dynamic scenes due to the usage of robust algorithms
(e.g., RANSAC) for feature matching. However, RANSAC is usually rela-
tively time-consuming. In contrast, photometric-based approaches directly
use the image pixel intensities as features and avoid the feature extrac-
tion and matching steps. Recently, the newly proposed system by Engel
et al. [EKC17] demonstrates that photometric-based approaches are able to
outperform geometry-based approaches in terms of accuracy and efficiency
on challenging datasets.

Feature representations: As discussed in the previous paragraph, there
are two main types of feature representations used in VO algorithms: sparse

10

1.3. Related work

feature-based representations and direct pixel-based representations, typi-
cally considered at locations where the image gradient is high.

Sparse feature-based VO typically exploits corners as interest points.
The feature descriptor is then computed from the image content in a local
neighborhood around each detected corner. There exist a large variety of
feature descriptors in the literature, e.g., FAST [RD06], SIFT [Low04],
SURF [BTG06], ORB [RRKB11] et al. Most feature descriptors are de-
signed for robustness against illumination changes, scale changes and other
geometry changes. While sparse feature-based VO (e.g., ORB-SLAM)
leads to a relatively easy optimization problem, those algorithms suffer
from poorly textured scenes due to the small number of corner features (e.g.
in indoor environment which usually contains more edge features) which
can be used to establish sufficienct number of correspondences.

To overcome these problems, [ESC14, TNPH15, EKC17] propose to
use pixels with high gradients (semi-dense) directly as features. The ad-
vantage of such an approach is that it can take advantage of image edges
in addition to classical corner features, which helps in particular in the
presence of poorly textured scenes. However, a good pose initialization
is important for direct methods as they are prone to local minima during
the optimization. Furthermore, the depth of each image pixel with high
gradients need to be estimated simultaneously with the camera poses. Ex-
perimental results demonstrate that direct methods can be implemented
efficiently and are often more robust to poor textured scenes as well as mo-
tion blur degraded images compared to conventional sparse feature-based
methods. A hybrid approach from [FPS14] extracts FAST features and uses
the photometric-based approach for efficient camera pose tracking, while
reverts to geometry-based bundle adjustment for back-end. The proposed
system is extremely efficient and runs at 300 Hz on a consumer laptop.
The system from Engel et al. [EKC17] demonstrates that even an approach
which considers all high gradient pixels can run in real-time.

Inertial aided VO: As mentioned in the previous sections, one of the
main drawbacks for monocular VO is its inability to recover metric scale.
Thus, additional sensor modalities or cameras are usually used for this
purpose. For example, [ZS15] integrate Lidar and visual measurements

11

1. Introduction

together to obtain a fast and robust odometry system, which currently ranks
at top position in the KITTI VO benchmark [GLU12]. The benefits of
using inertial measurements have also been successfully demonstrated in
several state-of-the-art visual inertial odometry pipelines [MR07b,LLB+15,
FCDS17]. In this section, we review inertial sensor-aided VO pipelines.

One of the pioneering state-of-the-art VIO systems can be attributed to
MSCKF from [MR07b]. They tightly couple visual measurements and
inertial measurements using an EKF. The inertial measurements are used
to drive the rigid-body kinematic model-based prediction step, while the
visual measurements are used for the update (correction) step. The resulting
system is efficient and achieves good performances in terms of accuracy.
Leutenegger et al. [LLB+15] later advance the technique by proposing
a new algorithm based on batch optimization (i.e. aka. OKVIS). One of
the main drawbacks of OKVIS is that the IMU measurements must be re-
integrated in every optimization iteration which is time-consuming. There-
fore, Forster et al. [FCDS17] propose an algorithm to address this problem.
They pre-integrate the IMU measurements before the optimization starts.
For each optimization step, they use these pre-integrated “measurements”
only, saving computational resources. Experimental results show that the
system outperforms both OKVIS and MSCKF in terms of accuracy and
efficiency. The system is able to run at more than 50 Hz on a standard
laptop.

Besides the ability to observe metric scale, inertial measurements also
make the VO algorithm more robust due to their complementary nature
wrt. the image observations. Inertial measurements are usually sampled
at much higher frequencies (>200 Hz) compared to visual measurements
(∼30 Hz). They can capture the camera motion and dynamics better, which
is important for robust visual tracking. Furthermore, visual tracking is
susceptible to fast motion as features are easily lost and direct methods can
get stuck in a local optimum. Inertial measurements can help to overcome
outliers or sensor occlusions. Therefore, integrating inertial measurements
is also beneficial for stereo-based visual odometry systems [UESC16] or
multi-camera approaches [HLP15, FSR+13], where metric scale is directly
available even without inertial measurements.

12

1.3. Related work

1.3.2. Image motion deblurring

Motion deblurring methods can be categorized into two groups: those
that assume spatially uniform blur [Ric72, KF09, XJ10, FSH+06, SJA08,
LWDF09, CL09] and those considering spatially varying blur [WSZP10,
GJZ+10,TTB11]. Uniform deblurring methods assume that the blur kernel
is identical for each pixel of the input image. Spatially varying deblur-
ring methods assume that the blur kernels for each pixel may change with
respect to its spatial location. Motion deblurring methods can also be
classified into non-blind deblurring [Ric72,KF09,TTB11] and blind deblur-
ring [XJ10, FSH+06, SJA08, LWDF09, CL09, WSZP10, GJZ+10] methods.
Non-blind deblurring methods assume a known blur kernel to recover the
latent sharp image. In contrast, blind deblurring methods need to simultane-
ously recover both the latent image and the blur kernel. Existing techniques
can also be classified into two categories, i.e. optimization-based methods
and deep learning based methods. We will detail them as follows.

Optimization-based methods: Optimization-based methods rely on
the motion blur formation model to recover the latent sharp image by
minimizing an energy function [KF09, XJ10, FSH+06, SJA08, LWDF09,
CL09,ZXJ13], e.g., using Gaussian [KF09,XJ10,CL09] or Poisson [Ric72,
TTB11] likelihood functions in the context of maximum-a-posteriori (MAP)
estimation. Depending on the number of input blurry images, additional
terms can be formulated by warping the other image(s) to a reference image
using either dense flow or by combining relative camera poses with dense
depth maps [KL15, PL17]. Due to the nonlinear and ill-posed (in the case
of a single image) nature of the problem, prior information on either the
motion blur kernel or the latent sharp image must be used to constrain the
solution space [KF09, XJ10, FSH+06, SJA08, KF09, XJ10, CL09]. While
optimization based approaches often offers better generalization perfor-
mance, they are usually computational expensive, which prevents them
from time constrained applications.

Deep Learning based methods: Deep learning based methods use con-
volutional neural networks (CNNs) to recover the latent sharp image. Xu
et al. [XRLJ14] propose a CNN with two sub-networks, a two-hidden-layer

13

1. Introduction

deconvolution network and a two-hidden-layer outlier rejection network.
The network is trained end-to-end with known ground truth sharp images.
An even deeper network with 15 layers was proposed in [HKZ15] for
text image deblurring. [NKL17] further increased the number of layers
to 40 in a multi-scale manner, resulting in a network with 120 layers for
three scales. To further improve the network performance, an adversarial
loss [GPM+14] was used in [KBM+18]. [TGS+18,ZPR+18] use recurrent
neural networks for single image deblurring.

More recently, network architectures for multi-frame inputs, which are
able to exploit temporal information, have been proposed [SDW17,WHS17,
KLSH17]. Su et al. [SDW17] uses a network with skip connections for
video deblurring and Wieschollek et al. [WHS17] exploit temporal informa-
tion using a recurrent architecture. A spatio-temporal recurrent architecture
with a small computational footprint was proposed in [KLSH17].

Deep learning-based approaches usually outperform optimization-based
methods in terms of both efficiency and image quality. However, nearly all
of the recent deep learning based methods are trained in a fully supervised
manner with only few notable exceptions. Madam et al. [MKA18] adapted
CycleGAN [ZPIE17] to the single image deblurring task. Using unpaired
sharp images for training, they obtained good performance in the specific
domain of images (e.g., text, faces). Chen et al. [CGG+18] propose to
include a self-consistency loss for supervision. However, they report that
their self-supervised model leads to degenerated solutions and hence opti-
mize a hybrid loss function which heavily relies on supervision in the form
of sharp images.

1.3.3. Rolling shutter effect removal

We categorize the related work on rolling shutter effect removal into clas-
sical approaches and deep learning based approaches. The classical ap-
proaches can be further classified into single image based and multiple
image based approaches.

Classical single image based approaches: Rengarajan et al. [RRA16]
propose to take advantage of the “straight lines must remain straight” as-

14

1.3. Related work

sumption to rectify a single rolling shutter image. The camera motion is
assumed to be purely rotational. Curves are extracted and the motion is
iteratively estimated by enforcing the transformed curves to be straight.
Purkait et al. [PZL17] assumes the 3D scene captured by the camera obeys
Manhattan world assumption [CY00]. The distortion is corrected by jointly
aligning the vanishing directions. Lao and Ait-Aider [LAA18] propose a
minimal solver to estimate the camera motion based on four straight lines
from a single image. The motion is parameterized by pure rotations. The
RANSAC algorithm is used to remove outliers such that the camera motion
can be estimated robustly. The rolling shutter effects can then be removed
given the estimated motion.

Classical multiple image based approaches: Liang et al. [LCC08] es-
timates per-pixel motion vector to rectify a rolling shutter image. Block
matching is used to find correspondences between two consecutive frames,
such that the motion can be estimated. Forssén and Ringaby [FR10] as-
sumes the camera has either pure rotation or in-plane translational motion.
The camera motion is estimated by minimizing the re-projection errors
between sparse corresponding points. A KLT tracker [BM04] is used to
establish the sparse correspondences. Karpenko et al. [KJBL11] extends
the work of [FR10] by using inertial measurements. They model the camera
motion by pure rotations. The rolling shutter effect is removed by solving
an optimization problem, which jointly stabilizes the video and calibrates
the gyroscope. Baker et al. [BBKS10] estimates the per-pixel motion vector
from a video sequence to correct the rolling shutter distortion. The motion
is estimated via a constant affine or translational distortion model, and is
estimated in up to 30 row blocks. Grundmann et al. [GKCE12] relaxes
the constraints that a calibrated camera is required for rolling shutter ef-
fect removal. They model the motion between two neighbouring frames
as a mixture of homography matrices. The mixture of homographies is
estimated by minimizing the re-projection errors of corresponding points.
Zhuang et al. [ZCL17] proposes to solve a dense SfM problem given two
consecutive rolling shutter images. They estimate both the camera motion
and dense depth map from dense correspondences. A minimal solver is
proposed to estimate the camera motion. Both the depth map and motion

15

1. Introduction

are further estimated/refined by minimizing the re-projection errors. Vasu
et al. [VMR18] propose to solve occlusion aware rolling shutter correction
problem using multiple consecutive frames. They model the 3D geometry
as a layer of planar scenes. The depth, camera motion, latent layer mask
and latent layer intensities are jointly estimated. The global shutter im-
age is recovered by the proposed image formation model given all above
estimations.
Deep learning based approaches: Rengarajan et al. [RBR17] propose
to estimate the camera motion from a single rolling shutter image by
using a deep network. They assume a simple affine motion model. The
global shutter image is then recovered given the estimated motion. They
train the network with synthetic data, which is generated by using the
proposed motion model. Zhuang et al. [ZTJ+19] extends [RBR17] for
depth aware rolling shutter effect correction from a single image. Two
independent networks are used to predict the dense depth map and camera
motion respectively. The global shutter image is then recovered as a post-
processing step, given the estimated dense depth map and camera motion.

1.4. Overview of the dissertation

Our dissertation consists of seven chapters. We will briefly describe their
details as follows. Chapter 2 presents necessary background knowledge,
such that the dissertation is self-contained. We will present the details on
improving the robustness of VO methods from the hardware perspective in
Chapter 3 and Chapter 4. In particular, Chapter 3 presents the details on
how we extend a direct visual odometry method with a fisheye stereo cam-
era. Chapter 4 demonstrates the details on a multi-camera VO algorithm.
The algorithms which improve the quality of captured images are presented
in both Chapter 5 and Chapter 6. In particular, we present a self-supervised
motion deblurring algorithm in Chapter 5 and a rolling shutter effect re-
moval algorithm in Chapter 6. Lastly, we will present a hybrid approach
which improves the performance of VO method against motion blur in
Chapter 7. In Chapter 8, we study the limitations of existing learning based
methods, such that future research could benefit from. Chapter 9 concludes

16

1.4. Overview of the dissertation

the dissertation and discusses possible future works in the area of robust
3D vision.

17

2. Preliminaries

In this chapter, we will present the necessary preliminary knowledge so that
the dissertation can be more self-contained. In particular, we will present
two commonly used camera models, i.e. the pinhole camera model and
the unified camera model for a fisheye camera. We will also discuss the
exponential function and the logarithm function on the Lie group in details,
since they are commonly used in the implementation of a visual odometry
pipeline. The state marginalization technique which is used to reduce the
number of estimated states for visual odometry, will also be discussed.

2.1. Camera models
We define two abstract functions π : R3 → R2 and π−1 : R2 × R → R3

to represent the basic functions of a camera model, i.e. projection function
and back-projection function respectively. The projection function π :
R3 → R2 is used to project a 3D scene point into a 2D pixel point and
vice verse for π−1 : R2 × R → R3. There are several camera models to
model different camera devices. Here we focus on the two commonly used
camera models, i.e. the pinhole camera model for normal cameras and the
unified camera model [MR07a] for fisheye cameras.
Pinhole camera model: The projection function π : R3 → R2 of a
pinhole camera model can be represented as

x =

[
u
v

]
= π(X) =

[
fx 0 cx
0 fy cy

]xzy
z
1

 , (2.1)

where x =
[
u v

]T
is the pixel coordinate, fx, fy, cx and cy are the

19

2. Preliminaries

intrinsice parameters of a pinhole camera model, X =
[
x y z

]T
is the

corresponding 3D point. The back-projection function π−1 : R2×R→ R3

can be derived as

X =

xy
z

 = π−1(x, λ) = λ ·

 1
fx

0 −cx
0 1

fy
−cy

0 0 1

uv
1

 , (2.2)

where λ is the depth of the 3D point X.
From Eq. (2.1), we can derive the Jacobian matrix for its projection

function as follows, which will be used in later sections for gradient-based
optimization:

Jπ =

[
∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

]
, (2.3)

=

[
fx 0 cx
0 fy cy

]
∂(xz)

∂x

∂(xz)

∂y

∂(xz)

∂z
∂(yz)

∂x

∂(yz)

∂y

∂(yz)

∂z
∂(1)
∂x

∂(1)
∂y

∂(1)
∂z

 , (2.4)

=

[fx
z 0 −x·fxz2
0

fy
z −y·fyz2

]
. (2.5)

Unified camera model: There are two steps required to project a 3D
scene point X to a pixel point x. First, X is projected onto a unit sphere as

Xs =

xsys
zs

 =

x√

x2+y2+z2
y√

x2+y2+z2

z√
x2+y2+z2

 . (2.6)

It is then projected to the pixel point x via

x =

[
u
v

]
=

[
fx 0 cx
0 fy cy

] [xs
zs+ξ

ys
zs+ξ

1
]T
, (2.7)

20

2.1. Camera models

where ξ is an intrinsic parameter of unified camera model and can be
obtained by offline calibration.

Similarly, there are also two steps to compute X from x. First, x is
back-projected to the normalized plane (i.e. with λ = 1) as X̄ by Eq. (2.2).
We can then lift X̄ =

[
x̄ ȳ 1

]T
to the unit sphere by

Xs =

xsys
zs

 =

 αx̄
αȳ
α− ξ

 , (2.8)

where α =
ξ+
√

1+(1−ξ2)(x̄2+ȳ2)

x̄2+ȳ2+1 . If we know the ray depth corresponding
to x as d, then we can obtain X as

X = d ·Xs. (2.9)

The Jacobian matrix of the projection function for a unified camera
model can be derived from both Eq. (2.6) and Eq. (2.7). In particular, the
Jacobian matrix for projecting 3D scene point from X to Xs can be derived
as

J1 =

∂xs
∂x

∂xs
∂y

∂xs
∂z

∂ys
∂x

∂ys
∂y

∂ys
∂z

∂zs
∂x

∂zs
∂y

∂zs
∂z

 =

1
a2
− x2

a3
(−1) · x·ya3 (−1) · x·za3

(−1) · x·ya3
1
a2
− y2

a3
(−1) · y·za3

(−1) · x·za3 (−1) · y·za3
1
a2
− z2

a3

(2.10)

where

a1 = x2 + y2 + z2, (2.11)

a2 =
√
x2 + y2 + z2, (2.12)

a3 = (x2 + y2 + z2)
3
2 . (2.13)

The Jacobian matrix for projecting Xs from unit sphere to pixel point x

21

2. Preliminaries

can be derived as

J2 =

[
∂u
∂xs

∂u
∂ys

∂u
∂zs

∂v
∂xs

∂v
∂ys

∂v
∂zs

]
(2.14)

=

[
fx 0 cx
0 fy cy

]
∂(xs
zs+ξ

)

∂xs

∂(xs
zs+ξ

)

∂ys

∂(xs
zs+ξ

)

∂zs
∂(ys
zs+ξ

)

∂xs

∂(ys
zs+ξ

)

∂ys

∂(ys
zs+ξ

)

∂zs
∂(1)
∂xs

∂(1)
∂ys

∂(1)
∂zs

 (2.15)

=

[
fx
zs+ξ

0 − xs·fx
(zs+ξ)2

0
fy
zs+ξ

− ys·fy
(zs+ξ)2

.

]
(2.16)

Thus, the Jacobian matrix for the projection function π : R3 → R2 can be
computed by the chain rule as

Jπ = J2 · J1. (2.17)

2.2. Exponential map

The exponential map operator connects the Lie algebra (e.g. so(3)) to its
Lie group (e.g. SO(3)). We can formally define the exponential map
as exp : R3 → R3×3 for SO(3). The rotation matrix is parameter-
ized by unit quaternion representation. If we further denote the tan-
gent vector r =

[
rx ry rz

]T ∈ so(3) and use the unit quaterion

q̄ =
[
qx qy qz qw

]T
to represent the rotation matrix R ∈ SO(3),

we can have

q̄ =

qx
qy
qz
qw

 = exp(r) =

λrx
λry
λrz

cos(θ)

 , (2.18)

where λ = sin(θ)
2θ and θ = 1

2

√
r2
x + r2

y + r2
z . We therefore can derive the

Jacobian ∂q̄
∂r ∈ R4×3 as follows:

22

2.2. Exponential map

∂q̄

∂r
=

∂qx
∂rx

∂qx
∂ry

∂qx
∂rz

∂qy
∂rx

∂qy
∂ry

∂qy
∂rz

∂qz
∂rx

∂qz
∂ry

∂qz
∂rz

∂qw
∂rx

∂qw
∂ry

∂qw
∂rz

 , (2.19)

where

∂θ

∂rx
=
rx
2θ
,

∂θ

∂ry
=
ry
2θ
, (2.20)

∂θ

∂rz
=
rz
2θ
,

∂λ

∂θ
=

cos(θ)− 2λ

2θ
, (2.21)

∂qx
∂rx

=
∂λ

∂θ

∂θ

∂rx
rx + λ,

∂qx
∂ry

=
∂λ

∂θ

∂θ

∂ry
rx, (2.22)

∂qx
∂rz

=
∂λ

∂θ

∂θ

∂rz
rx,

∂qy
∂rx

=
∂λ

∂θ

∂θ

∂rx
ry, (2.23)

∂qy
∂ry

=
∂λ

∂θ

∂θ

∂ry
ry + λ,

∂qy
∂rz

=
∂λ

∂θ

∂θ

∂rz
ry, (2.24)

∂qz
∂rx

=
∂λ

∂θ

∂θ

∂rx
rz,

∂qz
∂ry

=
∂λ

∂θ

∂θ

∂ry
rz, (2.25)

∂qz
∂rz

=
∂λ

∂θ

∂θ

∂rz
rz + λ,

∂qw
∂rx

= − sin(θ) · ∂θ
∂rx

, (2.26)

∂qw
∂ry

= − sin(θ) · ∂θ
∂ry

,
∂qw
∂rz

= − sin(θ) · ∂θ
∂rz

. (2.27)

It can be seen that λ = sin(θ)
2θ is not well defined if θ → 0. It is special

23

2. Preliminaries

handled by Taylor series expansion as follows

qx = (
1

2
− 1

12
θ2 +

1

240
θ4)rx, (2.28)

qy = (
1

2
− 1

12
θ2 +

1

240
θ4)ry, (2.29)

qz = (
1

2
− 1

12
θ2 +

1

240
θ4)rz, (2.30)

qw = 1− 1

2
θ2 +

1

24
θ4. (2.31)

Since θ → 0, the corresponding Jacobian is then derived as

∂qx
∂rx

= 0.5,
∂qx
∂ry

= 0,
∂qx
∂rz

= 0, (2.32)

∂qy
∂rx

= 0,
∂qy
∂ry

= 0.5,
∂qy
∂rz

= 0, (2.33)

∂qz
∂rx

= 0,
∂qz
∂ry

= 0,
∂qz
∂rz

= 0.5, (2.34)

∂qw
∂rx

= 0,
∂qw
∂ry

= 0,
∂qw
∂rz

= 0. (2.35)

2.3. Logarithm map
The logarithm map operator is the inverse of the exponential map operator.
It can be formally defined as log : R3×3 → R3 for rotation matrix R ∈
SO(3). We can have the tangent vector r ∈ so(3) if we represent R with
unit quaternion representation q̄ =

[
qx qy qz qw

]T
,

r = log(q̄) = λ

qxqy
qz

 , (2.36)

where λ = 2
arctan(θ

qw
)

θ and θ =
√
q2
x + q2

y + q2
z . We therefore can derive

the Jacobian ∂r
∂q̄ ∈ R3×4 as follows:

24

2.3. Logarithm map

∂r

∂q̄
=

∂rx
∂qx

∂rx
∂qy

∂rx
∂qz

∂rx
∂qw

∂ry
∂qx

∂ry
∂qy

∂ry
∂qz

∂ry
∂qw

∂rz
∂qx

∂rz
∂qy

∂rz
∂qz

∂rz
∂qw

 , (2.37)

where
∂rx
∂qx

=
∂λ

∂qx
qx + λ,

∂rx
∂qy

=
∂λ

∂qy
qx, (2.38)

∂rx
∂qz

=
∂λ

∂qz
qx,

∂rx
∂qw

=
∂λ

∂qw
qx, (2.39)

∂ry
∂qx

=
∂λ

∂qx
qy,

∂ry
∂qy

=
∂λ

∂qy
qy + λ, (2.40)

∂ry
∂qz

=
∂λ

∂qz
qy,

∂ry
∂qw

=
∂λ

∂qw
qy, (2.41)

∂rz
∂qx

=
∂λ

∂qx
qz,

∂rz
∂qy

=
∂λ

∂qy
qz, (2.42)

∂rz
∂qz

=
∂λ

∂qz
qz + λ,

∂rz
∂qw

=
∂λ

∂qw
qz, (2.43)

∂λ

∂qx
=

2qw − λ
θ2

qx,
∂λ

∂qy
=

2qw − λ
θ2

qy, (2.44)

∂λ

∂qz
=

2qw − λ
θ2

qz,
∂λ

∂qw
= −2. (2.45)

It can be seen that λ = 2
arctan(θ

qw
)

θ is not well defined if either θ → 0 or
qw → 0. They are thus special handled as follows:

• If θ → 0, we can approximate λ with λ = 2
qw
− 2θ2

3q3w
. The corre-

spondng Jacobian can be obtained as

∂λ

∂qx
= 2

1

qw
− 4qx

3q3
w

,
∂λ

∂qy
= 2

1

qw
− 4qy

3q3
w

, (2.46)

∂λ

∂qz
= 2

1

qw
− 4qz

3q3
w

,
∂λ

∂qw
= −2

1

q2
w

+ 2
θ2

q4
w

. (2.47)

25

2. Preliminaries

• If qw → 0 and qw > 0, we can have λ = π
θ . The corresponding

Jacobian can be obtained as

∂λ

∂qx
= − λ

θ2
qx,

∂λ

∂qy
= − λ

θ2
qy, (2.48)

∂λ

∂qz
= − λ

θ2
qz,

∂λ

∂qw
= 0. (2.49)

• If qw → 0 and qw < 0, we can have λ = −πθ . The corresponding
Jacobian can be obtained as

∂λ

∂qx
=

λ

θ2
qx,

∂λ

∂qy
=

λ

θ2
qy, (2.50)

∂λ

∂qz
=

λ

θ2
qz,

∂λ

∂qw
= 0. (2.51)

2.4. State marginalization
For a full SLAM problem, the state inference algorithm is usually formu-
lated to maximize the joint posterior probability (MAP)

X ∗ = argmax
X

Pr(X|Z) = argmax
X

Pr(Z|X) Pr(X), (2.52)

where X is the set of all states, X ∗ is its corresponding optimal estimate,
Z is the set of all measurements, Pr(Z|X) is the likelihood function and
Pr(X) is the prior probability of states in X . A prior is usually only
provided for the initial state, i.e., x0, to fix the coordinate frame (i.e. gauge
freedom) used for the above inference algorithm. Thus, the above equation
can be further simplified as

X ∗ = argmax
X

Pr(x0) Pr(Z|X). (2.53)

The measurement model for a typical SLAM problem is usually formulated
as

zij = f(xi,xj) + η, (2.54)

26

2.4. State marginalization

where η is usually modelled as zero mean white Gaussian noise with
covariance as Σij , zij is a measurement from Z , both xi and xj are two
states to be estimated from X . Depends on the measurement type, xi and
xj can be two neighbouring states or not. For example, if zij is from
odometry measurement or IMU, xi and xj are usually neighbouring states.
If zij is visual measurement, xi and xj can be either neighbouring states or
not. To be general, let us denote the measurement function as f(·), which in
reality may be different for different kind of measurements. Thus, we can
re-formulate the above maximization problem to a minimization problem
equivalently by taking the negative-log function on above cost function as

X ∗ = argmin
X

1

2
‖x̂0 − x0‖2Σ0

+
1

2

∑
i

∑
j

‖zij − f(xi,xj)‖2Σij
,

(2.55)
where x̂0 is a prior, Σ0 is usually set to be infinitesimal to fix x̂0 during
optimization, ‖r‖2Σ is defined to be equal to rTΣ−1r and is thus a scalar.
The above cost function is usually optimized by gradient methods, e.g.,
Gauss-Newton method.

It is trivial to observe that the number of states increases without upper
bound with time for an incremental SLAM problem. Thus, the complex-
ity of full MAP estimation increases with time, which makes real-time
inference impossible. In this section, we introduce a technique that can
be used to optimally remove old states such that the total number of states
used for MAP inference is bounded. In particular, the technique enables
an approximation with constant complexity to the full MAP problem. The
theory derived here will be used for the back-end fixed-lag smoother in our
implementation.

To the best of my knowledge, the idea to remove states optimally for
a SLAM problem is first proposed by Sibley et al. in [SMS10]. Dong-
Si et al. further analyse and solve its consistency problem in [DSM11].
Both Leutenegger et al. [LLB+15] and Engel et al. [EKC17] then apply
the formulations to their own odometry problems. Here we follow the
formulations from [DSM11] which gives clear derivations and analysis of
the estimator. To make the formulation general, let us denote the ith state
vector as xi. At timestamp k, we assume there are N states in total within

27

2. Preliminaries

time interval [0, k]. We can further divide this set of N states into three
disjoint subsets Xm, Xr and Xo as following. Set Xm is defined to contain
all the states that we are going to marginalize out/remove, which usually are
well estimated old states. Set Xr contains all the states that we are going
to keep but are connected to a state from Xm, i.e., there is a measurement
z depends on both of them. Set Xo is defined to contain all the remaining
states, i.e., the states we are going to keep and have no relationship with
Xm, but a measurement z can possibly depend on a state from Xr and a
state from Xo. For the ease of the algorithm derivations, we can define

r(xi,xj) = zij − f(xi,xj), (2.56)

where r(xi,xj) is the residual between real measurements and predicted
measurements from both states xi and xj . Now the full SLAM problem
can thus be decomposed into following form

{Xm,Xr,Xo}∗ = argmin
Xm,Xr,Xo

1

2
‖x̂0 − x0‖2Σ0

(2.57)

+
1

2

∑
xi∈Xm

∑
xj∈Xm∪Xr

‖r(xi,xj)‖2Σij
(2.58)

+
1

2

∑
xi∈Xr∪Xo

∑
xj∈Xr∪Xo

‖r(xi,xj)‖2Σij
, (2.59)

= argmin
Xm,Xr

1

2

∑
xi∈Xm

∑
xj∈Xm∪Xr

‖r(xi,xj)‖2Σij
(2.60)

+ argmin
Xr,Xo

1

2

∑
xi∈Xr∪Xo

∑
xj∈Xr∪Xo

‖r(xi,xj)‖2Σij
,

(2.61)

where r should be a valid residual, i.e., has a real corresponding physical
measurements, and we combine Eq. (2.57) into Eq. (2.58) for simplicity
since it can be considered as a well estimated old state with linear mea-
surement function. As the above cost function is minimized after certain

28

2.4. State marginalization

iterations, we can approximate it with its 2nd order Taylor series as follows

E(Xm,Xr,Xo) =
1

2

∑
xi∈Xm

∑
xj∈Xm∪Xr

‖r(xi,xj)‖2Σij
(2.62)

+ argmin
Xr,Xo

1

2

∑
xi∈Xr∪Xo

∑
xj∈Xr∪Xo

‖r(xi,xj)‖2Σij
,

(2.63)

≈
∑

xi∈Xm

∑
xj∈Xm∪Xr

{g(x̂i, x̂j) + JTgij

[
x̂i − xi
x̂j − xj

]
(2.64)

+
1

2

[
x̂i − xi
x̂j − xj

]T
Hgij

[
x̂i − xi
x̂j − xj

]
} (2.65)

+ argmin
Xr,Xo

1

2

∑
xi∈Xr∪Xo

∑
xj∈Xr∪Xo

‖r(xi,xj)‖2Σij
,

(2.66)

where Jg and Hg are the Jacobian and Hessian matrices of function
g(xi,xj) evaluated at current estimates x̂i and x̂j and function g(xi,xj)
is defined as

g(xi,xj) =
1

2
‖r(xi,xj)‖2Σij

. (2.67)

Now it is trivial to observe that we can rewrite Eq. (2.64) and Eq. (2.65) in
matrix form as

E(Xm,Xr) = G+JT
[
X̂m −Xm

X̂r −Xr

]
+

1

2

[
X̂m −Xm

X̂r −Xr

]T
H

[
X̂m −Xm

X̂r −Xr

]
,

(2.68)
where G is a scalar and equals to the sum of all functions g(x̂i, x̂j), Xm

and Xr are vectors containing all states from Xm and Xr respectively, both
X̂m and X̂r are the current estimates for Xm and Xr respectively, both
J and H are stacked based on Jgij and Hgij according to the ordering of

29

2. Preliminaries

Xm and Xr as

J =

[
Jm
Jr

]
, (2.69)

H =

[
Hmm Hmr

Hrm Hrr

]
. (2.70)

Since Gauss-Newton method is usually used for the above cost function
optimization, both J and H can readily be obtained from the last optimiza-
tion iteration. At timestamp k + 1, we can get new measurements as well
to create new set of states Xn. To keep the number of total states bounded,
we can optimally remove all states from Xm before we incorporate new
set of states Xn. From energy function minimization perspective, opti-
mally removing states from Xm is equivalent to minimizing the energy
function, i.e. Eq. (2.68), with respect to all states Xm. We can easily get
the closed-form solution for the optimal X∗m due to the quadratic form of
Eq. (2.68). In particular, X∗m can be obtained by taking gradient operator
on both side of Eq. (2.68) with respect to Xm and then solve for X∗m by
setting ∂E(Xm,Xr)

∂Xm
= 0. After certain algebric manipulations, we can get[

Jm
Jr

]T [−1
0

]
+

[
X̂m −Xm

X̂r −Xr

]T [
Hmm Hmr

Hrm Hrr

] [
−1
0

]
= 0. (2.71)

The above equation can further be simplified to be[
Hmm Hmr

Hrm Hrr

] [
X̂m −Xm

X̂r −Xr

]
= −

[
Jm
Jr

]
, (2.72)

in which we use the property H = HT . Now we can solve X̂m −Xm as

X̂m−Xm = (Hmm−HmrH
−1
rr Hrm)−1(−Jm+HmrH

−1
rr Jr). (2.73)

By back-substituting X̂m −Xm to Eq. (2.68), we can get

E(Xr) = E(X ∗m,Xr) = λ+JTEr (X̂r−Xr)+
1

2
(X̂r−Xr)

THEr (X̂r−Xr),

(2.74)

30

2.4. State marginalization

where we have

JEr = −Jr + HrmH−1
mmJm, (2.75)

HEr = Hrr −HrmH−1
mmHmr, (2.76)

and they are all evaluated at current estimates of Xm and Xr, i.e. at
timestamp k. Now it is trivial to find that the full MAP estimator at
timestamp k is permanently approximated by X ∗m with the benefit of using
less states for the optimization. At timestamp k + 1, we have new states
Xn, we can then approximate the full MAP estimator as follows.

{X ∗r ,X ∗o ,X ∗n} = argmin
Xm,Xr,Xo,Xn

E(Xm,Xr,Xo,Xn) (2.77)

= argmin
Xm,Xr

E(Xm,Xr) + argmin
Xr,Xo

E(Xr,Xo) (2.78)

+ argmin
Xr,Xo,Xn

E(Xr,Xo,Xn), (2.79)

≈ argmin
Xr

E(Xr) + argmin
Xr,Xo

E(Xr,Xo) (2.80)

+ argmin
Xr,Xo,Xn

E(Xr,Xo,Xn), (2.81)

where we assume Xn has no connection with Xm, E(Xr,Xo,Xn) contains
only residuals involving at least one state from Xn. The above energy
function can then be optimized by Gauss-Newton method or other gradient
method. It can be observed that only the prior term E(Xr) affects the
sparsity pattern of the Hessian matrix of above energy function. Dong-si et
al. observes the problem that the Jacobian and Hessian matrices of E(Xr)
are to be evaluated at different value of Xr for optimization after timestamp
k in [DSM11]. However, it can be observed that E(Xr) is permenently
approximated by its 2nd-order Taylor expansion around the estimate of Xr

at timestamp k. This inconsistent evaluation of the Jacobian and Hessian
matrices will result in spurious measurements and make the estimator
inconsistent. To solve this problem and to make the estimator more accurate,
Dong-si et al. propose a simple solution in [DSM11]. In particular, they
propose to fix the evaluation point of Xr for the Jacobian and Hessian

31

2. Preliminaries

matrices at their estimates at timestamp k for future linearizations. We will
adopt this solution in our future implementations.

32

Part I.

Hardware Perspective

33

3. Direct Visual Odometry for
a Fisheye-Stereo Camera

3.1. Introduction

Forster et al. [FPS14] and Engel et al. [ESC14] started a new wave of semi-
direct and direct visual odometry (VO) methods respectively for camera
motion estimation. Different from previous sparse feature-based visual
odometry methods [SF11, FS12], which usually require feature detection
and matching for each frame, direct approaches estimate the camera poses
and scene structures directly from raw pixel intensity values.

Semi-direct and direct visual odometry methods generally follow the
simultaneous tracking and mapping paradigm [KM07]. These two types
of methods are similar in the aspect that pixel intensity values are used for
both motion estimation and stereo matching. The difference is that semi-
direct methods optimize pose and structure by minimizing feature-based
re-projection errors, while direct methods estimate pose and structure by
minimizing photometric errors. Similar to sparse feature based VO meth-
ods, the semi-direct approach samples sparse corner features for motion
estimation. However, direct approach usually samples a large number of
pixels with high gradients (i.e. semi-dense). To simultaneously estimate the
camera motion and do semi-dense 3D reconstruction, we adopt the direct
approach for our algorithm.

The metric scale ambiguity is a problem for monocular VO algorithms
[ESC14, FPS14]. The community has proposed the use of inertial mea-
surement units (IMUs) [LLB+15, MR07b, TNPH15] or stereo cameras
[CLFP10, LFP11] to recover the metric scale for real-world applications.
We see a stereo camera as more robust than an IMU for automotive applica-

35

3. Direct Visual Odometry for a Fisheye-Stereo Camera

tions. The reason is that cars mostly accelerate during departure, breaking
and turns. Most of the times, cars run at near constant speed, where the
IMU has low signal to noise ratios and would be less reliable. To further
improve the robustness of the proposed VO algorithm, we adopt fisheye
cameras to enlarge the field of view, which has been shown is beneficial to
the VO algorithm [ZRFS16]. It significantly increases the number of high
gradient pixels, which enables the algorithm to estimate the camera motion
more robust and accurate.

Therefore, we propose a direct visual odometry algorithm for a fisheye-
stereo camera in this chapter, which is based on our publication [LHSP17].
Real world experimental results demonstrate that our algorithm not only
gives low-drift motion estimation but also is able to do accurate semi-dense
3D reconstruction.

3.2. Notations

We denote the global world coordinate frame with FW , the stereo-camera
coordinate frame with FS , and the individual camera coordinate frames
with FL and FR. We denote the image captured by the left camera at time
step k as IkL. Similarly, IkR denotes the image captured by the right camera
at timestamp k. We denote the camera pose at time step k by a rigid body
transformation matrix TW

Sk
∈ SE(3), which transforms points from the

stereo coordinate frame FS to the global world coordinate frame FW . The
transformation matrix TW

Sk
is parameterized by a unitary quaternion and a

translation vector. It is thus over-parameterized by 7 parameters, while it
has only 6 degrees of freedom. Given the extrinsic parameters of the stereo
camera, we are able to compute the poses of the left camera and the right
camera as

TW
Lk

= TW
Sk
·TS

L, (3.1)

TW
Rk

= TW
Sk
·TS

R, (3.2)

where TS
L and TS

R are the extrinsic parameters of the left camera and the
right camera respectively.

36

3.3. Method

Given the fact that the rigid body transformation matrix is over parame-
terized, on-manifold optimization requires a minimal representation of the
rigid body transformation. In this case, we use the Lie algebra se(3) corre-
sponding to the tangent space of SE(3). We denote the algebra elements,
also known as twist coordinates, with ξ = [v,ω]T where v is the linear
velocity and ω is the angular velocity. We use the exponential function to
transform the twist coordinate ξ ∈ se(3) to a rigid body transformation
matrix T ∈ SE(3):

T(ξ) = exp(ξ). (3.3)

Similarly, we use the logarithm function to transform a rigid body transform
matrix T ∈ SE(3) to twist coordinate ξ ∈ se(3):

ξ = log(T). (3.4)

The details on the exponential map function and the logarithm map function
can be found from Chapter 2.

3.3. Method
In this section, we describe our semi-dense visual odometry algorithm for
a fisheye-stereo camera. As shown in Fig. 3.1, our algorithm follows the
simultaneous tracking and mapping paradigm [KM07], which encompasses
a tracking thread and a mapping thread. The tracking thread tracks the
current frame with respect to a keyframe. The mapping thread initializes
and refines the depth map corresponding to the latest keyframe. Both static
stereo and temporal stereo are used for depth initialization and refinement
respectively.

The tracker consists of a model-based motion predictor, and a pose
estimator. The motion predictor predicts the camera pose of current frame
based on the constant velocity assumption. With the predicted pose, the
pose estimator estimates the camera pose of current frame by direct image
alignment. It maximizes the photometric consistency between the latest
keyframe and current frame, which we will detail in the next section. For
efficiency, we only track the frames captured by the left camera.

37

3. Direct Visual Odometry for a Fisheye-Stereo Camera

Plane-sweeping
stereo

Model-based
motion prediction

Motion stereo

Direct image
alignment

KF?

Local map

Request KF

Insert

Refine

Tracker Mapper

Figure 3.1.: System overview

To reduce pose drifts, we adopt the keyframe mechanism for the mapper.
Current frame is selected as a keyframe if the relative pose with respect to
its latest keyframe exceeding a pre-defined threshold. Since we are using
fisheye cameras, conventional stereo matching algorithm, which assumes
the input stereo images are pre-rectified would not work. We therefore
use the plane-sweeping stereo matching method [HHL+15] to estimate the
depth of newly sampled feature points from the latest created keyframe (i.e.
static stereo). To further refine the semi-dense depth map, current frame
(which is captured by the left camera) is also used for stereo matching (i.e.
motion stereo). The relative pose between the current frame and the latest
keyframe is provided by the tracker. We will detail them as follows.

3.3.1. Semi-dense image alignment

The tracking thread of our pipeline tracks the current frame against its latest
keyframe by using semi-dense direct image alignment algorithm. Direct
image alignment algorithm is the core of direct method. It estimates the
camera pose by maximizing the photometric consistency across the frames.
For our method, we estimate the camera pose of the current frame with

38

3.3. Method

respect to its latest keyframe by minimizing following cost function:

T̃cur
ref = argmin

Tcurref

∑
i

‖Iref (xi)− Icur(x̂i)‖2 , (3.5)

where Tcur
ref ∈ SE(3) is the transformation matrix from the reference

keyframe to current frame, Iref is the image of the reference keyframe,
Icur is the image of the current frame, xi ∈ R2 is one of the sampled high
gradient pixels in the reference keyframe, and x̂i ∈ R2 is the corresponding
pixel of xi in the current image. The camera pose of current frame in the
global world coordinate can then be recovered by

TW
cur = TW

ref · (Tcur
ref)−1, (3.6)

where TW
ref is the camera pose of the latest keyframe in the global world

coordinate frame. We can further have

x̂i = π(Tcur
ref · π−1(xi, di)), (3.7)

where π : R3 → R2 is the camera projection function, which maps a 3D
point to the 2D image plane; π−1 : R2 × R → R3 is the camera back-
projection function, which transforms a 2D point with known depth di to a
3D point.

The cost function can be solved iteratively by using the Gauss-Newton
method or the Levenberg-Marquardt method. To achieve better efficiency,
we employ the inverse compositional algorithm [BM04]. It does one-time
computation of the Jacobian and Hessian matrices instead of re-computing
them for each iteration, so that the computational cost can be reduced. In
particular, we minimize following cost function instead of Eq. (3.5) for
each iteration:

ξ∗ = argmin
ξ

∑
i

∥∥Iref (π(T(ξ) ·Pi))− Icur(π(Tcur
ref ·Pi))

∥∥
2
, (3.8)

where ξ ∈ se(3) is the twist coordinate on the manifold and we can convert
it to a rigid body transformation matrix T(ξ) ∈ SE(3) via Eq. (3.3),
Pi ∈ R3 is the 3D coordinate cooresponding to pixel xi ∈ R2 with known

39

3. Direct Visual Odometry for a Fisheye-Stereo Camera

depth di, and it can be computed as Pi = π−1(xi, di). Using the chain
rule, can we derive the Jacobian matrix:

Ji = ∇Iref |xi ·
∂π

∂Pi
· ∂(T(ξ) ·Pi)

∂ξ
|ξ→0, (3.9)

where Ji ∈ R1×6 is the partial Jacobian of the ith residual induced by pixel
xi, with respect to the twist coordinate ξ on the manifold;∇Iref |xi ∈ R1×2

is the image gradients at pixel location xi; ∂π
∂Pi
∈ R2×3 is the projection

Jacobian at 3D position Pi. According to the Gauss-Newton method, we
can compute the optimal ξ with:

ξ = −(
∑
i

JTi Ji)
−1 ·

∑
i

riJ
T
i , (3.10)

where ri ∈ R is the residual which can be computed by

ri = Iref (xi)− Icur(π(Tcur
ref ·Pi)). (3.11)

The relative pose between the current frame and its reference keyframe can
then updated iteratively by:

Tcur
ref = Tcur

ref ·T(ξ)−1. (3.12)

We use the Huber robust function for the residual error ri for each pixel to
suppress the effect of outliers. To achieve better convergence performance,
a coarse-to-fine approach by using multiple pyramid levels is also applied
during the optimization. Furthermore, the initial relative pose Tcur

ref ∈
SE(3) for the above optimization procedure is computed using a constant
velocity motion prediction model as shown in Fig. 3.1.

It can be observed that the Jacobian matrix Ji will only need to be
computed once during the optimization, since it does not rely on Tcur

ref . For
each optimization iteration, we will thus only need to compute the residuals
ri (i.e. Eq. (3.11)) for all the sampled high gradient pixels. Therefore, the
least square optimization can be implemented efficiently.

40

3.3. Method

3.3.2. Plane-sweeping stereo
For a pair of fisheye stereo images, pixel correspondences lie on epipolar
curves instead of straight epipolar lines. Thus, conventional epipolar line
disparity search algorithms cannot be used for fisheye stereo matching.
To use fisheye images directly without rectifying them to pinhole images,
we use the plane-sweeping stereo algorithm [HHL+15] for fisheye stereo
matching to initialize the depth map of the keyframe. Plane-sweeping stereo
assumes that scenes are locally planar and tests a set of plane hypotheses.
These plane hypotheses are used to warp pixels from a reference view to
the current view for similarity matching. The plane hypothesis which gives
the maximum similarity measure is recorded and used to compute the ray
depth of the corresponding pixel. The algorithm is implemented based
on [HHL+15], and we will discuss the details as follows.

We define a set of plane hypotheses {n1, d1}, . . . , {nm, dm}, . . . ,
{nM , dM}, where nm ∈ R3×1 and dm are the normal and depth respec-
tively of the mth plane in the reference coordinate frame FL. For each
sampled plane hypothesis, we compute its corresponding homography
matrix HR

L ∈ R3×3 with:

HR
L = RR

L −
tRL · nmT

dm
, (3.13)

where both RR
L ∈ R3×3 and tRL ∈ R3×1 are the corresponding rotation

matrix and translation vector of the extrinsic transformation matrix TR
L ∈

SE(3) of the stereo camera respectively. For the plane hypotheses, we
use all possible permutations drawn from 64 depth values over the range
[0.5, 30]m with a constant disparity step size, and fronto-parallel and
ground plane orientations. In total, 128 plane hypotheses are sampled. For
a particular point xi ∈ R2 in the left reference image, we define a local
patch centered at xi. All the pixels within the local patch can then be warped
to the right image by HR

L to form a new warped patch. For each local patch
in the left reference image, we compute its corresponding warped patches
by all the homography matrices induced by all the plane hypotheses. For
each pair of the left reference patch and its right warped patch induced by
plane hypothesis {nm, dm}, we can compute their similarity score by the

41

3. Direct Visual Odometry for a Fisheye-Stereo Camera

Zero mean Normalized Cross Correlation (ZNCC) cost [HHL+15]. We can
therefore have 128 possible similarity scores for each sampled pixel in the
left reference image. By using winner-takes-all approach, we can obtain
the plane hypothesis on which the corresponding 3D point lies by selecting
the plane hypothesis {nm, dm} which gives the largest similarity score (i.e.
the ZNCC score). Its corresponding depth dx can then be computed by

dx = − dm
nTf · nm

, (3.14)

where nTf = [0, 0, 1] is a transformed unitary 3D vector.
Stereo matching usually has ambiguities due to repetitive textures, oc-

clusions, and so on. We experimentally find the estimated depth map
using a winner-takes-all approach to be rather noisy. To better capture
the uncertainty characteristics of the estimated depth, we propose to keep
track of multiple depth hypotheses for each pixel. Since the procedure to
get these depth hypotheses are the same for all pixels, we illustrate the
concept for a particular pixel. For each pixel, we accumulate a 1D (ρi,Si)
volume, where ρi is the inverse depth (i.e. 1

dx
for the ith plane hypothesis

by Eq. (3.14)) and Si is its corresponding ZNCC score. For efficiency,
we only select the elements in the volume, such that their ZNCC scores
Si are larger than a pre-defined threshold. We use a threshold value of
0.85 in our experiments (note that a ZNCC score of 1.0 is considered to
be perfect). All the selected elements from this volume are then clustered
according to ρi. In particular, we sort the elements according to ρi. We
separate two neighboring elements ρi and ρj into two different clusters
if their inverse ray depth difference |ρi − ρj | is larger than a pre-defined
separation distance. We use a cluster separation distance of 0.1. We fit a
Gaussian model to each cluster as

µ =

∑
i Si · ρi∑
i Si

, (3.15)

σ2 =

∑
i Si · (ρi − µ)2∑

i Si
. (3.16)

Furthermore, we choose the best score among all Si belonging to the
current cluster as the representative score for the current cluster. We use

42

3.3. Method

the mean value of the cluster with the best score as the inverse depth of
the corresponding pixel for direct image alignment. All clusters of each
pixel are tracked by temporal motion stereo so that depth ambiguities can
be eliminated and the ray depth can be refined iteratively.

3.3.3. Temporal motion stereo

We use temporal motion stereo to refine the estimated depth and to eliminate
depth ambiguity in the case that there is more than one inverse depth
cluster for each pixel. Due to the epipolar curve issue for fisheye images
mentioned earlier, we cannot use the conventional epipolar line disparity
search method for stereo matching. Instead, we use a technique to refine
the mean depth estimation for each ray segment corresponding to a cluster,
which is bounded by a two-sigma distance from the mean inverse depth of
that cluster. Since this technique is applied in the same way to each cluster
and each pixel, we use one cluster to explain the concept.

Each cluster or each depth hypothesis is parameterized by five param-
eters: its mean inverse ray depth µρ, the variance of its inverse ray depth
σ2
ρ, its best matching score Sbest, a good matching count nInliers, and

a bad matching count nOutliers. µρ, σ2
ρ and Sbest are initialized from

plane-sweeping stereo. Both nInliers and nOutliers are initialized to
be 2 in our experiment to avoid the zero division problem when we com-
pute either the inlier ratio or the outlier ratio. Based on the initial µρ and
σ2
ρ, we assume that the correct inverse ray depth would lie in the interval

[µρ − 2σρ, µρ + 2σρ], which has a probability of 95.45% statistically. To
get subpixel projection matching accuracy, we subdivide this interval iter-
atively until the pixel distance between two neighboring projected pixels
falls below 1 pixel. For all the sampled inverse ray depths within this
interval, we compute their ZNCC matching scores between the reference
image and the current image in the same way we compute the scores in
plane-sweeping stereo. We use the fronto-parallel and ground plane orien-
tations and current sampled inverse ray depth to compute the homography
matrices. Using these homography matrices, we then compute the ZNCC
scores between the reference image and its corresponding current image.
As in plane-sweeping stereo, each cluster will then accumulate its own

43

3. Direct Visual Odometry for a Fisheye-Stereo Camera

local volume. If this volume is not empty, we fit a new Gaussian model for
it and fuse it with the original model by

µrefined =

µprev
σ2
prev

+ µcur
σ2
cur

1
σ2
prev

+ 1
σ2
cur

, (3.17)

σ2
refined =

1
1

σ2
prev

+ 1
σ2
cur

. (3.18)

If no good matching (i.e., Sbest < 0.85) is found, then we increment
nOutliers by 1. Otherwise, we increment nInliers by 1. If the outlier
ratio

γ =
nOutliers

nInliers+ nOutliers
(3.19)

is larger than a pre-defined threshold, we label the current cluster or depth
hypothesis as an outlier and stop tracking it. If only one cluster remains
after several motion stereo refinement iterations, and its corresponding
variance falls below a certain threshold, we mark the current hypothesis as
the true depth estimate and further mark this pixel’s depth as converged.
If all hypotheses are marked as outliers, we label this pixel as a bad pixel
and consider its ray depth estimation to have diverged. Only pixels not
labeled as either converged or diverged are refined in the next iteration by
new captured images.

3.4. Experimental evaluation
We evaluate our direct fisheye-stereo visual odometry pipeline using real
world datasets. In addition, we compare our direct fisheye-stereo visual
odometry pipeline against a state-of-the-art semi-direct fisheye-stereo visual
odometry algorithm by Heng et al. [HC16]. The evaluation data was
collected on a ground vehicle as shown in Fig. 3.2. Fig. 3.3 presents two
sample images captured on our ground vehicle. For ground truth data, we
use the post-processed pose estimations from a GPS/INS system, which
has a position error around 2 cm according to manufacturer specifications.

44

3.4. Experimental evaluation

Figure 3.2.: Isuzu D-Max platform equipped with two fisheye-stereo cam-
eras which are shown enclosed in red ellipses.

Figure 3.3.: Sample images of the used dataset for our algorithm evalua-
tions.

45

3. Direct Visual Odometry for a Fisheye-Stereo Camera

-20 -10 0 10 20 30 40
-10

0

10

20

30

40

50

x (meters)

y
(m

et
er

s)

 Ground Truth
 Odometry-ours
 Odometry-Heng

-60 -40 -20 0 20 40 60
-80

-60

-40

-20

0

20

x (meters)

y
(m

et
er

s)

 Ground Truth
 Odometry-ours
 Odometry-Heng

Figure 3.4.: Red, green, and blue lines represent the trajectories estimated
by the GPS/INS system, the proposed method, and the method
from Heng et al. [HC16] respectively.

We have two fisheye-stereo cameras with 50 cm baseline on our vehicle
platform. Fig. 3.2 demonstrates the locations of the fisheye-stereo cameras,
which are marked by red ellipses. The left and right fisheye-stereo cameras
look 45◦ to the left and right respectively. All cameras output 1280×960
color images at 30 frames per second, and are hardware-time-synchronized
with the GPS/INS system. We calibrate the multi-camera system using
a grid of AprilTag markers, and use hand-eye calibration to compute the
transformation between the reference frames of the multi-camera system
and the GPS/INS system. This transformation allows the direct comparison
of visual odometry pose estimations with the post-processed GPS/INS pose
estimations, which are used as ground truth for evaluation.

Our pipeline is implemented and evaluated on a PC with an Intel i7 CPU
@ 2.9 GHz and a low-end Nvidia GTX 480 GPU. We run our tracking
thread at 20 Hz on one CPU core. Both plane sweeping stereo and motion
stereo run on the GPU at around 5 Hz.

Experiments: To achieve real-time performance, we use the downsampled
images (with a resolution of 640×480 pixels) from the left fisheye-stereo
camera as input to our direct visual odometry pipeline. The vehicle was
driven with a speed range of 10-15 km/h. The trajectory lengths of the used

46

3.4. Experimental evaluation

xy-drift yaw-drift
VO-KentRidge-ours 0.86% 0.013 deg/m
VO-KentRidge-Heng 0.96% 0.0138 deg/m
VO-NUS-ours 0.6% 0.0063 deg/m
VO-NUS-Heng 1.6% 0.011 deg/m

Table 3.1.: Pose accuracy comparison between our direct visual odometry
algorithm and that from Heng et al. [HC16]

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

Distance (meters)

P
os

iti
on

 D
rif

t (
m

et
er

s)

 xy-drift-ours
 xy-drift-Heng

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

Distance (meters)

P
os

iti
on

 D
rif

t (
m

et
er

s)

 xy-drift-ours
 xy-drift-Heng

0 50 100 150 200 250 300
0

1

2

3

4

5

Distance (meters)

A
tti

tu
de

 D
rif

t (
de

gr
ee

s)

 Yaw-drift-ours
 Yaw-drift-Heng

0 50 100 150 200
0

0.5

1

1.5

2

2.5

Distance (meters)

A
tti

tu
de

 D
rif

t (
de

gr
ee

s)

 Yaw-drift-ours
 Yaw-drift-Heng

Figure 3.5.: Position errors and orientation errors estimated by our method
and the method from Heng et al. [HC16], on the two data
sequences captured by our fisheye-stereo camera.

47

3. Direct Visual Odometry for a Fisheye-Stereo Camera

Figure 3.6.: Each row presents the reconstructed point clouds from our VO
pipeline, the corresponding images and the estimated semi-
dense depth maps.

data sequences are 289 m and 199 m respectively. Fig. 3.4 demonstrates
the post-processed pose estimations from the GPS/INS system, our visual
odometry algorithm, and the method from Heng et al. [HC16] in red, green
and blue respectively. A black circle marks the starting point, while red,
green and blue circles mark the end of the trajectories respectively. Fig. 3.5
plots the absolute x− y position errors and the absolute yaw errors against
traveled distance respectively. We compute the position error at a given time
by computing the norm of the difference between the x− y components of
the pose estimates from visual odometry implementations and the GPS/INS
system. We compute the yaw error at a given time by computing the
absolute difference between the estimated yaw from visual odometry and
the GPS/INS system at that time.

We compare the accuracy of our direct visual odometry algorithm against
that of Heng et al. [HC16] using position and orientation drift metrics. We

48

3.5. Conclusion

compute the x−y and yaw errors averaged over all possible subsequences of
length {100, 200} meters. Table 3.1 shows that our direct visual odometry
implementation outperforms that of Heng et al. [HC16] for both sequences.
In addition, we are able to generate a semi-dense point cloud that can be
used for dense mapping. Fig. 3.6 presents the reconstructed and colored
point cloud generated by our visual odometry pipeline. The point cloud only
includes points which are labeled as converged by our motion stereo. To
better show the reconstruction quality of our pipeline, we choose different
viewpoints for purposes of comparison. A supplementary video showing
the experimental results can also be found at https://youtu.be/NOiIVO0jzuc.

One possible reason that our algorithm performs better than that of Heng
et al. [HC16] could be the use of more information from observed images.
Our algorithm uses most of the high gradient pixels (>20k) while the
method from Heng et al. [HC16] only samples several hundred sparse
feature points. The use of more information increases the robustness of
the whole algorithm, especially in poorly textured environments where the
work of Heng et al. [HC16] does not perform well as shown in Fig. 3.4.

3.5. Conclusion
In this section, we present a direct visual odometry algorithm for a fisheye-
stereo camera. The algorithm estimates the camera poses and scene struc-
tures directly from raw pixel intensity values, so that the feature detection
and matching step can be avoided. We evaluate our method with real world
datsets. The experimental results demonstrate that our algorithm is able to
estimate the camera motion accuratly. Different from sparse feature based
approaches, our algorithm can also provide a semi-dense reconstruction at
the same time of pose estimations, which is useful for real-world robotic
navigation tasks.

49

https://youtu.be/NOiIVO0jzuc

4. Robust VO with a
Multi-Camera System

4.1. Introduction

Several approaches have been proposed to improve the robustness of VO
for specific environments. For example, Alismail et al. [ABL16b] propose
a dense binary descriptor that can be integrated within a multi-channel
Lucas Kanade framework to improve illumination change robustness. Park
et al. [PSP17] perform a systematic evaluation of real-time capable meth-
ods for illumination change robustness in direct visual SLAM. Zhang
et al. [ZCS17] propose an active exposure control method for robust visual
odometry in high dynamic range (HDR) environments. For each frame, they
choose an exposure time that maximizes an image quality metric. In the
work from Pascoe et al. [PMT+17], a direct monocular SLAM algorithm
based on the Normalized Information Distance (NID) metric is proposed.
They show that the information-theoretic NID metric provides robustness
to appearance variations due to lighting, weather, and structural changes
in the scene. Zhang et al. [GOZGJS18] also propose to take advantage of
learning based approach to enhance the image quality for visual odometry
in challenging HDR environments.

In this chapter, we propose to improve the robustness of VO by using a
multi-camera system, which is mainly based on our publication [LGH+18].
A multi-camera system can cover a wide field-of-view and thus provide
redundancy for poorly textured environments. Our algorithm consists of
a pose tracker and a local mapper. The tracker estimates the current pose
by minimizing photometric errors between the most recent keyframe and
the current frame across multiple cameras. The local mapper consists of

51

4. Robust VO with a Multi-Camera System

a sliding window optimizer and a two-view stereo matcher. Both vehicle
poses and structure are jointly optimized by the sliding window optimizer.
This optimization minimizes long-term pose drift. The depths of newly
sampled feature points are initialized by the two-view stereo matcher.
Furthermore, our formulation is designed to be flexible enough to support an
arbitrary number of stereo cameras. We thoroughly evaluate our algorithm
under multiple challenging conditions. In particular, we select five different
datasets with different characteristics for our evaluations. The datasets are
captured in varying lighting conditions (e.g. daytime, night-time with near-
infrared (NIR) illumination and night- time without NIR illumination), at
different vehicle speeds, and over different trajectory lengths. Experimental
results demonstrate that a multi-camera setup makes the VO more robust
to challenging environments, especially night-time conditions, in which a
single stereo configuration fails easily due to the lack of features.

4.2. Notations

We use lower case letters (e.g. λ) for scalar variables, bold lower case
letters (e.g. v) for vectors, and bold capital letters (e.g. T) for matrices. A
coordinate frame x is denoted as Fx. We define TW

Bk
as the transformation

matrix that transforms vectors from frame FB to frame FW at timestamp
k. We use pWk to denote the vector variable p represented in frame FW
at timestamp k. We use bk to denote the vector variable b at timestamp k.
Furthermore, we denote ‖x‖Σ as a weighted L2 norm, i.e., xTΣ−1x.

Coordinate frames: There are three main coordinate frames used through-
out the algorithm derivations. They are a global world coordinate frame
FW , a vehicle-centric body coordinate frame FB , and a camera coordinate
frame FCi for each camera Ci. Frame FW is defined to be fixed relative
to the global earth coordinate frame in which the cameras navigate. Fur-
thermore, we define the initial vehicle-centric body coordinate frame FB
to coincide with FW , i.e., FB at timestamp 0.

Vehicle state: We describe the motion state Sk at timestamp k by its
translation and rotation from frame FB to frame FW . The position is

52

4.3. Method

Two-view
stereo

Motion
predictor

Sliding window
optimizer

Visual direct
image

alignment

KF?

Local map

K
F request

Insert

Refine

Local mapperTracker

Yes

Figure 4.1.: Schematic representation of our VO pipeline.

denoted by pWk . The orientation is represented by a rotation matrix RW
Bk

∈ SO(3). We obtain the homogeneous transformation matrix TW
Bk
∈ SE(3)

from the vehicle body frame FB to the world frame FW at timestamp k:

TW
Bk

=

[
RW
Bk

pWk

01×3 1

]
. (4.1)

We denote the image captured at timestamp k by camera Cj as I
Cj
k . We

further denote the measured pixel intensity at pixel coordinates u in I
Cj
k

as I
Cj
k (u); the pixel intensity is a scalar value for grayscale images. For

simplicity, we denote the image captured at the latest keyframe as I
Cj
KF .

4.3. Method

In this section, we describe our VO algorithm for a multi-camera system.
Our algorithm is based on the work from Engel et al. [EKC17], which
describes a VO framework for a monocular camera. The camera motion is

53

4. Robust VO with a Multi-Camera System

recovered by direct image alignment algorithm which minimizes a photo-
metric cost function for a sparse set of pixels. We extend the formulation to
a multi-camera system which we model as a generalized camera consisting
of cameras with multiple centers of projection. As shown in Fig. 4.1, our
algorithm consists of two threads: a tracker and a local mapper. The tracker
estimates the vehicle pose in real-time using direct image alignment with
respect to the latest keyframe. The local mapper is mainly used to minimize
long-term pose drift by refining both the vehicle pose and the estimated
3D point cloud. The local mapper uses a computationally intensive batch
optimization method for both pose and structure refinement. Thus, it runs
at a much lower frame rate compared to the tracker and only keyframes are
processed. For a new keyframe, its newly sampled 3D points are initialized
by a two-view stereo algorithm. We will describe the algorithm in detail in
the following.

Hardware Configurations: To make our algorithm work for different
hardware configurations, we assume we have N cameras in total. Each
camera can be configured either as a reference camera for motion tracking
or as an auxiliary camera for static stereo matching. For ease of reference,
we denote the camera Ci as a reference camera as rCi. Without loss of
generality, we assume that we have Nr reference cameras and Na auxiliary
cameras where Nr +Na = N .

4.3.1. Tracker

As shown in Fig. 4.1, the tracker consists of two parts: a motion predictor
and direct image alignment. Direct image alignment is used to estimate the
current vehicle pose with respect to the latest keyframe. We use the vehicle
pose provided by the motion predictor to initialize the alignment in order
to avoid local minima.

Constant velocity motion prediction model: We use a constant motion
model to predict the current vehicle pose. Let us define the current vehicle
pose as TW

Bk
which is the transformation from the vehicle frame FB at

timestamp k to the world frame FW . Similarly, we define the vehicle poses
corresponding to the two latest frames as TW

Bk−1
and TW

Bk−2
respectively.

54

4.3. Method

We assume that the motion velocity from timestamp k − 2 to k is constant,
we thus can predict the current vehicle pose as

TW
Bk

= TW
Bk−1

T
Bk−1

Bk
= TW

Bk−1
T
Bk−2

Bk−1
, (4.2)

where
T
Bk−2

Bk−1
= (TW

Bk−2
)−1TW

Bk−1
. (4.3)

Direct sparse tracker: Given the initial pose estimate provided by the
motion predictor, we use a direct sparse tracker for refinement. In contrast
to the local mapper which will be explained in a later section, only images
from reference cameras are used for motion tracking. In particular, we
estimate the relative vehicle pose T̂Bk

BKF
between the latest keyframe and

the current frame by minimizing the following energy function:

T̂Bk
BKF

= argmin
T
Bk
BKF

Nr∑
i=1

∑
u∈Ω(I

rCi
KF)

(I
rCi
KF (u)− I

rCi
k (û))2 . (4.4)

Here, Nr is the number of reference cameras and Ω(I
rCi
KF) is the set of

feature pixel points sampled from the keyframe image of reference camera
rCi. For each feature point u in the keyframe image, û is the corresponding
pixel position in the current frame, obtained as

û = π(TCi
B ·T

Bk
BKF

· (TCi
B)−1 · π−1(u, d)) . (4.5)

TCi
B is the relative transformation from vehicle body frame to camera frame.

π and π−1 are the camera projection function and back projection function,
respectively. d is the depth of the feature point u in the keyframe. The only
unknown variable is TBk

BKF
since TCi

B can be obtained from offline sensor
calibration and d can be initialized by stereo matching and refined by the
joint optimization performed by the local mapper.

The above formulation follows the standard forward compositional
method [BM04] which requires the Hessians and Jacobians of the residuals
to be computed in every iteration of the optimization. For improved effi-
ciency, we adopt the inverse compositional method [BM04] to minimize

55

4. Robust VO with a Multi-Camera System

the energy function, as illustrated in the previous chapter. To robustify the
least squares estimator which is sensitive to outliers, we further apply a
robust loss function (i.e. Huber loss) to all residuals.

Outlier removal: Besides the use of a robust loss function, a specific
outlier removal mechanism is also used to robustify both the tracker and
the local mapper. We detect outliers based on the template matching
scores between the reference frame and the current frame. In our imple-
mentation, we use the Zero Mean Normalized Cross-Correlation (ZNCC)
score [HHL+15]. If the score is smaller than a predefined threshold, we
classify a feature match as an oulier and remove it from the optimization.
The tracker already uses image patches around the feature points and the
warped image patches are already computed during direct image alignment.
Thus, the computational overhead of the outlier removal step is marginal.

Relationship with the tracker from [EKC17]: In contrast to the tracker
in the Direct Sparse Odometry (DSO) algorithm [EKC17], we do direct
sparse pose tracking. To do pose tracking, DSO projects sampled feature
points from all recent keyframes to the current keyframe and then do
semi-dense pose tracking. Compared to semi-dense pose tracking, the
computational complexity of direct tracking with sparse feature points
is far smaller than that of semi-dense tracking. Furthermore, an outlier
removal step as described in the previous section is included to make the
tracking and mapping more stable.

4.3.2. Keyframe and feature selections

Keyframe selection: One of the implicit assumptions behind motion
tracking is that the scene difference between the reference keyframe and
the current frame is sufficiently small. If the difference between the current
frame and the reference keyframe becomes too large, we instantiate a new
keyframe. Intuitively, the difference between frames should be measured
based on changes in image content rather than based on absolute pose
differences (since the former strongly depends on the depth of the scene
while the latter is oblivious to it). Therefore, we use the mean square optical
flow as one of the criterions for detecting scene changes. More precisely,

56

4.3. Method

we compute

f =
1

n

n∑
i=1

‖ui − ûi‖2 , (4.6)

where ‖·‖2 is the Euclidean norm, ui is a feature point in the reference
keyframe, and ûi is its corresponding feature point in the current frame. If
f is above a threshold, we create a new keyframe.

Feature selection: Once a new keyframe is created, sparse feature points
are sampled from all reference cameras. We sample N sparse features
uniformly from each image based on their gradient magnitudes. In partic-
ular, we divide the image into a grid and select the point with the highest
gradient magnitude per grid cell. However, we will not sample a point from
this grid cell if the highest gradient magnitude of a grid is smaller than a
pre-defined threshold.

Feature representation and depth initialization: As per the implemen-
tation in [EKC17], we sample all pixels by following a predefined patch
pattern (e.g., 5×5 pattern) for each sparse feature. All these pixels are used
for motion tracking and local mapping. In particular, the created visual
residuals from the tracker and local mapper are per pixel instead of per
patch. Furthermore, pixels from the same patch are assumed to lie on the
same 3D plane, which can be parameterized by its inverse plane depth and
plane normal. The inverse plane depths and plane normals are initialized by
a stereo matching algorithm [HHL+15]. The plane depths of the sampled
patch instead of ray depths of each pixel are refined during the joint opti-
mization carried out by the local mapper. Each pixel from the same patch
has different ray depths, but has the same plane depth. It thus reduces the
number of variables to optimize and improves the computational efficiency
of the optimizer.

4.3.3. Local mapper

Two-view stereo matching: Stereo matching is used to initialize the depth
of each sampled feature from the new keyframe. Rather than performing dis-
parity search along epipolar lines, we use plane-sweeping stereo [HHL+15]

57

4. Robust VO with a Multi-Camera System

to compute the depths. This allows us to directly operate on the fisheye
images, and thus, avoid a loss of field-of-view from having to undistort and
rectify the images.

Based on the implementation from [HHL+15], we use the GPU to
accelerate plane-sweeping stereo. We sweep planes in two directions:
fronto-parallel to the viewing direction of the keyframe and parallel to the
ground plane. For each direction, we generate 64 plane hypotheses with
a constant disparity step size between them. The planes cover the range
[0.5, 30] m in front of the camera. This results in a total number of 128
plane hypotheses that are evaluated. We compute the ZNCC score between
the 7×7 image patches from ICi and warped image patches from ICj . The
plane hypothesis with the largest template matching score is selected for
each feature point.

Sliding window optimizer: To minimize drift, the local mapper jointly
optimizes all vehicle states and the 3D scene geometry. As the vehicle
moves, the number of states increases over time. To bound running time,
we use state marginalization to remove old states. We only keep a fixed
number of previous states, resulting in a constant computational complexity
as proposed by Dong-Si et al. [DSM11]. As demonstrated in the work
from Sibley et al. [SMS10], a marginalized state will result in all remaining
states connected to it to be connected with each other after marginalization.
The resulting Hessian matrix would thus not be sparse anymore. This in
turn increases the run-time cost of computing the Schur complement during
structure optimization. For efficiency, we follow [LLB+15, EKC17] and
only fill terms of the Hessian that do not involve geometry terms. For
further efficiency, optimization is only performed on selected keyframes.

In particular, we define a sliding window containing k vehicle states. All
states outside this sliding window are treated as old states and are removed
through partial marginalization as what has been done in the work of Engel
et al. [EKC17]. We use S∗ to represent the set of all vehicle states within
the sliding window and they are represented in vector form. The local
mapper estimates the vehicle states S∗ inside the sliding window, and the
set D∗ of inverse plane depths of all the sampled features within the sliding

58

4.3. Method

window via

Ŝ∗, D̂∗ = argmin
S∗,D∗

E0(S∗) + Evision(S∗,D∗). (4.7)

Here, E0(S∗) is either a prior energy term obtained from partial marginal-
ization or an initial prior and Evision(S∗,D∗) is the visual energy term
between all keyframes within the sliding window. Optimization is carried
out using the Gauss-Newton algorithm. In the following, we describe the
individual terms in more detail.

There are two types of prior terms. One is from the initial prior. In
order to fix the unobservable degrees of freedom of the VO problem, we
need to fix the initial state such that all subsequent states are estimated
relative to it. Thus, they are usually formulated in the following form:

E0(S0) =
1

2

∥∥∥Ŝ0 − S0

∥∥∥
Σ0

, (4.8)

where Ŝ0 is the value of the initial state, S0 is the inital state variable
to estimate and Σ0 is the covariance matrix of the inital state. To fix
S0 as equal to Ŝ0, Σ0 is usually selected to have infinitesimal diagonal
terms. This prior term only appears in the energy function when the
initial state is within the sliding window. Once it leaves the window,
it will be marginalized out in the same way as all other energy terms
[SMS10, DSM11].

The other prior term is a direct result of partial marginalization. Partial
marginalization introduces priors to all remaining states which are con-
nected to the marginalized states [SMS10, DSM11]. The information from
eliminated states after their removal is stored in prior Hessian and Jacobian
matrices such that we can optimally remove them. Thus, we can have the
following prior energy term for the remaining states

E0(S∗) = JTm(Ŝ∗0 − S∗) +
1

2

∥∥∥Ŝ∗0 − S∗∥∥∥
Hm

−1
, (4.9)

where Ŝ∗0 is a set of prior vehicle states of S∗ estimated from previous
iterations, Jm and Hm are the Jacobian and Hessian matrices respectively,
and accumulated from state marginalization.

59

4. Robust VO with a Multi-Camera System

The visual energy term contains the sum of all photometric error resid-
uals and is modeled as

Evision(S∗,D∗) =
k∑

m=1

Nr∑
i=1

∑
u∈Ω(I

rCi
m)

∑
n∈Θ(u)

∑
j∈Φ(Sm,u)

‖r(Sm, rCi,Sn, Cj , ρ)‖Σ ,

(4.10)
Here, k again is the number of keyframes andNr is the number of reference
cameras. rCi and Cj refer to the ith and jth camera respectively. Ω(I

rCi
m)

is the set of feature points sampled from the image of the ith reference
camera in the mth keyframe. Θ(u) is the set of indices of the vehicle
states that observe the feature point u. Φ(Sm,u) is the set of indices of the
cameras in the mth keyframe that observe feature point u. ρ is the inverse
plane depth of the feature u. r(Sm, rCi,Sn, Cj , ρ) is a pixel intensity
residual that measures intensity differences between two projections of the
same 3D scene point (see below for a definition of the residual). Further-
more, we use both inter-camera and intra-camera irradiance residuals in our
implementation. Finally, Σ is the scalar variance of the photometric error
residual which is obtained from each camera’s photometric calibration.

Let I
rCi
m be the image captured by the ith camera in the mth keyframe.

Consider a feature point u sampled from that image. Using plane sweeping
stereo, we know the inverse depth ρ of its corresponding plane as well as
the normal n of that plane. The 3D point Pu corresponding to u is thus
given by:

Pu =
1

ρ cos θ
π−1
rCi

(u) , (4.11)

where π−1
rCi

is the inverse projection function of the camera and cos θ =

−nT ·π−1
rCi

(u) is the angle between the viewing ray corresponding to u and
the plane normal. The vehicle poses TW

Bm
and TW

Bn
at timestamps m and

n are initially estimated by the tracker while the relative transformations
TCl
B between the vehicle frame FB and the camera frames FCl can be

estimated offline. We use these transformations to compute the pixel û
in the jth camera and in the nth keyframe corresponding to the feature u
by projecting Pu into the image. Given u and û, we use their intensity

60

4.4. Experimental evaluation

difference to define the residual r(Sm, rCi,Sn, Cj , ρ):

r(Sm, rCi,Sn, Cj , ρ) = I
rCi
m (p)− ICjn (p̂) . (4.12)

In order to minimize the visual energy term from (4.10), we adjust the
motion state parameters (namely the pose TW

Bm
) as well as the inverse plane

depth of each feature. Rather than looking at a single pixel per feature u,
we consider a pixel patch per feature. Each pixel in the patch is warped into
the other images and contributes a residual according to Eq. 4.12. In this
setting, parameterizing the depth of u based on the plane has the advantage
that we only require a single parameter per patch.

4.4. Experimental evaluation

Hardware Setup: We have installed twelve fisheye cameras on our
vehicle platform which is shown in Fig. 4.2. In particular, five cameras are
installed at the front of the vehicle, two cameras are installed on each of the
left and right sides, and three cameras are installed at the back. We select
one stereo pair from each side to evaluate our algorithm. In particular, the
front stereo pair has a baseline of 0.722m, the back stereo pair has a baseline
of 0.755m, the left stereo pair has a baseline of 0.502m, and the right stereo
pair has a baseline of 0.497m. All cameras output 1024×544 gray scale
images at 25 frames per second, and are hardware-time-synchronized with
the GPS/INS system.

We calibrate the multi-camera system using a grid of AprilTag markers.
To compute the transformation between the multi-camera system and the
GPS/INS system, we run semi-direct VO [HC16] for each stereo pair,
obtain an initial estimate using hand-eye calibration, triangulate landmark
points using the GPS/INS poses and feature correspondences from VO, and
refine the initial estimate together with the landmark points by minimising
the sum of squared reprojection errors while keeping the GPS/INS poses
fixed. This transformation allows direct comparison of visual odometry
pose estimates with the post-processed GPS/INS pose estimates which are
used as ground truth.

61

4. Robust VO with a Multi-Camera System

Figure 4.2.: Two sample images of the vehicle.

Dataset selection: To avoid parameter overfitting, and, at the same time,
evaluate our algorithm thoroughly, we select five datasets with different
characteristics for evaluation. The first three datasets are collected in a
car-park. The first one (Science-park-day) is collected in normal daylight
conditions. The second one (Science-park-night-illum) is collected at night
with NIR illumination. The third one (Science-park-night) is collected at
night without NIR illumination. The other two datasets are collected from
a public urban street. One of them (West-coast-day) is collected in day
light conditions. Another one (West-coast-night-no-illum) is collected at
night without near-infrared illumination. Three sample images are shown
in Fig. 4.3. Furthermore, the characteristics of the datasets are summarized
in Table 4.1.

Length (m) Max. speed (m/s)
Science-park-day 547.448 3.941

Science-park-night-illum 612.078 3.863
Science-park-night 613.096 3.685

West-coast-day 1179.13 10.68
West-coast-night-no-illum 1224.95 10.23

Table 4.1.: Characteristics of datasets used for evaluation.

62

4.4. Experimental evaluation

Evaluation metrics: We follow the metric used by the KITTI benchmark
[GLU12] for accuracy evaluation. In particular, we compute the position
and orientation drifts over sequences of length 200m, 400m, 600m and
800m for each frame, and average drifts over all sequences. We take
into account the runtime of both the tracker and the mapper as a metric
for efficiency evaluation. Furthermore, we observe that the ground truth
heights for all science park datasets are not reliable even though a highly
accurate GPS/IMU system was used. For example, for the Science-park-
day dataset, the closed-loop ground truth height drift is more than 2.5
m. Since these errors introduce significant bias into the evaluation, we
only consider horizontal translations of all three science park datasets for
accuracy evaluations. The remaining datasets are evaluated with 3-axis
translation errors.

Parameter settings: For all experiments, we sample a total of 800 5× 5
feature patches. All features are uniformly distributed in each camera. For
example, if we consider four stereo pairs, then each stereo pair has 200
features. A sliding window with 5 keyframes is used for the local mapper.
The optical flow threshold for keyframe selection is 20 pixels. For the
Huber parameter, we use 30 for daylight conditions and 10 for night-time
conditions.

Baseline algorithm: We choose ORB-SLAM2 [MAT17b] as the baseline
algorithm for our comparisons. Since ORB-SLAM2 does not support the
fisheye camera models, we undistort the fisheye images to generate pinhole
images for all experiments.

Ablation studies: We conduct thorough ablation studies with respect to
the hardware configurations. The results can be found in Table 4.2. It
shows that a higher number of stereo cameras improves both the accuracy
and robustness of our VO algorithm. In particular, both ORB-SLAM2
[MAT17b] and our single stereo configuration fail easily for all the night
sequences when using only a single or two stereo pairs. Based on our
observations, the main reason of the failure is due to the lack of good
features. However, using a multi-camera setup which covers a larger field
of view can provide the required redundancy necessary for handling poorly
textured night environments.

63

4. Robust VO with a Multi-Camera System
Sc

ie
nc

e-
pa

rk
-d

ay
Sc

ie
nc

e-
pa

rk
-n

ig
ht

-i
llu

m
Sc

ie
nc

e-
pa

rk
-n

ig
ht

-n
o-

ill
um

Figure 4.3.: Three sample images from our datasets, demonstrating the
challenges of the datasets which include strong distortion and
absence of features at night.

64

4.4. Experimental evaluation

D
at

as
et

s
A

lg
*

F
B

L
R

FB
FL

FR
B

R
B

L
L

R
B

L
R

FL
R

FB
L

FB
R

FB
L

R
SD

O
ur

s
0.

44
9

1.
26

6
1.

18
5

1.
19

4
0.

56
0.

28
2

0.
63

2
0.

86
0.

64
1.

24
0.

51
1

0.
63

5
0.

83
8

0.
52

4
0.

35
2

O
R

B
*

1.
16

8
1.

56
5

x
4.

20
3

N
.A

.
N

.A
.

N
.A

.
N

.A
.

N
.A

.
N

.A
.

N
.A

.
N

.A
.

N
.A

.
N

.A
.

N
.A

.
SN

1
O

ur
s

x
3.

7
x

x
x

2.
05

x
1.

01
1.

54
4

2.
26

5
0.

62
5

0.
73

5
0.

95
6

1.
19

3
0.

69
1

O
R

B
*

3.
24

x
x

x
N

.A
.

N
.A

.
N

.A
.

N
.A

.
N

.A
.

N
.A

.
N

.A
.

N
.A

.
N

.A
.

N
.A

.
N

.A
.

SN
2

O
ur

s
x

x
x

x
x

x
x

x
x

1.
01

1.
47

0.
81

5
1.

54
4

1.
51

1.
03

O
R

B
*

x
x

x
x

N
.A

.
N

.A
.

N
.A

.
N

.A
.

N
.A

.
N

.A
.

N
.A

.
N

.A
.

N
.A

.
N

.A
.

N
.A

.
W

C
D

O
ur

s
2.

33
1.

32
2.

17
4.

35
0.

48
1.

79
2.

02
3.

47
0.

96
1.

53
1.

59
1.

97
1.

47
0.

87
0.

9
O

R
B

*
2.

34
1.

86
x

x
N

.A
.

N
.A

.
N

.A
.

N
.A

.
N

.A
.

N
.A

.
N

.A
.

N
.A

.
N

.A
.

N
.A

.
N

.A
.

W
C

N
O

ur
s

x
x

x
x

2.
88

11
.6

8.
57

5.
12

4.
99

2.
84

3
2.

23
2.

33
2.

05
1.

74
O

R
B

*
x

x
x

x
N

.A
.

N
.A

.
N

.A
.

N
.A

.
N

.A
.

N
.A

.
N

.A
.

N
.A

.
N

.A
.

N
.A

.
N

.A
.

Ta
bl

e
4.

2.
:A

cc
ur

ac
y

ev
al

ua
tio

ns
w

ith
of

fli
ne

da
ta

se
ts

fo
r

di
ff

er
en

th
ar

dw
ar

e
co

nfi
gu

ra
tio

ns
(A

cc
ur

ac
y

(t
ra

ns
la

tio
na

l
dr

if
t)

is
in

un
its

of
%

,
th

e
sm

al
le

r
th

e
be

tte
r;

SD
:

Sc
ie

nc
e-

pa
rk

-d
ay

.
SN

1:
Sc

ie
nc

e-
pa

rk
-n

ig
ht

-il
lu

m
.S

N
2:

Sc
ie

nc
e-

pa
rk

-n
ig

ht
.W

C
D

:W
es

t-c
oa

st
-d

ay
.W

C
N

:W
es

t-c
oa

st
-

ni
gh

t-
no

-i
llu

m
.A

lg
*:

A
lg

or
ith

m
s.

O
R

B
*:

O
R

B
-S

L
A

M
2.

F:
fr

on
ts

te
re

o
pa

ir.
B

:b
ac

k
st

er
eo

pa
ir.

L
:l

ef
ts

te
re

o
pa

ir.
R

:r
ig

ht
st

er
eo

pa
ir.

x:
fa

ils
to

co
m

pl
et

e
w

ho
le

se
qu

en
ce

.
N

.A
.:

no
t

av
ai

la
bl

e.
)

65

4. Robust VO with a Multi-Camera System

Figure 4.4.: Estimated trajectories of the five selected data sequences.

66

4.5. Conclusion

From Table 4.2, we also observe that our algorithm performs better than
ORB-SLAM2 [MAT17b]. We give two possible reasons: (1) the direct
method can do refinement with sub-pixel accuracy which improves the
accuracy as long as the algorithm is well-implemented, and (2) the image
quality degrades after undistortion and stereo rectification, and can affect
ORB-SLAM’s performance. In contrast, our method is able to directly
operate on the raw fisheye input images.

By doing horizontal comparisons (i.e. same dataset) of the same al-
gorithm for different hardware configurations, we can observe that by
using more cameras improves the accuracy of our VO algorithm. We think
that spatially well distributed features can give better constraints to the
optimization problem, which makes our VO algorithm more accurate.

Furthermore, by doing vertical comparisons (i.e. same hardware configu-
ration) of the same algorithm for different light conditions, we can observe
that night-time conditions degrade the performance of VO algorithms. Be-
sides the lack of good features, another reason is that the image quality in
night-time conditions is worse than that in daylight conditions. When the
vehicle moves fast at night, motion blur is inherent in the captured images,
especially for the left and right stereo pairs.

Qualitative evaluations: Fig. 4.4 shows qualitative evaluation results
of our algorithm for all datasets with four pairs of stereo cameras. We
plot the x-y trajectories estimated by our VO algorithm against the ground
truth trajectories. A supplementary video can also be found on our project
website https://cvg.ethz.ch/research/visual-odometry/.

Runtime efficiency: Our algorithm is evaluated on a laptop with an
Intel i7 CPU @ 2.8 GHz. We are able to run our tracking thread at more
than 30 Hz and the local mapping thread at around 2 Hz for the current
configurations.

4.5. Conclusion

We present a direct sparse visual odometry algorithm for a multi-camera
system and robust operation in challenging environments. Our algorithm

67

https://cvg.ethz.ch/research/visual-odometry/

4. Robust VO with a Multi-Camera System

includes a direct sparse pose tracker and a local mapper. The tracker tracks
the current camera pose in real-time. The local mapper jointly optimizes
both poses and structure within a sliding window. Instead of minimizing
re-projection errors, both the tracker and mapper directly minimize pho-
tometric errors. We evaluate our algorithm extensively with five datasets
which have different characteristics. Experimental results show that a multi-
camera setup makes the VO more robust to challenging night environments
and also improves its accuracy.

68

Part II.

Deep CNN Enhanced
Images

69

5. Self-supervised Motion
Deblurring

5.1. Introduction

Motion blur is one of the most common factors degrading image quality.
It often arises when the image content changes quickly (e.g., due to fast
camera motion) or when the environment is illuminated poorly, hence
necessitating longer exposure times. Combining both situations, e.g., a
self-driving car driving at dusk, further aggravates the problem. As many
computer vision algorithms such as visual odometry, object detection, or
semantic segmentation rely on visual input, blurry images challenge the
performance of these algorithms. It is well known that many algorithms
(e.g., depth prediction, feature detection, motion estimation, or object recog-
nition) suffer from motion blur [PMB+09, KBM+18, TSN+16, QWMT19].
The motion deblurring problem has thus received considerable attention in
the past [SJA08, GJZ+10, NKL17, TGS+18, KBM+18].

Existing techniques to solve this problem can be classified into two
categories: the first type of approaches formulate the problem as an opti-
mization problem [KF09, XJ10, FSH+06, SJA08, LWDF09, CL09] where
the latent sharp image and/or the blur kernel are optimized using gradient
descent. One of the advantages of this kind of methods is that they do not
require any ground truth sharp images. However, the resulting solvers usu-
ally have a large computational complexity, which limits their applicability
in time-constrained settings, such as real-time robotic visual perception.
Handcrafted priors on either the image or the blur kernel further limit their
performances.

The second type of approaches phrase the task as a learning problem.

71

5. Self-supervised Motion Deblurring

Figure 5.1.: Self-supervised motion deblurring. First: Sharp ground
truth image. Second: Blurry input image. Third: Deblurring
results of our self-supervised method. Fourth: Deblurring
results of the supervised method from Tao et al. [TGS+18].

Building upon the recent advances of deep convolutional neural networks,
state-of-the-art results have been obtained for both single image deblur-
ring [NKL17, TGS+18] and video deblurring [SDW17], outperforming
optimization-based techniques in terms of both quality and efficiency. How-
ever, learning-based methods typically require full supervision in the form
of corresponding pairs of blurred and sharp images. Unfortunately, obtain-
ing such pairs is not always easy due to two main reasons. One is that not
every camera has the capability to capture images at enough high frame
rate (1000 or more frames per second), such that we can use the recorded
frames to synthesize the training data. Another reason is that it would also
be difficult to obtain good quality images in real scenarios where the motion
blur really occurs (e.g., at night). High frame rate limits the exposure time
and would thus make the captured image extremely dark or even invisible.

Inspired by recent progress in self-supervised depth [ZKR+18, GMB17],
flow [MHR18, JGR+18] and representation learning [PKD+16, DGE15],
we propose a novel approach for self-supervised image deblurring which
only relies on real-world blurry image sequences for training in this chap-
ter, which is based on our publication [LJP+20]. Self supervised learn-
ing improves the network’s generalization performance, by enabling the
network to adapt to scenarios where ground truth sharp images are not
available. Our network contains a deblurring network and an optical flow

72

5.2. Method

estimation network. However, instead of using ground truth sharp im-
ages [NKL17,TGS+18,KBM+18,IMS+17], we pose the task as an inverse
rendering problem and take advantage of the physical image formation
process for supervision. More specifically, given two consecutive blurry
frames of a video sequence, we first predict the corresponding deblurred
images using a deep neural network. A second deep neural network takes
both deblurred images as input and computes the corresponding optical
flow. Using this prediction, and assuming a locally linear blur kernel, our
model re-renders the blurred images and compares the results to the original
blurry inputs using a photometric loss function. Moreover, we constrain
the optical flow network using a photo-consistency loss function. Our
entire model can be trained end-to-end from pairs of consecutive blurry
images captured with a consumer video camera. At test time, our network
takes a single blurred image and deblurs it in real time on a single GTX
1080Ti graphic card using the learned parameters. As illustrated in Fig. 5.1,
our approach is competitive with respect to a state-of-the-art supervised
method [TGS+18] despite being fully self-supervised.

Our second contribution is a novel synthetic dataset and a real dataset.
The synthetic dataset has 3606 blurry-sharp image pairs recorded with a
professional high-speed camera mounted on a ground vehicle. The real
dataset has 2302 blurry images and is recorded with a normal camera. We
use both datasets to evaluate our algorithm against several baselines both
quantitatively and qualitatively.

5.2. Method

Fig. 5.2 shows the overall architecture of our model. It comprises four
main parts, i.e., the DeblurNet, the FlowNet, the reblur block, and image
warping. The DeblurNet is used for single image motion deblurring. It
accepts a single blurry image as input and outputs the corresponding sharp
image. The two deblurred images are then fed into the FlowNet to estimate
a bi-directional dense optical flow field, which will be used to compute
spatially varying blur kernels for each blurry image. Given the estimated
blur kernels, we reblur the latent sharp image to form a self-consistency

73

5. Self-supervised Motion Deblurring

Deblur (Sec 3.1)

Flow (Sec 3.1)

Flow (Sec 3.1)

Reblur (Sec 3.2)

Reblur (Sec 3.2)

Deblur (Sec 3.1)

Warp (Sec 3.3)

Warp (Sec 3.3)

Testing
Training

Figure 5.2.: Architecture of the proposed network. Given two consecu-
tive blurry images, Ba and Bb, as input, our network computes
the corresponding deblurred images, Ia and Ib, as well as
the bidirectional optical flow, Ua and Ub. To self-supervise
the training of the network, we construct a self-consistency
photometric loss Lself and a forward-backward photometric
consistency losses, Lfw/bw.

loss to supervise the training of our network. The FlowNet is trained by
maximizing cross-view photometric consistency, which is estimated by
image warping. While our approach uses two images for training, the
DeblurNet only uses a single input image. After training, our method can
thus be used for single image deblurring. The whole network is trained
end-to-end without using any ground truth data in the form of sharp images
or optical flow. We will now present all components of our model (i.e., the
deblurring, optical flow, reblurring and image warping components as well
as the loss functions) in detail.

5.2.1. Deblurring and optical flow

For the deblurring and optical flow modules, we take advantage of exist-
ing neural network architectures which have performed well in the past
for the respective supervised learning tasks [NKL17, KBM+18, TGS+18,
SYLK18, IMS+17]. In particular, we adopt the single image deblurring

74

5.2. Method

network from Tao et al. [TGS+18] and the dense optical flow estimation
network PWC-Net from Sun et al. [SYLK18]. We make the following
modifications for the deblurring network for our particular problem: 1)
We replace the deconvolution layer with bilinear upsampling followed by
a 3x3 convolution to avoid upsampling artifacts. 2) We add one more
Encoder-Decoder block to increase the capacity of the network. 3) We train
the network at a single scale without using the LSTM layer to improve both
the training and test efficiency. The resulting network is more efficient than
the original network while keeping similar deblurring performance. The
detail of the network is shown in Fig. 5.3.

Figure 5.3.: Architecture of the deblurring network. Given the input
blurry image Ba, the deblurring network outputs the deblurred
latent sharp image Ia. Best viewed in enlarged digital version.

5.2.2. Reblurring
The reblurring module encapsulates the physical image formation process,
which blurs a sharp image based on the optical flow. Digital cameras operate
by collecting photons during the time of exposure and converting those
into measurable charge. This process can be formalized by considering
the blurred color image B ∈ RW×H×3 as the result of integrating virtual
sharp images It ∈ RW×H×3:

75

5. Self-supervised Motion Deblurring

B(x) = λ

∫ τ

0

It(x)dt ≈ 1

2N + 1

N∑
i=−N

Ii(x) (5.1)

Here, λ is a normalization factor, τ is the exposure time, x ∈ R2 represents
the pixel location, B(x) denotes the motion blurred image at pixel x, and
It(x) is the virtual sharp image at pixel x and time t. The continuous
integration can be approximated by using a finite sample size of 2N + 1
virtual sharp frames Ii. We denote the central reference frame, which is the
latent sharp image to be estimated, as I0.

As the exposure time τ is typically small (<200 ms), we may assume that
during the time of exposure the image content is primarily affected by image
motion and not by other changes like object appearance or illumination.
We thus model the virtual sharp frames Ii as the result of the sharp central
reference frame I0 warped by optical flow ui→0:

Ii(x) = I0(x + ui→0) (5.2)

Here, ui→0 ∈ R2 denotes the optical flow from virtual image Ii to reference
image I0 at pixel x. Thus, we can reformulate (5.1) as

B(x) ≈ 1

2N + 1

N∑
i=−N

I0(x + ui→0) (5.3)

and estimate I0 as well as the optical flow fields Ui→0 instead of all virtual
frames Ii for solving the deblurring problem. However, the problem is still
severely underconstrained as we would need to estimate one optical flow
per frame i ∈ {−N, . . . , N}.

We therefore further simplify the model by assuming linear motion
during the time of exposure. This is a reasonable assumption in many
scenarios where the exposure time is comparably small and rapid motion
changes during this time are prevented by the mass and inertia of physical
objects (e.g., when the camera is mounted to a vehicle).

Let u ∈ R2 denote the optical flow from frame I0 to frame I1 at pixel x.
We will demonstrate how to obtain u in the following section. Assuming

76

5.2. Method

linear motion and equidistant time steps, we obtain the optical flow from
frame 0 to frame i as

u0→i = i · u. (5.4)

Note that in this model the direction of the optical flow is reversed compared
to (5.3). We must therefore apply forward warping to obtain the virtual
sharp images Ii. This yields

B(x) ≈ 1

2N + 1

N∑
i=−N

(W0→i ◦ I0)(x) (5.5)

where the operator W0→i warps the reference frame I0 into the virtual
frame Ii based on the interpolated flow u0→i. We next describe our imple-
mentation of the forward warping operatorW0→i. Note that this operator
needs to be differentiable as both the reference frame I0 and the optical
flow U are outputs of neural networks.

We first construct a regular triangular lattice from the pixel grid by
connecting vertices from adjacent pixels as shown in Fig. 5.4 for an example
image of size 3×3 pixels. We then warp each vertex of this lattice according
to the optical flow u0→i. The intensities of Ii (i.e., of the blue pixels) are
obtained by linear interpolation 1. Consider the red pixel x in Fig. 5.4 as
an example. Let further x0, x1 and x2 denote the positions of the vertices
belonging to the triangle which covers the red pixel. Then, Ii is obtained as

Ii(x) = ω0I0(x0) + ω1I0(x1) + ω2I0(x2) (5.6)

where ω0, ω1 and ω2 denote the barycentric coordinates of the point in the
triangle. The synthesized motion blurred image can then be computed as
the average of all the warped frames as described in (5.1). In the case of
occlusions, i.e., when multiple triangles overlap a single pixel, we consider
the triangle with the largest motion to be in front. This is a commonly
used heuristics [KUH18] which often holds true in practice (in particular
when image motion is dominated by camera motion). Note that due to

1Note that bilinear interpolation cannot be applied since the warped grid might not be
rectangular due to the non-uniform optical flow, as shown in Fig. 5.4.

77

5. Self-supervised Motion Deblurring

Optical Flow

Figure 5.4.: Differentiable forward warping. We construct a regular tri-
angular lattice from the pixel grid of the reference image I0

(left). We then warp each vertex of this lattice according to the
optical flow u0→i. The intensities of Ii (i.e., of the blue pixels)
are obtained by linear interpolation.

the linear interpolation, the warping functionW0→i is piecewise smooth.
As illustrated in Fig. 5.2, our model is symmetric, thus we reblur both the
first and the second frame and compare the reblurred result to the original
blurry images using a photoconsistency loss. We will use B′ to denote the
reblurred image and B to denote the blurred input image in the following.

5.2.3. Image warping

We found that a photoconsistency loss on the reblurred images alone is
insufficient to constrain the optical flow. We thus add an additional self-
supervised photometric loss on the optical flow as proposed in prior work
[JGR+18, MHR18, WBZL18] and detailed in Section 5.2.5. The input to
this loss function is the deblurred image and the deblurred image from
the other frame warped based on the estimated optical flow. To warp the
images into each other, we exploit backward warping as the optical flow in
both directions is known. Let Ia ≡ Ia0 and Ib ≡ Ib0 denote the first and the
second deblurred image, and let ua→b and ub→a denote the optical flow

78

5.2. Method

between them. The warped deblurred images are obtained as

I′a(x) = Ib(x + ua→b) (5.7)
I′b(x) = Ia(x + ub→a) (5.8)

using bilinear interpolation [JSZK15]. Note that no triangular mesh needs
to be constructed during backward warping.

5.2.4. Relationship between ua→b/ub→a and u

In this section, we present the relationship between ua→b/ub→a and u.
ua→b and ub→a are the bidirectional dense optical flows between the latent
sharp images Ia and Ib, respectively. We assume the motion between
Ia and Ib to be linear. Without loss of generality, we assume u is used
to synthesize the first blurry image Ba (i.e. details can be found from
Eq. (5.4)). Thus, we obtain u as the flow from the central virtual frame I0

to the first virtual image I1 by linearly scaling ua→b according to

u ≈ τa
2N∆t

ua→b , (5.9)

where τa is the exposure time of Ba, 2N + 1 is the number of sampled
virtual sharp frames to synthesize Ba, and ∆t is the time interval between
Ia and Ib. Similarly, if u is used to synthesize the second blurry image Bb,
we get

u ≈ τb
2N∆t

ub→a , (5.10)

where τb is the exposure time of Bb.

5.2.5. Loss functions

Our network comprises two types of losses: a self-consistency loss Lself
and a forward-backward consistency loss Lfw/bw. The self-consistency loss

Lself = ‖B′a −Ba‖1 + ‖B′b −Bb‖1 (5.11)

79

5. Self-supervised Motion Deblurring

penalizes differences between the synthesized motion blurred images B′a,
B′b and the original blurred inputs Ba, Bb using a `1 loss function. Simi-
larly, the forward-backward consistency loss

Lfw/bw = ‖I′a − Ia‖1 + ‖I′b − Ib‖1 (5.12)

penalizes differences between the warped deblurred images I′a, I′b and the
estimated deblurred images Ia, Ib. The final loss is a weighted combination

L = Lself + λLfw/bw, (5.13)

where λ is a hyper-parameter to balance both losses.

5.2.6. Occlusion handling
As occlusions affect the training of our network, especially at image bound-
aries, we detect occluded image regions and mask the loss functions (5.11)
and (5.12) accordingly. We follow the method used in [WBZL18] to detect
occluded image regions. More specifically, we compute the non-occluded
regions in Ia by following the optical flow Ub→a from Ib to Ia. We consider
all pixels of Ia which can be reached from Ib via Ub→a as non-occluded.
Similarly, we can also compute a mask for each virtual frame by following
the optical flow from the central image to the virtual frame u0→i. Since
the synthesized blurry image is computed as the average of these virtual
frames, we compute the final mask for Lself as the product of all masks
for the virtual frames.

5.2.7. Differences with the method proposed by
Chen et al.

The overall structure of our method is similar to the work from [CGG+18].
However, we are different in the following two key aspects: 1) In order
to achieve state-of-the-art performance, [CGG+18] uses a supervised loss
(section 3.4 from [CGG+18]). [CGG+18] is thus actually a supervised
method. 2) The core component of both methods, i.e., the reblurring
module, is different. In fact, blurring a sharp image using convolutions as

80

5.3. Experimental evaluation

done in [CGG+18] is physically incorrect (section 3.3 from [CGG+18])
and only holds for spatially uniform blur. We will make the differences
to [CGG+18] more clear.

For simplicity, let us assume we have a one dimensional sharp image
I with N pixels. We further assume the blur kernel corresponds to pixel
Ii as {−2, 2} in the form of bidirectional 1D flow. Using the definition
from [CGG+18], the convolution based model results in a blurred image
of Ii as Bi = 1

5

∑2
j=−2 Ii+j . A blur kernel {−2, 2} of Ii means that Ii

will contribute to Bi−2,Bi−1,Bi,Bi+1,Bi+2 physically, in contrast to
that Ii−2, Ii−1, Ii, Ii+1, Ii+2 will contribute to Bi as what the convolution
based model in [CGG+18] does. Our model eliminates this problem by
forward warping the sharp image I by a fraction of the blur kernels at each
sampled timestamp. The blurred image is computed by averaging all these
forward warped sharp images to simulate the real motion blurring image
formation process. Experimental results shown later demonstrate that the
algorithm relying on convolution based model exhibits ringing artifacts on
egde boundaries, which degrade the deblurred images.

5.3. Experimental evaluation

Datasets: The dataset from [NKL17] is commonly used to benchmark
single image motion deblurring algorithms. It is collected from a hand-held
camera. Stronger blur was artificially created by shaking the camera during
the recordings. It results in very non-linear camera motions, which violates
our motion assumption. Therefore, we collected a new large dataset using
a professional Fastec TS52 high speed camera mounted on a car. The
dataset consists of 196 sequences in total, which are collected at 1200
fps with VGA resolution in diverse environments. The motion blurred
images are generated by averaging several consecutive frames (i.e., 1∼50
frames) to simulate the real physical image formation process. To reduce
the redundancy per image sequence, we limit the maximum number of
blurry-sharp image pairs to 20 per sequence, which results in a total of

2https://www.fastecimaging.com/fastec-high-speed-cameras-ts-series/

81

5. Self-supervised Motion Deblurring

3606 pairs. We split the dataset into 157 training sequences and 39 test
sequences, which results in 2820 image pairs for training and 786 image
pairs for evaluation.

We also collect a real motion blurry dataset with 2302 images. The
camera is mounted on a tram and captures images at around 50 FPS with a
resolution of 752×480 pixels. The dataset is collected at late afternoon and
night, when the motion blur would really occur. We split 2062 images for
training and 240 images for test.
Implementation details: We implemented our network by using PyTorch
[PGC+17]. We empirically set the hyper-parameter λ to be 2.0. To better
initialize the network, we pretrain both the DeblurNet and PWC-Net on the
blurry images. In particular, we pretrain the DeblurNet for 30 epochs to
learn the identity mapping from blurry image to blurry image. We pretrain
the PWC-Net for 200 epochs with the blurry sequences in a self-supervised
manner. The learning rate used for both networks is 10−4. The whole
network is then trained jointly for another 500 epochs, with a learning rate
of 10−4 for the first 260 epochs and then decayed by half every 40 epochs.
Baselines and experimental settings: We compare the single image
deblurring results of our network quantitatively and qualitatively with a
state-of-the-art optimization-based method [XZJ13], supervised methods
[NKL17,TGS+18,KBM+18] as well as the domain specific self-supervised
method from [MKA18]. We train all networks with their recommended
hyperparameter settings on our synthetic dataset. For the optimization-
based method from [XZJ13], we increase the blur kernel size to 10 pixels
to account for the large motions present in our dataset.
Evaluation metrics: We use the Peak Signal to Noise Ratio (PSNR)
and the Structural Similarity Index (SSIM) measures commonly used in
the community [SJA08, NKL17, TGS+18] to evaluate the quality of the
deblurring results. Larger PSNR/SSIM values indicate better image quality.
The efficiency of the methods is evaluated by their total time consumption,
but excluding the image loading and saving time.
Ablation studies on the modified DeblurNet architecture: As dis-
cussed in Sec.5.2.1, we did several improvements to the original network
from [TGS+18]. To evaluate the efficacy of the new network, we train

82

5.3. Experimental evaluation

Network PSNR↑ SSIM↑ Time ↓

SRN-Deblur [TGS+18] 34.64 dB 0.93 0.13 s

Ours (supervised) 35.04 dB 0.94 0.05 s

Table 5.1.: Single image deblurring comparison on the synthetic
dataset. We compare our modified network with the origi-
nal network from Tao et al. [TGS+18] by training both in a
supervised way.

both networks in a supervised manner on our synthetic dataset. Table 5.1
presents the comparisons when evaluated under the same settings. It demon-
strates our DeblurNet is more efficient than the original network while has
slightly better deblurring performance.

Ablation studies on the self-supervision loss for the flow network: To
better understand the proposed algorithm, we perform an ablation study
on the necessity to train the flow network in a self-supervised manner. We
train our proposed network with and without the self-supervision loss for
the flow network. The officially provided pretrained model on FlyingChair
dataset [ISKB18] is used if the self-supervision loss is disabled. Experimen-
tal results demonstrate that the flow network pretrained on the FlyingChair
dataset [ISKB18] can generalize to our dataset, but with limited perfor-
mance. The resulting deblur network gives a PSNR metric as 31.23dB and
a SSIM metric as 0.89 on our synthetic dataset, in contract to 32.24dB/0.91
if the network is trained in a fully self-supervised manner. It proves it is
beneficial to train the flow network with a self-supervision loss.

Ablation studies on our proposed reblur model: As discussed in
Sec.5.2.7, our ablation study supports our claim about the difference be-
tween the reblurring modules. For fair comparisons, we trained both the
network with convolution based reblur model and the network with our
physically correct reblur model under the same settings in an unsupervised
fashion. The network with convolution based image formation model
yields a PSNR metric of 27.22dB and a SSIM metric of 0.8 on our synthetic

83

5. Self-supervised Motion Deblurring

Figure 5.5.: Qualitative comparisons on synthetic dataset. First:
Ground truth sharp image. Second: Input blurry image. Third:
Deblurring results of the supervised method from Tao et al.
[TGS+18]; The network is retrained on our dataset. Fourth:
Deblurring results of the proposed self-supervised learning
method.

dataset, while ours yields PSNR and SSIM metrics as 32.24dB and 0.91
respectively.

The necessity to do self-supervised motion deblurring: In real scenar-
ios, motion blur usually occurs in bad illumination conditions. In these
cases, it impedes the acquisition with low shutter times to obtain sharp
images for supervised learning. One way to address this problem is to train
a network with datasets collected under good illumination conditions and
transfer the model to scenarios, where motion blur would occur. However,
the generalization ability is still questionable due to the large difference
between the image textures for both scenarios. We thus evaluate the general-
ization performance quantitatively and qualitatively with both our synthetic
dataset and real dataset respectively. Note that it is not easy to obtain ground

84

5.3. Experimental evaluation

Figure 5.6.: Qualitative evaluations on real dataset. First Blurry image.
Second Deblurred image by the official pretrained network
from Tao et al. [TGS+18]. Third Deblurred image by our
method. The images are post processed for better visualization.
Best viewed in digital version.

truth sharp images in real scenarios. We apply the pretrained networks on
our test data directly, to evaluate the generalization performance. Table 5.2
and Fig. 5.6 present the experimental results. It demonstrates that all the
baseline networks have limited generalization ability and perform worse
than our method with a large margin. It proves that self-supervision is
beneficial for the network to adapt to scenarios, where the ground truth
data is difficult to obtain.

Quantitative and qualitative evaluations on synthetic dataset: Ta-
ble 5.2 and Fig. 5.5 show quantitative and qualitative comparisons on
the synthetic dataset. For the qualitative results, we only compare against
the best supervised method [TGS+18].

85

5. Self-supervised Motion Deblurring

As can be seen in Table 5.2, our method outperforms both [XZJ13]
and [MKA18] significantly in terms of PSNR and SSIM. For optimization-
based single image deblurring algorithms (e.g., [XZJ13]), they usually
assume the motion blur is caused by either camera rotation or in-plane
translation. However, this assumption is violated in our setting for a self-
driving scenario. Thus, [XZJ13] leads to poor performance on our dataset.
[MKA18] is designed for simple domain-specific blurry images, such as
text and facial images. Therefore, it struggles on our dataset that exhibits
complex real-world challenges which are harder to learn. In comparison to
supervised methods, our method demonstrates competitive results in our
quantitative and qualitative evaluation. As expected, there is still a gap
between our method and the supervised methods if the ground truth sharp
images are available. However, our method outperforms them with a large
margin if they are pretrained on other datasets. It demonstrates that self-
supervision enables the network to generalize better to real scenarios, where
the ground truth data is usually difficult to obtain. It also demonstrates that
our method is amongst the fastest methods and can run in real time on a
single GTX1080Ti Graphic card.

Qualitative evaluations on real dataset: Since we do not have ground
truth sharp images in our real dataset, we cannot refine the baseline net-
works on it. We thus use the official pretrained networks for the experiments.
Fig. 5.6 demonstrates that our method can successfully deblur the blurry
images, while the pretrained network from Tao et al. [TGS+18] results in
images with artifacts.

Additional qualitative experimental results: In Fig. 5.7 to Fig. 5.13,
we present additional qualitative experimental results on single image
deblurring on the synthetic dataset. The results demonstrate that our method
can generate visually compelling sharp images that are competitive to three
state-of-the-art supervised methods [NKL17, KBM+18, TGS+18]. For fair
comparisons, we retrain all the networks on our Fastec dataset. It also
significantly outperforms the state-of-the-art optimization-based method
from Xu et al. [XZJ13] and the self-supervised method from [MKA18].

To further demonstrate the temporal consistency of our method, we
also present the experimental results for image sequences from Fig. 5.14

86

5.4. Conclusion

Method PSNR↑ SSIM↑ Time ↓

Opt.-based Xu et al. [XZJ13] 26.04 dB 0.78 377.8 s

DeepDeblur [NKL17] 33.55 dB 0.92 3.45 s
Supervised DeblurGAN [KBM+18] 33.23 dB 0.91 0.06 s
-retrained SRN-Deblur [TGS+18] 34.64 dB 0.93 0.13 s

DeepDeblur [NKL17] 29.91 dB 0.87 3.45 s
Supervised DeblurGAN [KBM+18] 28.70 dB 0.88 0.06 s
-pretrained SRN-Deblur [TGS+18] 30.71 dB 0.88 0.13 s

Self- Madam et al. [MKA18] 21.69 dB 0.75 0.25 s
supervised Ours 32.24 dB 0.91 0.05 s

Table 5.2.: Single image deblurring on synthetic dataset. Supervised-
retrained denotes we retrained the networks with our training
data. Supervised-pretrained denotes we use the official pre-
trained models to evaluate on our test data directly.

to Fig. 5.19. The experimental results demonstrate that our network can
deblur an image sequence temporally consistent, on both the synthetic and
real datasets.

5.4. Conclusion
In this chapter, we have presented a self-supervised learning algorithm
for image deblurring. Instead of using ground truth sharp images, we
leverage the geometric constraints between two consecutive blurry images
to supervise training of our network. Both the latent sharp image and
motion blur kernel are estimated by a deblur network and an optical flow
estimation nework, respectively. Experimental results show that the pro-
posed algorithm outperforms the previously self-supervised method and
can produce competitive results compared to supervised methods. It further
demonstrates that our method can be trained with real motion blurry data
and generalizes well to real unseen data.

87

5. Self-supervised Motion Deblurring

Figure 5.7.: Qualitative comparisons on the Fastec dataset. All the base-
line networks are retrained on our Fastec dataset.

88

5.4. Conclusion

Figure 5.8.: Qualitative comparisons on the Fastec dataset. All the base-
line networks are retrained on our Fastec dataset.

89

5. Self-supervised Motion Deblurring

Figure 5.9.: Qualitative comparisons on the Fastec dataset. All the base-
line networks are retrained on our Fastec dataset.

90

5.4. Conclusion

Figure 5.10.: Qualitative comparisons on the Fastec dataset. All the
baseline networks are retrained on our Fastec dataset.

91

5. Self-supervised Motion Deblurring

Figure 5.11.: Qualitative comparisons on the Fastec dataset. All the
baseline networks are retrained on our Fastec dataset.

92

5.4. Conclusion

Figure 5.12.: Qualitative comparisons on the Fastec dataset. All the
baseline networks are retrained on our Fastec dataset.

93

5. Self-supervised Motion Deblurring

Figure 5.13.: Qualitative comparisons on the Fastec dataset. All the
baseline networks are retrained on our Fastec dataset.

94

5.4. Conclusion

Figure 5.14.: Temporal consistency on the Fastec dataset (frame 1-5).
Left: Ground truth. Middle: Blurry image. Right: De-
blurred image by our network.

95

5. Self-supervised Motion Deblurring

Figure 5.15.: Temporal consistency on the Fastec dataset (frame 6-10).
Left: Ground truth. Middle: Blurry image. Right: De-
blurred image by our network.

96

5.4. Conclusion

Figure 5.16.: Temporal consistency on the Fastec dataset (frame 11-15).
Left: Ground truth. Middle: Blurry image. Right: De-
blurred image by our network.

97

5. Self-supervised Motion Deblurring

Figure 5.17.: Temporal consistency on the Fastec dataset (frame 16-19).
Left: Ground truth. Middle: Blurry image. Right: De-
blurred image by our network.

98

5.4. Conclusion

Figure 5.18.: Temporal consistency on the real dataset. Odd rows:
Blurry image. Even rows: Deblurred image by our network.

99

5. Self-supervised Motion Deblurring

Figure 5.19.: Temporal consistency on the real dataset. Odd rows:
Blurry image. Even rows: Deblurred image by our network.

100

6. Deep Shutter Unrolling
Network

6.1. Introduction

CMOS imaging sensors are widely used in many consumer products. They
usually capture images with a rolling shutter mechanism. In contrast
to a global shutter camera, which captures all pixels at the same time,
a rolling shutter camera sequentially captures the image pixels row by
row. Therefore, different types of distortions, e.g. skew, smear or wobble,
will appear if the camera is moving during the image capture. It is well
known that many vision tasks (e.g. structure from motion, visual odometry,
pose estimation or depth prediction) suffer from rolling shutter distortions
[KMR13,HFFR12,SPL16,KLR17,AKLP19,SKBP13]. The rolling shutter
effect correction problem has thus received considerable attention in the
past [RBR17, VMR18, ZTJ+19].

Existing works on rolling shutter effect correction can be categorized
into classical approaches and single image based deep learning approaches.
The classical approaches can be further categorized into single image
based methods and methods which use multiple images. Single image
based rolling shutter effect correction is an ill-posed problem and relies
heavily on prior assumptions (e.g. straight lines must remain straight),
either formulated explicitly or learned implicitly by a deep network, which
limit their applicability to real scenarios. Classical multi-image based
approaches are more general and instead rely on geometric constraints
from multiple views to perform the rectification. However, they usually
formulate it as a computationally expensive optimization problem for 6
DoF camera motions, which prevents the algorithm from being used in

101

6. Deep Shutter Unrolling Network

Figure 6.1.: Deep shutter unrolling network. Left: Input rolling shutter
image. Middle: Predicted global shutter image by our network.
Right: Ground truth global shutter image.

time constrained applications.
Inspired by the recent success of deep neural networks on image-to-

image translation problems, such as optical flow estimation [SYLK18],
dense depth prediction [EPF14], motion deblurring [NKL17] and image
super-resolution [LSK+17], we propose an efficient end-to-end deep neural
network for rolling shutter effect correction. Our method solves a generic
rectification problem from two consecutive frames. It is able to take ad-
vantage of the parallel computational power of a graphic card and runs in
near real time. Furthermore, benefiting from the representational power
of a deep network, our network is also able to learn good image priors to
further boost the quality of the rectified image. Different from the above
image-to-image translation problems, in which the estimations usually rely
on its local neighborhood pixels of the input image, the rolling shutter effect
correction problem is more challenging. A pixel of the rectified image
might lie far away from its corresponding pixel of the input rolling shutter
image, depending on the types of motion, 3D scene structure as well as its
capturing time. To resolve these challenges, we propose a novel network
architecture for rolling shutter image correction.

Our network takes two consecutive rolling shutter images as input and
predicts the corresponding global shutter image of the latest frame. It
consists of four main parts: an image encoder, a motion estimator, a
differentiable forward warping block and an image decoder. The motion
estimator estimates the dense per-pixel displacement field from a rolling

102

6.1. Introduction

Row 1
Row 2
Row 3

Row N

time0

...

Row 1
Row 2
Row 3

Row N

time0

...

-reset -exposure -readout -reset -exposure -readout

Row 1
Row 2
Row 3

Row N

time0

...

Row 1
Row 2
Row 3

Row N

time0

...

-reset -exposure -readout -reset -exposure -readout

Global shutter Rolling shutter

Figure 6.2.: Image formation models. The difference between a rolling
shutter camera and a global shutter camera is that the rows of
a rolling shutter image are captured at different timestamps
with a constant time offset td. For simplicity, we assume the
exposure time te is infinitesimal throughout the paper.

shutter image to its corresponding global shutter image, given the learned
feature representation from the image encoder. The differentiable forward
warping block warps the learned feature representation to its corresponding
global shutter representation, given the estimated displacement field. The
global shutter image is then recovered by the image decoder from the
warped feature representation. Our network can be trained end-to-end and
only requires the ground truth global shutter image for supervision, which
is easy to obtain by using a high-speed camera to synthesize the training
data. Experimental results demonstrate that our method outperforms the
state-of-the-art methods [ZCL17, ZTJ+19]. Fig. 6.1 presents qualitative
results from our network.

Since there is no public dataset available, we also propose two novel
datasets: the Fastec-RS dataset and the Carla-RS dataset, as our second
contribution. The Fastec-RS dataset has 2584 image pairs. It is generated
via a professional high-speed camera (with a framerate of 2400 FPS) and
captured in real environments. Since the camera is mounted on a ground

103

6. Deep Shutter Unrolling Network

vehicle which undergoes limited motion, we also create the Carla-RS
dataset with general six degree of freedom (DoF) motions. This dataset
is generated from a virtual 3D environment and has 2500 image pairs. To
further research in this area we make both our code and the datasets public.
This chapter is based on our publication from [LCLP20].

6.2. Method

The main concept of our method is to learn a dense per-pixel displacement
field, which is used to warp the learned features from the rolling shutter
image to its global shutter counterpart. The global shutter image is then
recovered by an image decoder which decodes the warped features to an
image. Our network can be trained end-to-end and only requires the global
shutter image for supervision. Fig. 6.4 presents the details of our network
architecture.

6.2.1. Rolling shutter image formation model

The difference between a rolling shutter camera and a global shutter camera
is that every scanline of the rolling shutter camera is exposed at different
timestamps, as shown in Fig. 6.2. Without loss of generality, we assume
the read-out direction is from top to bottom. We further assume all pixels
from the same row are captured at the same timestamp. We can thus obtain
the image formation model of a rolling shutter image as follows:

[Ir(x)]i = [Igi (x)]i, (6.1)

where Igi (x) is the virtual global shutter image captured at timestamp i · td,
td is the time to read out a single row, [Igi (x)]i is an operator to extract the
ith row from an image Igi (x).

As the whole image readout time (i.e., Ntd where N is the height of the
image) is typically small (<50 ms), we can assume that during the time of
capture the image content is primarily affected by image motion and not by
other changes like object appearance or illumination. We can thus model

104

6.2. Method

the virtual global shutter image Igi (x) as the result of the first virtual global
shutter image Ig0(x) warped by a displacement vector ui→0:

Igi (x) = Ig0(x + ui→0), (6.2)

where ui→0 ∈ R2 denotes the displacement vector of pixel x from the ith

virtual global shutter image Igi to the reference image Ig0, which corresponds
to the virtual global shutter image captured at timestamp 0. Thus, we can
reformulate Eq. (6.1) to

[Ir(x)]i = [Ig0(x + ui→0)]i. (6.3)

We can further have

Ir(x) = Ig0(x + ur→g), (6.4)

where ur→g ∈ R2 denotes the displacement vector of pixel x from the
rolling shutter image to the first virtual global shutter image. If we stack
ur→g for all pixels, it has following form

[Ur→g]i = [Ui→0]i, (6.5)

where both Ur→g and Ui→0 are the dense displacement field for all pixels,
in matrix form.

As a special case, if the rolling shutter camera is stationary during image
capture, the displacement field Ur→g is zero. The captured rolling shutter
image equals to the global shutter image.

6.2.2. Rolling shutter effect removal
Rolling shutter effect removal is an operation to reverse the above image
formation model, i.e., Eq. (6.4). In particular, it is to estimate the global
shutter image Ig0(x) given the captured rolling shutter image Ir(x). It
is an ill-posed problem for single image rolling shutter effect removal,
since the displacement field Ur→g is difficult to recover from a single
image. Existing works typically take advantage of prior assumptions (e.g.
straight lines should remain straight) to estimate the displacement field

105

6. Deep Shutter Unrolling Network

[RRA16,ZTJ+19]. The prior assumption can be either explicitly formulated
[RRA16] or implicitly learned by a deep network [ZTJ+19]. Thus, single
image rolling shutter correction methods cannot generalize to scenarios
where the prior assumption is not satisfied. Therefore, we propose to use
two frames to solve a more general rectification problem.

To recover Ig0 from Ir, it is more convenient to have displacement field
Ug→r instead of Ur→g. The global shutter image can then be simply
recovered by

Ig0(x) = Ir(x + ug→r), (6.6)

where bilinear interpolation can be used for pixels which have non-integer
positions. However, we are only given rolling shutter images as input. It
is more difficult for us to estimate Ug→r compared to Ur→g. Thus, we
design a motion estimation network to estimate Ur→g for rolling shutter
image rectification. It is not trivial to recover the global shutter image
given the displacement field Ur→g and the rolling shutter image, since
we cannot find the pixel correspondences from the global shutter image to
the rolling shutter image. Thus, we propose to employ a forward warping
block [FR10] to resolve this challenge. We derive and implement the
derivatives of the forward warping block, to make it differentiable such that
we can incorporate it into our deep network for end-to-end training. For
compactness, we denote Ig0 as Ig for future sections.

6.2.3. Differentiable forward warping block

In this section, we present the detailed derivations of our differentiable for-
ward warping block. Since we need to incorporate it as part of our network,
we thus also need the partial derivatives from the outputs to the inputs. Due
to the varying number of neighboring pixels, i.e., the size of Ω(x) from
Eq. (6.7), it is not trivial to take advantage of the automatic differentiation
tools from PyTorch [PGC+17] for the derivative computation. We thus
derive and implement all the analytical partial derivatives by ourselves.

Forward pass: Without loss of generality, we use a particular pixel to
illustrate our formulation. As shown in Fig. 6.3, we can approximate the
intensity of a particular pixel from the global shutter image, as a weighted

106

6.2. Method

Figure 6.3.: Differentiable forward warping. The rolling shutter image
(i.e., green pixels) is warped to the image grid of the global
shutter image (i.e., black pixels and the red pixel) by the es-
timated displacement field Ur→g. To recover the intensities
of the red pixel, we can compute the weighted average of its
four neighboring pixels (i.e., the green pixels covered by the
red circle with a radius r) from the rolling shutter image.

average of its neighboring pixel intensities from the rolling shutter image,
which was previously used in [FR10]. Formally, this can be defined as

Ig(x) =

∑
x̂∈Ω(x) ωx̂Ir(x̂)∑

x̂∈Ω(x) ωx̂
, (6.7)

where Ω(x) is the set of all pixels x̂ from the rolling shutter image, which
satisfy

‖x̂ + ur→g − x‖2 < r, (6.8)

where r is a pre-defined threshold with unit in pixels. The weight is further
defined as

ωx̂ = e−
d(x,x̂)2

2σ2 , (6.9)

where
d(x, x̂) = ‖x̂ + ur→g − x‖2 , (6.10)

and σ is a pre-defined width of the kernel function.

107

6. Deep Shutter Unrolling Network

Backward pass: From the above equations, we can find the inputs of the
formation model are the rolling shutter image Ir(x̂) and the optical flow
ur→g . The output is the global shutter image Ig(x). In order to incorporate
it into our network, we thus need to have both ∂Ig(x)

∂Ir(x̂) and ∂Ig(x)
∂ur→g

. Without
loss of generality, we take a particular channel of a particular pixel to derive
the partial derivatives as follows.

∂Igc (x)

∂Irc (x′)
=

ωx′∑
x̂∈Ω(x) ωx̂

, (6.11)

where Igc (x) and Irc (x′) are the cth channel intensity of pixel x and x′

respectively, x′ is an element from Ω(x). Similarly, we can have

∂Igc (x)

∂ur→g
=
∂Igc (x)

∂ωx′

∂ωx′

∂ur→g
, (6.12)

where ur→g is the displacement vector of pixel x′. From Eq. (6.7), we can
further get

∂Igc (x)

∂ωx′
=
Irc (x′) ·

∑
x̂∈Ω(x) ωx̂ −

∑
x̂∈Ω(x) ωx̂I

r
c (x̂)

(
∑

x̂∈Ω(x) ωx̂)2
. (6.13)

Similarly, from Eq. (6.9), we can get

∂ωx′

∂ur→g
=
∂ωx′

∂d2

∂d2

∂ur→g
, (6.14)

where

d2 = ‖x′ + ur→g − x‖22 = (x′ + ux − x)2 + (y′ + uy − y)2, (6.15)

x′ =

[
x′

y′

]
, (6.16)

ur→g =

[
ux
uy

]
, (6.17)

108

6.2. Method

x =

[
x
y

]
. (6.18)

We can further get
∂ωx′

∂d2
= − 1

2σ2
e−

d2

2σ2 , (6.19)

∂d2

∂ur→g
=
[
∂d2

∂ux
∂d2

∂uy

]
=
[
2(x′ + ux − x) 2(y′ + uy − y)

]
. (6.20)

Implementation details: From the above equations, we can find that
we need to get Ω(x) before we compute both the forward pass and the
backward pass. However, a direct implementation of the above equations
is in-efficient, due to the varying size of Ω(x). We therefore propose an
efficient implementation to solve the above challenge, such that it can fully
take advantage of the computational capability of a graphic card.

Instead of pre-computing Ω(x) by checking every pixel of the global
shutter image, we iterate over every pixel of the rolling shutter image. For
each pixel x′ of the rolling shutter image, we accumulate all the necessary
computations related to pixel x from the global shutter image, which
satisfies

‖x′ + ur→g − x‖2 < r, (6.21)

where r is the pre-defined threshold. Furtheremore, we can also re-use the
already accumulated

∑
x̂∈Ω(x) ωx̂ and

∑
x̂∈Ω(x) ωx̂Ir(x̂) from the forward

pass, for the backward pass. By following this approach, all the pixels x′

can be processed in parallel, which makes the implementation very efficient
on a graphic card.

6.2.4. Network architecture

In this section, we explain how to design a deep network to estimate
Ur→g and recover the global shutter image. Everything presented in the
previous sections can be directly generalized from pixels to learned feature
representations. Fig. 6.4 presents the architecture of our network.

Our network accepts two consecutive rolling shutter images and outputs
a global shutter image corresponding to the latest frame. It consists of

109

6. Deep Shutter Unrolling Network

four main parts, i.e., an encoder network, a motion estimation network,
a differentiable forward warping block and an image decoder network.
The encoder network consists of three pyramid levels. Each level has a
convolutional layer followed by three residual blocks. To recover the latent
global shutter image, it would be easier for the image decoder network
to operate on the feature representation which corresponds to the global
shutter image. We therefore use the differentiable forward warping block
to transform the learned feature representation of the latest rolling shutter
image to its global shutter counterpart. The displacement field Ur→g
used by the forward warping block is estimated by the motion estimation
network.

Besides the camera motion and 3D scene geometry, Ur→g also depends
on the time when a particular pixel is being captured, i.e., the displacement
vector of a pixel nearer to the first row is usually smaller than those are
further away. During our ablation study, we find that the motion estimation
network has difficulty to learn/model this implicitly. We thus model this
dependency explicitly and design the network to learn the dense velocity
field instead, as shown in Fig. 6.4. Our motion estimation network computes
the cost volumes between both frames by a correlation layer [IMS+17],
based on the learned feature representation. The velocity field is then
estimated by a dense network block, given the computed cost volumes as
input. To recover the displacement field Ur→g , we multiply the estimated
velocity field with the time offset (i.e., T0, T1 and T2 as shown in Fig. 6.4)
between the captured pixel and that of the first row. T0, T1 and T2

represent the time-offset for different pyramid levels and they have the same
resolutions as the feature representations of the corresponding pyramid
levels. Without calibrating the camera, we simply set the row read-out time
(i.e., td as shown in Fig. 6.2) as 1 for simplicity. The image decoder then
predicts the global shutter image given the warped feature representation.
The decoder network also consists of three pyramid levels. Each level
has three residual blocks followed by a deconvolution layer. We present
the details of our network architecture and all the other baseline networks
which will be evaluated later in our ablation study as follows.

Deep shutter unrolling network: Fig. 6.4 demonstrates the overall archi-

110

6.2. Method

Figure 6.4.: Overall architecture of the deep shutter unrolling net-
work.

tecture of our deep shutter unrolling network. It consists of four main parts:
an image encoder network, a motion estimation network, a differentiable
forward warping block and an image decoder network. The details of the
image encoder network are shown in Fig. 6.5. It consists of three pyramid
levels. Each level has a convolutional layer followed by a ReLU activation
function and three ResNet blocks [HZRS16]. The convolutional layer of
the first pyramid level has a kernel size 7× 7, 32 filters and uses a stride
size 1. The convolutional layers of both the second pyramid level and
the third pyramid level have a kernel size 3× 3 and use a stride size 2 to
down-sample the learned feature representations. The number of filters
are 64 and 128 respectively. The number of filters for the corresponding
ResNet blocks are 32, 64 and 128 for the first, the second and the third
pyramid levels, respectively.

The motion estimation network estimates the dense displacement field
Ur→g from the rolling shutter image to its corresponding global shutter
image. It computes the matching cost volumes based on the learned feature
representations by the image encoder. The matching cost volumes are
computed by a correlation layer, which is usually used in optical flow
prediction networks [SYLK18]. Five DenseNet blocks [HLW17] are used
to learn the dense velocity field for both the third pyramid level and the

111

6. Deep Shutter Unrolling Network

Figure 6.5.: Image encoder network.

second pyramid level, from the computed matching cost volumes. We
bi-linearly upsample the estimated dense velocity field from the second
pyramid level for the first pyramid level as shown in Fig. 6.4. The DenseNet
block consists of a convolutional layer followed by a ReLU activation
function. The convolutional layer has a 3 × 3 kernel size and a stride
size 1. Details can be found in Fig. 6.4. The number of filters for the
five DenseNet blocks are 128, 128, 96, 64 and 32 for the third pyramid
level. Similarly, we have 64, 64, 48, 32 and 16 for the second pyramid
level. The deconvolutional layers have a kernel size 4× 4, a stride size 2, a
padding size 1 and 2 filters. The velocity field prediction layer has a 2D
convolutional layer with a kernel size 3× 3, a stride size 1, a padding size
1, and 2 filters.

The image decoder network has three pyramid levels. Each pyramid
level has three ResNet blocks [HZRS16] followed by a deconvolutional
layer and an image prediction layer. All the ResNet blocks have two
convolutional layers with a kernel size 3× 3, a stride size 1 and a padding
size 1. The number of filters is equal to the input number of channels. In
particular, the number of filters are 128, 64+3+3 and 32+3+3 respectively.
The deconvolutional layers have a kernel size 4×4, a stride size 2, a padding
size 1 and 3 filters. The image prediction layer has a 2D convolutional layer
with a kernel size 3× 3, a stride size 1, a padding size 1, and 3 filters.

Net-autoenc networks: Fig. 6.6 demonstrates the architecture of the Net-
autoenc-1 network. It shares the same image encoder and decoder as our
deep shutter unrolling network. The Net-autoenc-2 network is obtained by
modifying the first convolutional layer of the image encoder network to
accept two concatenated images as input. The rest layers are the same as

112

6.3. Datasets

Figure 6.6.: Architecture of Net-autoenc-1 network.

that of the Net-autoenc-1 network.

Net-disp network: The Net-disp network has the same architecture as the
deep shutter unrolling network. We simply set the time matrices to be 1,
i.e., T0 = 1, T1 = 1 and T2 = 1.

6.2.5. Loss functions

To train our network, only the corresponding ground truth global shutter
image Iggt is required. Empirically, we find a linear combination of the
pixel-wise L1 loss, the perceptual loss Lp [JAL16] and a total variation loss
Ltv to encourage piecewise smoothness in the estimated displacement field
Ur→g , can give satisfactory performance. If the perceptual loss is omitted,
the estimated image tends to be blurry. In summary, our loss function can
be formulated as

L = Lp(Ig, Iggt) + λ1L1(Ig, Iggt) + λ2Ltv(Ur→g), (6.22)

where both λ1 and λ2 are hyper-parameters and determined empirically,
Ig is the estimated global shutter image and Iggt is the ground truth global
shutter image.

6.3. Datasets

Both Rengarajan et al. [RBR17] and Zhuang et al. [ZTJ+19] propose indi-
vidual datasets to train their networks respectively. However, their datasets
are not released to the community. Furthermore, both datasets simplify

113

6. Deep Shutter Unrolling Network

the real formation process of a rolling shutter image. For example, Ren-
garajan et al. [RBR17] generate the synthetic image by applying simple
affine image warping and does not consider the 3D geometry. Zhuang
et al. [ZTJ+19] do consider the effect of the 3D geometry. They warp a
single global shutter image from the KITTI dataset [GLU12] to generate a
synthetic rolling shutter image, given the corresponding dense depth map
and camera motion. The dense depth map is estimated from a stereo camera
by a depth prediction network [CC18]. The 6 DoF camera motion is ran-
domly sampled from a pre-defined interval. However, it still simplifies the
real image formation process, e.g. their dataset does not model occlusions,
which are common in real-world scenarios. Furthermore, the estimated
dense depth map is not the true 3D scene geometry either.

Thus, we propose two datasets: the Carla-RS dataset and the Fastec-RS
dataset. Our datasets are synthesized via high speed cameras and simulate
the real image formation process. The Carla-RS dataset is generated from a
virtual 3D environment provided by the Carla simulator [DRC+17]. Carla
simulator is an open-source platform for autonomous driving research and
it provides seven photorealistic 3D virtual towns. We implement a rolling
shutter camera model since the original simulator does not support it. We
also relax the constraint that the camera is mounted on a ground vehicle,
such that we can freely move our rolling shutter camera in six DoF. 250
sequences are randomly sampled and each sequence has 10 consecutive
frames. Both a constant translational velocity model and a constant angular
rate model are used for the sequence generation, which is typically hold
in real scenarios due to the short time interval (i.e., <50ms) between two
consecutive frames. In total, we generate 2500 rolling shutter images at a
resolution of 640× 448 pixels.

Since the Carla-RS dataset is generated from a virtual environment, we
also propose another dataset, the Fastec-RS dataset which is created using
real images in the wild. The Fastec-RS dataset is synthesized using a
professional Fastec TS51 high speed global shutter camera with a framerate
of 2400 FPS. We mount the camera on a ground vehicle and collect 76
image sequences at a resolution of 640 × 480 pixels in mainly urban

1https://www.fastecimaging.com/fastec-high-speed-cameras-ts-series/

114

6.4. Experimental evaluation

Input RS image Ours Zhuang [ZCL17] Zhuang [ZTJ+19]

Figure 6.7.: Qualitative comparisons against state-of-the-art methods
on the Carla-RS dataset. Second row: Residual image,
which is defined as the absolute difference between the cor-
responding image and the ground truth global shutter image
Iggt.

environment. Each sequence synthesizes 34 rolling shutter images. In
total, we have 2584 image pairs. The rolling shutter image is synthesized
by sequentially copying a row of pixels from the captured global shutter
images.

6.4. Experimental evaluation

Datasets: We evaluate our algorithm with both the Carla-RS dataset and
Fastec-RS dataset. We split the Carla-RS dataset into training data and
test data. The training data has 210 sequences and the test data has 40
sequences. Similarly, we split the Fastec-RS dataset into 56 sequences
for training and 20 sequences for test. Both the training data and test
data have no overlapping scenes. Since the ground truth occlusion masks
can be obtained and are also provided by the Carla-RS dataset, we thus
compute two quantitative metrics for better evaluation, i.e., one without
using the occlusion mask and the other one using the occlusion mask. For
compactness, we denote the Carla-RS dataset with masks, the Carla-RS

115

6. Deep Shutter Unrolling Network

Figure 6.8.: Qualitative comparisons against conventional methods
with dataset of [ZCL17]. It demonstrates that our network
predicts a plausible rectification and also inpaints the occluded
regions with the learned image priors.

dataset without masks and the Fastec-RS dataset as CRM, CR and FR
respectively for quantitative evaluations.

Implementation details: We implemented our network by using PyTorch
[PGC+17]. The differentiable forward warping is imeplemted in CUDA
with PyTorch wrappers. The hyper-parameters are set empirically to r = 2,
σ = 0.5, λ1 = 10 and λ2 = 0.1 unless stated otherwise. For better
convergence, we train our network in three pyramid levels. The network is
trained in 200 epochs with a learning rate 10−4. We use a batch size of 3
and use uniform random crop at a resolution of 320× 256 pixels for data
augmentation.

State-of-the-art methods: We compare our network against two state-
of-the-art methods from [ZCL17] and [ZTJ+19], which are the two most
related works to our approach. The method from [ZCL17] is a classical
two image based approach and we use the implementation provided by the
authors. The method from [ZTJ+19] is a single image based deep learning
approach. Since the authors did not release their implementations, we reim-
plemented their network and trained it on our datasets for fair comparisons.
To ensure our implementation is correct, we generated the same dataset

116

6.4. Experimental evaluation

Figure 6.9.: Generalization performance on real data. Left: Reconstructed 3D
model with input rolling shutter images. Middle: Reconstructed 3D
model with predicted global shutter images. Right: Reconstructed
3D model with real global shutter images.

PSNR↑ (dB) SSIM↑

Networks CRM CR FR CR FR

Net-autoenc-1 19.04 18.96 23.41 0.60 0.70
Net-autoenc-2 21.39 21.33 26.07 0.67 0.75
Net-disp 21.24 21.10 25.74 0.67 0.73
Net-vel-self 27.31 26.87 26.77 0.82 0.76
Ours 27.78 27.30 27.04 0.84 0.77

Table 6.1.: Ablation study on the network architectures and loss func-
tion.

as described by [ZTJ+19] and trained our implemented network with it.
In our experiments, the test performance is similar to what was reported
in [ZTJ+19], in terms of both quantitative and qualitative metrics on their
dataset. Since the dataset from [ZTJ+19] is for single image based method,
we cannot evaluate our algorithm with that dataset.

Evaluation metrics: We use the peak signal-to-noise ratio (PSNR) and
the structural similarity index (SSIM) for quantitative comparisons. Both
PSNR and SSIM metrics are commonly used to measure the similarity
between images (see e.g. [NKL17, LSK+17]). Larger PSNR/SSIM values
indicate better image quality.

Ablation study on the network architectures: We implemented several

117

6. Deep Shutter Unrolling Network

baseline networks to justify the design of our network architecture. We
remove the motion estimation network and differentiable forward warping
block to have a vanilla auto-encoder network. We also modify the image
encoder such that it can accept a single rolling shutter image as input. In
total, we have two auto-encoder networks for comparison. We denote
them with Net-autoenc-1 and Net-autoenc-2 respectively. We also study
the performance if we learn the displacement field directly, instead of the
velocity field as described in Section 6.2.4. It is achieved by setting T0, T1

and T2 all equal to 1, such that the estimated velocity field equals to the
displacement field. We denote the network as Net-disp.

Table 6.1 presents the quantitative performances of the networks. It
demonstrates that a vanilla auto-encoder network has difficulties to learn a
good representation for rolling shutter effect removal. A possible reason
is that the rectification problem involves non-local operations, which chal-
lenge the representation power of a vanilla auto-encoder network. Besides
the dependencies of Ur→g on the camera motion and 3D scene geometry, it
also depends on the capture time of a particular pixel. We find it challenges
the motion estimation network to estimate the displacement field directly.
It is well explained by our experimental results, i.e., our network outper-
forms Net-disp. Furthermore, the experimental results also demonstrate
that Net-autoenc-2 network performs better than Net-autoenc-1 network
with around 2.37 dB improvement on the Carla-RS dataset and 2.66 dB
improvement on the Fastec-RS dataset. It demonstrates that it is more
difficult to learn a good representation with a single rolling shutter image
compared to multiple images, due to the ill-posed nature of single image
based method.

Ablation study on the loss function: We did an ablation study to justify
the loss functions that we used for network training, i.e., Eq. (6.22). We
focus our attention on the explicitly supervision of the dense displacement
field estimation. To achieve this, we introduce an additional loss function
Ld

Ld =
∥∥Ir −Wg→r ◦ Iggt

∥∥
1
, (6.23)

where Ir is the latest input rolling shutter image, Iggt is the corresponding
ground truth global shutter image, Wg→r is an operator which warpes

118

6.4. Experimental evaluation

the global shutter image to its corresponding rolling shutter image and it
depends on the estimated dense displacement field Ur→g . The warping is
achieved by bilinear interpolations. The final loss function used to train the
network can be formualted as

Lf = L+ λ1Ld, (6.24)

where L represents the original loss function as shown in Eq. (6.22), λ1

is a hyper-parameter and is empiracally selected as 10. We represent the
network trained with the loss function Lf as Net-vel-self.

We train Net-vel-self with the same parameter configurations as other
networks. Experimental results presented in Table 6.1 demonstrate that
our network which is trained with only L performs better than Net-vel-self.
The introduction of the self-supervision loss Ld for the dense displacement
field Ur→g does not help improve the performance of global shutter im-
age estimation. A possible explanation is that the occlusions between Ir

and Iggt, which are used to supervise the learning of Ur→g, degrades the
prediction of Ur→g since we cannot do bi-directional occlusion detection.
The forward feature warping for global shutter image recovery would thus
be affected by the degraded Ur→g and it further affects the final global
shutter image prediction. It demonstrates that the loss function L presented
in Eq. (6.22) is sufficient to implicitly supervise the learning of Ur→g .

Quantitative and qualitative evaluations against baseline methods: We
compare our network with two state-of-the-art baseline methods. Both the
quantitative and qualitative comparisons are presented in Table 6.2 and
Fig. 6.7 respectively. The experimental results demonstrate that our method
performs better than the other two state-of-the-art approaches. The work
from Zhuang et al. [ZTJ+19] is a single image learning based approach.
We find that it has limited generalization performance on our test data. The
reason is that the scene content of our test data is quite different from that
of our training data. The learned geometric priors from training data do not
hold to the test data. In contrast, our network can be generalized well as
we solve a generic rectification problem with two input frames. Zhuang
et al. [ZCL17] is a classical approach with two input frames. We find it
can work well if the input images have good textures. However, as shown

119

6. Deep Shutter Unrolling Network

PSNR↑ (dB) SSIM↑

Methods CRM CR FR CR FR

Zhuang et al. [ZCL17] 25.93 22.88 21.44 0.77 0.71
Zhuang et al. [ZTJ+19] 18.70 18.47 N.A. 0.58 N.A.
Ours 27.78 27.30 27.04 0.84 0.77

Table 6.2.: Quantitative comparisons against the state-of-the-art meth-
ods. Since the Fastec-RS dataset does not have ground truth
depth and motion, we cannot evaluate Zhuang et al. [ZTJ+19]
with it.

in Fig. 6.7, it does not perform well for input frames with poorly textured
regions, which results in visually unpleasing global shutter images. In con-
trast, our network predicts a plausible rectification with better image quality.
Furthermore, our network can also take advantage of the learned image
priors to fill in the occluded regions, from which the classical approach
(i.e., Zhuang et al. [ZCL17]) is unable to reconstruct. This is also visible
in the quantitative results, shown in Table 6.2, i.e., the PSNR metrics for
Zhuang et al. [ZCL17] on Carla-RS dataset are 25.93 dB and 22.88 dB for
the evaluations with occlusion masks and without masks respectively; The
difference is 3.05 dB, however, ours is only 0.48 dB. It demonstrates our
method handles occlusion better, since our network is able to inpaint the oc-
cluded regions from the learned image priors. Furthermore, our network is
also orders of magnitude faster than Zhuang et al. [ZCL17]. It takes around
0.43 second to process a VGA resolution image (i.e., 640×480 pixels) with
an Nvidia GTX 1080Ti graphic card, while Zhuang et al. [ZCL17] takes
around 467.26 seconds on an Intel Core i7-7700K CPU. More qualitative
results can be found from our supplementary material.

Generalization performance to real data: To evaluate the generalization
performance of our network, we also collect a sequence of real rolling
shutter images with a Logitech C210 webcam. The camera is mounted on
the side of a ground vehicle which moves forward. For comparison, we
also collect global shutter images with the same camera (i.e., the camera is

120

6.5. Conclusion

stationary while capture). The rolling shutter images are then rectified with
our pretrained network. We run a SfM pipeline (i.e., COLMAP [SF16])
to process the rolling shutter images, the rectified rolling shutter images,
and the global shutter images respectively. Fig. 6.9 demonstrates that our
pretrained network corrects the distortion and results in a more accurate
3D model as the ground truth model. We also evaluate the generalization
performance of our network against conventional methods with the dataset
from Zhuang et al. [ZCL17]. The results presented in Fig. 6.8 demonstrate
that our network predicts a plausible rectification and also inpaints the
occluded regions with the learned image priors.
Additional qualitative experimental results: In this section, we present
additional experimental results. Both Fig. 6.10 and Fig. 6.11 demonstrate
the qualitative comparisons against the baseline methods on the Carla-
RS and Fastec-RS datasets, respectively. We also evaluate the temporal
consistency of our network. Fig. 6.12 presents the predicted global shutter
images from a continuous image sequence. The image sequence is captured
by a real rolling shutter camera and used to reconstruct the 3D model shown
in Fig. 6.9. The experimental results demonstrate that our network is able
to estimate temporally consistent global shutter images.

6.5. Conclusion
We propose an efficient end-to-end deep neural network for generic rolling
shutter image correction. Our network takes two consecutive frames and
estimates the global shutter image corresponding to the latest frame. It
is able to take advantage of the representational power of a deep network
and outperforms existing state-of-the-art methods. We also present two
large datasets, which simulate the real image formation process of a rolling
shutter image.

121

6. Deep Shutter Unrolling Network

Figure 6.10.: Qualitative comparisons against baseline methods with
the Carla-RS dataset. Even rows: Residual image, which
is defined as the absolute difference between the correspond-
ing image and the ground truth global shutter image Iggt. First
column: Input rolling shutter image. Second column: Pre-
dicted global shutter image by our network. Third column:
Predicted global shutter image by Zhuang et al. [ZCL17].
Fourth column: Predicted global shutter image by Zhuang
et al. [ZTJ+19].

122

6.5. Conclusion

Figure 6.11.: Qualitative comparisons against baseline methods with
the Fastec-RS dataset. Even rows: Residual image, which
is defined as the absolute difference between the correspond-
ing image and the ground truth global shutter image Iggt. First
column: Input rolling shutter image. Second column: Pre-
dicted global shutter image by our network. Third column:
Predicted global shutter image by Zhuang et al. [ZCL17].
Fourth column: Ground truth global shutter image. 123

6. Deep Shutter Unrolling Network

Figure 6.12.: Qualitative evaluation with a real rolling shutter image
sequence. Odd rows: Input rolling shutter image. Even
rows: Predicted global shutter image by our pretrained model.
For better visualization, the images are rotated by a constant
offset to compensate the misalignment between the camera
and the gravity direction. It demonstrates that our network is
able to estimate temporally consistent global shutter images.

124

Part III.

Algorithmic Perspective

125

7. Motion Blur Aware Robust
Visual Odometry

7.1. Introduction

While many algorithms have been proposed, motion blur is still a major
challenge remaining for visual odometry methods. Motion blur is one
of the most common artifacts that degrade images. It usually occurs in
low-light conditions where longer exposure times are necessary. This
affects both feature based approaches (e.g. ORB-SLAM [MAT17a]), which
struggle to detect keypoints, and direct methods (e.g. DSO [EKC17]) which
rely on strong image gradients for their alignment. While relocalization
strategies can partially mitigate the problem by allowing the VO to recover
after losing track, VO would still fail if the camera continues to move in
un-explored areas.

In this chapter, we propose a novel hybrid visual odometry method which
is robust to motion blur, which is based on our publication from [LZVP21].
As conventional algorithms, our method consists of a front-end tracker
and a back-end mapper. During tracking, instead of estimating the camera
pose at a particular point in time, we estimate the local camera motion
trajectory within the exposure time for each frame. This allows us to
explicitly model the motion blur in the image and leverage it for tracking.
We assume that the reference keyframe image is sharp, which is achieved by
applying a deep deblurring network on the original motion blurred image.
Since keyframes are usually sampled with a frequency much lower than
frame-rate (and are less sensitive to latency), we can thus take advantage
of a powerful deep network for keyframe deblurring (e.g. [TGS+18]). To
estimate the camera motion trajectory during image capture, we locally re-

127

7. Motion Blur Aware Robust Visual Odometry

Figure 7.1.: Motion Blur Aware Visual Odometry. We propose a full
pipeline for performing motion blur aware visual odometry.
By explicitly modelling the image formation process during
tracking, we can actively compensate for motion blur in the
direct image alignment.

blur the sharp reference keyframe image that is then used for direct image
alignment against current tracked frame. The back-end jointly optimizes
the camera poses and scene geometry based on the deblurred keyframe
images, by maximizing the photometric consistency. We build our method
on the popular DSO [EKC17] framework. As another contribution, we also
propose a novel benchmarking dataset targeting motion blur aware VO.
Our dataset contains sequences with varying levels of motion blur. Time
synchronized ground truth trajectories are also provided by an accurate
indoor motion capturing system. By making this dataset publicly available
to the community, we hope to encourage further research on making VO
robust, which is important for real-world deployments.

We evaluate our approach with both synthetic dataset and real datasets.
The experimental results demonstrate that we are able to improve the
robustness of the visual odometry, while keeping comparable accuracy as
that for images without motion blur. Furthermore, our motion blur aware
VO (called MBA-VO) is also able to run in real-time on a laptop with a
Nvidia GeForce RTX 2080 graphic card.

128

7.2. Preliminaries

7.2. Preliminaries
For the ease of illustration, we define following notations. We denote
scalar with lower case letter (e.g. λ); we denote vector with bold lower
case letter (e.g. x); we denote matrix with bold upper case letter (e.g. T);
we denote a point p in coordinate frame Fa with pa; the transformation
matrix Tb

a ∈ SE(3) transforms a 3D point pa in coordinate frame Fa to
coordinate frame Fb; we further decompose Tb

a with Rb
a ∈ SO(3) and

tba ∈ R3, such that

pb = Tb
a · pa = Rb

a · pa + tba, (7.1)

where tba and Rb
a ∈ SO(3) represents the translation and orientation

respectively; we use unit quaternion to represent the orientation Rb
a, i.e.

q̄ba =
[
qx qy qz qw

]T
, where T represents the transpose operator.

Quaternion multiplication: Given two unit quaternions,

q̄0 =

qx0

qy0

qz0
qw0

 , q̄1 =

qx1

qy1

qz1
qw1

 , (7.2)

we can compute their product as

q̄ = q̄0 ⊗ q̄1 = Q(q̄0) · q̄1 = Q̂(q̄1) · q̄0, (7.3)

where ⊗ is the product operator for quaternions, and Q(q̄0) and Q̂(q̄1)
can be defined as

Q(q̄0) =

qw0 −qz0 qy0 qx0

qz0 qw0 −qx0 qy0

−qy0 qx0 qw0 qz0
−qx0 −qy0 −qz0 qw0

 , (7.4)

Q̂(q̄1) =

qw1 qz1 −qy1 qx1

−qz1 qw1 qx1 qy1

qy1 −qx1 qw1 qz1
−qx1 −qy1 −qz1 qw1

 . (7.5)

129

7. Motion Blur Aware Robust Visual Odometry

The Jacobian can be derived as

∂q̄

∂q̄0
= Q̄(q̄1),

∂q̄

∂q̄1
= Q(q̄0). (7.6)

Inverse of unit quaternion: Given a unit quaternion,

q̄ =

qx
qy
qz
qw

 , (7.7)

its inverse is simply the conjugate q̄−1 and can be defined as

q̄−1 =

−qx
−qy
−qz
qw

 . (7.8)

The Jacobian can be derived as

∂q̄−1

∂q̄
=

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 . (7.9)

7.3. Method
In this section we present our motion blur aware visual odometry. We
build on Direct Sparse Odometry (DSO) from Engel et al. [EKC17]. The
proposed pipeline consists of three main parts: a motion blur aware visual
tracker, a keyframe deblurring network and a local mapper.

The front-end tracker estimates the camera motion trajectory within the
exposure time of current blurry frame, relative to the latest sharp keyframe
image. Each new keyframe is processed with the motion deblurring network.
The local mapper then jointly optimizes the camera poses and the scene

130

7.3. Method

structure based on the recovered latent sharp keyframe images. We use the
same local mapper as in DSO [EKC17] and the main technical contribution
of our work is the motion blur aware tracker, which we will detail in the
following sections.

7.3.1. Motion blur image formation model
The physical image formation process of a digital camera, is to collect pho-
tons during the exposure time and convert them into measureable electric
charges. This process can be mathematically modelled as integrating over
a set of virtual sharp images:

B(x) = λ

∫ τ

0

It(x)dt, (7.10)

where B(x) ∈ RW×H×3 is the captured image, W and H are the width and
height of the image respectively, x ∈ R2 represents the pixel location, λ is
a normalization factor, τ is the camera exposure time, It(x) ∈ RW×H×3

is the virtual sharp image captured at timestamp t within the exposure
time. Motion in the camera during the exposure time will result in different
virtual images It(x) for each t, resulting in a blurred image B(x). The
model can be discretely approximated as

B(x) ≈ 1

n

n−1∑
i=0

Ii(x), (7.11)

where n is the number of discrete samples.
The amount of motion blur in an image thus depends on the motion

during the exposure time. For shorter exposure time, the relative motion
will be small even for a quickly moving camera. Conversely, for long
exposure time (e.g. in low light conditions), even a slowly moving camera
can result in a motion blurred image.

7.3.2. Direct image alignment with sharp images
Before introducing our direct image alignment algorithm with blurry im-
ages, we first review the original algorithm with sharp images. Direct image

131

7. Motion Blur Aware Robust Visual Odometry

alignment algorithm serves as the core block for direct visual odometry
approaches. It jointly optimizes camera poses, scene structure as well as
the camera intrinsic parameters by maximizing the photometric consistency
across multiple images. For simplicity, we only consider optimizing over
the relative camera pose here, but the approach extends naturally to the full
problem. It can be formally defined as follows:

T∗ = argmin
T

m−1∑
i=0

‖Iref(xi)− Icur(x̂i)‖22 , (7.12)

where T ∈ SE(3) is the transformation matrix from the reference image
Iref to the current image Icur, m is the number of sampled pixels for
motion estimation, xi ∈ R2 is the location of the ith pixel, x̂i ∈ R2 is
the pixel location corresponding to pixel xi in current image Icur. Robust
loss function (e.g. huber loss) is usually also applied to the error residuals
for robust pose estimation. The image points xi and x̂i are related by the
camera pose T and the depth di as

x̂i = π(T · π−1(xi, di)), (7.13)

where π : R3 → R2 is the camera projection function, which projects
point in 3D space to image plane; π−1 : R2 × R → R3 is the inverse
projection function, which transforms a 2D point from image to 3D space
by backprojecting with the depth di.

Direct VO methods assume that photoconsistency (i.e. equation 7.12)
holds for the correct transformation T. However, if the images Iref and
Icur are affected by different motion blur, the photoconsistency loss will
no longer be valid since the local appearance for correctly corresponding
points will differ. This scenario is unavoidable in settings with highly
non-linear trajectories, e.g. tracking in augmented/mixed/virtual reality
applications, which usually result in images with different levels of motion
blur.

132

7.3. Method

7.3.3. Motion trajectory modeling

To correctly compensate for the motion blur we need to model the local
camera trajectory during the exposure time. One approach is to only
parameterize the final camera pose and then linearly interpolate between
the previous frame and the new estimate. From the interpolation we can
then create the virtual images necessary to represent the motion blur, as in
equation (7.11). However, this approach might fail for camera trajectories
with very abrupt directional changes, which are quite common for hand-
held and head-mounted cameras.

To ensure robustness, instead, we choose to parameterize the local cam-
era trajectory independently of the previous frame. To be specific, we
parameterize two camera poses, one at the beginning of the exposure
Tw

0 ∈ SE(3) and one at the end Tw
τ ∈ SE(3). Between the two poses we

linearly interpolate poses in the Lie-algebra of SE(3). The virtual camera
pose at time t ∈ [0, τ] can thus be represented as

Tw
t = Tw

0 · exp(
t

τ
· log((Tw

0)−1 ·Tw
τ)), (7.14)

where τ is the exposure time. For efficiency, we decompose Eq. (7.14) as

q̄wt = q̄w0 ⊗ exp(
t

τ
· log((q̄w0)−1 ⊗ q̄wτ)), (7.15)

twt = tw0 +
t

τ
(twτ − tw0), (7.16)

where Tw
∗ = [Rw

∗ |tw∗] ∈ SE(3), Rw
∗ ∈ SO(3) and tw∗ ∈ R3. We represent

the rotation matrix Rw
∗ with unit quaternion q̄w∗ . The goal of our motion

blur-aware tracker is now to estimate both Tw
0 and Tw

τ for each frame. If
the two poses are close, we know that the corresponding frame has very
little motion blur. In this work we only considered linear interpolation
between the two poses, but e.g. higher order splines could be used as well
which could then represent more complex camera motions. However, in
our experiments we found that the linear model worked well enough, since
the exposure time is usually relatively short.

133

7. Motion Blur Aware Robust Visual Odometry

Local parameterization of rotation: For the real implementation, we
use the local parameterization for the update of the rotation. The plus
operation for unit quaternion q̄ is defined as

q̄′ = q̄⊗∆q̄, (7.17)

where ∆q̄ = exp(∆r), ∆r =
[
∆rx ∆ry ∆rz

]T
and ∆rx → 0,

∆ry → 0, ∆rz → 0. The Jacobian with respect to ∆r can thus be
derived as

∂q̄′

∂∆r
= Q(q̄) ·

0.5 0 0
0 0.5 0
0 0 0.5
0 0 0

 . (7.18)

Jacobian related to translation: We can simplify Eq. (7.16) as

twt =
τ − t
τ

tw0 +
t

τ
twτ . (7.19)

The Jacobians, i.e. ∂twt
∂tw0
∈ R3×3 and ∂twt

∂twτ
∈ R3×3 can thus be derived as

∂twt
∂tw0

=

 τ−tτ 0 0
0 τ−t

τ 0
0 0 τ−t

τ

 , (7.20)

∂twt
∂twτ

=

 t
τ 0 0
0 t

τ 0
0 0 t

τ

 . (7.21)

Jacobian related to rotation: We decompose Eq. (7.15) as

q̄0
τ = (q̄w0)−1 ⊗ q̄wτ , (7.22)

r =
t

τ
· log(q̄0

τ), (7.23)

q̄0
t = exp(r), (7.24)

q̄wt = q̄w0 ⊗ q̄0
t . (7.25)

134

7.3. Method

We can rewrite both Eq. (7.22) and Eq. (7.25) as

q̄0
τ = Q((q̄w0)−1) · q̄wτ = Q̂(q̄wτ) · (q̄w0)−1, (7.26)

q̄wt = Q(q̄w0) · q̄0
t = Q̂(q̄0

t) · q̄w0 . (7.27)

The Jacobian ∂q̄wt
∂q̄w0
∈ R4×4 can thus be derived as

∂q̄wt
∂q̄w0

= Q̂(q̄0
t) + Q(q̄w0) · ∂q̄0

t

∂q̄w0
, (7.28)

∂q̄0
t

∂q̄w0
=
∂q̄0

t

∂r
· ∂r

∂q̄0
τ

· Q̂(q̄wτ) · ∂(q̄w0)−1

∂q̄w0
. (7.29)

Similarly for the Jacobian ∂q̄wt
∂q̄wτ
∈ R4×4, we can derive it as

∂q̄wt
∂q̄wτ

= Q(q̄w0) · ∂q̄0
t

∂r
· ∂r

∂q̄0
τ

·Q((q̄w0)−1). (7.30)

Note that both ∂q̄0
t

∂r and ∂r
∂q̄0

τ
are the Jacobians related to the exponential

mapping and logarithm mapping respectively. ∂(q̄w0)−1

∂q̄w0
is the Jacobian

related to the inverse of quaternion.
The Jacobians with respect to the local parameterization can then be

computed as

∂q̄wt
∂∆rw0

=
∂q̄wt
∂q̄w0

·Q(q̄w0) ·

0.5 0 0
0 0.5 0
0 0 0.5
0 0 0

 , (7.31)

∂q̄wt
∂∆rwτ

=
∂q̄wt
∂q̄wτ

·Q(q̄wτ) ·

0.5 0 0
0 0.5 0
0 0 0.5
0 0 0

 . (7.32)

135

7. Motion Blur Aware Robust Visual Odometry

7.3.4. Direct image alignment with blurry images
Our motion blur-aware tracker works by performing direct alignment be-
tween the keyframe, which we assume is sharp, and the current frame
which can suffer from motion blur. To leverage photometric consistency in
the alignment, we thus need to either de-blur the new frame or re-blur the
keyframe. In our work we chose the latter since re-blurring is in general
easier and more robust compared to motion deblurring, especially for severe
motion blurred images.

Each sampled pixel in Iref with known depth can be transferred into
the current (blurry) image Bcur using (7.13). For each projected point
we select its nearest neighbour integer position pixel, in current blurry
image. Assuming that the 3D point lies on a fronto-parallel plane (with
respect to Iref), we can use this plane to transfer the selected pixel back
into the reference view. Details can be found in Fig. 7.2. To synthesize the
re-blurred pixel from the reference view (so that we can compare against
the real captured pixel intensity), we now interpolate between Tw

0 and
Tw
τ . For each virtual view Tw

t , which is uniformly sampled within [0, τ],
we transfer the pixel coordinate (i.e. the red pixel in Fig. 7.2) back into
the reference image and retrieve the image intensity values using bi-linear
interpolation. The re-blurred pixel intensity is then created by averaging
over the intensity values (as in (7.11)):

B̂cur(x) =
1

n

n−1∑
i=0

Iref(x iτ
n−1

), (7.33)

where x iτ
n−1
∈ R2 corresponds to the transferred point at time t = iτ

n−1

in the sharp reference frame. The tracker then optimizes over the start-
pose and end-pose to minimize the photoconsistency loss between the real
captured intensities in current frame and the synthesized pixel intensities
from the reference image (i.e. via re-blurring),

Tw
0
∗, Tw

τ
∗ = argmin

Tw0 , Twτ

m−1∑
i=0

∥∥∥Bcur(xi)− B̂cur(xi)
∥∥∥2

2
. (7.34)

In practice, most direct image alignment methods use local patches for

136

7.3. Method

Iref Bcur Iref BcurIref Bcur Iref Bcur

Figure 7.2.: Pixel point transfer strategies. Note that we assume the pixel
center lies at the grid intersection, e.g. the green grid is consid-
ered as a 3×3 patch.

better convergence. Different from direct image alignment algorithm for
sharp images, which usually selects the local patch from the reference
image (e.g. the green 3× 3 grid on the left of Fig. 7.2), we instead select
the local patch from the current blurry image (e.g. the red 3× 3 grid on the
right of Fig. 7.2) since this simplifies the re-blurring step of our pipeline.

7.3.5. More details on the transfer

To further demonstrate the relationship between x ∈ R2 and x iτ
n−1
∈ R2

from Eq. (7.33), we define following notations for the ease of illustration.
We denote the depth of the fronto-parallel plane as d, which is the estimated
depth of the corresponding sampled keypoint from Iref (i.e. the green
pixel in Fig. 7.2); we further denote the camera pose of the virtual frame
Ii captured at timestamp iτ

n−1 relative to the reference keyframe Iref as

137

7. Motion Blur Aware Robust Visual Odometry

Iref

Ii

)

Iref

%
%&

x

x() (+,-)⁄ Ii

p23

4
5

Figure 7.3.: Geometric relationship between x ∈ R2 (i.e. the red pixel) of
the virtual sharp image Ii and x iτ

n−i
∈ R2 (i.e. the black pixel)

of the reference image Iref .

Tref
i ∈ SE(3), which can be computed from Eq. (7.14) as

Tref
i = Tref

0 · exp(
i

n− 1
τ · log(Tref

0

−1
·Tref

τ)), (7.35)

where Tref
0 ∈ SE(3) and Tref

τ ∈ SE(3) are the camera poses (which
are defined from the camera coordinate frame to the reference coordinate
frame) of the current blurry image, at the beginning and end of the image
capturing respectively, τ is the camera exposure time. Different from
Eq. (7.14), which uses global poses (i.e. Tw

0 and Tw
τ) to parameterize the

local camera trajectory, we use the relative poses (i.e. Tref
0 and Tref

τ)
instead for the real implementations of our tracker. The global camera pose
can then be obtained from the known reference camera pose Tw

ref . Note
that the fronto-parallel plane is defined in the reference camera frame, it
might not be fronto-parallel with respect to the ith virtual camera frame.
To avoid confusion, we illustrate the relationship in Fig. 7.3.

We denote the translation vector prefi of Tref
i with [px, py, pz]

T and
represent the rotation Rref

i with unit quaternion, i.e. q̄ = [qx, qy , qz , qw]T .

138

7.3. Method

We denote d as the depth of the frontal-parallel plane with respect to the
reference key-frame. We can then compute the distance d′ between the
camera center of the ith virtual camera to the frontal-parallel plane as

d′ = d− pz. (7.36)

The unitary ray of pixel x ∈ R2 in the ith image Ii can be computed by the
back-projection function π−1 : R2 → R3 asxy

z

 = π−1(x), (7.37)

where x2 +y2 + z2 = 1. We can then compute cosine function of the angle
(i.e. θ) between the unitary ray and the plane normal of the frontal parallel
plane as

λ = cos(θ) = (Rref
i · π−1(x))T ·

0
0
1

 , (7.38)

from which we can further simply it as

λ = 2x(qxqz−qwqy)+2y(qxqw+qyqz)+z(q2
w−q2

x−q2
y +q2

z). (7.39)

The length of the line segment L, which goes through pixel point x from
camera center of the ith camera and intersects with the frontal-parallel
plane, can then be simply computed as

|L| = d′

λ
=
d− pz
λ

. (7.40)

The 3D intersection point p3d between the line segment L and the frontal
parallel plane can thus be computed as

p3d = |L|

xy
z

 =
d− pz
λ

xy
z

 , (7.41)

139

7. Motion Blur Aware Robust Visual Odometry

where the p3d is represented in the coordinate frame of the ith camera. To
compute the corresponding pixel point x iτ

n−1
in the reference image Iref ,

we need transform the 3D point p3d to the reference camera coordinate
frame and then project it to the image plane. It can be formally defined as

p′3d = Tref
i · p3d, (7.42)

x iτ
n−1

= π(p′3d), (7.43)

where p′3d is the 3D point p3d represented in the reference camera coordi-
nate frame, π : R3 → R2 is the camera projection function.

Jacobian derivations: The pose of the ith virtual camera, i.e. Tref
i ,

relates to Tref
0 and Tref

τ via Eq. (7.35). To estimate both Tref
0 and Tref

τ ,
we need to have the Jacobian of x iτ

n−1
with respect to Tref

i . Since the

relationship between x iτ
n−1

and Tref
i is complex, as derived above, we use

the Mathematica Symbolic Toolbox1 for the ease of Jacobian derivations.
The details are as follows.

α0 = qxx+ qyy + qzz, α1 = qyx− qwz − qxy, (7.44)
α2 = qwy − qxz + qzx, α3 = qwx+ qyz − qzy, (7.45)
α4 = qwz + qxy − qyx, β0 = −2(qwqz − qxqy), (7.46)
β1 = 2(qwqy + qxqz), β2 = 2(qwqz + qxqy), (7.47)
β3 = −2(qwqx − qyqz), β4 = −2(qwqy − qxqz), (7.48)
β5 = 2(qwqx + qyqz), (7.49)

γ0 = x(q2
w + q2

x − q2
y − q2

z) + yβ0 + zβ1, (7.50)

γ1 = xβ2 + y(q2
w − q2

x + q2
y − q2

z) + zβ3, (7.51)

γ2 = xβ4 + yβ5 + z(q2
w − q2

x − q2
y + q2

z), (7.52)

1https://www.wolfram.com/mathematica/

140

7.3. Method

∂p′3d
∂px

=

1
0
0

 , (7.53)

∂p′3d
∂py

=

0
1
0

 , (7.54)

∂p′3d
∂pz

=

 −γ0/λ
−γ1/λ

1− γ2/λ

 , (7.55)

∂p′3d
∂qx

= 2
d− pz
λ

α0 − α2γ0/λ
α1 − α2γ1/λ
α2 − α2γ2/λ

 , (7.56)

∂p′3d
∂qy

= 2
d− pz
λ

 α4 + α3γ0/λ
α0 + α3γ1/λ
−α3 + α3γ2/λ

 , (7.57)

∂p′3d
∂qz

= 2
d− pz
λ

−α2 + α0γ0/λ
α3 − α0γ1/λ
α0 − α0γ2/λ

 , (7.58)

∂p′3d
∂qw

= 2
d− pz
λ

α3 − α4γ0/λ
α2 − α4γ1/λ
α4 − α4γ2/λ

 . (7.59)

141

7. Motion Blur Aware Robust Visual Odometry

The Jacobian
∂x iτ

n−1

∂p′3d
∈ R2×3 is related to the camera projection function.

For a pinhole camera model with the intrinsic parameters fx, fy, cx, cy, it
can be derived as

∂x iτ
n−1

∂p′3d
=

 fx
p′3dz

0 − fx·p
′
3dx

(p′3dz)2

0
fy

p′3dz
−
fy·p′3dy
(p′3dz)2

 , (7.60)

where p′3d = [p′3dx ,p
′
3dy
,p′3dz]

T .

7.4. Datasets

In this section we give an overview of the datasets that we consider in
our experimental evaluation. While there are many different datasets for
evaluating visual odometry methods, we found that there is no suitable
dataset that specifically targets at motion blurred images, although some
datasets have sub-sequences that contain motion blur, e.g. in the ETH3D
SLAM Benchmark [SSP19] and TUM RGB-D [SEE+12].

ETH3D [SSP19] / ArchVizInterior: In the ETH3D SLAM bench-
mark [SSP19], the image sequences; camera shake 1, camera shake 2
and camera shake 3 have severe motion blur. The three sequences were
captured with a camera being quickly shaken back and forth. In addi-
tion to the motion blur, the sequences are difficult due to the very poorly
textured scene (mainly containing a white circular table with very few
distinguishing landmarks). We experiment with both DSO [EKC17] and
ORBSLAM [MAT17a] on these sequences and find that both methods fail
to initialize on this dataset.

To investigate if the failures are due to the poorly textured scene or the
motion blur, we render a synthetic photo-realistic dataset using the same
motion trajectories, exposure time and frame rate. The dataset is rendered
by the Unreal game engine with the free ArchVizInterior scene model2.
We use the scripts provided by Liu et al. [LCLP20] for the dataset creation.

2https://www.unrealengine.com

142

7.4. Datasets

Figure 7.4.: Sample image from our synthetic ArchVizInterior dataset.
The camera motions are taken from the ETH3D Bench-
mark [SSP19] which are then re-rendered in synthetic scene
by Unreal game engine.

A sample image can be found in Fig. 7.4. Sample videos on the dataset
can be found in our supplementary material. Since this dataset provides
perfect ground truth sharp images, which are paired with the motion blurred
images, we use it for our ablation studies.

TUM-RGBD [SEE+12]: The hand-held SLAM sequences from the
TUM-RGBD dataset [SEE+12] also contain motion blurred images. The
dataset is collected with the Microsoft Xbox Kinect sensor, which contains
a rolling shutter color camera and a time-of-flight depth camera. Since
the dataset targets at evaluating the performance of RGBD camera based
SLAM methods, the effect of motion blurred images is not their focus.
Furthermore, it has been shown that direct approach is more sensitive to
rolling shutter effect [SSP19, YWGC18]. It is thus better to have dataset
which is collected from a global shutter camera to avoid the effect of rolling
shutter mechanism. We also evaluate our method with the TUM-RGBD
dataset in the next section.

143

7. Motion Blur Aware Robust Visual Odometry

Figure 7.5.: Examples images from the proposed dataset for benchmarking
visual odometry from motion blurred image sequences. The
dataset contains multiple sequences with varying levels of
motion blur.

Proposed Motion Blur Benchmarking Dataset: To more clearly show
the benefit of our method we propose a new benchmark dataset for evalu-
ating visual odometry which specifically targets motion blur. By making
this dataset publicly available to other researchers, we hope to encourage
further research on making visual odometry robust.

Our dataset is collected with a global shutter camera at a resolution of
752 × 480 pixels and a frame rate of 27 fps. The ground truth trajectory
is provided by an indoor motion capturing system3 at 100 Hz. Extrinsic
parameters between the marker for motion capture and camera is calibrated
by the hand-eye calibration approach, such that the ground truth trajectory
can align with the camera motion trajectory. A total number of 18 motion
blurred sequences are collected. The dataset contains images with varying
levels of motion blur. More details on the dataset can be found in the
supplementary video. Figure 7.5 shows some example images from the
new dataset with varying motion blur.

7.5. Experimental evaluation

Implementation details: The original tracker of DSO [EKC17] does
semi-dense direct image alignment. For efficiency, we sub-sample the high
gradient pixels to obtain sparse keypoints, which are uniformly distributed

3https://www.vicon.com

144

7.5. Experimental evaluation

within the image. We further define a 9×9 local patch around each sampled
sparse keypoints for better convergence. The energy function is optimized
in a coarse to fine manner and robust huber loss function is also applied for
robustness. Our tracker is implemented and evaluated on a laptop grade
Nvidia RTX 2080 graphic card. It takes 34.4 ms on average to process a
single blurry image, which is suitable for real time applications.

We experiment with two state-of-the-art deblurring networks, SRNDe-
blurNet [TGS+18] and DeblurGANv2 [KMWW19]. We use the official
pretrained models and generalize them to our datasets without any finetun-
ing. In particular, we consider the mobile network of DeblurGANv2 since
it can run in real time on a high-end GPU. SRNDeblurNet takes around 140
ms second to process a single image at a resolution of 752× 480 pixels on
a laptop grade Nvidia RTX 2080 graphic card. However, it delivers higher
quality deblurred images compared to the DeblurGANv2 mobile network
and the time consumption is already sufficient for local mapping. There
are also more advanced deblurring networks being proposed recently, such
as the work from Gao et al. [GTSJ19]. However, they are usually more
time consuming than SRNDeblurNet [TGS+18], and is not suitable to be
integrated into our local mapper.

Baseline methods and evaluation metrics: Two state-of-the-art monoc-
ular VO pipelines are selected for the benchmark. In particular, we select
ORB-SLAM [MAT17a], which is the representative of sparse feature based
approach. As a representative for direct approaches we compare with
DSO [EKC17]. For quantative comparisons, we measure the RMSE of
absolute trajectory error (i.e. RMSE ATE) [SEE+12], since it is the focus
of VO algorithms and is commonly used by the literature [EKC17, SSP19].
The estimated trajectory is first aligned with the ground truth by matching
poses with the same timestamps. The RMSE of ATE is then computed
by averaging the translational differences between the aligned trajectories.
In addition, we also use the percentage of frame drops to measure the
robustness of different algorithms.

Motivating example: To clearly motivate the need for motion blur aware
VO, we first evaluate the performance of ORB-SLAM and DSO on the sharp
images and the corresponding motion blurred images respectively, on the

145

7. Motion Blur Aware Robust Visual Odometry

ArchVizInterior dataset. See Section 7.4 for details on the dataset. Table 7.1
demonstrates that motion blurred images affect both ORB-SLAM and DSO,
in terms of estimated trajectory accuracy and robustness. Although there is
no large accuracy drop for ORB-SLAM, there are significant frame drops.
ArchVizInterior dataset collects images around a local area and scene
overlaps exist among almost every image. Even though there are many
frame drops, ORB-SLAM can still recover back due to its relocalization
module, once the image is in better quality, assuming there is enough visual
overlap with previously mapped areas. However, a reset might need to
perform if the camera tranverses in un-explored scenes. There is no frame
drops for DSO. However, its accuracy drops with a large margin compared
to that with sharp images.

Note that we rendered the dataset with the same trajectories from ETH3D
[SSP19] dataset. The results demonstrate that the camera motion is not
the main factor, which leads the failure of both ORB-SLAM and DSO on
ETH3D dataset. It further justifies our motivation to create new datasets.

Ablation studies: Since ArchvizInterior dataset has ground truth sharp
images, which are paired with the motion blurred images, we conduct
ablation studies with it for better comparisons. Our ablation studies consist
of two parts, the selection of the deblurring network and experiments to
demonstrate the effectiveness of our motion blur aware tracker.

We evaluate the generalization performance as well as efficiency of both
deblurring networks, i.e. SRNDeblurNet [TGS+18] and DeblurGANv2-
mobileNet [KMWW19] on the ArchvizInterior dataset. The evaluation
is conducted with a laptop grade Nvidia RTX 2080 graphic card. Ta-
ble 7.2 demonstrates that the DeblurGANv2-mobileNet is able to run in
real time on a high-end GPU. However, its deblurring performance is
worse than SRNDeblurNet as an expense. To verify if current performance
of DeblurGANv2-mobileNet is sufficient to improve the performance of
VO algorithms, we deblurred every image of ArchVizInterior dataset by
DeblurGANv2-mobileNet. We run both ORB-SLAM and DSO with the
deblurred images. The experimental results shown in Table 7.1 demon-
strate that it can only improve the performance of VO algorithms with
motion blurred images with a small margin. The reason is that the Deblur-

146

7.5. Experimental evaluation

O
R

B
-S

L
A

M
[M

A
T

17
a]

D
SO

[E
K

C
17

]

A
rc

hV
iz

-1
A

rc
hV

iz
-2

A
rc

hV
iz

-3
A

rc
hV

iz
-1

A
rc

hV
iz

-2
A

rc
hV

iz
-3

A
T

E
(m

)F
D

(%
)A

T
E

(m
)F

D
(%

)A
T

E
(m

)F
D

(%
)

A
T

E
(m

)F
D

(%
)A

T
E

(m
)F

D
(%

)A
T

E
(m

)F
D

(%
)

Sh
ar

p
0.

02
01

0
0.

00
48

0
0.

01
38

0
0.

01
96

0
0.

00
43

0
0.

01
40

0
B

lu
r

0.
03

25
22

.1
0.

01
22

1.
06

8
0.

10
08

19
.5

0.
21

32
0

0.
16

55
0

0.
12

86
0

D
eb

lu
r

0.
01

79
15

.6
0.

00
66

2.
76

3
0.

01
97

16
.7

0.
20

65
0

0.
16

13
0

0.
04

81
0

Ta
bl

e
7.

1.
:T

he
pe

rf
or

m
an

ce
of

bo
th

O
R

B
-S

LA
M

an
d

D
SO

on
th

e
A

rc
hV

iz
In

te
ri

or
da

ta
se

t.
Sh

ar
p,

B
lu

r
an

d
D

eb
lu

r
de

no
te

th
e

pi
pe

lin
e

is
ru

nn
in

g
on

th
e

gr
ou

nd
tru

th
sh

ar
p

im
ag

es
,m

ot
io

n
bl

ur
re

d
im

ag
es

an
d

th
e

de
bl

ur
re

d
im

ag
es

by
D

eb
lu

rG
A

N
v2

[K
M

W
W

19
]r

es
pe

ct
iv

el
y.

T
he

FD
co

lu
m

n
sh

ow
s

th
e

pe
rc

en
ta

ge
of

dr
op

pe
d

fr
am

es
.B

ot
h

th
e

A
T

E
an

d
FD

m
et

ri
cs

ar
e

th
e

sm
al

le
rt

he
be

tte
r.

147

7. Motion Blur Aware Robust Visual Odometry

PSNR (dB) ↑ SSIM ↑ Time (ms)

Blur image 26.80 0.7887 N.A.
DeblurGANv2m [KMWW19] 28.66 0.8156 38.1
SRNDeblurNet [TGS+18] 30.01 0.8491 140.3

Table 7.2.: Generalization performance of DeblurGANv2-mobileNet
[KMWW19] and SRNDeblurNet [TGS+18] on the ArchVizIn-
terior dataset.

ArchViz-1 ArchViz-2 ArchViz-3

Figure 7.6.: Estimated trajectories of MBA-VO from the motion blurred im-
age sequences of the ArchVizInterior dataset. It demonstrates
that MBA-VO can estimate accurate trajectories, although the
camera motions are very challenging.

GANv2 [KMWW19] has limited generalization performance as an expense
for smaller model size. It demonstrates that the naive way to deblur every
input frame (with an efficient deblurring network for real time operation),
and feed the deblurred images to a standard VO pipeline is not the correct
way to make VO robust to motion blur. It justifies our motivation to do
hybrid motion blur aware VO, which can take advantage of a more powerful
deblurring network with a larger model size. Our hybrid approach recovers
the camera motion of severe blurred images by the motion blur aware direct
image alignment algorithm, without the need to deblur them in frame rate.
Since SRNDeblurNet takes around 140 ms to process a 752× 480 pixels
resolution image, which is sufficient to deblur selected key-frame image,
and delivers better deblurring performance, we thus use it for our pipeline.

148

7.5. Experimental evaluation

ArchViz-1 ArchViz-2 ArchViz-3

ATE (m) FD (%) ATE (m) FD (%) ATE (m) FD (%)

Sharp 0.0197 0 0.0101 0 0.0157 0
Blur 0.0256 0 0.0184 0 0.0202 0

Table 7.3.: The performance of MBA-VO on the ArchVizInterior dataset.
Sharp and Blur denote the pipeline is running on the ground
truth sharp images and motion blurred images respectively. FD
is the percentage of dropped frames.

To study the effectiveness of MBA-VO, we experiment with sharp im-
ages and blurry images respectively. Experimental results from Table 7.3
demonstrate that MBA-VO is able to achieve similar performance as both
ORB-SLAM and DSO if the images are not motion blurred. For motion
blurred images, MBA-VO is able to achieve competitive accuracy as that
for sharp images without any frame drops. To further demonstrate the
effectiveness of our motion blur aware tracker, we set the camera exposure
time to be 0 during the estimation of the camera poses (i.e. Eq. (7.34)). It
enforces the tracker to assume the current blurry images as sharp images
and do normal pose estimations instead. The other settings are kept the
same (e.g. we still use SRNDeblurNet to deblur the keyframe images). The
resulted ATE metrics are 0.22 m, 0.1558 m and 0.2113 m respectively for
the ArchVizInterior dataset. The experimental results thus demonstrate the
necessity to do motion blur aware tracking.

Fig. 7.6 demonstrates the estimated trajectories of MBA-VO on the
motion blurred sequences from ArchVizInterior dataset. Both the quantita-
tive and qualitative results demonstrate the effectiveness of our proposed
algorithm for motion blurred image sequences.

Evaluation with TUM RGB-D dataset: To evaluate the performance of
MBA-VO with real motion blurred images, we select three sequences
with large motion blur from the TUM RGB-D dataset [SEE+12]. In
particular, we select the fr1-desk, fr1-desk2 and fr1-room from the handheld

149

7. Motion Blur Aware Robust Visual Odometry

fr1-desk fr1-desk2 fr1-room

ATE (m) FD (%) ATE (m) FD (%) ATE (m) FD (%)

ORBSLAM 0.1781 5.1 0.3005 33.8 0.0657 46.5
DSO 0.4956 0 0.7762 0 0.2992 0
MBA-VO 0.1021 0 0.3997 0 0.1435 0

Table 7.4.: Comparison on TUM RGB-D dataset [SEE+12]. ORB-SLAM
suffers from significant frame drops, although it provides ac-
curate estimates. The proposed method, MBA-VO, improves
on DSO and provides more accurate estimates with no frame
drops.

SLAM category. Since the camera is hand held, which is similar to head-
mounted camera, hand shaken would result in fast rotational motion though
the translational velocity is small. For augmented/virtual/mixed reality
applications, head rotational motion is the main cause of severe motion
blur.

Table 7.4 demonstrates the performance of MBA-VO against ORB-
SLAM and DSO on sequences with large motion blur from TUM RGB-D
dataset. It demonstrates that MBA-VO is able to improve the accuracy
over the original DSO algorithm, while is also more robust compared to
sparse feature based approach, with motion blurred images. Note that
ORB-SLAM suffers from significant frame-drops, although it generally
provides more accurate poses for these sequences (low ATE).

Evaluation with our real-world dataset: Since the goal of the TUM
RGB-D dataset is not evaluating the robustness of monocular VO/SLAM
algorithms, we created a specific large real dataset with varying levels of
motion blur (see Section 7.4). We evaluate ORB-SLAM, DSO and MBA-
VO with it. Table 7.5 presents experimental results with our real-world
dataset. It demonstrates that ORB-SLAM [MAT17a] suffers from signifi-
cant frame drops if the images are motion blurred. It is reasonable since
ORB-SLAM is a sparse feature based approach. If the images are severely
motion blurred, the sparse feature detector would have difficulties to detect

150

7.5. Experimental evaluation

ORB-SLAM [MAT17a] DSO [EKC17] MBA-VO

ATE (m) FD (%) ATE (m) FD (%) ATE (m) FD (%)

Seq0 0.1265 7.0 0.2722 0 0.0581 0
Seq1 0.0839 36.8 0.4327 0 0.0692 0
Seq2 0.1992 11.9 0.1958 0 0.0446 0
Seq3 x x 0.4044 0 0.1615 0
Seq4 x x x x 0.1323 0
Seq5 0.1931 73.2 0.3241 0 0.2667 0
Seq6 0.0743 25.4 0.4968 0 0.3321 0
Seq7 0.1872 47.9 0.3857 0 0.2718 0
Seq8 0.5861 31.9 0.7906 0 0.3915 0
Seq9 0.3791 26.6 0.8538 0 0.2838 0
Seq10 0.1708 33.6 0.4800 0 0.4319 0
Seq11 0.1378 39.1 x x 0.4003 0
Seq12 x x 0.5031 0 0.3632 0
Seq13 x x 0.4501 0 0.3043 0
Seq14 x x x x 0.4516 0
Seq15 x x x x 0.3687 0
Seq16 x x x x 0.3765 0
Seq17 x x x x 0.3299 0

Table 7.5.: The performance of MBA-VO on our dataset. x denotes the
corresponding algorithm fails on that particular sequence.

enough good features for motion estimation. In contrast, DSO [EKC17]
is more robust to motion blur (i.e. no frame drops). However, since pairs
of motion blurred images usually violate the photometric-consistency as-
sumption, the accuracy of DSO is degraded. Our proposed motion blur
aware visual odometry (i.e. MBA-VO) models the motion blur for direct
image alignment algorithm, so that the photometric-consistency assumption
would still hold even the images are motion blurred. It thus achieves better
accuracy and robustness compared to DSO and ORB-SLAM.

Performance in the absence of motion-blur: To further demonstrate
the performance of our proposed method with images in good quality,
we run an experiment comparing the proposed approach with DSO and

151

7. Motion Blur Aware Robust Visual Odometry

ORB-SLAM DSO MBA-VO

MH 01 easy 0.030 0.050 0.035
MH 02 easy 0.022 0.077 0.101
MH 03 medium 0.049 0.178 0.239
MH 04 difficult 2.472 1.181 0.476
MH 05 difficult 4.386 1.261 0.265

Table 7.6.: EuRoC dataset: Comparison in terms of ATE RMSE error
metric (m). Note that we did not discard any images (e.g. the
first few shaky images which are used to initialize IMU) from
the EuRoC dataset for our evaluations. Therefore, the resulted
accuracy for ORB-SLAM and DSO might be a bit different
from prior reported results.

ORB-SLAM on the EuRoC dataset [BNG+16]. Table 7.6 demonstrates
that MBA-VO performs slightly worse than DSO on MH 02 easy and
MH 03 medium. However, it performs better than DSO on MH 01 easy,
MH 04 difficult and MH 05 difficult. In general, we observed similar
performance as DSO for good images. The VICON room sequences in
the EuRoC dataset are very challenging. Both DSO and MBA-VO fail
even with sharp images (either with very large errors or complete tracking
failure). This might be caused by the lack of good texture for some of
the frames. The sequences also contain degenerate motions (e.g. close
to pure rotation). Without any relocalization module (e.g. as is used in
ORB-SLAM), it is hard for both DSO and MBA-VO to recover once the
pipeline breaks or drifts significantly.

Computational complexity: To compensate the effect of motion blur, we
need to sample multiple discrete virtual frames to synthesize the blurry
image (Eq.6 in the main text). The number of discrete frames should
be larger than the blur kernel size. Currently, we use n = 64 for our
experiments. If n = 1, it reduces to the problem of assuming the images
are sharp. The accuracy would thus be affected for motion blurred images.
If we raise n to 2 or higher, the number of pose parameters would not be

152

7.6. Conclusion

affected (i.e. 12 variables). However, the number of pixel transfers would
be increased (e.g. doubled for 2 virtual frames). Larger n thus requires
more computational resources. The back-end is the same as the original
DSO [EKC17] and it is running on CPU. Note that the back-end only
relies on the deblurred keyframes when optimizing the keyframe poses and
structure, thus we can use the original DSO implementation.
Discussions: The experimental results demonstrate that DSO [EKC17]
generally performs worse than ORB-SLAM [MAT17a] for motion blurred
images, in terms of the ATE metric. It is caused by the datasets we eval-
uated on have many more severely blurred images. In this case, ORB-
SLAM [MAT17a] simply discards the severe blurred images without affect-
ing the accuracy of the remaining frames. In contrast, DSO [EKC17] does
not drop the frames, leading to the overall loss of accuracy due to including
more challenging frames in the estimation. Note that the ATE metric is
only computed from the successfully tracked frames.

7.6. Conclusion
We present a hybrid visual odometry algorithm which is robust to mo-
tion blur. The camera motion trajectory within exposure time is explictly
modelled and estimated during tracking. It allows us to compensate the
effect of motion blur without deblurring all of them. We also propose a
novel benchmarking dataset targeting motion blur aware visual odometry.
Experimental results demonstrate that our algorithm improves the accuracy
and robustness over existing methods on both synthetic and real-world
datasets. While we only consider monocular VO, our approach could also
be applied to other settings such as VIO and RGB-D SLAM. We believe
both our method and dataset would be a valuable step towards the era of
robust visual odometry.

153

8. Is Single Image Motion
Estimation Possible?

8.1. Introduction

As the recent advance of deep learning techniques in many vision tasks,
several pioneering learning based pipelines have been proposed to tackle the
visual odometry problem, with the aim to explore a new research direction
to further improve the performance (e.g. in terms of both accuracy and
robustness) over existing VO methods. Existing learning based methods
can be categorized into end-to-end direct regression approaches and hybrid
approaches. Direct regression approaches usually formulate the problem to
recover the dense depth maps and relative camera poses via deep networks
[ZBSL17, UZU+17]. The networks are trained either in a supervised
manner or via self-supervision. Hybrid approaches still adopt the standard
formulation of classic VO pipeline, they instead replace parts of the pipeline
with deep networks to improve their performance for challenging scenarios
[BCC+18a, TTLN17b, OTFY18, BLC+19, YWSC18b].

Although many state-of-the-art end-to-end direct regression approaches
have been proposed over the past years, they are still infancy compared to
classic approaches in terms of scalability and generalization. In this chapter,
we propose to do an in-depth study of those approaches and provide an
insight about their characteristics and limitations, such that future research
could benefit from. In particular, we focus our attention on the SfMLearner
method [ZBSL17] and its variants [YS18, BLW+19]. SfMLearner is a
pioneering network to learn the dense depth maps and relative camera
motions from a short sequence of images. It consists of two sub-networks,
i.e., a dense depth network and a motion estimation network. The depth

155

8. Is Single Image Motion Estimation Possible?

network estimates the dense maps from a single image and the motion
estimation network predicts the relative pose from a 5-frame snippet. Both
networks are trained in a self-supervised manner via cross-view photometric
consistency. Since Dijk et al. [DC19] recently propose a work to study the
depth network of SfMLearner, we thus further limit our study mainly on
the motion estimation network.

Our study is initially driven by the finding that a single image VO
is feasible, and achieves competitive performance on the KITTI dataset
[GLU12]. Our network has similar architecture as that of prior works
[ZBSL17, BLW+19]. Instead of using multiple frames for the motion
estimation network as prior methods, we enforce the motion estimation
network to use a single image as input and to predict the relative pose
from its next consecutive frame to current frame. The whole network
is trained in a self-supervised manner with the aid of the next image.
Experimental results on KITTI dataset [GLU12] demonstrate that it can
achieve competitive performance on par with the other multi-frame learning
based approaches [ZBSL17]. In particular, we evaluate the depth estimation
on KITTI raw dataset using Eigen et al.’s split. The experimental results
demonstrate that our network performs better than two supervised methods,
i.e., Eigen et al. [EPF14] and Liu et al. [LSLR16], and an unsupervised
method from Zhou et al. [ZBSL17]. We also evaluate the relative pose
estimation on KITTI odometry dataset and find that it performs better than
ORB-SLAM (short) [MAT17b] and has competitive performance as other
unsupervised methods.

How is this possible? In general, it is not possible to predict motion
from only a single image. We hypothesize that it is because the KITTI
dataset [GLU12] is an “easy” dataset for those learning based approaches.
To verify our hypothesis, we train our single image motion estimation
network with ground truth motions from KITTI odometry dataset [GLU12],
so that we can have an understanding about its upper bound performance.
Experimental results demonstrate that the network can really learn the
motion directions based on the semantic information possessed by only a
single image from the KITTI dataset. For example, the street directions can
already tell many motion cues due to the restricted camera motions from
the dataset.

156

8.2. Single image motion estimation network

To further verify our hypothesis that KITTI dataset is an “easy” dataset
for those networks, we create a large dataset with Carla simulator [DRC+17].
We modify the simulator such that the camera can be placed at arbitrary
positions and is able to undergo random 6-DoF motions. We train one
of the latest best performing state-of-the-art networks, i.e., the network
from Bian et al. [BLW+19], with this dataset and evaluate it against a
simple two-view structure from motion baseline, which is implemented
in MATLAB by ourselves. Experimental results demonstrate the network
cannot perform well on this dataset, which has complex camera motions. It
is impossible even for us human beings to tell the motion direction from
a single image from this dataset, since the camera can move in arbitrary
direction. We argue that although existing methods achieve remarkable
performance on KITTI dataset [GLU12], there is still much room for those
end-to-end learning based approaches to improve, and it is also necessary
to use new novel real datasets with complex motions for better evaluations
in future.

8.2. Single image motion estimation
network

Network architecture: We propose a network architecture which is
able to do single image visual odometry on KITTI dataset [GLU12]. Our
network architecture is similar as that of Bian et al. [BLW+19] and the
detailed network architecture is shown in Fig. 8.1. The network consists of a
single image depth estimation network and single image motion estimation
network. We use DispNet [MIH+16] for our depth network. The motion
estimation network consists of a ResNet-34 network [HZRS16] followed
by six convolutional layers for relative pose prediction. Since relative pose
is defined by at least two frames, we enforce the motion estimation network
to predict the relative pose between the input frame and its next consecutive
frame.

Training details: We use two consecutive frames to train our network in
a self-supervised manner. During training, we estimate the dense inverse

157

8. Is Single Image Motion Estimation Possible?

Test
Training

Figure 8.1.: Architecture of single image motion estimation network. Our
network consists of a single image depth network and a single
image motion estimation network. The depth network predicts
the dense inverse depth map Dcurr and Dnext of Icurr and
Inext, respectively. We have three losses to train the network.
They are a photometric consistency loss Lp, a inverse depth
map consistency loss Ld and a smoothness loss Ltv for the
predicted inverse depth map. We use two consecutive frames,
i.e., Icurr and Inext, for training. During inference, we only
use a single image Icurr and the estimated motion is defined
as the relative pose from the next frame to current frame.

depth maps Dcurr and Dnext corresponding to the current frame Icurr and
its next consecutive frame Inext respectively by the depth network. We
input the current frame Icurr to the pose network, such that it can predict
the relative pose Tcurr

next from Inext to Icurr. Since the relative rotation
between two consecutive frames is usually small, we parameterize Tcurr

next

by euler angles and a 3-D translation vector.
We adopt the loss functions used in Bian et al. [BLW+19] to train our

network in a self-supervised manner. In particular, our loss functions
consist of three main parts: a photometric consistency loss, a depth map
consistency loss and an edge-aware depth map smoothness loss. More

158

8.2. Single image motion estimation network

Method Seq.09 Seq.10
ORB-SLAM (full) 0.014±0.008 0.012±0.011

ORB-SLAM (short) 0.064±0.141 0.064±0.130
Zhou et al. [ZBSL17] 0.021±0.017 0.020±0.015
Zhou et al.∗ [ZBSL17] 0.016±0.009 0.013±0.009

Mahjourian et al. [MWA18] 0.013±0.010 0.012±0.011
GeoNet [YS18] 0.012±0.007 0.012±0.009

DF-Net [ZLH18] 0.017 ± 0.007 0.015 ± 0.009
Ranjan et al. [RJB+19] 0.012 ± 0.007 0.012 ± 0.008

Chen et al. [CSS19] 0.011 ± 0.006 0.011 ± 0.009
Ours 0.0296±0.037 0.029±0.043

Table 8.1.: Single image motion estimation results on KITTI odometry
dataset [GLU12] with 5-frames absolute trajectory error metric.
“∗” denotes the network is fine tuned after the paper submission.
It demonstrates that our network performs better than ORB-
SLAM (short) and is competitive compared to other baselines,
although our motion estimation network only requires a single
image as input.

details can be found from Bian et al. [BLW+19]. The network is trained in
120 epoches with a learning rate of 1e−4 and a batch size 8.

Evaluation metrics and experimental results: We train and evaluate our
networks on KITTI raw dataset [GLU12] using Eigen et al.’s split [EPF14],
which is commonly used by the community [ZBSL17, YS18, RJB+19].
We also resize the input images to be 416 × 128 as prior works. We
follow the metrics used by Eigen et al. [EPF14], to evaluate the depth
prediction performance of our network against prior works. Both Table 8.2
and Fig. 8.2 present the quantitative and qualitative results of the depth
prediction of our network against prior works. It demonstrates that our
network performs better than Eigen et al. [EPF14], Liu et al. [LSLR16]
and Zhou et al. [ZBSL17], even trained with a single image pose network.
Both Eigen et al. [EPF14] and Liu et al. [LSLR16] are trained with ground

159

8. Is Single Image Motion Estimation Possible?

truth depths. The network from Zhou et al. [ZBSL17] is similar as ours.
However, they use three consecutive frames as the input for the pose
estimation network, while ours only require a single frame.

Figure 8.2.: Single image depth prediction of our sinSfM network. Left:
Input test image. Right: Predicted depth map of our trained
depth network. It demonstrates that our depth network is able
to predict reasonable depth maps, even trained with a single
frame motion estimation network.

We also train the same network on the KITTI odometry dataset [GLU12],
to evaluate its performance for relative pose estimation. We use the standard
training/test data split for our network training and evaluation. In particular,
sequence 00-08 are used for training and sequence 09-10 are used for

160

8.2. Single image motion estimation network

evaluation. The input image size is resized to 416×128. Since our network
can only predict the pose from next frame to current frame, we concatenate
the predicted poses of five consecutive frames to compute the 5-frames
absolute trajectory error (ATE) metric. This metric is proposed by Zhou et
al. [ZBSL17] and commonly used by the community. Table 8.1 presents the
quantitative results. It demonstrates that our network performs better than
ORB-SLAM (short) and is competitive to other baselines, which usually
need at least three frames for the pose estimation network while ours only
require a single image.

Figure 8.3.: Sample images from KITTI visual odometry dataset [GLU12].
It is easy for we human beings to predict the camera motions
by observing above images only, given the prior knowledge
that the images are from KITTI dataset. For example, we can
easily predict that the motion corresponding to the top image
is turning right and moving forward. Similarly, we can also
easily guess the motion of the bottom image is moving straight
forward.

161

8. Is Single Image Motion Estimation Possible?

Discussions: How is this possible? It is well known that it is impossible to
estimate camera motion from a single global shutter image. However, we
find that the camera motion from KITTI dataset [GLU12] is very restricted.
It mainly has two degree of freedoms motions, i.e., the forward motion and
yaw motion. Furthermore, the vehicle is usually driven on and following
urban streets, which usually have clear street boundaries. For example,
given two sample images from KITTI odometry dataset as shown in Fig. 8.3,
it is easy for us to predict that the camera is moving torwards front right
for the top image and it is moving straight forward for the bottom image.
We therefore hypothesize that KITTI dataset [GLU12] is an “easy” dataset
for those learning based approaches, which can already learn many motion
cues from semantic information of a single image.

8.3. Upper bound motion cues that a
single image motion estimation
network can exploit

To verify our hypothesis, we train our single frame motion estimation net-
work with ground truth camera motions. The motivation of this experiment
is to investigate the upper bound of the motion cues possessed by a single
image from KITTI dataset.

Experimental settings: We use the standard training/test data split of
the KITTI odometry dataset [GLU12], to train and evaluate our motion
estimation network. The relative pose is parameterized by a 3-D euler
angles and a 3-D translation vector. Given the ground truth pose of each
frame from the dataset, we can compute the ground truth relative motions to
supervise the training of our motion estimation network. The loss function
used to train the network is defined as

L = ‖t− tgt‖1 + λ‖r− rgt‖1, (8.1)

where t and tgt are the predicted translation vector and ground truth transla-
tion vector respectively, r and rgt are the predicted euler angles and ground

162

8.3. Upper bound motion cues that a single image motion estimation
network can exploit

E
rr

or
↓

A
cc

ur
ac

y↑
M

et
ho

ds
Su

pe
rv

is
io

n
A

bs
R

el
Sq

R
el

R
M

S
R

M
Sl

og
<

1
.2
5

<
1
.2
5

2
<

1
.2
5

3

E
ig

en
et

al
.[

E
PF

14
]

D
0.

20
3

1.
54

8
6.

30
7

0.
28

2
0.

70
2

0.
89

0
0.

95
8

L
iu

et
al

.[
L

SL
R

16
]

D
0.

20
2

1.
61

4
6.

52
3

0.
27

5
0.

67
8

0.
89

5
0.

96
5

G
ar

g
et

al
.[

G
K

C
R

16
]

D
0.

15
2

1.
22

6
5.

84
9

0.
24

6
0.

78
4

0.
92

1
0.

96
7

K
uz

ni
et

so
v

et
al

.[
K

SL
17

]
D

+S
0.

11
3

0.
74

1
4.

62
1

0.
18

9
0.

86
2

0.
96

0
0.

98
6

G
od

ar
d

et
al

.[
G

M
B

17
]

S
0.

14
8

1.
34

4
5.

92
7

0.
24

7
0.

80
3

0.
92

2
0.

96
4

Z
ha

n
et

al
.[

Z
G

W
+

18
]

S
0.

14
4

1.
39

1
5.

86
9

0.
24

1
0.

80
3

0.
92

8
0.

96
9

Z
ho

u
et

al
.[

Z
B

SL
17

]
M

0.
20

8
1.

76
8

6.
85

6
0.

28
3

0.
67

8
0.

88
5

0.
95

7
Y

an
g

et
al

.[
Y

W
X

+
18

]
M

0.
18

2
1.

48
1

6.
50

1
0.

26
7

0.
72

5
0.

90
6

0.
96

3
M

ah
jo

ur
ia

n
et

al
.[

M
W

A
18

]
M

0.
16

3
1.

24
0

6.
22

0
0.

25
0

0.
76

2
0.

91
6

0.
96

8
W

an
g

et
al

.[
W

B
Z

L
18

]
M

0.
15

1
1.

25
7

5.
58

3
0.

22
8

0.
81

0
0.

93
6

0.
97

4
Y

in
et

al
.[

Y
S1

8]
M

0.
15

5
1.

29
6

5.
85

7
0.

23
3

0.
79

3
0.

93
1

0.
97

3
Z

ho
u

et
al

.[
Z

U
B

18
]

M
0.

15
0

1.
12

4
5.

50
7

0.
22

3
0.

80
6

0.
93

3
0.

97
3

R
an

ja
n

et
al

.[
R

JB
+

19
]

M
0.

14
0

1.
07

0
5.

32
6

0.
21

7
0.

82
6

0.
94

1
0.

97
5

B
ia

n
et

al
.[

B
LW

+
19

]
M

0.
13

7
1.

08
9

5.
43

9
0.

21
7

0.
83

0
0.

94
2

0.
97

5
C

he
n

et
al

.[
C

SS
19

]
M

0.
09

9
0.

79
6

4.
74

3
0.

18
6

0.
88

4
0.

95
5

0.
97

9
L

ie
ta

l.
[L

X
W

+
19

]
M

0.
14

6
0.

92
7

4.
10

7
0.

21
6

0.
81

9
0.

94
3

0.
98

1
O

ur
s

M
0.

20
5

1.
50

8
6.

20
2

0.
27

3
0.

67
8

0.
90

9
0.

96
7

Ta
bl

e
8.

2.
:S

in
gl

e
im

ag
e

de
pt

h
es

tim
at

io
n

re
su

lts
on

th
e

te
st

sp
lit

of
K

IT
T

I
ra

w
da

ta
se

t
[G

L
U

12
].

D
de

no
te

s
th

e
ne

tw
or

k
is

tr
ai

ne
d

w
ith

gr
ou

nd
tr

ut
h

de
pt

h.
S

de
no

te
s

th
e

ne
tw

or
k

is
tr

ai
ne

d
w

ith
st

er
eo

pa
irs

.M
de

no
te

s
th

e
ne

tw
or

k
is

tra
in

ed
w

ith
a

m
on

oc
ul

ar
se

qu
en

ce
.I

td
em

on
st

ra
te

s
th

at
ou

rn
et

w
or

k
ac

hi
ev

es
co

m
pe

tit
iv

e
pe

rf
or

m
an

ce
.I

n
pa

rt
ic

ul
ar

,i
tp

er
fo

rm
s

be
tte

rt
ha

n
E

ig
en

et
al

.[
E

PF
14

],
L

iu
et

al
.[

L
SL

R
16

]a
nd

Z
ho

u
et

al
.[

Z
B

SL
17

]i
n

te
rm

s
of

th
e

er
ro

rm
et

ri
cs

an
d

ac
cu

ra
cy

m
et

ri
cs

.N
ot

e
th

at
ou

rn
et

w
or

k
is

tr
ai

ne
d

vi
a

on
ly

tw
o

co
ns

ec
ut

iv
e

fr
am

es
an

d
on

ly
re

qu
ir

es
a

si
ng

le
im

ag
e

fo
rt

he
m

ot
io

n
es

tim
at

io
n

ne
tw

or
k.

163

8. Is Single Image Motion Estimation Possible?

truth euler angles, λ is a hyper-parameter and empirically set as 0.01, ‖x‖1
is the L1 norm of vector x, the units of the euler angles are in degrees. We
resize the input images to 416× 128 and use a batch size 8. The network
is trained in 120 epoches with a learning rate of 1e−4.

Experimental results: We use the same evaluation metrics as previous
section for relative pose estimation. Since our network can only predict
the relative pose from next frame to current frame, we concatenate all
the poses for the whole sequence to get the trajectories. The 5-frame
ATE errors are 0.0282 ± 0.02 and 0.0248 ± 0.0208 for sequence 09 and
10, which is slightly better than that of self-supervised training. Fig. 8.3
presents the estimated trajectories by our single frame motion estimation
network against ground truth trajectories. It demonstrates that the network
is able to predict the motion direction. However, it struggles to estimate
the exact magnitude, which is the same for a human predictor when given
only a single image. The experimental results demonstrate that a single
image from KITTI dataset [GLU12] already possesses many motion cues
to some extent, such that a deep network can predict reasonable motions
instead of random motion predictions. It verifies our hypothesis that KITTI
dataset [GLU12] is an “easy” dataset for those learning based methods.

8.4. How is the performance of existing
networks on dataset with complex
motions?

To further verify our hypothesis, we create a large dataset with Carla simu-
lator [DRC+17] to evaluate those learning based approaches. One of the
advantages of using synthetic dataset is that we can control the environment
(e.g., lighting conditions), such that we can focus on investigating the effect
of complex motions to the performance of those networks.

Dataset creation: Since the camera from Carla simulator [DRC+17] is
also attached on a ground vehicle, it has the same motion restrictions as
that of KITTI dataset [GLU12]. We therefore modify the simulator such

164

8.4. How is the performance of existing networks on dataset with complex
motions?

Figure 8.4.: Estimated trajectories against ground truth trajectories on
KITTI odometry dataset [GLU12] by our supervised single
frame motion estimation network. It demonstrates that our
single image motion estimation network is able predict the
motion directions for most of the frames. However, it cannot
accurately estimate the magnitude, especially for the rotations.
It is reasonable since it is also even impossible for we human
beings to predict the magnitude accurately given a single image
only. It demonstrates that images from KITTI dataset [GLU12]
contains many motion cues, such that even a single frame mo-
tion estimation network can already learn to predict reasonable
motion trajectories instead of random motions. For better visu-
alization, we use colored circles to denote the correspondences.

165

8. Is Single Image Motion Estimation Possible?

that the camera can be placed at arbitrary positions and undergoes 6-DoF
motions. To have similar settings as that of KITTI dataset, we configure
the camera to have a frame rate of 10 Hz. We randomly sample the 3-axis
translational velocities of the camera uniformly from 1.5 m/s to 2.5 m/s.
Similarly, we randomly sample the 3-axis angular velocities of the camera
uniformly from 0 to 0.25 rad/s. We use a constant velocity assumption for
each sequence, which contains 20 frames. The resolution of the captured
image is 416×256 and we resize it to 416×128 for training and evaluation.
We sampled 3885 sequences from the Carla town 01, 02, 03, 05 and 07 with
random camera motions. We use the sequences generated from town 01,
02, 03, and 07 for training and the sequences from town 05 for test. In total,
we have 3285 sequences (65700 frames) for training and 600 sequences
(12000 frames) for test.

Evaluation baselines and metrics: We evaluate one of the best perform-
ing state-of-the-art network, i.e., the network from Bian et al. [BLW+19],
on our dataset. We use the official implementations from the authors and
keep their default hyper-parameters for training. We only change their
dataloader such that our dataset can be used for training.

We also implement a simple two-view structure from motion baseline
in MATLAB for comparisons. Our baseline adopt the standard pipeline
of classic approaches, i.e., feature detection, feature matching, essential
matrix estimation, motion decomposition, 3D triangulation, pose and struc-
ture joint refinement with bundle adjustment. Since the motion between
consecutive frames is usually small for our dataset, we do feature matching
with a KLT tracker [BM04].

Since the network from Bian et al. [BLW+19] also predicts the relative
pose between two frames, we instead use a histogram of the relative pose
errors for performance comparison. Since the translation can only be
estimated up to metric scale for all methods, we thus use the angle between
the estimated translation vector and the ground truth vector for translation
evaluation. For rotation evaluation, we compute the residual rotation matrix
between the estimated one and the ground truth rotation. The residual
rotation matrix is then converted to euler angle representation and we use
these angles for rotation evaluation.

166

8.4. How is the performance of existing networks on dataset with complex
motions?

Figure 8.5.: Histograms of the rotation and tranlation errors for both the
network of Bian et al. [BLW+19] and our implemented simple
two-view classic SfM baseline on the Carla dataset.

Experimental results: Both Fig. 8.5 and Table 8.3 presents the quantita-
tive results for the relative pose estimations. Fig. 8.5 plots the histograms
of the relative pose errors. Table 8.3 presents the mean pose errors. Fig. 8.5
demonstrates that most of the translation errors of the network from Bian
et al. [BLW+19] concentrate around 21 degrees, while that of the two-view
classic SfM baseline concentrates near to 0. We can also find that there
are some large translation errors for the two-view classic SfM method. It
is caused by the characteristics of our dataset, which usually has small
baselines between two consecutive frames. This challenges the method
since it usually requires a large parallax between two views for numerically
stable solutions.

167

8. Is Single Image Motion Estimation Possible?

M
ethod

R
oll

Pitch
Y

aw
translation

B
ian

etal.[B
LW

+
19]

0.5192±
6.9161

-0.2103±
4.3275

0.0267±
2.5892

24.8759±
13.3936

M
atlab

0.0542±
2.3785

0.0063±
3.2571

0.0810±
2.3610

13.1056±
14.2654

Table
8.3.:R

elative
pose

estim
ation

on
C

arla
dataset.A

llvariables
have

unitin
degrees.The

netw
ork

from
B

ian
etal.[B

LW
+

19]is
retrained

on
the

C
arla

datasetforfaircom
parisons.T

he
experim

ental
results

dem
onstrate

thatthe
netw

ork
from

B
ian

etal.[B
LW

+
19]perform

s
w

orse
than

a
sim

ple
tw

o-view
classic

SfM
pipeline

on
C

arla
dataset,w

hich
contains

com
plex

cam
era

m
otions.

168

8.5. Clarification

Discussion: The experimental results demonstrate that those learning
based approaches, which work well on KITTI dataset [GLU12], cannot
work well on dataset with complex camera motions. The main reason is that
KITTI dataset [GLU12] is an “easy” dataset for those existing networks
to learn due to its restricted camera motions. Although existing learning
based methods achieve remarkable progress on KITTI dataset [GLU12], we
argue that there is still much room to improve for general complex camera
motions, compared to classic geometric approaches.

8.5. Clarification

Note the main purpose of this work is not to propose a novel network archi-
tecture, which is able to do single image VO on KITTI dataset [GLU12].
Instead, we aim to draw the attention of the community that KITTI dataset
might not be an ideal dataset for those learning based methods to evaluate
on. By demonstrating the fact that even a single image motion estima-
tion network can predict reasonable camera motions, we conclude that
the KITTI dataset contain many semantic motion cues for the networks to
exploit. We therefore propose the community to use more sophisticated
datasets to evaluate learning based methods, such that the trained network
can predict camera motions more robustly under various conditions (e.g.
for indoor environments where the image does not contain many motion
cues).

8.6. Conclusion

In this chapter, we did a study of those unsupervised learning based visual
odometry approaches, with an emphasis on the motion estimation network.
Our study is driven by the findings that a single image structure from motion
is feasible on KITTI dataset [GLU12], and is able to achieve competitive
performance with other multiple image based methods. In general, it is
impossible to estimate motion from a single image. However, we find that
KITTI dataset makes this task possible due to its restricted camera motions.

169

8. Is Single Image Motion Estimation Possible?

To further verify our hypothesis, we evaluated one of the best performing
state-of-the-art networks [BLW+19] on a simple synthetic dataset with
random complex camera motions. We find that those networks cannot
work well on this dataset. Although existing works achieve remarkable
performance on KITTI dataset [GLU12], we argue that there is still much
room for them to improve, even compared to a simple two-view classic
structure from motion pipeline, on datasets with general camera motions.
Furthermore, more sophisticated datasets instead of only KITTI dataset are
also needed for future learning based methods to evaluate on.

170

9. Conclusion and Outlook

In this chapter, we conclude our dissertation and give a brief discussion on
future works.

9.1. Conclusion

In this dissertation, we propose methods to improve the robustness of visual
odometry algorithm from three different perspectives, such that it can be
reliably deployed to the challenging real world conditions. In particular,
we improve the robustness from the hardware perspective, the perspective
of deep network enhanced input images, and the algorithmic perspective.

From the hardware perspective, we propose to enlarge the field of view of
the pipeline by using a rig of multiple fisheye cameras. Large field of view
enables the algorithm to be able to perceive more surrounding environments.
The VO pipeline can thus detect more salient feature points for reliable
camera motion estimation. It is crucial when the pipeline is operating
in challenging complex environments, e.g. at low-lighting conditions and
scenarios with many dynamic objects.

Another perspective is to enhance the quality of input images by deep
neural networks, which is beneficial for almost all algorithms which require
visual inputs with good quality (instead of limiting to visual odometry only).
Motion blur and rolling shutter effect are two common factors to degrade
the captured images. Motion blur usually occurs when longer exposure
time is necessary while the camera is moving (e.g. at low-lighting night
conditions). It is well known that many algorithms (e.g. depth prediction,
feature detection or object detection) suffer from motion blur. Rolling
shutter effect usually occurs while a moving CMOS camera (which is
widely integrated on smartphones due to its cheaper price) capturing the

171

9. Conclusion and Outlook

images. In contrast to a global shutter camera, which captures all pixels at
the same time, a rolling shutter camera sequentially captures all the pixels
row by row. Therefore, different types of distortions, e.g. skew, smear or
wobble, will appear if the camera is moving during the image capture. 3D
vision algorithms (e.g. structure from motion, visual odometry or depth
prediction) suffer from rolling shutter distortions. We therefore propose
two deep neural networks to deblur the motion blurred images, and to
rectify the input rolling shutter images to global shutter images respectively
in this dissertation.

To further improve the robustness of VO method against motion blurred
images. We also propose to a hybrid visual odometry algorithm which
models the image formation process of motion blur. As conventional algo-
rithms, our method consists of a front-end tracker and a back-end mapper.
During tracking, instead of estimating the camera pose at a particular point
in time, we estimate the local camera motion trajectory within the exposure
time for each frame. It allows us to explicitly model the motion blur in
the image and leverage it for tracking. We assume the reference keyframe
image is sharp, which is achieved by applying a deep deblurring network
on the input motion blurred image. Since keyframes are usually sampled
with a frequency much lower than frame-rate, we can thus take advantage
of a powerful (less efficient) deep network for keyframe deblurring. The
VO algorithm is thus able to compensate the effect of motion blur without
deblurring all of them. Experimental results demonstrate that our algorithm
improves both the accuracy and robustness over existing methods on both
synthetic and real-world datasets.

We also try to study the limitations of existing learning based methods,
which aim to improve both the accuracy and robustness of motion estima-
tions by using deep networks. By demonstrating the fact that even a single
image motion estimation network can predict reasonable camera motions
on KITTI dataset [GLU12], which is commonly used by the community, we
conclude that the KITTI dataset might not be sufficient for those learning
based approaches to evaluate on. The reason is that the camera motion
from KITTI dataset is too restricted. It mainly consists of two degree of
freedoms motions, i.e. the forward motion and the yaw motion. The vehicle
is also usually driven on and following urban streets, which have clear

172

9.2. Future works

street boundaries. It is thus easy for the network to predict the camera
motion directions from even a single image, which already contains many
semantic motion cues for the network to exploit for motion prediction.

9.2. Future works

This dissertation mainly focuses on improving the robustness of visual
odometry algorithms. However, robustness is crucial for almost all vision
algorithms, e.g. image based localization, depth estimation and 3D recon-
struction. In this section, we will discuss two possible open problems which
should raise our attention as future works.
Robust long-term visual localization: Visual localization is a technique
used to localize a mobile agent within a pre-built map from captured images.
It is a critical component for many robotic applications, e.g. autonomous
driving, augmented reality and mixed reality. Despite the community has
devoted many efforts to the problem, there still have limitations which limit
its practical deployment. For example, one of the limitations is how to
robustly localize the camera from a map, which is built under different con-
ditions (e.g. localize an image or an image sequence captured in the spring
against a map built in the winter, or captured in the day time against a map
built in the night etc.). The state-of-the-art visual localization algorithms
usually require to find 2D-3D feature correspondences by matching newly
computed 2D feature descriptors against the 2D feature descriptors stored
in the map. Apperance changes (e.g. across different seasons, day/night)
would affect the robustness of feature matchings significantly, which might
further fail the whole localization pipeline. One possible solution is to
continuously upadting the map. However, it is not practical for areas which
have no mobile agents visiting for a long time. The question is if there will
have a more elegant solution? I would vote for yes since we human beings
can achieve it easily. Imaging you have visited Big Ben (London) in the
last summer day, it would still be easy for you to quickly relocalize your-
self even if you re-visit there in the winter night. By incorporating more
semantic information (e.g. objects, 3D structural relationship) together with
3D geometry seems to be the way how we human beings achieve this task.

173

9. Conclusion and Outlook

The open problem would thus be how to incorporate semantic informa-
tion elegantly into existing localization algorithms for robust long-term
localization.
Robust 2.5D/3D reconstruction under challenging conditions: Depth
estimation and 3D reconstruction play an important role for a mobile agent
to perceive its surrounding environment, so that proper decision can be
made for human-robot or robot-environment interactions. Most existing
methods assume the input images are usually in good conditions. However,
it is common that a mobile agent would operate in challenging environ-
ments. For example, when the camera tranverses in the rainy weather
condition, rain drops would cover the camera lens. Those artefacts af-
fect many stereo matching algorithms, which would result in poor depth
estimations. Unreliable 3D scene perception might result in the mobile
agent to make false decisions, which would cause tragic accidents (e.g. an
autonomous driving car runs out of a highway while carrying a passenger).
It is thus cruicial to design algorithms which can robustly estimate dense
depth map (i.e. 2.5D reconstruction) and do 3D reconstruction under those
challenging conditions.

174

Bibliography
[ABL16a] H. Alismail, B. Browning, and S. Lucey. Photometric Bundle Ad-

justment for Vision-Based SLAM. In Proc. of the Asian Conf. on
Computer Vision (ACCV), 2016. 10

[ABL16b] H. Alismail, B. Browning, and Simon Lucey. Robust tracking in low
light and sudden illumination changes. In Proc. of the International
Conf. on 3D Vision (3DV), 2016. 4, 51

[AKLP19] Cenek Albl, Zuzana Kukelova, Viktor Larsson, and Tomas Pajdla.
Rolling shutter camera absolute pose. In IEEE Trans. on Pattern
Analysis and Machine Intelligence (PAMI), 2019. 101

[BBKS10] Simon Baker, Eric Bennett, Sing Bing Kang, and Richard Szeliski.
Removing rolling shutter wobble. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2010. 15

[BCC+18a] Michael Bloesch, Jan Czarnowski, Ronald Clark, Stefan Leuteneg-
ger, and Andrew J. Davison. CodeSLAM - Learning a Compact,
Optimisable Representation for Dense Visual SLAM. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2018.
155

[BCC+18b] Michael Bloesch, Jan Czarnowski, Ronald Clark, Stefan Leuteneg-
ger, and Andrew J Davison. CodeSLAM: learning a compact, opti-
misable representation for dense visual SLAM. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2018. 2

[BLC+19] Michael Bloesch, Tristan Laidlow, Ronald Clark, Stefan Leuteneg-
ger, and Andrew J Davison. Learning Meshes for Dense Visual
SLAM. In Proc. of the IEEE International Conf. on Computer
Vision (ICCV), 2019. 155

[BLW+19] Jia-Wang Bian, Zhichao Li, Naiyan Wang, Huangying Zhan, Chun-
hua Shen, Ming-Ming Cheng, and Ian Reid. Unsupervised Scale-
consistent Depth and Ego-motion Learning from Monocular Video.

175

Bibliography

In Advances in Neural Information Processing Systems (NIPS), 2019.
155, 156, 157, 158, 159, 163, 166, 167, 168, 170

[BM04] S. Baker and I. Matthews. Lucas-Kanade 20 years on: A Unify-
ing framework. International Journal of Computer Vision (IJCV),
56(3):221–255, 2004. 3, 15, 39, 55, 166

[BNG+16] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider,
Joern Rehder, Sammy Omari, Markus W Achtelik, and Roland
Siegwart. The euroc micro aerial vehicle datasets. International
Journal of Robotics Research (IJRR), 2016. 152

[BTG06] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded
Up Robust Features. In Proc. of the European Conf. on Computer
Vision (ECCV), 2006. 11

[CC18] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo matching
network. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2018. 114

[CCC+16] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I.D. Reid, and J.J. Leonard. Simultaneous localization and mapping:
Present, future, and the robust-perception age. In IEEE Trans. on
Robotics, 2016. 8

[CGG+18] Huaijin Chen, Jinwei Gu, Orazio Gallo, Mingyu Liu, and Jan Kautz.
Reblur2deblur: Deblurring videos via self-supervised learning. In
International Conference on Computational Photography (ICCP),
2018. 14, 80, 81

[CL09] Sunghyun Cho and Seungyong Lee. Fast motion deblurring. ACM
Transactions on Graphics (SIGGRAPH ASIA 2009), 28(5), 2009. 13,
71

[CLFP10] Brian Clipp, Jongwoo Lim, Jan-Michael Frahm, and Marc Pollefeys.
Parallel, Real-Time Visual SLAM. In Proc. IEEE International Conf.
on Intelligent Robots and Systems (IROS), 2010. 9, 35

[CSS19] Yuhua Chen, Cordelia Schmid, and Cristian Sminchisescu. Self-
supervised Learning with Geometric Constraints in Monocular
Video: Connecting Flow, Depth, and Camera. In Proc. of the IEEE
International Conf. on Computer Vision (ICCV), 2019. 159, 163

[CY00] James M. Coughlan and Alan L Yuille. The manhattan world as-
sumption: Regularities in scene statistics which enable bayesian

176

Bibliography

inference. In Advances in Neural Information Processing Systems
(NIPS), 2000. 15

[Dav03] A. J. Davison. Real-time simultaneous localisation and mapping
with a single camera. In Proc. of the IEEE International Conf. on
Computer Vision (ICCV), 2003. 8, 9

[DC19] Tom van Dijk and Guido de Croon. How do neural networks see
depth in single images? In Proc. of the IEEE International Conf. on
Computer Vision (ICCV), 2019. 156

[DGE15] Carl Doersch, Abhinav Gupta, and Alexei A. Efros. Unsupervised
visual representation learning by context prediction. In Proc. of the
IEEE International Conf. on Computer Vision (ICCV), 2015. 72

[DRC+17] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez,
and Vladlen Koltun. CARLA: An open urban driving simulator. In
Proc. Conf. on Robot Learning (CoRL), 2017. 114, 157, 164

[DRMS07] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. MonoSLAM:
Real-time single camera slam. IEEE Trans. on Pattern Analysis and
Machine Intelligence (PAMI), 29(6), 2007. 8

[DSM11] Tue-Cuong Dong-Si and Anastasios I. Mourikis. Motion tracking
with fixed-lag smoothing: Algorithm and consistency analysis. In
Proc. IEEE International Conf. on Robotics and Automation (ICRA),
2011. 27, 31, 58, 59

[EKC17] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct sparse
odometry. IEEE Trans. on Pattern Analysis and Machine Intelligence
(PAMI), 40(3):611–625, 2017. 1, 2, 3, 4, 6, 9, 10, 11, 27, 53, 56, 57,
58, 127, 128, 130, 131, 142, 144, 145, 147, 151, 153

[EPF14] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map pre-
diction from a single image using a multi-scale deep network. In
Advances in Neural Information Processing Systems (NIPS), 2014.
102, 156, 159, 163

[ESC14] Jacob Engel, Thomas Schops, and Daniel Cremers. LSD-SLAM:
Large-scale direct monocular slam. In Proc. of the European Conf.
on Computer Vision (ECCV), 2014. 1, 8, 9, 10, 11, 35

[ESC15] J. Engel, J. Stückler, and D. Cremers. Large-scale direct slam with
stereo cameras. In Proc. IEEE International Conf. on Intelligent
Robots and Systems (IROS), 2015. 9

177

Bibliography

[FCDS17] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza. On-manifold
preintegration for real-time visual-inertial odometry. IEEE Trans.
on Robotics, 33(1), 2017. 12

[FPS14] C. Forster, M. Pizzoli, and D. Scaramuzza. SVO: Fast semi-direct
monocular visual odometry. In Proc. IEEE International Conf. on
Robotics and Automation (ICRA), 2014. 3, 6, 9, 10, 11, 35

[FR10] Per Erik Forssen and Erik Ringaby. Rectifying rolling shutter video
from hand-held devices. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2010. 15, 106, 107

[FS12] F. Fraundorfer and D. Scaramuzza. Visual odometry: Part ii - match-
ing, robustness, optimization, and applications. Robotics and Au-
tomation Magazine (RAM), 19(2), 2012. 8, 35

[FSH+06] Rob Fergus, Barun Singh, Aaron Hertzmann, Sam T. Roweis, and
William T. Freeman. Removing camera shake from a single photo-
graph. In ACM Trans. on Graphics, 2006. 13, 71

[FSR+13] Paul Furgale, Ulrich Schwesinger, Martin Rufli, Wojciech Deren-
darz, Hugo Grimmett, Peter Mhlfellner, Stefan Wonneberger, Julian
Timpner, Stephan Rottmann, Bo Li, Bastian Schmidt, Thien Nghia
Nguyen, Elena Cardarelli, Stefano Cattani, Stefan Brning, Sven
Horstmann, Martin Stellmacher, Holger Mielenz, Kevin Kser,
Markus Beermann, Christian Hne, Lionel Heng, Gim Hee Lee,
Friedrich Fraundorfer, Ren Iser, Rudolph Triebel, Ingmar Posner,
Paul Newman, Lars Wolf, Marc Pollefeys, Stefan Brosig, Jan Effertz,
Cdric Pradalier, and Roland Siegwart. Toward automated driving
in cities using close-to-market sensors, an overview of the v-charge
project. In IEEE Intelligent Vehicle Symposium (IV), 2013. 9, 12

[FZG+17] Christian Forster, Zichao Zhang, Michael Gassner, Manuel Werl-
berger, and Davide Scaramuzza. Svo: Semi-direct visual odometry
for monocular and multi-camera systems. IEEE Trans. on Robotics,
33(2), 2017. 9

[GJZ+10] Ankit Gupta, Neel Joshi, C. Lawrence Zitnick, Michael Cohen,
and Brian Curless. Single image deblurring using motion density
functions. In Proc. of the European Conf. on Computer Vision
(ECCV), 2010. 13, 71

178

Bibliography

[GKCE12] Matthias Grundmann, Vivek Kwatra, Daniel Castro, and Irfan Essa.
Calibration free rolling shutter removal. In International Conference
on Computational Photography (ICCP), 2012. 15

[GKCR16] Ravi Garg, B. G. Vijay Kumar, Gustavo Carneiro, and Ian D. Reid.
Unsupervised CNN for single view depth estimation: Geometry to
the rescue. In Proc. of the European Conf. on Computer Vision
(ECCV), 2016. 163

[GLU12] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for
autonomous driving? The KITTI vision benchmark suite. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2012. ii, iv, 7, 12, 63, 114, 156, 157, 159, 160, 161, 162, 163, 164,
165, 169, 170, 172

[GMB17] Clément Godard, Oisin Mac Aodha, and Gabriel J. Brostow. Un-
supervised monocular depth estimation with left-right consistency.
In Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2017. 72, 163

[GOZGJS18] Ruben Gomez-Ojeda, Zichao Zhang, Javier Gonzalez-Jimenez, and
Davide Scaramuzza. Learning-based image enhancement for vi-
sual odometry in challenging hdr environments. In Proc. IEEE
International Conf. on Robotics and Automation (ICRA), 2018. 51

[GPM+14] Ian-J Goodfellow, Jean PougetAbadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial nets. In Advances in Neural Information
Processing Systems (NIPS), 2014. 14

[GTSJ19] Hongyun Gao, Xin Tao, Xiaoyong Shen, and Jiaya Jia. Dynamic
scene deblurring with parameter selective sharing and nested skip
connections. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2019. 145

[GWDC18] Xiang Gao, Rui Wang, Nikolaus Demmel, and Daniel Cremers.
Ldso: Direct sparse odometry with loop closure. In Proc. IEEE
International Conf. on Intelligent Robots and Systems (IROS), 2018.
1

[HC16] Lionel Heng and Benjamin Choi. Semi-direct visual odometry
for a fisheye-stereo camera. In Proc. IEEE International Conf. on
Intelligent Robots and Systems (IROS), 2016. 44, 46, 47, 48, 49, 61

179

Bibliography

[HFFR12] Johan Hedborg, Per-Erik Forssn, Michael Felsberg, and Erik
Ringaby. Rolling shutter bundle adjustment. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2012. 101

[HHL+15] C. Hane, L. Heng, G. H. Lee, A. Sizov, and M. Pollefeys. Real-time
direct dense matching on fisheye images using plane-sweep stereo.
In International Conference on 3D Vision (3DV), 2015. 38, 41, 42,
56, 57, 58

[HKZ15] Michal Hradi, Jan Kotera, Pavel Zemk, and Filip roubek. Convo-
lutional neural networks for direct text deblurring. In Proc. of the
British Machine Vision Conf. (BMVC), 2015. 14

[HLP13] Lionel Heng, Bo Li, and Marc Pollefeys. CamOdoCal: Automatic
Intrinsic and Extrinsic Calibration of a Rig with Multiple Generic
Cameras and Odometry. In Proc. IEEE International Conf. on
Intelligent Robots and Systems (IROS), 2013. 9

[HLP14] Lionel Heng, Gim Hee Lee, and Marc Pollefeys. Self-Calibration
and Visual SLAM with a Multi-Camera System on a Micro Aerial
Vehicle. In Proc. Robotics: Science and Systems (RSS), 2014. 9

[HLP15] Lionel Heng, Gim Hee Lee, , and Marc Pollefeys. Self-calibration
and visual slam with a multi-camera system on a micro aerial vehicle.
Autonomous Robots (AURO), 39(3), 2015. 9, 12

[HLW17] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely con-
nected convolutional networks. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2017. 111

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2016. 111, 112,
157

[IMS+17] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox.
FlowNet 2.0: Evolution of optical flow estimation with deep net-
works. In Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2017. 73, 74, 110

[ISKB18] E. Ilg, T. Saikia, M. Keuper, and T. Brox. Occlusions, motion and
depth boundaries with a generic network for disparity, optical flow or
scene flow estimation. In Proc. of the European Conf. on Computer
Vision (ECCV), 2018. 83

180

Bibliography

[JAL16] Justin Johnson, Alexandre Alahi, and Fei-Fei Li. Perceptual losses
for real-time style transfer and super-resolution. In Proc. of the
European Conf. on Computer Vision (ECCV), 2016. 113

[JGR+18] Joel Janai, Fatma Gney, Anurag Ranjan, Michael Black, and Andreas
Geiger. Unsupervised learning of multi-frame optical flow with
occlusions. In Proc. of the European Conf. on Computer Vision
(ECCV), 2018. 72, 78

[JSZK15] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray
Kavukcuoglu. Spatial transformer networks. In Advances in Neural
Information Processing Systems (NIPS), 2015. 79

[KBM+18] Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych, Dmytro
Mishkin, and Jiri Matas. Deblurgan: Blind motion deblurring using
conditional adversarial networks. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2018. 6, 14, 71, 73, 74, 82,
86, 87

[KF09] Dilip Krishnan and Rob Fergus. Fast image deconvolution using
hyper-laplacian priors. In Advances in Neural Information Process-
ing Systems (NIPS), 2009. 13, 71

[KJBL11] Alexandre Karpenko, David Jacobs, Jongmin Baek, and Marc Levoy.
Digital video stabilization and rolling shutter correction using gyro-
scopes. In Technical report, Stanford, 2011. 15

[KL15] Tae Hyun Kim and Kyoung Mu Lee. Generalized video deblurring
for dynamic scenes. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2015. 13

[KLR17] Jae-Hak Kim, Yasir Latif, and Ian Reid. Rrd-slam: Radial-distorted
rolling-shutter direct slam. In Proc. IEEE International Conf. on
Robotics and Automation (ICRA), 2017. 101

[KLSH17] Tae Hyun Kim, Kyoung Mu Lee, Bernhard Scholkopt, and Michael
Hirsch. Online video deblurring via dynamic temporal blending
network. In Proc. of the IEEE International Conf. on Computer
Vision (ICCV), 2017. 14

[KM07] Georg Klein and David Murray. Parallel tracking and mapping for
small ar workspaces. In Proc. of the International Symposium on
Mixed and Augmented Reality (ISMAR), 2007. 2, 8, 10, 35, 37

181

Bibliography

[KMR13] Bryan Klingner, David Martin, and James Roseborough. Street
view motion-from-structure-from-motion. In Proc. of the IEEE
International Conf. on Computer Vision (ICCV), 2013. 101

[KMWW19] Orest Kupyn, Tetiana Martyniuk, Junru Wu, and Zhangyang Wang.
Deblurgan-v2: Deblurring (orders-of-magnitude) faster and better.
In Proc. of the IEEE International Conf. on Computer Vision (ICCV),
2019. 7, 145, 146, 147, 148

[KSL17] Yevhen Kuznietsov, Jorg Stuckler, and Bastian Leibe. Semi-
supervised deep learning for monocular depth map prediction. In
Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2017. 163

[KUH18] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3d
mesh renderer. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2018. 77

[LAA18] Yizhen Lao and Omar Ait-Aider. A robust method for strong rolling
shutter effects correction using lines with automatic feature selection.
In Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2018. 15

[LCC08] Chia-Kai Liang, Li-Wen Chang, and Homer H. Chen. Analysis and
compensation of rolling shutter effect. In IEEE Trans. on Image
Processing (TIP), 2008. 15

[LCLP20] Peidong Liu, Zhaopeng Cui, Viktor Larsson, and Marc Pollefeys.
Deep shutter unrolling network. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2020. 104, 142

[LFP11] Jongwoo Lim, Jan-Michael Frahm, and Marc Pollefeys. Online
Environment Mapping. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2011. 9, 35

[LGH+18] Peidong Liu, Marcel Geppert, Lionel Heng, Torsten Sattler, An-
dreas Geiger, and Marc Pollefeys. Towards robust visual odometry
with a multi-camera system. In Proc. IEEE International Conf. on
Intelligent Robots and Systems (IROS), 2018. 1, 51

[LHSP17] Peidong Liu, Lionel Heng, Torsten Sattler, and Marc Pollefeys.
Direct visual odometry for a fisheye-stereo camera. In Proc. IEEE
International Conf. on Intelligent Robots and Systems (IROS), 2017.
1, 9, 36

182

Bibliography

[LJP+20] Peidong Liu, Joel Janai, Marc Pollefeys, Torsten Sattler, and Andreas
Geiger. Self-supervised linear motion deblurring. In IEEE Robotics
and Automation Letters (RA-L), 2020. 72

[LKL11] Hee Seok Lee, Junghyun Kwon, and Kyoung Mu Lee. Simulta-
neous localization, mapping and deblurring. In Proc. of the IEEE
International Conf. on Computer Vision (ICCV), 2011. 5

[LLB+15] Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart,
and Paul Timothy Furgale. Keyframe-based visualinertial odometry
using nonlinear optimization. International Journal of Robotics
Research (IJRR), 2015. 12, 27, 35, 58

[Low04] David G. Lowe. Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision (IJCV), 60(2):91–
110, 2004. 11

[LSK+17] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Ky-
oung Mu Lee. Enhanced deep residual networks for single image
super-resolution. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2017. 102, 117

[LSLR16] Fayao Liu, Chunhua Shen, Guosheng Lin, and Ian D. Reid. Learning
depth from single monocular images using deep convolutional neural
fields. IEEE Trans. on Pattern Analysis and Machine Intelligence
(PAMI), 2016. 156, 159, 163

[LWDF09] Anat Levin, Yair Weiss, Fredo Durand, and William T. Freeman.
Understanding and evaluating blind deconvolution algorithm. In
Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2009. 13, 71

[LXW+19] Shunkai Li, Fei Xue, Xin Wang, Zike Yan, and Hongbin Zha.
Sequential Adversarial Learning for Self-Supervised Deep Visual
Odometry. In Proc. of the IEEE International Conf. on Computer
Vision (ICCV), 2019. 163

[LZVP21] Peidong Liu, Xingxing Zuo, Larsson Viktor, and Marc Pollefeys.
Mba-vo: Motion blur aware visual odometry. In Proc. of the IEEE
International Conf. on Computer Vision (ICCV), 2021. 127

[MAMT15] Ral Mur-Artal, J. M. M. Montiel, and Juan D. Tards. ORB-SLAM:
A versatile and accurate monocular slam system. IEEE Trans. on
Robotics, 31(5), 2015. 8, 9, 10

183

Bibliography

[MAT17a] Raul Mur-Artal and Juan D Tardós. Orb-slam2: An open-source
slam system for monocular, stereo, and rgb-d cameras. IEEE Trans.
on Robotics, 33(5):1255–1262, 2017. 2, 3, 4, 6, 9, 127, 142, 145,
147, 150, 151, 153

[MAT17b] Raúl Mur-Artal and Juan D. Tardós. ORB-SLAM2: an open-source
SLAM system for monocular, stereo and RGB-D cameras. IEEE
Trans. on Robotics, 2017. 63, 67, 156

[MHR18] Simon Meister, Junhwa Hur, and Stefan Roth. UnFlow: Unsuper-
vised learning of optical flow with a bidirectional census loss. In
Proc. of the Conf. on Artificial Intelligence (AAAI), 2018. 72, 78

[MIH+16] Nikolaus Mayer, Eddy Ilg, P. Husser, Philipp Fischer, D. Cremers,
Alexey Dosovitskiy, and Thomas Brox. A large dataset to train
convolutional networks for disparity, optical flow, and scene flow
estimation. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2016. 157

[MKA18] Nimisha Thekke Madam, Sunil Kumar, and Rajagopalan A.N. Un-
supervised class-specific deblurring. In Proc. of the European Conf.
on Computer Vision (ECCV), 2018. 14, 82, 86, 87

[MR07a] C. Mei and P. Rives. Single view point omnidirectional camera
calibration from planar grids. In Proc. IEEE International Conf. on
Robotics and Automation (ICRA), April 2007. 19

[MR07b] Anastasios I. Mourikis and Stergios I. Roumeliotis. A multi-state
constraint kalman filter for vision-aided inertial navigation. In Proc.
IEEE International Conf. on Robotics and Automation (ICRA), 2007.
12, 35

[MvSU+18] Hidenobu Matsuki, Lukas von Stumberg, Vladyslav Usenko, Jörg
Stückler, and Daniel Cremers. Omnidirectional dso: Direct sparse
odometry with fisheye cameras. IEEE Robotics and Automation
Letters (RA-L), 3(4):3693–3700, 2018. 1

[MWA18] Reza Mahjourian, Martin Wicke, and Anelia Angelova. Unsuper-
vised Learning of Depth and Ego-Motion from Monocular Video
Using 3D Geometric Constraints. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2018. 159, 163

[NKL17] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep multi-
scale convolutional neural network for dynamic scene deblurring.

184

Bibliography

In Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2017. 6, 14, 71, 72, 73, 74, 81, 82, 86, 87, 102, 117

[NNB04] David Nister, Oleg Naroditsky, and James Bergen. Visual Odometry.
In Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2004. 8

[OTFY18] Yuki Ono, Eduard Trulls, Pascal Fua, and Kwang Moo Yi. Lf-
net: Learning local features from images. In Advances in Neural
Information Processing Systems (NIPS), 2018. 155

[PGC+17] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Ed-
ward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca
Antiga, and Adam Lerer. Automatic differentiation in PyTorch. In
Advances in Neural Information Processing Systems (NIPS), 2017.
82, 106, 116

[PKD+16] Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor Darrell,
and Alexei A. Efros. Context encoders: Feature learning by in-
painting. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2016. 72

[PL17] Haesol Park and Kyoung Mu Lee. Joint estimation of camera pose,
depth, deblurring and super-resolution from a blurred image se-
quence. In Proc. of the IEEE International Conf. on Computer
Vision (ICCV), 2017. 13

[PMB+09] Alberto Pretto, Emanuele Menegatti, Maren Bennewitz, Wolfram
Burgard, and Enrico Pagello. A visual odometry framework robust
to motion blur. In Proc. IEEE International Conf. on Robotics and
Automation (ICRA), 2009. 5, 71

[PMT+17] G. Pascoe, W. Maddern, M. Tanner, P. Pinies, and P. Newman. Nid-
slam: Robust monocular slam using normalized information distance.
In Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2017. 5, 51

[PSP17] S. Park, T. Schops, and Marc Pollefeys. Illumination change robust-
ness in direct visual SLAM. In Proc. IEEE International Conf. on
Robotics and Automation (ICRA), 2017. 4, 51

[PZL17] Pulak Purkait, Christopher Zach, and Ales Leonardis. Rolling shutter
correction in manhattan world. In Proc. of the IEEE International
Conf. on Computer Vision (ICCV), 2017. 15

185

Bibliography

[QWMT19] Jiayan Qiu, Xinchao Wang, Stephan J. Maybank, and Dacheng Tao.
World from blur. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2019. 71

[RBR17] Vijay Rengarajan, Yogesh Balaji, and A.N. Rajagopalan. Unrolling
the shutter: Cnn to correct motion distortions. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2017. 16,
101, 113, 114

[RD06] E. Rosten and T. Drummond. Machine learning for high speed
corner detection. In Proc. of the European Conf. on Computer Vision
(ECCV), 2006. 11

[Ric72] W Richardson. Bayesian-based iterative method of image restoration.
Journal of the optical society of America, 62(1), 1972. 13

[RJB+19] Anurag Ranjan, Varun Jampani, Lukas Balles, Kihwan Kim, Deqing
Sun, Jonas Wulff, and Michael J. Black. Competitive Collaboration:
Joint Unsupervised Learning of Depth, Camera Motion, Optical
Flow and Motion Segmentation. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2019. 159, 163

[RRA16] Vijay Rengarajan, A.N. Rajagopalan, and R. Aravind. From bows to
arrows: rolling shutter rectification of urban scenes. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2016.
14, 106

[RRKB11] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary R. Bradski.
ORB: An efficient alternative to SIFT or SURF. In Proc. of the IEEE
International Conf. on Computer Vision (ICCV), 2011. 11

[SDU+18] David Schubert, Nikolaus Demmel, Vladyslav Usenko, Jorg Stuck-
ler, and Daniel Cremers. Direct sparse odometry with rolling shutter.
In Proc. of the European Conf. on Computer Vision (ECCV), 2018.
1

[SDvS+19] David Schubert, Nikolaus Demmel, Lukas von Stumberg, Vladyslav
Usenko, and Daniel Cremers. Rolling-shutter modelling for direct
visual-inertial odometry. In Proc. IEEE International Conf. on
Intelligent Robots and Systems (IROS), 2019. 1

[SDW17] Shuochen Su, Mauricio Delbracio, and Jue Wang. Deep video
deblurring for hand-held cameras. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2017. 14, 72

186

Bibliography

[SEE+12] Jurgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard,
and Daniel Cremers. A benchmark for the evaluation of rgb-d slam
systems. In Proc. IEEE International Conf. on Intelligent Robots
and Systems (IROS), 2012. 142, 143, 145, 149, 150

[SF11] D. Scaramuzza and F. Fraundorfer. Visual odometry: Part i - the
first 30 years and fundamentals. Robotics and Automation Magazine
(RAM), 18(4), 2011. 8, 35

[SF16] Johannes Lutz Schnberger and Jan-Michael Frahm. Structure-from-
motion revisited. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2016. 121

[SJA08] Q Shan, Jiaya Jia, and Agarwala A. High-quality motion deblurring
from a single image. ACM Trans. on Graphics, 27(3), 2008. 13, 71,
82

[SKBP13] Olivier Saurer, Kevin Kser, Jean-Yves Bouguet, and Marc Pollefeys.
Rolling shutter stereo. In Proc. of the IEEE International Conf. on
Computer Vision (ICCV), 2013. 101

[SMS10] Gabe Sibley, Larry Matthies, and Gaurav Sukhatme. Sliding window
filter with application to planetary landing. Journal of Field Robotics
(JFR), 2010. 27, 58, 59

[SPL16] Olivier Saurer, Marc Pollefeys, and Gim Hee Lee. Sparse to dense
3d reconstruction from rolling shutter images. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2016. 101

[SSP19] Thomas Schöps, Torsten Sattler, and Marc Pollefeys. BAD SLAM:
Bundle adjusted direct RGB-D SLAM. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2019. 142, 143,
145, 146

[SYLK18] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. PWC-
Net: CNNs for optical flow using pyramid, warping, and cost volume.
In Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2018. 74, 75, 102, 111

[TGS+18] Xin Tao, Hongyun Gao, Xiaoyong Shen, Jue Wang, and Jiaya Jia.
Scale-recurrent network for deep image deblurring. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2018.
6, 14, 71, 72, 73, 74, 75, 82, 83, 84, 85, 86, 87, 127, 145, 146, 148

187

Bibliography

[TNPH15] Petri Tanskanen, Tobias Ngeli, Marc Pollefeys, and Otmar Hilliges.
Semi-Direct EKF-based Monocular Visual-Inertial Odometry. In
Proc. IEEE International Conf. on Intelligent Robots and Systems
(IROS), 2015. 11, 35

[TSN+16] Siddharth Tourani, Mittal Sudhanshu, Akhil Nagariya, Visesh Chari,
and Madhava Krishna. Rolling shutter and motion blur removal for
depth cameras. In Proc. IEEE International Conf. on Robotics and
Automation (ICRA), 2016. 71

[TTB11] Yu-Wing Tai, Ping Tan, and Michael S. Brown. Richardson-lucy
deblurring for scenes under a projective motion path. IEEE Trans.
on Pattern Analysis and Machine Intelligence (PAMI), 33(8):1603–
1618, August 2011. 13

[TTLN17a] Keisuke Tateno, Federico Tombari, Iro Laina, and Nassir Navab.
Cnn-slam: Real-time dense monocular slam with learned depth
prediction. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2017. 2

[TTLN17b] Keisuke Tateno, Federico Tombari, Iro Laina, and Nassir Navab.
CNN-SLAM: Real-Time Dense Monocular SLAM with Learned
Depth Prediction. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2017. 155

[UESC16] Vladyslav Usenko, Jakob Engel, Jorg Stückler, and Daniel Cremers.
Direct visual-inertial odometry for stereo cameras. In Proc. IEEE
International Conf. on Robotics and Automation (ICRA), 2016. 12

[UZU+17] Benjamin Ummenhofer, Huizhong Zhou, Jonas Uhrig, Nikolaus
Mayer, Eddy Ilg, Alexey Dosovitskiy, and Thomas Brox. DeMoN:
Depth and Motion Network for Learning Monocular Stereo. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2017. 1, 155

[VMR18] Subeesh Vasu, Mahesh Mohan, and A.N. Rajagopalan. Occlusion
aware rolling shutter rectification of 3d scenes. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2018. 16, 101

[WBZL18] Chaoyang Wang, Jose Miguel Buenaposada, Rui Zhu, and Simon
Lucey. Learng depth from monocular videos using direct methods.
In Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2018. 78, 80, 163

188

Bibliography

[WHS17] Patrick Wieschollek, Michael Hirsch, and Bernhard Scholkopt.
Learning blind motion deblurring. In Proc. of the IEEE International
Conf. on Computer Vision (ICCV), 2017. 14

[WSZP10] Oliver Whyte, Josef Sivic, Andrew Zisserman, and Jean Ponce. Non-
uniform deblurring for shaken images. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2010. 13

[XJ10] Li Xu and Jiaya Jia. Two-phase kernel estimation for robust motion
deblurring. In Proc. of the European Conf. on Computer Vision
(ECCV), 2010. 13, 71

[XRLJ14] Li Xu, Jimmy SJ Ren, Ce Liu, and Jiaya Jia. Deep convolutional
neural network for image deconvolution. In Advances in Neural
Information Processing Systems (NIPS), 2014. 13

[XWL+19] Fei Xue, Xin Wang, Shunkai Li, Qiuyuan Wang, Junqiu Wang, and
Hongbin Zha. Beyond Tracking: Selecting Memory and Refining
Poses for Deep Visual Odometry. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2019. 1

[XZJ13] Li Xu, Shicheng Zheng, and Jiaya Jia. Unnatural l0 sparse rep-
resentation for natural image deblurring. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2013. 82, 86, 87

[YS18] Zhichao Yin and Jianping Shi. GeoNet: Unsupervised Learning of
Dense Depth, Optical Flow and Camera Pose. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2018. 1, 155,
159, 163

[YSWC20] Nan Yang, Lukas von Stumberg, Rui Wang, and Daniel Cremers.
D3vo: Deep depth, deep pose and deep uncertainty for monocular
visual odometry. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2020. 2

[YWGC18] Nan Yang, Rui Wang, Xiang Gao, and Daniel Cremers. Challenges
in monocular visual odometry: Photometric calibration, motion bias,
and rolling shutter effect. In IEEE Robotics and Automation Letters
(RA-L), 2018. 143

[YWSC18a] Nan Yang, Rui Wang, Jorg Stuckler, and Daniel Cremers. Deep vir-
tual stereo odometry: Leveraging deep depth prediction for monoc-
ular direct sparse odometry. In Proc. of the European Conf. on
Computer Vision (ECCV), 2018. 2

189

Bibliography

[YWSC18b] Nan Yang, Rui Wang, Jrg Stckler, and Daniel Cremers. Deep virtual
stereo odometry: Leveraging deep depth prediction for monocular
direct sparse odometry. In Proc. of the European Conf. on Computer
Vision (ECCV), 2018. 155

[YWX+18] Zhengheng Yang, Peng Wang, Wei Xu, Liang Zhao, and Ramakant
Nevatia. Unsupervised learning of geometry with edge-aware depth-
normal consistency. In Proc. of the Conf. on Artificial Intelligence
(AAAI), 2018. 163

[ZBLD19] Shuaifeng Zhi, Michael Bloesch, Stefan Leutenegger, and Andrew J
Davison. Scenecode: Monocular dense semantic reconstruction
using learned encoded scene representations. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2019. 2

[ZBSL17] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G. Lowe.
Unsupervised Learning of Depth and Ego-Motion from Video. In
Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2017. 1, 155, 156, 159, 160, 161, 163

[ZCL17] Bingbing Zhuang, Loong Fah Cheong, and Gim Hee Lee. Rolling
shutter aware differential sfm and image rectification. In Proc. of
the IEEE International Conf. on Computer Vision (ICCV), 2017. 15,
103, 115, 116, 119, 120, 121, 122, 123

[ZCS17] Z. Zhang, C.Forster, , and D. Scaramuzza. Active exposure control
for robust visual odometry in hdr environments. In Proc. IEEE
International Conf. on Robotics and Automation (ICRA), 2017. 4,
51

[ZGW+18] Huangying Zhan, Ravi Garg, Chamara Saroj Weerasekera, Kejie
Li, Harsh Agarwal, and Ian M. Reid. Unsupervised Learning of
Monocular Depth Estimation and Visual Odometry with Deep Fea-
ture Reconstruction. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2018. 163

[ZKR+18] Yinda Zhang, Sameh Khamis, Christoph Rhemann, Julien P. C.
Valentin, Adarsh Kowdle, Vladimir Tankovich, Michael Schoenberg,
Shahram Izadi, Thomas A. Funkhouser, and Sean Ryan Fanello. Ac-
tivestereonet: End-to-end self-supervised learning for active stereo
systems. In Proc. of the European Conf. on Computer Vision (ECCV),
2018. 72

190

Bibliography

[ZLH18] Yuliang Zou, Zelun Luo, and Jia-Bin Huang. Df-net: unsupervised
joint learning of depth and flow using cross-task consistency. In
Proc. of the European Conf. on Computer Vision (ECCV), 2018. 159

[ZPIE17] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Un-
paired image-to-image translation using cycle-consistent adversarial
networks. In Proc. of the IEEE International Conf. on Computer
Vision (ICCV), 2017. 14

[ZPR+18] Jiawei Zhang, Jinshan Pan, Jimmy Ren, Yibing Song, Linchao Bao,
Rynson W.H. Lau, and Ming-Hsuan Yang. Dynamic scene deblur-
ring using spatially variant recurrent neural networks. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2018.
14

[ZRFS16] Zichao Zhang, Henri Rebecq, Christian Forster, and Davide Scara-
muzza. Benefit of large field-of-view cameras for visual odometry. In
Proc. IEEE International Conf. on Robotics and Automation (ICRA),
2016. 36

[ZS15] J. Zhang and S. Singh. Visual-lidar odometry and mapping: Low-
drift, robust, and fast. In Proc. IEEE International Conf. on Robotics
and Automation (ICRA), 2015. 9, 11

[ZTJ+19] Bingbing Zhuang, Quoc-Huy Tran, Pan Ji, Loong-Fah Cheong,
and Manmohan Chandraker. Learning structure-and-motion-aware
rolling shutter correction. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2019. 16, 101, 103, 106, 113, 114,
115, 116, 117, 119, 120, 122

[ZUB18] Huizhong Zhou, Benjamin Ummenhofer, and Thomas Brox. Deep-
TAM: Deep Tracking and Mapping. In Proc. of the European Conf.
on Computer Vision (ECCV), 2018. 163

[ZXJ13] S. Zheng, L. Xu, and J. Jia. Forward motion deblurring. In Proc. of
the IEEE International Conf. on Computer Vision (ICCV), 2013. 13

191

	Abstract
	Acknowledgement
	1 Introduction
	1.1 A classical VO pipeline
	1.2 Contributions of the dissertation
	1.3 Related work
	1.3.1 Visual odometry
	1.3.2 Image motion deblurring
	1.3.3 Rolling shutter effect removal

	1.4 Overview of the dissertation

	2 Preliminaries
	2.1 Camera models
	2.2 Exponential map
	2.3 Logarithm map
	2.4 State marginalization

	I Hardware Perspective
	3 Direct Visual Odometry for a Fisheye-Stereo Camera
	3.1 Introduction
	3.2 Notations
	3.3 Method
	3.3.1 Semi-dense image alignment
	3.3.2 Plane-sweeping stereo
	3.3.3 Temporal motion stereo

	3.4 Experimental evaluation
	3.5 Conclusion

	4 Robust VO with a Multi-Camera System
	4.1 Introduction
	4.2 Notations
	4.3 Method
	4.3.1 Tracker
	4.3.2 Keyframe and feature selections
	4.3.3 Local mapper

	4.4 Experimental evaluation
	4.5 Conclusion

	II Deep CNN Enhanced Images
	5 Self-supervised Motion Deblurring
	5.1 Introduction
	5.2 Method
	5.2.1 Deblurring and optical flow
	5.2.2 Reblurring
	5.2.3 Image warping
	5.2.4 Relationship between uab/ub a and u
	5.2.5 Loss functions
	5.2.6 Occlusion handling
	5.2.7 Differences with the method proposed by Chen et al@let@token .

	5.3 Experimental evaluation
	5.4 Conclusion

	6 Deep Shutter Unrolling Network
	6.1 Introduction
	6.2 Method
	6.2.1 Rolling shutter image formation model
	6.2.2 Rolling shutter effect removal
	6.2.3 Differentiable forward warping block
	6.2.4 Network architecture
	6.2.5 Loss functions

	6.3 Datasets
	6.4 Experimental evaluation
	6.5 Conclusion

	III Algorithmic Perspective
	7 Motion Blur Aware Robust Visual Odometry
	7.1 Introduction
	7.2 Preliminaries
	7.3 Method
	7.3.1 Motion blur image formation model
	7.3.2 Direct image alignment with sharp images
	7.3.3 Motion trajectory modeling
	7.3.4 Direct image alignment with blurry images
	7.3.5 More details on the transfer

	7.4 Datasets
	7.5 Experimental evaluation
	7.6 Conclusion

	8 Is Single Image Motion Estimation Possible?
	8.1 Introduction
	8.2 Single image motion estimation network
	8.3 Upper bound motion cues that a single image motion estimation network can exploit
	8.4 How is the performance of existing networks on dataset with complex motions?
	8.5 Clarification
	8.6 Conclusion

	9 Conclusion and Outlook
	9.1 Conclusion
	9.2 Future works

	Bibliography

