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Abstract
Ten years back, Benoist–Quint established breakthrough results concerning

actions of non-amenable groups on finite volume homogeneous spaces of real
Lie groups. Taking their work as starting point, the purpose of this thesis is
to further explore and advance the theory of random walks on homogeneous
spaces in several directions.

We start our investigations with basic aspects of convergence of random
walks on homogeneous spaces, obtaining aperiodicity and uniform Cesàro con-
vergence results. Under a spectral gap assumption, we prove that almost every
starting point is exponentially generic for the random walk, where, notably,
the exponential speed of convergence is uniform over all compactly supported
smooth test functions.

Secondly, in joint work with Çağrı Sert, we consider random walks driven
by stochastic processes which are not necessarily i.i.d.; specifically, Markov ran-
dom walks. Under an expansion assumption, using bootstrapping techniques
and joint equidistribution results, we establish equidistribution statements for
this more general class of random walks. This has consequences for Diophantine
approximation problems on a certain class of fractals, namely on graph-directed
self-similar sets.

In the third part, we investigate i.i.d. random walks on homogeneous spaces
given by probability measures that are spread out, i.e. admit a convolution
power non-singular to Haar measure. Drawing on the existing theory of general
state space Markov chains, we obtain a complete picture of the convergence
properties of this special type of random walks. In particular, we establish
non-averaged convergence in law in the finite volume case, answering an open
question of Benoist–Quint for this type of measures. In the infinite volume
case, we prove recurrence for spread out random walks on homogeneous spaces
of at most quadratic growth, which settles one direction in the long-standing
“quadratic growth conjecture”.

Finally, in joint work with Çağrı Sert and Ronggang Shi, we tackle the
problem of unifying the results of Benoist–Quint and other more recent re-
sults in the same area, like the work of Simmons–Weiss, which relies on a
set of assumptions orthogonal to the setting of Benoist–Quint. To this end,
we introduce a new class of probability measures defined by a uniform expan-
sion property in finite-dimensional representations. Using the recent work of
Eskin–Lindenstrauss, we are able to prove measure rigidity, strong recurrence
properties, orbit closure descriptions, as well as equidistribution results for this
class of expanding random walks. As consequence, we also obtain new results
on Birkhoff genericity for certain diagonalizable flows, which in turn has impli-
cations for weighted Diophantine approximation problems on self-affine sets.
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Résumé
Il y a dix ans, Benoist et Quint ont établi des résultats décisifs concernant

les actions de groupes non moyennables sur des espaces homogènes de volumes
finis de groupes de Lie réels. En prenant leur travail comme point de départ, le
but de cette thèse est d’explorer et de faire progresser la théorie des marches
aléatoires sur des espaces homogènes dans plusieurs directions.

Nous commençons nos recherches par les aspects de base de la convergence
de marches aléatoires sur espaces homogènes, obtenant des résultats d’apériodi-
cité et de convergence de Cesàro uniforme. Sous une hypothèse de trou spectral,
nous démontrons que presque tout point de départ est exponentiellement gé-
nérique pour la marche aléatoire, où, notamment, la vitesse exponentielle de
convergence est uniforme sur toutes les fonctions tests lisses à support compact.

Deuxièmement, en collaboration avec Çağrı Sert, nous considérons des
marches aléatoires issues de processus stochastiques qui ne sont pas nécessai-
rement iid ; plus précisément, des marches aléatoires markoviennes. Sous une
hypothèse d’expansion, en utilisant des techniques d’amorçage et des résultats
d’équidistribution jointe, nous établissons un théorème d’équidistribution pour
cette classe plus générale de marches aléatoires. Cela a des conséquences pour
les problèmes d’approximation diophantienne sur une certaine classe de frac-
tales, à savoir sur les ensembles autosimilaires dirigés par un graphe au sens de
Mauldin et Williams.

Dans la troisième partie, nous étudions des marches aléatoires iid sur des
espaces homogènes données par des mesures de probabilité qui sont étalées,
c’est-à-dire admettent une puissance de convolution non singulière par rapport
à la mesure de Haar. En nous inspirant de la théorie des chaînes de Markov dans
l’espace d’états général, nous obtenons une image complète des propriétés de
convergence de ce type particulier de marches aléatoires. En particulier, nous
établissons la convergence en loi non moyennée dans le cas de volume fini,
répondant à une question ouverte de Benoist et Quint pour ce type de mesures.
Dans le cas du volume infini, nous démontrons la récurrence pour des marches
aléatoires étalées sur des espaces homogènes de croissance au plus quadratique,
ce qui établit une direction de la « conjecture de croissance quadratique ».

Enfin, en collaboration avec Çağrı Sert et Ronggang Shi, nous abordons le
problème de l’unification des résultats de Benoist et Quint et d’autres résultats
plus récents dans le même domaine, comme le travail de Simmons et Weiss,
qui s’appuie sur un ensemble d’hypothèses orthogonales au cadre de Benoist et
Quint. À cette fin, nous introduisons une nouvelle classe de mesures de proba-
bilité définies par une propriété d’expansion uniforme dans les représentations
de dimension finie. En utilisant les travaux récents d’Eskin et Lindenstrauss,
nous sommes en mesure de prouver la rigidité des mesures, des propriétés de
récurrence forte, une description des adhérences d’orbite, ainsi que des résul-
tats d’équidistribution pour cette classe de marches aléatoires expansives. En
conséquence, nous obtenons également de nouveaux résultats sur la généricité
de Birkhoff de certains flots diagonalisables, ce qui à son tour a des implications
pour les problèmes d’approximation diophantienne pondérée sur les ensembles
auto-affines.
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CHAPTER 0

Introduction

0.1. A Bit of History

Originally motivated by applications to number theory, the rigidity proper-
ties of subgroup actions on a homogeneous space X = G/Λ, where G is a real
Lie group and Λ < G a discrete subgroup, have been an active field of research
over the last fifty years. Among the first striking results was Margulis’ resolu-
tion of the Oppenheim conjecture [84, 86] via a reformulation into an orbit
closure problem for the action of SO(2, 1) on SL3(R)/ SL3(Z) noticed by Raghu-
nathan. Raghunathan had conjectured, more generally, that orbit closures for
unipotent subgroups are closed orbits of larger subgroups. After more partial
results by Dani, Margulis, and Shah, Raghunathan’s conjecture was settled in
full generality in celebrated work of Ratner [109, 110, 111, 112].

In absence of unipotent elements, the dynamics of subgroup actions are
harder to understand—already the case of actions on a torus Td = Rd/Zd by
non-amenable subgroups of SLd(Z) poses serious challenges. The very first dif-
ficulty arising in this setup is the potential lack of invariant measures. What
has proved to be a fruitful approach for overcoming this issue is taking a proba-
bilistic viewpoint of random walks and stationary measures, techniques mainly
pioneered by Furstenberg starting in the sixties [49, 51, 52, 53]. Using this
random walks approach, Guivarc’h–Starkov [57] made first contributions to un-
derstanding the action of subgroups Γ < SLd(Z) on Td, and Bourgain–Furman–
Lindenstrauss–Mozes [20] proved a quantitative result which answered many
remaining questions.

For subgroup actions on a general homogeneous space X = G/Λ, a major
breakthrough came around 2010 with a series of papers by Benoist–Quint [5,
7, 8, 9]. Applying several novel techniques, they were able to give a complete
classification of stationary measures, descriptions of orbit closures, and prove
equidistribution statements for random walks under the assumption of semisim-
plicity of the Zariski closure of the acting group Γ. One crucial new ingredient
in the proof of their measure classification result was the so-called “exponential
drift” argument (as compared to the “polynomial drift” argument of Ratner),
which was further developed in the seminal work of Eskin–Mirzakhani [42] on
stationary measures for the SL2(R)-action on moduli space. Bringing back to
homogeneous dynamics ideas from the setting of random walks on moduli space,
Eskin–Lindenstrauss [39] have recently obtained a theorem which generalizes
the measure classification results of Benoist–Quint.

Building upon much of the work outlined above, the goal of this thesis
is to further advance the theory of subgroup actions and random walks on
homogeneous spaces in various directions. In the following section §0.2, we
start by introducing the basic central concepts involved. Afterwards, in §0.3,

1



2 0. INTRODUCTION

we state two major theorems of Benoist–Quint together with ensuing questions
that will serve as motivation throughout the whole thesis. The structure of
this dissertation and its main contributions will be summarized in §0.4.

0.2. Background

Let G be a locally compact σ-compact metrizable group acting continu-
ously on a locally compact σ-compact metrizable space X. A choice of Borel
probability measure µ on G defines a random walk on X: A step corresponds
to sampling a random group element g ∈ G according to µ and then moving
from the current location X 3 x to gx. When the starting point of the random
walk is the point x, the location Φn after n steps can be represented as

Φn = gn · · · g1x,

where (gk)k∈N is a sequence of random group elements that are independent
and identically distributed (i.i.d.) with common law µ. Conditioned on the
starting point being x, the law of Φn is thus given by

Lx(Φn) = µ∗n ∗ δx,
where δx denotes the Dirac mass at x, µ∗n is the n-fold convolution power of µ,
and the convolution of probability measures µ on G and ν on X via the given
action is defined by µ ∗ ν =

∫
G g∗ν dµ(g). In other words, this means that the

convolution is defined by the property that∫
X
f d(µ ∗ ν) =

∫
G

∫
X
f(gx) dν(x) dµ(g)

for non-negative measurable functions f on X.
More generally, not starting the random walk at a fixed point x ∈ X but

according to some distribution ν on X, the law of Φn is given by the analogous
formula

Lν(Φn) = µ∗n ∗ ν.
Of special interest are probability measures ν on X which stay “invariant”

under steps of the random walk. The natural formalization of such invariance
is the requirement that Lν(Φn) = Lν(Φ0) for all n ∈ N, which, in light of the
above, is equivalent to the simple equation

µ ∗ ν = ν.

Probability measures ν on X satisfying the relation above are said to be µ-
stationary. The set of µ-stationary probability measures is a convex subset
of the space P(X) of all probability measures on X. Probability measures
extremal in the set of µ-stationary measures are called µ-ergodic. In other
words, a µ-stationary probability measure ν is µ-ergodic if and only if it cannot
be written as proper convex combination ν = sν1 + (1− s)ν2, where ν1, ν2 are
distinct µ-stationary probability measures on X and s is a real number with
0 < s < 1.

Besides stationary measures, a further aspect that is crucial for the under-
standing of random walks is their long-term behavior, reflected for example
in the convergence of the n-step distributions µ∗n ∗ δx or the asymptotics of
individual trajectories (gn · · · g1x)n∈N almost surely (a.s.) with respect to the
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product measure µ⊗N. Important in this regard is the notion of convergence
used. Mainly, we are going to focus on convergence in the weak* topology
on P(X), in which a basis of neighborhoods of a probability measure ν0 on X
is given by sets of the form

Nf1,...,fk;ε(ν0) =
{
ν ∈ P(X)

∣∣∣∣ ∣∣∣∣∫
X
fi dν −

∫
X
fi dν0

∣∣∣∣ < ε for 1 ≤ i ≤ k
}

for compactly supported continuous functions f1, . . . , fk on X and ε > 0. Then
convergence of a sequence of probability measures (νj)j on X towards a prob-
ability measure ν on X is equivalent to the requirement that∫

X
f dνj −→

∫
X
f dν (0.2.1)

as j → ∞ for every compactly supported continuous function f on X. It is
known from probability theory that weak* convergence νj → ν for probability
measures νj and ν on X implies that (0.2.1) holds for all bounded continuous
functions f on X. The space P(X) of probability measures on X is compact
in the weak* topology if and only if X is compact. To deal with non-compact
spaces X, one considers the one-point compactification X = X ∪ {∞} of X.
Then P(X) admits a natural embedding into the compact space P(X) by
virtue of identification with {ν ∈ P(X) | ν(X) = 1}. Consequently, it is
always possible to extract convergent subsequences from a sequence (νj)j of
probability measures on X, the only danger being that the limit measure ν
might no longer be a probability measure on X, but assign positive mass to
the point at infinity—a phenomenon known as “escape of mass”.

Let us now specialize to the setting of our main interest. Namely, we let G
be a real Lie group, Λ < G a discrete subgroup, and X the homogeneous
space G/Λ. Then there is a natural action of G on X given by left transla-
tion. When X = G/Λ admits a non-trivial finite G-invariant measure, we say
that Λ is a lattice in G. In this case, there is a unique G-invariant probability
measure mX on X, which we refer to as the Haar measure on X. A good
example to have in mind is G = SLd(R) with its lattice Λ = SLd(Z). When
it exists, the Haar measure mX on X is a desirable candidate when studying
the limiting behavior of random walks (or other dynamical systems) on X, in
that it represents the most uniform distribution possible. Therefore, limiting
behavior governed by mX is generally referred to as “equidistribution”. Often,
however, this is prevented by algebraic obstructions, for example when the ran-
dom walk starts inside a lower-dimensional invariant subspace of X. To make
the latter precise, we say that a probability measure ν on X is homogeneous
if there exist a point x ∈ X and a closed subgroup H of G preserving ν such
that ν(Hx) = 1. The orbit Hx is then automatically closed and is called a
homogeneous subspace of X. If x = gΛ, then Hx is a homogeneous subspace
of X if and only if H ∩ gΛg−1 is a lattice in H. In this case, the map

H/(H ∩ gΛg−1)→ Hx ⊂ X,

[h] 7→ hx

is an equivariant homeomorphic embedding, and the homogeneous measure on
the closed orbit Hx corresponds to the Haar measure on H/(H ∩ gΛg−1). We
thus obtain a one-to-one correspondence between homogeneous measures on X



4 0. INTRODUCTION

and homogeneous subspaces of X. For a closed subgroup Γ of G, a homoge-
neous subspace Y of X is said to be Γ-ergodic if Γ preserves the corresponding
homogeneous probability measure νY and the action of Γ on (Y, νY ) is ergodic.

0.3. Theorems of Benoist and Quint

Using the notions introduced in §0.2, we are now ready to formulate two
fundamental theorems of Benoist–Quint which serve as motivation throughout
the thesis. The first result concerns the classification of ergodic stationary
measures. We will denote by Γµ and Γ+

µ the closed subgroup and subsemigroup
of G, respectively, generated by the support of µ.

Theorem A (Benoist–Quint [8]). Let G be a real Lie group, Λ < G a lattice,
X = G/Λ, and µ a compactly supported probability measure on G. Suppose
that the Zariski closure of Ad(Γµ) is Zariski connected, semisimple, and has no
compact factors. Then every µ-ergodic µ-stationary probability measure on X
is Γµ-invariant and homogeneous.

In other words, all ergodic stationary measures are nice, algebraically con-
structed objects, and no pathologies can arise. Informally, statements of this
type are thus referred to as “measure rigidity”.

Secondly, random walks on X equidistribute with respect to a homogeneous
probability measure on X naturally determined by the starting point of the
random walk.

Theorem B (Benoist–Quint [9]). Retain the notation and assumptions
from Theorem A. Then for every x ∈ X = G/Λ there is a Γµ-ergodic homoge-
neous subspace Yx ⊂ X with corresponding homogeneous probability measure νx
such that the following hold:

(i) The orbit closures Γµx and Γ+
µx are both equal to Yx.

(ii) One has the convergence

1
n

n−1∑
k=0

µ∗k ∗ δx −→ νx

as n→∞ in the weak* topology.
(iii) For µ⊗N-almost every (a.e.) sequence (gj)j one has

1
n

n−1∑
k=0

δgk···g1x −→ νx

as n→∞ in the weak* topology.

We observe that the convergence in point (ii) of the above theorem is con-
vergence on average of the n-step distributions of the random walk starting
at x, also referred to as “Cesàro convergence in law”. Point (iii) states a.s.
pathwise equidistribution of the random walk with respect to νx. Part (i), on
the other hand, is an entirely deterministic claim, describing all orbit closures
for the action of Γµ on X. As warm-up exercise, let us convince ourselves that
the latter is an immediate consequence of the other two dynamical statements
on equidistribution of random walks.
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Lemma 0.3.1. Let G be a locally compact σ-compact metrizable group acting
continuously on a locally compact σ-compact metrizable space X. Let µ be a
probability measure on G and fix x ∈ X. If νx is a probability measure on X
such that its support Yx = supp(νx) is Γµ-invariant and contains x, then for
the statements in Theorem B, (iii) implies (ii) implies (i).

Proof. We first assume that (iii) holds. Then by definition of weak*
convergence, for every sequence (gj)j of group elements drawn from some fixed
full measure subset of GN with respect to µ⊗N we have

1
n

n−1∑
k=0

f(gk · · · g1x) −→
∫
X
f dνx

as n → ∞ for every compactly supported continuous function f on X. Since
the left-hand side in the convergence above is uniformly bounded by the supre-
mum norm ‖f‖∞ of f , an application of Lebesgue’s dominated convergence
theorem yields

1
n

n−1∑
k=0

∫
X
f d(µ∗k ∗ δx) = 1

n

n−1∑
k=0

∫
GN
f(gk · · · g1x) dµ⊗N((gj)j) −→

∫
X
f dνx

as n→∞, which is (ii).
To show that (ii) implies (i), note first that Γ+

µx ⊂ Γµx ⊂ Yx holds because
Yx is closed, Γµ-invariant and x ∈ Yx. For the remaining reverse inclusion, one
only has to note that

supp(µ∗k ∗ δx) = supp(µ)kx.

This relation implies that the support of 1
n

∑n−1
k=0 µ

∗k ∗δx is contained in Γ+
µx for

every n ∈ N. Assuming the weak* convergence in (ii) it thus follows at once
that Yx ⊂ Γ+

µx. �

Taking the two theorems above as starting point, the aim of this thesis is to
further investigate random walks on homogeneous spaces. Guiding questions,
already listed by Benoist–Quint at the end of their survey article [6], are the
following.

Question 1. Is the description of orbit closures in Theorem B still true
when the Zariski closure of Ad(Γµ) is only supposed to be spanned by its one-
parameter unipotent subgroups?

Question 2. Are the measure classification in Theorem A and the con-
vergence statements in Theorem B still valid when µ is not supposed to have
compact support?

Question 3. Can the Cesàro average be removed from statement (ii) in
Theorem B, i.e. does one also have limn→∞ µ

∗n ∗ δx = νx?

Although not definitively resolving any of them, we will make significant
contributions to the problems addressed by these questions and further ones,
hopefully leading to a better understanding of subgroup actions and random
walks on homogeneous spaces.
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0.4. Outline of the Thesis

Besides this introduction, this dissertation consists of four largely indepen-
dent chapters, each of which corresponds to a research article, published or in
preprint stage.

Chapter 1, which has appeared as preprint on the arXiv [103], starts by con-
sidering some aspects of Question 3 at the end of §0.3. First, we look into the
obvious obstruction to the upgrade from Cesàro to non-averaged convergence:
periodicity. We give examples where it occurs and conditions under which it
does not. Secondly, we prove that non-averaged convergence holds generically:
We establish convergence of the n-step distributions towards Haar measure
with exponential speed from almost every starting point. Using a certain type
of height function, the exponential speed is seen to hold uniformly across all
compactly supported smooth test functions. Finally, we establish a strong
uniformity property for Cesàro convergence in law towards Haar measure for
uniquely ergodic random walks.

In Chapter 2, joint work with Çağrı Sert that was published in revised
form by the Transactions of the American Mathematical Society [105], we
study random walks whose steps are not necessarily i.i.d., but have Markovian
dependence. Employing techniques based on renewal and joint equidistribution
arguments, we obtain pathwise equidistribution statements for this more gen-
eral class of random walks. For the involved arguments to work, we first have
to establish a positive answer to Question 2 in a basic special case, for which
we rely on the recent measure classification results of Eskin–Lindenstrauss [39].
Finally, following a strategy of Simmons–Weiss [129], we apply these results to
Diophantine approximation problems on fractals and show that almost every
point with respect to Hausdorff measure on a graph-directed self-similar set is
of generic type, so in particular, well approximable.

In Chapter 3, published in revised form in Ergodic Theory and Dynamical
Systems [104], we tackle Question 3 for a special class of probability mea-
sures µ. Namely, this chapter considers the case that µ is spread out, meaning
that there exists a convolution power µ∗n that is non-singular with respect to
Haar measure on G. Systematically exploiting the theory of Markov chains
on general state spaces, we conduct a detailed analysis of random walks on
homogeneous spaces with spread out increment distribution. For finite volume
spaces, we arrive at a complete picture of the asymptotics of the n-step distri-
butions: They equidistribute towards Haar measure, often exponentially fast
and locally uniformly in the starting position. In addition, many classical limit
theorems are shown to hold. In the infinite volume case, we prove recurrence
and a ratio limit theorem for symmetric spread out random walks on homoge-
neous spaces of at most quadratic growth, which settles one direction in the
long-standing “quadratic growth conjecture”.

In Chapter 4, joint work with Çağrı Sert and Ronggang Shi that is available
as preprint on the arXiv [106], we investigate the problem underlying Ques-
tion 1, namely whether the assumption of semisimplicity of the Zariski closure
of Ad(Γµ) can be relaxed. For a semisimple subgroup H of G without compact
factors and with finite center, we define the notion of H-expanding probability
measures µ on H and, applying the recent work of Eskin–Lindenstrauss [39],
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prove that µ-stationary probability measures on X = G/Λ are homogeneous.
Transferring a construction by Benoist–Quint [7] and drawing on ideas of Eskin–
Mirzakhani–Mohammadi [43], we construct Lyapunov/Margulis functions to
show that H-expanding random walks on X satisfy a recurrence condition and
that homogeneous subspaces are repelling. Combined with a countability result,
this allows us to prove equidistribution of trajectories in X for H-expanding
random walks and to obtain orbit closure descriptions. In all of this, we work
with appropriate moment conditions on µ instead of an assumption of compact
support, thus giving a partial affirmative answer also for Question 2 for the
class of H-expanding measures. Finally, elaborating on an idea of Simmons–
Weiss [129], we deduce Birkhoff genericity of a class of measures with respect
to some diagonal flows and extend their applications to Diophantine approxi-
mation on similarity fractals to a non-conformal and weighted setting.





CHAPTER 1

Aspects of Convergence of Random Walks on Finite
Volume Homogeneous Spaces

Let G be a real Lie group, Λ a lattice in G, and X the homogeneous
space G/Λ. Recall that a probability measure µ on G defines a random walk
on X, whose n-step distribution when starting at x0 ∈ X is given by the
convolution

µ∗n ∗ δx0 ,

which is the push-forward of the product measure µ⊗n ⊗ δx0 under the mul-
tiplication map Gn × X 3 (gn, . . . , g1, x) 7→ gn · · · g1x ∈ X. Benoist–Quint’s
Theorem B in the Introduction states that under certain conditions, the Cesàro
averages of these n-step distributions converge in the weak* topology towards
the homogeneous probability measure νx0 supported on the Γµ-orbit closure of
the starting point x0, where Γµ denotes the closed subgroup of G generated
by the support of µ. A major open question, stated in the Introduction as
Question 3, is the following.

Question. In the setting of Benoist–Quint’s theorems, is it also true that
µ∗n ∗ δx0 −→ νx0 (1.0.1)

as n→∞?

Answers are available only in special cases: Breuillard [22] established
(1.0.1) for certain measures µ supported on unipotent subgroups, Buenger [23]
proved it for some sparse solvable measures, and in Chapter 3 we are going to
deal with the case of spread out measures.

The purpose of this chapter is to discuss three (largely independent) aspects
of random walk convergence related to Benoist–Quint’s Theorem B and the
question above, mainly having in mind the case that G is a semisimple real Lie
group. We are going to use the following terminology.

Definition 1.0.1. Let ν be a probability measure on X and x0 ∈ X. We
say that the random walk on X given by the probability measure µ on G
converges to ν on average (resp. converges to ν) from the starting point x0 if
1
n

∑n−1
k=0 µ

∗k ∗ δx0 → ν (resp. µ∗n ∗ δx0 → ν) as n→∞ in the weak* topology.

Convergence on average is also commonly referred to as “Cesàro conver-
gence”. We use the two terms interchangeably.

The chapter is organized as follows.
In §1.1, we look into the obvious obstruction to the upgrade from Cesàro

convergence to non-averaged convergence: periodicity. We show in Exam-
ple 1.1.1 how (1.0.1) can fail when x0 has finite orbit under the closed sub-
semigroup Γ+

µ of G generated by supp(µ). Using a product construction, we
9
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can also produce a counterexample in which the orbit closure Γ+
µx0 has positive

dimension (Example 1.1.2). In both cases, the periodic behavior occurs at the
level of the connected components of the orbit closure. As it turns out, this
is no coincidence: If, in the setting of Theorem B, the orbit closure Γ+

µx0 is
connected, there can be no periodicity (Theorem 1.1.5) and we can show that
the Cesàro convergence towards νx0 also holds along arithmetic progressions
(Corollary 1.1.7).

In §1.2, we establish effective convergence of random walks to the Haar
measure mX on X for typical starting points x0: When supp(µ) generates
a Zariski dense subgroup of a semisimple real Lie group G without compact
factors and with finite center, for any fixed L2-function f on X the convergence∫

X
f d(µ∗n ∗ δx0) n→∞−→

∫
X
f dmX

not only holds but is in fact exponentially fast for mX-almost every x0 ∈ X
(Theorem 1.2.2, Proposition 1.2.4). The proof relies on an L2-spectral gap of
the convolution operator

π(µ) : f 7→
(
x 7→

∫
G
f(gx) dµ(g)

)

acting on measurable functions on X. Taking into account regularity of the
function f , the above can be further strengthened to the statement that almost
every x ∈ X is “exponentially generic” (Definition 1.2.12): Up to a constant fac-
tor depending on derivatives of f , the exponential speed of convergence holds
uniformly over all compactly supported smooth functions (Theorem 1.2.13).
Key to this upgrade are the definition of suitable Sobolev norms and a func-
tional analytic argument involving relative traces, first exploited in a dynamical
context by Einsiedler–Margulis–Venkatesh [36].

Finally, in §1.3 we prove that convergence on average to mX happens lo-
cally uniformly in x0 in a strong way when the random walk is uniquely ergodic
and admits a Lyapunov function (Theorem 1.3.13). For example, this is the
case when G is a connected semisimple real algebraic group and supp(µ) gener-
ates a non-discrete Zariski dense subgroup, and also in the setup of Simmons–
Weiss [129], which has connections to Diophantine approximation problems on
fractals. To this end, we introduce the new concept of “(Kn)n-uniform recur-
rence” (Definition 1.3.10), which refines recurrence properties of random walks
previously studied in [7, 40].

Standing Assumptions & Notation. As many of our arguments work in
greater generality, in the remainder of the chapter we will relax the assumptions
stated at the beginning. The following minimal setup shall be in place whenever
nothing else is specified: G is a locally compact σ-compact metrizable group
acting continuously and ergodically on a locally compact σ-compact metrizable
space X endowed with a G-invariant probability measure mX ; µ is a Borel
probability measure on G; and Γµ and Γ+

µ denote the closed subgroup and
subsemigroup of G generated by supp(µ), respectively.
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1.1. Periodicity

In this section, we start with two simple counterexamples to (1.0.1), which
illustrate ways in which a random walk may exhibit periodic behavior (§1.1.1).
Analyzing these examples for their common feature, we are led to a simple
condition ensuring aperiodicity, stated and proved in §1.1.2.

1.1.1. Examples. The first example with periodicity is on finite periodic
orbits. In the following, for d ≥ 2 we denote by 1d the d× d-identity matrix.

Example 1.1.1. Consider the principal congruence lattice
Λ = Λ(2) = {g ∈ SL2(Z) | g ≡ 12 mod 2}

in G = SL2(R). Being the kernel of the reduction homomorphism from SL2(Z)
to SL2(Z/2Z), we recognize Λ(2) as a finite-index normal subgroup of SL2(Z).
In particular, Λ(2) is a lattice in G. Let µ = 1

2(δh1 + δh2) with

h1 =
(1 1

0 1

)
, h2 =

(1 0
1 1

)
.

Then the closed subgroup generated by supp(µ) = {h1, h2} is Γµ = SL2(Z),
which is Zariski dense in G. The Γµ-orbit of x0 = 12Λ ∈ G/Λ is

O =
{
x0, h1x0, h2x0, h2h1x0 = ( 1 1

1 2 )x0, h1h2x0 = ( 2 1
1 1 )x0,

h1h2h1x0 = h2h1h2x0 = ( 2 −1
1 0 )x0

}
,

with transitions as shown in the following diagram:

h2h1x0 h1x0

h1h2h1x0 x0

h1h2x0 h2x0

h2

h1

h1
h2

h1

h2

h1

h2
h1

h2

h2

h1

Consequently, we see that the random walk with starting point x0 alternates
between the two sets

O1 = {x0, h1h2x0, h2h1x0} and O2 = {h1x0, h2x0, h1h2h1x0}.
The 2-step random walks on these sets constitute irreducible, aperiodic, finite
state Markov chains, so that

µ∗2n ∗ δx0 −→
1
3
∑
p∈O1

δp,

µ∗(2n+1) ∗ δx0 −→
1
3
∑
p∈O2

δp,
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as n→∞ in the weak* topology. �

In the example above, the support of µ generates a Zariski dense subgroup
of G and the lattice Λ in G is irreducible.1 By the work of Benoist–Quint
([9, Corollary 1.8]), these properties force any orbit closure Γ+

µx0 to be either
finite or all of X. As soon as intermediate orbit closures are possible, however,
one can also construct examples with periodic behavior on non-discrete orbit
closures.

Example 1.1.2. Let G, Λ, X = G/Λ, h1, h2, x0 be as in Example 1.1.1, set
Γ = SL2(Z) and choose a diagonal matrix a ∈ SL2(R) such that the diagonal
entries of a2 are irrational. We are going to consider the random walk on the
product space

X ×X = (G×G)/(Λ× Λ)

given by the probability measure µ = 1
4
∑4
i=1 δgi on G×G with

g1 = (h1, ah1a
−1), g2 = (h1,12),

g3 = (h2, ah2a
−1), g4 = (h2,12).

The (closed) subgroup generated by the support of this measure µ is given by
Γµ = Γ × aΓa−1 = SL2(Z) × a SL2(Z)a−1. Indeed, the correct entry in the
second copy of G can be arranged using a finite product of g±1

1 , g±1
3 , and then

the entry in the first copy can be corrected using g±1
2 , g±1

4 . By Theorem B we
thus know that for the starting point (x0, x0) ∈ X × X we have the weak*
convergence

1
n

n−1∑
k=0

µ∗k ∗ δ(x0,x0) −→ ν(x0,x0)

as n→∞, where ν(x0,x0) is the homogeneous probability measure on the closure
of the Γ× aΓa−1-orbit of (x0, x0).

Let us identify this orbit closure. In the first copy of X, we recognize
the finite orbit O from Example 1.1.1. In the second copy, we see the action
of irrational conjugates of h1, h2. As the acting group has product structure,
the orbit closure in question is the product of these two orbit closures in the
components:

(Γ× aΓa−1)(x0, x0) = O × aΓa−1x0.

Since the orbit aΓa−1x0 is infinite by our choice of the matrix a, it follows from
[9, Corollary 1.8] that aΓa−1x0 = X, so that

(Γ× aΓa−1)(x0, x0) = O ×X and ν(x0,x0) = mO ⊗mX

for the normalized counting measuremO on O and the Haar measuremX on X.
However, in analogy to Example 1.1.1, the random walk is found to alternate
between the sets

O1 ×X and O2 ×X,

1Loosely speaking, irreducibility of Λ means that it does not arise from a product construc-
tion. The precise definition is given before Corollary 4.0.2 in Chapter 4; see also [107,
Definition 5.20].
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in the sense that supp(µ∗2n ∗ δ(x0,x0)) ⊂ O1 ×X and supp(µ∗(2n+1) ∗ δ(x0,x0)) ⊂
O2×X for all n ∈ N. Hence, we conclude that the random walk starting from
(x0, x0) does not converge to ν(x0,x0). �

Remark 1.1.3. The same behavior as in the previous example can be
arranged inside a homogeneous space X ′ = G′/Λ′ that is the quotient of a
semisimple real Lie group G′ by an irreducible lattice Λ′. Indeed, this is only a
matter of choosing suitable embeddings G×G ↪→ G′ and X ×X ↪→ X ′, where
G and X are as in Example 1.1.2. Concretely, one can for example consider
the 4× 4-congruence lattice

Λ′ = Λ(2) = {g ∈ SL4(Z) | g ≡ 14 mod 2}
in G′ = SL4(R) and the diagonal embeddings

G×G ↪→ G′,

(g, h) 7→
(
g

h

)
,

X ×X ↪→ X ′,

(gΛ, hΛ) 7→
(
g

h

)
Λ′.

We therefore see that Example 1.1.2, i.e. periodic behavior on a non-discrete
orbit closure, can be realized inside X ′ = G′/Λ′. Of course, after applying
this embedding, the subgroup generated by the support of µ will no longer be
Zariski dense in G′. �

1.1.2. An Aperiodicity Criterion. Inspecting the examples above, one
may notice that their common salient feature is that the orbit closure Γ+

µx0 is
disconnected. This naturally raises the question whether periodic behavior can
also occur when this orbit closure is connected. In what follows, we answer this
question in the negative. We shall use the following formalization of periodicity.

Definition 1.1.4. Assume that the random walk on X given by µ con-
verges on average to a probability measure ν on X from the starting point x0
in X. We say that this convergence is periodic if there exists an integer d ≥ 2
and pairwise disjoint measurable subsets D0, . . . , Dd−1 ⊂ X with ν(∂Di) = 0
for 0 ≤ i < d and such that (µ∗n∗δx0)(Dn mod d) = 1 for every n ∈ N. Otherwise,
we call the convergence aperiodic.

The requirement on the boundaries of the sets Di is needed to ensure that
the cyclic behavior is witnessed by the limit measure ν. Without a condition
of this sort, one could try to artificially define Di as the set of all points
in X that can be reached from x0 precisely in n ≡ i mod d steps. Indeed,
this construction is possible for example when µ is finitely supported with the
property that its support freely generates a discrete subsemigroup Γ+

µ of G and
the starting point x0 ∈ X has a free Γ+

µ -orbit. The latter is the case e.g. for
X = SL2(R)/ SL2(Z), µ = 1

2(δh1 + δh2) with h1 = ( 1 2
0 1 ) and h2 = ( 1 0

2 1 ), and
x0 = a SL2(Z) for a diagonal matrix a ∈ SL2(R) such that the diagonal entries
of a2 are irrational.

We are now ready to state the announced aperiodicity theorem.
Theorem 1.1.5. Retain the notation and assumptions from Theorem B and

let x0 ∈ X be such that the orbit closure Γ+
µx0 is connected. Then the Cesàro

convergence to νx0 of the random walk on X given by µ starting from x0 is
aperiodic.
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For the proof we need the following simple lemma.

Lemma 1.1.6. Let H be a Zariski connected real algebraic group and S a
subset of H generating a Zariski dense subsemigroup. Then for every positive
integer d ∈ N, also the d-fold product set Sd = {gd · · · g1 | g1, . . . , gd ∈ S} gen-
erates a Zariski dense subsemigroup of H. In particular, if supp(µ) generates
a Zariski dense subsemigroup for some probability measure µ on H, the same
is true for supp(µ∗d).

Proof. Let O ⊂ H be a non-empty Zariski open subset and consider the
map φ : H → H, g 7→ gd. Since φ is Zariski continuous, φ−1(O) is Zariski open.
Moreover, this preimage is non-empty because O is dense in the Lie group
topology on H and φ is a diffeomorphism near the identity. By the assumption
that S generates a Zariski dense subsemigroup, we can thus find an element
g ∈ φ−1(O) that is the product of finitely many elements of S. It follows that
φ(g) = gd lies in the intersection of O with the subsemigroup of H generated
by Sd.

The second claim involving µ immediately follows from the above together
with the inclusion supp(µ∗d) ⊃ supp(µ)d. �

Proof of Theorem 1.1.5. Suppose d ∈ N is an integer such that there
are pairwise disjoint D0, . . . , Dd−1 ⊂ X with νx0(∂Di) = 0 for all 0 ≤ i < d
and such that (µ∗n ∗ δx0)(Dn mod d) = 1 for all n ∈ N as in the definition of
periodicity. We have to show that d = 1.

First note that from Theorem B and the properties of the sets Di it follows
that

νx0(D0) = lim
n→∞

1
n

n−1∑
k=0

(µ∗k ∗ δx0)(D0) = 1
d
, (1.1.1)

where the application of weak* convergence to the set D0 is justified since
it has negligible boundary with respect to the limit measure νx0 . In view of
Lemma 1.1.6, Theorem B also applies to the d-step random walk given by µ∗d.
Assuming for the moment that the limit measure for this d-step random walk
starting from x0 coincides with νx0 , we deduce that

νx0(D0) = lim
n→∞

1
n

n−1∑
k=0

(µ∗dk ∗ δx0)(D0) = 1. (1.1.2)

Together, (1.1.1) and (1.1.2) imply d = 1, the desired conclusion.
It thus remains to show that the d-step random walk starting from x0 does

indeed have the same limit measure as the 1-step random walk. Denoting by
Γ+ = Γ+

µ and Γ+
d the closed subsemigroups of G generated by supp(µ) and

supp(µ∗d), respectively, this statement is equivalent to the equality Γ+x0 =
Γ+
d x0 of orbit closures. To prove this, let g ∈ supp(µ) be arbitrary. We claim

that

Γ+x0 =
d−1⋃
k=0

g−kΓ+
d x0.

Indeed, since Γ+x0 is homogeneous, it is invariant under the group generated
by Γ+. As Γ+x0 clearly contains Γ+

d x0, the inclusion “⊃” follows. For the
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reverse inclusion let gn, . . . , g1 ∈ supp(µ) for some n ∈ N. Choose 0 ≤ k < d

such that n+ k ≡ 0 mod d. Then gkgn · · · g1x0 ∈ Γ+
d x0 and hence gn · · · g1x0 ∈

g−kΓ+
d x0, giving the claim.

We already noted that Theorem B applies to µ∗d. In particular, the orbit
closure Γ+

d x0 and its translates by g−k, 0 ≤ k < d, are submanifolds of Γ+x0.
Necessarily, all these translates have the same dimension, and since together
they make up Γ+x0 by the claim above, their shared dimension coincides with
that of Γ+x0. This implies that Γ+

d x0 is open in Γ+x0. However, it is also
closed, so that the assumed connectedness of Γ+x0 forces Γ+x0 = Γ+

d x0. This
completes the proof. �

We end this section by recording a corollary of the proof above.

Corollary 1.1.7. Retain the notation and assumptions from Theorem B
and denote by Γ+ = Γ+

µ the closed subsemigroup of G generated by supp(µ).
Suppose that Γ+x0 is connected. Let d ∈ N and denote by Γ+

d the closed sub-
semigroup generated by supp(µ∗d). Then Γ+x0 = Γ+

d x0, and for the homoge-
neous probability measure νx0 on this orbit closure we have for arbitrary r ∈ N0
that

1
n

n−1∑
k=0

µ∗(dk+r) ∗ δx0 −→ νx0 (1.1.3)

as n→∞ in the weak* topology.

Proof. The statement about orbit closures was established as part of the
proof of Theorem 1.1.5. From Theorem B we thus get the weak* convergence

1
n

n−1∑
k=0

µ∗dk ∗ δx0
n→∞−→ νx0 , (1.1.4)

which is (1.1.3) for r = 0. Given f ∈ Cc(X), the general case follows by
applying (1.1.4) to the compactly supported continuous function fr defined by

fr(x) =
∫
G
f(gx) dµ∗r(g) =

∫
Gr
f(gr · · · g1x) dµ⊗r(g1, . . . , gr)

for x ∈ X. �

This corollary sharpens the convergence statement in Theorem B in the
case of a connected orbit closure: The Cesàro convergence to νx0 holds along
arbitrary arithmetic progressions. Although this does not provide an answer
to Question 3, it at least allows the following conclusion to be drawn: If (ni)i
is a sequence of indices such that µ∗ni ∗ δx0 converges to a weak* limit different
from νx0 as i→∞, then (ni)i cannot contain a density 1 subset of an infinite
arithmetic progression.

1.2. Spectral Gap

In this section, we will explain how a spectral gap of the convolution op-
erator π(µ) associated to a random walk entails the convergence of µ∗n ∗ δx
towards mX for mX-a.e. x ∈ X. In its simplest form, the involved argument
works in great generality and also produces an exponential rate of convergence
from almost every starting point when the test function f is fixed. This is
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carried out in §1.2.1. The following subsections §§1.2.2–1.2.4 are dedicated to
a substantial refinement of this spectral gap argument for random walks on ho-
mogeneous spaces of real Lie groups, making the exponentially fast convergence
uniform over smooth test functions.

1.2.1. Generic Points. Recall that π(µ) : L∞(X,mX) → L∞(X,mX) is
defined by

π(µ)f(x) :=
∫
X
f d(µ ∗ δx) =

∫
G
f(gx) dµ(g)

for f ∈ L∞(X,mX) and x ∈ X. This convolution operator extends to a
continuous contraction on each Lp-space (see [10, Corollary 2.2]). We shall
study its behavior on L2(X,mX). By ergodicity, the G-fixed functions are the
constant functions, so we restrict our attention to their orthogonal complement
of L2-functions with mean 0, denoted by L2

0(X,mX).

Definition 1.2.1. We say that µ has a spectral gap on X if the associated
convolution operator π(µ) restricted to L2

0(X,mX) has spectral radius strictly
less than 1.

We note that by the spectral radius formula, µ having a spectral gap on X
can be reformulated as the requirement that

lim
n→∞

n

√
‖π(µ)|n

L2
0
‖op < 1.

Given the existence of a spectral gap, we obtain an almost everywhere
convergence result in a quite general setup.

Theorem 1.2.2. Suppose that µ has a spectral gap on X. Then mX-a.e.
starting point x ∈ X is generic for the random walk on X given by µ, meaning
that

µ∗n ∗ δx −→ mX

as n→∞ in the weak* topology. This convergence is exponentially fast in the
sense that for every fixed f ∈ L2(X,mX) we have

lim sup
n→∞

∣∣∣∣∫
X
f d(µ∗n ∗ δx)−

∫
f dmX

∣∣∣∣1/n ≤ ρ(π(µ)|L2
0
)1/2

for mX-a.e. x ∈ X, where ρ(π(µ)|L2
0
) denotes the spectral radius of π(µ) re-

stricted to L2
0(X,mX).

Proof. By separability of Cc(X), for the statement about weak* conver-
gence it suffices to prove mX-a.s. convergence for one fixed function f ∈ Cc(X).
Consequently, it is enough to prove the second assertion of the theorem. To
this end, fix a function f ∈ L2(X,mX) and a number ρ(π(µ)|L2

0
) < α < 1, and

consider the L2
0-function f0 = f−

∫
f dmX . Then in view of the spectral radius

formula we have∥∥∥∥π(µ)nf −
∫
f dmX

∥∥∥∥
L2

= ‖π(µ)nf0‖L2 ≤ ‖π(µ)|nL2
0
‖op‖f0‖L2 ≤ αn‖f0‖L2

for sufficiently large n ∈ N. A standard Borel–Cantelli argument now implies
the statement. As we shall need similar estimates later on, we quickly go
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through the details: By Chebyshev’s inequality, the above implies that for
large n we have

mX

({
x ∈ X

∣∣∣∣ ∣∣∣∣π(µ)nf(x)−
∫
f dmX

∣∣∣∣ ≥ αn/2‖f0‖L2

})

≤ ‖π(µ)nf −
∫
f dmX‖2

L2

αn‖f0‖2
L2

≤ αn.

By Borel–Cantelli it follows that for mX-a.e. x ∈ X, the inequality∣∣∣∣π(µ)nf(x)−
∫
f dmX

∣∣∣∣ ≥ αn/2‖f0‖L2

holds only for finitely many n ∈ N. Since π(µ)nf(x) =
∫
f d(µ∗n ∗δx), letting α

approach ρ(π(µ)|L2
0
) gives the result. �

Remark 1.2.3. In the second conclusion of Theorem 1.2.2, how long it
takes for the exponential rate of convergence to kick in depends on the point x.
However, the measure of sets on which one has to wait for a long time can
be controlled as follows: Given ρ(π(µ)|L2

0
) < α < 1, choose N ∈ N such that

‖π(µ)|nL2
0
‖op ≤ αn for all n ≥ N . Then if we denote

Bα,n,f =
{
x ∈ X

∣∣∣∣ ∣∣∣∣π(µ)n′f(x)−
∫
f dmX

∣∣∣∣ ≥ αn
′/2‖f0‖L2 for some n′ ≥ n

}
,

the proof above gives the bound

mX(Bα,n,f ) ≤
αn

1− α
for every n ≥ N . In other words, the measure of the set on which the expo-
nential convergence does not start during the first n steps decays exponentially
in n. �

We now demonstrate that the previous result covers the case of our main
interest.

Proposition 1.2.4. Let G be a connected semisimple real Lie group without
compact factors and with finite center, Λ < G a lattice, and X the homogeneous
space G/Λ endowed with the Haar measure mX . Suppose that Ad(Γ+

µ ) is Zariski
dense in Ad(G). Then µ has a spectral gap on X.

Proof. Consider the regular representation of G on L2
0(X,mX). By [3,

Lemma 3] it does not weakly contain the trivial representation. From this, in
view of [125, Theorem C], the result follows if we can argue that the projection
of µ to any simple factor of G is not supported on a closed amenable subgroup.
However, since amenability passes to the Zariski closure (see e.g. [136, The-
orem 4.1.15]) the latter would imply that one of the simple factors of Ad(G)
is amenable, hence compact by a classical result of Furstenberg (see e.g. [136,
Proposition 4.1.8]). �

1.2.2. Good Height Functions. Inspecting the proof of Theorem 1.2.2,
one observes that every step is effective, with explicit bounds and good control
over the measure of exceptional sets, except for the very first one: separability
of the space Cc(X) of compactly supported continuous functions. In the re-
mainder of this section, we aim to also make effective this step, the goal being
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exponentially fast convergence µ∗n ∗δx → mX from almost every starting point,
uniformly over functions f on X. As merely continuous functions can behave
arbitrarily badly (with respect to the convergence problem at hand), there is
no hope of achieving this feat for all f ∈ Cc(X). We shall therefore restrict our
attention to smooth functions of compact support, and take into account their
regularity by considering not just their L2-, but also certain Sobolev norms.
Built into the definition of these norms will be what we call a “good height
function”, the concept of which is introduced in this subsection.

Our setup is as follows: Let G be a real Lie group with Lie algebra g.
We endow g with a scalar product, which we use to define a right-invariant
metric dG on G. Given a lattice Λ < G, this metric descends to a metric dX
on X = G/Λ such that the projection G→ X is locally an isometry. Moreover,
we fix an orthonormal basis of g, using which we will identify g with Rdim g.
Here is the crucial definition.

Definition 1.2.5. We call a measurable function ht : X → (0,∞) a good
height function if there exists 0 < R ≤ 1 and a function r : X → (0, R] with
the following properties:

(i) The restriction of the exponential map exp: (−R,R)dim g → G is a
diffeomorphism onto its image and exp((−r/2, r/2)dim g) ⊂ BG

r (e) for
all r ≤ R, where BG

r (e) denotes the open ball of radius r around the
identity e ∈ G with respect to the metric dG on G.

(ii) For all x ∈ X, the projection G ⊃ BG
r(x)(e)→ X, g 7→ gx is injective.

(iii) There exist constants c, κ > 0 such that r(x) ≥ c ht(x)−κ for all x ∈ X.
(iv) There exists a constant σ > 1 such that ht(x) ≤ σ ht(gx) for all x ∈ X

and all g ∈ BG
r(x)(e).

The definition suggests to think of a good height function as reciprocal of
the injectivity radius. And indeed, this viewpoint allows their construction on
any homogeneous space X = G/Λ.

Proposition 1.2.6. Let G be a real Lie group and Λ a lattice in G. Then
X = G/Λ admits a good height function.

Proof. Choose R > 0 such that condition (i) of the definition is satisfied
and set r(x) = min(R, rinj(x)), where rinj(x) is the injectivity radius at x ∈ X,
i.e. the maximal radius such that (ii) holds at x. Define

ht(x) = r(x)−1.

Then the only thing that needs to be verified is the validity of (iv). We claim
that it holds with σ = 2. This will follow if we can show that

rinj(gx) ≤ 2rinj(x) (1.2.1)

whenever g ∈ BG
r(x)(e). To this end, let r > rinj(x). Then by definition, there are

distinct g1, g2 ∈ BG
r (e) such that g1x = g2x. As g ∈ BG

r(x)(e), right-invariance
of the metric implies

dG(gig−1, e) = dG(gi, g) ≤ dG(gi, e) + dG(g, e) < r + r(x) < 2r
for i = 1, 2, and we also have (g1g

−1)gx = (g2g
−1)gx. This shows that

rinj(gx) ≤ 2r, and as r > rinj(x) was arbitrary, we see that (1.2.1) holds. �
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Often, however, one might want to work with different, naturally occurring
height functions. The flexibility in our definition of a good height function
accommodates this possibility.

In the examples below, we denote by λ1(Λ) the length of a shortest non-zero
vector in a lattice Λ < Rd.

Example 1.2.7. Let G = SLd(R) and Λ = SLd(Z). Then X = G/Λ can be
identified with the space of lattices in Rd with covolume 1 via

X 3 g SLd(Z)←→ gZd ⊂ Rd.

Then the function ht = λ−1
1 , defined onX via the above identification, is a good

height function. Indeed, one can first choose R > 0 such that (i) is satisfied,
and then set r(x) = min(R, rinj(x)) as in the proof of Proposition 1.2.6. Then
(ii) is automatically satisfied, and (iv) is valid for a suitable choice of σ due to
the inequality λ1(gx) ≤ ‖g‖λ1(x) for g ∈ G and x ∈ X, where ‖·‖ denotes any
matrix norm. To see that also (iii) holds, let x = gΛ and suppose that hx = x
for some h ∈ G with h 6= e. Then for all γ ∈ SLd(Z), the matrix (gγ)−1h(gγ)
fixes the lattice Zd but is not the identity, so that

‖gγ‖κ1‖h− e‖ ≥ ‖(gγ)−1(h− e)(gγ)‖ = ‖(gγ)−1h(gγ)− e‖ ≥ c1

for some constants c1, κ1 > 0. For a basis change γ ∈ SLd(Z) such that gγ
consists of a reduced basis of the lattice x we have ‖gγ‖ ≤ c2λ1(x)−κ2 for some
c2, κ2 > 0 (cf. e.g. [128, Chapter III]). With this choice, the above inequality
implies

‖h− e‖ ≥ cλ1(x)κ

for c = c1/c2 and κ = κ1κ2. Since near the identity, the metric dG on G is
Lipschitz-equivalent to the distance induced by ‖·‖, this establishes (iii). �

A similar construction is possible in a more general context.

Example 1.2.8 ([36]). Let G = G(R) be the group of real points of a
semisimple Q-group G and Λ an arithmetic lattice in G. Choose a rational
Ad(Λ)-stable lattice gZ ⊂ g. Then, using similar reasoning as in the previous
example, the function ht on X = G/Λ defined by

ht(x) = λ1(Ad(g)gZ)−1

for x = gΛ ∈ X is seen to be a good height function (cf. [36, §3.6]). �

1.2.3. Sobolev Norms. Given a good height function ht on X, the asso-
ciated Sobolev norm of degree ` ≥ 0 of a compactly supported smooth function
f ∈ C∞c (X) is defined by

S`(f)2 =
∑

degD≤`
‖ht(·)`Df‖2

L2 ,

where the sum runs over differential operators D given by monomials of degree
at most ` in elements of the fixed orthonormal basis of g in the universal
enveloping algebra.

In other words, the differential operators D appearing above are ∂v1 · · · ∂vk
for any k-tuple (v1, . . . , vk) of elements of the fixed basis of g, 0 ≤ k ≤ `, where
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∂v for v ∈ g is defined by

∂vf(x) = lim
t→0

f(exp(tv)x)− f(x)
t

for f ∈ C∞c (X) and x ∈ X.
Here are two immediate observations.

Lemma 1.2.9. Let ht be a good height function on X and S` the associated
Sobolev norms.

(i) The norms S` are induced by inner products 〈·, ·〉` on C∞c (X).
(ii) Given 0 ≤ `0 ≤ `1, there exists a constant c̃ > 0 such that S`0 ≤ c̃S`1.

Proof. Part (i) is clear. Part (ii) is also immediate from the definition
of the Sobolev norms, once we know that a good height function must be
bounded away from 0. The latter, however, follows directly from property (iii)
in the definition of a good height function, as the function r appearing there
is assumed to be bounded. �

The proof of our convergence result in §1.2.4 will depend on the following
proposition.

Proposition 1.2.10 ([36]). For the Sobolev norms associated to a good
height function on X, there exists a non-negative integer `0 ≥ 0 and a constant
C > 0 with the following properties:

(i) (Sobolev embedding estimate, [36, (3.9)]) For every f ∈ C∞c (X) it
holds that ‖f‖∞ ≤ CS`0(f).

(ii) (Finite relative traces, [36, (3.10)]) For all integers ` ≥ 0 the rela-
tive trace Tr(S2

` |S2
`+`0) is finite, meaning that for any orthogonal basis

(e(k))k in the completion of C∞c (X) with respect to S`+`0

Tr(S2
` |S2

`+`0) :=
∑
k

S`(e(k))2

S`+`0(e(k))2 <∞.

We refer to Bernstein–Reznikov [13] for a systematic treatment of relative
traces. In particular, it is proved in this reference that the above expression is
independent of the choice of orthogonal basis.

The proofs in [36] of the statements in the above proposition are given for
the height function from Example 1.2.8. However, the only properties used are
those in our definition of a good height function. In fact, the arguments only
depend on validity of the second statement in [36, Lemma 5.1], which holds in
our context, as we demonstrate below.

Lemma 1.2.11. Let ht be a good height function on X. Then there exists
a non-negative integer `0 ≥ 0 and a constant C > 0 such that for every non-
negative integer ` ≥ 0 and every differential operator D given by a monomial
of degree at most ` in elements of the fixed basis of g we have

|ht(x)`Df(x)| ≤ CS`+`0(f)

for every f ∈ C∞c (X) and x ∈ X.
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Proof. We inspect the function F = Df in a chart around x given by the
exponential map: We set ε = r(x)/2, where r : X → (0, R] is the function from
the definition of a good height function, d = dim g, and consider

F̃ : (−ε, ε)d → R, v 7→ F (exp(v)x).
Then by the first statement of [36, Lemma 5.1], which is simply a Sobolev
embedding estimate on Rd, we know

|F (x)| = |F̃ (0)| ≤ C12dr(x)−dSd,ε(F̃ ), (1.2.2)
where C1 > 0 is a constant depending only on the dimension d of g and Sd,ε is
the standard degree d Sobolev norm on the open subset (−ε, ε)d of Rd, i.e.

Sd,ε(F̃ )2 =
∑
|α|≤d
‖∂αF̃‖2

L2((−ε,ε)d),

where the sum is over all multi-indices α of degree at most d and ∂αF̃ is the
corresponding standard partial derivative of F̃ . Using property (iii) in the
definition of a good height function, (1.2.2) implies that

|ht(x)`F (x)| ≤ C2 ht(x)`+`0Sd,ε(F̃ ), (1.2.3)
where C2 > 0 is another constant and we used that ht is bounded away from 0
to replace κd appearing in the exponent by `0 = max(dκde, d). Using proper-
ties (i) and (ii) in the definition of a good height function, we find C3 > 0 such
that

Sd,ε(F̃ ) ≤ C3

√ ∑
degD′≤d

‖D′F |BX
r(x)(x)‖2

L2 . (1.2.4)

To see this, one needs to note two things: firstly, that by the chain rule the
partial derivatives of F̃ at a point v ∈ (−ε, ε)d in the chart can be expressed
as linear combinations of derivatives D′F appearing on the right-hand side in
(1.2.4) evaluated at the corresponding point x′ = exp(v)x, with fixed coefficient
functions depending only on finitely many derivatives of the exponential map
on (−ε, ε)d; and secondly, that the Haar measure mX is a smooth measure,
meaning that it has a smooth and nowhere vanishing density w.r.t. Lebesgue
measure in the chart.

Combining (1.2.3), (1.2.4), condition (iv) in the definition of a good height
function, and plugging back in the definition of F , we finally arrive at

|ht(x)`Df(x)| ≤ C4

√ ∑
degD′≤d

‖ht(·)`+`0D′Df |BX
r(x)(x)‖2

L2 ≤ C4S`+`0(f),

for yet another constant C4 > 0, which is the one appearing in the lemma. �

1.2.4. Exponentially Generic Points. Now we are ready to define the
notion of effective genericity we wish to establish, and to prove the main con-
vergence result of this section.

Until the end of this section, we fix a good height function ht on X. More-
over, given a bounded measurable function f on X and n ∈ N we will use the
notation

Dn(f)(x) = π(µ)nf(x)−
∫
f dmX

for x ∈ X. We refer to Dn(f) as the time n discrepancy for the function f .
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Definition 1.2.12. We say that a point x ∈ X is (`, β)-exponentially
generic if ` ≥ 0 is a non-negative integer and β a real number in (0, 1) sat-
isfying

lim sup
n→∞

sup
f∈C∞c (X)\{0}

(
|Dn(f)(x)|
S`(f)

)1/n

≤ β,

where S` is the degree ` Sobolev norm associated to ht.

With this terminology, we have the following result, which quantifies the
dependence on the function f in the effective part of Theorem 1.2.2.

Theorem 1.2.13. Let G be a real Lie group, Λ < G a lattice and X = G/Λ
endowed with the Haar measure mX . Suppose that µ has a spectral gap on X.
Then there exists a non-negative integer `1 ≥ 0 such that mX-almost every
point x ∈ X is (`1, ρ(π(µ)|L2

0
)1/2)-exponentially generic.

Our argument uses ideas from the proof of [36, Proposition 9.2]. Recall
that 〈·, ·〉` denotes the inner product associated to the Sobolev norm S`.

Proof. Set `1 = 2`0 with `0 from Proposition 1.2.10. We denote by H the
completion of C∞c (X) with respect to S`1 .

The first step of the proof is to argue that H admits an orthonormal basis
(e(k))k with respect to S`1 that is also orthogonal with respect to S`0 . To this
end, let us endow H with the scalar product 〈·, ·〉`1 associated to S`1 . This
makes H into a Hilbert space. As a consequence of Lemma 1.2.9(ii), 〈·, ·〉`0
defines a bounded positive definite Hermitian form on (H, 〈·, ·〉`1). Using Riesz
representation it follows that there is a bounded positive self-adjoint operator T
on (H, 〈·, ·〉`1) such that

〈v, w〉`0 = 〈Tv, w〉`1
for all v, w ∈ H. Finiteness of the relative trace Tr(S2

`0|S
2
`1) from Proposi-

tion 1.2.10(ii) then translates into the statement that T is a trace-class oper-
ator on (H, 〈·, ·〉`1) (cf. [38, Proposition 6.44]); in particular, the operator T
is compact (cf. [38, Proposition 6.42]). By the spectral theorem, T is thus
diagonalizable. Hence, an orthonormal basis (e(k))k of (H, 〈·, ·〉`1) consisting of
eigenvectors of T is a basis with the desired properties.

Next, fix a number ρ(π(µ)|L2
0
) < α < 1. As in the proof of Theorem 1.2.2,

using Chebyshev’s inequality we find that for every k ≥ 0 and large enough n
we have

mX

({
x ∈ X

∣∣∣ |Dn(e(k))(x)| ≥ αn/2S`0(e(k))
})
≤ ‖e

(k)
0 ‖2

L2

S`0(e(k))2α
n ≤ ‖e

(k)‖2
L2

S`0(e(k))2α
n,

where e(k)
0 = e(k) −

∫
e(k) dmX . Since the relative trace Tr(S2

0 |S2
`0) is finite by

Proposition 1.2.10, the terms on the right-hand side above are summable over
k, n ≥ 0. Borel–Cantelli thus implies that

A = lim sup
k,n≥0

{
x ∈ X

∣∣∣ |Dn(e(k))(x)| ≥ αn/2S`0(e(k))
}

is a null set. We claim that any x /∈ A is (`1, α
1/2)-exponentially generic.

Fix such a point x and let f ∈ C∞c (X) \ {0}. Write f = ∑
k fke

(k) for the
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expansion of f in terms of the orthonormal basis (e(k))k. Then, using the
triangle inequality, we can estimate the time n discrepancy for f as follows:

|Dn(f)(x)| ≤
∑
k

|fk||Dn(e(k))(x)|. (1.2.5)

The exchange of integral and summation involved in the above estimate is
justified by part (i) of Proposition 1.2.10: It ensures that the functions e(k)

are defined pointwise and the series expansion of f converges uniformly. Since
x /∈ A we know that for large n the inequality |Dn(e(k))(x)| < αn/2S`0(e(k))
holds for all k. For such n, an application of the Cauchy–Schwarz inequality
implies that (1.2.5) is strictly less than

αn/2
(∑

k

|fk|2
)1/2(∑

k

S`0(e(k))2
)1/2

= αn/2S`1(f) Tr(S2
`0|S

2
`1)1/2. (1.2.6)

Again by Proposition 1.2.10, the relative trace Tr(S2
`0|S

2
`1) is finite. Hence, in

view of our definition of exponential genericity, combining (1.2.5) and (1.2.6)
establishes the claim. Letting α↘ ρ(π(µ)|L2

0
) gives the theorem. �

Remark 1.2.14. In analogy to Remark 1.2.3, we can control the measure
of the set of points where exponentially generic behavior is not observed for a
given number of steps: If we define

Bα,n =
{
x ∈ X

∣∣∣ |Dn′(f)(x)| ≥ αn
′/2S`1(f) Tr(S2

`0|S
2
`1)1/2

for some n′ ≥ n, f ∈ C∞c (X)
}

for ρ(π(µ)|L2
0
) < α < 1 and n ∈ N, and N ∈ N is chosen in such a way that

‖π(µ)|nL2
0
‖op ≤ αn for all n ≥ N , then for every n ≥ N it holds that

mX(Bα,n) ≤ Tr(S2
0 |S2

`0) αn

1− α.

Indeed, we have Bα,n ⊂
⋃
n′≥n,k≥0{x ∈ X | |Dn′(e(k))(x)| ≥ αn

′/2S`0(e(k))}, as
the proof of Theorem 1.2.13 demonstrates. Thus, again, the measure of the
set of “bad points”, on which exponential genericity takes more than n steps
to manifest, is itself exponentially small in n. �

1.3. Uniform Cesàro Convergence

In this last section of the chapter, we explore the situation where the only
possible limit in Theorem B is the Haar measuremX . In this setting, by analogy
with the case of unique ergodicity in classical ergodic theory, it is reasonable
to expect the Cesàro convergence in part (ii) of Theorem B to hold (locally)
uniformly in the starting point x0. We shall prove in §1.3.1 below that this
indeed holds true. In §1.3.2, we conclude the chapter by showing that in many
naturally occurring situations something even stronger than locally uniform
can be achieved.

Before continuing with the pertinent definitions, let us recall that even
though the setup of Theorem B is our motivation and useful to have in mind,
formally we are working with the following more general setup: (X,mX) is
merely required to be a space with a continuous G-action for which mX is
invariant and ergodic.
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Definition 1.3.1. The random walk on X induced by µ is called uniquely
ergodic if mX is the unique µ-stationary probability measure on X.

In particular, for a random walk to be uniquely ergodic, there must be no
finite Γµ-orbits in X. In the case that X = G/Λ for a lattice Λ in G, this
happens if and only if Γµ is not virtually contained in a conjugate of Λ.2 In
fact, in many cases of interest, finite orbits are the only obstruction to unique
ergodicity: For example, this is true when G is a connected semisimple Lie
group without compact factors, Λ is an irreducible lattice, X = G/Λ, and
Ad(Γ+

µ ) is Zariski dense in Ad(G) (see [9, Corollary 1.8]); and also in the
setting of [129], a special case of which is reproduced below as Example 1.3.8.

1.3.1. Locally Uniform Convergence. The notion of unique ergodicity
introduced above coincides with the classical property of unique ergodicity of
the Markov operator π(µ). When the space X is compact, this is enough to
guarantee that the Cesàro convergence 1

n

∑n−1
k=0 µ

∗k ∗ δx → mX as n → ∞ is
uniform in x (see e.g. [78, §5.1]). Without compactness, we also need to assume
a form of recurrence.

Definition 1.3.2. We say that the random walk on X given by µ is locally
uniformly recurrent if for every compact subset K ⊂ X and ε > 0 there exists
a positive integer n0 ∈ N and a compact subset M ⊂ X with

µ∗n ∗ δx(M) ≥ 1− ε
for all n ≥ n0 and x ∈ K. It is called locally uniformly recurrent on average if
the above holds with the Cesàro averages 1

n

∑n−1
k=0 µ

∗k ∗ δx in place of µ∗n ∗ δx.
It is a simple exercise to check that locally uniform recurrence implies locally

uniform recurrence on average. In concrete examples, recurrence properties
such as these are typically established by constructing a Lyapunov function;
see §1.3.2 below.

The following well-known fact explains why these properties are referred to
as “non-escape of mass”.

Lemma 1.3.3. Let the sequence {xn}n of points in X be relatively com-
pact and suppose that the random walk on X is locally uniformly recurrent
(resp. on average). Then every weak* limit of the sequence (µ∗n ∗ δxn)n (resp.
( 1
n

∑n−1
k=0 µ

∗k ∗ δxn)n) is a probability measure. �

The proof is immediate and left to the reader.
We are now ready to state and prove our first result on locally uniform

Cesàro convergence.
Theorem 1.3.4. Suppose that the random walk on X induced by the proba-

bility measure µ is uniquely ergodic and locally uniformly recurrent on average.
Then for every f ∈ Cc(X), every compact K ⊂ X, and every ε > 0, there
exists n0 ∈ N such that for every n ≥ n0 and x ∈ K we have∣∣∣∣ 1n

n−1∑
k=0

∫
X
f d(µ∗k ∗ δx)−

∫
X
f dmX

∣∣∣∣ < ε.

2A subgroup H of G is said to be virtually contained in a subgroup L of G if H ∩L has finite
index in H.
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Equivalently, considering the space of probability measures on X as endowed
with the weak* topology, the sequence of functions

X 3 x 7→ 1
n

n−1∑
k=0

µ∗k ∗ δx

converges to mX uniformly on compact subsets of X as n→∞.

Proof. The equivalence of the two formulations is due to the definition
of neighborhoods in the weak* topology by finitely many compactly supported
continuous test functions.

To prove the statement for individual functions, we proceed by contradic-
tion. If the conclusion is false, then for some f ∈ Cc(X), K ⊂ X compact and
ε > 0 there exist indices n(j)→∞ and xj ∈ K with

∣∣∣∣ 1
n(j)

n(j)−1∑
k=0

∫
X
f d(µ∗k ∗ δxj)−

∫
X
f dmX

∣∣∣∣ ≥ ε (1.3.1)

for all j ∈ N. Let ν be a weak* limit point of the sequence
( 1
n(j)

n(j)−1∑
k=0

µ∗k ∗ δxj
)
j
.

Then ν is µ-stationary, and a probability measure because of our recurrence
assumption and the fact that all xj lie in the fixed compact setK (Lemma 1.3.3).
But by unique ergodicity this forces ν = mX , contradicting (1.3.1). �

1.3.2. Lyapunov Functions & Stronger Uniformity. Loosely speak-
ing, (Foster–)Lyapunov functions are functions enjoying certain contraction
properties with respect to the random walk, to the effect that (on average) its
dynamics are directed towards the “center” of the space, where the function
takes values below some threshold. They were introduced into the study of
random walks on homogeneous spaces by Eskin–Margulis [40], whose ideas
were further developed by Benoist–Quint [7]. Although they can be defined in
greater generality (which we shall do in later chapters), here we work with the
following definition.

Definition 1.3.5. A proper continuous function V : X → [0,∞) is called
a Lyapunov function for the random walk on X induced by µ if there exist con-
stants α < 1, β ≥ 0 such that π(µ)V ≤ αV + β, where π(µ) is the convolution
operator associated to µ introduced in §1.2.

Remark 1.3.6. Let us collect some immediate observations about Lya-
punov functions.

(i) If V is a Lyapunov function, then so are cV and V +c for any constant
c > 0. In particular, one may impose an arbitrary lower bound on V ,
so that it is no restriction to assume that a Lyapunov function takes
values ≥ 1, say.

(ii) Given a Lyapunov function V ′ : X → [0,∞) for the n0-step random
walk (induced by the convolution power µ∗n0), one can construct a
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Lyapunov function V for the random walk given by µ itself by setting

V =
n0−1∑
k=0

α(n0−1−k)/n0π(µ)kV ′.

(iii) By enlarging α and using properness, the contraction inequality in the
definition of a Lyapunov function V may be replaced by

π(µ)V ≤ αV + β1K

for some compact K ⊂ X, where 1K denotes the indicator function
of K (cf. [90, Lemma 15.2.8]). �

Two examples in which a Lyapunov function exists are the following.

Example 1.3.7 ([40]). Identify X = SL2(R)/ SL2(Z) with the space of
unimodular lattices in R2 as in Example 1.2.7 and recall that we denote by
λ1(x) the length of a shortest non-zero vector in x ∈ X. Then for every
compactly supported probability measure µ on G whose support generates a
Zariski dense subgroup there exist ε, δ > 0 such that V ′ = 1 + ελ−δ1 is a
Lyapunov function for the n0-step random walk on X induced by µ∗n0 for some
n0 ∈ N. This construction can be generalized to higher dimensions by taking
into account the higher successive minima λ2, . . . , λd of lattices in Rd. A more
advanced construction also ensures existence of Lyapunov functions for Zariski
dense probability measures with finite exponential moments when G = G(R)
is the group of real points of a Zariski connected semisimple algebraic group G
defined over R such that G has no compact factors. �

Example 1.3.8 ([129]). Let G = SLd+1(R), Λ = SLd+1(Z) and X = G/Λ.
For 0 ≤ i ≤ m let ci > 1 be positive real numbers, yi ∈ Rd vectors such that
y0 = 0 and y1, . . . , ym span Rd, Oi ∈ SOd(R) and set

gi =
(
ciOi yi

0 c−di

)
∈ G.

Then for any choice of p0, . . . , pm > 0 with∑m
i=0 pi = 1, the probability measure

µ = ∑m
i=0 piδgi defines a uniquely ergodic random walk on X admitting a

Lyapunov function. �

It is well known that existence of a Lyapunov function as above guarantees
locally uniform recurrence.

Lemma 1.3.9 ([40, Lemma 3.1]). Suppose the random walk on X given by µ
admits a Lyapunov function V . Then this random walk is locally uniformly
recurrent.

The intuitive reason for this behavior is simple: The defining contraction
inequality means that after a step of the random walk, the value of the Lya-
punov function V on average gets smaller by a constant factor, at least when
starting outside some compact set K (cf. Remark 1.3.6(iii) above). It is an
exercise to show that K can be taken to be an appropriate sublevel set for V ,
and one thinks about it as the “center” of the space. By the contraction prop-
erty, the number of steps required to reach it is uniform over starting points x
in compact subsets of X. This suggests that we might even let the starting
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points diverge, as long as this divergence is outcompeted by the geometric rate
of contraction of V . We are led to the following notion of recurrence.

Definition 1.3.10. Let (Kn)n be a sequence of subsets of X. We say that
the random walk on X given by µ is (Kn)n-uniformly recurrent if for every
ε > 0 there exists n0 ∈ N and a compact subset M ⊂ X with

µ∗n ∗ δx(M) ≥ 1− ε
for all n ≥ n0 and x ∈ Kn. It is called (Kn)n-uniformly recurrent on average if
the above holds with the Cesàro averages 1

n

∑n−1
k=0 µ

∗k ∗ δx in place of µ∗n ∗ δx.
Remark 1.3.11. We point out that contrary to the locally uniform situa-

tion, for the two versions of this property (with/without average) it is generally
not clear whether one implies the other. �

We are now going to use Lyapunov functions to establish such recurrence
properties for certain slowly growing exhaustions of X by compact sets Kn.
We will need the notion of Lyapunov exponent of a function ϕ : N → [1,∞),
which is defined as the exponential growth rate

λ(ϕ) = lim sup
n→∞

1
n

logϕ(n).

If λ(ϕ) = 0, we say that ϕ has subexponential growth.
Proposition 1.3.12. Let ϕ : N → [1,∞) be a function. Suppose that the

random walk on X induced by µ admits a Lyapunov function V with contraction
factor α < 1 and set Kn = V −1([0, ϕ(n)]).

(i) If ϕ has Lyapunov exponent λ(ϕ) < log(α−1), then the random walk
on X given by µ is (Kn)n-uniformly recurrent. The number n0 in the
definition can be chosen independently of ε.

(ii) If ϕ has subexponential growth, then the random walk on X given by µ
is (Kn)n-uniformly recurrent on average.

The proof is a refinement of the methods in [7, 40].
Proof. Let α, β be the constants associated to V as in the definition of

a Lyapunov function and set B = β/(1 − α). We are going to use the same
set M for both parts of the proposition, namely M = V −1([0, 2B/ε]), which is
compact since V is proper. Then for n ∈ N and x ∈ Kn we find, by repeatedly
using the contraction property of V ,

µ∗n ∗ δx(M c) ≤ ε

2Bπ(µ)nV (x) ≤ ε

2B (αnV (x) +B) ≤ ε

2Bα
nϕ(n) + ε

2 .

When the exponential growth rate of ϕ is less than log(α−1), for some n0 ∈ N
we have αnϕ(n) ≤ B for all n ≥ n0. This proves (i).

In order to prove (ii) we use a similar estimate, but have to ensure that the
values µ∗k ∗ δx(M c) are small for a sufficiently large proportion of 0 ≤ k < n.
For x ∈ Kn we find, as above,

µ∗k ∗ δx(M c) ≤ ε

2Bα
kϕ(n) + ε

2 . (1.3.2)

Using straightforward manipulations, we further see

αkϕ(n) ≤ B/2 ⇐⇒ k

n
≥ log(α−1)−1

( 1
n

logϕ(n)− 1
n

log(B/2)
)
,
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the right-hand side of which tends to 0 as n → ∞ by subexponential growth
of ϕ. Hence, with k(n) = bεn/4c, we may choose n0 large enough to ensure
the above inequality holds for all k ≥ k(n) for n ≥ n0. For such n we conclude,
using (1.3.2),

1
n

n−1∑
k=0

µ∗k ∗ δx(M c) = 1
n

k(n)−1∑
k=0

µ∗k ∗ δx(M c) + 1
n

n−1∑
k=k(n)

µ∗k ∗ δx(M c)

≤ k(n)
n

+ 3ε
4 ≤ ε,

which ends the proof of (ii). �

Theorem 1.3.4 can now be strengthened in the following way.

Theorem 1.3.13. In addition to the assumptions of Theorem 1.3.4, suppose
that the random walk on X induced by µ admits a Lyapunov function V . Let
ϕ : N→ [1,∞) have subexponential growth. Then for every f ∈ Cc(X) we have

lim
n→∞

sup
V (x)≤ϕ(n)

∣∣∣∣ 1n
n−1∑
k=0

∫
X
f d(µ∗k ∗ δx)−

∫
X
f dmX

∣∣∣∣ = 0.

Proof. Using (Kn)n-uniform recurrence on average for the compact sets
Kn = V −1([0, ϕ(n)]) from Proposition 1.3.12(ii), the proof of Theorem 1.3.4
goes through with the obvious modifications. �



CHAPTER 2

Markov Random Walks on Homogeneous Spaces and
Diophantine Approximation on Fractals

Joint with Çağrı Sert
† For the introduction, let G be a connected simple real Lie group and Λ a
lattice in G. In the previous chapters, we have been considering random walks
on the homogeneous space X = G/Λ given by a probability measure µ on G.
Given a starting point x0 ∈ X, trajectories of these i.i.d. random walks can be
written as

(Yn · · ·Y1x0)n, (2.0.1)
where (Yk)k∈N is a sequence of i.i.d. random variables in G with common law µ.
In this chapter, the goal is to relax the i.i.d. assumption and consider more gen-
eral increment processes (Yk)k∈N, trying to identify a set of conditions ensuring
that the random walk trajectory (2.0.1) almost surely equidistributes towards
the Haar measure mX on X for every x0 ∈ X, meaning convergence

1
n

n−1∑
k=0

δYk···Y1x0 −→ mX

in the weak* topology as n→∞.

2.0.1. I.I.D. Random Walks. Nevertheless, we first consider the classi-
cal case where the increments Yk are i.i.d. Two different types of assumptions on
the common distribution µ have previously been used to establish equidistribu-
tion statements in this context. The first one concerns the algebraic structure
of the support of µ and was studied by Benoist–Quint. Let us restate their
equidistribution result (Theorem B in the Introduction) for the special case of
simple Lie groups in the language of this chapter.

Theorem 2.0.1 (Benoist–Quint [9]). Let µ be a compactly supported prob-
ability measure on a connected simple Lie group G and suppose that the closed
subgroup Γµ generated by supp(µ) has the property that Ad(Γµ) is Zariski dense
in Ad(G). Let (Yk)k be a sequence of i.i.d. random variables with common dis-
tribution µ. Then for every x0 ∈ X with infinite Γµ-orbit, the random walk
trajectory (Yn · · ·Y1x0)n almost surely equidistributes towards mX .

The second set of assumptions involves the dynamics of the linearized ran-
dom walk on the Lie algebra g of G. In [129], Simmons–Weiss impose the
following requirements on the adjoint action of Γµ = 〈supp(µ)〉 on g, phrased
in terms of Oseledets subspaces (see Theorem 2.1.1 for their definition):

†First published in Trans. Amer. Math. Soc. 373 (November 2020), published by the Ameri-
can Mathematical Society. ©2020 American Mathematical Society.
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(I) For every 1 ≤ k ≤ dim(G) − 1 there exists a proper non-trivial Γµ-
invariant subspace Wk ⊂ g∧k such that, almost surely, Wk trivially
intersects the Oseledets subspace V 60 of subexponential expansion,
and W := W1 is complementary to the Oseledets subspace V <max of
non-maximal expansion.

(II) The adjoint action of Γµ on W is by similarities and satisfies∫
G

log‖Ad(g)|W‖ dµ(g) > 0.

(III) For 1 ≤ k ≤ dim(G)− 1, any non-trivial subspace L ⊂ g∧k with finite
orbit under Γµ intersects Wk non-trivially.

A model example to have in mind is the action of the Borel subgroup (endowed
with a suitable measure) on the Lie algebra of the upper unipotent subgroup
in SL2(R).

Modifying the arguments in [5], Simmons–Weiss prove the following theo-
rem. For the statement, recall that a subgroup H of G is said to be virtually
contained in a subgroup L of G if H ∩ L has finite index in H.

Theorem 2.0.2 (Simmons–Weiss [129]). Let µ be a compactly supported
probability measure on a connected simple Lie group G such that the closed
subgroup Γµ generated by supp(µ) is not virtually contained in any conjugate
of Λ and suppose that conditions (I)–(III) are satisfied. Let (Yk)k be a sequence
of i.i.d. random variables with distribution µ. Then for every x0 ∈ X, the
random walk trajectory (Yn · · ·Y1x0)n almost surely equidistributes towards mX .

Note that the virtual containment condition in the above theorem is equiv-
alent to saying that there do not exist finite Γµ-orbits in X.

Simmons–Weiss’ conditions (I) & (III) and Benoist–Quint’s assumption of
Zariski density of Ad(Γµ) in the simple group Ad(G) are mutually exclusive.
However, what the two settings have in common is that both imply what
we shall call “uniform expansion on Grassmannians” (see §2.1.3): For every
1 ≤ k ≤ dim(G)− 1 and every non-zero pure wedge product v = v1 ∧ · · · ∧ vk
in g∧k, almost surely,

lim inf
n→∞

1
n

log‖Ad∧k(Yn · · ·Y1)v‖ > 0. (2.0.2)

Elaborating on the recent measure classification results of Eskin–Lindenstrauss
in [39], we show that this expansion property is sufficient to guarantee al-
most sure equidistribution. Moreover, their work allows replacing the compact
support assumption on µ by finite exponential moments in g, meaning that
Na(g) = max(‖Ad(g)‖, ‖Ad(g)−1‖) satisfies∫

G
Na(g)δ dµ(g) <∞

for some δ > 0. We prove the following.

Theorem 2.0.3. Let µ be a probability measure on a connected simple Lie
group G with finite exponential moments in g such that the closed subgroup Γµ
generated by supp(µ) is not virtually contained in any conjugate of Λ. Sup-
pose that the i.i.d. process (Yk)k with common law µ is uniformly expanding
on Grassmannians. Then for every starting point x0 ∈ X, the random walk
trajectory (Yn · · ·Y1x0)n almost surely equidistributes towards mX .
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We will establish this result in the slightly more general form of Theo-
rem 2.1.12. The proof breaks down into the two usual steps:

• Classification of stationary measures (Theorem 2.1.9): This step es-
sentially follows from the work of Eskin–Lindenstrauss [39], but an
additional argument is required to upgrade their classification to the
statement we need, namely that the only non-atomic µ-stationary
probability measure on X is the Haar measure mX .
• Ruling out escape of mass (Proposition 2.1.11): Here the key ingredi-
ent is Eskin–Margulis’ work on non-divergence [40], which we exploit
along the same lines as in the proof of [129, Theorem 2.1].

As one of the consequences of Theorem 2.0.3, we will show that assump-
tions (I)–(III) above can be relaxed to the following two conditions:

(I’) For every 1 ≤ k ≤ dim(G) − 1 there exists a proper non-trivial Γµ-
invariant subspace Wk ⊂ g∧k such that, almost surely, Wk trivially
intersects the Oseledets subspace V 60 of subexponential expansion.

(III’) For 1 ≤ k ≤ dim(G) − 1, any non-trivial Γµ-invariant subspace L
of g∧k intersects Wk non-trivially.

A simple example in which (I’) and (III’) hold whereas (I)–(III) fail is given by
G = SL3(R), Λ = SL3(Z) and µ = 1

3(δg1 + δg2 + δg3) for the matrices

g1 =
3

2
1/6

, g2 =
3 1

2
1/6

 and g3 =
3

2 1
1/6

.
We postpone the justification to §2.1.3.

2.0.2. Markov Random Walks. The properties of random products of
elements of G are much less understood when the increments Yk do not form
an i.i.d. process. The problem of equidistribution on homogeneous spaces, for
instance, has not been studied beyond the case of i.i.d. random walks. In this
chapter, we investigate this problem for Markovian increment processes and,
as our main result, obtain equidistribution results analogous to the i.i.d. case.

Theorem 2.0.4. Let E be a finite subset of a connected simple Lie group G
and let (Yk)k be an irreducible Markov chain on E that is uniformly expanding
on Grassmannians in the sense of (2.0.2). Suppose that for every x ∈ X the
random orbit {Yn · · ·Y1x | n ∈ N} is almost surely infinite. Then for every
starting point x0 ∈ X, the random walk trajectory (Yn · · ·Y1x0)n almost surely
equidistributes towards mX .

Note that when µ is finitely supported, Γµ denotes the closed subgroup of G
generated by supp(µ), and the Yk are i.i.d. with distribution µ, the random
orbit {Yn · · ·Y1x |n ∈ N} is almost surely infinite if and only if the orbit Γµx is
infinite. Hence, the condition on almost surely infinite orbits in Theorem 2.0.4
is a natural analogue of the virtual containment condition in Theorem 2.0.3.

The proof of Theorem 2.0.4 relies on Theorem 2.0.3 and a renewal argument.
Indeed, our strategy of proof will be to apply Theorem 2.0.3 to the blocks
Zn = Yτn+1

g −1 · · ·Yτng between consecutive hitting times τng and τn+1
g of a fixed

state g ∈ G, which are i.i.d. by the Markov property of (Yk)k, and then deal
with the excursions between such hitting times. By the strong recurrence



32 2. MARKOV RANDOM WALKS

properties of finite-state Markov chains, these excursions are rather short most
of the time, so that their contribution can be precisely controlled thanks to a
joint equidistribution phenomenon (see §2.2.3). Note that for this approach
to work, it is crucial that Theorem 2.0.3 does not require µ to have compact
support as in Theorems 2.0.1 and 2.0.2.

A concrete corollary of the previous result is the following Markovian ver-
sion of [129, Theorem 1.1].

Corollary 2.0.5. Let G = SLd+1(R), Λ = SLd+1(Z), and X = G/Λ. For
0 ≤ i ≤ r let ci > 1 be real numbers, yi ∈ Rd vectors such that y0 = 0 and
y1, . . . , yr span Rd, Oi ∈ SOd(R), and set

gi =
(
ciOi yi

0 c−di

)
∈ G.

Then for any irreducible Markov chain (Yk)k on E = {g0, . . . , gr} ⊂ G with
one universally accessible state (i.e. a state that can be reached in a single step
from everywhere with positive probability) and any starting point x0 ∈ X, the
random walk trajectory (Yn · · ·Y1x0)n almost surely equidistributes towards the
Haar measure mX .

We remark that, in this corollary, the assumption of having a universally
accessible state plays the role of an aperiodicity condition, which allows deduc-
ing the dynamical property of uniform expansion on Grassmannians from the
algebraic structure of the set E. Without such a condition, excursions from a
fixed state might fail to witness this structure in full, and degenerate behavior
may occur.

2.0.2.1. Beyond Markov. An advantage of an expansion condition such as
(2.0.2) over one involving the measure µ is that it puts the i.i.d. case on equal
footing with arbitrary increment processes. Consequently, the formulation of
Theorem 2.0.4 suggests the natural question of equidistribution for more gen-
eral, say ergodic and stationary, increment processes (Yk)k on G. For example,
one might expect Theorem 2.0.4 to hold true when, instead of being a Markov
process, the distribution of (Yk)k is a Gibbs measure of some Hölder continuous
potential on EN. While our approach in this chapter can handle locally con-
stant potentials (corresponding to generalized Markov measures), the general
question remains open.

2.0.3. Applications to Diophantine Approximation on Fractals.
By a classical theorem of Dirichlet, for any v ∈ Rm, there exist infinitely
many pairs (p, q) ∈ Zm× (Z \ {0}) such that ‖qv−p‖∞ ≤ |q|−1/m. If for some
constant c ∈ (0, 1) there are only finitely many solutions (p, q) ∈ Zm×(Z\{0})
to the stronger inequality ‖qv − p‖∞ ≤ c|q|−1/m, then v is said to be badly
approximable, and well approximable otherwise. The set of badly approximable
points in Rm is of zero Lebesgue measure (but of full Hausdorff dimension).

In the study of Diophantine approximation on fractals, one is in particu-
lar interested in Diophantine properties of typical points of a fractal in Rm

with respect to natural measures on that fractal; most prominently, Hausdorff
measure. In the absence of algebraic obstructions, it is generally expected
that these properties are the same as for Lebesgue-typical points of the ambi-
ent space Rm. However, for badly approximable points this analogy remained
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poorly understood after the initial results of Einsiedler–Fishman–Shapira [37]
that concerned a somewhat restricted class of fractals.

The recent breakthrough of Simmons–Weiss [129] contributed considerably
to this problem, showing in particular that for an irreducible iterated func-
tion system (IFS) Φ = {φ1, . . . , φk} of contracting similarities of Rm and any
Bernoulli measure β on ΦN of full support, almost every point of the associated
self-similar fractal is of generic type, where “almost every” is understood with
respect to the pushforward of β by the natural projection

Π: ΦN → Rm, (φij)j 7→ lim
n→∞

φi0 · · ·φin−1(x),

where x ∈ Rm is arbitrary. Thanks to a classical result of Hutchinson [65],
this implies the same conclusion with respect to Hausdorff measure whenever
the IFS satisfies the open set condition. Here, a point being of “generic type”
intuitively means that, from a Diophantine approximation perspective, it be-
haves like a Lebesgue-typical point in Rm. In particular, such points are well
approximable. When m = 1, this property also implies that the blocks of the
continued fraction expansion are distributed according to Gauss measure. For
the precise definition see §2.3.2.

In our main applications below, following the strategy in [129] and making
use of our Markovian equidistribution results, we extend the aforementioned
results of [129] in two directions.

The first one concerns measures that are not necessarily Bernoulli. We will
say that an IFS Φ = {φ1, . . . , φk} of contracting similarities of Rm is irreducible
if there does not exist a proper affine subspace W of Rm that is preserved by
all φi. The attractor of Φ is the unique non-empty compact subset K ⊂ Rm

with K = ⋃k
i=1 φi(K). Equivalently, the attractor K can be written as the

image of ΦN under the natural projection Π defined above.

Theorem 2.0.6. Let Φ be an irreducible IFS of finitely many contracting
similarities of Rm, K the associated attractor, and Π: ΦN → Rm the natural
projection. Then for any Markov measure P on ΦN of full support, Π∗P-a.e.
point on K is of generic type, so in particular, well approximable.

Under a strong separation condition, the statement about well approx-
imable points in the above theorem also follows from Simmons–Weiss’ [129,
Theorem 8.4] on doubling measures. However, in general the measures in our
theorem are not doubling on the attractor K, even under the open set condition;
see [135].

Secondly, we consider more general, no longer strictly self-similar fractals K.
Given an IFS Φ of contracting similarities, these fractals are obtained as images
under the natural projection Π of sofic subshifts of the shift space ΦN, which are
by definition continuous factors of subshifts of finite type [134]. Accordingly,
we call the associated fractals sofic similarity fractals.

In the literature, the iterated function systems appearing in the construc-
tion of such fractals are known as “graph-directed IFS”, since a sofic shift can
always be realized as image of the edge shift of a directed graph under a one-
block factor map (see e.g. [82]). Each edge in the graph has as label one of the
similarities in Φ and the possible paths in the graph determine the sequences
appearing in the sofic shift. Since its introduction by Mauldin–Williams [88],
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this viewpoint has proved to be a fruitful approach and has been studied by
many authors, among others Edgar–Mauldin [34], Olsen [96], Wang [131], and
Mauldin–Urbanski in their monograph [87]. For an accessible introduction we
refer to Edgar’s book [35].

The advantage of this setup over the point of view of an abstract sofic shift is
that classical properties of an IFS like the open set condition or irreducibility
can be expressed in a more lucid and conceptual way. With these notions,
which will be defined in §2.3.1, we have the following result.

Theorem 2.0.7. Let K ⊂ Rm be a sofic similarity fractal constructed by
a finite graph-directed IFS of contracting similarities that is irreducible and
satisfies the open set condition. Let s ≥ 0 denote the Hausdorff dimension
of K. Then almost every point on K with respect to s-dimensional Hausdorff
measure is of generic type, so in particular, well approximable.

Terminology, Notation, Conventions. In the whole chapter, G is a real
Lie group with Lie algebra g and X is a locally compact σ-compact metrizable
space on which G acts continuously. Frequently, X will be the homogeneous
space G/Λ for a discrete subgroup Λ of G. In case Λ is a lattice, we write mX

for the Haar measure on X. Throughout, we fix a scalar product 〈·, ·〉 on g,
which induces scalar products on the exterior powers of g given by

〈v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk〉 = det(〈vi, wj〉)1≤i,j≤k

for pure wedge products and extended bilinearly to all of g∧k. The induced
norms are all denoted by ‖·‖. This should cause no confusion.

In the sequel, we shall not take the point of view of stochastic processes
as in the introduction, but rather work with the canonical coordinate process
on the product space B = GN, governed by some probability measure thereon.
In the i.i.d. case, that measure is the infinite product measure β = µ⊗N for
a Borel probability measure µ on G. In the Markovian case it will in fact be
advantageous to not work directly in G, but with an abstract set E that is
mapped to G via some coding map E 3 e 7→ ge ∈ G. The measures governing
our processes will then be Markov measures on Ω = EN. The shift map on Ω
will be denoted by T . We shall also need to deal with the semigroup E∗

of finite words over E. The length of a word w is denoted by `(w). The
coding map e 7→ ge naturally extends to a homomorphism E∗ → G given by
gw = gen−1 · · · ge0 ∈ G for a word w = en−1 . . . e0 ∈ E∗. For ω = (ωj)j ∈ Ω and
n ∈ N we shall write ω|n for the finite word ωn−1 . . . ω0 ∈ E∗.

An important special case of the above is the choice E = G with the identity
map as coding map. In this case, we have gb|n = bn−1 · · · b0 for b = (bj)j ∈ B
and n ∈ N, and T is the shift map on B.

For g ∈ GLd(R), we set N(g) = max(‖g‖, ‖g−1‖) for some choice of operator
norm on Rd×d. A probability measure µ on GLd(R) is said to have a finite first
moment if ∫

log N(g) dµ(g) <∞,

and to have finite exponential moments if∫
N(g)δ dµ(g) <∞
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for sufficiently small δ > 0.
Given a finite-dimensional real vector space V , we write P(V ) for the projec-

tive space associated to V . Under a representation of G on V we understand a
continuous homomorphism ρ from G into the group GL(V ) of invertible linear
transformations of V . A probability measure µ on G is said to have a finite
first moment in (V, ρ) or finite exponential moments in (V, ρ) if the pushfor-
ward ρ∗µ of µ by ρ has the corresponding property. When (V, ρ) = (g,Ad), we
shall omit the representation from the terminology and simply speak of finite
first or exponential moments in g. In this case, we sometimes also use the
abbreviation Na(g) := N(Ad(g)) for g ∈ G.

We say that a sequence (yn)n in a Polish space Y equidistributes towards a
probability measure η on Y if

lim
n→∞

1
n

n−1∑
k=0

f(yk) =
∫
Y
f dη

for every bounded continuous function f on Y . Equidistribution of sequences
in the (locally compact) space X can be expressed in terms of weak* conver-
gence as follows: By definition, a sequence (νn)n of probability measures on X
converges to a finite measure ν on X in the weak* topology if

lim
n→∞

∫
X
f dνn =

∫
X
f dν (2.0.3)

for every compactly supported continuous function f on X. The limit mea-
sure ν always satisfies ν(X) ≤ 1. When ν is a probability measure, weak*
convergence of (νn)n to ν implies that (2.0.3) holds for all bounded continu-
ous functions. Consequently, a sequence (xn)n in X equidistributes towards a
probability measure ν on X if and only if the empirical measures 1

n

∑n−1
k=0 δxk

converge to ν in the weak* topology as n→∞.

2.1. I.I.D. Random Walks

In this section, we investigate i.i.d. random products satisfying certain ex-
pansion conditions. After recalling some classical facts about random matrix
products in §2.1.1, these conditions are defined and studied in §2.1.2 and §2.1.3.
Afterwards, we state and prove measure classification and equidistribution re-
sults in §2.1.4. The main result is Theorem 2.1.12, which implies Theorem 2.0.3.
The employed arguments rely on Eskin–Lindenstrauss’ results in [39].

Throughout this section, µ is a probability measure on G and Γµ denotes
the closed subgroup of G generated by supp(µ).

2.1.1. Preliminaries on Random Matrix Products. We start by re-
calling two fundamental results about exponential growth rates for random
matrix products. Let G = GLd(R) and assume that µ has a finite first mo-
ment.

The first result is Oseledets’ multiplicative ergodic theorem. It makes a
statement about the Lyapunov exponents λ1(µ) ≥ · · · ≥ λd(µ) of µ, which are
the real numbers defined by

λ1(µ) + · · ·+ λi(µ) := lim
n→∞

1
n
E
[
log‖(gb|n)∧i‖

]
β-a.s.= lim

n→∞
1
n

log‖(gb|n)∧i‖
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for 1 ≤ i ≤ d, where the second equality follows from Kingman’s subadditive
ergodic theorem and ergodicity of the underlying Bernoulli shift.

Theorem 2.1.1 (Oseledets [99]). Let µ be a probability measure on GLd(R)
with finite first moment and let 1 ≤ i1 < · · · < is ≤ d be indices chosen such
that λi1(µ) > · · · > λis(µ) are the distinct Lyapunov exponents of µ. Then
there exists a shift-invariant measurable subset B′ ⊂ B of full measure with
respect to β such that for every b ∈ B′

(i) ((gb|n)∗(gb|n))1/2n converges to an invertible symmetric matrix Lb,
(ii) the eigenvalues of Lb are eλi1 (µ), . . . , eλis (µ), and
(iii) if U1

b , . . . , U
s
b denote the corresponding eigenspaces of Lb, the Oseledets

subspaces V j
b := U j

b ⊕ · · · ⊕ U s
b for 1 ≤ j ≤ s have the property that

lim
n→∞

1
n

log‖gb|nv‖ = λij(µ)

whenever v ∈ V j
b \ V

j+1
b , and satisfy the equivariance V j

b = b−1
1 V j

T b.
The space V <max

b := V 2
b is called the Oseledets subspace of non-maximal ex-

pansion. The largest Oseledets subspace with non-positive exponent is denoted
by V 60

b and is called the Oseledets subspace of subexponential expansion (set
V 60
b = {0} if there are only positive exponents).

We refer to Ruelle [116, §1] for an exposition.
In contrast to the random nature of Oseledets subspaces, the second result

we wish to review describes exponential growth rates along a deterministic
filtration.

Theorem 2.1.2 (Furstenberg–Kifer [50], Hennion [62]). Let µ be as above.
Then there exists a partial flag Rd = F1 ⊃ F2 ⊃ · · · ⊃ Fk ⊃ Fk+1 = {0} of
Γµ-invariant subspaces and a collection of real numbers λ1(µ) = β1(µ) > · · · >
βk(µ) such that for every v ∈ Fi \ Fi+1 we have β-a.s.

lim
n→∞

1
n

log‖gb|nv‖ = βi(µ).

Moreover, the βi(µ) are the values of

α(ν) :=
∫
P(Rd)

∫
G

log ‖gv‖
‖v‖

dµ(g) dν(Rv)

that occur when ν ranges over µ-ergodic µ-stationary probability measures on
P(Rd). If α(ν) = βi(µ) for such a measure ν, then v ∈ Fi \ Fi+1 for ν-a.e.
Rv ∈ P(Rd).

When applying the above theorem, we will frequently use the notation F60

for the maximal subspace Fi with exponent βi(µ) ≤ 0.

2.1.2. Expansion on Projective Space. When all exponents βi in Theo-
rem 2.1.2 are positive, all non-zero vectors are expanded by the random matrix
product at a uniform exponential rate.

Definition 2.1.3 (Uniform expansion). Let µ be a probability measure
on GLd(R) and P a closed Γµ-invariant subset of P(Rd). Then µ is said to be
uniformly expanding on P if for every Rv ∈ P , for β-a.e. b ∈ B we have

lim inf
n→∞

1
n

log‖gb|nv‖ > 0.
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In the literature, the idea of uniform expansion has been formalized in
different ways, with some relationships established between them (see e.g. [39,
Lemma 1.5], [129, §3]). In the following proposition, we prove the equivalence
of the definition we are working with to some of its common variants.

Proposition 2.1.4. Let µ be a probability measure on GLd(R) with finite
first moment and let P be a closed Γµ-invariant subset of P(Rd). The following
properties are equivalent to uniform expansion of µ on P :

(i) There exists N ∈ N and a constant C1 > 0 such that for every Rv ∈ P
and every n ≥ N we have

1
n

∫
G

log ‖gv‖
‖v‖

dµ∗n(g) ≥ C1 > 0.

(ii) There exists N ∈ N and a constant C2 > 0 such that for every Rv ∈ P
we have ∫

G
log ‖gv‖
‖v‖

dµ∗N(g) ≥ C2 > 0.

(iii) For every Rv ∈ P , for β-a.e. b ∈ B we have

lim
n→∞

1
n

log‖gb|nv‖ > 0.

Proof. We apply Theorem 2.1.2. One of its consequences is that the
limit in (iii) exists β-a.s. for every Rv ∈ P . In particular, we see that (iii)
is equivalent to uniform expansion of µ on P . Of the remaining implications,
only (ii) =⇒ (iii) and (iii) =⇒ (i) require a proof.

(ii) =⇒ (iii): Since the limit in (iii) exists, we may pass to a subsequence
of indices and assume N = 1. The set P ∩ P(F60) is a closed Γµ-invariant
subset of P(Rd). Assume it is non-empty. Then it supports a µ-ergodic µ-
stationary probability measure ν and Theorem 2.1.2 implies that α(ν) occurs
as exponential growth rate on F60. However, due to (ii) we have

α(ν) =
∫
P

∫
G

log ‖gv‖
‖v‖

dµ(g) dν(Rv) ≥ C2 > 0,

a contradiction. Hence, P ∩P(F60) must be empty, which is equivalent to (iii).
(iii) =⇒ (i): We argue by contradiction. If (i) does not hold, then there

exists a sequence (Rvj)j in P and a sequence of integers (nj)j with nj → ∞
such that

lim sup
j→∞

1
nj

∫
G

log ‖gvj‖
‖vj‖

dµ∗nj(g) ≤ 0. (2.1.1)

Passing to a subsequence if necessary, we may assume that

1
nj

nj−1∑
k=0

µ∗k ∗ δRvj −→ ν̃

as j →∞ in the weak* topology for some limit probability measure ν̃ on P(Rd)
with support in P . Note that ν̃ necessarily is µ-stationary. Using the additive
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cocycle property of (g,Rv) 7→ log(‖gv‖/‖v‖) together with (2.1.1), it follows
that∫

P(Rd)

∫
G

log ‖gv‖
‖v‖

dµ(g) dν̃(Rv) = lim
j→∞

1
nj

nj−1∑
k=0

∫
G

∫
G

log ‖gg
′vj‖

‖g′vj‖
dµ(g) dµ∗k(g′)

= lim
j→∞

1
nj

∫
G

log ‖gvj‖
‖vj‖

dµ∗nj(g) ≤ 0,

the application of weak* convergence being justified since the function

Rv 7→
∫
G

log ‖gv‖
‖v‖

dµ(g)

on P(Rd) is continuous by dominated convergence in view of the finite first
moment assumption on µ. Consequently, there exists a µ-ergodic component ν
of ν̃ with support in P satisfying

α(ν) =
∫
P(Rd)

∫
G

log ‖gv‖
‖v‖

dµ(g) dν(Rv) ≤ 0.

The last statement in Theorem 2.1.2 therefore implies ν(P(F60)) = 1. However,
this is a contradiction to (iii), since as remarked before, this condition means
that P ∩ P(F60) = ∅. �

2.1.3. Expansion on Grassmannians. Here, we introduce our main
expansion assumption and show that it is satisfied in the settings of Theo-
rems 2.0.1 and 2.0.2.

Let Λ be a lattice in the real Lie group G and X = G/Λ. In [39], Eskin–
Lindenstrauss introduce the uniform expansion assumption for the adjoint rep-
resentation to obtain a description of the µ-ergodic µ-stationary probability
measures on X (see [39, Theorem 1.7]). However, as they point out, this con-
dition is not sufficient to ensure that all such measures on X are homogeneous.
Below, we single out a stronger expansion assumption which guarantees that
the only µ-ergodic µ-stationary probability measures on X are finite periodic
orbit measures and the Haar measure mX .

Let V be a real vector space of dimension d. For each 1 ≤ k ≤ d, denote by
Grk(V ) the k-Grassmann variety of V . Let Grk(V ) ↪→ P(V ∧k) be the Plücker
embedding. Its image is a closed subset of P(V ∧k) given by P(∧kp V ), where
we denote by ∧k

p V the set of non-zero pure wedge products in V ∧k. For a
probability measure µ on GLd(R), we denote by ∧k∗ µ the pushforward of µ
under the kth exterior power representation. Note that all the ∧k∗ µ have finite
first moments if µ does, by virtue of the inequality N(g∧k) ≤ N(g)k.

Definition 2.1.5 (Expansion on Grassmannians). We say that a probabil-
ity measure µ on GLd(R) is uniformly expanding on Grassmannians if ∧k∗ µ is
uniformly expanding on P(∧kp Rd) ⊂ P(∧k Rd) for every 1 ≤ k ≤ d− 1.

We will usually impose this expansion condition on Ad∗ µ. This accounts
for the cases previously studied by Benoist–Quint in [5] (Proposition 2.1.6) and
Simmons–Weiss [129] (Proposition 2.1.7).
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Proposition 2.1.6. Let G be a real Lie group with non-compact simple
identity component such that the Zariski closure G′ of Ad(G) is Zariski con-
nected. Suppose that µ has a finite first moment in g and that Ad(Γµ) is Zariski
dense in G′. Then Ad∗ µ is uniformly expanding on Grassmannians.

We remark that in the statement above, one cannot relax the requirement
of simplicity to semisimplicity. Indeed, expansion fails for any vector corre-
sponding under the Plücker embedding to a non-trivial proper Lie ideal in g.

Proof. We are given that Ad(Γµ) is Zariski dense in the non-compact
simple real algebraic subgroup G′ of Aut(g). From Furstenberg’s theorem on
positivity of the top Lyapunov exponent (see [51, Theorem 8.6]) it follows that
Ad∗ µ is uniformly expanding in every finite-dimensional algebraic represen-
tation (V, ρ) of G′ without fixed vectors. Indeed, using complete reducibility
one may assume that Ad(Γµ) acts irreducibly, which already implies strong irre-
ducibility in view of Zariski connectedness ofG′. Applying Theorem 2.1.2 to the
kth exterior power of the standard representation for some 1 ≤ k ≤ dim(G)−1,
we find that F60 consists of G′-fixed vectors only. Since a fixed element of ∧kp g
would give rise to a non-trivial proper Lie ideal of g, we conclude ∧kp g∩F60 = ∅,
which is uniform expansion on P(∧kp g). �

Proposition 2.1.7. Suppose that µ has a finite first moment in g and sat-
isfies conditions (I’) and (III’) from §2.0.1. Then Ad∗ µ is uniformly expanding
on Grassmannians.

Proof. Let 1 ≤ k ≤ dim(G) − 1 and apply Theorem 2.1.2 to the kth

exterior power of the adjoint representation. The obtained spaces Fi are Γµ-
invariant. Since conditions (I’) and (III’) together force every invariant sub-
space to contain vectors exhibiting almost sure exponential growth, all the
numbers βi(µ) are positive, which is uniform expansion on P(g∧k). �

Let us now explain the example at the end of §2.0.1 in greater detail.
Example 2.1.8. Let G = SL3(R), Λ = SL3(Z) and µ = 1

3(δg1 + δg2 + δg3)
for the matrices

g1 =
3

2
1/6

, g2 =
3 1

2
1/6

 and g3 =
3

2 1
1/6

.
A calculation shows that the subspaces

V ++ =
{( 0 t

0
0

) ∣∣∣ t ∈ R
}
, V + =

{( 0
0 t

0

) ∣∣∣ t ∈ R
}
,

of g are Γµ-invariant with Lyapunov exponent log(18) on V ++ and log(12)
on V +. Thus there cannot exist a subspace W ⊂ g satisfying (I) and (III).
However, the space W ′ = V ++ ⊕ V + satisfies (I’) and (III’). More generally, if
U denotes the unipotent subgroup of SL3(R) with Lie algebraW ′, the spaceWk

for k ≥ 1 can be defined as the subspace of U -fixed vectors in g∧k. As Γµ
normalizes U , these spaces are Γµ-invariant. Property (I’) holds in view of
[127, Example 1.1] (see also §4.2.2.1 and Example 4.2.9 in Chapter 4). Finally,
property (III’) is satisfied thanks to the Lie–Kolchin theorem, since any Γµ-
invariant subspace is seen to be U -invariant by passing to the Zariski closure.

�
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2.1.4. Measure Classification and Equidistribution Under Expan-
sion. We are now ready to establish equidistribution under the assumption of
uniform expansion on Grassmannians in the adjoint representation.

As outlined in §2.0.1, the first step is the classification of stationary mea-
sures. The result is essentially a corollary of Eskin–Lindenstrauss’ classification
in [39]. As already indicated at the beginning of §2.1.3, the aspect that is new is
that our stronger expansion condition allows to rule out exceptional stationary
measures that can a priori occur in [39, Theorem 1.7].

Theorem 2.1.9. Let G be a real Lie group, Λ a discrete subgroup of G,
and ν a µ-ergodic µ-stationary probability measure on X = G/Λ. Suppose
that µ has a finite first moment in g, that Ad∗ µ is uniformly expanding on
Grassmannians, and that Γµ acts transitively on the connected components
of X. Then either

(i) ν is Γµ-invariant and supported on a finite Γµ-orbit, or
(ii) Λ is a lattice and ν is the Haar measure mX on X.

The proof combines ideas from the proofs of [39, Theorem 1.3] and [129,
Proposition 3.2].

Proof. In view of Proposition 2.1.4, we may apply [39, Theorem 1.7] with
trivial Z.3 The conclusion is that if we are not in case (i), ν must be of the
form

ν =
∫
G/H

g∗ν0 dλ(g),

where H is a closed non-discrete subgroup of G, ν0 is an H-homogeneous
probability measure on X, and λ is a µ-stationary probability measure on G/H.
Observe that H is unimodular, since ν0 being H-homogeneous implies that H
intersects a conjugate of Λ in a lattice.

If dim(H) = dim(G), then λ is Γµ-invariant (being stationary on a count-
able set, see [5, Lemma 8.3]), and since Γµ acts transitively on the connected
components of X by assumption, it follows that ν = mX .

Otherwise, we have k := dim(H) < dim(G). Let v1, . . . , vk be a basis of
Lie(H) and consider the vector v = v1 ∧ · · · ∧ vk ∈

∧k
p g and the stabilizer

L = StabG(v) of v in G. Since H is unimodular, it acts on v by ±1. For
simplicity, let us assume that H is connected, so that we have H 6 L. Thus
λ projects to a µ-stationary probability measure λ̂ on G/L ∼= Gρ ⊂ g∧k \ {0}.
The measure β ⊗ λ̂ is then a probability measure on B × g∧k preserved by the
skew-product transformation

T̂ (b, w) = (Tb,Ad∧k(b0)w),

where b = (bj)j and T is the shift on B (see [10, Proposition 2.14]). However,
since λ̂({0}) = 0, our expansion assumption implies that almost every trajec-
tory under this transformation is divergent, contradicting Poincaré recurrence.

The general case where H might be disconnected can be dealt with by
considering the vector ω = v ⊗ v in the symmetric square representation, as is
done in the proofs of Theorems 4.0.1 and 4.3.7 in Chapter 4. �

3We remark that in §4.3.1 of Chapter 4, [39, Theorem 1.7] is reproduced as Theorem 4.3.2.



2.1. I.I.D. RANDOM WALKS 41

Remark 2.1.10. To apply [39, Theorem 1.7] in the proof above, we need
uniform expansion on g. In the exterior powers of g the proof only uses almost
sure divergence, i.e. that for every v ∈ ∧kp g with 2 ≤ k ≤ dim(G)− 1 we have

lim
n→∞
‖Ad∧k(gb|n)v‖ =∞

for β-a.e. b ∈ B. However, this property in fact already implies uniform expan-
sion.

To see this, note that if uniform expansion does not hold, then the compact
set P(∧kp g) ∩ P(F60) is non-empty and Γµ-invariant and therefore supports a
µ-ergodic µ-stationary probability measure ν. Using Atkinson/Kesten’s lemma
(see e.g. [18, Lemma II.2.2]) the above almost sure divergence implies α(ν) > 0,
which gives a contradiction in view of Theorem 2.1.2. �

The second ingredient is non-escape of mass.

Proposition 2.1.11. Let G be a real Lie group with simple identity compo-
nent such that the Zariski closure of Ad(G) is Zariski connected and Λ a lattice
in G. Suppose that µ has finite exponential moments in g and that Ad∗ µ is
uniformly expanding on Grassmannians. Then, almost surely, there is no es-
cape of mass for the random walk on X = G/Λ, in the sense that for every
x0 ∈ X and ε > 0 there exists a compact set K ⊂ X such that, β-a.s.,

lim sup
n→∞

1
n
|{0 ≤ k < n | gb|kx0 /∈ K}| ≤ ε.

As is by now standard (see e.g. [7, 9, 40]), recurrence results of this type
are most conveniently established by constructing what is known as “Lyapunov
function” for the random walk (also referred to as “Margulis function” in this
context), that is, a proper continuous function f : X → [0,∞) which is con-
tracted by µ in the sense that there are constants c < 1 and d ≥ 0 such that∫

G
f(gx) dµ(g) ≤ cf(x) + d

for all x ∈ X. The proof of the proposition above will thus boil down to showing
the existence of such a Lyapunov function. Specifically, we are going to show
that our expansion assumption allows using the construction of Eskin–Margulis
in [40], a strategy that already appeared in the proof of [129, Theorem 2.1].

Proof of Proposition 2.1.11. By [9, Lemma 3.10], it is enough to ex-
hibit a Lyapunov function for the random walk. In order to use results from [40],
we need to perform some initial reductions.

Setting R = ker(Ad), we know that R ∩ Λ has finite index in R and the
image Ad(Λ) is a lattice in the Zariski closure G′ of Ad(G) (see [7, Lemma 6.1]).
Accordingly, the induced map from X = G/Λ to G′/Ad(Λ) is proper. We may
thus assume to begin with that G is a Zariski connected simple real algebraic
group. If Λ is cocompact, there is nothing to prove. So we may moreover
assume that Λ is nonuniform, placing us in the setting of [40].

We want to use the construction of a Lyapunov function given in [40, §3].
For this, what remains to argue is that “condition (A)”, formulated at the end
of [40, §2], is satisfied. The requirement is that for certain representations
(Vi, ρi) of G and vectors wi ∈ Vi, the following contraction property holds: For
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sufficiently small δ > 0 there ought to exist c < 1 and n ∈ N such that∫
G
‖ρi(g)v‖−δ dµ∗n(g) ≤ c‖v‖−δ (2.1.2)

for all v ∈ Gwi. The representations ρi : G→ GL(Vi) and vectors wi occurring
in the above condition are characterized by the property that the stabilizer
of Rwi in G is some predetermined maximal parabolic subgroup Pi of G. In
our case, we can thus take Vi = g∧ dim(Pi), ρi : G → SL(Vi) the respective
exterior power of Ad, and wi to be a volume form of the Lie algebra pi of Pi
(see [76, Proposition 7.83(b)]). However, using uniform expansion as input,
the proof of [40, Lemma 4.2] precisely shows that (2.1.2) holds for all non-zero
pure wedge products v. This finishes the proof. �

Combining the previous statements, we arrive at the main equidistribution
result of this section.

Theorem 2.1.12. Let G be a real Lie group with simple identity component
such that the Zariski closure of Ad(G) is Zariski connected and Λ a lattice
in G. Suppose that Γµ is not virtually contained in any conjugate of Λ, Γµ acts
transitively on the connected components of X = G/Λ, µ has finite exponential
moments in g, and Ad∗ µ is uniformly expanding on Grassmannians. Then for
every x0 ∈ X, the random walk trajectory (gb|nx0)n equidistributes towards mX

for β-a.e. b ∈ B.

Proof. The remaining argument is standard:
• The Breiman law of large numbers (see [9, Corollary 3.3]) applied to
the one-point compactification of X shows that, almost surely, any
weak* limit of the sequence 1

n

∑n−1
k=0 δgb|kx0 of empirical measures is µ-

stationary.
• Non-escape of mass (Proposition 2.1.11) implies that all such weak*
limits are probability measures on X.
• Since there are no finite orbits, using the classification of stationary
measures (Theorem 2.1.9) we conclude that all (µ-ergodic components
of) these limits coincide with the Haar measure mX . Hence the result.

�

Proof of Theorem 2.0.3. Using connectedness of G, we see that the
conditions of Theorem 2.1.12 are satisfied. �

2.2. Markov Random Walks

We now turn our attention to Markov random walks. We first adopt a boot-
strapping approach (§2.2.2, §2.2.3), upgrading statements about the random
walk with i.i.d. increments Zn = Yτn+1

g −1 · · ·Yτng to statements about the whole
random walk. As preparation, we study the distribution of these excursions,
which we call “renewal measures”, in §2.2.1. In §2.2.4 we discuss expansion in
the Markovian setting, and in §2.2.5 we prove our main result (Theorem 2.2.17)
about expanding Markov chains, which implies Theorem 2.0.4. The final sub-
section §2.2.6 is dedicated to a concrete example that contains Corollary 2.0.5
and will be important in §2.3 about Diophantine approximation on fractals.
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Let E be a countable set. A Markov chain on E is defined by a transition
kernel P on E. This means that for every e ∈ E, P (e, ·) is a probability
distribution on E specifying the transition probabilities when the current state
is e. We are going to write pe′,e := P (e, e′) for the probability of going from
state e to e′, and pw = pen−1,en−2 · · · pe1,e0 for a word w = en−1 . . . e0 ∈ E∗.4
Let Pe be the associated Markov measure on Ω = EN starting at e ∈ E (at
time n = 0), characterized by the property that

Pe
[
{e0} × · · · × {en} × EN

]
= pen,en−1 · · · pe1,e0δe0=e

for e0, . . . , en ∈ E. More generally, for an arbitrary probability distribution λ
on E we write

Pλ =
∑
e∈E

λ({e})Pe, (2.2.1)

which is the unique Markov measure on Ω for the given Markov chain on E
with starting distribution λ. Expectation with respect to the probability mea-
sures Pe and Pλ will be denoted by Ee and Eλ, respectively.

The consecutive hitting times of a state e will be denoted by τne , defined by
τ 0
e = 0 and

τne (ω) = inf{n > τn−1
e (ω) | ωn = e}

for ω = (ωj)j ∈ Ω and n ∈ N. We abbreviate the first hitting time τ 1
e as τe.

We will only be interested in irreducible chains, i.e. ones where every state
can be reached from every other in finite time with positive probability (for-
mally, chains with Pe[τe′ < ∞] > 0 for any two states e, e′ ∈ E). Let us recall
the classical notions of recurrence for Markov chains.

Definition 2.2.1. An irreducible Markov chain on E is called
• recurrent if Pe[τe <∞] = 1 for every e ∈ E,
• positive recurrent if Ee[τe] <∞ for every e ∈ E, and
• exponentially recurrent if for every e ∈ E there exists δ > 0 such that
Ee[exp(δτe)] <∞.

It is well known that these forms of recurrence hold for all states as soon
as one state has the respective property. Irreducible positive recurrent chains
admit a unique stationary probability distribution π on E, given by

π({e′}) = 1
Ee[τe]

Ee
[
τe−1∑
k=0

1ωk=e′

]
(2.2.2)

for e, e′ ∈ E. The Markov measure Pπ is then invariant and ergodic under the
shift map T on Ω. See e.g. Chung [26] for proofs of these classical facts.

For the sequel, we fix a coding map E 3 e 7→ ge ∈ G. Such a map allows
us to define a stochastic process on G by

(Yk)k : Ω 3 ω 7→ (gωk−1)k.
This process is generally not a Markov chain on G in the usual sense. Indeed,
any generalized Markov measure on {ge|e ∈ E}N can be obtained in this manner
as the distribution of (Yk)k. Similarly, the induced random walk (Yn · · ·Y1x0)n
4Since we are studying random walks on X coming from a left action of G, we are using a
right-to-left ordering throughout this section.
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on X does not constitute a Markov chain. However, this flaw can be removed
by embedding this random walk into a Markov chain on a larger space.

Definition 2.2.2. Given a Markov chain on E with transition kernel P , the
action chain is the Markov chain on E ×X defined by the transition kernel Q
given by

Q(e, x) = P (e, ·)⊗ δgex
for (e, x) ∈ E ×X.

The interpretation is that the E-coordinate contains the element to be
applied next. A step into the future consists of the application of that group
element to the X-coordinate and choosing the next element according to the
transition kernel P in the E-coordinate.

It is evident by construction that in the X-coordinate of the action chain
we obtain our random walks of interest of the form (Yn · · ·Y1x0)n. A precise
formulation of this statement is the following.

Lemma 2.2.3. Let λ be any distribution on E and x0 ∈ X. Write Pλ⊗δx0

for the Markov measure on (E×X)N for the action chain starting from λ⊗δx0,
and prE : (E ×X)N → EN, prX : (E ×X)N → XN for the projections onto all
the E- and X-coordinates, respectively. Then the pushforward of Pλ⊗δx0

by prE
is Pλ and the pushforward by prX is the distribution of (Yn · · ·Y1x0)n, where
(Yk)k is the Markov chain on E starting with Y1 distributed according to λ. �

2.2.1. Renewal Measures. We say that a word w = en−1 . . . e0 ∈ E∗ is
(e′←e)-admissible if e0 = e, pek,ek−1 > 0 for 1 ≤ k ≤ n − 1 and pe′,en−1 > 0,
and simply that it is admissible if it is (e′←e)-admissible for some e, e′ ∈ E.
Further, we call w an e–renewal word if it is (e←e)-admissible and ek 6= e for
1 ≤ k ≤ n − 1, and denote the set of e–renewal words by Er

e. A sequence
ω ∈ Ω = EN is said to be admissible if all words ω|n for n ∈ N are. The set of
all admissible sequences is going to be denoted E∞, and E∞e is the subset of
such sequences starting with e.

Definition 2.2.4. Given a recurrent irreducible Markov chain on E and a
state e ∈ E, we define the measure µ̃e on the set Er

e of e–renewal words by
µ̃e({w}) := pe,en−1pw = pe,en−1pen−1,en−2 · · · pe1,e

= Pe
[
{ω ∈ Ω | ω1 = e1, . . . , ωn−1 = en−1, τe(ω) = n}

]
for w = en−1 . . . e1e ∈ Er

e. Then the renewal measure µe starting at e ∈ E is
defined to be the pushforward of µ̃e to G via the coding map E∗ → G, w 7→ gw.

Note that recurrence implies that Pe-a.s. we have τe < ∞, so that under
this assumption µ̃e and µe are probability measures.

The following simple lemma formalizes the fact that consecutive excursions
of a Markov chain are i.i.d.

Lemma 2.2.5. For a recurrent irreducible Markov chain on E and any state
e ∈ E, the map

(E∞e ,Pe)→
(
(Er

e)N, µ̃⊗Ne
)
, (2.2.3)

ω 7→
(
ωτn+1

e −1 . . . ωτne

)
n
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is an isomorphism (mod 0) of probability spaces.

Proof. On the Pe–full measure subset
{ω ∈ E∞e | τne (ω) <∞ for all n ∈ N}

of Ω the given map is a well-defined bijection. To see that it is measure-
preserving it suffices to consider cylinder sets {w0} × · · · × {wN} × (Er

e)N for
e–renewal words w0, . . . , wN . But for such sets the statement follows directly
by construction of µ̃e. �

Before moving on, let us shed some light on the relationship between the
various renewal measures µe on G, knowledge of which will be of interest later
on. For this, we denote by Γ+

e (resp. Γe) the closed subsemigroup (resp. sub-
group) of G generated by the support of µe, and by ΓE the image of the set of
admissible words under the coding map E → G. Note that ΓE is in general not
closed under multiplication. In case G is real algebraic, we write He and HE

for the Zariski closures of Γ+
e and ΓE, respectively.

Lemma 2.2.6. Assume the Markov chain on E is irreducible and recurrent.
(i) Let c ∈ E∗ be (e′←e)-admissible and c′ ∈ E∗ be (e←e′)-admissible.

Then the semigroups Γ+
e and Γ+

e′ satisfy
gc′Γ+

e′gc ⊂ Γ+
e .

If G is real algebraic, we additionally have the following.
(ii) The groups He and He′ are conjugate inside HE. More precisely, with

c, c′ as in (i) we have
gc′He′g

−1
c′ = g−1

c He′gc = He.

(iii) If there exists ẽ ∈ E with both eẽ and e′ẽ admissible, then He = He′.
(iv) If there exists ẽ ∈ E with eẽ admissible for all e ∈ E, then all He

coincide and HE is contained in their normalizer.
(v) If there exists ẽ ∈ E with ẽe admissible for all e ∈ E, then He = HE

for all e ∈ E. In particular, HE is a group.

Proof. For (i), simply note that for every (e′←e′)-admissible word w ∈ E∗
the word c′wc is (e←e)-admissible.

For (ii), taking the Zariski closure of both sides of the inclusion in (i), we get
gc′He′gc ⊂ He. Since the word cc′ is (e′←e′)-admissible, gc′Γ+

e′gc is a semigroup
and hence its Zariski closure gc′He′gc is a subgroup of He. This implies

gc′He′gc = gc′He′g
−1
c′ = g−1

c He′gc ⊂ He.

By the symmetric argument, we also have gcHeg
−1
c ⊂ He′ , which in combination

with the above gives (ii).
For (iii) note that existence of such an element ẽ implies that c′ can be

chosen to be both (e′←e′)- and (e←e′)-admissible. Then gc′ ∈ He′ and we
conclude using (ii).

In (iv), all the He coincide due to (iii). For every admissible word w ∈ E∗,
the word wẽ is (e←ẽ)-admissible for some e ∈ E. Thus, using gẽ ∈ Hẽ and
part (ii) we find

gwHẽg
−1
w = gwẽHẽg

−1
wẽ = He = Hẽ.
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This shows that ΓE is contained in the normalizer of Hẽ. Hence, so is HE.
In the setting of (v), He = Hẽ for all e ∈ E again follows from (iii). Clearly,

we also have Hẽ ⊂ HE. For the reverse inclusion let w ∈ E∗ be any admissible
word, say (e′←e)-admissible, and choose a (e←ẽ)-admissible word c ∈ E∗.
Then both c and wc are (ẽ←ẽ)-admissible. This implies gw ∈ Hẽ, and hence
HE ⊂ Hẽ. �

2.2.2. Stationary Measures. Next, we describe the structure of ergodic
stationary measures for the action chain in terms of ergodic stationary measures
for the renewal measures µe.

Lemma 2.2.7. Suppose the Markov chain on E is irreducible and positive
recurrent and let π be its stationary distribution. If ν is a stationary probability
measure for the action chain on E ×X, then

ν =
∑
e∈E

π({e})δe ⊗ νe, (2.2.4)

where for each e ∈ E, νe is a µe-stationary probability measure on X, satisfying

π({e})νe =
∑
e′∈E

π({e′})pe,e′(ge′)∗νe′ . (2.2.5)

If ν is ergodic, then the νe are µe-ergodic.
Furthermore, if c ∈ E∗ is (e←e′)-admissible, we have (gc)∗νe′ � νe, and if

νe is Γ+
e -invariant, then νe and (gc)∗νe′ belong to the same measure class.

Proof. For any measurable subset Y ⊂ X and e ∈ E we have by station-
arity of ν

π({e})νe(Y ) = ν({e} × Y ) = νQ({e} × Y )

=
∫
E×X

Q
(
(e′, x), {e} × Y

)
dν(e′, x)

=
∑
e′∈E

π({e′})pe,e′νe′(g−1
e′ Y ),

which is precisely (2.2.5). Specializing to Y = X shows that the projection of ν
to E is a stationary probability measure for the abstract Markov chain on E.
By uniqueness, it follows that this projection is π, or in other words that the νe
are probability measures.

The fact that the νe are µe-stationary (and µe-ergodic if ν is ergodic) follows
from [9, Lemma 3.4] applied to the Q-recurrent subsets {e} ×X of E ×X.

The first statement about absolute continuity follows by noting that as a
consequence of (2.2.5) and by induction, for every e ∈ E and n ∈ N we have

π({e})νe =
∑

w=en−1...e0∈E∗
(e←e′)-admissible

π({e′})pe,en−1pw(gw)∗νe′ ,

with all occurring factors positive. For the last claim let c′ ∈ E∗ be (e′←e)-
admissible. Then we have gcc′ ∈ Γ+

e , so that the above and Γ+
e -invariance of νe

imply

νe = (gcc′)∗νe � (gc)∗νe′ � νe. �
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2.2.3. Equidistribution. This subsection contains the joint equidistribu-
tion results alluded to in §2.0.2, which represent a key ingredient of our ap-
proach.

Proposition 2.2.8. Suppose the Markov chain on E is irreducible and pos-
itive recurrent and denote by π its stationary distribution. Let x0 ∈ X, e ∈ E
and m be a probability measure on X invariant under gw for every admissi-
ble word w ∈ E∗ starting with e. If the trajectory (gb|nx0)n equidistributes to-
wards m for µ⊗Ne -a.e. b ∈ B, then (gω|nx0, T

nω)n equidistributes towards m⊗Pπ
for Pe-a.e. ω ∈ Ω.

In the proof of Proposition 2.2.8 we will need part (i) of the following tech-
nical lemma. Part (ii) will be used in §2.3 about Diophantine approximation
on fractals.

Lemma 2.2.9.
(i) ([129, Proposition 5.1]) Let P = µ⊗N be the Bernoulli measure on Ω

associated to a probability measure µ on E. Assume that (gω|nx0)n
equidistributes towards a probability measure m on X for P-a.e. ω ∈ Ω.
Then (gω|nx0, T

nω)n equidistributes towards m⊗ P for P-a.e. ω ∈ Ω.
(ii) Denote by π the stationary distribution of a positive recurrent Markov

chain on E and let λ be any starting distribution on E. Assume that
(ωn, gω|nx0)n equidistributes towards a probability measure on E × X
of the form ∑

e∈E
π({e})δe ⊗me

for Pλ-a.e. ω ∈ Ω. Then (ωn, gω|nx0, T
nω)n equidistributes towards∑

e∈E
π({e})δe ⊗me ⊗ Pe

for Pλ-a.e. ω ∈ Ω.
The first part of this lemma is essentially contained in the article [129] of

Simmons–Weiss, whose proof relies on ideas going back to Kolmogorov and
Doob (cf. [10, §A.3]). Our proof of the second part generalizes the argument
to the Markovian case.

The method of proof is to show the desired almost sure convergence for a
fixed test function and then use separability of an appropriate space of test
functions to exchange the order of quantifiers. When the underlying space
is locally compact, this test function space can be taken to be the space of
compactly supported continuous functions. This is however not the case in
our setup, so that we need to find a substitute. To this end, let us introduce
the following concept: Given a locally compact second countable metrizable
space X̃, we shall say that a continuous function f on X̃×Ω compactly depends
on finitely many coordinates if there exists N ∈ N and a compactly supported
continuous function f̃ on X̃ × EN+1 such that f(x, ω) = f̃(x, ω0, . . . , ωN) for
all (x, ω) ∈ X̃ ×Ω. The collection of all such functions is separable; we denote
it by Ccf (X̃ × Ω).

Proof of Lemma 2.2.9. It is deduced from [44, Propositions 3.4.4, 3.4.6]
that it suffices to check convergence for test functions f ∈ Ccf (X̃ × Ω), where
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X̃ = X in (i) and X̃ = E ×X in (ii). In view of separability of this function
space, the proof of [129, Proposition 5.1] still yields part (i).

Similarly, to obtain (ii) it is enough to establish the desired Pλ-a.s. conver-
gence

1
n

n−1∑
k=0

ϕ(ωk, gω|kx0, T
kω) n→∞−→

∑
e∈E

π({e})
∫
X×Ω

ϕ(e, x, ω) d(me ⊗ Pe)

for a single bounded continuous test function ϕ : E×X×Ω→ R depending on
finitely many coordinates, say on the first N + 1 coordinates ω0, . . . , ωN in Ω.

Introduce the functions

ϕX(e, x) =
∫

Ω
ϕ(e, x, ω) dPe(ω), and

h(e, x, ω) = ϕ(e, x, ω)− ϕX(e, x).

Applying Pλ-a.s. equidistribution of (ωn, gω|nx0)n to the function ϕX and setting
zk = zk(ω) = (ωk, gω|kx0, T

kω), we see that it remains to show that Pλ-a.s. we
have

1
n

n−1∑
k=0

h(zk) n→∞−→ 0. (2.2.6)

Denote by Bn the σ-algebra of Borel subsets of E × X × Ω depending only
on the first n + 1 coordinates ω0, . . . , ωn in Ω. Then by definition of zk and
assumption on ϕ we have for k ≤ n−N

Eλ[h(zk)|Bn] = h(zk). (2.2.7)
Now suppose k ≥ n. Then, using the Markov property and the definition
of ϕX , ∫

Ω
ϕX(ω′k−n, gω′|k−ngω|nx0) dPωn(ω′)

=
∫

Ω

∫
Ω
ϕ(ω′k−n, gω′|k−ngω|nx0, ω

′′) dPω′
k−n

(ω′′) dPωn(ω′)

=
∫

Ω
ϕ(ω′k−n, gω′|k−ngω|nx0, T

k−nω′) dPωn(ω′). (2.2.8)

Using the Markov property again, one can express the conditional expecta-
tion Eλ[h(zk)|Bn] as

Eλ[h(zk)|Bn] = Eλ
[
h(ωk, gω|kx0, T

kω)
∣∣∣Bn]

=
∫

Ω
h(ω′k−n, gω′|k−ngω|nx0, T

k−nω′) dPωn(ω′). (2.2.9)

Combining (2.2.8) and (2.2.9), we deduce that for k ≥ n we have
Eλ[h(zk)|Bn] = 0. (2.2.10)

It follows from (2.2.7) and (2.2.10) that the random variables

Mn =
∞∑
k=0

Eλ[h(zk)|Bn]

form a martingale under Pλ differing by a bounded amount (at most 2N‖h‖∞)
from ∑n−1

k=0 h(zk). In particular, (Mn)n has bounded increments, so that [10,
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Corollary A.8] yields that Pλ-a.s. 1
n
Mn → 0 as n → ∞, proving (2.2.6) and

hence the lemma. �

Proof of Proposition 2.2.8. For the sake of readability, we shall first
ignore the second component T nω and only prove equidistribution of (gω|nx0)n.
Afterwards, we explain the modifications needed to obtain the full statement.

Let f be a bounded continuous function on X. For ` ∈ N we consider the
function

F` : X × (Er
e)N → R, (x, (wj)j) 7→

f(gw0|`x), `(w0) > `,

0, `(w0) ≤ `,

where `(w0) denotes the length of the word w0. Applying Lemma 2.2.9(i) to F`
with P = µ̃⊗Ne and using the invariance assumption on m, we get

1
n

n−1∑
k=0

f(gwk|`gwk−1 · · · gw0x0)1`(wk)>` −→
∫
F` d(m⊗ µ̃⊗Ne ) (2.2.11)

=Pe[τe > `]
∫
f dm

as n→∞ for µ̃⊗Ne -a.e. (wj)j ∈ (Er
e)N.

Now let ω ∈ Ω correspond to (wj)j ∈ (Er
e)N via (2.2.3) and denote by T (n)

the number of occurrences of e in ω before time n. In other words, T (n) is the
number of the wj contributing to ω|n, so that the latter is some intermediate
word between wT (n)−2 . . . w0 and wT (n)−1 . . . w0. Using this observation, for
every L ∈ N we can write

1
n

n−1∑
k=0

f(gω|kx0) = T (n)
n

L−1∑
`=0

1
T (n)

T (n)−1∑
k=0

f(gwk|`gwk−1 · · · gw0x0)1`(wk)>` (2.2.12)

+ 1
n

T (n)−1∑
k=0

`(wk)−1∑
`=L

f(gwk|`gwk−1 · · · gw0x0) (2.2.13)

− 1
n

τ
T (n)
e (ω)−1∑
k=n

f(gω|kx0). (2.2.14)

Using Lemma 2.2.5 and the Birkhoff ergodic theorem, we have Pe-a.s. τne /n→
Ee[τe]. This in turn implies that Pe-a.s. also T (n)/n→ 1/Ee[τe]. Together with
(2.2.11) it follows that the right-hand side of (2.2.12) converges Pe-a.s. to

1
Ee[τe]

L−1∑
`=0

Pe[τe > `]
∫
f dm.

Using the ergodic theorem again, we also know that (2.2.13) is bounded by

‖f‖∞
n

T (n)−1∑
k=0

(`(wk)− L)+ n→∞−→ ‖f‖∞
Ee[τe]

Ee[(τe − L)+],

and (2.2.14) by
‖f‖∞`(wT (n)−1)

n
n→∞−→ 0,

where in both cases convergence holds Pe-a.s.
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Since∑∞`=0 Pe[τe > `] = Ee[τe] and, by positive recurrence, Ee[(τe−L)+]→ 0
as L→∞, the above combine to imply the desired Pe-a.s. convergence

1
n

n−1∑
k=0

f(gω|kx0) −→
∫
f dm

as n→∞.
We now upgrade the argument above to also obtain joint equidistribution.

With the same initial reduction as in the proof of Lemma 2.2.9, it suffices to
prove Pe-a.s. convergence

1
n

n−1∑
k=0

f(gω|kx0, T
kω) n→∞−→

∫
f d(m⊗ Pπ)

for one fixed bounded continuous function f onX×Ω depending on only finitely
many coordinates. The argument is similar as above; only the functions F` need
to be chosen in a slightly more intricate way: We set

F` : X × (Er
e)N → R, (x, (wj)j) 7→

f(gw0|`x0, T`(wj)j), `(w0) > `,

0, `(w0) ≤ `,

where T`(wj)j is obtained by first identifying (wj)j with ω ∈ Ω via (2.2.3)
and then applying the `-fold shift T `. These functions F` again satisfy the
assumptions of part (i) of Lemma 2.2.9. We find

1
n

n−1∑
k=0

f(gwk|`gwk−1 · · · gw0x0, T`(wj+k)j)1`(wk)>` −→
∫
F` d(m⊗ µ̃⊗Ne )

as n→∞ for µ̃⊗Ne -a.e. (wj)j ∈ (Er
e)N, the limit equaling, again by the assumed

invariance of m and Lemma 2.2.5,∫
F` d(m⊗ µ̃⊗Ne ) =

∫
{`(w0)>`}

∫
X
f(x, T`(wj)j) dm(x) dµ̃⊗Ne ((wj)j)

=
∫
X

∫
{τe>`}

f(x, T `ω) dPe(ω) dm(x).

Noting that by the Markov property and the description (2.2.2) of π we have
∞∑
`=0

∫
{τe>`}

f(x, T `ω) dPe(ω) = Ee
[
τe−1∑
k=0

Eωk [f(x, ·)]
]

= Ee[τe]Eπ[f(x, ·)]

for every x ∈ X, the remainder of the argument is the same as above. Indeed,
together with dominated convergence this implies that the limit

1
Ee[τe]

∫
X

L−1∑
`=0

∫
{τe>`}

f(x, T `ω) dPe(ω) dm(x)

of (2.2.12) now converges to
∫
f d(m⊗Pπ) as L→∞, and (2.2.13) and (2.2.14)

still tend to 0. �

2.2.4. Moment and Expansion Conditions. We now express the no-
tions of finite moments and expansion in the Markovian setting, in a way that
will be convenient when combining the results of §2.1 and §2.2.3.

Let ρ be a representation of G on a finite-dimensional real vector space V .
Recall that N(ρ(g)) = max(‖ρ(g)‖, ‖ρ(g)−1‖), where ‖·‖ is the operator norm
associated to a fixed norm on V .
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Definition 2.2.10. A Markov chain on E is said to have finite first mo-
ments in (V, ρ) if for every e ∈ E

Ee[log N(ρ(gω|τe ))] <∞,

and to have finite exponential moments in (V, ρ) if for every e ∈ E there exists
δ > 0 such that

Ee[N(ρ(gω|τe ))
δ] <∞.

As usual, we suppress the representation from the notation when (V, ρ) =
(g,Ad). Note that the definition does not depend on the choice of norm on V .

In terms of renewal measures these conditions read as follows.

Lemma 2.2.11. A recurrent irreducible Markov chain on E has finite first
(resp. exponential) moments in V if and only if all renewal measures µe have
the corresponding property. �

Let us mention a few simple examples in which the above moment condi-
tions are satisfied.

Example 2.2.12.
(i) If the state space E is finite, then any irreducible Markov chain on E

has finite exponential moments in (V, ρ).
(ii) More generally, if the Markov chain on E is irreducible and positive

(resp. exponentially) recurrent and the coding map E → G takes
values in a bounded subset of G, then the Markov chain has finite first
(resp. exponential) moments in (V, ρ). This conclusion stays valid
when the coding map has sufficiently slow growth.

(iii) Suppose the Markov chain on E is positive recurrent and let π be its
stationary distribution. Denote by c : E → G the coding map. If c∗π
has a finite first moment in (V, ρ), i.e. if∑

e′∈E
log N(ρ(ge′))π({e′}) <∞,

then the Markov chain has finite first moments in (V, ρ).
We omit the straightforward verifications. �

Next, we generalize the notion of uniform expansion from §2.1.

Definition 2.2.13. Let (Yk)k be a stochastic process with values in GLd(R)
and P ⊂ P(Rd) a closed subset invariant under the support of the distribution
of Yk for all k ∈ N. Then we call (Yk)k uniformly expanding on P if for all
Rv ∈ P , almost surely,

lim inf
n→∞

1
n

log‖Yn · · ·Y1v‖ > 0.

We call (Yk)k uniformly expanding on Grassmannians if (Y ∧kn )n is uniformly
expanding on P(∧kp Rd) for all 1 ≤ k ≤ d− 1.

To efficiently deal with our setting involving an abstract Markov chain
on E, different starting distributions, and a coding map, it will be convenient
to introduce the following more concise terminology.
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Definition 2.2.14. Let λ be a starting distribution on E. Then we say
that a Markov chain on E is λ-expanding (under the coding map e 7→ ge) if the
stochastic process

(Yk)k : (Ω,Pλ) 3 ω 7→ (Ad(gωk−1))k
on GL(g) is uniformly expanding on Grassmannians. When λ = δe for some
e ∈ E we also say that it is e-expanding.

For brevity, we will usually omit the coding map from the notation when
using these notions of expansion.

Under a moment assumption as in Example 2.2.12(iii), e-expansion can be
phrased in terms of the renewal measure µe.

Lemma 2.2.15. Suppose that the Markov chain on E is irreducible and
recurrent, let e ∈ E and denote by c : E → G the coding map.

(i) If the Markov chain is e-expanding, then Ad∗ µe is uniformly expanding
on Grassmannians.

(ii) Suppose the Markov chain is additionally positive recurrent and denote
by π its stationary distribution. If c∗π has a finite first moment in g,
then the Markov chain is e-expanding if and only if Ad∗ µe is uniformly
expanding on Grassmannians.

Proof. Let 1 ≤ k ≤ dim(G)− 1. We Pe-a.s. have τne /n→ Ee[τe] ∈ [1,∞]
as n→∞. By definition, e-expansion means that, Pe-a.s.,

lim inf
n→∞

1
n

log‖Ad∧k(gω|n)v‖ > 0. (2.2.15)

From this it follows that Pe-a.s. also

lim inf
n→∞

1
n

log‖Ad∧k(gω|τne )v‖ = lim inf
n→∞

τne
n

1
τne

log‖Ad∧k(gω|τne )v‖ > 0. (2.2.16)

This gives part (i). In the setting of (ii), we have Ee[τe] ∈ [1,∞), and the
moment assumption allows applying Oseledets’ theorem with the shift map on
(Ω,Pπ) (we remark that Oseledets’ theorem holds not only for i.i.d. processes,
but more generally for stationary ones; see e.g. [116, Theorem 1.6]). We find
that all the limit inferiors above are actually limits Pπ-, thus in particular
Pe-a.s., so that in this case (2.2.16) also implies (2.2.15). �

2.2.5. Expanding Markov Chains. We now combine the bootstrapping
results from §2.2.2 and §2.2.3 with those of §2.1 to prove our main Markov-
ian measure classification and equidistribution results. These will imply Theo-
rem 2.0.4. Recall that for e ∈ E, Γe denotes the closed subgroup of G generated
by the support of the renewal measure µe.

Theorem 2.2.16. Let G be a real Lie group, Λ a discrete subgroup of G,
and X the homogeneous space G/Λ. Suppose that the Markov chain on E
is irreducible and positive recurrent; denote by π its stationary distribution.
Suppose furthermore that the Markov chain is π-expanding and has finite first
moments in g. Let ν be an ergodic stationary probability measure for the action
chain on E ×X as in (2.2.4). Then either

(i) for every e ∈ E the measure νe is Γe-invariant and supported on a
finite Γe-orbit, or
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(ii) Λ is a lattice and all νe are the Haar measure mX on X.
Moreover, for every (e′←e)-admissible word c ∈ E∗, we have (gc)∗νe = νe′.

Proof. Note that by irreducibility of the Markov chain on E, π-expansion
implies e-expansion for every e ∈ E. Thus, it follows by Lemma 2.2.7 and
Theorem 2.1.9 that each νe is either supported on a finite Γe-orbit or is the
Haar measure mX on X. Irreducibility of the Markov chain together with the
last statement of Lemma 2.2.7 imply that the same option applies to all e ∈ E.

The last claim is clear in case (ii). In case (i), Lemma 2.2.7 implies that
(gc)∗νe and νe′ are of the same measure class. Being uniform measures on finite
orbits, this forces (gc)∗νe = νe′ , as claimed. �

Theorem 2.2.17. Let G be a real Lie group with simple identity component
such that the Zariski closure of Ad(G) is Zariski connected, Λ a lattice in G,
and X = G/Λ. Suppose that the Markov chain on E is irreducible and positive
recurrent and has finite exponential moments in g. Denote by π its stationary
distribution and let e ∈ E. Assume that Γe is not virtually contained in any
conjugate of Λ, that Γe acts transitively on the connected components of X, and
that the Markov chain is e-expanding. Then, for every x0 ∈ X, (gω|nx0, T

nω)n
equidistributes towards mX ⊗ Pπ for Pe-a.e. ω ∈ Ω.

Proof. Combine Lemma 2.2.15, Theorem 2.1.12, and Proposition 2.2.8.
�

Proof of Theorem 2.0.4. We use the inclusion E ↪→ G as coding map
and let λ denote the distribution of Y1. By hypothesis, (Yk)k is λ-expanding,
hence e-expanding for every e ∈ E satisfying λ({e}) > 0. Moreover, since E is
finite, the Markov chain on E is positive recurrent and has finite exponential
moments in g. Now, in view of Lemma 2.2.18 below, the result follows by
applying Theorem 2.2.17 to each such e ∈ E. �

Lemma 2.2.18. Suppose that the state space E is finite and that the Markov
chain on E is irreducible. If x ∈ X and e ∈ E are such that the random orbit
{gω|nx | n ∈ N} ⊂ X is Pe-a.s. infinite, then the orbit Γ+

e x is infinite.

Proof. Denote by Eadm
e the set of all admissible words starting with e and

consider the set

O = {gwx | w ∈ Eadm
e }.

By assumption it is infinite.
Since the state space is finite, we can choose k ∈ N such that any state can

be reached from everywhere in at most k steps with positive probability. Then
for every w ∈ Eadm

e there is an admissible word c ∈ E∗ of length at most k− 1
such that cw is (e←e)-admissible. It follows that gcwx ∈ Γ+

e x and hence

O ⊂
⋃

c∈E∗ admissible
`(c)≤k−1

g−1
c Γ+

e x,

which forces Γ+
e x to be infinite as well. �
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2.2.6. An Example. To conclude this section, we are going to explain
an example due to Simmons–Weiss [129] that is used to relate Diophantine
properties of fractals to random walks. We prove Proposition 2.2.19, which
can be considered a Markovian extension of [129, Theorem 6.4], and deduce
Corollary 2.0.5.

Let G = PGLd(R) and Λ = PGLd(Z). Given positive integers m and n
with m+n = d, let Rm×n be the space of m×n-matrices with real entries and
define

a(t) =
(et/m1m

e−t/n1n

)
, uM =

(1m −M
1n

)
, and O1 ⊕O2 =

(
O1

O2

)
for t ∈ R, M ∈ Rm×n and O1 ∈ Om(R), O2 ∈ On(R). We will denote the
corresponding subgroups of G by A = {a(t) | t ∈ R}, U = {uM |M ∈ Rm×n},
K = {O1 ⊕ O2 | O1 ∈ Om(R), O2 ∈ On(R)}, and set P = AKU . Note that
A and K commute and normalize U ; in particular, P is a group. An element
g ∈ P can be uniquely written as a product of the form a(t)kuM and we
denote the corresponding values of t, k by t(g) and k(g), respectively. Finally,
let V + = Lie(U) be the Lie algebra of U .

Proposition 2.2.19. Suppose that E is finite and let π be the stationary
distribution of an irreducible Markov chain on E. Suppose that the coding map
E → G, e 7→ ge takes values in P , that∑

e′∈E
t(ge′)π({e′}) > 0, (2.2.17)

and that for some e0 ∈ E the Lie algebra of He0 contains V +. Then the
assumptions of Theorem 2.2.17 are satisfied for every e ∈ E.

Proof. Positive recurrence and finite exponential moments in g follow
from finiteness of the state space. Below, we are going to show that all re-
newal measures µe are in “(m,n)-upper block form” in the sense of [129, Def-
inition 6.3]. Then [129, Theorem 6.4] (the proof of which does not use the
assumption of compact support) implies that for every e ∈ E, Γe is not virtu-
ally contained in any conjugate of Λ and that Proposition 2.1.7 can be applied
to µe, yielding e-expansion of the Markov chain.

To show that µe is in (m,n)-upper block form for every e ∈ E, we have to
argue that

∫
G t(g) dµe(g) > 0 and that the Lie algebra of He contains V +.

Regarding positivity of the integral, we calculate, using that t : P → (R,+)
is a homomorphism and (2.2.2),∫

G
t(g) dµe(g) = Ee[t(gω|τe )] =

∑
e′∈E

t(ge′)Ee
[
τe−1∑
k=0

1ωk=e′

]

= Ee[τe]
∑
e′∈E

t(ge′)π({e′}) > 0.

Finally, in view of the assumption on He0 , the inclusion V + ⊂ Lie(He) follows
from part (ii) of Lemma 2.2.6 and the fact that U is normalized by P . �

Proof of Corollary 2.0.5. By Proposition 2.2.19 and Lemma 2.2.6(v)
we need only verify that the Lie algebra of HE contains V +. (Recall that part
of the conclusion of Lemma 2.2.6 is that HE is in fact a group; here it is the
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real algebraic subgroup of G generated by g0, . . . , gr.) The argument for this
is the same as in the proof of [129, Theorem 1.1]. Let us briefly reproduce it:
For 0 ≤ i ≤ r, we have gi = u′iaiki with

u′i =
(1d cdi yi

0 1

)
, ai =

(
ci1d 0

0 c−di

)
, and ki =

(
Oi 0
0 1

)
.

Then, for n ∈ N, we can write
HE 3 g−n0 gig

n
0 = (k−n0 a−n0 u′ia

n
0k

n
0 )ai(k−n0 kik

n
0 ).

Noting that for n→∞ we have a−n0 u′ia
n
0 → 1d+1 and passing to a subsequence

along which k
nj
0 → 1d+1 as j → ∞, it follows that aiki ∈ HE, so that also

u′i ∈ HE. Thus, we see that Mj := k
−nj
0 a

−nj
0 u′ia

nj
0 k

nj
0 ∈ HE ∩ U for all j. Since

Mj → 1d+1 as j →∞, this implies that
Lie(HE) 3 log(Mj) = Mj − 1d+1

for j large enough. As a computation shows, the right-hand side above con-
verges in direction towards ( 0d yi

0 0 ). Since the yi span Rd by assumption, we
conclude that indeed V + ⊂ Lie(HE). �

2.3. Diophantine Approximation on Fractals

As observed by Simmons–Weiss, equidistribution results as in §2.1 can be
used to obtain statements about Diophantine approximation on fractals ob-
tained as limit sets of similarity IFS. In this final section, using the analogous
results for Markov random walks from §2.2, we deal with limit sets of graph-
directed similarity IFS.

The first three subsections are of preparatory nature. We recall basic ter-
minology and results on graph-directed IFS (§2.3.1), and make the connection
between similarities, the homogeneous dynamics setting and Diophantine ap-
proximation (§2.3.2, §2.3.3). Our main Diophantine approximation results,
which imply Theorems 2.0.6 and 2.0.7, will be stated and proved in §2.3.4.

2.3.1. Graph-Directed IFS. A directed multigraph is a tuple (V,E, i, t)
consisting of non-empty sets V,E of vertices and edges, respectively, and func-
tions i, t : E → V associating to an edge e ∈ E the initial vertex i(e) ∈ V and
the terminal vertex t(e) ∈ V . The multigraph is finite if both sets V and E
are. A non-empty word w = e0 . . . en−1 ∈ E∗ or sequence ω = (ej)j ∈ EN is
called a (finite resp. infinite) path if t(ej−1) = i(ej) for all j. Denote the set
of infinite paths by E∞. We extend the initial vertex function i to paths by
i((ej)j) = i(e0 . . . en−1) = i(e0), and the terminal vertex function t to finite
paths by t(e0 . . . en−1) = t(en−1). We call the multigraph connected if for every
pair of vertices u, v ∈ V there exists a finite path from u to v (i.e. a path w with
i(w) = u and t(w) = v). Finally, we call a Markov chain on E (or an associ-
ated Markov measure on EN) adapted if the transition probabilities (pe′,e)e,e′∈E
satisfy pe′,e > 0 ⇐⇒ t(e) = i(e′) for e, e′ ∈ E. Observe that if the multigraph
is connected, any adapted shift-invariant Markov measure on E∞ is ergodic.

Remark 2.3.1. When E is finite, the space E∞ ⊂ EN of infinite paths is
the subshift of finite type defined by the edge-incidence relation given by the
multigraph. The notation is intentionally the same as for admissible sequences
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in §2.2, since these notions coincide for adapted Markov chains on E, to which
we will from now on restrict our attention. �

Recall that a similarity of RD is a map φ : RD → RD of the form φ(x) =
rO(x) + b for some r > 0, O ∈ OD(R) and b ∈ RD. The number r = ‖φ′‖ is
the similarity ratio of φ. If r < 1, φ is said to be contracting.

Definition 2.3.2. Let (V,E, i, t) be a finite connected directed multigraph
and suppose that for every e ∈ E we are given a similarity φe : RD → RD. Then
the tuple (V,E, i, t, (φe)e) is called a graph-directed similarity IFS.

Ordinary similarity IFS represent the special case of graph-directed similar-
ity IFS with a single vertex. We also emphasize that finiteness and connect-
edness of the directed multigraph are part of our definition of graph-directed
similarity IFS.

It is customary to think of one copy of RD being attached to each vertex,
and the map φe going from the copy at t(e) to the one at i(e). This viewpoint
is consistent with the formula φw = φe0 · · ·φen−1 for words w = e0 . . . en−1.5

We need to introduce some more terminology. A graph-directed similarity
IFS is said to be

• contracting if supe∈E‖φ′e‖ < 1,
• to satisfy the open set condition if there exists a collection (Uv)v∈V of
non-empty open subsets of RD with φe(Ut(e)) ⊂ Ui(e) for every e ∈ E
and φe(Ut(e)) ∩ φe′(Ut(e′)) = ∅ for any distinct edges e, e′ ∈ E with
i(e) = i(e′), and
• to be irreducible if there does not exist a collection (Wv)v∈V of proper
affine subspaces of RD with φe(Wt(e)) = Wi(e) for every e ∈ E.

Given a contracting graph-directed similarity IFS, one proves in complete
analogy to the classical case that there is a unique collection (Kv)v∈V of non-
empty compact subsets of RD such that

Kv =
⋃

i(e)=v
φe(Kt(e))

for every v ∈ V (see [88]). The union K = ⋃
v∈V Kv is called the attractor of

the graph-directed IFS. It can alternatively be obtained as the image of E∞
under the natural projection

Π: E∞ → RD,

ω = (ωj)j 7→ lim
n→∞

φω0 · · ·φωn−1(x),

which is continuous and independent of the choice of x ∈ RD. Observe that
the attractors K arising in this way are precisely what we called sofic similarity
fractals in §2.0.3. Indeed, setting Φ = {φe | e ∈ E}, the image of E∞ under the
map E∞ → ΦN, ω 7→ (φωj)j is a sofic subshift of ΦN.

Generalizing a classical result of Hutchinson [65], Wang [131] identified the
Hausdorff measure on attractors of graph-directed similarity IFS satisfying the
open set condition.

5Incidentally, this also explains the switch to a left-to-right indexing convention.
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Theorem 2.3.3 (Wang [131]). Let (V,E, i, t, (φe)e) be a contracting graph-
directed similarity IFS satisfying the open set condition. Let K be the associated
attractor, s ≥ 0 its Hausdorff dimension, Π the natural projection, and denote
s-dimensional Hausdorff measure by Hs. Then Hs|K is proportional to Π∗P for
some adapted shift-invariant Markov probability measure P on E∞.

2.3.2. Diophantine Approximation and Dani Correspondence. A
matrix M ∈ Rm×n is said to be

• badly approximable if there exists c > 0 such that for all q ∈ Zn \ {0}
and p ∈ Zm we have ‖Mq − p‖ ≥ c‖q‖−n/m,
• well approximable if it is not badly approximable, and
• Dirichlet improvable if there exists 0 < ε < 1 such that for all suffi-
ciently large Q there exist q ∈ Zn \ {0} with ‖q‖∞ ≤ εQ and p ∈ Zm
with ‖Mq − p‖∞ ≤ εQ−n/m.

In the above, ‖·‖∞ denotes the supremum norm on Rm×n and ‖·‖ an arbitrary
norm. A general survey of Diophantine approximation can be found in [11].
For a more specific overview pertaining to the topic at hand we refer to [129,
§7].

The Dani correspondence principle asserts that the Diophantine proper-
ties of a matrix M ∈ Rm×n are encoded in the behavior of the forward or-
bit (a(t)uMx0)t≥0 inside the homogeneous space X = SLd(R)/ SLd(Z), where
d = m + n, x0 denotes the base point in X, and we are using the notation
from §2.2.6. To see this, it is useful to think of X as the space Xd of unimod-
ular lattices in Rd, via the identification

X 3 g SLd(Z)←→ gZd ∈ Xd.

The Mahler compactness criterion then says that a subset A ⊂ X is relatively
compact if and only if it is contained in one of the sets

Kε = {x ∈ X | ∀v ∈ x \ {0} : ‖v‖∞ ≥ ε}
for 0 < ε < 1. Note that these sets themselves are compact, exhaust X, and
satisfy K◦ε1 ⊃ Kε2 for 0 < ε1 < ε2.

Theorem 2.3.4 (Dani correspondence). The matrix M ∈ Rm×n is
(i) badly approximable if and only if the forward orbit {a(t)uMx0 | t ≥ 0}

is relatively compact, i.e. contained in Kε for some 0 < ε < 1,
(ii) Dirichlet improvable if and only if for some 0 < ε < 1 the trajectory

of uMx0 under (a(t))t≥0 eventually leaves Kε, i.e. if there exists T ≥ 0
such that {a(t)uMx0 | t ≥ T} does not intersect Kε.

For the proofs, see Dani [30, Theorem 2.20] and Kleinbock–Weiss [74,
Proposition 2.1].

Corollary 2.3.5. If {a(t)uMx0 | t ≥ 0} is dense in X, then M is well
approximable and not Dirichlet improvable.

In fact, the random walk approach yields the following stronger property.
Definition 2.3.6. A matrix M ∈ Rm×n is said to be of generic type if the

forward orbit (a(t)uMx0)t≥0 is equidistributed in X = SLd(R)/ SLd(Z) with
respect to the Haar measure mX , where d = m + n and x0 denotes the base
point in X.
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2.3.3. Algebraic Similarities as Group Elements. Following [129,
§10], we next interpret a class of similarities of Rm×n as elements of PGLd(R).

Recall the subgroups A,K,U and P = AKU of PGLd(R) defined in §2.2.6.
The group P acts by left multiplication on the space P/AK, which is topolog-
ically identified with U ∼= Rm×n via

Rm×n 3 B ←→ u−BAK ∈ P/AK.

The obtained action of P on Rm×n is faithful and is described as follows: For
B ∈ Rm×n we have

a(t) ·B = et(1/m+1/n)B,

k ·B = O1BO
−1
2 ,

uM ·B = B −M,

for a(t) ∈ A, k = O1 ⊕ O2 ∈ K and uM ∈ U . Thus, P can be identified
with the group of algebraic similarities of Rm×n, i.e. similarities of the form
B 7→ rO1BO2 +M for some r > 0, O1 ∈ Om(R), O2 ∈ On(R) and M ∈ Rm×n.
Note that when m = 1 or n = 1, all similarities of Rm×n are algebraic.

2.3.4. The Approximation Result. We are now ready to formulate and
prove the graph-directed version of [129, Theorem 8.1].

Theorem 2.3.7. Let (V,E, i, t, (φe)e) be a contracting irreducible graph-
directed IFS of algebraic similarities of Rm×n satisfying the open set condition.
Let K denote its attractor and s ≥ 0 its Hausdorff dimension. Then almost
every point on K with respect to s-dimensional Hausdorff measure is of generic
type, so in particular, well approximable and not Dirichlet improvable.

Proof of Theorem 2.0.7. As already remarked, in the case n = 1 all
similarities are algebraic. Now the result follows by an application of Theo-
rem 2.3.7. �

By virtue of Wang’s Theorem 2.3.3, Theorem 2.3.7 above is a consequence
of the following result.

Theorem 2.3.8. Let (V,E, i, t, (φe)e) be an irreducible graph-directed sim-
ilarity IFS on Rm′×n′ consisting of algebraic similarities, and P an adapted
shift-invariant Markov measure on E∞ for which the IFS is contracting on
average, in the sense that ∑

e∈E
log‖φ′e‖π({e}) < 0,

where π denotes the projection of P to the first coordinate. Then the natural
projection Π: E∞ → Rm′×n′ is well-defined P-almost everywhere and almost
every point with respect to Π∗P is of generic type.

Proof. The natural projection is well-defined at ω ∈ E∞ whenever the
contraction ratios ‖φ′ω0...ωn−1‖ decay exponentially. Recalling that adapted shift-
invariant Markov measures are ergodic, it follows from the Birkhoff ergodic
theorem and the contraction-on-average assumption that this is the case P-a.s.
By definition, what we need to show is that the forward orbit (a(t)uΠ(ω)x0)t≥0
is equidistributed with respect to the Haar measure mX on the homogeneous
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space X = SLd(R)/ SLd(Z) = PGLd(R)/PGLd(Z) for P-a.e. ω ∈ E∞, where
d = m′ + n′ and x0 denotes the base point in X.

To see this, we follow Simmons–Weiss’ strategy in the proof of [129, Theo-
rem 8.11] and connect the above orbit with certain random walk trajectories.
First note that P defines an irreducible finite-state Markov chain on the set E
of edges. Using the construction in §2.3.3, we can view the algebraic similari-
ties φe as elements of P 6 G = PGLd(R). Defining the coding map

E 3 e 7→ ge := φ−1
e ∈ P,

we are then in the setting of §2.2. We claim that (after a conjugation) the
assumptions of Proposition 2.2.19 are satisfied. Indeed, validity of (2.2.17) fol-
lows from the contraction-on-average assumption on the φe (notice the inverse
in the definition of the ge), and the assumption on the Lie algebra of He0 for
some e0 ∈ E is satisfied after conjugating the coding map by an element of P
so that He0 contains an element h0 ∈ AK with t(h0) > 0, as the corresponding
argument in [129, §10.1] shows. One just needs to observe that the irreducibil-
ity assumption on the graph-directed IFS forces the IFS consisting of the atoms
of the renewal measure µe0 to be irreducible. (An invariant affine subspace W
for the support of µe0 gives rise to an invariant collection of subspaces (Wv)v
in the graph-directed sense by choosing for each vertex v a path wv from i(e0)
to v starting with e0 and setting Wv = φ−1

wv (W ).) We conclude that Theo-
rem 2.2.17 can be applied for every e ∈ E. Writing P as convex combination of
the measures Pe as in (2.2.1), we thus obtain P-a.s. equidistribution of (gω|nx0)n
towards mX .

We shall use this to argue that the sequence(
k(gω|n)−1uΠ(Tnω)gω|nx0, ωn

)
n

(2.3.1)

equidistributes towards mX ⊗ π for P-a.e. ω ∈ E∞, where k(·) denotes the K-
component of an element of P = AKU . To this end, we consider the Markov
random walk on X ×K given by the coding map E 3 e 7→ (ge, k(ge)) ∈ G×K
and the associated action chain trajectories

(yn)n = (ωn, gω|nx0, k(gω|n))n
in E×X×K. Since P-a.s. the random walk trajectory (gω|nx0)n equidistributes
towards mX , no escape of mass can occur for the sequence 1

n

∑n−1
k=0 δyk of empir-

ical measures. The Breiman law of large numbers (see [9, Corollary 3.3]) thus
implies that P-a.s. every weak* limit ν of this sequence of empirical measures
is a probability measure on E ×X ×K that is stationary for the action chain.
By Lemma 2.2.7, ν decomposes as

ν =
∑
e∈E

π({e})δe ⊗ νe

for µe-stationary probability measures νe on X ×K. Using equidistribution of
(gω|nx0)n once more, we see that the νe project to mX in the first coordinate.
Moreover, for every e ∈ E the closed subgroup Γe generated by the support of
the renewal measure µe is non-compact and therefore acts mixingly on X by
the Howe–Moore theorem. Thus, its action on X × Ke is ergodic, where Ke

denotes the compact group k(Γe). These observations put us in a position to
apply [129, Proposition 5.3]. The conclusion is that νe = mX ⊗ mKe , where
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mKe is the Haar measure on Ke. Hence the limit ν is unique, so that (yn)n
equidistributes P-a.s. towards∑

e∈E
π({e})δe ⊗mX ⊗mKe .

Now part (ii) of Lemma 2.2.9 implies that
(yn, T nω)n

equidistributes towards the probability measure∑
e∈E

π({e})δe ⊗mX ⊗mKe ⊗ Pe

on E ×X ×K × E∞ for P-a.e. ω ∈ E∞.
The natural projection Π is not necessarily continuous in the contracting-

on-average case. However, a standard argument involving Lusin’s theorem still
shows that the equidistribution of (yn, T nω)n established above entails P-a.s.
equidistribution of

(yn,Π(T nω))n
towards ∑

e∈E
π({e})δe ⊗mX ⊗mKe ⊗ Π∗Pe

(cf. the proof of [129, Proposition 5.2]). Applying the continuous map
F : E ×X ×K × Rm′×n′ → X × E,

(e, x, k,M) 7→ (k−1uMx, e),
we finally obtain equidistribution of (2.3.1) towards

F∗

(∑
e∈E

π({e})δe ⊗mX ⊗mKe ⊗ Π∗Pe
)

= mX ⊗ π.

Having established the necessary equidistribution for random walk trajec-
tories, the final ingredient needed to finish the proof is the connection to the
geodesic flow trajectory of uΠ(ω)x0. It comes from the relationship

k(gω|n)−1uΠ(Tnω)gω|nx0 = a(tn)uΠ(ω)x0, (2.3.2)
where tn = t(gω|n). To verify this formula, one first notes that the AK-
components of both sides agree. To see that the U -components do as well,
one applies the inverses of gω|n and u−1

Π(Tnω)k(gω|n)a(tn)uΠ(ω) interpreted as al-
gebraic similarities to the matrix Π(T nω) and observes that the result is Π(ω)
in both cases.

Given a bounded continuous function f on X, it now remains to apply
equidistribution of (2.3.1) towards mX⊗π to the function f ′ on X×E defined
by f ′(x, e) =

∫ t(ge)
0 f(a(t)x) dt. As in the proof of [129, Theorem 8.11], in view

of (2.3.2) this yields

lim
n→∞

1
tn

∫ tn

0
f(a(t)uΠ(ω)x0) dt =

∫
X×E f

′ d(mX ⊗ π)∫
E t(ge) dπ(e) =

∫
X
f dmX .

Using that the sequence (tn)n has bounded gaps, this proves equidistribution
of (a(t)uΠ(ω)x0)t≥0 with respect to mX . �
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Proof of Theorem 2.0.6. Consider a directed multigraph with a single
vertex v0 and edge set E = Φ (with t(φ) = i(φ) = v0 for all φ ∈ Φ). Since the
Markov measure P has full support, it defines an irreducible Markov chain on Φ.
Let π be its stationary distribution and Pπ the associated Markov measure.
Then Theorem 2.3.8 can be applied to Pπ and yields the desired conclusion for
Π∗Pπ-a.e. point on K. Noting that π({φ}) > 0 for all φ ∈ Φ by irreducibility
and using (2.2.1) once for π and once for the projection of P to the first coordi-
nate, we deduce that the conclusion holds Π∗Pφ-a.s. for every φ ∈ Φ, and thus
also Π∗P-a.s. �





CHAPTER 3

Spread Out Random Walks on Homogeneous Spaces

† Let G be a locally compact σ-compact metrizable group, Λ < G a dis-
crete subgroup, and X the homogeneous space G/Λ. We recall that any Borel
probability measure µ on G defines a random walk on X, whose location Φn

after n steps when starting at x0 ∈ X is given by
Φn = Yn · · ·Y1x0, (3.0.1)

where (Yk)k∈N is a sequence of i.i.d. random variables in G with common law µ.
As usual, we are interested in a quantitative description of the asymptotics of
the random walk in terms of some natural, “stable” limiting distribution on X.

In this chapter, we will not a priori restrict to the case that the space X
has finite volume. In this more general setting, by a Haar measure mX on X
we mean a non-trivial G-invariant Radon measure on X (if one exists). In case
X admits a finite Haar measure, we are in the setup of the previous chapters:
Λ is a lattice in G, we assume that mX is normalized to be a probability
measure, and say that X has finite volume. Otherwise, we say that X has
infinite volume. According to this distinction, the discussion in this chapter
splits into two cases.

3.0.1. Finite Volume Spaces. In the finite volume case, the following
version of Question 3 from the Introduction will serve as our motivation.

Question.
(Q1) Do the laws Lx0(Φn) = µ∗n ∗ δx0 converge as n→∞?
(Q2) If yes, can the convergence be made effective?

These questions arise in particular in light of Benoist–Quint’s Theorem B
stated in the Introduction. Answers are known only in special cases: Breuil-
lard [22] established (Q1) for certain measures supported on unipotent sub-
groups, and more recently Buenger [23] was able to positively answer (Q1)
and (Q2) for some sparse solvable measures. In this chapter, we add to this
list the class of aperiodic spread out measures.

Definition 3.0.1. Let µ be a probability measure on G.
• The measure µ is called spread out if for some n0 ∈ N the convolution
power µ∗n0 is not singular with respect to Haar measure on G.
• Let G denote the closed subgroup of G generated by supp(µ). Then
we call µ aperiodic if µ is not supported on a coset of a proper normal
open subgroup of G containing the commutator subgroup [G,G].

†Reprinted with permission. This chapter has been published in a revised form in Ergodic
Theory and Dynamical Systems [https://doi.org/10.1017/etds.2020.98]. This version
is free to view and download for private research and study only. Not for re-distribution,
re-sale or use in derivative works. ©The Author, 2020.
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As we shall see, the qualitative behavior of spread out random walks on
finite volume homogeneous spaces can be understood in great detail, and in
fact for a much larger class of groups than (semisimple) real Lie groups. In par-
ticular, no connectedness assumption needs to be imposed, so that e.g. discrete
or p-adic groups are naturally included in our setup.

Theorem 3.0.2. Let Λ < G be a lattice and µ an aperiodic spread out
probability measure on G. Then for every x0 ∈ X the orbit Gx0 is clopen in X
and we have

‖µ∗n ∗ δx0 −mGx0‖ −→ 0 (3.0.2)
as n→∞, where mGx0 denotes the normalized Haar measure on Gx0 and ‖·‖ is
the total variation norm. If the random walk additionally admits a continuous
and everywhere finite Lyapunov function (see §3.3.2), then there is a constant
κ > 0 such that for every compact subset K ⊂ X and n ∈ N we have

sup
x∈K
‖µ∗n ∗ δx −mGx‖ �K e−κn.

For example, the latter holds when G is a connected semisimple real algebraic
group without compact factors and µ has compact support.

For a statement without the aperiodicity assumption we refer the reader to
the discussion in §3.3.

In two special cases, the above result takes a particularly simple form. One
of them is when X is connected, the other when µ is adapted.

Definition 3.0.3. A probability measure µ on G is called adapted if the
closed subgroup G generated by supp(µ) coincides with G.

Corollary 3.0.4. Let Λ < G be a lattice and µ a spread out probability
measure on G. Suppose that X is connected or that µ is additionally adapted
and aperiodic. Then for every x0 ∈ X we have

‖µ∗n ∗ δx0 −mX‖ −→ 0
as n→∞, where mX denotes the normalized Haar measure on X.

Remark 3.0.5. In the literature on spread out random walks it has been
customary to restrict attention to adapted measures µ ([54, 63, 108, 121,
122]). This is indeed often justified, since one can replace G by G = 〈supp(µ)〉
(see Lemma 3.2.1). However, as a consequence one must also replace X by an
orbit Gx, which is not always desirable. Hence, we emphasize that in the case
of a connected space X, adaptedness (or aperiodicity) of µ are not needed as
assumptions in the above corollary, distinguishing this result from the existing
literature. �

Our approach is to analyze the random walk given by a spread out mea-
sure µ from the viewpoint of general state space Markov chain theory. The key
observation is that it is a positive Harris recurrent T -chain on every G-orbit
in X. A connectedness assumption can then be used to establish transitivity
(i.e. Gx = X) and rule out periodic behavior. Feeding all of this into the
general theory, we obtain our results.

As a matter of fact, exploring the extent to which Markov chain theory
can be of use in the study of random walks on finite volume homogeneous
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spaces has been one of the motivations for the present work. As they note,
already Benoist–Quint’s approach was inspired by Markov chain methods ([8,
p. 702]); however, they could not directly apply available results, since the key
assumption of ψ-irreducibility was not satisfied in the applications they had in
mind ([8, p. 703]). A natural question is when this assumption is satisfied. As
part of our discussion, we show that this is the case precisely for spread out
measures (see Proposition 3.2.5 and Corollary 3.2.6).

3.0.2. Infinite Volume Spaces. Most of the qualitative analysis under-
lying Theorem 3.0.2 can also be carried out in the infinite volume case. For
the upgrade to quantitative information though, one has to deal with an addi-
tional issue: recurrence of the random walk. The following dichotomy theorem
of Hennion–Roynette describes the situations that can occur for spread out
random walks. We write Px for a probability measure under which the random
walk (3.0.1) starts at x ∈ X and Ex for the associated expectation (see §3.1.1).

Theorem 3.0.6 (Hennion–Roynette [63]). Let µ be an adapted spread out
probability measure on G. Suppose that X admits a Haar measure mX . Then
either

(i) all states x ∈ X are topologically Harris recurrent, meaning that

Px[Φn ∈ B infinitely often] = 1

for all neighborhoods B of x, or
(ii) all states x ∈ X are topologically transient, meaning that for some

neighborhood B of x

Ex
[ ∞∑
n=1

1Φn∈B

]
<∞.

Accordingly, the random walk on X given by µ is called topologically Harris
recurrent or topologically transient.

It is not difficult to see that spread out random walks on finite volume
spaces are topologically Harris recurrent. Indeed, Kakutani’s random ergodic
theorem ([67], see also [48]) implies that mX-a.e. point satisfies the condition
in (i). In general, what spaces X admit topologically Harris recurrent spread
out random walks is a difficult question, extensively studied by Schott [54, 108,
120, 121, 122], which turns out to be intimately linked to the growth of the
space.

Definition 3.0.7. Suppose that X admits a Haar measure mX . Then X is
said to have polynomial growth of degree at most d if there exists a generating
relatively compact neighborhood B of the identity in G and x ∈ X such that

lim sup
n→∞

mX(Bnx)
nd

<∞.

In this case, it can be shown that the above holds for all choices of x and B
([54]). When d = 2 we say the growth is at most quadratic.

Analogous to the more classical case of random walks on groups (for which
see e.g. [56] and the references therein), the “quadratic growth conjecture”
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states that the homogeneous space X = G/Λ admits topologically Harris re-
current spread out random walks if and only if it is of at most quadratic growth.
For example, this is known to hold if G is a connected real Lie group of poly-
nomial growth (Hebisch–Saloff-Coste [61, §10]) or a p-adic algebraic group of
polynomial growth (Raja–Schott [108]). In this chapter, we show that one
implication holds in general.

Theorem 3.0.8. Suppose that X admits a Haar measure and has at most
quadratic growth. Let µ be an adapted symmetric spread out probability mea-
sure on G with compact support. Then the random walk on X given by µ is
topologically Harris recurrent.

Here the requirement of µ being “symmetric” means that µ(A) = µ(A−1)
for all measurable A ⊂ G.

Once Harris recurrence is established, we have an analogue of (3.0.2) in the
form of a ratio limit theorem.

Theorem 3.0.9. Let µ be an adapted spread out probability measure on G.
Suppose that X admits a Haar measure mX and that the random walk on X
given by µ is topologically Harris recurrent. Then for any x1, x2 ∈ X and
two bounded measurable functions f1, f2 on X with compact support such that
f2 ≥ 0 and

∫
X f2 dmX 6= 0 we have∑n

j=0
∫
X f1 d(µ∗j ∗ δx1)∑n

j=0
∫
X f2 d(µ∗j ∗ δx2) −→

∫
X f1 dmX∫
X f2 dmX

as n→∞. If µ is additionally symmetric and aperiodic, then∫
X f1 d(µ∗n ∗ ν1)∫
X f2 d(µ∗n ∗ ν2) −→

∫
X f1 dmX∫
X f2 dmX

(3.0.3)

as n→∞ for any two probability measures ν1, ν2 � mX with bounded density.

Remark 3.0.10. We conjecture that (3.0.3) also holds with Dirac measures
δx1 , δx2 in place of ν1, ν2 for arbitrary x1, x2 ∈ X. Unfortunately, we can only
prove this under the additional condition

lim sup
n→∞

(µ∗n ∗ δxi)(A)
(µ∗n ∗mA)(A) ≤ 1 (3.0.4)

for i = 1, 2, where A is a certain “small” subset of X (see the proof of The-
orem 3.0.9 in §3.3.5) and mA = mX(A)−1mX |A is the normalized restriction
of mX to A. �

A standard example to which the previous results apply is the following.

Example 3.0.11 (Covering spaces). Let G be a connected real Lie group,
Λ′ < G a cocompact lattice and Λ < Λ′ a normal subgroup. Then X = G/Λ
is a Λ′/Λ-cover of G/Λ′, so that X has at most quadratic growth if this is the
case for the discrete group Λ′/Λ. �

For simple non-compact Lie groups of real rank 1, symmetric finitely sup-
ported measures µ, and Λ′/Λ ∼= Z or Z2, recurrence in the above example
has been known (Conze–Guivarc’h [28, Proposition 4.5]). The corresponding
recurrence result under our conditions is new.
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3.0.3. Examples of Spread Out Measures. We conclude this intro-
duction by shedding some more light on the nature of spread out measures.
Naturally, the first examples coming to mind are measures absolutely contin-
uous with respect to Haar measure on G. However, the class of spread out
measures is much larger and also contains many interesting singular measures,
as the following examples aim to illustrate.

Example 3.0.12 (Affine random walks on the torus). An affine transfor-
mation on the torus Td = Rd/Zd is a map of the form

Td 3 x 7→ gx+ v, (3.0.5)

where g ∈ SLd(Z) is a unimodular integer matrix and v ∈ Rd is a translation
vector. They fit into our setup in the following way: The group G is the
semidirect product SLd(Z)nRd with group law (g, v)(h,w) = (gh, gw+ v) and
the lattice is given by Λ = SLd(Z) n Zd. Then Td ∼= X = G/Λ, an element
(g, v) ∈ G acts on x ∈ X precisely by (3.0.5), and an affine random walk on
the torus is described by a measure µ on G.

We shall now explain when such a measure µ is spread out in two cases.
Let us write λv for the pushforward of a measure λ on R to a line Rv ⊂ Rd via
t 7→ tv.

(i) The simplest case is when the linear part of the random walk is de-
terministic, given by a single matrix a ∈ SLd(Z). For the measure µ,
this means that µ = δa ⊗ µtrans for some probability measure µtrans
on Rd giving the distribution of the translational part. When µtrans
has d-dimensional density, already µ is not singular with respect to
Haar measure mG = mcount ⊗mRd on G, and so in particular spread
out. However, we can do much better than that: It often suffices for
µtrans to have density in only one direction. More precisely, let λ be a
probability measure on R that is not singular with respect to Lebesgue
measure, v ∈ Rd a unit vector, and µtrans = λv. Then µ = δa ⊗ λv is
spread out if and only if {v, av, . . . , ad−1v} spans Rd.

(ii) A similar characterization is possible when the linear and translational
parts of µ are only assumed to be independent, i.e. if µ = µlin ⊗ µtrans
for some probability measures µlin on SLd(Z) and µtrans on Rd. Aiming
to introduce as little density as possible, we again suppose µtrans = λv
for some λ non-singular with respect to Lebesgue measure on R and
a unit vector v ∈ Rd. Then µ = µlin⊗ λv is spread out if and only if v
is not contained in a proper supp(µlin)-invariant subspace of Rd. For
example, this is automatically the case under the common assumption
that the semigroup S generated by supp(µlin) acts irreducibly on Rd.

The justification of the claims in the two points above is the following
observation: If η is a measure on a subspace V ⊂ Rd non-singular with respect
to Lebesgue measure on that subspace, then by definition of the group law
on G we have

µ ∗ (δs ⊗ η)� δas ⊗ η′

for any a ∈ supp(µlin) and s ∈ SLd(Z), where η′ is supported on V ′ = Rv+ aV
and again non-singular with respect to Lebesgue measure on that space. In
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other words, in each convolution step we can pass from a density on V to a
density on V ′ = Rv + aV for any a ∈ supp(µlin). Starting from η = λv and
V = Rv, the question of whether µ is spread out is thus equivalent to asking if
it is possible to reach V ′ = Rd in finitely many such steps. With a little work,
this yields the stated conditions. �

Example 3.0.13. Let G = SL2(R) and

U =
{
us =

(1 s
0 1

) ∣∣∣∣ s ∈ R
}
∼= R

be the upper unipotent subgroup. Furthermore, let f : U → [0,∞) be any
continuous density with f(u0) > 0 and

∫
U f ds = 1, set dµU = f ds and

u− = ( 1 0
1 1 ). Then for the probability measure µ = 1

2(µU + δu−), the fifth
convolution power µ∗5 has a non-trivial absolutely continuous component, as a
calculation shows. (For example, observe that in a neighborhood of the origin,
(a, b, c) 7→ uau−ubu−uc is a smooth chart of a neighborhood of u2

− inside G.)
Hence, µ is singular with respect to Haar measure, yet spread out. �

3.1. Markov Chain Theory for Random Walks

In this section, we lay the foundations for all following discussions. We re-
view the relevant concepts and results from general state space Markov chain
theory in §3.1.1, and make the connection to spread out random walks in §3.1.2.
Throughout, an important reference is going to be Meyn and Tweedie’s com-
prehensive book [90].

3.1.1. Preliminaries. We begin with preliminaries from general state
space Markov chain theory. Readers familiar with the subject may skip this
subsection and only consult it for notation, when necessary.

Even though large parts of the theory are valid under the mere assumption
that the state space is a measurable space endowed with a countably generated
σ-algebra, for us it is not going to be a restriction to assume that X is a σ-
compact locally compact metrizable space endowed with its Borel σ-algebra B.

The first notion to introduce is that of a transition kernel on X: This is a
map P : X × B → [0,∞] such that P (x, ·) is a Borel measure on X for every
x ∈ X and x 7→ P (x,A) is measurable for every A ∈ B. It acts on functions f
on X from the left and on measures ν on X from the right by virtue of

Pf(x) =
∫
X
P (x, dy)f(y) and νP (A) =

∫
X
ν(dx)P (x,A)

for x ∈ X and A ∈ B. A transition kernel is called stochastic if every P (x, ·)
is a probability measure, and substochastic if P (x,X) ≤ 1 for every x ∈ X.
A σ-finite measure ν on X is called P -subinvariant if νP ≤ ν and P -invariant
if νP = ν. When the transition kernel is clear from context, we just speak
of (sub)invariant measures. The powers P n of P are defined inductively by
P 0(x, ·) = δx and P n(x,A) =

∫
X P

n−1(x, dy)P (y, A) for n ∈ N, which general-
izes to the “Chapman–Kolmogorov equations”

Pm+n(x,A) =
∫
X
Pm(x, dy)P n(y, A)

for x ∈ X, A ∈ B, and m,n ∈ N.
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A Markov chain on X is an X-valued stochastic process Φ = (Φn)n∈N0

whose steps are governed by a stochastic transition kernel. Formally, this means
that there exists a starting distribution ν on X and a stochastic transition
kernel P on X such that
P[Φ0 ∈ A0, . . . ,Φn ∈ An] =

∫
x0∈A0
· · ·

∫
xn−1∈An−1

ν(dx0)P (x0, dx1) · · ·P (xn−1, An)

for every n ∈ N0 and A0, . . . , An ∈ B. This formula (specifically, the absence of
the variables x0, . . . , xk−1 in the term P (xk, dxk+1)) captures the quintessential
idea behind a Markov chain that the distribution of the following state Φn+1
depends only on the current state Φn via the transition kernel P . In terms of
conditional distributions, this dependence can be expressed as

L(Φn+1|Φn = x,Φn−1, . . . ,Φ0) = L(Φn+1|Φn = x) = P (x, ·).
It can be shown that a Markov chain on X exists for every fixed starting
distribution ν and stochastic transition kernel P ([90, Theorem 3.4.1]). In
fact Φ may always be assumed to be the canonical coordinate process on XN0 ;
only the probability measure P on XN0 needs to be chosen accordingly. It
is customary to regard the starting distribution as variable and think of a
Markov chain on X as being defined by the transition kernel P alone. The
probability measure on XN0 making the canonical process into a Markov chain
with starting distribution ν is then denoted by Pν . When ν = δx is the Dirac
mass at some x ∈ X, one simply writes Px. The associated expectations are
denoted Eν and Ex, respectively.

Example 3.1.1. The random walk on X = G/Λ given by a probability
measure µ on G is a Markov chain with transition kernel

P (x, ·) = µ ∗ δx.
Its powers are given by P n(x, ·) = µ∗n ∗ δx, where µ∗n is the n-th convolution
power of µ, defined inductively by µ∗0 = δe, where e ∈ G is the identity
element, and µ∗n =

∫
G g∗µ

∗(n−1) dµ(g) for n ∈ N. Equivalently, µ∗n is the law
of a product Yn · · ·Y1 of i.i.d. random variables Y1, . . . , Yn in G with common
distribution µ. If Lx denotes the law under Px for some x ∈ X, we thus have

Lx(Φn) = P n(x, ·) = δxP
n = µ∗n ∗ δx,

and, more generally, for a starting distribution ν on X,
Lν(Φn) = νP n = µ∗n ∗ ν. �

Let us next introduce a few important quantities associated to a Markov
chain. The first return time τA and occupation time ηA of a set A ∈ B are
defined by

τA = min{n ≥ 1 | Φn ∈ A}, ηA =
∞∑
n=1

1Φn∈A,

and the return probability and expected number of visits to A starting from x
are

L(x,A) = Px[τA <∞], U(x,A) = Ex[ηA] =
∞∑
n=1

P n(x,A),

respectively. Note that U : X × B → [0,∞] is a transition kernel on X.
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We now address the notion of ψ-irreducibility, which was already mentioned
in the introduction to this chapter. A σ-finite measure ϕ on X is called an ir-
reducibility measure for a Markov chain on X if for every A ∈ B with ϕ(A) > 0
we have L(x,A) > 0 for all x ∈ X. In other words, this means that any
ϕ-positive set can be reached from everywhere with positive probability. The
Markov chain is called ψ-irreducible if it admits a non-trivial irreducibility mea-
sure. In this case, it can be shown that there exists a maximal irreducibility
measure, that is, an irreducibility measure ψ with the property that every other
irreducibility measure is absolutely continuous with respect to ψ ([90, Propo-
sition 4.2.2]). Without loss of generality one may assume ψ to be a probability
measure. By definition, the measure class of a maximal irreducibility measure
is uniquely determined by the Markov chain (i.e. by its defining transition ker-
nel P ). This justifies the implicit understanding (and slight abuse of notation)
common in the literature that, given a ψ-irreducible Markov chain, ψ always
denotes an associated maximal irreducibility measure.

For ψ-irreducible chains there is a recurrence/transience dichotomy similar
to the classical discrete theory. To state it, we call a set A ⊂ X uniformly
transient if the expected number of returns to A is bounded on A, i.e. if
supx∈A U(x,A) < ∞, and recurrent if the expected number of returns is in-
finite on all of A, i.e. if U(x,A) =∞ for all x ∈ A.

Theorem 3.1.2 ([90, Theorem 8.0.1]). Suppose Φ is ψ-irreducible. Then
either

(i) every ψ-positive set is recurrent, in which case Φ is called recurrent,
or

(ii) the state space X can be covered by countably many uniformly transient
sets, in which case Φ is called transient.

We emphasize that ψ-irreducibility is included in these definitions of recur-
rence and transience. For recurrent chains, one has the following conclusion
about invariant measures.

Theorem 3.1.3 ([90, Theorem 10.4.9]). Suppose Φ is recurrent. Then
there exists a non-trivial σ-finite invariant measure π, which is unique up to
scalar multiples. Moreover, π is a maximal irreducibility measure.

As in the classical theory, a further refinement of recurrence is possible:
The chain is called positive if it is ψ-irreducible and admits a non-trivial finite
invariant measure. This forces the chain to be recurrent.

Proposition 3.1.4 ([90, Proposition 10.1.1]). A positive chain is recurrent.
In particular, a positive chain admits a unique invariant probability measure,
which is a maximal irreducibility measure.

For this reason, positive chains are also called “positive recurrent”.
In the general theory, there is one more important notion of recurrence

that does not appear in the discrete theory. Namely, in the latter, a recurrent
state x always satisfies Px[τx < ∞] = 1, and hence by the Markov property
also Px[ηx = ∞] = 1. Since in more general spaces there might be no returns
to the precise starting point, such conclusions can no longer be drawn. Let us
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write

Q(x,A) = Px[ηA =∞]

for x ∈ X and A ∈ B, call the set A Harris recurrent if Q(x,A) = 1 for
every state x ∈ A, and the whole chain Φ Harris recurrent if it is ψ-irreducible
and every ψ-positive set is Harris recurrent. Clearly, Harris recurrence implies
recurrence. We call Φ positive Harris recurrent if it is positive and Harris
recurrent.

The final notion we need to introduce is that of aperiodicity, which naturally
plays a role in questions of convergence to a stable distribution.

Theorem 3.1.5 ([90, Theorem 5.4.4]). Let Φ be ψ-irreducible. Then there
exists a maximal positive integer d, called the period of Φ, with the property that
there are pairwise disjoint sets D0, . . . , Dd−1 ∈ B such that P (x,Di+1 mod d) = 1
for each x ∈ Di and i = 0, . . . , d− 1 and such that the union ⋃d−1

i=0 Di is ψ-full.

A collection of measurable sets D0, . . . , Dd−1 as in the above theorem is
referred to as a d-cycle for Φ. A ψ-irreducible chain with period 1 is called
aperiodic.

3.1.2. T -Chains. As already pointed out, the notions of recurrence for
ψ-irreducible chains require certain properties of returns to ψ-positive measur-
able sets from arbitrary starting points, not taking into account topological
properties of the state space. Of course this makes sense, as the topology did
not feature in any of the definitions up to this point. In order to connect the
chain to the topology, one thus needs an additional concept. Several notions
accomplishing this appear in the literature; the one best suited for the study of
random walks is that of a “T -chain” introduced by Tuominen–Tweedie [130].
Its definition involves the “sampling” of a transition kernel P : Given a prob-
ability distribution a on N0, the sampled transition kernel Ka with sampling
distribution a is defined by

Ka =
∞∑
n=0

a(n)P n.

Definition 3.1.6. A Markov chain Φ on X given by a transition kernel P
is called a T -chain if there exists a sampling distribution a on N0 and a sub-
stochastic transition kernel T on X with

(i) Ka(x,A) ≥ T (x,A) for all x ∈ X and A ∈ B,
(ii) T (x,X) > 0 for all x ∈ X, and such that
(iii) T (·, A) is lower semicontinuous for all A ∈ B.

We call T a continuous component of P .

Let us describe the links the T -property establishes between recurrence
and topology. We call a state x0 ∈ X reachable if L(x,B) > 0 for every
x ∈ X and neighborhood B of x0, topologically Harris recurrent if Q(x0, B) = 1
for each neighborhood B of x0, and topologically recurrent if U(x0, B) = ∞
for each neighborhood of x0. If x0 is not topologically recurrent, it is called
topologically transient. The first result we shall need infers ψ-irreducibility
from the existence of a reachable state.
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Proposition 3.1.7 ([90, Proposition 6.2.1]). If a T -chain admits a reach-
able state, it is ψ-irreducible.

The second one is a strong decomposition statement, allowing the splitting
of the state space X into a Harris recurrent and a transient part.

Theorem 3.1.8 ([90, Theorem 9.3.6]). For a ψ-irreducible T -chain, the
state space X admits a decomposition

X = H tN

into a Harris set H (meaning that P (x,H) = 1 for each x ∈ H and the
restriction of the chain to H is Harris recurrent) and a set N consisting of
topologically transient states.

The following result is the motivation for introducing Markov chain meth-
ods in the study of spread out random walks. For random walks on groups it
is due to Tuominen–Tweedie [130, Theorem 5.1(i)]; the case of a homogeneous
space X is not much more complicated.

Proposition 3.1.9. Let G be a σ-compact locally compact metrizable group,
Λ < G a discrete subgroup, and X the homogeneous space G/Λ. Then the
random walk on X given by a probability measure µ on G is a T -chain if
and only if µ is spread out. In this case, the sampling distribution a and the
continuous component T may be chosen such that

• a = δn0 for some n0 ∈ N,
• T (·, X) is constant, and
• Tf is continuous for every bounded measurable function f on X.

For convenience we include a proof, which adapts that of [90, Proposi-
tion 6.3.2] to the setting at hand.

Proof. Denote by pr : G → X, g 7→ gΛ the canonical projection. Recall-
ing Example 3.1.1, we see that the powers of the transition kernel P of the
random walk on X are given by

P n(x,A) =
∫
G
h∗δgΛ(A) dµ∗n(h) = µ∗n(pr−1(A)g−1) (3.1.1)

for n ∈ N, x = gΛ ∈ X, and A ⊂ X. Let mG denote a left Haar measure on G.
Assume first that the random walk is a T -chain. If every convolution

power µ∗n for n ∈ N is singular with respect to mG, we find a set EG ⊂ G with
µ∗n(EG) = 1 for all n ∈ N and mG(EG) = 0. Enlarging EG if necessary, we may
assume that the identity e ∈ G belongs to EG and that EG is right-Λ-invariant.
Write E = pr(EG) and let a be the sampling distribution associated to the
continuous component T of the random walk. Then

T (eΛ, Ec) ≤ Ka(eΛ, Ec) =
∞∑
n=0

a(n)P n(eΛ, Ec)︸ ︷︷ ︸
=µ∗n(EcG)=0

= 0,

where we used (3.1.1), that pr−1(Ec) = Ec
G by the assumed right-Λ-invariance

and e ∈ EG for n = 0. Properties (ii) and (iii) in the definition of a T -chain
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thus produce δ > 0 and a neighborhood B of eΛ ∈ X with T (x,E) ≥ δ, and
hence also

Ka(x,E) ≥ δ

for all x ∈ B. But by translation invariance of mG and Fubini’s theorem, we
find

mG(EG) =
∫
G
mG(g−1EG) dµ∗n(g)

=
∫
G
µ∗n(EGh−1) dmG(h)

=
∫
G
P n(hΛ, E) dmG(h),

which, after summing with the weights a(n), yields the contradiction

mG(EG) =
∫
G
Ka(hΛ, E) dmG(h)

≥
∫

pr−1(B)
Ka(hΛ, E) dmG(h)

≥ δmG(pr−1(B)) > 0.
For the converse, suppose that µ∗n0 is not singular with respect to mG

for some n0 ∈ N. Then there exists a non-negative mG-integrable function
p : G→ R with

∫
p dmG > 0 and dµ∗n0 ≥ p dmG. Denoting by ∆ the modular

character of G, we obtain for x = gΛ ∈ X and A ⊂ X

P n0(x,A) ≥
∫

pr−1(A)g−1
p dmG = ∆(g)−1

∫
pr−1(A)

p(g′g−1) dmG(g′) =: T (x,A).

The sampling distribution a = δn0 together with this T are then seen to possess
all claimed properties. �

3.2. Spread Out Random Walks

This section is the central part of the chapter, aiming to give a complete
picture of the qualitative behavior of spread out random walks on homogeneous
spaces.

In what follows, we are not going to assume that Λ is a lattice or that G
is unimodular, so that there will in general be no G-invariant measure on the
quotient X = G/Λ. However, for every continuous character χ : G → R>0
extending the restriction ∆|Λ of the modular character ∆ of G to Λ, there
exists a non-trivial Radon measure mX,χ on X that is χ-quasi-invariant in the
sense that

g∗mX,χ = χ(g)mX,χ

for all g ∈ G. Such a measure is unique up to scalars. Two important cases of
this construction are χ = ∆, the choice of which is always possible, and χ = 1,
which is a possible choice whenever ∆(γ) = 1 for all γ ∈ Λ. In the latter case,
mX = mX,1 is a Haar measure on X. All mX,χ belong to the same measure
class, which we refer to as the Haar measure class on X. This terminology is
justified by the fact that mX,∆ can be identified with the restriction of a right
Haar measure on G to a fundamental domain for Λ. We refer to [19, Ch.VII§2]
for details.
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Slightly abusing notation, we are going to denote the Haar measure class
on X by [mX ], and for a measure ν on X write ν � [mX ], ν ∼ [mX ], [mX ]� ν
to express that ν is absolutely continuous with respect to [mX ], contained
in [mX ], or that [mX ] is absolutely continuous with respect to ν, respectively.

Standing Assumptions & Notation. Let us summarize at this point
the standing assumptions and notations that will be in effect for the remainder
of the chapter when nothing else is specified: µ is a probability measure on
a locally compact σ-compact metrizable group G; S and G are the closed
subsemigroup and subgroup of G generated by supp(µ), respectively; Λ < G
is a discrete subgroup; X is the homogeneous space G/Λ; [mX ] is the Haar
measure class on X and mX a Haar measure (when one exists); and P is the
transition kernel of the random walk on X induced by µ.

3.2.1. Transitivity & ψ-Irreducibility. Let x ∈ X be the starting point
for our random walk. Then, in some sense, everything outside the closed sub-
group G of G generated by supp(µ) and outside the orbit Gx ⊂ X is irrelevant
for the study of the random walk. The following simple lemma shows how such
redundancy can be removed.

Lemma 3.2.1. Let µ be a spread out probability measure on G. Then G is
an open subgroup of G. For every x = gΛ ∈ X the orbit Gx is a clopen subset
of X satisfying G/(G ∩ gΛg−1) ∼= Gx. If X has finite volume, then so does
G/(G ∩ gΛg−1).

Proof. From the formula

supp(µ∗m) supp(µ∗n) = supp(µ∗(m+n)) (3.2.1)

for m,n ∈ N we see that supp(µ∗n) ⊂ G for every n ∈ N. Since µ is spread
out and the convolution of bounded integrable functions on G is continuous,
some convolution power µ∗n0 has a component with continuous density with
respect to Haar measure on G. Thus G ⊃ supp(µ∗n0) has non-empty interior,
and consequently G is open. Since the action map G 3 g 7→ gx ∈ X is a local
homeomorphism, this implies that also Gx is open. But then X is a disjoint
union of such open G-orbits, so that all of them must also be closed. Writing
x = gΛ, the isomorphism G/(G ∩ gΛg−1) ∼= Gx of G-spaces follows, since
G ∩ gΛg−1 = StabG(x). When X has finite volume, this quotient supports a
finite invariant measure inherited from the restriction of Haar measure on X
to Gx, so that G ∩ gΛg−1 is a lattice in G. �

In other words, at the price of replacing X by Gx, we are free to assume
that µ is adapted. In view of this, we will formulate most of the following
results only for adapted measures.

Preparing for the proof of ψ-irreducibility of spread out random walks, our
next objective is to find a more efficient description of an orbit Gx. We will
use the notation Λg = gΛg−1 for g ∈ G.

Lemma 3.2.2. The set S = ⋃∞
n=1 supp(µ∗n) is a subsemigroup of G with

S = S. If µ is spread out and adapted and SΛg = {sγ |s ∈ S, γ ∈ Λg} equals G
for all g ∈ G, then S acts transitively on X.



3.2. SPREAD OUT RANDOM WALKS 75

Proof. That S is a semigroup with supp(µ) ⊂ S ⊂ S follows from (3.2.1).
Since S is by definition the smallest closed subsemigroup of G containing
supp(µ), we must have S = S.

Let us now show transitivity of the S-action on X under the stated as-
sumptions. To this end, note first that SΛg is dense in G for every g ∈ G,
since

SΛg =
⋃
γ∈Λg

Sγ ⊃
⋃
γ∈Λg

Sγ =
⋃
γ∈Λg
Sγ = SΛg = G.

Now let x, y ∈ X be arbitrary. We need to find an element of S sending x to y.
Choose g ∈ G with gx = y and write x = hΛ for some h ∈ G. Using that
S has non-empty interior (by the same argument as in Lemma 3.2.1), we can
find a non-empty open subset U of G contained in S. By density of SΛh in G,
it follows that U−1g intersects SΛh non-trivially, say u−1g = shγh−1 for some
u ∈ U ⊂ S, s ∈ S and γ ∈ Λ. Recalling that x = hΛ, we conclude that

usx = ghγ−1h−1x = ghΛ = gx = y,

so that the element us ∈ S has the required property. �

The conclusion of the previous lemma will be important for many of the
following results. Let us therefore give a name to its set of assumptions.

Definition 3.2.3. We say that a probability measure µ on G is Λ-adapted
if µ is adapted and SΛg = G for all g ∈ G, where Λg = gΛg−1.

For spread out random walks on finite volume spaces, the second require-
ment in the above definition is redundant.

Proposition 3.2.4. Let µ be spread out and adapted and suppose that X
has finite volume. Then µ is Λ-adapted.

Proof. We claim that for every x ∈ X, the orbit A = Sx equals X. This
will imply that for every g, g′ ∈ G there exists s ∈ S with sgΛ = g′gΛ, which
is the desired conclusion.

To prove the claim, observe that A satisfies sA ⊂ A ⊂ s−1A for every s ∈ S.
By invariance of mX we also know that the mX-measures of these three sets
coincide, so it follows that the characteristic function 1A is mX-a.s. invariant
under each element of S ∪ S−1 (individually). We conclude that 1A is mX-a.s.
invariant under each element of a dense subset of G, hence under all of G by
continuity of the regular representation on L1(X). But as S has non-empty
interior, we know that A has positive measure, so that G-invariance forces
mX(A) = 1. But then, if there was some y ∈ X \A, we would have a set S−1y
disjoint from A which also has positive measure (since also S−1 has non-empty
interior), which is a contradiction. �

We can now relate the property of a probability measure being spread out
to ψ-irreducibility of the induced random walk. Recall the convention that
when speaking about ψ-irreducibility, ψ always denotes a maximal irreducibil-
ity measure.

Proposition 3.2.5. Let µ be a probability measure on G. If the random
walk on X given by µ is ψ-irreducible, then µ is spread out and ψ � [mX ].
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Conversely, if µ is spread out and Λ-adapted, then the random walk on X is
ψ-irreducible with [mX ] ∼ ψ.

Proof. Let us suppose first that the random walk on X given by µ is ψ-
irreducible and letmX,χ be a quasi-invariant measure onX for some character χ
of G. Then for every measurable subset A ⊂ X we find, using Fubini’s theorem,∫

X
P (x,A) dmX,χ(x) =

∫
G
mX,χ(h−1A) dµ(h) =

∫
G
χ dµ ·mX,χ(A). (3.2.2)

In other words, we have mX,χP = c(χ, µ)mX,χ for the constant c(χ, µ) =∫
G χ dµ. Consider the sampled transition kernel Ka = ∑

n≥0 a(n)P n with
a(n) = 2−(n+1) for n ∈ N0. By definition of an irreducibility measure, for
every ψ-positive set A ⊂ X it satisfies Ka(x,A) > 0 for all x ∈ X. If A were
an [mX ]–null set, it would follow that

0 < mX,χKa(A) =
∞∑
n=0

a(n)mX,χP
n(A) =

∞∑
n=0

a(n)c(χ, µ)nmX,χ(A) = 0,

which is a contradiction. We have thus shown that ψ � [mX ]. If µ is not spread
out, then as in the proof of Proposition 3.1.9 there exists a right-Λ-invariant
measurable set e ∈ EG ⊂ G with µ∗n(EG) = 1 for all n ∈ N and mG(EG) = 0,
where mG denotes a left Haar measure on G. The set E = pr(EG), where
pr : G → X, g 7→ gΛ denotes the projection, is then an [mX ]–null set. Using
ψ � [mX ] it follows that ψ(Ec) > 0; yet we have P n(eΛ, Ec) = µ∗n(Ec

G) = 0
for all n ∈ N0. This contradicts ψ-irreducibility, hence µ must be spread out.

For the converse, recall from Proposition 3.1.9 that the random walk on X
induced by a spread out measure µ is a T -chain. By Proposition 3.1.7, ψ-
irreducibility can be established by proving existence of a reachable state. But
from Lemma 3.2.2 it in fact follows that every x0 ∈ X is reachable: Given any
other point x ∈ X, it can be written as x0 = sx for some s ∈ supp(µ∗n), and
we conclude for any neighborhood B of the identity in G that

L(x,Bx0) ≥ P n(x,Bx0) = P n(x,Bsx) ≥ µ∗n(Bs) > 0.
Hence, the random walk is ψ-irreducible. The first part of the proposition thus
yields ψ � [mX ]. To also obtain [mX ] � ψ, it suffices to show that members
of the Haar measure class are irreducibility measures. Let therefore A ⊂ X be
an [mX ]-positive set and define AG = pr−1(A). Then also mG(AG) > 0. By
Proposition 3.1.9 and its proof, for some n0 ∈ N the kernel P n0 has a continuous
component T given by an absolutely continuous measure p dmG on G, where
p is an mG-integrable function on G with

∫
G p dmG > 0. In particular, we

know mG(p−1((0,∞))) > 0, so that by a standard fact of measure theory also
mG(AGg−1 ∩ p−1((0,∞))) > 0 for some g ∈ G. It follows that

T (gΛ, A) =
∫
AGg−1

p dmG > 0. (3.2.3)

But as gΛ is reachable, [90, Proposition 6.2.1] implies that T (gΛ, ·) is an ir-
reducibility measure, so that (3.2.3) entails L(x,A) > 0 for all x ∈ X. This
completes the proof. �

Corollary 3.2.6. Let µ be spread out and adapted and suppose that X
has finite volume. Then the random walk on X given by µ is ψ-irreducible with
ψ ∼ [mX ].
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Proof. Combine Propositions 3.2.4 and 3.2.5. �

One may wonder whether in the first statement of the previous proposition,
ψ must even belong to the Haar measure class on X. In view of the second
conclusion this is true when µ is additionally Λ-adapted. In general however,
it does not hold, as the following example demonstrates.

Example 3.2.7. Let G = R>0 n R be the ax + b-group of affine transfor-
mations of R, with group law given by

(a, b)(a′, b′) = (aa′, ab′ + b)

for a, a′ ∈ R>0 and b, b′ ∈ R, and consider the discrete subgroup Λ of G given
by Λ = {2n | n ∈ Z} × {0}. We decompose G into

G+ = {(a, b) ∈ G | b ≥ 0} and G− = {(a, b) ∈ G | b < 0}

and define X± = pr(G±), where pr : G → X = G/Λ denotes the projection.
Our goal is to construct a ψ-irreducible random walk on X which never moves
from X+ to X−. Then it will follow that any irreducibility measure for this
random walk must have support inside X+ and thus cannot belong to the Haar
measure class.

The following construction achieves this goal. Let µ be a probability mea-
sure on G absolutely continuous with respect to a right Haar measure mG

with a density that is strictly positive on (0, 1) × R≥0 and 0 otherwise. For
example, one may choose dµ(a, b) = 1(0,1)×R≥0(a, b)e−b da db. Let mX,∆ be
the quasi-invariant measure on X coming from the modular character ∆ of G.
Then given a starting point x ∈ X, the law Lx(Φ1) = µ ∗ δx after the first
step of the random walk is absolutely continuous with respect to mX,∆. By
choice of µ and definition of the group operation, the corresponding density
px = d(µ ∗ δx)/ dmX,∆ is seen to have the following properties:

• Irrespective of the location of the starting point x, this density px is
strictly positive almost everywhere on X+.
• For x ∈ X+, px is 0 on X−.

Indeed, both properties follow from the geometry of the left action of G on X,
which can be understood e.g. by identifying X with the fundamental domain
F = [1, 2) × R for Λ inside G; see Figure 1. We deduce that L(x,X−) = 0
for all x ∈ X+, and L(x,A) > 0 for all A ⊂ X intersecting X+ in a positive
measure set and all x ∈ X. Hence, the random walk is ψ-irreducible, with
maximal irreducibility measure being given e.g. by ψ = mX,∆|X+ . �

Let us record a situation in which we do not need adaptedness to guarantee
that the random walk is ψ-irreducible on all of X.

Corollary 3.2.8. Let µ be spread out. Suppose that X is connected and
that

• X has finite volume, or that
• G = S.

Then the random walk on X given by µ is ψ-irreducible with ψ ∼ [mX ] and the
semigroup S from Lemma 3.2.2 acts transitively on X.
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x

gax

gx = gbgax

F

a

b

Figure 1. Illustration of the left action of G on X in the funda-
mental domain F . The acting element g = (a, b) ∈ (0, 1) × R≥0
is decomposed as g = gbga for ga = (a, 0) and gb = (1, b). The
dashed lines indicate identifications using the right action of Λ.

Proof. Lemma 3.2.1 implies that Gx is clopen, hence equal to X by con-
nectedness. The same lemma thus allows us to assume that µ is adapted
without changing X. Then, using Proposition 3.2.4 in the finite volume case,
we see that µ is Λ-adapted. Lemma 3.2.2 and Proposition 3.2.5 now give all
conclusions. �

3.2.2. Periodicity. Proposition 3.2.5 states that for (reasonably nice)
spread out random walks we have at our disposal the whole theory of ψ-
irreducible Markov chains from §3.1. In particular, Theorem 3.1.5 tells us
that they have a well-defined period d ∈ N. Let us look at the sets Di in a
corresponding d-cycle in more detail.

Proposition 3.2.9. Let µ be a probability measure on G. Suppose that the
random walk on X given by µ is ψ-irreducible with ψ ∼ [mX ] and let d ∈ N
be its period. Then there exist subsets D0, . . . , Dd−1 of X with the following
properties:

(i) The Di are clopen, non-empty, and form a partition of X,
(ii) we have P (x,Di+1 mod d) = 1 for every x ∈ Di and gDi = Di+1 mod d

for every g ∈ supp(µ),
(iii) if Gd denotes the closed subgroup of G generated by supp(µ∗d), then

for every x ∈ Di we have Di = Gdx, and
(iv) the d-step random walk on each Di is ψ-irreducible and aperiodic,

where always i = 0, . . . , d− 1.
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In other words, a general spread out random walk governed by µ splits up
into d aperiodic spread out random walks governed by the d-fold convolution
power µ∗d.

Proof. Throughout the proof, the terms “null set” or “full measure set”
are understood with respect to the Haar measure class onX, to which ψ belongs
by assumption. We shall make repeated use of the fact that open null sets are
empty. Moreover, for ease of notation, we will drop the specifier “modd” from
the indices, implicitly viewing them as elements of Z/dZ.

Let D′0, . . . , D′d−1 ⊂ X be a d-cycle as in Theorem 3.1.5. Proposition 3.2.5
shows that µ is spread out. Thus, by Proposition 3.1.9, for some n0 ∈ N there is
a continuous component T of P n0 with the property that T1X is constant, say
T1X ≡ α ∈ (0, 1], and T1D′i : X → [0, α] is continuous for i = 0, . . . , d− 1. By
the properties of a d-cycle there exists a cyclic permutation σ of {0, . . . , d− 1}
such that P n01D′

σ(i)
is 1 on D′i and 0 on ⋃j 6=iD′j. Together with the above this

implies that fi = T1D′
σ(i)

is α on D′i and 0 on ⋃j 6=iD′j. The claim is that the
sets

Di = f−1
i ({α})

have the desired properties. Indeed, by construction we know that on each
fixed set D′i the function fi is α and all other fj are 0. In particular, the sets
f−1
i ((0, α)) are contained in the complement of the full measure set ⋃d−1

j=0 D
′
j.

Being open by continuity, they must thus be empty. This means that the fi
are in fact continuous maps from X to the discrete space {0, α}. The sets
Pv = {f0 = v0, . . . , fd−1 = vd−1} defined by value tuples v = (v0, . . . , vd−1) ∈
{0, α}d thus form a partition of X consisting of clopen sets. However, for every
such tuple v not having precisely one entry α we know that the corresponding
set Pv is again contained in the complement of ⋃d−1

j=0 D
′
j, so that Pv = ∅ by the

same logic as above. Altogether, this shows that the non-empty sets in the
so-constructed partition are precisely the Di, proving (i).

To show that P (x,Di+1) = 1 for each x ∈ Di, note first that by definition
of a d-cycle we know P (x,Di+1) ≥ P (x,D′i+1) = 1 whenever x ∈ D′i. To extend
this to x ∈ Di, we claim that

Di = D′i.

Indeed, the inclusion “⊃” follows from the Di being clopen and the differences
Di \ D′i are empty because they are open sets contained in a null set. Thus,
we may choose a sequence (xn)n in D′i converging to a given x ∈ Di. Writing
x = gΛ, xn = gnΛ, and pr : G→ X for the canonical projection, we find

P (x,Di+1) = µ(pr−1(Di+1)g−1) = lim
n→∞

µ(pr−1(Di+1)g−1
n ) = 1

by dominated convergence, since by clopenness the indicator functions of the
sets pr−1(Di+1)g−1

n converge pointwise to that of pr−1(Di+1)g−1.
Next, take g ∈ supp(µ) and x ∈ Di. Then for any neighborhood B of g ∈ G

we have P (x,Bx) > 0. If gx /∈ Di+1, this would contradict P (x,Di+1) = 1
by choosing B small enough. Hence, gDi ⊂ Di+1. But the same argument
applied to x ∈ g−1Di+1 shows that such an x needs to lie in Di, so that also
g−1Di+1 ⊂ Di. This proves (ii).
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For (iii), note that Di ⊃ Gdx follows by combining (3.2.1), part (ii) above,
and clopenness of Di. The set Di \ Gdx is open, since both Di and Gdx are
clopen (the latter by Lemma 3.2.1, using that also µ∗d is spread out) and

P n(x,Di \ Gdx) = 0
for all n ∈ N: Indeed, if d | n we have P n(x,Gdx) = 1 and if d - n then
P n(x,Dj) = 1 for some j 6= i. The assumed ψ-irreducibility therefore forces
Di \ Gdx = ∅, giving (iii).

It remains to prove (iv). Knowing from (ii) that the random walk cycles
through the sets D0, . . . , Dd−1, ψ-irreducibility of the d-step random walk on
every Di follows from ψ-irreducibility of the whole random walk. From [90,
Proposition 5.4.6] we know that the d-step random walk on the full measure
subset D′i of Di is aperiodic. Suppose that the d-step random walk in Di

has a period strictly larger than 1. Then we can apply what we have already
proved and deduce that Di splits into a non-trivial cycle of clopen subsets. By
the second statement in (ii), none of the sets in such a cycle can be null sets.
Restricting to D′i would thus produce a non-trivial cycle inside D′i, which is a
contradiction. �

It is natural to ask when the particularly desirable aperiodic case d = 1
occurs.

Definition 3.2.10. If µ has the property that the induced random walk
on Gx is ψ-irreducible and aperiodic for every x ∈ X, we call µ aperiodic on X.

Proposition 3.2.11. Let µ be spread out. Suppose that
• X has finite volume, or that
• G = S.

Then either one of the following conditions is sufficient for µ to be aperiodic
on X:

(i) X is connected,
(ii) µ is aperiodic in the sense of Definition 3.0.1.

Proof. We first replace the pair (G,X) by (G,Gx) using Lemma 3.2.1.
Then µ is Λ-adapted (in the finite volume case by Proposition 3.2.4), so that
by Proposition 3.2.5 the random walk on X is ψ-irreducible with ψ in the Haar
measure class.

Sufficiency of (i) is then evident from Proposition 3.2.9, since it shows that
the sets in a d-cycle may be chosen to be clopen.

For (ii), we argue by contradiction and assume that the period d of the
random walk on X is at least 2. Let us partition X = Gx into clopen sets
D0, . . . , Dd−1 as in Proposition 3.2.9. Its part (ii) implies that all elements
of supp(µ) act on the Di by the cyclic permutation D0 7→ D1 7→ . . . 7→
Dd−1 7→ D0. Since supp(µ) generates G topologically and the Di are clopen,
this yields a continuous homomorphism ϕ from G = G into the symmetric
group of {D0, . . . , Dd−1} with image ϕ(G) ∼= Z/dZ. But then, the kernel
N = ker(ϕ) is a normal open subgroup of G, which contains [G,G] since the
quotient G/N ∼= Z/dZ is abelian, and such that supp(µ) is contained in a
non-identity–coset of N , since ϕ(supp(µ)) = {1 + dZ} under the identification
ϕ(G) ∼= Z/dZ. Hence, (ii) does not hold. �
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In particular, adapted spread out probability measures are automatically
aperiodic on any finite volume quotient when G is connected or a perfect group,
i.e. one with G = [G,G]. An example of the latter case not covered by the first
is G = SLd(Qp). This is an instance of a more general fact.

Corollary 3.2.12. Let k be the field R of real numbers or the field Qp of
p-adic numbers for a prime p. Suppose that G = G(k) for a Zariski connected,
simply connected, semisimple algebraic group G defined over Q such that G
has no compact factors, and let µ be a spread out probability measure on G.
Then µ is aperiodic on X = G/Λ in both of the following cases:

(i) µ is adapted and X has finite volume,
(ii) µ is strongly adapted, meaning that S = G.

Proof. By [85, Corollary 2.3.2(b)] G is perfect, so Proposition 3.2.11(ii)
applies. �

3.2.3. Harris Recurrence. As final part of our qualitative analysis, we es-
tablish Harris recurrence of spread out random walks for homogeneous spacesX
with at most quadratic growth. As warm-up, let us show how recurrence can
be deduced from what we have already proved in the finite volume case.

Proposition 3.2.13. Suppose Λ < G is a lattice and that the random walk
on X induced by µ is ψ-irreducible. Then this random walk is positive Harris
recurrent.

Proof. Positive recurrence follows from Proposition 3.1.4, since mX is an
invariant probability measure. In order to upgrade this to Harris recurrence,
we will show that the set N in the decomposition X = H t N from Theo-
rem 3.1.8 must be empty. (This theorem can be applied since we know from
Proposition 3.2.5 that µ must be spread out, so that the random walk is a
T -chain by Proposition 3.1.9.) It thus only remains to show that there are
no topologically transient points. But this is easily seen: Proposition 3.1.4
also implies that mX is equivalent to ψ, so that every non-empty open subset
of X is ψ-positive. Recalling the definition of recurrence from Theorem 3.1.2,
it follows that U(x,B) = ∞ for every neighborhood B of any point x ∈ X.
This precisely means that every point of X is topologically recurrent. We thus
conclude that N = ∅, finishing the proof. �

The remainder of this section is dedicated to the proof of Theorem 3.0.8.
The following proposition contains the essential lower bound.

Proposition 3.2.14. Suppose that the homogeneous space X admits a Haar
measure mX . Let B be a symmetric relatively compact neighborhood of the iden-
tity in G, A ⊂ BΛ ⊂ X a positive measure set, and µ a symmetric probability
measure on G with supp(µ) ⊂ B. Then for n, ` ∈ N satisfying

` ≥

√√√√n log 16mX(Bn+1Λ)
mX(A)

we have

〈P 2n1A,1A〉 ≥
mX(A)2

4mX(B`Λ) ,
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where 〈·, ·〉 denotes the pairing 〈ϕ, ψ〉 =
∫
X ϕψ dmX for two measurable func-

tions ϕ, ψ on X.
The proof is adapted from Lust-Piquard [83] and contains ideas going back

to Carne [24].
Proof. From the defining property Pϕ(x) =

∫
G ϕ(gx) dµ(g) of the action

of P on measurable functions and invariance of mX we get that P is a well-
defined operator from L1(mX) to itself as well as from L∞(mX) to itself, with
operator norm bounded by 1 in both cases. By interpolation, the same is
true for all Lp-spaces. Symmetry of µ implies that P is self-adjoint in the
sense that 〈Pϕ, ψ〉 = 〈ϕ, Pψ〉 whenever these pairings are defined. Using the
Cauchy–Schwarz inequality we thus find

〈P 2n1A,1A〉1/2 = ‖P n1A‖L2(mX) ≥
〈P n1A,1B`Λ〉
mX(B`Λ)1/2 .

Writing
〈P n1A,1B`Λ〉 = 〈P n1A,1〉 − 〈P n1A,1(B`Λ)c〉 = 〈1A, P n1︸ ︷︷ ︸

=1

〉 − 〈P n1A,1(B`Λ)c〉

= mX(A)− 〈P n1A,1(B`Λ)c〉,
we see that it remains to show

〈P n1A,1(B`Λ)c〉 ≤
mX(A)

2 . (3.2.4)

We remark that all pairings above are defined since P n1A has compact support.
In fact, by positivity of P we know 0 ≤ P n1A ≤ P n1BΛ, and the latter function
has support in Bn+1Λ since supp(µ) ⊂ B.

To prove (3.2.4), we shall use an argument due to Carne [24] (see also [83,
Lemma 1]): The operator P n can be written as

P n =
∑

0≤k≤n
αk,nQk(P ),

where αk,n = 0 if n−k is odd and otherwise αk,n = 2−n+1
(

n
(k+n)/2

)
for k > 0 and

α0,n = 2−n
(
n
n/2

)
, and Qk is the k-th Chebychev polynomial. As the operator P

considered on L2(mX) is self-adjoint with spectrum contained in [−1, 1], the
same is true for the operators Qk(P ), since the Chebychev polynomials are
real-valued and bounded by 1 on [−1, 1]. Moreover, Qk is of degree k so that
Qk(P )1A is supported in Bk+1Λ (using the corresponding property of P k1A
established above). Combining these facts we find

〈P n1A,1(B`Λ)c〉 =
∑

`≤k≤n
αk,n

∫
(B`Λ)c

Qk(P )1A dx

≤
∑

`≤k≤n
αk,n〈|Qk(P )1A|,1Bn+1Λ〉

≤ mX(A)1/2mX(Bn+1Λ)1/2 ∑
`≤k≤n

αk,n

≤ 2mX(A)1/2mX(Bn+1Λ)1/2e−`2/(2n),

where the last inequality uses a well-known escape estimate for the symmetric
random walk on Z starting at 0 (cf. e.g. [24]). Plugging in the inequality for `
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from the statement of the proposition, we obtain precisely (3.2.4) and the proof
is complete. �

Proof of Theorem 3.0.8. Take a symmetric relatively compact neigh-
borhood B of the identity in G containing supp(µ). If the random walk on X
given by µ is topologically transient, then by [63, Theorem 1] the potential∑∞
n=1 P

n1BΛ is uniformly bounded on X. In particular,
∞∑
n=1
〈P n1BΛ,1BΛ〉 <∞. (3.2.5)

Since X has at most quadratic growth, we can apply Proposition 3.2.14 with
A = BΛ and ` = O(

√
n log n) and find for n large enough that

〈P 2n1BΛ,1BΛ〉 ≥
mX(BΛ)2

4mX(B`Λ) ≥
C

n log n,

where C > 0 is a fixed constant. However, the latter contradicts (3.2.5), be-
cause ∑n 1/(n log n) =∞. �

In the introduction, Theorem 3.0.8 was stated for topological Harris re-
currence, since the concept of Harris recurrence was only introduced in §3.1.
Using the following fact contained in [63, Theorem 1], one also obtains Harris
recurrence.

Proposition 3.2.15 ([63]). Let µ be an adapted spread out probability
measure on G. Suppose that there exists a quasi-invariant measure mX,χ

on X = G/Λ that is P -subinvariant and that the random walk on X induced
by µ is topologically Harris recurrent. Then this random walk is ψ-irreducible
with ψ ∼ [mX ] and Harris recurrent.

We point out that, in view of (3.2.2), the measure mX,χ is P -subinvariant
if and only if the character χ satisfies

∫
G χ dµ ≤ 1. Therefore, the first condi-

tion in the above proposition is satisfied in particular when X admits a Haar
measure mX .

3.3. Consequences

In this final section of the chapter we reap the rewards of the preceding work.
In the finite volume setting, we will establish total variation norm convergence
of the laws Lx(Φn) in §3.3.1, see how existence of Lyapunov functions makes
this convergence exponentially fast in §3.3.2 and §3.3.3, and present versions
of some classical limit theorems in §3.3.4. We end the chapter with the proof
of the Ratio Limit Theorem 3.0.9 in §3.3.5.

The standing assumptions from the beginning of §3.2 are still considered
to be in effect. Let us quickly review the definition of the total variation norm:
Given a finite signed measure ν on X it is defined by

‖ν‖ = sup
|f |≤1

∣∣∣∣∫
X
f dν

∣∣∣∣,
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where the supremum is over all measurable functions f : X → C bounded by 1.
With this definition we have

sup
A⊂X

measurable

|ν1(A)− ν2(A)| = 1
2‖ν1 − ν2‖ (3.3.1)

for two probability measures ν1, ν2 on X. We remark that some authors use
the left-hand side above as definition for the total variation distance. Due
to the factor of 2 in (3.3.1), some care needs to be taken when consulting
the literature when concerned with the precise value of constants. Given a
measurable function V : X → [1,∞), we also define the V -norm of a finite
signed measure ν as

‖ν‖V = sup
|f |≤V

∣∣∣∣∫
X
f dν

∣∣∣∣.
Note that ‖·‖ = ‖·‖1 ≤ ‖·‖V .

3.3.1. Convergence of the Laws. Using the results from §3.2, we can
now easily prove convergence to equilibrium of the n-step distributions Lx(Φn),
which is sometimes referred to as “mixing” of the random walk.

Recall from the discussion in §3.2.1 that spread out random walks on finite
volume spaces are automatically ψ-irreducible on each orbit Gx with ψ equiv-
alent to mGx, so that the concept of periodicity treated in Theorem 3.1.5 and
Proposition 3.2.9 is available.

Theorem 3.3.1. Suppose that Λ < G is a lattice. Let µ be spread out and
d ∈ N be the period of the induced random walk on Gx for some x ∈ X. Then
for any starting distribution ν on Gx we have∥∥∥∥1

d

d−1∑
j=0

µ∗(n+j) ∗ ν −mGx
∥∥∥∥ −→ 0

as n→∞.

Proof. By Lemma 3.2.1 we may assume without loss of generality that
X = Gx and that µ is adapted. Then Corollary 3.2.6 and Proposition 3.2.13
together imply that the random walk on X is positive Harris recurrent. Its
unique invariant probability is mX . In the aperiodic case d = 1 the result thus
is a direct consequence of [90, Theorem 13.3.3].

We will now reduce the general case to the aperiodic one. Let D0, . . . , Dd−1
be a d-cycle in X with the properties from Proposition 3.2.9. Writing ν as a
convex combination and using the triangle inequality, we may assume that ν is
supported on one of the Di. It will be enough to prove the result for n tending
to∞ inside each one of the arithmetic progressions r+ dN for r = 0, . . . , d− 1.
So let us fix one such r and replace n by nd+r in the claimed statement. After
renumbering the Di we may assume that µ∗r ∗ν is supported inside D0. Setting
νi = µ∗(i+r) ∗ ν for i = 0, . . . , d− 1 we have that νi is supported inside Di and
are left to show that ∥∥∥∥1

d

d−1∑
i=0

µ∗nd ∗ νi −mX

∥∥∥∥ −→ 0
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as n→∞. However, in view of part (iv) of Proposition 3.2.9, this follows from
the aperiodic case, after writing mX = 1

d
(mD0 + · · ·+mDd−1) and applying the

triangle inequality once more. �

3.3.2. Lyapunov Functions and Effective Mixing. In the literature,
functions enjoying certain contraction properties under a transition kernel are
known as “Foster–Lyapunov functions” or simply “Lyapunov functions” and
have played a major role in questions of recurrence of dynamical systems since
their introduction. In our setup, they will produce an exponential rate for the
conclusion of Theorem 3.3.1.

We shall say that a (not necessarily continuous) function f : X → [0,∞] is
proper if for every R ∈ [0,∞) the preimage f−1([0, R]) is relatively compact.

Definition 3.3.2. A proper Borel function V : X → [0,∞] is called a
Lyapunov function for a Markov chain on X given by a transition kernel P if
there exist constants α < 1, β ≥ 0 such that PV ≤ αV + β.

Such a function should be thought of as directing the dynamics of the
Markov chain towards the “center” of the space, where the function value of V
is below some threshold.

Remark 3.3.3. Let us collect some immediate observations about Lya-
punov functions.

(i) If V is a Lyapunov function, then so are cV and V +c for any constant
c > 0. In particular, one may impose an arbitrary lower bound on V .
This will be relevant at some points, where we want V to take values
≥ 1.

(ii) Given a function V ′ : X → [0,∞] as in the definition of a Lyapunov
function, except that V ′ is contracted by some power P n0 instead of P ,
one can construct a Lyapunov function V by setting

V =
n0−1∑
k=0

α(n0−1−k)/n0P kV ′.

(iii) By enlarging α and using properness, the contraction inequality in the
definition of a Lyapunov function V may be replaced by

PV ≤ αV + β1K

for some compact K ⊂ X (cf. [90, Lemma 15.2.8]). �

The constant function V ≡ ∞ always is a Lyapunov function, though one
of little use. Of greater interest is the existence of Lyapunov functions that are
finite on prescribed parts of the space, or even finite everywhere.

Definition 3.3.4. We say that a subset A ⊂ X is Lyapunov small for a
random walk on X given by µ if the random walk admits a Lyapunov function
VA : X → [0,∞] that is bounded on A. We say the random walk satisfies the
contraction hypothesis if every compact subset K ⊂ X is Lyapunov small.

Constructions of Lyapunov functions on quotients of semisimple Lie groups
were given by Eskin–Margulis [40] and Benoist–Quint [7]. We record the con-
sequences for spread out random walks in the example below. Recall that a
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measure µ on a Lie group G with Lie algebra g is said to have finite exponential
moments in g if for sufficiently small δ > 0∫

G
Na(g)δ dµ(g) <∞,

where Na(g) = max(‖Ad(g)‖, ‖Ad(g)−1‖).

Example 3.3.5.
(i) ([7]) Let G be a real Lie group and µ an adapted spread out probability

measure on G with finite exponential moments in g. Suppose that the
Zariski closure of Ad(G) in Aut(g) is Zariski connected and semisimple.
Then the random walk onX = G/Λ given by µ satisfies the contraction
hypothesis. Using the setup in [7, Section 7], a similar statement can
also be made about p-adic Lie groups.

(ii) ([40]) Let G = G(R) be the group of real points of a Zariski connected
semisimple algebraic group G defined over R such that G has no com-
pact factors and let µ be a spread out probability measure on G with
finite exponential moments in g. Then the random walk on X = G/Λ
admits a continuous and everywhere finite Lyapunov function. �

Equipped with these concepts, we can now explain how Lyapunov functions
make mixing of spread out random walks effective. For the sake of simplicity,
we only state the result in the adapted and aperiodic case. We have repeatedly
seen that the former is no restriction, and the corresponding statements in the
periodic case can be obtained by employing similar reductions as in the proof
of Theorem 3.3.1.

Theorem 3.3.6. Suppose that Λ < G is a lattice. Let µ be an adapted
spread out probability measure on G such that the random walk on X given
by µ is aperiodic.

(i) For every Lyapunov small subset A ⊂ X there exists a constant κ =
κ(A) > 0 such that for every n ∈ N

sup
x∈A
‖µ∗n ∗ δx −mX‖ �A e−κn.

In particular, this holds for all compact subsets A = K of X if the
random walk satisfies the contraction hypothesis.

(ii) If the random walk admits an everywhere finite Lyapunov function
V ≥ 1, then there is a constant κ > 0 such that for all n ∈ N

sup
x∈X

1
V (x)‖µ

∗n ∗ δx −mX‖V � e−κn.

Proof. As in the proof of Theorem 3.3.1 we see that the random walk
on X is positive Harris recurrent with unique invariant probability mX . To
establish (i), recall that Remark 3.3.3 allows us to assume that VA is bounded
below by 1 and that PVA ≤ αVA+β1L for some compact L ⊂ X. Since compact
sets are petite for T -chains ([90, Theorem 6.2.5], see [90, p. 117] for the defi-
nition of petite sets), VA satisfies the condition in (iii) of [90, Theorem 15.0.1].
Since VA is bounded on A, the claim follows from the last statement of that
theorem. With the same arguments, (ii) follows from [90, Theorem 16.1.2]. �
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On compact spaces, one may always choose V = 1 as Lyapunov function.
This immediately gives the following corollary.

Corollary 3.3.7. Suppose in addition to the assumptions in Theorem 3.3.6
that X is compact. Then there exists κ > 0 such that for all n ∈ N

sup
x∈X
‖µ∗n ∗ δx −mX‖ � e−κn. �

Proof of Theorem 3.0.2. That Gx0 is clopen was part of Lemma 3.2.1.
In view of Proposition 3.2.11, (3.0.2) follows from Theorem 3.3.1.

To obtain the statement about effective mixing, first ensure that the Lya-
punov function is bounded below by 1 using Remark 3.3.3(i) and then apply
Theorem 3.3.6(ii) to each of the finitely many G-orbits intersecting the compact
set K. The conclusion follows, since ‖·‖ ≤ ‖·‖V and V is bounded on K by
the assumed continuity.

The final remark about existence of Lyapunov functions is Example 3.3.5(ii).
�

Proof of Corollary 3.0.4. In both cases of the corollary
• µ is aperiodic on X by Proposition 3.2.11, and
• we have Gx0 = X for all x0 ∈ X, using Corollary 3.2.8 or adaptedness
of µ, respectively.

The statement now follows from Theorem 3.3.1. �

3.3.3. Small Sets and Mixing Rates. Given the existence of Lyapunov
functions or compactness of the state space, we know from §3.3.2 that the
convergence

µ∗n ∗ δx
n→∞−→ mX

happens with exponential speed. As long as the value of the exponent and
the implicitly appearing constants are unknown, this does not yet give any
information about the actual variation distance between µ∗n ∗ δx and mX for
any given n ∈ N. In this subsection, we will address this issue. The crucial
concept is the following.

Definition 3.3.8. Let P be a transition kernel on X. A set A ⊂ X is
called (n, ε)-small for an integer n ∈ N and ε > 0 if there exists a probability
measure λ on X such that

P n(x, ·) ≥ ελ

for all x ∈ A. If A is (n, ε)-small for some n ∈ N and ε > 0, A is called small.

Small sets are in fact one of the central notions on which the whole theory
of general state space Markov chains is built. Their significance lies in the fact
that they provide the Markov chain with a regenerative structure: After each
return to A, there is a positive probability of taking the next step according to
the fixed measure λ. This structure also plays an important role when trying
to establish bounds on the speed of convergence. The simplest result in this
direction assumes that the whole state space is small, which is known as the
“Doeblin condition”.
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Theorem 3.3.9 ([90, Theorem 16.2.4]). Suppose the whole state space X
is (n0, ε)-small for a Markov chain with transition kernel P and invariant prob-
ability π. Then for all n ∈ N and any starting distribution ν on X we have

‖νP n − π‖ ≤ 2(1− ε)bn/n0c.

When the state space is not small, a rate of convergence as simple as above
may not be available. We shall use the following result due to Rosenthal [115].

Theorem 3.3.10 ([115, Theorem 5]). Given a transition kernel P on X,
denote the product kernel by P ((x, y), ·) = P (x, ·) ⊗ P (y, ·). Let π be a P -
invariant probability measure on X. Suppose there exists an (n0, ε)-small set A
and a measurable function h ≥ 1 on X × X together with a constant α < 1
such that

Ph(x, y) ≤ αh(x, y)

for all (x, y) /∈ A×A. Then, with R = sup(x,y)∈A×A P
n0h(x, y), we have for all

j, n ∈ N and any starting distribution ν on X

‖νP n − π‖ ≤ 2(1− ε)bj/n0c + 2αn−jn0+1Rj−1
∫
X×X

h d(ν ⊗ π).

In order to apply these theorems, we see that it is important to identify
small sets for spread out random walks. From a qualitative point of view, this
task is not too difficult.

Proposition 3.3.11. Let µ be a probability measure on G. Suppose that the
random walk on X = G/Λ is ψ-irreducible and aperiodic. Then every compact
subset K ⊂ X is small.

Proof. Combining Propositions 3.2.5 and 3.1.9 we see that the random
walk on X is a T -chain. Compact sets are thus petite by [90, Theorem 6.2.5].
By aperiodicity and [90, Theorem 5.5.7], they are also small. �

In the case of a compact state space, we therefore immediately get the
following.

Theorem 3.3.12. Let µ be adapted and spread out. Suppose that X is
compact and that the random walk on X given by µ is aperiodic. Then X is
(n0, ε)-small for some n0 ∈ N and ε > 0 and for any starting distribution ν
on X we have

‖µ∗n ∗ ν −mX‖ ≤ 2(1− ε)bn/n0c

for every n ∈ N.

Proof. Note that the random walk is ψ-irreducible by Corollary 3.2.6.
Then X is small by Proposition 3.3.11 and Theorem 3.3.9 gives the result. �

Unfortunately, so far we still have no information about the value of n0
and ε. We shall now outline a hands-on approach to find them. The idea is the
following: Denote by fn : G→ [0,∞) the density of the part of µ∗n absolutely
continuous with respect to a right Haar measure on G and endow X with
the quasi-invariant measure mX,∆ coming from the modular character ∆ of G.
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Then the probability of going from x ∈ X to y ∈ X in n steps (using only the
continuous part) is represented by the quantity∑

γ∈Λ
fn(yγx−1), (3.3.2)

which is a function on X×X. Note that for fixed x, the sum is finite for a.e. y,
since fn is integrable. Hence, the minorization condition in the definition of
small sets is certainly satisfied on A for the right-hand side

inf
x∈A

∑
γ∈Λ

fn(yγx−1) dmX,∆(y), (3.3.3)

which can be thought of as the lower envelope of the shifts by elements of A
of the density (3.3.2). The remaining question is whether this measure is non-
trivial. Intuitively, the spread out assumption should guarantee this for large n,
at least when the shifting set A is not too large, say compact. That this is
indeed true is the content of the next lemma.

Lemma 3.3.13. Let µ be spread out and Λ-adapted. Suppose that the induced
random walk on X is aperiodic. Then for every compact subset K ⊂ X there
exists an integer n0 ∈ N such that the measure (3.3.3) has positive mass ε > 0.
In particular, K is (n0, ε)-small.

Proof. By Proposition 3.2.5 the random walk is ψ-irreducible with ψ ∼
[mX ]. EnlargingK if necessary, we may assume thatK is [mX ]-positive. Propo-
sition 3.3.11 implies that K is small. Choose n1, ε1, λ as in the definition of
a small set. From [90, Proposition 5.5.4(ii)] it then follows that λ � [mX ].
Hence, there exists an [mX ]-positive set A such that λ|A belongs to the Haar
measure class restricted to A. Let us now split the transition kernels P n into the
absolutely continuous and singular parts with respect to [mX ]. As explained
before the statement of the lemma, the absolutely continuous part can then be
written as Tn(x, dy) = pn(x, y) dmX,∆(y) with pn : X × X → [0,∞] given by
(3.3.2). According to [98, Proposition 1.2] (cf. also [90, Theorem 5.2.1] and its
proof)

• after modifying them on null sets if necessary, the densities pn can be
assumed to satisfy

pm+n(x, z) ≥
∫
X
Pm(x, dy)pn(y, z) (3.3.4)

for all x, z ∈ X and m,n ∈ N, and
• there exists an [mX ]-positive set C ⊂ A and n2 ∈ N such that

pn2(x, y) ≥ δ (3.3.5)
for all x, y ∈ C and some fixed δ > 0.

By construction of A we then know λ(C) > 0, so that for all x ∈ K
P n1(x,C) ≥ ε1λ(C) > 0. (3.3.6)

Combining (3.3.4), (3.3.5) and (3.3.6), we find for x ∈ K, z ∈ C and n0 =
n1 + n2 that

pn0(x, z) ≥
∫
C
P n1(x, dy)pn2(y, z) ≥ δP n1(x,C) ≥ δε1λ(C).
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Hence, the mass of (3.3.3) is at least∫
C

inf
x∈A

pn0(x, z) dmX,∆(z) ≥ δε1λ(C)mX,∆(C) > 0,

which is the claim. �

Example 3.3.14. Let us illustrate the method above by calculating a rate
of convergence in a concrete instance of Example 3.0.12. We let n = 2, define
a = ( 2 1

1 1 ), b = ( 1 1
1 2 ), µlin = 1

2(δa+δb), v = e1 = (1, 0)t, and assume that λ has a
component with a density f bounded below by δ > 0 on [0, 1]. Let us see how
we need to choose n0. We certainly cannot use n0 = 1, since µ = µlin ⊗ λe1 is
singular with respect to Haar measure. If we denote the first two displacements
by the random variables D1, D2, the possible two-step transformations are

a2 : x 7→ a(ax+D1v) +D2v = a2x+D1ae1 +D2e1 = a2x+
(2D1 +D2

D1

)
,

ab : x 7→ a(bx+D1v) +D2v = abx+D1ae1 +D2e1 = abx+
(2D1 +D2

D1

)
,

ba : x 7→ b(ax+D1v) +D2v = bax+D1be1 +D2e1 = bax+
(
D1 +D2
D1

)
,

b2 : x 7→ b(bx+D1v) +D2v = b2x+D1be1 +D2e1 = b2x+
(
D1 +D2
D1

)
.

Since D1, D2 are i.i.d. with density f , the densities of the above displacements
are

ga2(s, t) = gab(s, t) = f(t)f(t− 2s), gba(s, t) = gb2(s, t) = f(t)f(t− s)

for s, t ∈ R2, which, by our assumption, are all bounded below by δ2 on a
fundamental domain for T2. Hence, the mass of the measure (3.3.3) for n0 = 2
and A = T2 is at least δ2, so that Theorem 3.3.12 produces the bound

‖µ∗n ∗ ν −mX‖ ≤ 2(1− δ2)bn/2c

for all n ∈ N, where ν is an arbitrary starting distribution. (Note that aperi-
odicity is guaranteed here in view of Proposition 3.2.11.) �

We now turn our attention to the case of a non-compact finite-volume
space X. Here we shall assume that the random walk on X admits a Lyapunov
function V and apply Theorem 3.3.10 in a similar way as in the proof of [115,
Theorem 12].

The set A from Theorem 3.3.10 is going to be the sublevel set

A = {x ∈ X | V (x) ≤ d}

for some d > 1, and h is going to be defined as

h(x, y) = 1 + V (x) + V (y)

for x, y ∈ X. Note that A is relatively compact since V is proper and thus a
small set by Proposition 3.3.11. Let now α, β be the constants associated to
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the Lyapunov function V and (x, y) /∈ A× A. Then h(x, y) > 1 + d, and thus
we find

Ph(x, y) = 1 + PV (x) + PV (y)
≤ 1− α + αh(x, y) + 2β

≤
(1− α + 2β

1 + d
+ α

)
h(x, y)

= 1 + αd+ 2β
1 + d

h(x, y).

Choosing α = (1 + αd + 2β)/(1 + d), this will be the contraction condition in
Theorem 3.3.10. In order for α to be less than 1, d needs to be chosen so that

d >
2β

1− α.

This choice of d determines the set A.
By iterating the Lyapunov property of V and using the definition of A, the

value of R in Theorem 3.3.10 can be estimated as
R = 1 + 2 sup

x∈A
P n0V (x)

≤ 1 + 2
(
αn0 sup

x∈A
V (x) + β

1− αn0

1− α

)
≤ 1 + 2

(
αd+ β

1− α

)
.

For the integral of h, note first that V is necessarily mX-integrable by the
equivalence of (i) and (iii) in [90, Theorem 14.0.1] (use f = (1−α)V ), so that P -
invariance ofmX and the contraction property of V yield

∫
X V dmX ≤ β/(1−α).

It follows that ∫
X×X

h d(ν ⊗mX) ≤ 1 +
∫
X
V dν +

∫
X
V dmX

≤ 1 +
∫
X
V dν + β

1− α.

Putting everything together, we arrive at the following theorem.

Theorem 3.3.15. Let Λ < G be a lattice and µ be an adapted spread out
probability measure on G. Suppose that the random walk on X given by µ is
aperiodic and admits a Lyapunov function V with PV ≤ αV + β for some
α < 1, β ≥ 0. Let d > 2β/(1 − α) and set A = {x ∈ X | V (x) ≤ d}. Then A
is (n0, ε)-small for some n0 ∈ N and ε > 0 and for any starting distribution ν
on X with

∫
X V dν <∞ we have for all j, n ∈ N

‖µ∗n ∗ ν −mX‖ ≤ 2(1− ε)bj/n0c + 2αn−jn0+1Rj−1
(

1 +
∫
X
V dν + β

1− α

)
,

where α = (1 + αd+ 2β)/(1 + d) < 1 and R = 1 + 2(αd+ β/(1− α)). �

Note that by introducing the relationship j = bn/kc for some k ∈ N for
which αk−n0R < 1, the right-hand side above decays exponentially in n, and
moreover that all the constants are given explicitly in terms of the starting
distribution ν, the Lyapunov function V together with its parameters, and the
measure µ.
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3.3.4. Limit Theorems. Recall that Benoist–Quint’s Theorem B not
only makes a statement about convergence in law, but also about the dis-
tribution of typical trajectories: For every x ∈ X and µ⊗N-a.e. (gn)n ∈ GN it
holds that

1
n

n−1∑
k=0

δgk···g1x −→ νx

as n → ∞ in the weak* topology. In the notation of this chapter, for every
f ∈ Cc(X) we have

1
n

n−1∑
k=0

f(Φk) −→
∫
X
f dνx Px-a.s.

as n→∞, where, as before, Φk is given by (3.0.1) and stands for the location
after k-steps of the random walk. Until now, we have not yet touched upon
the validity of such a “Strong Law of Large Numbers” in the spread out case;
an omission that will be corrected now.

To fix the terminology, let us quickly review three of the classical limit
theorems in the context of Markov chains. For brevity, we shall use the notation

Σn(f) =
n−1∑
k=0

f(Φk)

for a function f on X.

Definition 3.3.16. Consider the random walk on X given by a probability
measure µ on G. Let f : X → R be a real-valued mX-integrable function on X.
We say

• that the Strong Law of Large Numbers (SLLN ) holds for the function f
if for every x ∈ X

lim
n→∞

Σn(f)
n

=
∫
X
f dmX Px-a.s.,

• that the Central Limit Theorem (CLT ) holds for f if there exists a non-
negative number γf ∈ [0,∞) such that for the centered function f0 =
f −

∫
X f dmX and under each Px we have convergence in distribution

Σn(f0)√
n

d−→ N(0, γ2
f ),

where N(0, γ2
f ) denotes the normal distribution with mean 0 and vari-

ance γ2
f (to be understood as the Dirac distribution at 0 in the degen-

erate case γf = 0), and
• that the Law of the Iterated Logarithm (LIL) holds for f if for the
number γf in the CLT and every x ∈ X

lim sup
n→∞

Σn(f0)√
2n log log(n)

= γf Px-a.s.

The remarkable fact is that spread out random walks always satisfy the
SLLN, and satisfy the CLT and LIL as soon as they admit an everywhere
finite Lyapunov function.
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Theorem 3.3.17. Let Λ < G be a lattice and µ be spread out and adapted.
Then:

(i) The SLLN holds for every mX-integrable function on X. In particular,
for µ⊗N-a.e. (gn)n ∈ GN we have

1
n

n−1∑
k=0

δgk···g1x0 −→ mX

as n→∞ in the weak* topology.
(ii) Suppose the random walk admits an everywhere finite Lyapunov func-

tion V : X → [1,∞) and let f : X → R be measurable and satisfy
f 2 ≤ V . Then for the centered function f0 = f −

∫
X f dmX , the

asymptotic variance
γ2
f = lim

n→∞
1
n
EmX [Σn(f0)2]

exists and is finite, and the CLT and LIL hold for f and this num-
ber γf .

Proof. Combining Corollary 3.2.6 and Proposition 3.2.13 we know that
the random walk on X is a positive Harris recurrent Markov chain with invari-
ant probability mX . Part (i) thus follows from [90, Theorem 17.1.7], noting for
the second claim that Cc(X) is separable. Under the assumptions of (ii), The-
orem 3.3.6(ii) ensures that the conditions of [90, Theorem 17.0.1] are satisfied,
and everything follows from that theorem. �

3.3.5. Proof of the Ratio Limit Theorem. It remains to prove the
ratio limit theorem for the infinite volume case.

Proof of Theorem 3.0.9. For both statements, it suffices to consider
the case in which also f1 ≥ 0. By Proposition 3.2.15, the random walk on X
given by µ is Harris recurrent with invariant measure mX . The first statement
of the theorem thus immediately follows by combining [114, Corollary 8.4.3]
and [114, Theorem 6.6.5].

It remains to prove (3.0.3) under the additional assumptions that µ is sym-
metric and aperiodic. In view of Proposition 3.2.11, aperiodicity of µ implies
aperiodicity of the random walk. Let A ⊂ X be a small set with positive
and finite mX-measure, say with P k(x, ·) ≥ ελ for all x ∈ A. In view of [90,
Proposition 5.2.4(iii)] we may assume that λ(A) > 0, and the discussion in [90,
§5.4.3] shows that we may take k to be even. With similar arguments as in
the proof of Lemma 3.3.13, after shrinking A and ε we may even assume that
λ = mA = mX(A)−1mX |A is the normalized restriction of mX to A (cf. also
Orey’s C-set theorem [98, Theorem 2.1]). Then [80, Theorem 2.1] implies

lim
m→∞

λP 2m(A)
λP 2(m−1)(A) = 1.

Applying this k/2 times, we see that also

lim
m→∞

λP km(A)
λP k(m−1)(A) = lim

m→∞

λP km(A)
λP km−2(A)

λP km−2(A)
λP km−4(A) · · ·

λP km−k+2(A)
λP km−k(A) = 1.

This shows that all the assumptions in [95] are satisfied.
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In view of [95, Theorem 1(ii)], it remains to argue that compactly supported
bounded measurable functions on X and compactly supported probability mea-
sures onX with bounded density with respect tomX are “small” in Nummelin’s
sense. Identifying such measures with their density and noting that by symme-
try of µ the action of P on functions and measures respects this identification,
we see that it suffices to show this claim for functions. For this, by [95, Corol-
lary 2.4], we need only show that for every compact subset K ⊂ X there exists
N ∈ N such that ∑N

n=0 P
n1A is bounded away from 0 on K. However, since

the random walk is a T -chain and compact sets are petite for T -chains ([90,
Theorem 6.2.5(ii)]), the latter follows from [90, Proposition 5.5.5(i)] and [90,
Proposition 5.5.6(i)], as mX(A) > 0. �

Invoking [95, Theorem 1(i)], the proof above also justifies the claim in
Remark 3.0.10: Taking for A the same small set as above, we see that (3.0.4)
implies ∫

X fi d(µ∗n ∗ δxi)
(µ∗n ∗mA)(A) −→

∫
X fi dmX

mX(A)
as n → ∞ for i = 1, 2. Taking the quotient yields (3.0.3) with δxi in place
of νi.



CHAPTER 4

Expanding Measures: Random Walks and Rigidity on
Homogeneous Spaces

Joint with Çağrı Sert and Ronggang Shi
We have already seen in Chapter 2 that expansion conditions on a random walk
can serve as replacement for Benoist–Quint’s assumption of Zariski density in
a semisimple group. There, this observation was motivated by the study of
random walks driven by general stochastic processes, such as Markov random
walks, and we essentially proved results only for the basic case of homogeneous
spaces of simple Lie groups, where the only possible limits are finite orbit
measures and the Haar measure on the whole space.

In this final chapter of the thesis, we systematically study random walks
with expansion properties in the fully general setting. We will introduce and
study a new class of measures µ supported on a connected semisimple sub-
group H 6 G without compact factors and with finite center that we call H-
expanding measures. These are defined by an expansion condition in non-trivial
irreducible finite-dimensional representations of H resembling the conclusion
of the fundamental result of Furstenberg on the positivity of the top Lyapunov
exponent. In particular, this class contains the Zariski dense measures underly-
ing the work of Benoist–Quint. After deducing a measure classification result
analogous to Benoist–Quint’s Theorem A in the Introduction based on the
progress by Eskin–Lindenstrauss [39], we will prove orbit closure descriptions,
as well as recurrence and equidistribution results for the random walk on G/Λ
given by an H-expanding probability measure µ. In particular, we also obtain
a full analogue of Theorem B. Finally, taking advantage of the generality of
H-expanding measures, these main results will be used to establish new equidis-
tribution statements for diagonalizable flows, which in turn have implications
for Diophantine approximation problems on fractals.

To introduce the notion of H-expansion, we say that a Borel probability
measure µ on GLd(R) is uniformly expanding if for every nonzero v ∈ Rd, we
have

lim inf
n→∞

1
n

log‖gn · · · g1v‖ > 0

for µ⊗N-almost every (a.e.) sequence (gi)i. A probability measure µ on H
is said to be H-expanding if for every finite-dimensional representation (V, ρ)
of H without nonzero H-fixed vectors, the measure ρ∗µ is uniformly expanding,
where ρ∗µ denotes the pushforward of µ by ρ. We are going to elaborate on
this definition and give non-trivially equivalent formulations in §4.1.

Ranging over all finite-dimensional representations, the H-expansion prop-
erty of a probability measure µ on H is a universal condition and as such
ensures validity of our results for an arbitrary embedding H ↪→ G and any

95
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lattice Λ < G. This universality notwithstanding, the class of H-expanding
measures contains an abundance of interesting examples:

• Zariski dense measures (§4.2.1): If the closed subgroup Γµ of H gen-
erated by the support of µ has Zariski dense image in Ad(H) and µ
satisfies a moment condition, then µ is H-expanding as a consequence
of Furstenberg’s theorem on positivity of the top Lyapunov exponent.
• Measures on parabolic groups (§4.2.2): We give a general criterion for
H-expansion of a measure µ on a parabolic subgroup of H and, using
the notion of expanding cone introduced by Shi [127], explicitly exhibit
a class of examples of such measures. For the sake of concreteness, let
us mention here that, for example, our results directly imply that any
probability measure on H = SL4(R) with support consisting of the
five matrices

2
2

1
1/4

,


2 1
1 1

1
1

,


1 1
1 2

1
1

,


1
1 1

1
1

,


1
1

1 1
1


is H-expanding.
• Epimorphic subgroups (§4.2.3): The closed subgroup Γµ generated by
the support of µ is necessarily an epimorphic subgroup of H when µ
is H-expanding. Conversely, thanks to the work of Bien–Borel [14]
and its subsequent developments, we will see that many epimorphic
subgroups of H support H-expanding measures. For example, any R-
split simple group H admits distinguished three-dimensional epimor-
phic subgroups for which this is the case, showing that H-expanding
measures may live on subgroups which are very small compared to H
itself. See also Corollary 4.3.8.

Under various weaker assumptions than H-expansion, not all of our conclu-
sions hold in full strength. For instance, requiring uniform expansion only in
the adjoint representation, homogeneity of stationary measures can fail, as an
example at the end of [39, §1.2] shows. For unipotent random walks, recurrence
is not always guaranteed [21, §10.2.1]. On the other hand, in the particular
case of measures on parabolic subgroups, slightly weaker expansion properties
were first used in the work of Simmons–Weiss [129] and subsequently in [105]
(Chapter 2 of this thesis) to prove measure rigidity and equidistribution results
in a setting corresponding to the case H = G in the framework of this chapter.
See also Remark 4.0.3.

We next recall the terminology necessary to state our main results. Given
a continuous action of a locally compact second countable group G on a locally
compact second countable metrizable space X, a probability measure ν on X
is said to be µ-stationary if ν = µ ∗ ν, where the convolution is defined by∫

X
f d(µ ∗ ν) =

∫
X

∫
G
f(gx) dµ(g) dν(x)

for non-negative Borel functions f on X. A µ-stationary probability measure ν
is said to be µ-ergodic if it is extremal in the convex set of µ-stationary proba-
bility measures.
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Now let G be a real Lie group, Λ < G a discrete subgroup and X = G/Λ.
A probability measure ν on X is said to be homogeneous if there exists x ∈ X
and a closed subgroup N of G preserving ν such that ν(Nx) = 1. In this case,
the orbit Nx is automatically closed and is called a homogeneous subspace of X.
It is equivalent to require that ν assigns full measure to an orbit of its stabilizer
group

StabG(ν) = {g ∈ G | g∗ν = ν}.
This gives a one-to-one correspondence between homogeneous measures on X
and homogeneous subspaces of X. For a closed subgroup Γ of G, a homoge-
neous subspace Y of X is said to be Γ-ergodic if Γ preserves the corresponding
homogeneous probability measure νY and the action of Γ on (Y, νY ) is ergodic.

Finally, for g ∈ GLd(R) we set N(g) = max(‖g‖, ‖g−1‖) for some choice of
operator norm on Rd×d. A probability measure µ on GLd(R) is said to have a
finite first moment if ∫

log N(g) dµ(g) <∞,

and to have finite exponential moments if∫
N(g)δ dµ(g) <∞

for δ > 0 sufficiently small. These definitions are independent of the choice of
operator norm. We say that a probability measure µ on a connected semisimple
Lie group H with finite center has a finite first moment or finite exponential
moments if its image in a finite-dimensional representation of H with finite
kernel has the corresponding property. This does not depend on the choice of
such a linear representation (see Lemma 4.1.9). Both moment conditions are
automatically satisfied, for example, if µ has compact support.

4.0.1. Measure Rigidity. We start with the classification of stationary
measures. Recall that given a measure µ on H, we denote by Γµ the closed
subgroup generated by the support of µ.

Theorem 4.0.1. Let G be a real Lie group and Λ < G a discrete subgroup.
Let H 6 G be a connected semisimple subgroup without compact factors and
with finite center. Let µ be a probability measure on H that is H-expanding
and has a finite first moment. Then any µ-ergodic µ-stationary probability
measure ν on G/Λ is Γµ-invariant and homogeneous. Moreover, the connected
component of StabG(ν) is normalized by H.

Using the properties of H-expanding measures, the above theorem is de-
duced by an iterative application of the recent measure classification results
of Eskin–Lindenstrauss [39]; see §4.3.1. The proof is similar to the argument
Eskin–Lindenstrauss use to show that their result implies Benoist–Quint’s mea-
sure classification.

In certain cases, the last conclusion of Theorem 4.0.1 allows us to show that
ν is actually H-invariant; see Proposition 4.7.2 and also the corollary below.
For its statement, recall that a discrete subgroup Λ is said to be a lattice in G
if X = G/Λ admits a G-invariant probability measure mX . In this case, we
refer to mX as the Haar measure on X. A lattice Λ in a connected semisimple
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Lie group G without compact factors is said to be irreducible if Λ ∩ S is not
a lattice in S for every non-trivial proper connected normal subgroup S of G.
Equivalently, SΛ is dense in G for every such S.

Corollary 4.0.2. Let G be a connected semisimple Lie group without com-
pact factors and with finite center and Λ < G an irreducible lattice. Let H be
a connected normal subgroup of G of positive dimension and let µ be an H-
expanding probability measure on H with finite first moment.

(i) If H 6= G, then the Haar measure mX on X = G/Λ is the unique
µ-stationary probability measure on X.

(ii) If H = G, then the only µ-ergodic µ-stationary probability measures on
X are uniform measures on finite Γµ-orbits and the Haar measure mX

on X. Moreover, mX is the only non-atomic µ-stationary probability
measure on X.

We note that finite Γµ-orbits do only occur when Γµ is virtually contained
in a conjugate of Λ. The proof of part (i) of the corollary above relies on
Margulis’ arithmeticity theorem and a careful analysis of stationary measures
charging an orbit of the centralizer of Γµ, which is carried out in §4.3.2. The
last statement in part (ii) additionally requires countability of finite Γµ-orbits,
which follows from a general countability result for homogeneous subspaces
in §4.4.

Remark 4.0.3. As mentioned before, the H-expansion condition is univer-
sal so that all our results hold for an arbitrary embedding H ↪→ G. For a
fixed Lie group G, it suffices to impose uniform expansion on ρ∗µ only for a
finite collection of representations (V, ρ) of H (which depends on G), as the
proofs show. In §4.3.3 we track which representations are needed in the case
of measure classification; see Theorem 4.3.7 for the precise statement. Our
countability result (Proposition 4.4.1) will also be phrased using only this fi-
nite collection of representations, allowing us to prove it without an assumption
of compact generation (cf. [9, Proposition 2.1]). �

4.0.2. Recurrence and Lyapunov Functions. Now we assume in ad-
dition that Λ is a lattice and that µ has finite exponential moments. Under
certain assumptions including semisimplicity of the non-compact part of the
Zariski closure of Γµ, Eskin–Margulis [40] and later Benoist–Quint [7] have
shown that the random walk on X = G/Λ given by µ satisfies strong recur-
rence properties. If δx denotes the Dirac measure at x ∈ X and µ∗n is the n-fold
convolution power of µ, these recurrence statements take the general form that
µ∗n ∗ δx(M) is close to 1 for large n, where M ⊂ X is a certain compact set.
We obtain analogous results for H-expanding measures.

Theorem 4.0.4. Let Λ be a lattice in a real Lie group G. Let H 6 G be a
connected semisimple subgroup without compact factors and with finite center.
Let µ be an H-expanding probability measure with finite exponential moments
on H. Let Y be a Γµ-ergodic homogeneous subspace of X = G/Λ or the empty
set. Finally, let KL be any compact subset of the centralizer L of Γµ in G, and
set N = KLY . Then for any compact subset Z ⊂ X \N and δ > 0 there exists
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a compact subset MZ,δ of X \ N such that

µ∗n ∗ δx(MZ,δ) ≥ 1− δ

for every n ≥ 0 and x ∈ Z.

This result will be proved in §4.6.1 using height functions on X = G/Λ
satisfying a contraction property with respect to the averaging operator (or
convolution operator) π(µ) defined by

π(µ)f(x) =
∫
G
f(gx) dµ(g)

for non-negative Borel functions f on X. Heuristically, if β is a function on X
with values in [0,∞] such that

π(µ)β ≤ aβ + b (4.0.1)

for constants a ∈ (0, 1) and b ≥ 0, then, with high probability, the dynamics of
the random walk are driven towards the part of the space where β takes values
below a certain threshold, and X∞ = β−1({∞}) acts as a repeller. Putting
this heuristic into quantitative terms yields strong recurrence properties of the
random walk away from X∞, which play a key role not only in the proof of
Theorem 4.0.4, but also for orbit closure and equidistribution results to be
described in what follows.

Ideas of this kind have a rich history in the theory of stochastic processes
and dynamical systems and trace back to the work of Foster [45] and Lya-
punov [81] (see also [90, §15]). In homogeneous dynamics, they first appear
in Eskin–Margulis–Mozes’ work on a quantitative version of the Oppenheim
conjecture [41]. In the study of random walks on homogeneous spaces, height
functions were first systematically used by Eskin–Margulis [40] to establish
recurrence properties. Functions satisfying the contraction property (4.0.1)
are therefore often referred to either as “Lyapunov functions” or “Margulis
functions”.

To obtain our results, we will need to construct two types of Lyapunov
functions.

• Height functions with respect to the cusps (§4.5.1): First, correspond-
ing to the case Y = ∅ in Theorem 4.0.4, we require a Lyapunov func-
tion β∞ that stays bounded on a prescribed compact subset Z of X
and tends to infinity when leaving compact parts of the space into the
cusps of X. Its role is to rule out escape of mass, i.e. ensure that the
random walk does not escape to infinity. For this case, we will show
that we can use the height function constructed by Benoist–Quint [7].
Indeed, as it turns out, the algebraic condition that is imposed in their
paper on the Zariski closure of Γµ is only crucially used to ensure an
expansion property in representations of H, so that the proof also goes
through under our H-expansion assumption.
• Height functions with respect to singular subspaces (§4.5.2): Secondly,
corresponding to the case of a lower-dimensional homogeneous sub-
space Y in Theorem 4.0.4, we also need Lyapunov functions which
blow up near the singular subspace Y . These are used to ensure that
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random walk trajectories do not accumulate near Y when starting out-
side of it. Here, we give a construction inspired by the work of Eskin–
Mirzakhani–Mohammadi [43] for random walks on moduli space. This
will allow us to avoid the use of the first return cocycles and operators
appearing in [8, 9], and to obtain a height function βN which satisfies
the contraction property (4.0.1) with respect to π(µ) itself.

We remark that the finite exponential moments assumption is essential in our
method to obtain contraction properties for various averaging operators, e.g.
in Lemma 4.5.2.

4.0.3. Orbit Closures and Equidistribution. Measure classification
and recurrence properties at hand, the next step is the question of equidis-
tribution of random walks with respect to a homogeneous probability measure,
which, once established, yields orbit closure descriptions analogous to Ratner’s
theorems in unipotent dynamics.

Let Γ+
µ be the closed semigroup generated by the support of µ. If Γµ has

Zariski dense image in Ad(H), then Theorem B in the Introduction asserts
that the orbit closure Γ+

µx is a homogeneous subspace of X inside which the
random walk equidistributes. Our next result is a generalization of this and
other rigidity results for the random trajectory of points proved in [9, 129]
and also in Chapter 2.

Theorem 4.0.5. Let Λ be a lattice in a real Lie group G. Let H 6 G be a
connected semisimple subgroup without compact factors and with finite center.
Let µ be an H-expanding probability measure with finite exponential moments
on H. Then for every x ∈ X = G/Λ there is a Γµ-ergodic homogeneous
subspace Yx ⊂ X with corresponding homogeneous probability measure νx such
that the following hold:

(i) The orbit closure Γ+
µx equals Yx.

(ii) One has

lim
n→∞

1
n

n−1∑
k=0

µ∗k ∗ δx = νx.

(iii) For µ⊗N-a.e. (gi)i ∈ HN one has

lim
n→∞

1
n

n−1∑
k=0

δgk···g1x = νx.

In statements (ii) and (iii) of the theorem above, convergence is understood
with respect to the weak* topology, where weak* convergence of a sequence of
probability measures νn on X to a finite measure ν on X is defined to mean
that

lim
n→∞

∫
X
f dνn =

∫
X
f dν (4.0.2)

for every compactly supported continuous test function f on X. In case the
limit measure ν is a probability measure, weak* convergence νn → ν implies
that (4.0.2) holds for any bounded continuous function f on X.

Theorem 4.0.5 will be proved in §4.6.2. It has the non-trivial topological
consequence that any infinite Γ+

µ -orbit inX is dense in a homogeneous subspace
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of positive dimension. In the G-expanding case with an irreducible lattice Λ
in G, this means that every infinite Γ+

µ -orbit in X = G/Λ is dense.
Remark 4.0.6. Using auxiliary constructions, our results can be applied in

certain cases where the connected semisimple groupH is invisible. For example,
they cover random walks by automorphisms on a compact nilmanifold N/Λ′ by
considering G = Zcl(Aut(Λ′)) nN and Λ = Aut(Λ′) n Λ′, where Zcl(Aut(Λ′))
denotes the Zariski closure of Aut(Λ′) inside Aut(N); see §4.6.4. �

4.0.4. The Space of Homogeneous Measures. Given a closed sub-
group Γ of the Lie group G, we consider

S(Γ) = {Γ-invariant Γ-ergodic homogeneous subspaces Y ⊂ X},
where, as before, X = G/Λ is the quotient of G by a lattice Λ. By definition,
associated to each Y ∈ S(Γ) is a Γ-invariant and ergodic probability measure νY
with support Y . This defines an embedding of S(Γ) into the space of probability
measures on X, which we use to endow S(Γ) with the weak* topology. In
the unipotent case, Mozes–Shah [94] proved that convergence of homogeneous
subspaces in this topology behaves in a very rigid way. Benoist–Quint [9, §1.3]
later obtained a version of this result for a subgroup Γ that is Zariski dense in
a semisimple group. Following their strategy, we obtain similar results in our
setup.

Given a subset Z of X, let us write SZ(Γ) = {Y ∈ S(Γ) | Y ∩ Z 6= ∅}
and denote by δ∞ the Dirac measure at ∞ in the one-point compactification
X = X ∪ {∞} of X.

Proposition 4.0.7. Retain the notation and assumptions of Theorem 4.0.5.
Then we have:

(i) For every compact subset Z ⊂ X, SZ(Γµ) is compact, and SHZ(Γµ)
is relatively compact inside S(Γµ). Moreover, the set S(Γµ) ∪ {δ∞} is
compact.

(ii) If Yn → Y∞ in S(Γµ), then there exists a sequence ln ∈ CG(Γµ) with
ln → e and Yn ⊂ lnY∞ for every n ∈ N large enough.

Similar remarks as in [9, §1.3] apply: When there exists a compact subset Z
of X such that HZ = X, the set S(Γµ) is compact. Otherwise, the only
additional thing that can happen is escape of mass to infinity.

This proposition is a manifestation of strong rigidity of the Γµ-invariant
and ergodic homogeneous subspaces. For example, given a compact subset Z
of X and Y∞ ∈ S(Γµ) with Z◦ ∩ Y∞ 6= ∅, if for a sequence Yn ∈ S(Γµ) we
have Yn ∩ Z → Y∞ ∩ Z in the Hausdorff metric, then one can conclude that
Yn → Y∞ in S(Γµ). In particular, the weak* topology on S(Γµ) coincides with
the restriction to S(Γµ) of the Fell topology on closed subsets of X.

Another consequence of Proposition 4.0.7 is the following equidistribution
result for sequences of homogeneous subspaces in the case that Γµ has discrete
centralizer in G.

Corollary 4.0.8. Retain the notation and assumptions of Theorem 4.0.5
and assume in addition that the centralizer CG(Γµ) of Γµ in G is discrete. Let
Y∞ ∈ S(Γµ) and consider the set

S(Γµ, Y∞) = {Y ∈ S(Γµ) | Y ⊂ Y∞}
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of ergodic homogeneous subspaces of Y∞. Suppose that (Yn)n is a sequence in
S(Γµ, Y∞) such that for every fixed Y ∈ S(Γµ, Y∞) \ {Y∞} one has Yn 6⊂ Y
for all but finitely many n, and such that no subsequence of (Yn)n escapes to
infinity. Then Yn → Y∞ in S(Γµ).

Here, by “escape to infinity” we mean weak* convergence towards the Dirac
measure δ∞ at infinity.

The proofs of both statements above will be given in §4.6.3.

4.0.5. Birkhoff Genericity. We still assume that Λ is a lattice in the Lie
group G. Let (a(t))t∈R be a one-parameter Ad-diagonalizable subgroup of H
and ν a probability measure on X = G/Λ invariant under a(t) for every t ∈ R.
We say that a Radon measure η on H is a(t)-Birkhoff generic at x ∈ X with
respect to ν if

1
T

∫ T

0
δa(t)hx dt −→ ν

in the weak* topology as T →∞ for η-almost every h ∈ H. It was first noticed
by Simmons–Weiss [129] that, in certain situations, pathwise equidistribution
of random walks as in Theorem 4.0.5(iii) can be used to deduce Birkhoff generic-
ity of fractal measures η on unipotent subgroups of H with respect to the Haar
measure on X, which has consequences in Diophantine approximation thanks
to the Dani correspondence principle. Recently, more results were obtained in
this direction in [105] (Chapter 2 of this thesis). Both of these papers only deal
with cases corresponding to H = G in our setup. We are going to extend the
existing results by removing this restriction. Even in the case where H = G, we
obtain Birkhoff genericity for more general one-parameter subgroups and frac-
tal measures, which will also give new results on Diophantine approximation
(see §4.0.6).

The one-parameter subgroups to which our results apply are required to
satisfy certain expansion condition with respect to a unipotent subgroup of H.
To phrase it, we use the concept of an a-expanding subgroup of H introduced
in [126]. Namely, given an Ad-diagonalizable element a ∈ H, a connected
Ad-unipotent subgroup U of H normalized by a is said to be a-expanding
if for any non-trivial irreducible representation of H on a finite-dimensional
real vector space V , the subspace V U of U -fixed vectors is expanded by a,
i.e. limn→∞ a

−nv = 0 for any v ∈ V U . If the projection of a to each simple
factor of H is non-trivial, then certain horospherical subgroups of H are a-
expanding. For example, this holds for the unstable horospherical subgroup

H+
a := {h ∈ H | lim

n→∞
a−nhan = 1H},

of a; see §4.2.2.
Now let U be an a(1)-expanding subgroup contained in the unstable horo-

spherical subgroup H+
a(1) of a(1). We wish to introduce a family of measures

on U which are generated by random walks, in a sense to be made precise in
what follows. Let A′ = {a(t) | t ∈ R}, K be a maximal compact subgroup of H,
and K ′ = CK(A′) ∩ NH(U), where CK(A′) denotes the centralizer of A′ in K
andNH(U) the normalizer of U inH. We set P := K ′A′U ⊂ H and denote by λ
the function which associates to g ∈ P the real parameter of its A′ component
in its K ′A′U factorization; that is, λ(g) = t ∈ R for g = ka(t)u ∈ K ′A′U .
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Finally, given ω = (gi)i ∈ PN and n ∈ N, let kω,n ∈ K ′, aω,n ∈ A′ and
uω,n ∈ U be such that

gn · · · g1 = kω,naω,nuω,n.

With this notation, we are ready to define the class of measures on U we shall
be interested in.

Definition 4.0.9. Let (a(t))t∈R 6 H be a one-parameter Ad-diagonalizable
subgroup of H and U an a(1)-expanding subgroup of H contained in H+

a(1).
A probability measure η on U is said to be generated by a(1)-expanding ran-
dom walks if there is a probability measure µ on H with finite exponential
moments satisfying the following properties:

(1) µ(P ) = 1 and
∫
P λ(g) dµ(g) > 0,

(2) the Zariski closure of the image of Γµ in Ad(H) contains Ad(U), and
(3) η is equivalent to the pushforward of µ⊗N by the map

PN → U, ω 7→ uω := lim
n→∞

uω,n.

The almost sure existence of the limit in point (3) above is the content
of Lemma 4.7.1. Moreover, we will see as part of our discussion in §4.7 that
conditions (1) and (2) imply that µ is H-expanding, which will allow us to
employ our main measure classification and equidistribution results discussed
before.

For the statement of our result on Birkhoff genericity, recall that by Ratner’s
theorems the orbit closure Hx is homogeneous for any x ∈ X. We denote the
homogeneous probability measure corresponding to Hx by νHx.

Theorem 4.0.10. Let Λ be a lattice in a real Lie group G and let H 6 G
be a connected semisimple subgroup without compact factors and with finite
center. Let (a(t))t∈R be a one-parameter Ad-diagonalizable subgroup of H and
U an a(1)-expanding subgroup of H contained in H+

a(1). Suppose that η is a
probability measure on U generated by a(1)-expanding random walks. Then for
every x ∈ X, η is a(t)-Birkhoff generic at x with respect to νHx.

Theorem 4.0.10 extends the main results of [126], which used the method of
Chaika–Eskin [25] developed for the Teichmüller geodesic flow to prove Birkhoff
genericity for the Haar measure on U . The same method was employed in [47]
to obtain Birkhoff genericity for volume measures on curves. The proof of
Theorem 4.0.10 will be given in §4.7, using the connection to random walks
observed in [129].

Probability measures generated by expanding random walks include a piece
of Haar measure on U and, under irreducibility conditions, self-similar measures
on Rm as well as natural self-affine measures on Bedford–McMullen carpets.
The latter example is crucial for our application to Diophantine approximation
problems on fractals described next. In §4.8.2 we will also discuss a more
general class of fractal measures covered by Definition 4.0.9.

4.0.6. Diophantine Approximation. By virtue of a correspondence prin-
ciple going back to the work of Dani [30] and Kleinbock [75], Theorem 4.0.10
on Birkhoff genericity has consequences for problems in Diophantine approxi-
mation, which we shall now describe.
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Let m ∈ N be a positive integer, v = (v1, . . . , vm)t a (column) vector in Rm,
and r = (r1, . . . , rm) ∈ (0, 1]m such that ∑m

i=1 ri = 1. The vector v is called
r-badly approximable if there exists a constant C > 0 such that

max
1≤i≤m

|viq − pi|1/ri · |q| ≥ C (4.0.3)

for every p = (p1, . . . , pm) ∈ Zm and q ∈ Z \ {0}. When ri = 1/m for every
i = 1, . . . ,m, such a vector is simply called badly approximable. In the case
m = 1, the latter corresponds to the classical definition of a badly approximable
number. It is easily seen by Dirichlet’s principle that for any vector v ∈ Rm, the
left-hand side of (4.0.3) is ≤ 1 for infinitely many pairs (p, q) ∈ Zm× (Z \ {0}).

The existence of badly approximable vectors was observed by Perron [101] a
century ago. It follows from Schmidt’s results [119] that such vectors constitute
a subset of Rm of everywhere-full Hausdorff dimension. This was strengthened
in more recent works [71, 79] to the statement that badly approximable vectors
contained in a sufficiently regular fractal K form a subset of full Hausdorff
dimension in K. For a general weight r, the results of [73, 79, 102] imply
that r-badly approximable vectors have everywhere-full Hausdorff dimension
in Rm. For r-badly approximable vectors on a fractal set K, the full-dimension
statement is known to hold when K has a certain product structure (see [71,
Theorem 8.4], [79, Theorems 11,13]).

The results outlined above can be summarized by saying that (r-)badly ap-
proximable vectors are abundant from the viewpoint of Hausdorff dimension.
On the Lebesgue measure side, however, Khintchine’s theorem [70] implies
that badly approximable vectors have zero Lebesgue measure. Using a general-
ization of Khintchine’s theorem [118], the same is seen to be true for r-badly
approximable vectors. The question whether badly approximable vectors on a
given fractal K also form a null set with respect to a natural measure on the
fractal proved to be rather more delicate. The first results in this direction are
due to Einsiedler–Fishman–Shapira [37], who proved that badly approximable
vectors have zero Hausdorff measure on certain fractals invariant under toral
endomorphisms (in case the dimension is m = 1) or toral automorphisms (in
case m = 2). For example, their results apply to the middle-third Cantor set.
This was vastly generalized by Simmons–Weiss [129], who established the same
statement for general self-similar fractals satisfying a separation condition. To
the best of our knowledge, for general weights r or on fractals which are not
strictly self-similar, the question of the measure of badly approximable vectors
is open. Our methods allow us to make an initial contribution in this direction.
For simplicity, here in the introduction we will describe only the special case
of “Bedford–McMullen carpets”; see §4.8 for the discussion in full generality.

Bedford–McMullen carpets are two-dimensional self-affine fractals, intro-
duced independently by Bedford [2] and McMullen [89], which admit a par-
ticularly simple construction. Let a, b ≥ 2 be distinct integers and divide the
unit square [0, 1]2 into an a× b-grid parallel to the coordinate axes. Choose an
arbitrary subcollection S of the ab rectangles created and discard the remain-
ing ones. Iteratively proceed in the same way for each of the rectangles that
remain, using the same pattern S. The points remaining after infinite iteration
form a Bedford–McMullen carpet K. If (ci, di)ki=1 denote the coordinates of the
bottom-left corners of the rectangles kept in the first construction step and we
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define the affine maps φi : R2 → R2 by

φi(x, y) =
(
a−1

b−1

)(
x
y

)
+
(
ci
di

)
,

then K is the unique non-empty compact subset of R2 with the property that⋃k
i=1 φi(K) = K. The Hausdorff dimension of fractals of this type was explicity

calculated by Bedford and McMullen. Except for special cases, it turns out
that their Hausdorff measure in the correct dimension is infinite [100]. However,
there exists another natural measure νK on K, known as theMcMullen measure:
It is the unique T -invariant ergodic probability measure on K of full Hausdorff
dimension, where T is the toral endomorphism corresponding to ( a b ) [68, 89].
For further background on the fractal geometry of Bedford–McMullen carpets,
we refer to the survey article [46].

The following is a specialization of our Theorem 4.8.3 to the case of weighted
badly approximable vectors on Bedford–McMullen carpets (see Corollary 4.8.5).

Theorem 4.0.11. Let a, b be positive integers with min(a2, b2) > max(a, b)
and let K ⊂ R2 be a Bedford–McMullen carpet invariant under the toral en-
domorphism T = ( a b ). Suppose that K is not contained in any straight line.
Then for the choice of weights

r =
(2 log a− log b

log a+ log b ,
2 log b− log a
log a+ log b

)
,

the set of r-badly approximable vectors on K has measure zero with respect to
the McMullen measure νK on K.

The requirement above that K is not contained in any straight line plays
the role of an irreducibility condition. It is satisfied when, in the construction
of the Bedford–McMullen carpet described above, the kept rectangles in the
pattern S do not all belong to a single line or column in the a× b-grid.

As mentioned before its statement, the above theorem will follow from
a much more general result about Diophantine properties of “(r, s)-matrix
sponges” (Theorem 4.8.3)—a class of fractals that we will introduce in §4.8.2.3.
In fact, the latter result will imply a version of Theorem 4.0.11 for higher-
dimensional analogues of Bedford–McMullen carpets, which are called “self-
affine Sierpiński sponges” in [68]; see Corollary 4.8.5.

4.1. H-Expansion: Definition and Basic Properties

We start by properly stating the definition of uniform expansion and giving
alternative formulations thereof.

Definition 4.1.1. Let µ be a probability measure on GLd(R). A vector v
in Rd is said to be µ-expanded if

lim inf
n→∞

1
n

log‖gn · · · g1v‖ > 0 (4.1.1)

for µ⊗N-almost every sequence (gi)i of elements of GLd(R). The measure µ is
said to be uniformly expanding if every nonzero v ∈ Rd is µ-expanded. If (4.1.1)
holds with ≥ in place of > for every nonzero v ∈ Rd, we call µ non-contracting.
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The above definition is the most general, but it can be hard to verify in prac-
tice. The characterization in the following proposition is often simpler to check.
Moreover, it will also play an important role in the height function construc-
tions in §4.5. Recall that a probability measure µ on GLd(R) is said to have a
finite first moment if

∫
log N(g) dµ(g) <∞, where N(g) = max(‖g‖, ‖g−1‖).

Proposition 4.1.2 (Proposition 2.1.4, [39, Lemma 1.5]). Let µ be a prob-
ability measure on GLd(R) with finite first moment. Then µ is uniformly ex-
panding if and only if there exists N ∈ N and a constant C > 0 such that for
every nonzero v ∈ Rd ∫

GLd(R)
log ‖gv‖
‖v‖

dµ∗N(g) ≥ C.

Uniform expansion can also be conveniently understood in light of the fol-
lowing theorem of Furstenberg–Kifer and Hennion. Recall that given a prob-
ability measure µ on a Lie group G, we denote by Γµ the closed subgroup
generated by the support of µ.

Theorem 4.1.3 (Furstenberg–Kifer [50], Hennion [62]). Let µ be a proba-
bility measure on GLd(R) with finite first moment. Then there exists a partial
flag Rd = F1 ⊃ F2 ⊃ · · · ⊃ Fk ⊃ Fk+1 = {0} of Γµ-invariant subspaces and a
collection of real numbers β1(µ) > · · · > βk(µ) such that for every v ∈ Fi \Fi+1,
we have µ⊗N-a.s.

lim
n→∞

1
n

log‖gn · · · g1v‖ = βi(µ).

Moreover, the βi(µ) are the values of

α(ν) :=
∫
P(Rd)

∫
GLd(R)

log ‖gv‖
‖v‖

dµ(g) dν(Rv)

that occur when ν ranges over µ-ergodic µ-stationary probability measures on
the projective space P(Rd).

In this result, the set of exponents {β1(µ), . . . , βk(µ)} is contained in the
set of Lyapunov exponents of µ and β1(µ) coincides with the top Lyapunov
exponent.

Uniform expansion can now be rephrased as follows.

Lemma 4.1.4. A probability measure µ on GLd(R) with finite first moment
is uniformly expanding if and only if βk(µ) > 0, where βk(µ) is the smallest
exponent appearing in Theorem 4.1.3. �

Furstenberg–Kifer’s theorem can also be used to see that, in fact, almost
sure divergence is enough to get uniform expansion. It will be useful to denote
by F60 the largest subspace among F1, . . . , Fk+1 with non-positive exponent.

Proposition 4.1.5. Let µ be a probability measure on GLd(R) with finite
first moment. Then µ is uniformly expanding if and only if for every nonzero
vector v ∈ Rd we have

lim
n→∞
‖gn · · · g1v‖ =∞ (4.1.2)

for µ⊗N-a.e. sequence (gi)i of elements of GLd(R).
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Proof. We only need to show that (4.1.2) implies uniform expansion. We
apply Theorem 4.1.3 and consider the space F60 defined before the statement
of the proposition. This space is Γµ-invariant. If it is nonzero, its projectiviza-
tion thus supports an ergodic µ-stationary probability measure ν. Using the
assumed almost sure divergence and Atkinson/Kesten’s lemma (see e.g. [18,
Lemma II.2.2]), it follows that α(ν) > 0, where α(ν) is as defined in Theo-
rem 4.1.3, a contradiction. �

For later use, let us also record at this point an immediate restriction that
the presence of expansion puts on µ-stationary measures on finite-dimensional
vector spaces.

Lemma 4.1.6. Let µ be a probability measure on GLd(R) and E a measur-
able subset of Rd such that every v ∈ E is µ-expanded. Then every µ-stationary
probability measure ν on Rd satisfies ν(E) = 0.

In particular, if µ has a finite first moment, then any µ-stationary proba-
bility measure ν on Rd is supported on the Furstenberg–Kifer subspace F60

of subexponential expansion. Together with a similar argument for vectors
that are contracted instead of expanded, one can more generally show that
ν((F60 \ F<0) ∪ {0}) = 1, where F<0 is defined in a way analogous to F60.

Proof. Write G = GLd(R) and V = Rd. By [10, Proposition 2.14], the
forward dynamical system (GN× V, µ⊗N⊗ ν, T V ) is measure-preserving, where

T V ((gi)i, v) = ((gi+1)i, g1v).
Let K be a compact subset of V . Then by the Poincaré recurrence theorem
applied to GN×K, we know that ν(K∩E) = 0, and the conclusion follows. �

Now we come to the central concept of this article: H-expansion.
Definition 4.1.7. Let H be a connected semisimple Lie group with finite

center and µ a probability measure onH. Given a representation (V, ρ) ofH we
say that µ is uniformly expanding in (V, ρ) if ρ∗µ is uniformly expanding. We
say that µ is H-expanding if µ is uniformly expanding in every representation
of H without nonzero H-fixed vectors, or equivalently, in every non-trivial
irreducible representation of H.

Here and everywhere else, by a “representation” we always mean a contin-
uous homomorphism into the group of invertible linear transformations of a
finite-dimensional real vector space. It is well known that such representations
are automatically smooth. For notational simplicity, we are going to simply
write h · v for ρ(h)v for h ∈ H and v ∈ V when the representation (V, ρ) is
clear from context. In this case, we also just say that µ is uniformly expanding
on V to mean that µ is uniformly expanding in (V, ρ).

We next explain what the moment conditions mean for a probability mea-
sure on a semisimple group that is not necessarily linear.

Definition 4.1.8. Let H be a connected semisimple Lie group with finite
center. Let µ be a probability measure on H. Then µ is said to have a finite
first moment (resp. finite exponential moments) if ρ∗µ has a finite first moment
(resp. finite exponential moments) for some representation ρ of H with finite
kernel.
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Of course, these moment conditions are automatically satisfied when µ has
compact support.

Lemma 4.1.9 ([10, Lemmas 10.6, 10.7]). Let H and µ be as in Defini-
tion 4.1.8 and suppose that µ has a finite first moment (resp. finite exponential
moments). Then ρ∗µ has a finite first moment (resp. finite exponential mo-
ments) for any representation ρ of H.

We remark that even though in [10], the above lemma is proved for algebraic
groups, the given proof also works for a connected semisimple group H with
finite center. Indeed, the argument relies only on a reformulation of the moment
condition into an integrability condition on the Cartan projection κ : H → a+,
which is related to representations of H by the formula ‖ρ(h)‖ = eχ(κ(h)) for
h ∈ H, where (V, ρ) is an irreducible representation of H with highest weight χ
and ‖·‖ is the operator norm associated to a Euclidean norm on V invariant
under the maximal compact subgroup K of H used to define κ.

In the proposition below we collect some first facts about H-expansion.

Proposition 4.1.10. Let H be a connected semisimple Lie group with finite
center and µ a probability measure on H. Then:

(i) Given a representation (V, ρ) of H, the following are equivalent:
• Any vector v ∈ V that is not ρ∗µ-expanded is H-fixed.
• The measure µ is uniformly expanding on the quotient V/V H .

(ii) If µ is H-expanding, then H has no compact factors.
(iii) If µ is H-expanding and ψ : H → G′ is a non-trivial continuous homo-

morphism into a real Lie group G′, then H ′ = ψ(H) is a connected,
closed, semisimple subgroup of G′ with finite center and ψ∗µ is H ′-
expanding.

(iv) Suppose H is an almost direct product of connected normal subgroups
H1 and H2 and let µi be probability measures on Hi with finite first
moments, i = 1, 2. If µi is Hi-expanding for i = 1, 2 and µ is the
pushforward of µ1 ⊗ µ2 by multiplication, then µ is H-expanding.

Proof. For (i), note that by semisimplicity of H, the quotient V/V H iden-
tifies with an H-invariant complement V + of V H in V . Thus we only need
to prove that uniform expansion of µ on V + implies the statement in the first
bullet point. Let p+ : V → V + be the projection and take v ∈ V which is not
ρ∗µ-expanded. Then also p+(v) is not ρ∗µ-expanded, so that uniform expansion
on V + implies p+(v) = 0. Hence, v is H-fixed.

For (ii), suppose H has a compact factor K. Then µ cannot be uniformly
expanding in the representation of H obtained by composing the projection
onto K with the adjoint representation of K. Thus, µ is not H-expanding.

As H is semisimple and has finite center, H ′ is a connected and semisimple
immersed Lie subgroup of G′ with finite center in the setting of (iii). As
representations of H ′ induce representations of H by precomposition with ψ,
the H ′-expansion condition is immediate. It only remains to argue that H ′ is
closed in G′. As this is in fact a more general statement, we drop the accents
and simply show that a semisimple immersed Lie subgroup H of a Lie group G
must be closed when H has finite center. For this, it suffices to show that if a
sequence (hn)n in H converges to the identity e in the topology of G, then this
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convergence holds also in the topology ofH. Notice that AdG(hn) considered as
elements of Aut(h) converges to the identity map when Aut(h) is endowed with
the subspace topology inherited from Aut(g). However, as linear semisimple
Lie algebras are algebraic (see [64, Theorem VIII.3.2]), this subspace topology
coincides with the usual topology of Aut(h). Since near the identity, AdH is a
local isomorphism from H to Aut(h), we thus find a sequence (h′n)n converging
to e in H such that AdH(hn) = AdH(h′n) for all n. This implies that h−1

n h′n
is contained in the center of H and converges to e. As the center is finite, we
have hn = h′n for all n large enough. We conclude that, indeed, hn → e as
n→∞ holds also in the topology of H.

Finally, to prove (iv), let (V, ρ) be a non-trivial irreducible representation
of H. Since H1 and H2 commute, for every n ∈ N, µ∗n is the pushforward by
multiplication of µ∗n1 ⊗µ∗n2 , and the subspaces V Hi of Hi-fixed vectors in V are
H-invariant. By irreducibility, they are trivial or all of V . It follows that one
of V H1 , V H2 is zero. We assume without loss of generality that V H1 = {0}.

Note that both ρ∗µ1 and ρ∗µ2 have a finite first moment by Lemma 4.1.9.
This readily implies that ρ∗µ has a finite first moment. By Proposition 4.1.2,
it suffices to show that for N large enough and v 6= 0, the quantity∫

H1×H2
log ‖h1h2 · v‖

‖v‖
dµ∗N1 (h1) dµ∗N2 (h2)

=
∫
H2

∫
H1

log ‖h1h2 · v‖
‖h2 · v‖ dµ∗N1 (h1) dµ∗N2 (h2) +

∫
H2

log ‖h2 · v‖
‖v‖

dµ∗N2 (h2)

is uniformly bounded from below by some C > 0. As ρ∗µ1 is uniformly expand-
ing, Proposition 4.1.2 gives this lower bound for the first integral above for N
large enough. By the same argument, the second term is either equal to 0 or
also bounded below by some C > 0, according to whether V H2 is V or {0},
respectively. �

Remark 4.1.11. We point out that in part (iii) of the previous proposition,
if the target G′ of the homomorphism ψ is a real algebraic group, then the
conclusion can be strengthened to the statement that the semisimple group
H ′ = ψ(H) is almost algebraic, meaning that it has finite index in a real
algebraic subgroup of G′. Indeed, as already exploited in the proof above, the
point is that linear semisimple Lie algebras are algebraic. In particular, this
applies when ψ is a representation (V, ρ) of H. This fact is useful to keep in
mind. �

Combining Proposition 4.1.10(i) with Lemma 4.1.6, we immediately obtain
the following corollary about µ-stationary measures on vector spaces.

Corollary 4.1.12. Let (V, ρ) be a representation of H and suppose that µ
is uniformly expanding on V/V H . Then any µ-stationary probability measure
on V is supported on the subspace V H of H-fixed vectors. �

4.2. Examples of H-Expanding Measures

In this section, we exhibit classes of probability measures on semisimple Lie
groups that satisfy the H-expansion property.



110 4. EXPANDING RANDOM WALKS

4.2.1. Zariski Dense Measures. As already mentioned in the introduc-
tion to this chapter, the first class of examples of H-expanding measures con-
sists of those whose support generates a Zariski dense subgroup of H. This is
the class of measures considered by Benoist–Quint [5, 8, 9].

Proposition 4.2.1. Let H be a connected semisimple Lie group without
compact factors and with finite center. Let µ be a probability measure on H
with finite first moment. Suppose that Ad(Γµ) is Zariski dense in Ad(H). Then
µ is H-expanding.

For the proof we need the following lemma, which is used to extend the
Zariski density assumption to arbitrary representations.

Lemma 4.2.2. Let Γ be a subsemigroup of H and S a connected subgroup
of H. Suppose that the Zariski closure of Ad(Γ) contains Ad(S). Then for
every representation (V, ρ) of H, ρ(S) is contained in Zcl(ρ(Γ)).

Proof. We consider the product representation ρ′ = Ad×ρ. Let H′ be
the Zariski closure of ρ′(H) inside GL(h)×GL(V ). Then both Ad and ρ factor
throughH′. As noted in Remark 4.1.11, ρ′(H) has finite index inH′. The same
holds for the Zariski closure H of Ad(H), so that both H and H′ are Zariski
connected real algebraic groups of dimension dim(H). Thus, projection to
the first factor of GL(h) × GL(V ) gives an isogeny p : H′ → H, and we know
that Zcl(ρ′(Γ)) has finite index in p−1(Zcl(Ad(Γ))). Since ρ′(S) is connected
and Ad(S) is contained in Zcl(Ad(Γ)) by assumption, it follows that ρ′(S) is
contained in Zcl(ρ′(Γ)). By projecting to the second factor, we conclude that
ρ(S) is contained in Zcl(ρ(Γ)). �

Proof of Proposition 4.2.1. Let (V, ρ) be a representation of H with-
out nonzero H-fixed vectors. By Lemma 4.2.2, ρ(Γµ) is Zariski dense in ρ(H).
Now uniform expansion in (V, ρ) follows directly from Furstenberg’s theorem
on positivity of the top Lyapunov exponent (see [51, Theorem 8.6]). To
see that the assumptions of Furstenberg’s theorem are satisfied, note that by
Lemma 4.1.9 we know that ρ∗µ has a finite first moment, and using Zariski den-
sity of ρ(Γµ) together with complete reducibility one may assume that ρ(Γµ)
acts irreducibly, which implies strong irreducibility in view of Zariski connect-
edness of ρ(H). Finally, since the ground field is R, the fact that the Zariski
closure of ρ(Γµ) is non-compact implies that ρ(Γµ) is not relatively compact,
finishing the proof. �

4.2.2. Measures on Parabolic Groups. Our next goal is to exhibit
probability measures supported on proper parabolic subgroups of H which are
H-expanding. Combining general criteria with the notion of the expanding
cone, which was introduced by Shi in [127] and which traces back to the
works of Shah and Weiss [123, 124, 133], we will obtain another easy-to-verify
sufficient condition for H-expansion.

We start by explaining our general setup. Let H be a connected semisimple
real Lie group without compact factors and with finite center and let a be an
Ad-diagonalizable element of H. Then given a representation (V, ρ) of H, we
have a direct sum decomposition

V = V +
a ⊕ V 0

a ⊕ V −a ,
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where V +
a , V

0
a , V

−
a are the sums of the eigenspaces of ρ(a) with eigenvalues

>, = or < 1, respectively. Let U be a connected Ad-unipotent subgroup
of H normalized by a. Following [126], we say that U is a-expanding if for
every non-trivial irreducible representation (V, ρ) of H, the subspace V U of
U -fixed vectors is contained in V +

a . It is equivalent ([126, Lemma A.1]) to
require that in any irreducible representation of (V, ρ) of H and for any nonzero
vector v ∈ V , the ρ(U)-orbit of v is not contained in V 0

a ⊕ V −a . For example,
if a has a non-trivial projection to every simple factor of H, then the unstable
horospherical subgroup H+

a = {h ∈ H | limn→∞ a
−nhan = 1H} is a-expanding

([123, Lemma 5.2]). In fact, it can be shown that U is a-expanding if and only
if U ∩H+

a is ([126, Lemma A.2]).
Now let Q 6 H be a parabolic subgroup with maximal connected R-split

torus A. Using the above, we will give two criteria for a measure on Q to
be H-expanding. To state the first, write Q = MAcN for the Langlands
decomposition of Q. In particular, this means that N is the unipotent radical
of Q, MAc = CH(Ac) is a (reductive) Levi subgroup of Q, and Ac is a maximal
central connected R-split torus in MAc (see e.g. [76, §VII.7]). We may assume
that Ac 6 A. Given a probability measure µ on Q, by using the diffeomorphism
Q ∼= M ×Ac×N given by multiplication and projecting to some of the factors,
we obtain associated probability measures µM , µAc , µMAc etc. Finally, we
denote by λc : Q→ a the composition of the projection to Ac with the logarithm
map log : A→ a, where a is the Lie algebra of A.

Proposition 4.2.3 (H-expanding measures (1)). Let µ be a probability
measure on H with finite first moment such that µ(Q) = 1 for some parabolic
subgroup Q = MAcN of H. Denote by ac,avg(µ) = exp(

∫
λc(g) dµ(g)) ∈ Ac

the Ac-average of µ. Let U be a connected Lie subgroup N and suppose the
following:

(1) supp(µ) ⊂MAcU ∩NH(U) and the Zariski closure of Ad(Γµ) contains
Ad(U),

(2) U is ac,avg(µ)-expanding, and
(3) µM is non-contracting in every representation of H.

Then µ is H-expanding.

Before proceeding with the preparations for the proof of the above proposi-
tion, let us provide a few brief comments on its hypotheses.

Remark 4.2.4 (On the hypotheses of Proposition 4.2.3).
• In fact, there is no freedom in the choice of U : Condition (1) implies
that it needs to be the Zariski closure of the projection of Γµ to N .
• When U = N and the parabolic group Q is absolutely proper, con-
dition (2) can conveniently be checked using the notion of expanding
cone to be discussed in §4.2.2.1.
• The non-contraction requirement on µM in condition (3) is satisfied,
for instance, when the identity component of the Zariski closure of
Ad(ΓµM ) is reductive with compact center (for example, the identity
component of Ad(M) itself). Indeed, in this case similar arguments
as in the proof of Lemma 4.2.2 can be used to show that ΓµM acts
completely reducibly and by transformations of determinant ±1 in
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every representation (V, ρ) of H. Then the Lyapunov exponents of µM
in any ΓµM -irreducible subspace of V sum to 0 and one concludes using
Theorem 4.1.3.
• Another useful fact for the verification of condition (3) is that the
connected component M◦ of M is the almost direct product of its
semisimple part S = [M◦,M◦] and a compact center. Provided µM is
supported on M◦, one can thus project to the non-compact part Snc
and is only left checking non-contraction for µSnc . The latter could
follow from Zariski density (Proposition 4.2.1), or by a recursive ap-
plication of Proposition 4.2.3 above to H = Snc. In the general case,
one can obtain from µM a probability measure µ◦M on M◦ defined as
the law of the first return to M◦ of the random walk on M induced
by µM ; see [10, §5.2]. Using [10, Proposition 5.9] and Theorem 4.1.3,
one sees that the non-contraction property of µ◦M implies that of µM .

�

For the proof of Proposition 4.2.3 we require the following lemma, which
reduces checking expansion to vectors fixed by some unipotent subgroup of the
image of the algebraic group generated by supp(µ).

Lemma 4.2.5 (A criterion for expansion). Let V be a finite-dimensional real
vector space and µ′ a probability measure on GL(V ) with finite first moment.
Denote by Q′ the Zariski closure of Γµ′ and let U ′ be a unipotent subgroup of Q′.
Suppose that every nonzero vector v ∈ V U ′ is µ′-expanded, where V U ′ denotes
the subspace of U ′-fixed vectors. Then µ′ is uniformly expanding.

Proof. Suppose for a contradiction that µ′ is not uniformly expanding.
Then there exists a vector v ∈ V \ {0} with lim infn→∞ 1

n
log‖gn · · · g1v‖ ≤ 0

for a positive measure subset of (gi)i ∈ (Q′)N with respect to (µ′)⊗N. By
Theorem 4.1.3, there exists a non-trivial Γµ′-invariant subspace W 6 V such
that for every w ∈ W , we have limn→∞

1
n

log‖gn · · · g1w‖ ≤ 0 for (µ′)⊗N-a.e.
(gi)i ∈ (Q′)N. Since Q′ is the Zariski closure of Γµ′ , the subspace W is
stabilized by Q′ and hence, by U ′. By the Lie–Kolchin theorem, we have
WU ′ 6= {0}. This implies that for any nonzero w ∈ WU ′ 6 V U ′ , we have
limn→∞

1
n

log‖gn · · · g1w‖ ≤ 0 for (µ′)⊗N-a.e. (gi)i ∈ (Q′)N, contradicting expan-
sion on V U ′ . �

Proof of Proposition 4.2.3. Let (V, ρ) be a non-trivial irreducible rep-
resentation of H. By Lemma 4.1.9, the measure ρ∗µ has a finite first moment,
and Lemma 4.2.2 implies that ρ(U) is a unipotent subgroup of the Zariski clo-
sure of ρ(Γµ). In view of Lemma 4.2.5, to prove uniform expansion of ρ∗µ it
suffices to show that for every nonzero v ∈ V U , we have

lim inf
n→∞

1
n

log‖gn · · · g1 · v‖ > 0

for µ⊗N-a.e. (gi)i ∈ HN. Since condition (1) implies that Γµ ⊂ MAcU and v
is U -fixed, it suffices to prove the above for µMAc-a.e. (gi)i ∈ HN, where µMAc

is the MAc-projection of µ. Writing gi = miai for the MAc-factorization of
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gi ∈MAc and using that M and Ac commute, we see that

1
n

log‖gn · · · g1 · v‖ = 1
n

log ‖an · · · a1mn · · ·m1 · v‖
‖mn · · ·m1 · v‖ + 1

n
log‖mn · · ·m1 · v‖.

(4.2.1)
The second term above is almost surely non-negative in the limit, by the

assumed non-contraction property of µM .
To deal with the first term, let Φ(Ac, ρ) be the set of weights of Ac for the

representation (V, ρ). Let {χ1, . . . , χt} be the subcollection of those weights χ
in Φ(Ac, ρ) with χ(ac,avg(µ)) > 1 and denote the corresponding weight spaces
by V1, . . . , Vt. Then by the assumption on U , we have V U ⊂ ⊕t

j=1 Vj =: W .
Since Ac and M commute, W is M -invariant. Lemma 4.2.6 below applied to
the space W and µ′ = µAc with vn = mn · · ·m1 · v thus implies that the first
term in (4.2.1) has strictly positive limit inferior µ⊗NMAc-almost surely. This
finishes the proof. �

Lemma 4.2.6. Let V be a finite-dimensional real vector space and A′ a
closed connected diagonalizable subgroup of GL(V ) with Lie algebra a. Write
V = ⊕

χ∈Φ(A′) V
χ for the weight space decomposition of V with respect to A′,

where V χ = {v ∈ V | av = χ(a)v for all a ∈ A′} and Φ(A′) is the set of
characters χ of A′ such that V χ 6= {0}. Let µ′ be a probability measure on A′
with finite first moment and denote aavg(µ′) = exp(

∫
log(a) dµ′(a)). Suppose

that χ(aavg(µ′)) > 1 for every χ ∈ Φ(A′). Then for (µ′)⊗N-a.e. (ai)i ∈ (A′)N
we have

lim inf
n→∞

1
n

log ‖an · · · a1vn‖
‖vn‖

> 0

for every choice of nonzero vectors vn ∈ V .

Proof. For convenience, we assume the norm ‖·‖ on V is Euclidean and
that the distinct weight spaces are orthogonal. Given a nonzero v ∈ V , write
v = ∑

χ∈Φ(A′) v
χ(v) for the corresponding weight space decomposition, where

vχ(v) ∈ V χ. Then for any a1, . . . , an ∈ A′ and nonzero vn ∈ V we have
an · · · a1vn =

∑
χ∈Φ(A′)

χ(an · · · a1)vχ(vn).

Choosing for every n ∈ N a character χn with ‖vχn(vn)‖ ≥ dim(V )−1/2‖vn‖
and recalling that χ(aavg(µ′)) > 1 for all χ ∈ Φ(A′) by assumption, we conclude
that

1
n

log ‖an · · · a1vn‖
‖vn‖

≥ o(1) + 1
n

logχn(an · · · a1) ≥ o(1) + min
χ∈Φ(A′)

1
n

n∑
i=1

logχ(ai)

n→∞−→ min
χ∈Φ(A′)

logχ(aavg(µ′)) > 0,

where the last convergence holds (µ′)⊗N-almost surely by the classical law of
large numbers. �

One drawback of Proposition 4.2.3 is that, in some sense, it requires the
M - and Ac-parts of µ to both exhibit expansion (or at least non-contraction)
individually. It would be natural to only ask the combination of both to be
expanding, a behavior which should be reflected in the A-average of µ. When
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µ does not charge M in a too complicated way, we can also prove H-expansion
in this case.

To state this second criterion, let U 6 H be any connected Ad-unipotent
subgroup. Then there exists a parabolic subgroup Q of H containing U in its
unipotent radical such that also NH(U) 6 Q [17]. As before, let A 6 Q be
a maximal R-split torus and denote by K a maximal compact subgroup of Q.
Given a non-trivial subtorus A′ 6 A normalizing U , set K ′ = CK(A′)∩NH(U)
and let P be the closed subgroup K ′A′U of Q. We write λ : P → a for the
morphism given by λ(kau) = log a.

Proposition 4.2.7 (H-expanding measures (2)). Retain the notation from
the paragraph above and let µ be a probability measure on H with finite first
moment such that µ(P ) = 1. Denote by aavg(µ) = exp(

∫
λ(g) dµ(g)) ∈ A the

A-average of µ. Suppose that:
(1) The Zariski closure of Ad(Γµ) contains Ad(U), and
(2) U is aavg(µ)-expanding.

Then µ is H-expanding.

We emphasize that, in contrast to Proposition 4.2.3, here the A-average
is considering also the part of the torus A inside M , if Q = MAcN is the
Langlands decomposition of Q.

Proof. Exactly as in the proof of Proposition 4.2.3, given a non-trivial
irreducible representation (V, ρ) of H, it suffices to prove that

lim inf
n→∞

1
n

log‖gn · · · g1 · v‖ > 0

for µ⊗NK′A′-a.e. (gi)i ∈ HN and every v ∈ V U , where µK′A′ is the pushforward
of µ by the map K ′A′U → K ′A′, kau 7→ ka. As K ′ is compact and commutes
with A′, we can disregard the K ′-component and consider only µA′ , defined in
the analogous way. Now the statement follows from Lemma 4.2.6. �

4.2.2.1. Expanding Cone. Now we present a construction which can be used
to ensure the expansion condition on U with respect to the A- or Ac-average
of µ in the criteria above (condition (2) in Propositions 4.2.3 and 4.2.7) in
the case that U is the unipotent radical of an absolutely proper parabolic
subgroup Q of H, where “absolutely proper” means that the projection of Q
to each simple factor of H is non-surjective. As before, we let A be a maximal
connected R-split torus of Q.

The expanding cone of U in A is defined to be

A+
U = {a ∈ A | U is a-expanding}.

It is proved in [127, Theorem 1.2] that A+
U only depends on the Lie algebras

h := Lie(H) and u := Lie(U), and that it can be described explicitly as follows.
Let a be the Lie algebra of A and let Σ(h, a) ⊂ a∗ := Hom(a,R) be the restricted
root system of (h, a). Denote by Σ(u) ⊂ Σ(h, a) the subset of roots whose
eigenvectors lie in u. By semisimplicity, the Killing form 〈·, ·〉 of h is positive
definite on a. So for each α ∈ a∗ we can associate sα ∈ a by 〈sα, v〉 = α(v)
for every v ∈ a. Using this isomorphism, we associate to Σ(u) the following
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convex cone in a:

a+
u :=

{ ∑
α∈Σ(u)

tαsα

∣∣∣∣ tα > 0
}
.

The expanding cone A+
U of U is then given by A+

U = exp a+
u . By abuse of

language, we shall sometimes also refer to a+
u as the expanding cone of U .

Using these notions, we get the following immediate corollary of Proposi-
tion 4.2.7.

Corollary 4.2.8. Let U be the unipotent radical of an absolutely proper
parabolic subgroup Q of H, A 6 Q a maximal connected R-split torus and
A′ 6 A a non-trivial subtorus. Moreover, let K be a maximal compact subgroup
of H, K ′ = CK(A′) ∩ Q, set P = K ′A′U and let µ be a probability measure
on H with finite first moment such that µ(P ) = 1. Suppose that the Zariski
closure of Ad(Γµ) contains Ad(U) and that

∫
λ(g) dµ(g) ∈ a+

u . Then µ is H-
expanding. �

4.2.2.2. Explicit Examples. We end this subsection by giving two explicit
examples where the criteria developed so far are applicable.

The first of them is the prototypical example of an expanding cone. Al-
though simple, it turns out to be of significant importance to Diophantine
approximation problems on fractals. We will take up this point and elaborate
on the connection in §4.8.

Example 4.2.9. Let H = SLm+n(R), and

Q =
{(
p11 p12
0 p22

)
∈ H

∣∣∣∣ p11 ∈ GLm(R), p22 ∈ GLn(R), p12 ∈ Rm×n
}
,

U =
{(1m p12

0 1n

)
∈ H

∣∣∣∣ p12 ∈ Rm×n
}
,

where we denote by 1d the d × d-identity matrix. The group A consists of
diagonal matrices in H with positive entries, and we have

A+
U = {diag(er1 , . . . , erm , e−s1 , . . . , e−sn) ∈ H | ri, sj > 0}

(see [127, Example 1.1]).
For concreteness, we exemplify a class of H-expanding measures on Q: Fix

a Borel subset BU of U not contained in a proper vector subspace of U ∼= Rmn.
For example, BU can be taken to be a non-degenerate curve in U or a collection
of k ≥ mn points in U ∼= Rmn that linearly spans U . Let µ be a compactly
supported probability measure on AU such that

• its support contains an element of A+
U ,

• the set of unipotent parts ug of elements g = agug in supp(µ) ⊂ AU
contains BU , and
• its A-average lies in the expanding cone of U , i.e.

∫
λ(g) dµ(g) ∈ a+

u .
Then µ can be seen to be H-expanding by Corollary 4.2.8. Indeed, as we will
see in §4.8 on Diophantine approximation on fractals, the first two points above
imply that the Zariski closure of Γµ contains U (see the proof of Theorem 4.8.3).

�
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Note that the above example covers in particular Example 2.1.8 in Chap-
ter 2. We also point out that, in Example 4.2.9, the assumption that supp(µ)
contains an element of A+

U is not strictly necessary. The first two bullet points
could be replaced by a certain “irreducibility condition” of an affine action of
the group generated by the support of µ (which is what we will do in §4.8), or,
alternatively, by the assumption that the commutator group [Γµ,Γµ] is Zariski
dense in U .

The second example is one where the reductive group M in the Langlands
decomposition of Q contributes to expansion in a non-trivial way.

Example 4.2.10. Let Q be the standard parabolic subgroup of SL4(R)
given by

Q =
( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗
∗

)
6 SL4(R).

The maximal connected R-split torus A consists of diagonal matrices with
positive entries. In the Langlands decomposition Q = MAcN we have

Ac =
{
dα,β := diag((αβ)−1/2, (αβ)−1/2, α, β)

∣∣∣ α, β > 0
}
,

M =
(SL2(R)

12

)
, and N =

( 1 ∗ ∗
1 ∗ ∗

1 ∗
1

)
.

Using the explicit description of the expanding cone in §4.2.2.1, one can calcu-
late directly that the intersection of the expanding cone of U = N in A with Ac
is given by

Ac ∩ A+
U = {dα,β | β < 1, αβ < 1}.

For i, j ∈ {1, 2, 3, 4} let ui,j be the unipotent element whose only nonzero off-
diagonal term is 1 at the (i, j)-entry. Let g = ( 1 1

1 ) and consider the element s
ofQ given by the block diagonal matrix s = (g,12). Now let µ be any compactly
supported probability measure on Q whose support is given by the union of
{s, s>, u2,3, u3,4} and some diagonal matrices dα,β in Q. It is not difficult to
see that U 6 Zcl(Γµ) and the Ac-part µAc of µ consists of the latter diagonal
matrices. Moreover, M is semisimple and the M -part of µ is Zariski dense
in M . So, in view of Propositions 4.2.3 and 4.2.1, provided that the integral∫

(logα, log β) dµAc(dα,β) is in the cone in R2 defined by the inequalities y < 0
and x+ y < 0, the measure µ is SL4(R)-expanding. �

4.2.3. Split Solvable Epimorphic Subgroups. The goal of this part is
to discuss a further class of H-expanding measures. They will be supported on
solvable epimorphic subgroups F = A′U of semisimple real algebraic groups H,
where A′ is a one-dimensional algebraic R-split torus and U is unipotent. The
arguments rely on Proposition 4.2.7, ideas going back to Weiss [133] and Shah–
Weiss [124], and the work of Bien–Borel [14, 16].

We start with a brief discussion of epimorphic subgroups, which have close
connections to the notion of H-expanding measures.

4.2.3.1. Epimorphic Subgroups. The concept of epimorphic subgroups of
algebraic groups was introduced by Bien–Borel [14, 15]. In [127], this notion
was adapted to subgroups of connected semisimple Lie groups without compact
factors.



4.2. EXAMPLES OF H-EXPANDING MEASURES 117

Definition 4.2.11. A subgroup F of H is said to be epimorphic in H if
for every representation of H, the vectors fixed by F are also fixed by H.

It can be shown that if H is almost algebraic in the sense of Remark 4.1.11
and F 6 H is a connected Lie subgroup or a Zariski connected algebraic
subgroup, it suffices to check the epimorphic property of F in real algebraic
representations of H (see Proposition A.3). Consequently, in the algebraic
category the above definition coincides with that of Bien–Borel. Moreover, it
follows that a connected Lie subgroup F is epimorphic in H if and only if its
Zariski closure Zcl(F ) is.

Mozes [93] proved that an F -invariant probability measure on G/Λ is al-
ready invariant under H (and thus homogeneous by Ratner’s theorem) in the
case where all of F,H,G are real algebraic groups. This measure rigidity result
was later generalized by Shah–Weiss [124, Theorem 1.8] to actions of connected
epimorphic Lie subgroups which are not necessarily algebraic.

Examples of epimorphic subgroups include parabolic subgroups of H and
Zariski dense subgroups, in case H is almost algebraic. One may notice that
these classes of subgroups also prominently featured in the previous parts of
this section, where we gave our first examples of H-expanding measures. That
this is not a coincidence becomes clear with the following observation.

Proposition 4.2.12. If µ is H-expanding, then the closed subgroup Γµ
generated by the support of µ is epimorphic in H.

Proof. In any given representation (V, ρ) of H, a Γµ-fixed vector v ∈ V
cannot be ρ∗µ-expanded. In view of Proposition 4.1.10(i), it follows that v is
H-fixed. �

On the other hand, there exist connected epimorphic subgroups of H which
do not support any H-expanding probability measure.

Example 4.2.13. We take H = SL3(R),

A′ =
{

diag(et, e−
√

2t, e(
√

2−1)t)
∣∣∣ t ∈ R

}
and let U be as in Example 4.2.9 for m = 2, n = 1. The Zariski closure of A′U
contains AU where A 6 H is the diagonal subgroup with positive entries. It
follows that A′U is an epimorphic subgroup of H, since AU is. On the other
hand, A′ has empty intersection with the expanding cone A+

U which is described
explicitly in Example 4.2.9. Therefore, for any probability measure µ on A′U
with finite first moment, we have

a := aavg(µ) 6∈ A+
U ,

where aavg is as in Proposition 4.2.7. It follows from the definition of the
expanding cone that there is a non-trivial irreducible representation V of H
such that V U ∩ (V −a ⊕ V 0

a ) 6= {0}. Therefore, µ is not H-expanding. �

We point out that the phenomenon in the above example crucially depends
on the one-dimensional torus A′ not being algebraic, as the discussion in the
upcoming part will show.
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4.2.3.2. Expanding Rays in One-Dimensional Algebraic Tori. We now state
an observation (Lemma 4.2.14) ensuring the expansion of the unipotent part
of a split solvable group with respect to its one dimensional torus. Based on
this observation, in §4.2.3.3 we will outline two constructions due to Bien–
Borel–Kollár [16], which, thanks to Proposition 4.2.7, yield further classes of
H-expanding measures with small support on a semisimple group H.

Let H be a connected almost algebraic semisimple real Lie group without
compact factors and F a connected epimorphic subgroup of H of the form
F = A′U where A′ is a connected algebraic R-split torus and U is a unipotent
subgroup of H normalized by A′. It is known that any connected algebraic
epimorphic subgroup of H contains an epimorphic subgroup of this form [14,
§10, Theorem 2].

The following lemma can be proved in a similar way as Lemma 4.2.6 using
additionally [133, Lemma 1]. We omit the routine details of the proof for
brevity.

Lemma 4.2.14. Let H and F = A′U be as above and suppose that A′ is
one-dimensional. Then there exists a parametrization A′ = (a(t))t∈R as one-
parameter subgroup such that for every representation (V, ρ) of H and U-fixed
vector v ∈ V U , either v is H-fixed or limt→∞‖ρ(a(t))v‖ = ∞. For such a
parametrization, U is a(t)-expanding in the sense of §4.2.2 for every t > 0. �

4.2.3.3. Examples. Let H be a connected almost algebraic semisimple real
Lie group and denote its Lie algebra by h. Let Z be a one-parameter unipotent
subgroup of H and z a generator of the Lie algebra of Z. By the Jacobson–
Morozov theorem z is part of an sl2-triple (a, z, z−). Let s be the Lie alge-
bra spanned by this triple and S the corresponding connected subgroup of H.
Let A′ be the one-parameter diagonalizable subgroup with Lie algebra spanned
by a. Via the adjoint representation, write h as direct sum of the centralizer zo
of s and of non-trivial irreducible s-submodules m1 = s,m2, . . . ,mk.

Example 4.2.15 ([16, Proposition 4.5]). Retain the notation from the para-
graph above and suppose that z has non-trivial projections to each of the simple
factors of h. Let zi be highest weight vectors of the irreducible s-modules mi,
with z1 = z. Write u for the direct sum of their R-spans. Denoting by U the
corresponding unipotent subgroup of H, it follows that F = A′U is a split solv-
able algebraic subgroup of H, which can be seen to be epimorphic in H thanks
to [16, Proposition 4.5]. Therefore, by virtue of Proposition 4.2.7, we see that
any probability measure µ on F whose A′-average lies in the expanding ray
given by Lemma 4.2.14 is H-expanding. �

Example 4.2.16 ([16, §4.6]). Retain the notation from above. Suppose
that H is an R-split simple real algebraic group and that the one-parameter
unipotent subgroup Z of H contains “regular” unipotent elements. For exam-
ple, the generator z can be taken as sum of eigenvectors for all simple roots of h.
Then the subgroup S whose Lie algebra is spanned by the sl2-triple (a, z, z−) is
a “principal TDS” (three-dimensional subgroup) inH. It is known that either S
is properly contained in exactly one proper connected subgroup R of H, or S is
maximal among proper connected subgroups of H, in which case we set R = S.
See Kostant [77] for a treatment of the notions used here. Choose mj so that it
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does not intersect the Lie algebra r of R and let Zj be the subgroup of H whose
Lie algebra is generated by a highest weight vector of mj. Then, as discussed
in [16, §4.6], F = A′ZZj is a three-dimensional split solvable algebraic epimor-
phic subgroup of H. Therefore, as in the previous example, three-dimensional
solvable subgroups obtained by this construction support many H-expanding
measures thanks to Proposition 4.2.7 and Lemma 4.2.14. �

We end this section by mentioning an ensuing question, which was also
posed to us by Barak Weiss.

Question. Let H be a semisimple real algebraic group without compact
factors. Is it true that every algebraic epimorphic subgroup F 6 H supports
an H-expanding probability measure?

The answer to the above question is negative if we do not require F to be
epimorphic (Proposition 4.2.12) or to be algebraic (Example 4.2.13).

On the other hand, let F = A′U be an R-split solvable epimorphic sub-
group of F , where U is a unipotent group and A′ is an R-split algebraic torus
normalizing U . Then [14, §7, Lemma (iii)] provides a sufficient condition (in
terms of finite-generation of a monoid generated by certain characters of A′)
for F to contain an R-split solvable epimorphic subgroup F0 = A′0U with one-
dimensional R-split algebraic torus A′0 < A′. In view of Lemma 4.2.14, any
such subgroup F0 supports H-expanding probability measures. However, we do
not know whether the hypothesis of the aforementioned lemma of Bien–Borel
is always satisfied in the context of the question above, or whether a different
construction can be used to obtain H-expanding probability measures on F in
case it is not.

4.3. Measure Rigidity

This section is dedicated to the statements outlined in §4.0.1. In §4.3.1,
we first prove our general measure rigidity result (Theorem 4.0.1), followed
by a discussion of stationary measures charging an orbit of the centralizer
in §4.3.2, which leads to the proof of Corollary 4.0.2. Finally, we more closely
analyze in §4.3.3 expansion in which representations is necessary to obtain the
conclusion of Theorem 4.0.1. This will yield a finite criterion weaker than
H-expansion for measure rigidity to hold when the ambient Lie group G is
fixed.

4.3.1. Rigidity for Expanding Measures. Let Λ be a discrete subgroup
of a real Lie group G and X = G/Λ. Moreover, we let H 6 G be a connected
semisimple subgroup without compact factors and with finite center and µ a
probability measure on H. For the proof of Theorem 4.0.1, we will follow the
strategy in the proof of [39, Theorem 1.3]. The argument is based on the
following measure classification result of Eskin–Lindenstrauss.

Definition 4.3.1 ([39, Definition 1.6]). Let Z be a connected Lie subgroup
of G. A probability measure µ on G is said to be uniformly expanding mod Z
if the following hold:

(a) Z is normalized by Γµ,
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(b) the conjugation action of Γµ on Z factors through the action of a
compact subgroup of Aut(Z), and

(c) there is a Γµ-invariant direct sum decomposition g = Lie(Z)⊕ V such
that µ is uniformly expanding on V .

Theorem 4.3.2 (Eskin–Lindenstrauss [39, Theorem 1.7]). Let G be a real
Lie group and Λ < G a discrete subgroup. Suppose that µ is a probability
measure on G with finite first moment for which there exists a connected Lie
subgroup Z of G such that µ is uniformly expanding mod Z. Let ν be any
ergodic µ-stationary probability measure on G/Λ. Then one of the following
holds:

(a) There exists a closed subgroup N 6 G with dim(N) > 0, an N-
homogeneous probability measure ν0 on G/Λ, and a µ-stationary prob-
ability measure η on G/N such that

ν =
∫
G/N

g∗ν0 dη(g).

(b) The measure ν is Γµ-invariant and supported on a finite union of com-
pact subsets of Z-orbits.

The following two lemmas will go into the proof of Theorem 4.0.1.

Lemma 4.3.3. Suppose that µ is H-expanding. Then the Lie algebra g of G
admits an H-invariant direct sum decomposition g = l ⊕ v, where l is the Lie
algebra of the centralizer L of Γµ in G and v ⊂ g is a subspace on which µ is
uniformly expanding. In particular, µ is uniformly expanding mod L◦ in the
sense of Definition 4.3.1.

Proof. Since, by Proposition 4.2.12, Γµ is epimorphic in H, l is the space
of H-fixed vectors in the adjoint representation of G. Semisimplicity thus
implies the existence of an H-invariant complementary subspace v. Now the
claim follows directly from the definition of H-expansion. �

The second lemma concerns µ-stationary measures assigning positive mass
to centralizer orbits.

Lemma 4.3.4 ([8, Lemma 7.6]). Suppose that ν is an ergodic µ-stationary
probability measure on X such that ν assigns positive mass to some L-orbit
in X, where L = CG(Γµ). Let L0 be any open subgroup of L∩ StabG(ν). Then
ν is homogeneous under the closed subgroup ΓµL0 and L0 is open in StabG(ν).

We point out that the last claim in the statement above follows from the
proof of [8, Lemma 7.6], where it is shown that the support of ν is a finite union
of closed L0-orbits which are transitively permuted by Γµ. In fact, even more
conclusions can be drawn in the context of this lemma; see Proposition 4.3.5.

Proof of Theorem 4.0.1. Our main tool is Theorem 4.3.2. Its assump-
tions are satisfied, since by Lemma 4.3.3, µ is uniformly expanding mod L◦,
where L denotes the centralizer of Γµ in G. If Theorem 4.3.2(b) holds, then by
Lemma 4.3.4, ν is homogeneous and the connected component of StabG(ν)
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is contained in L. By the epimorphic property of Γµ in H from Proposi-
tion 4.2.12 applied to the adjoint representation of G, the connected compo-
nents of CG(Γµ) and CG(H) coincide. Thus, it follows that the connected
component of StabG(ν) is centralized by H.

If Theorem 4.3.2(a) holds, then there exists a closed subgroup N of G with
dim(N) > 0, an N -homogeneous probability measure ν0 on X = G/Λ, and a
µ-stationary probability measure η on G/N such that

ν =
∫
G/N

g∗ν0 dη(g). (4.3.1)

We may assume that η is µ-ergodic. Indeed, if η =
∫
Y ηy dy is a µ-ergodic

decomposition of η, then

ν =
∫
Y

(∫
G/N

g∗ν0 dηy(g)
)

dy

is a convex decomposition of ν into µ-stationary measures. Since ν is µ-ergodic,
we must have ν =

∫
G/N g∗ν0 dηy(g) for almost every y. Thus, we can replace η

by one of the ηy, if necessary. We consider N such that dim(N) is maximal
among possible representations of ν of the form (4.3.1).

Now consider the adjoint action of G on S2(g∧ dim(N)), where S2 denotes the
symmetric square representation, and let ω correspond to a vector given by a
basis of the Lie algebra of N . Let P be the stabilizer of ω in G. Since N admits
a lattice, it is unimodular, implying that N 6 P . Let η′ be the pushforward
of η by the canonical projection G/N → G/P . The measure η′ can be thought
of as an ergodic µ-stationary measure on S2(g∧ dim(N)). By Corollary 4.1.12,
η′ must concentrate on the subspace of H-fixed vectors. Then by ergodicity,
η′ is a Dirac measure. After replacing N and P by their conjugates, we may
assume without loss of generality that η′ is the Dirac measure on the coset P .
It follows that ω is H-fixed. Hence H 6 P and H ∩N◦ is a normal subgroup
of H. If H 6 N◦, then the action of H on P/N is trivial, so that by ergodicity
of η we have ν = g∗ν0 for an element g ∈ P with supp(η) = {gN} and we are
done.

So let us now assume that H is not contained in N◦. In this case, we
consider the action of (H/(H ∩ N◦), µ′) on P/N ∼= (P/N◦)/(N/N◦) with the
µ′-stationary measure η, where µ′ is the pushforward of µ by the canonical
projection H → H/(H ∩N◦). Since µ is H-expanding and H is not contained
in N◦, µ′ is H/(H ∩N◦)-expanding in view of Proposition 4.1.10(iii). Now, in
view of Lemma 4.3.3, we are in a position to apply Theorem 4.3.2 again. We
claim that thanks to the choice of N as having maximal dimension in (4.3.1),
the case (a) in Theorem 4.3.2 does not occur. Suppose it does. This means
that there exist a closed subgroup M 6 P/N◦ of positive dimension, an M -
homogeneous probability measure ν ′0 on P/N and a µ′-stationary probability
measure η′ on (P/N◦)/M such that we have

η =
∫

(P/N◦)/M
g∗ν
′
0 dη′(g). (4.3.2)

Denote by M̂ the preimage of M under the canonical projection P → P/N◦ so
that we can identify (P/N◦)/M with P/M̂ . By combining (4.3.1) and (4.3.2),
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we deduce that

ν =
∫
P/N

∫
P/M̂

(gh)∗ν0 dη′(g)dν ′0(h) =
∫
P/M̂

g∗

(∫
P/N

h∗ν0 dν ′0(h)
)

dη′(g).

Now it is easily observed that the probability measure Ψ =
∫
P/N h∗ν0 dν ′0(h)

on X is M̂ -invariant and supported on finitely many M̂ -orbits. By µ-ergodicity
of ν, for every M̂ -ergodic component Ψy of Ψ, we have

ν =
∫
P/M̂

g∗Ψy dη′(g).

Take such a component Ψy which assigns positive mass to an M̂ -orbit. Then Ψy

is M̂ -homogeneous and the fact that dim(M̂) > dim(N) yields a contradiction
to the maximality of dim(N) in (4.3.1).

Therefore we can conclude by case (b) of Theorem 4.3.2 that η is Γµ′-
invariant and supported on finitely many compact subsets of CP/N◦(Γµ′)-orbits.
By Lemma 4.3.4, η is M -homogeneous for a closed subgroup M 6 P/N◦. In
particular, η can be written in the form (4.3.2) with ν ′0 = η and η′ the Dirac
mass at the identity coset, the latter being µ′-stationary since η is Γµ′-invariant.
As we have argued above, this cannot happen if the support of η has positive
dimension. Thus, η is a finite periodic orbit measure, and using (4.3.1) it
directly follows that ν is homogeneous. The connected component of StabG(ν)
is N◦, which is normalized by H, as we already established above. Hence, the
proof is complete. �

4.3.2. Stationary Measures Charging an Orbit of the Centralizer.
The following proposition gives additional information about the measure ν in
the setting of Lemma 4.3.4, or more generally, in the setting of [8, §7.3]. It will
be used below to deduce Corollary 4.0.2(i) from Theorem 4.0.1.

The general setting is as follows: G is a locally compact second countable
group, Λ a discrete subgroup of G, µ is a probability measure on G, L denotes
the centralizer of Γµ in G, and ν is a µ-ergodic µ-stationary probability measure
on X = G/Λ assigning positive mass to some L-orbit. Finally, L0 is any open
subgroup of L ∩ StabG(ν).

Proposition 4.3.5. Retain the notation and assumptions above and fix a
point x = gΛ ∈ supp(ν). Let ν0 be the restriction of ν to L0x, Γ0 the stabilizer
of ν0 in Γµ and

ΓL0 = {l ∈ L0 | there exists h ∈ Γ0 such that hl ∈ gΛg−1}.
Then in addition to the conclusion of Lemma 4.3.4, the following holds:

(i) Γ0 has finite index in Γµ,
(ii) ΓL0 is a dense subgroup of L0 with Γ0x = ΓL0 x, and
(iii) L0 ∩ gΛg−1 is a cocompact normal subgroup of L0.

In particular, ν is compactly supported and is the unique ergodic µ-stationary
probability measure on X assigning positive measure to supp(ν).

Proof. By [8, Lemma 7.6] and its proof, we know that ν is the homo-
geneous measure on ΓµL0x and that supp(ν) consists of finitely many closed
L0-orbits which are transitively permuted by Γµ. In particular, ν(L0x) > 0. It
follows that Γ0 has finite index in Γµ. Moreover, since Γµ preserves ν and acts
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ergodically, the group Γ0 acts ergodically with respect to ν0. This implies that
we can find l0 ∈ L0 such that Γ0l0x is dense in L0x. As l0 commutes with Γ0,
it immediately follows that Γ0x is dense in L0x. Since ΓL0 is precisely defined
for Γ0x = ΓL0 x to hold, we conclude that ΓL0 = ΓL0 (L0 ∩ gΛg−1) is dense in L0.

We next prove that L0 ∩ gΛg−1 is a cocompact normal subgroup of L0.
Since we have already shown that ΓL0 is dense in L0, it suffices to show that
L0∩gΛg−1 is normal in ΓL0 . To see this, taking an arbitrary l ∈ ΓL0 and choosing
h ∈ Γ0 with hl ∈ gΛg−1, we calculate

l(L0 ∩ gΛg−1)l−1 = hl(L0 ∩ gΛg−1)(hl)−1 = L0 ∩ gΛg−1,

where we used again that Γµ and L0 commute. Since there is a finite L0-
invariant measure on L0/(L0 ∩ gΛg−1), the latter quotient group must be com-
pact.

It remains to prove the uniqueness of ν. Let ν ′ be an arbitrary ergodic
µ-stationary probability measure on X with ν ′(supp(ν)) > 0. Take x ∈
supp(ν) ∩ supp(ν ′). Then by what we have shown above, ν ′ is homogeneous
and supp(ν) = Γµx = supp(ν ′). Hence, ν = ν ′ by homogeneity. �

To keep the continuity, we now prove the corollary on measure rigidity on
quotients of a semisimple group G by an irreducible lattice Λ, even though
one part of the statement relies on the countability result for homogeneous
subspaces to be established in §4.4.

Proof of Corollary 4.0.2. Let ν be an ergodic µ-stationary probabil-
ity measure on X = G/Λ. By Theorem 4.0.1 we know that ν is homogeneous
and StabG(ν)◦ is normalized byH. By conjugating if necessary, we may assume
the identity coset Λ is in the support of ν. If StabG(ν)∩H is non-discrete, then
StabG(ν) must contain a normal subgroup of H of positive dimension. Since Λ
is irreducible, this implies that ν is G-invariant. Indeed, StabG(ν)Λ is closed
since the stabilizer intersects Λ in a lattice ([107, Theorem 1.13]), and also
dense by irreducibility of Λ if StabG(ν) contains a simple factor of G.

Let us now assume that StabG(ν) ∩ H is discrete and H 6= G and use
this to derive a contradiction. Since StabG(ν)◦ is normalized by H, we may
view its Lie algebra as H-submodule of g = Lie(G). As every non-trivial H-
isotypic component of g is contained in Lie(H), it follows from the discreteness
assumption that we must have StabG(ν)◦ 6 CG(H) 6 CG(Γµ). This puts
us in the setting of Proposition 4.3.5, namely, the homogeneous measure ν
gives positive mass to an orbit of the centralizer L of Γµ in G. We apply this
proposition with x = Λ and L0 the connected component of StabG(ν) ∩ L and
let Γ0 and ΓL0 be as defined there. Then L0 ∩ Λ is central by irreducibility
of Λ ([107, Corollary 5.21]), hence finite, which by part (iii) of the proposition
implies that L0 is compact.

We now invoke Margulis’ arithmeticity theorem in [85]. The conclusion is
that we may assume that G = ∏

σ∈S Gσ(kσ), where G is a Zariski connected
absolutely simple linear algebraic group defined over a number field k, kσ ∈
{R,C} denotes the completion of σ(k) for a field embedding σ : k → C, and S
is a finite set of inequivalent such embeddings with the property that Gσ(kσ)
is non-compact if and only if σ or σ is in S. The lattice Λ is given as the
diagonal embedding of G(Ok) in G via k 3 z 7→ (σ(z))σ∈S, where Ok is the
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ring of integers of k. As H 6= G is a connected normal subgroup of G of
positive dimension, there is a non-empty proper subset S1 ⊂ S such that
H = ∏

σ∈S1 Gσ(kσ). We remark that in the above, strictly speaking, G and H
should be the analytic identity components of the appearing groups, but we
ignore this point for ease of notation and without loss of generality. We write
S2 = S \ S1 and also assume without loss of generality that the identity map
is contained in S1.

Let Γ1 be the projection of Γ0 to G, and for every σ ∈ S2 let Γσ be
the projection of ΓL0 to Gσ. Then part (ii) of Proposition 4.3.5 implies that
Γ1 6 G(Ok) and Γσ = σ(Γ1). From Proposition 4.2.12 it follows that the
Zariski closure of Γµ is an epimorphic subgroup of H in the category of real
algebraic groups. As Γ0 has finite index in Γµ, also Zcl(Γ0) is epimorphic in H.
We claim that Zcl(Γ0) is also reductive. Otherwise, its projection to one of the
simple factors of H is not reductive. Without loss of generality assume that
this holds for F = Zcl(Γ1). Then we get a contradiction since Fσ = Zcl(Γσ) is
reductive because Γσ is dense in a compact group. So Zcl(Γ0) is a reductive
epimorphic subgroup of H, which implies that Γ0 is Zariski dense in H.

Now consider the Zariski closure G′ of the diagonal embedding of Γ1 in
Resk/Q G(R) = ∏

σ Gσ(kσ), where the product runs over all inequivalent field
embeddings σ of k into C. Then G′ is an algebraic Q-group without non-trivial
Q-characters, so that by Borel–Harish-Chandra’s theorem the intersection of G′
with G(Ok) is a lattice in G′. As Γσ = σ(Γ1) is relatively compact in Gσ(kσ)
for each σ ∈ S2 and Gσ(kσ) is compact for σ /∈ S, G′ has compact projections
to all Gσ(kσ) with σ /∈ S1. Moreover, the projection from G′ to H is onto since
Γ0 is Zariski dense in H. Thus, the projection Λ0 of G′ ∩ G(Ok) to H is a
lattice in H. Let Λ1 be the projection of Λ0 to G and let k′ be the subfield
of k generated by the set Tr(Ad(Λ1)). Then Ad(Λ1) is definable over k′ (see
[85, IX.1.8]). So we may and will assume that G is defined over k′ and Λ1 6
G(k′). The group Resk′/Q G(R) = ∏

τ : k′→C Gτ (k′τ ) is naturally embedded in
Resk/Q G(R) = ∏

σ Gσ(kσ) as a real algebraic subgroup, by identifying Gτ (k′τ )
with its diagonal embedding in ∏σ : σ|k′=τ Gσ(kσ). Under this identification, we
have G′ 6 Resk′/Q G(R). We deduce the following facts:

(a) The embeddings σ|k′ of k′ for σ ∈ S1 are pairwise distinct and σ ∈ S1
is a complex embedding if and only if σ|k′ is, since the diagonally em-
bedded G(k′) is Zariski dense in H because it contains the lattice Λ0.

(b) If τ admits an extension σ : k → C not in S1, then Gτ (k′τ ) is compact.
Indeed, since τ(Λ1) is Zariski dense in Gτ , the Zariski closure of τ(Λ1)
in Resk′τ/R Gτ (R) is either Gτ (C) or a real form of it. In the latter
case, the field τ(k′) generated by Tr(Ad(τ(Λ1))) is contained in R, so
k′τ = R. Therefore, τ(Λ1) is Zariski dense in Resk′τ/R Gτ (R), and as
σ /∈ S1 we also know that τ(Λ1) is relatively compact.

But these facts yield a contradiction: As S2 is non-empty we cannot have
k = k′ due to (b), so that the identity embedding k′ → C must admit a non-
trivial extension σ : k → C. This embedding σ cannot be contained in S1 due
to point (a) above, but also cannot lie outside of S1, by combining points (a)
and (b). This finishes the proof of (i).
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In the case H = G of part (ii), the arguments at the beginning of the proof
show that either ν = mX or StabG(ν) is discrete. In the latter case, ν must
be the uniform probability measure on a finite Γµ-orbit (see [5, Lemma 8.3]).
Moreover, in this case we have that CG(Γµ) is discrete by the epimorphic prop-
erty of Γµ in G from Proposition 4.2.12. Proposition 4.4.1 thus implies that
there are only countably many distinct finite Γµ-orbits in X. Hence, if ν is
any non-atomic µ-stationary probability measure on X, ν = mX follows by
considering an ergodic decomposition of ν. This completes the proof. �

4.3.3. Expansion on Grassmannians. TheH-expansion condition on µ
is a universal requirement in the sense that all our results (including the mea-
sure classification theorem) hold for any embedding H ↪→ G and any discrete
subgroup Λ in G. Having fixed H 6 G, however, close inspection of the proof
of Theorem 4.0.1 reveals that it is sufficient to have uniform expansion on the
quotient of each exterior power of g by the corresponding H-fixed subspace.

Definition 4.3.6. Let G be a real Lie group with Lie algebra g and H 6 G
a connected semisimple subgroup with finite center. We say that a probability
measure µ on H is H-expanding relative to G if µ is uniformly expanding on the
quotient of the exterior power representation (g∧k,Ad∧k) by the corresponding
H-fixed subspace for every 1 ≤ k ≤ dim(G)− 1.

We point out that a related notion was already studied in Chapter 2, under
the name “uniform expansion on Grassmannians”.

Theorem 4.3.7. Let G be a real Lie group, Λ 6 G a discrete subgroup,
and H a connected semisimple subgroup of G with finite center. Let µ be an
H-expanding probability measure relative to G with finite first moment. Then
the conclusions of Theorem 4.0.1 hold for every ergodic µ-stationary probability
measure ν on G/Λ.

Proof. We analyze the applications of the H-expansion property in the
proof of Theorem 4.0.1, so we retain the notation used there.

• The first application of Lemma 4.3.3 is possible without problems.
• Next, expansion is used for the representation S2(g∧ dim(N)). In case

dim(N) = dim(G), the probability measure η in (4.3.1) is finitely
supported and Γµ-invariant by [5, Lemma 8.3], so all claims follow.
Otherwise, we know that the measure η′ on S2(g∧ dim(N)) is supported
on {v ⊗ v | v ∈ g∧ dim(N)} by construction. Using that ‖v ⊗ v‖ = ‖v‖2

and the assumed expansion in g∧ dim(N), we can again draw the desired
conclusion that η′ is supported on the set of H-fixed vectors.
• Finally, expansion is needed to reapply Theorem 4.3.2 in the quotient
by N◦. The assumption there implies that H/(H ∩ N◦) is still a
semisimple group, so that dim(N) ≤ dim(G) − 3. Let v ∈ g∧ dim(N)

correspond to a basis of the Lie algebra n of N . Then a norm on g/n
is given by ‖w + n‖ = ‖w ∧ v‖ for w ∈ g. Since H fixes the vector
ω = v ⊗ v in S2(g∧ dim(N)) and H is connected, v is fixed by H. Thus,
for every h ∈ H and w ∈ g we have

‖h · (w + n)‖ = ‖h · w ∧ v‖ = ‖h · (w ∧ v)‖. (4.3.3)
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Hence, we again obtain expansion for every vector in g/n that is not H-
fixed. This justifies the application of Lemma 4.3.3 in the quotient. �

Combining the above with some properties of epimorphic subgroups, we
obtain the following.

Corollary 4.3.8. Let G be a real algebraic group, Λ < G a lattice, and
H 6 G a Zariski connected semisimple algebraic subgroup without compact
factors. Then any Zariski connected real algebraic epimorphic subgroup F of H
supports probability measures µ for which the conclusions of Theorem 4.0.1
hold.

Proof. It is known that the epimorphic subgroup F contains a split solv-
able algebraic subgroup A′U , where A′ is an algebraic R-split torus and U is
unipotent and normalized by A′, that is still epimorphic inH (see [14, §10, The-
orem 2]). Thus we may assume F = A′U is of this form to begin with. By
[133, Lemma 1] there is a non-empty open cone A′+ in A′ such that χ(a) > 1
for all a ∈ A′+ and all characters of A′ having an eigenvector in one of the
U -fixed subspaces V U

k of the finitely many representations V1, . . . , Vr appear-
ing in the statement of Theorem 4.3.7. Then any probability measure µ on F
with finite first moment whose A′-average aavg(µ) lies in A′+ and for which the
Zariski closure of Γµ contains U is uniformly expanding in all of the represen-
tations Vk. Indeed, this follows directly by combining Lemmas 4.2.5 and 4.2.6.
Theorem 4.3.7 thus applies to all measures µ satisfying these conditions. �

4.4. Countability of Homogeneous Subspaces

Let Γ be a closed subsemigroup of G and Λ < G a lattice. A homogeneous
subspace Y ⊂ X = G/Λ is said to be Γ-invariant if Γ preserves the associated
homogeneous probability measure η on Y . It is called Γ-ergodic if Γ acts
ergodically on (Y, η). Define

S(Γ) = {Γ-invariant Γ-ergodic homogeneous subspaces Y ⊂ X}.
A key input to the proof of Theorem 4.0.5 is countability of S(Γµ) modulo the
centralizer of H. Our strategy to prove this result closely follows the approach
in [9], where this result is proved under the assumption that the Zariski closure
of Ad(Γµ) is semisimple and has no compact factors. The goal of this subsection
is therefore to prove the following analogue of [9, Proposition 2.1].

Proposition 4.4.1. Let G be a real Lie group, H 6 G a connected semisim-
ple subgroup with finite center, and Γ < H a subsemigroup that supports a
probability measure with finite first moment that is H-expanding relative to G.
Denote by L the centralizer of Γ in G. Then there exists a countable subset Y
of S(Γ) such that

S(Γ) = {lY | l ∈ L, Y ∈ Y}. (4.4.1)

Note that the set S(Γ) remains the same if we replace the semigroup Γ
by the closed group that it generates. Therefore, in the proof of the previous
result, we can suppose that Γ is a closed subgroup of H.

The key ingredient of the proof of this proposition is Lemma 4.4.3 below,
which will imply countability of the closed subgroups of G that arise as the
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stabilizer of homogeneous subspaces in S(Γ). To this end, we introduce the
following definition, which, in view of Theorem 4.0.1, is the appropriate replace-
ment of [9, Definition 2.4].

Definition 4.4.2. Let ∆ ⊂ Σ be discrete subgroups of a real Lie group G.
The set T (G,∆,Σ) is defined to be the set of closed subgroups N of G such
that

(i) Σ is contained in N and is a lattice in N ,
(ii) ∆ = Σ ∩N◦, where N◦ is the connected component of N ,
(iii) there exist a connected semisimple Lie group HN 6 G and a subgroup

Γ 6 HN ∩ N which acts ergodically on N/Σ and which supports an
HN -expanding probability measure relative to G.

Lemma 4.4.3. Let G be a real Lie group and ∆ ⊂ Σ finitely generated
discrete subgroups of G. Then the set T (G,∆,Σ) is countable.

For the proof we require the following strengthening of [9, Lemma 2.6].

Lemma 4.4.4. Let G be a real Lie group, g its Lie algebra, and ∆ ⊂ Σ
discrete subgroups of G. Let N belong to T (G,∆,Σ), HN be any connected
semisimple subgroup of G as in (iii) of Definition 4.4.2, and let M be a uni-
modular Lie subgroup of G containing Σ. Let ω ∈ S2(g∧ dim(M)) correspond to a
basis of the Lie algebra of M . Then ω is fixed by N and HN , and hence M◦ is
normalized by N and HN . In particular, this holds whenever M ∈ T (G,∆,Σ).

In this lemma, S2(g∧ dim(M)) denotes the symmetric square of g∧ dim(M). If
v ∈ g∧ dim(M) corresponds to a basis of the Lie algebra of N , the appearing
vector ω is given by ω = v ⊗ v.

Proof. If dim(M) = dim(G), then M◦ = G◦ and the statement is clear.
So we assume that dim(M) < dim(G). Since M is unimodular and contains Σ,
the action of Σ fixes ω. Therefore, the map

N → S2(g∧ dim(M)), h 7→ h · ω

descends to a map N/Σ → S2(g∧dim(M)). Denote by η the pushforward of
the Haar probability measure on N/Σ to S2(g∧ dim(M)) by this map and let
Γ 6 N∩HN be as in (iii) of the definition of T (G,∆,Σ). Then η is an ergodic Γ-
invariant probability measure supported on the set {v⊗v |v ∈ g∧ dim(M)}. Since
Γ supports an HN -expanding probability measure relative to G and ‖v⊗ v‖ =
‖v‖2, Lemma 4.1.6 implies that η is concentrated on the subspace of HN -fixed
vectors. The ergodicity forces η to be the Dirac mass at ω. Hence, ω is N - and
HN -fixed, as required. �

We can now prove Lemma 4.4.3. The argument is basically the same as
in the proof of [9, Lemma 2.5], but we need to handle an additional difficulty
coming from the fact that Γ is not necessarily Zariski dense in a HN , but only
carries a probability measure that is HN -expanding relative to G.

Proof of Lemma 4.4.3. For every N ∈ T (G,∆,Σ), we fix a connected
semisimple group HN as in (iii) of Definition 4.4.2. Considering the closure of
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the group generated by the set ⋃N∈T (G,∆,Σ)HNN , we can assume that this set
generates a dense subgroup of G. By Lemma 4.4.4,

M :=
⋂

N∈T (G,∆,Σ)
N◦

is a normal subgroup of G. Let pr : G→ G/M be the canonical projection.
We argue next that ι : N 7→ pr(N) gives an injection of T (G,∆,Σ)\{ΣM}

into T (G/M, {e}, pr(Σ)). First, note that N 7→ pr(N) is an injective map from
T (G,∆,Σ) into the set of closed subgroups of G/M . Since Σ ∩M = ∆ is a
lattice in M , ΣM is closed in G by [107, Theorem 1.13], which implies that
pr(Σ) is discrete. As there is an equivariant projection N/Σ → pr(N)/ pr(Σ),
pr(Σ) is a lattice in pr(N). If pr(n) ∈ pr(Σ) for some n ∈ N◦, then n = σm for
some m ∈M and σ ∈ Σ. Since M ⊂ N◦, it follows that σ ∈ Σ∩N◦ = ∆ ⊂M ,
which proves that pr(N)◦∩pr(Σ) = {e} is the trivial group. So we have verified
conditions (i) and (ii) of Definition 4.4.2 for any element pr(N) in the image
of ι. To also verify condition (iii), let HN 6 G be the connected semisimple
subgroup from condition (iii) for N and Γ a subgroup of HN ∩ N that acts
ergodically onN/Σ and carries anHN -expanding probability measure µ relative
to G. Then it is clear that pr(Γ) acts ergodically on pr(N)/ pr(Σ). Now, if
HN 6 M , then ergodicity of this action forces N = ΣM . Otherwise, pr(HN)
is a connected semisimple Lie group. By Lemma 4.4.4 and connectedness, HN

fixes a vector v ∈ g∧ dim(M) corresponding to a basis of the Lie algebra m of M .
For 1 ≤ k ≤ dim(G/M)− 1, we may use a norm on (g/m)∧k with the property
that ‖[w]‖ = ‖w ∧ v‖ for every w ∈ g∧k, where [w] denotes the projection
of w to (g/m)∧k. Then the same calculation as in (4.3.3) shows that pr∗ µ is
pr(HN)-expanding relative to G/M . So also condition (iii) of Definition 4.4.2
holds for pr(N).

Thus, it suffices to prove the lemma under the assumption that ∆ = {e}
is the trivial group and that for every N ∈ T (G, {e},Σ), the connected com-
ponent N◦ is normal in G. In view of condition (ii), this implies that N◦ is a
compact normal subgroup of G. By [9, Lemma 2.7], there are only countably
many such N◦. Similar to the first reduction step above, after fixing N◦ and
replacing G by G/N◦ and Σ by ΣN◦/N◦, we are left to show that the set
V(G,Σ) of discrete subgroups N containing Σ as a finite index subgroup such
that (iii) of Definition 4.4.2 holds is countable. For each N ∈ V(G,Σ), there
is a finite index subgroup Σ′ 6 Σ such that Σ′ is normal in N . Recall that by
assumption Σ is finitely generated, so that it admits only finitely many homo-
morphisms to any fixed finite group. It follows that there are countably many
such Σ′. Therefore, it suffices to show that, for Σ′ fixed, the set V(G,Σ′,Σ) of
N ∈ V(G,Σ) with Σ′ normal in N is countable. Let S be the closed subgroup
generated by ⋃N∈V(G,Σ′,Σ)N . Then Σ′ is a discrete normal subgroup of S. For
any g ∈ Σ′, the set {sgs−1 | s ∈ S◦} is a connected subset of Σ′, so it has to
be {g}. It follows that Σ′ centralizes S◦.

Given N ∈ V(G,Σ′,Σ), let Γ be a subgroup of HN ∩ N acting ergodi-
cally on N/Σ as in (iii) of Definition 4.4.2. By ergodicity, we have N = ΓΣ
and since ΓΣ = Γ(Σ′Σ) = (ΓΣ′)Σ, N is uniquely determined by the discrete
group ΓΣ′. So it suffices to show that the set of subgroups ΓΣ′ appearing in
this way is countable. The finite index subgroup Γ ∩ Σ′ of Γ centralizes S◦
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and Γ normalizes S◦. It follows that the conjugation action of Γ on S◦ factors
through a finite group. Now, according to (iii) of Definition 4.4.2, there exists
a probability measure on Γ that is HN -expanding relative to G. By part (i) of
Proposition 4.1.10 applied to the adjoint representation of HN on g, we con-
clude that every element of the Lie algebra of S is fixed by HN . This implies
that Γ 6 HN centralizes S◦. Therefore ΓΣ′/Σ′ is a finite subgroup of S/Σ′ cen-
tralizing S◦Σ′/Σ′. By [9, Lemma 2.8], the set of compact subgroups of S/Σ′
centralizing S◦Σ′/Σ′ is countable. This gives the required countability and
hence completes the proof. �

We also need the following version of [9, Lemma 2.2].

Lemma 4.4.5. Let G be a real Lie group, H a connected semisimple subgroup
of G, and Γ a subgroup of H that supports an H-expanding probability measure
relative to G. Moreover, let L be the centralizer of Γ in G and N a closed
unimodular subgroup of G. Then the set of Γ-fixed points in Y = G/N is a
countable union of L-orbits.

Proof. It is enough to consider the case dim(N) < dim(G). Denote by Y Γ

the set of Γ-fixed points in Y . Then it suffices to show that every L-orbit Ly
in Y Γ is open in Y Γ. After a conjugation we may assume y = eN is the identity
coset. In particular, we then have Γ 6 N . Let l denote the Lie algebra of L.
By finite-dimensionality, we can find γ1, . . . , γr ∈ Γ such that

l = {v ∈ g | Ad(γi)v = v for 1 ≤ i ≤ r}.

In view of unimodularity of N , considering a vector in S2(g∧ dim(N)) correspond-
ing to a basis of the Lie algebra n of N and arguing as in Lemma 4.4.4 yields
that n is H-invariant. Thanks to the expansion in the adjoint representation,
it moreover follows that l coincides with the space of H-fixed vectors in g.
We choose an H-invariant complement v of n + l in g. Then for any v ∈ v
sufficiently small, if exp(v)y is Γ-fixed, then for all 1 ≤ i ≤ r we have

exp(Ad(γi)v)y = γi exp(v)y = exp(v)y,
which implies Ad(γi)v = v and thus v ∈ l ∩ v = {0}. This shows that Ly
is open in Y Γ and hence finishes the proof that Y Γ is a countable union of
L-orbits. �

Finally, we can prove the main result of this subsection. We adapt the
proof of [9, Proposition 2.1] by substituting Lemmas 4.4.3 and 4.4.5 for the
corresponding results, and extend it to cover semigroups that are not compactly
generated.

Proof of Proposition 4.4.1. We first establish the statement assuming
additionally that Γ is compactly generated. Let Y ∈ S(Γ) and denote by GY

the stabilizer of the homogeneous probability measure ν corresponding to Y .
Let µ be a probability measure on Γ that is H-expanding relative to G. Choose
g ∈ G such that gΛ ∈ Y and consider the closed subgroup N = g−1ΓG◦Y g
of G. Now, the discrete groups ∆ = N◦ ∩ Λ and Σ = N ∩ Λ are lattices
in N◦ and N , respectively. Being a lattice in a connected Lie group, ∆ is
finitely generated (see [107, 6.18]). As N = g−1ΓG◦Y g and Γ is compactly
generated, N/N◦ is finitely generated. Since Σ/∆ has finite index inN/N◦, also
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Σ is finitely generated. As Λ admits only countably many finitely generated
subgroups, one may assume that ∆ and Σ are fixed. We claim that N belongs
to T (G,∆,Σ). To see this, we first record that (i) and (ii) in Definition 4.4.2
are immediate. Considering HN = g−1Hg, its subgroup g−1Γg and the image
of µ by conjugation by g−1, also (iii) is seen to hold. Consequently, we can also
assume N to be fixed by virtue of Lemma 4.4.3. As the point gN ∈ G/N is
Γ-invariant, by Lemma 4.4.5 one may further assume the L-orbit LgN ⊂ G/N
is fixed. It only remains to note that for l ∈ L, the orbit lgNΛ ⊂ X = G/Λ is
precisely the translate lY of Y .

To treat the general case without the compact generation assumption, given
an arbitrary probability measure µ′ on Γ with finite first moment that is H-
expanding relative to G, we consider the probability measure µ given as the
normalized restriction of µ′ to a sufficiently large compact ball B around the
identity. By choosing B large enough, we can guarantee that the integral char-
acterization of uniform expansion from Proposition 4.1.2 still holds for the finite
collection of representations in Definition 4.3.6. In view of expansion in the ad-
joint representation, the connected components of the centralizers L = CG(Γ)
and Lµ = CG(Γµ) coincide. Therefore, applying the above to the compactly
generated subgroup Γµ, we can find a countable collection Yµ ⊂ S(Γµ) such
that S(Γµ) = {lYµ | l ∈ L, Yµ ∈ Yµ}. We claim that

Y = {ΓYµ | Yµ ∈ Yµ} ∩ S(Γ)

satisfies the conclusion of the proposition. To see this, let Y ∈ S(Γ) be ar-
bitrary and νY be the associated Γ-invariant Γ-ergodic homogeneous measure.
By Theorem 4.3.7 we know that every Γµ-ergodic component of νY is an ele-
ment of S(Γµ). By Fubini’s theorem and Γ-ergodicity of νY , we can thus find
some Y ′µ ∈ S(Γµ) such that almost every point x ∈ Y ′µ with respect to the
homogeneous measure on Y ′µ satisfies Y = Γx. We also know that Y ′µ = lYµ for
some Yµ ∈ Yµ and l ∈ L = CG(Γ). We can thus conclude that Y = ΓY ′µ = lΓYµ,
which shows that ΓYµ ∈ Y and completes the proof. �

4.5. Height Functions With Contraction Properties

A Markov chain on a standard Borel space X is defined by a measurable
mapX 3 x 7→ Px fromX to the space of Borel probability measures onX, spec-
ifying the transition probabilities at each point of X. The associated Markov
operator P is defined by

Pf(x) =
∫
X
f dPx

for a non-negative Borel function f on X and x ∈ X. If G is a locally compact
second countable group with a Borel G-action on X, then a choice of a probabil-
ity measure µ on G induces a Markov chain on X with transition probabilities
Px = µ ∗ δx, which can be thought of as the formalization of the concept of
the random walk on X given by µ. We denote the associated Markov operator
by π(µ), which is given in this context by the explicit formula

π(µ)f(x) =
∫
G
f(gx) dµ(g).
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We also refer to π(µ) as the “averaging operator” or “convolution operator”
associated to µ. See §3.1 in Chapter 3 for background on Markov chains on
general state spaces, and [9, §3] and [10, §2] more specifically for discussions
of Markov operators in the context of the study of random walks.

Coming back to our setting, recall that Λ denotes a lattice in a Lie group G
and H a connected semisimple subgroup of G without compact factors and
with finite center, and µ is an H-expanding probability measure on H.

The goal of this section is to construct height functions on X = G/Λ
that are contracted by the averaging operator π(µ) (also known as “Lyapunov
functions” or sometimes “Margulis functions”), which will yield the recurrence
properties of the random walk on X necessary for the proof of our main the-
orems. As already explained in §4.0.2, two types of height functions are re-
quired. First, one needs a height function that is proper but stays bounded on
prescribed compact subsets of the space X, which prevents the random walk
from escaping to infinity. Secondly, in order to ensure equidistribution towards
a homogeneous measure sitting on the orbit closure, we will need to construct
height functions which are unbounded near lower dimensional homogeneous
subspaces. These ensure that the random walk does not accumulate near such
“singular subspaces”, i.e. does not spend too much time in their vicinity.

4.5.1. Height Function With Respect to the Cusps. We first present
the construction of the height functions responsible for ruling out escape of
mass.

Theorem 4.5.1 (Exponential µ-unstability of the cusps, [7]). Let µ be an
H-expanding probability measure with finite exponential moments. For any
compact subset Z of X = G/Λ, there exist constants m ∈ N, a ∈ (0, 1), b > 0,
and a lower semicontinuous function β∞ : X → [1,∞] uniformly bounded on Z
such that for every x ∈ X we have

π(µ)mβ∞(x) ≤ aβ∞(x) + b. (4.5.1)

Moreover,
(i) for every ` > 1, the set β−1

∞ ([1, `]) is compact,
(ii) the set β−1

∞ ({∞}) is H-invariant, and
(iii) there exists a constant κ > 0 such that for every h ∈ H and x ∈ G/Λ

we have β∞(hx) ≤ N(Adh)κβ∞(x).

In what follows, we will sometimes say that a height function is “proper”
to refer to property (i) above.

Let g be the Lie algebra of G, r the largest amenable ideal of g and s = g/r.
A Lyapunov function as in the above theorem is constructed in [7] in the case
the non-compact part of the Zariski closure of the support of the probability
measure (Ads)∗µ is semisimple. However, as it turns out, this Zariski density
assumption in a semisimple group without compact factors is only critically
used, via Furstenberg’s result of positivity of the top Lyapunov exponent, to
ensure (4.5.2) below, which is also guaranteed by our dynamical H-expansion
assumption. Therefore, Benoist–Quint’s proof goes through in our setting with
minor adaptations. We now explain this in more detail.
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A version of the following elementary but key lemma was already used
in [40] (see also [8, Lemma 6.12]). In our case, it holds true thanks to the
characterization of uniform expansion expressed in Proposition 4.1.2.

Lemma 4.5.2. Let µ be an H-expanding probability measure on H with finite
exponential moments and (V, ρ) be a representation of H without nonzero H-
fixed vectors. Then there exists δ0 > 0 such that for every δ ∈ (0, δ0) and
c ∈ (0, 1), for every n ∈ N large enough, we have∫

H

1
‖h · v‖δ dµ∗n(h) ≤ c

‖v‖δ
(4.5.2)

for every v ∈ V \ {0}.

Proof. Using the elementary fact that for every ε ∈ (0, 1), x ∈ (0, ε) and
a > 0, we have ax = 1 + x log a + (x/ε)2Ra(x) with |Ra(x)| ≤ eε|log a| together
with |log(‖v‖/‖gv‖)| ≤ log N(g) for every g ∈ GL(V ), we see that for every
n ∈ N, ε ∈ (0, 1) and δ ∈ (0, ε)∫
H

‖v‖δ

‖h · v‖δ dµ∗n(h) ≤ 1 + δ
∫
H

log ‖v‖
‖h · v‖ dµ∗n(h) +

(
δ

ε

)2 ∫
H

N(ρ(h))ε dµ∗n(h).

(4.5.3)
By Proposition 4.1.2, there existsN ∈ N and C > 0 such that for all v ∈ V \{0},
we have ∫

H
log ‖v‖
‖h · v‖ dµ∗N(h) ≤ −C. (4.5.4)

Since ρ∗µ has finite exponential moments by Lemma 4.1.9, we can choose ε0 > 0
such that

∫
H N(ρ(h))ε0 dµ∗n(h) < ∞ for every n ∈ N. Now applying (4.5.3)

with n = N , ε = ε0 > 0 and using (4.5.4), we get that for every δ > 0 smaller
than some δ0 > 0, there exists c′ ∈ (0, 1) such that we have∫

H

1
‖h · v‖δ dµ∗N(h) ≤ c′

‖v‖δ
(4.5.5)

for every v ∈ V \{0}. Writing an arbitrary n ∈ N as n = mN+k withm, k ∈ N
and k < N , using the facts that µ∗n = µ∗mN ∗ µ∗k, ‖h · v‖−1 ≤ N(ρ(h))‖v‖−1

and the existence of finite exponential moments, iterating (4.5.5) now yields∫
H

1
‖h · v‖δ dµ∗n(h) ≤ (c′)m

‖v‖δ
(∫

H
N(ρ(h))δ dµ(h)

)k
,

the right-hand side of which can be made to be smaller than c/‖v‖δ by requiring
m to be large enough. �

Proof of Theorem 4.5.1. We start the proof with a few general remarks
on Lyapunov functions and their construction.

(1) It suffices to construct the function β∞ with values in [0,∞]. Indeed,
in the end one can simply add 1, if necessary, to ensure values in [1,∞].

(2) The conclusion of the theorem is unaffected when replacing Λ by a
commensurable lattice Λ′, that is, a lattice such that the intersection
Λ0 = Λ ∩ Λ′ has finite index in both Λ and Λ′. Indeed, given a
Lyapunov function G/Λ → [0,∞], one can just precompose it with
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the projection G/Λ0 → G/Λ, and, conversely, starting with a function
β : G/Λ0 → [0,∞], one can define the function β∞ on G/Λ by setting

β∞(gΛ) =
∑

γ∈Λ/Λ0

β(gγΛ0)

for g ∈ G, which is easily seen to have the correct properties.
(3) We may always assume that the lattice Λ is non-uniform, i.e. that

X = G/Γ is non-compact. For on a compact quotient, the constant
function 1 already has all required properties.

(4) In the construction, we may without loss of generality replace G by any
open subgroup G0. Indeed, X is the disjoint union of G0-orbits, and
these are Γµ-invariant since H is connected. Thus, one can translate
a function β∞ on G0/(G0 ∩ Λ) to other G0-orbits.

From now on, we assume G is connected and prove the existence of the
height function β∞ with the required properties. The proof proceeds in several
steps.

Case 1: G = SLd(R) and X = SLd(R)/ SLd(Z). We show that the
Benoist–Quint height function in [7] has the required properties. We endow
E = Rd with a Euclidean structure invariant by some maximal compact sub-
group of H. We endow the vector space ∧∗E = ⊕d

i=0
∧iE with the induced

Euclidean structure and use ‖·‖ to denote the corresponding norm on E and
on ∧∗E. For 0 ≤ i ≤ d, we fix constants δi = (d− i)i; they satisfy

δr+s + δr+t ≥ δr + δr+s+t + 1 (4.5.6)

for every r, s, t ∈ N with s > 0 and t > 0.
We fix a maximal split torus A of H. Let a and h be the Lie algebras of A

and H, respectively. Let Σ(h, a) be the set of restricted roots. We fix a positive
system in Σ(h, a). Let W ⊂ a∗ be the set of restricted weights appearing in
finite-dimensional representations of H. We define a partial order on W by

λ ≤ η ⇐⇒ η − λ is a sum of positive roots. (4.5.7)

Recall that any representation of a connected semisimple real Lie group is
completely reducible and each irreducible representation has a unique highest
weight. We denote by W+ ⊂ W the set of highest weights and let S ⊂ W+ be
the set of nonzero highest weights corresponding to the non-trivial irreducible
representations of H appearing as direct summands in ∧∗E, where the repre-
sentation of H on E is just the restriction of the standard representation of G.
So the action of H on ∧∗E decomposes into a direct sum∧∗

E = EH
∗ ⊕

⊕
λ∈S

Eλ
∗ ,

where EH
∗ is the space of H-fixed vectors in ∧∗E and Eλ

∗ is the sum of all the
irreducible subspaces of ∧∗E with highest weight λ (i.e. the isotypic component
of λ). We fix s0 ∈ a in the interior of the positive Weyl chamber and define
δλ = λ(s0) for λ ∈ W+, so that the δλ satisfy λ ≤ µ if and only if δλ ≤ δµ and
δλ = 0 if and only if λ = 0 for all λ, µ ∈ W+. For λ ∈ S, we use qλ (resp. q0)
to denote the H-equivariant projection from ∧∗E to Eλ

∗ (resp. EH
∗ ). For any
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ε > 0 and v ∈ ∧iE with 0 < i < d, define

ϕε(v) =

minλ∈S εδi/δλ‖qλ(v)‖−1/δλ , if ‖q0(v)‖ < εδi ,

0, otherwise,

with the convention min ∅ = ∞. Using Lemma 4.5.2 and H-equivariance of
the projections qλ, one readily observes (cf. [7, Lemma 4.3]) that for every
δ > 0 small enough, for every c ∈ (0, 1), there exists n ∈ N such that for every
i = 1, . . . , d and v ∈ ∧iE it holds that

π(µ)nϕδε(v) ≤ aϕδε(v) (4.5.8)

for every ε > 0. For ε > 0, let the function βε,∞ on G/Λ be defined by

βε,∞(x) = maxϕε(v),

where, writing x = gΛ, the maximum is taken over all 0 < i < d and nonzero
vectors v ∈ ∧iE that can be written as v = v1∧· · ·∧vi with vj ∈ Λx = gZd for
j = 1, . . . , i (following [7], such pure wedge products v will be called “x-integral
monomials”).

Note that by construction we have βε,∞(x) =∞ if and only if there exists
a nonzero H-fixed x-integral monomial v ∈ ∧iE whose norm is less than εδi .
Therefore, the set β−1

ε,∞({∞}) is H-invariant. Moreover, for every ε > 0, the
function βε,∞ is proper and lower semicontinuous (see [7, Remark 5.2]). Setting
κ′ = maxλ∈S δ−1

λ , it is also readily verified that for every h ∈ H we have
βε,∞(hx) ≤ N(h)dκ′βε,∞(x).

Now it follows precisely in the same way as in [7, Proposition 5.3], by
simply replacing [7, Lemma 4.3] by (4.5.8), that for every δ > 0 and ε > 0
small enough, there exist n ∈ N, a ∈ (0, 1) and b > 0 such that

π(µ)nβδε,∞ ≤ aβδε,∞ + b.

For brevity and to avoid mere repetition, we will not reproduce this part of the
proof here. We note however that this passage is the part where the crucial
“Mother inequality” [7, §3] and the convexity assumptions (4.5.6) and (4.5.7)
are used.

Finally, given a compact set Z as in the statement, by Mahler’s compactness
criterion, we can choose ε > 0 and δ > 0 small enough so that the function
β∞ := βδε,∞ is uniformly bounded on Z. By the discussion above, this function
has all desired properties.

Case 2: G is closed subgroup of SLd(R) and Λ = G∩SLd(Z). Then
X = G/Λ is a closed subset of X0 = SLd(R)/ SLd(Z) by [107, Theorem 1.13].
Thus, we can use the height function from Case 1 above.

Case 3: G = H is a connected real rank one simple Lie group.
We assume X = G/Λ is noncompact. Let V = ∧r g endowed with a norm ‖·‖,
where r is the dimension of the unipotent radical of a minimal parabolic sub-
group of G. Let v0 ∈ V be a nonzero vector which corresponds to the Lie alge-
bra of such a unipotent radical. It follows from [55] (cf. [74, Proposition 3.1]
and [7, p. 54]) that there exist g1, . . . , gr ∈ G such that for i = 1, . . . , r the
vectors vi = gi · v0 in V have the following properties:

(a) Λvi is closed and hence discrete in V for 1 ≤ i ≤ r.



4.5. HEIGHT FUNCTIONS WITH CONTRACTION PROPERTIES 135

(b) For any subset F ⊂ G, the set FΛ ⊂ G/Λ is relatively compact if and
only if there exists a > 0 such that ‖gγ · vi‖ > a for any γ ∈ Λ, g ∈ F
and 1 ≤ i ≤ r.

(c) There exists a0 > 0 such that for any g ∈ G there exists at most one
v ∈ ⋃1≤i≤r Λ · vi such that ‖g · v‖ < a0.

Let V ′ be the H-invariant subspace complementary to V H . In view of prop-
erty (b), we know that v0 ∈ V ′. By Lemma 4.5.2, for every δ > 0 small enough,
for every c > 0, we have that for every n ∈ N large enough∫

H
‖h · v‖−δ dµ∗n(h) < c‖v‖−δ (4.5.9)

holds for all nonzero v ∈ V ′. Using properties (a)–(c) and (4.5.9) it is straight-
forward to check that

β∞(gΛ) = max
1≤i≤r

max
γ∈Λ
‖gγ · vi‖−δ

is continuous, proper and satisfies (4.5.1) when δ > 0 is small enough. It is also
readily checked that β∞(hx) ≤ N(Adh)κ′δβ∞(x) for some κ′ depending only
on G.

Case 4: G = Aut(g) for g semisimple without compact ideals. In
view of (4) at the begining of the proof, we may assume that G is connected.
As G is of adjoint type, it is center-free. By [107, Theorem 5.22], after replac-
ing Λ by a finite index subgroup, there is a collection of semisimple factors Gi

of G such that G = ∏
iGi and Λi = Gi ∩ Λ is an irreducible lattice in Gi.

Then we have G/Λ = ∏
iGi/Λi. Thus, if we can construct functions with the

desired properties on all spaces Gi/Λi, then their sum is a Lyapunov function
on X = G/Λ with the same properties (possibly with different constants). In
other words, we have further reduced to the case where the lattice Λ in G is
irreducible. We can also assume that Λ is non-uniform in view of (3) at the
beginning of the proof.

Case 3 handles the case of G with real rank one. Thus, we may additionally
assume that the rank is at least two. Then Margulis’ arithmeticity theorem says
that Λ is arithmetic. In our setting, this implies that there is an isomorphism
σ : G→ G′ where G′ is the connected component of a semisimple real algebraic
subgroup of SLd′(R) defined over Q such that σ(Λ) and Λ′ = G′ ∩ SLd′(Z) are
commensurable (see [136, Corollary 6.1.10]). Then by Proposition 4.1.10(iii),
σ∗µ is σ(H)-expanding, and we conclude using Case 2 and the comment (2) on
commensurability at the start of the proof.

Case 5: General case. Let r be the maximal amenable ideal of g, set
s = g/r and R = ker(Ads). Then s is the largest semisimple quotient of g with-
out compact ideals and, by semisimplicity, G/R identifies with a finite index
subgroup S of Aut(s). From [7, Lemma 6.1] we know that Λ ∩ R is a cocom-
pact lattice in R and the image ΛS = Ads(Λ) is a lattice in S. In particular,
the projection G/Λ → S/ΛS is proper. Setting HS = Ads(H), we moreover
have that (Ads)∗µ is HS-expanding by Proposition 4.1.10(iii). By Case 4 above,
the theorem holds for S/ΛS. Precomposing the obtained Lyapunov function
with the projection G/Λ → S/ΛS produces the desired function β∞ on X.
Properties (i)–(iii) carry over from the subcases, using for the latter property
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that the norm in the adjoint representation controls the norms in any other
representation after taking a suitable power. �

Before moving on, we make a simple remark that will be of use in the next
part.

Remark 4.5.3. Notice that by considering a small power of β∞, at the cost
of increasing the constants a ∈ (0, 1) and b, one can modify κ > 0 that satisfies
property (iii) in Theorem 4.5.1. Indeed, given δ ∈ (0, κ), using Jensen’s inequal-
ity, the function βδ/κ∞ is seen to also satisfy the contraction condition (4.5.1)
with the same m ∈ N and possibly different constants a ∈ (0, 1) and b > 0.
Moreover, βδ/κ∞ (hx) ≤ N(Adh)δβδ/κ∞ (x). �

4.5.2. Height Function With Respect to Singular Subspaces. In
this section we construct a height function with respect to a relatively compact
subset of a lower-dimensional homogeneous subspace of X = G/Λ. In contrast
to the height function used in [8], which satisfies a contraction property with
respect to a first return Markov operator, our height function will satisfy a
contraction property with respect to π(µ) itself. Our construction is inspired
by the work of Eskin–Mirzakhani–Mohammadi [43] on random walks on moduli
space.

To state the main result of this subsection, we start by recalling some
notation and fixing some data. Let G be a Lie group and Λ < G a lattice.
Let H 6 G be a connected semisimple Lie subgroup with finite center and no
compact factors. Let µ be an H-expanding probability measure on H with
finite exponential moments. Since µ has finite exponential moments, we can
fix δ0 ∈ (0, 1) such that

∫
H N(Ad(h))δ0 dµ(h) < ∞. Fix an arbitrary compact

subset Z of G/Λ and let β∞ : G/Λ→ [1,∞] be the proper lower semicontinuous
function given by Theorem 4.5.1. By passing to a small enough power, we will
suppose that β∞ satisfies β∞(hx) ≤ N(Ad(h))δ0β∞(x) for every h ∈ H and
x ∈ G/Λ (see Remark 4.5.3). Moreover, given ε > 0, we define

Xε = {x ∈ G/Λ | β∞(x) ≤ ε−1}.
Since β∞ is lower semicontinuous and proper, Xε is a compact subset of X.
Here is the result we aim to prove.

Theorem 4.5.4. Given ε > 0 sufficiently small, for any sufficiently small
open neighborhood O of the identity in CG(Γµ) and for any Y ∈ S(Γµ) there
exists a height function βN : HXε → [1,∞] together with constants n ∈ N,
a0 ∈ (0, 1) and b0 > 0 such that for any x ∈ HXε we have

π(µ)nβN (x) ≤ a0βN (x) + b0,

and such that, denoting N = OY ,
(i) βN (x) =∞ if and only if x ∈ N ∩HXε,
(ii) βN is bounded on compact subsets of Xε \OY ,
(iii) for any ` ≥ 1, the set β−1

N ([1, `]) is a compact subset of X.
The rest of this subsection is devoted to the proof of this result, which will

require two preliminary lemmas. We fix an inner product on g, denote by ‖·‖
the associated operator norm on End(g), and to ease the notation, we set

Na(h) := N(Ad(h)) = max(‖Ad(h)‖, ‖Ad(h−1)‖),
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where Ad denotes the adjoint action of H on the Lie algebra g of G.

Lemma 4.5.5. There exist constants C ≥ 1, k ∈ N and ε0 > 0 such that for
any ε ∈ (0, ε0) and any x ∈ HXε there exists h ∈ Γµ with Na(h) ≤ Cβ∞(x)k
such that hx ∈ Xε.

Proof. Set M :=
∫

Na(h)δ0 dµ(h) <∞ and let a positive

ε < min
(1

4 ,
( 1− a

1− a+ b

)2)
=: ε0

be given, where a ∈ (0, 1) and b > 0 are the constants given by Theorem 4.5.1.
Let x ∈ HXε. Since β−1

∞ ({∞}) is H-invariant, we have β∞(x) < ∞, so that
we may define nx ≥ 1 to be the smallest integer such that anxβ∞(x) ≤ 1. It
follows that

π(µ)mnxβ∞(x) ≤ anxβ∞(x) + b

1− a ≤
1√
ε
,

where m ∈ N is as in Theorem 4.5.1.
Now decompose µ∗mnx as a sum of two non-negative measures µ1+µ2 where

µ2 is the restriction of µ∗mnx to the set {Na(·) ≥ Rx} for Rx = 21/δ0Mmnx/δ0 .
By submultiplicativity of Na we have

∫
Na(h)δ0 dµ∗mnx(h) ≤Mmnx . Using this

bound together with the Markov inequality, we deduce that µ2(H) ≤ 1/2 and
hence µ1(H) ≥ 1/2 ≥

√
ε. On the other hand, we know∫

H
β∞(hx) dµ1(h) ≤ π(µ)mnxβ∞(x) ≤ 1√

ε
.

Now, considering the probability measure µ̂1 = µ1(H)−1µ1, we deduce that
π(µ̂1)β∞(x) ≤ ε−1. This means that there exists h ∈ supp(µ̂1) ⊂ Γµ such that
β∞(hx) ≤ ε−1. Finally, since by construction nx ≤ 1 + (log β∞(x))/(− log a),
we also obtain

Na(h) ≤ Rx = 21/δ0Mmnx/δ0 ≤ 21/δ0Mm/δ0β∞(x)(m logM)/(−δ0 log a).

This shows that the statement of the lemma holds with C = 21/δ0Mm/δ0 and
k = md(logM)/(−δ0 log a)e. �

Let Y be a homogeneous space in S(Γµ) and denote by N its stabilizer
group. Recall that this means that N > Γµ is a closed subgroup of G, Y is
given byNx for some x ∈ G/Λ, and there is anN -invariant probability measure
on Nx which is invariant and ergodic with respect to Γµ. By Theorem 4.0.1,
the Lie algebra n of N is H-invariant with respect to the adjoint action. We
write g as a direct sum of Ad(H)-invariant subspaces

g = (n + l)⊕ v, (4.5.10)

where l is the centralizer of h and v is a complementary H-invariant subspace
of n + l. Recall that by the epimorphic property of Γµ in H, l is also the Lie
algebra of CG(Γµ).

Lemma 4.5.6. Let Y ∈ S(Γµ) and retain the notation of the previous para-
graph. Given a compact set K ⊂ X = G/Λ, there exist an open neighborhood O
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of the identity in CG(Γµ) and r ∈ (0, 1) with the property that for any x ∈ K,
there is at most one v ∈ v such that

exp(v)x ∈ OY and ‖v‖ < r. (4.5.11)

Moreover, the set E of x ∈ X for which v ∈ v with (4.5.11) exists is open in X
and the map E ∩K → v, x 7→ v is continuous.

Proof. Let K ′ be a compact neighborhood of K. In view of (4.5.10), we
can choose O, r and a neighborhood U of the identity in G so that all of the
following hold:

(a) we have UK ⊂ K ′,
(b) the natural map U → Uy is injective for all y ∈ K ′,
(c) for every y ∈ Y ∩K ′ we have Uy ∩ Y = (U ∩N)y,
(d) the map Br(v)× (U ∩CG(Γµ)N)→ G, (v, g) 7→ exp(v)g is a diffeomor-

phism onto an open neighborhood of the identity in G, where Br(v)
denotes the open r-ball in v, and

(e) we have o−1
2 exp(v2) exp(−v1)o1 ∈ U for every v1, v2 ∈ g with ‖vi‖ < r,

i = 1, 2, and o1, o2 ∈ O.
Now let x ∈ K and v1, v2 ∈ v satisfy (4.5.11), say exp(vi)x = oiyi with oi ∈ O
and yi ∈ Y for i = 1, 2. Using properties (a) and (e) we know y1 ∈ K ′.
Moreover, y2 = o−1

2 exp(v2) exp(−v1)o1y1. Applying properties (b), (c) and (e),
we deduce that

o−1
2 exp(v2) exp(−v1)o1 = n ∈ U ∩N,

which means that

exp(−v1)o1 = exp(−v2)o2n.

Using (e) once more, we see that o1, o2n ∈ U ∩CG(Γµ)N . Hence, property (d)
implies that v1 = v2, giving uniqueness. Since O ⊂ U , the final claims of the
lemma also follows from (d). �

Proof of Theorem 4.5.4. Since there is a substantial amount of rele-
vant notation and auxiliary objects, let us start the proof by recalling the
initial data. The probability measure µ on H is H-expanding with finite expo-
nential moments, Z is a compact subset of X = G/Λ and β∞ : G/Λ → [1,∞]
is as given by Theorem 4.5.1. By the latter (and Remark 4.5.3), the func-
tion β∞ satisfies (4.5.1) with some m ∈ N, a ∈ (0, 1) and b > 0 and β∞(hx) ≤
Na(h)δ0β∞(x) for every x ∈ G/Λ and h ∈ H, where δ0 ∈ (0, 1) is chosen so that∫
H Na(h)δ0 dµ(h) <∞. Let ε0 > 0, k ∈ N and C ≥ 1 be given by Lemma 4.5.5
and fix ε ∈ (0, ε0). Let O be a relatively compact open neighborhood of the
identity in CG(Γµ) and r ∈ (0, 1) such that the conclusion of Lemma 4.5.6 holds
with a compact neighborhood K of

Xε = {x ∈ X | β∞(x) ≤ ε−1}.

Let Y ∈ S(Γµ), denote by N its stabilizer group, by n its Lie algebra, and set
N = OY . Finally, let l be the Lie algebra of CG(Γµ) and choose an Ad(H)-
invariant complementary space v so that (4.5.10) holds.
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Since µ is H-expanding with finite exponential moments and v has no
nonzero H-fixed vectors, by Lemma 4.5.2 there exists

0 < θ < min(δ0, 1/k) (4.5.12)
such that for every a′ ∈ (0, 1) we have, for all n ∈ N large enough,∫

H
‖Ad(h)v‖−θ dµ∗n(h) ≤ a′‖v‖−θ (4.5.13)

for any nonzero v ∈ v. We fix such n ∈ N that is a positive multiple of m ∈ N.
Without loss of generality, we assume a′ > a and let ε′ > 0 be such that
a′ = (1 + ε′)a. Since m|n, (4.5.1) implies that∫

H
β∞(hx) dµ∗n(h) ≤ aβ∞(x) + b

1− a. (4.5.14)

For x ∈ HXε, we define
rx = rC−1β∞(x)−k.

We claim that for every x ∈ HXε, there exists at most one v ∈ v such that
exp(v)x ∈ N and ‖v‖ < rx. (4.5.15)

Indeed, by Lemma 4.5.5, there exists h ∈ Γµ with Na(h) ≤ Cβ∞(x)k such that
hx ∈ Xε. Since N is Γµ-invariant, we have

exp(v)x ∈ N if and only if h exp(v)x = exp(Ad(h)v)hx ∈ N .
Since ‖Ad(h)v‖ ≤ Na(h)‖v‖ ≤ r, if such an v ∈ v exists, it is unique thanks to
Lemma 4.5.6 (applied to hx ∈ Xε) and the choice of r > 0, where we are using
that v is H-invariant.

Using the claim above, we may define α : HXε → [1,∞] by

α(x) =

‖v‖−θ, if there exists v ∈ v satisfying (4.5.15),
r−θx , otherwise.

Using the corresponding property for β∞ and the choice of θ in (4.5.12), it is
readily checked that for every x ∈ HXε and h ∈ Γµ, we have the inequality
α(hx) ≤ Na(h)δ0α(x). We shall show that

βN = β∞(x) + α(x).
satisfies all requirements of the theorem.

To proceed, we start by decomposing µ∗n as a sum µ1 + µ2 of two non-
negative measures with µ1 of compact support and µ2 satisfying∫

H
Na(h)δ0 dµ2(h) < 1− a′

2 .

It follows that∫
H
α(hx) dµ2(h) ≤ α(x)

∫
H

Na(h)δ0 dµ2(h) ≤ α(x)1− a′
2 . (4.5.16)

Denote by D the constant r−1CMk, where M = sup{Na(h) | h ∈ supp(µ1)}.
Then D > Mk ≥ 1 by choice of r, and for any element

h ∈ S± := supp(µ1) ∪ supp(µ1)−1
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we have
β∞(hx) ≤Mβ∞(x) and hence rx ≤ Drhx. (4.5.17)

We are now going to establish the contraction property for βN by distin-
guishing several cases based upon the size of α(x).

If α(x) > D2r−θx , then there exists a uniquely determined v ∈ v so that
(4.5.15) holds and α(x) = ‖v‖−θ. In particular,

‖v‖ < D−2/θrx < D−2rx.

Together with (4.5.17), the previous inequality implies that for h ∈ S±, we
have

‖Ad(h)v‖ ≤ Na(h) · ‖v‖ < D ·D−2rx = D−1rx ≤ rhx. (4.5.18)
Since exp(v)x belongs to the Γµ-invariant set N , we have exp(Ad(h)v)hx ∈ N .
In view of (4.5.18) and the definition of α it follows that α(hx) = ‖Ad(h)v‖−θ.
By (4.5.13),∫
H
α(hx) dµ1(h) =

∫
H
‖Ad(h)v‖−θ dµ1(h) ≤

∫
H
‖Ad(h)v‖−θ dµ∗n(h) ≤ a′α(x).

Combining with (4.5.16), we get∫
H
α(hx) dµ∗n(h) =

∫
H
α(hx) d(µ1 + µ2)(h) ≤ 1 + a′

2 α(x).

Together with (4.5.14), the previous inequality yields∫
H
βN (hx) dµ∗n(h) ≤ 1 + a′

2 βN (x) + b

1− a.

Therefore, we proved the contraction property of βN for x ∈ HXε satisfying
α(x) > D2r−θx .

Now let x ∈ HXε be such that α(x) ≤ D2r−θx . In this case, we have
α(x) ≤ D2r−θx = D2r−θCθβkθ∞ (x) ≤ D3β∞(x). (4.5.19)

We claim that for any h ∈ S±, we have
α(hx) ≤ D4r−θhx . (4.5.20)

If not, then using (4.5.17) and the fact that α(hx) ≤Mα(x) ≤ Dα(x), we find
α(x) ≥ D−1α(hx) > D−1 ·D4r−θhx = D3r−θhx ≥ D3−θr−θx ,

which contradicts the first inequality in (4.5.19) since θ ∈ (0, 1) and D > 1. By
(4.5.20) and (4.5.17)

α(hx) ≤ D4r−θhx = D4r−θCθ · βkθ∞ (hx) ≤ D5βkθ∞ (x) = D5βkθ−1
∞ (x) · β∞(x).

Since kθ < 1, if β∞(x) is larger than some constant depending only on ε′a, kθ
and D, we will have

D5βkθ−1
∞ (x) < ε′a.

In view of (4.5.19), we know that β∞(x) is sufficiently large provided that α(x)
is (depending on D). Therefore, there exists b′ > 0 (depending on ε′a, kθ,D)
so that if

b′ ≤ α(x) ≤ D2r−θx , (4.5.21)
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then for any h ∈ S±
α(hx) ≤ ε′aβ∞(x). (4.5.22)

So in the case where (4.5.21) holds, combining (4.5.14), (4.5.16) and (4.5.22),
we deduce ∫

H
βN (hx) dµ∗n(h) ≤ 1 + a′

2 βN (x) + b

1− a,

proving the required contraction property.
To treat the last remaining case, suppose now that x ∈ HXε is such that

α(x) ≤ min(b′, D2r−θx ). We claim that this implies α(hx) ≤ D3b′ for all h ∈ S±.
Supposing the contrary, we would have

α(hx) > D3b′ ≥ D3α(x) ≥ D3r−θx .

From this, using the inequality α(hx) ≤ Dα(x), it follows that
α(x) ≥ D−1α(hx) > D2r−θx ,

a contradiction. Therefore, recalling (4.5.14) and (4.5.16), we obtain∫
H
βN (hx) dµ∗n(h) =

∫
H
α(hx) dµ∗n(h) +

∫
H
β∞(hx) dµ∗n(h)

≤ D3b′ + 1− a′
2 α(x) + aβ∞(x) + b

1− a

≤ 1 + a′

2 βN (x) +D3b′ + b

1− a.

We have thus concluded the proof of the contraction property for a0 = (1+a′)/2
and the additive constant b0 = D3b′ + b/(1− a).

It remains to prove the claims (i)–(iii). Since β∞ is finite on HXε, (i)
is directly seen to hold by definition of βN . Property (ii) is also immediate
from the definition of βN , since β∞ is bounded on Xε and any compact subset
not intersecting OY has positive distance to N . To prove (iii), let (xj)j be
a sequence in HXε with βN (xj) ≤ ` for all j ∈ N for some ` ∈ R. Since
βN = β∞+α with α ≥ 0, we also have β∞(xj) ≤ ` for all j. Since β∞ is proper,
we may suppose that limj→∞ xj = x for some point x ∈ X. We need to prove
that x ∈ HXε and βN (x) ≤ `.

We first show that x ∈ HXε. It follows from Lemma 4.5.5 that there is a
compact subset K` of Γµ such that for any j ∈ N, there exists hj ∈ K` so that
hjxj ∈ Xε. Since Xε is compact, by possibly passing to a subsequence, we may
assume that hjxj converges to some y ∈ Xε and hj converges to some h ∈ Γµ.
So we have

lim
j→∞

hjxj = hx = y,

which implies x = h−1y ∈ HXε.
Finally, we show that

α(x) ≤ lim inf
j→∞

α(xj), (4.5.23)

which will complete the proof in view of the lower semicontinuity of β∞ and
the definition of βN . First, let us pass to a subsequence so that the liminf in
(4.5.23) is a limit, say lim infj→∞ α(xj) = limj→∞ α(xj) =: α1. If α(x) = r−θx ,
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then (4.5.23) follows from the definition of rx and lower semicontinuity of β∞.
Suppose therefore that α(x) > r−θx . This implies that there exists a unique
v ∈ v such that exp(v)x ∈ N and ‖v‖ < rx. Using Lemma 4.5.5, choose
h ∈ Γµ with Na(h) ≤ Cβ∞(x)k such that hx ∈ Xε. Then ‖Ad(h)v‖ < r and
exp(Ad(h)v)hx ∈ N . Now, since the points hxj converge to hx, for large j
they lie in the neighborhood K of Xε to which we applied Lemma 4.5.6. Thus,
the last claim in this lemma imply that there exist vj ∈ v with vj → v such
that exp(vj)xj ∈ N . Note that since the values r−θxj are contained in [0, `], up
to passing to a further subsequence, we may suppose that they converge to α2.
Clearly, α1 ≥ α2. If α1 > α2, then for large j we have α(xj) ≥ ‖vj‖−θ and it
follows that (4.5.23) holds since ‖vj‖−θ → ‖v‖−θ = α(x). On the other hand,
in case α1 = α2 we know that for every ε > 0, for j ∈ N large enough, we
have ‖vj‖+ ε > rxj . But since vj → v and ε > 0 is arbitrary, this implies that
α(x) = ‖v‖−θ ≤ limj→∞ r

−θ
xj

= α2 = α1, as desired. �

4.6. Recurrence, Equidistribution, Topology of Homogeneous
Measures

Using the ingredients from §§4.3–4.5, we can now give the proofs of our
results on recurrence, orbit closures, equidistribution, and topology of S(Γµ).
The following lemma is used to extract the necessary information from the
height functions constructed in the previous section.

Lemma 4.6.1. Let H be a locally compact σ-compact metrizable group and
X a locally compact σ-compact metrizable space endowed with a continuous
H-action. Let µ be a Borel probability measure on H and β : X → [1,∞] be
a lower semicontinuous function such that there exist m ∈ N, a ∈ (0, 1) and
b > 0 such that

π(µ)mβ(x) ≤ aβ(x) + b (4.6.1)

for all x ∈ X. Suppose that for every ε > 0 the set Xε = β−1([0, ε−1]) is
compact and that the set X∞ = β−1({∞}) is Γµ-invariant. Then the following
holds:

(i) For any δ > 0 there exists a compact subset Rδ ⊂ X \X∞ such that for
any x ∈ X with β(x) < ∞ there exists nx ∈ N with nx = O(log β(x))
such that

µ∗n ∗ δx(Rδ) ≥ 1− δ

for every n ≥ nx.
(ii) For every x ∈ X with β(x) < ∞, for µ⊗N-a.e. (gi)i ∈ ΓN

µ , every
weak* limit ν of the sequence ( 1

n

∑n−1
k=0 δgk···g1x)n of empirical measures

satisfies ν(X \X∞) = 1.

The techniques going into the first part of the lemma are by now standard.
The second part is basically [9, Proposition 3.9]. Related ideas also appear in
Markov chain theory (see e.g. [90, Theorem 18.5.2] and the references given
there). We include a brief proof for convenience.
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Proof. Let x ∈ X be such that β(x) < ∞. Iterating (4.6.1), we find for
every ε > 0 and n ∈ N

µ∗mn ∗ δx(Xc
ε) ≤ ε

∫
H
β(hx) dµ∗mn(h) ≤ ε

(
anβ(x) + b

1− a

)
.

For the proof of (i), given δ > 0, we set ε = δ(1 − a)/(2b + 2). Then the
above estimate implies that for every n ≥ n0,x := d(log β(x))/(− log a)e, we
have µ∗mn ∗ δx(Xε) ≥ 1 − δ/2. Moreover, we may choose a compact subset F
of Γµ such that µ∗l(F ) ≥ 1− δ/2 for all 0 ≤ l < m. Now setting Rδ to be the
compact set FXε which, since X \X∞ is Γµ-invariant, is contained in X \X∞,
we find

µ∗n ∗ δx(Rδ) ≥ 1− δ
for all n ≥ nx := mn0,x.

For (ii), we appeal to [9, Proposition 3.9], which implies that for µ⊗N-a.e.
(gi)i ∈ ΓN

µ , for every δ > 0 there exists a compact subset K ⊂ X \X∞ we have

lim inf
n→∞

1
n
|{0 ≤ k < n | gkm · · · g1x ∈ K}| ≥ 1− δ/2.

Moreover, by the law of large numbers, by choosing a large enough compact
set F ⊂ Γµ we can ensure that for µ⊗N-a.e. (gi)i ∈ ΓN

µ

lim inf
n→∞

1
n
|{0 ≤ k < n | gkm+l · · · gkm+1 ∈ F for 0 ≤ l < m}| ≥ 1− δ/2.

Combining the above, it follows that for the compact subset R = FK
of X \X∞ we have

lim inf
n→∞

1
n
|{0 ≤ k < n | gk · · · g1x ∈ R}| ≥ 1− δ

for µ⊗N-a.e. (gi)i ∈ ΓN
µ , and we conclude using a version of the Portmanteau

lemma. �

4.6.1. Recurrence. We first prove our results about recurrence properties
of H-expanding random walks.

Proof of Theorem 4.0.4. Let Z be a compact subset of X \ N , where
we recall that N = KLY for a compact subset KL of L = CG(Γµ), and let β∞
be a height function coming from Theorem 4.5.1 such that β∞ is bounded
on Z, say Z ⊂ Xε = {x ∈ X | β∞(x) ≤ ε−1} for some ε > 0. If Y = ∅,
we set β = β∞. Otherwise, we apply Theorem 4.5.4 to Yl = lY for finitely
many points l ∈ L such that the associated neighborhoods Ol of the identity
in L coming out of the theorem satisfy OllY ∩ Z = ∅ and KL ⊂

⋃
lOll. The

associated height functions βl take the value∞ on OllY and are bounded on Z.
We set β = ∑

l βl.
In both cases, we now apply Lemma 4.6.1(i) to the height function β. The

set Rδ coming out of the lemma is a compact subset of X \ N such that for
every x ∈ X with β(x) < ∞, for n ≥ nx with nx = O(log β(x)), we have
µ∗n ∗ δx(Rδ) ≥ 1 − δ. Since β is bounded on Z by construction, this estimate
holds for all n ≥ n0 for all x ∈ Z. If F is a compact subset of Γµ such that
µ∗n(F ) ≥ 1− δ for all 0 ≤ n < n0, it follows that µ∗n ∗ δx(MZ,δ) ≥ 1− δ for all
n ≥ 0 and all x ∈ Z for the compact subset MZ,δ := Rδ ∪ FZ of X \N , where
we used for the last containment that β−1({∞}) is Γµ-invariant. �
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Remark 4.6.2. For Y = ∅, the recurrence property in Theorem 4.0.4 is
referred to as (R1) in [7, 40]. In the case of a random walk given by a G-
expanding probability measure on the quotient of G by an irreducible lattice,
a slightly stronger, “uniform” recurrence property (referred to as (R2)) can be
established by using some results of [40]. �

4.6.2. Orbit Closures and Equidistribution. We now turn to the proof
of Theorem 4.0.5. It is similar to the proofs of the main results in [9].

Proof of Theorem 4.0.5. By Lemma 0.3.1, it suffices to establish state-
ment (iii) for a Γµ-ergodic homogeneous subspace Yx containing x. For µ⊗N-
a.e. (gi)i ∈ HN, every weak* limit ν of the sequence ( 1

n

∑n−1
k=0 δgk···g1x)n of em-

pirical measures is µ-stationary by the Breiman law of large numbers (see [9,
Corollary 3.3]). By Theorem 4.5.1 and Lemma 4.6.1(ii), for µ⊗N-a.e. (gi)i ∈ HN

every such weak* limit is a probability measure on X. We restrict to a full
measure set of (gi)i where both these conclusions hold and let ν be a weak*
limit of the sequence of empirical measures.

Let Y0 be a Γµ-invariant homogeneous subspace of X containing x of mini-
mal dimension. By Theorem 4.0.1 every ergodic component of ν is the homo-
geneous probability measure associated to an element of

S(Γµ, Y0) := {Y ∈ S(Γµ) | Y ⊂ Y0}.
Let Y ∈ S(Γµ, Y0) be such that Y is not open in Y0. Then by minimality of
dim(Y0) we know that x /∈ lY for any l ∈ L := CG(Γµ).

Let Z be an arbitrary compact subset of X, take a height function β∞ as
in Theorem 4.5.1, and recall that Xε = β−1

∞ ([1, ε−1]). By Theorem 4.5.4, for
sufficiently small ε > 0, there is an open neighborhood O of the identity in L
and a height function βN : HXε → [1,∞] satisfying the contraction property
(4.6.1) and such that

• for x ∈ HXε, βN (x) =∞ if and only if x ∈ OY ,
• for every ` ≥ 1, β−1

N ([1, `]) is a compact subset of X.
We extend βN to all of X with the value∞ outside of HXε. Then the extension
satisfies the assumptions of Lemma 4.6.1. Write X∞,N for the set β−1

N ({∞}),
so that HXε ∩ OY ⊂ X∞,N . After further restricting to a full measure set
of (gi)i so that Lemma 4.6.1(ii) holds, we thus find ν(HXε ∩ OY ) = 0. When
ε is small enough, this implies ν(Z ∩OY ) = 0. We repeat this process for the
homogeneous subspaces lY for countably many l ∈ L such that the transla-
tions Ol of the associated neighborhoods O cover L. This gives ν(Z ∩LY ) = 0.
Repeating again for countably many compact subsets Z covering X, it follows
that ν(LY ) = 0.

Hence, in view of the countability statement in Proposition 4.4.1, we deduce
that ν(LY ) = 0 holds for every Y ∈ S(Γµ, Y0) that is not open in Y0 (to be
precise, after once more restricting to a countable intersection of full measure
sets of (gi)i ∈ HN, once for each Y in a countable set of representatives in
(4.4.1)). It follows that each ergodic component of ν must be a homogeneous
measure of some Y ∈ S(Γµ, Y0) that is open in Y0. By [9, Lemma 2.9], these Y
are pairwise disjoint, so that there are only countably many of them. This
means that for some Y ∈ S(Γµ, Y0) open in Y0 we must have ν(Y ) > 0. Then
necessarily x ∈ Y . By construction of ν and Γµ-invariance of Y it follows
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that ν(Y ′) = 0 for any Y ′ ∈ S(Γµ, Y0) distinct from Y . Hence, all ergodic
components of ν are in fact equal to the homogeneous probability measure
on Y , which finishes the proof. �

Remark 4.6.3 (Non-averaged convergence in law). It is a natural question,
already posed by Benoist–Quint at the end of their survey [6], whether, or un-
der what conditions, the Cesàro average in Theorem 4.0.5(ii) can be removed.
Unfortunately, in the generality of our results, this question of convergence of
µ∗n ∗ δx towards νx seems to be out of reach with current methods. Answers
are available only in certain special cases where additional structure can be
exploited. For example, in the setting of toral automorphisms, the harmonic
analytic approach used by Bourgain–Furman–Lindenstrauss–Mozes [20] allows
them to obtain the convergence of µ∗n ∗ δx together with a speed depending on
Diophantine properties of the starting point x. Their approach was recently
refined and generalized to some nilmanifolds in the works [58, 59, 60] of He–de
Saxcé and He–Lakrec–Lindenstrauss. Outside the realm of nilmanifolds, quan-
titative results on the convergence of µ∗n ∗ δx include the work of Buenger [23,
§3] and Khalil–Luethi [69], who consider some classes of measures supported
on compact-by-solvable groups, and the author’s work on spread out measures
in Chapter 3. �

4.6.3. Topology of Homogeneous Measures. Here we prove the Mozes–
Shah type results regarding the weak* topology on the set of ergodic homoge-
neous subspaces of X.

Let G,H,Λ, X, µ,Γµ be as in Theorem 4.0.5 and recall that S(Γµ) denotes
the set of all Γµ-invariant Γµ-ergodic homogeneous subspaces Y of X. Each
element Y of S(Γµ) carries an associated Γµ-invariant and ergodic homogeneous
probability measure νY . Using this, we embed S(Γµ) into the space P(X) of
Borel probability measures on X and endow S(Γµ) with the weak* topology
induced from P(X). Also recall that given a subset Z ⊂ X, we set SZ(Γ) =
{Y ∈ S(Γ) | Y ∩ Z 6= ∅}.

The following lemma will be useful for the proof of Proposition 4.0.7. In the
statement, given Y ∈ S(Γµ), we shall say that a point y ∈ Y is Y -generic if the
conclusion of Theorem 4.0.5(ii) holds, i.e. if limn→∞

1
n

∑n−1
k=0 µ

∗k ∗δy = νY in the
weak* topology. Note that νY -a.e. point is Y -generic by the Chacon–Ornstein
ergodic theorem.

Lemma 4.6.4. Let (νj)j be a sequence of ergodic homogeneous measures
associated to subspaces Yj ∈ S(Γµ) converging to a finite measure ν on X in
the weak* topology. Let β be a height function on X satisfying the assumptions
of Lemma 4.6.1 and denote X∞ = β−1({∞}). Suppose that there is a sequence
of Yj-generic points yj ∈ Yj such that yj /∈ X∞ for infinitely many j. Then
ν(X \X∞) = 1.

Proof. We may assume yj /∈ X∞ for all j. Let δ > 0. By Lemma 4.6.1(i)
there exists a compact subset Rδ ⊂ X \X∞ such that µ∗n ∗ δyj(Rδ) ≥ 1− δ for
all n ≥ nyj . Passing to the limit in the Yj-genericity, this implies νj(Rδ) ≥ 1−δ.
Letting j →∞, it follows that also ν(Rδ) ≥ 1−δ. The conclusion follows, since
Rδ ⊂ X \X∞ and δ > 0 was arbitrary. �
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Proof of Proposition 4.0.7. We first prove (ii). Let (νj)j be a sequence
of ergodic homogeneous probability measures associated to homogeneous sub-
spaces Yj in S(Γµ) converging to the homogeneous measure ν∞ associated
to Y∞ ∈ S(Γµ). Take a sequence of Yj-generic points yj ∈ Yj such that
Z = {y1, y2, . . .} is compact. Let β∞ be a height function from Theorem 4.5.1
that is finite on Z, say with Z ⊂ Xε for some ε > 0 sufficiently small. Let O
be a small neighborhood of the identity in L = CG(Γµ) and βN a height func-
tion from Theorem 4.5.4 taking the value ∞ on HXε ∩ OY∞. Extending βN
from HXε to X using the value ∞, we are in the setting of Lemma 4.6.4 and
know ν∞(X∞,N ) = 1, where X∞,N = β−1

N ({∞}). Thus, the lemma implies
βN (yj) = ∞ for all large j, which means that yj ∈ OY∞ since yj ∈ Z ⊂ Xε.
Since O can be chosen arbitrarily small, (ii) is proved.

Now let us establish (i). Note that (ii) implies that for Z ⊂ X compact,
SZ(Γµ) is closed in S(Γµ). So we only have to exhibit a limit point in S(Γµ) of
a given sequence (Yj)j in SZ(Γµ). Thus, we may replace Z by a compact neigh-
borhood and assume that the homogeneous measures νj associated to the Yj
all satisfy νj(Z) > 0. Then we can find Yj-generic points yj ∈ Z. Letting β∞
be a height function from Theorem 4.5.1 that is finite on Z, say again with
Z ⊂ Xε, Lemma 4.6.4 thus implies that any limit point ν of (νj)j is a probabil-
ity measure on X. By passing to a subsequence we may assume that νj → ν.
Then ν is a Γµ-invariant probability measure on X. By Proposition 4.4.1, there
exists Y ∈ S(Γµ) and a relatively compact neighborhood O of the identity in L
such that ν(OY ) > 0. We suppose that the dimension of Y is minimal so that
the latter holds. As in the first part of the proof, using a height function βN
and Lemma 4.6.4, this implies that yj ∈ OY for all large j. After passing to a
subsequence, we have that Yj ⊂ ljY∞ for some lj ∈ CG(Γµ) converging to the
identity and Y∞ = lY for some l ∈ CG(Γµ). Then all ergodic components of
the limit measure ν are homogeneous probability measures associated to some
ergodic homogeneous subspace Y ′ ⊂ Y∞. If subspaces Y ′ ( Y∞ were to feature
in the ergodic decomposition with positive weight, then another application of
Proposition 4.4.1 would imply that ν(LY ′) > 0 for some Y ′ ∈ S(Γµ) of lower
dimension, contradicting the choice of Y . Hence, we have established conver-
gence of νj to the homogeneous probability measure associated to Y∞, proving
compactness of SZ(Γµ).

To obtain relative compactness of SHZ(Γµ), note that by H-invariance of
β−1
∞ ({∞}) for the height functions β∞ coming out of Theorem 4.5.1, we know

that β∞(x) < ∞ for every x ∈ HZ if β∞ is chosen to be finite on Z. Thus,
Lemma 4.6.1(i) implies that there exists a compact subset R1/2 of X such that
SHZ(Γµ) ⊂ SR1/2(Γµ), and the latter set is compact, as shown above.

Finally, if a limit point of a sequence of probability measures in S(Γµ)∪{δ∞}
has a point x ∈ X in its support, then a subsequence is contained in SZ(Γµ) for
some compact neighborhood Z of x, proving compactness of S(Γµ)∪{δ∞}. �

Proof of Corollary 4.0.8. Clearly, S(Γµ, Y∞) is closed in S(Γµ). In
view of the last statement in Proposition 4.0.7(i), we only have to show that
the only possible limit point of (Yn)n inside S(Γµ, Y∞) is Y∞. Let Y be such a
limit point. By Proposition 4.0.7, since CG(Γµ) is assumed discrete, it follows
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that Yn ⊂ Y for infinitely many n. By assumption, this forces Y = Y∞, and
we are done. �

4.6.4. Application to Nilmanifolds. Let Λ′ be a lattice in a connected
simply connected nilpotent Lie group N and X the compact nilmanifold N/Λ′.
The automorphism group Aut(Λ′) of Λ′ is defined to be the subset of automor-
phisms of N preserving Λ′. It is well known that any abstract automorphism
of Λ′ extends to an automorphism of N , therefore defines an element of Aut(Λ′)
(see e.g. [107, §II]).

A probability measure µ on Aut(Λ′) defines a random walk on X = N/Λ′ by
nilmanifold automorphisms. Our results have the following immediate corollar-
ies for such random walks. Under an affine submanifold of X we understand a
closed subset of X that is the translate of the image in X of a closed subgroup
of N .

Corollary 4.6.5. Let X = N/Λ′ be a compact nilmanifold and µ a prob-
ability measure on Aut(Λ′) with finite first moment such that the Zariski clo-
sure H of Γµ in Aut(N) is a connected semisimple group without compact
factors. Then every µ-ergodic µ-stationary probability measure on X is Γµ-
invariant, homogeneous, and supported on a finite union of affine submani-
folds. �

Corollary 4.6.6. Let X = N/Λ′ be a compact nilmanifold and µ a proba-
bility measure on Aut(Λ′) with finite exponential moments such that the Zariski
closure H of Γµ in Aut(N) is a connected semisimple group without compact
factors. Then:

(i) Every Γµ-orbit closure in X is a finite union of affine submanifolds.
(ii) For every x ∈ X, for µ⊗N-a.e. (gi)i one has

lim
n→∞

1
n

n−1∑
k=0

δgk···g1x = νx,

where νx is the homogeneous probability measure on Γµx.
(iii) The set S(Γµ) is compact. If Yn → Y∞ in S(Γµ), then there exists a

sequence (ln)n of Γµ-invariant elements in N converging to the identity
such that Yn ⊂ lnY∞ for all large n. �

The above corollaries are slight extensions of [8, Corollary 1.3] and [9,
Corollary 1.10], respectively, removing the assumption that the probability
measure µ is finitely supported.

To deduce these corollaries from our general theorems, one needs to exhibit
an embedding X ↪→ G/Λ into the quotient of a real Lie group G containing
Aut(Λ′) by a lattice Λ < G. In the classical case of toral automorphisms, one
has Aut(Λ′) = GLd(Z), and we may simply choose G = SLd+1(R) with its
lattice Λ = SLd+1(Z) admitting the embedding

X = (GLd(Z) nRd)/(GLd(Z) n Zd) ↪→ G/Λ.
More generally, we can define G = Zcl(Aut(Λ′)) n N and Λ = Aut(Λ′) n Λ′,
where Zcl(Aut(Λ′)) denotes the Zariski closure of Aut(Λ′) inside Aut(N). Then
Λ is a lattice in G by Borel–Harish-Chandra, since Aut(Λ′) is commensurable
to the subgroup of integer points of Zcl(Aut(Λ′)) for a suitable Q-structure on
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Aut(N) (see [107, Theorem 2.12] and its discussion). Hence, our results apply
with H = Zcl(Γµ) in view of Proposition 4.2.1.

4.7. Birkhoff Genericity

The aim of this section is to prove Theorem 4.0.10. Recall that H is a
connected semisimple Lie group without compact factors and with finite center,
A′ = {a(t) | t ∈ R} is a one-parameter Ad-diagonalizable subgroup of H, and
U an a(1)-expanding subgroup of H contained in H+

a(1). In particular, U is
connected, Ad-unipotent, and normalized by A′. Moreover, having fixed a
maximal compact subgroup K of H, K ′ is defined to be the compact group
CK(A′) ∩ NH(U), and µ is a probability measure on K ′A′U =: P 6 H with
finite exponential moments satisfying

∫
P λ(g) dµ(g) > 0, where λ is defined

by the K ′A′U -factorization g = ka(λ(g))u for g ∈ P . Recall also that for
ω = (gi)i ∈ PN and n ∈ N, we write

gω,n := gn · · · g1 = kω,naω,nuω,n

for the K ′A′U -factorization of gn · · · g1. All these notations and assumptions
will be understood to be in place until the end of this section.

The first lemma we prove ensures that the limit in condition (3) of Defini-
tion 4.0.9 exists almost surely.

Lemma 4.7.1. For µ⊗N-almost every ω ∈ PN the sequence (uω,n)n converges
to some uω ∈ U .

Proof. Since U does not intersect the (finite) center of H, the restriction
AdH : U → Ad(U) is a Lie group isomorphism. To prove the claimed conver-
gence, we may thus assume that H is a linear group. Let ω = (gi)i ∈ PN.
For n ∈ N, write gn = knanun its (unique) factorization into K ′, A′ and U
components. We also set pn = knan. One readily observes that the term uω,n
is equal to the product

upn−1···p1
n · · ·up2p1

3 up1
2 u1, (4.7.1)

where we use the shorthand gh = h−1gh. In the product (4.7.1), a term u
pk−1···p1
k

is equivalently expressed as exp(Ad((pk−1 · · · p1)−1)(log uk)). Here, the log map
is well-defined since U being a unipotent linear group implies that the expo-
nential map is a diffeomorphism from u = Lie(U) onto U . Moreover, since the
Lie algebra u is nilpotent, we know that exp: u→ U is given by v 7→ 1 + vq(v),
where q is a polynomial map. Therefore, to show that the product (4.7.1) con-
verges for µ⊗N-almost every ω, by a general convergence criterion for infinite
matrix products (see e.g. [132, §8.10]), it suffices to show that for µ⊗N-a.e. ω,∑

k≥1
‖Ad((ak−1 · · · a1)−1)(log uk)‖

converges, where ‖·‖ is an arbitrary matrix norm on u. We now prove this
convergence. We start by observing that for u ∈ U the logarithm log u is a
polynomial in u. Hence, the random nilpotent elements (log uk)k≥1 are i.i.d.
and their distribution has a finite first moment. By the law of large numbers,
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it follows that almost surely ‖log uk‖ = o(k). Almost surely, we thus obtain
the bound

‖Ad((ak−1 · · · a1)−1)(log uk)‖ ≤ o(k) max
α∈Π

k−1∏
i=1

exp(−αλ(ai))

= o(k) max
α∈Π

exp
(
−α

k−1∑
i=1

λ(ai)
)
,

(4.7.2)

where
Π = {α ∈ R | Ad(a(t))v = eαtv for all t ∈ R for some nonzero v ∈ u}

is the finite set of real numbers corresponding to the weights of A′ on u. Since
U is contained in H+

a(1), we have Π ⊂ (0,∞). Together with
∫
P λ(g) dµ(g) > 0,

it thus follows from the Birkhoff ergodic theorem that, µ⊗N-almost surely, the
last term in (4.7.2) decays exponentially. This gives the summability claimed
above and hence the lemma. �

Proposition 4.7.2. Suppose that the Zariski closure of Ad(Γµ) contains
Ad(U). Then the probability measure µ is H-expanding. For a discrete sub-
group Λ of a real Lie group G containing H, any ergodic µ-stationary probabil-
ity measure on G/Λ is H-invariant. If Λ is a lattice in G, then the conclusion
of Theorem 4.0.5 holds with Yx = Hx and νx = νHx.

The following observations will be useful in the proof of the previous propo-
sition. We denote by A′+ = {a(t) | t > 0} the positive ray in A′.

Lemma 4.7.3. Let Γ be a subsemigroup of P such that Γ ∩ K ′A′+U 6= ∅.
Then there exists u ∈ U such that uΓu−1 ∩K ′A′+ 6= ∅.

Proof. By hypothesis there exists an element γ0 ∈ K ′A′+U ∩Γ. Factorize
γ0 = p0u0 with p0 ∈ K ′A′+ and u0 ∈ U . Endow u with some Euclidean
structure. As in the proof of Lemma 4.7.1, the linear map Ad(p−1

0 ) preserves
the Lie algebra u and any large power of it acts on u as a contraction. Moreover,
since U is connected and simply connected, as a consequence of the Baker–
Campbell–Hausdorff formula (see e.g. [29, §1.2]), for every u ∈ U , the map
qu : u → u defined by X 7→ log(exp(X)u) is a polynomial map whose degree
depends only on U and whose coefficients depend continuously on u.

Using the same notation and reasoning as in the proof of Lemma 4.7.1, we
observe that for every n ≥ 1, we have γn0 = pn0u

pn−1
0

0 · · ·up0
0 u0, with the term

u(γn0 ) := u
pn−1

0
0 · · ·up0

0 u0 converging in U as n → ∞. From these facts, one
deduces that there exists a ball B in u around 0 ∈ u such that for every n ∈ N
large enough, the continuous map fn : u→ u defined by

fn(X) = qu(γn0 )(Ad(p−n0 )X) = log(exp(Ad(p−n0 )X)u(γn0 ))

satisfies fn(B) ⊂ B. It follows from the Brouwer fixed point theorem that fn
has a fixed point X ∈ u. We claim that u = exp(X) ∈ U is the desired element.
Indeed, since exp(Ad(p−n0 )X) = p−n0 exp(X)pn0 , we have p−n0 upn0u(γn0 ) = u and
hence uγn0 u−1 = upn0u(γn0 )u−1 = pn0 ∈ K ′A′+. �

Given g ∈ P , we write g = kgagug for its K ′A′U -factorization.
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Lemma 4.7.4. For a subset C ⊂ P , let UC = {ug | g ∈ C} be the set of
its U-parts. If the Zariski closure of Ad(C) contains Ad(U), then Ad(UC) is
Zariski dense in Ad(U).

Proof. Denote by Q the Zariski closure of Ad(P ), and observe that Ad(U)
is contained in the unipotent radical Ru(Q) of Q. Since Ad(K ′A′) is a linearly
reductive subgroup of Q, there is a Levi factor L of Q containing Ad(K ′A′)
(see [64, Theorem VIII.4.3]). Then we have Q = LnRu(Q) as algebraic groups.
This implies

Ad(U) ⊂ Zcl(Ad(C)) ⊂ Zcl(Ad(K ′A′) Ad(UC))
= Zcl(Ad(K ′A′))︸ ︷︷ ︸

⊂L

Zcl(Ad(UC))︸ ︷︷ ︸
⊂Ru(Q)

.

We conclude that Ad(U) ⊂ Zcl(Ad(UC)), which is what we needed to show. �

Proof of Proposition 4.7.2. The assumptions of Proposition 4.2.7 are
satisfied for any maximal connected R-split torus A in H containing A′. Thus,
µ is H-expanding. Now let ν be an ergodic µ-stationary probability measure
on X = G/Λ. By Theorem 4.0.1, ν is Γµ-invariant and homogeneous, and the
connected component N of StabG(ν) is normalized by H.

In order to prove the statement about H-invariance, we can assume without
loss of generality that Γµ contains an element in K ′A′+. Indeed, suppose that
the conclusion is true for such measures; call them special. Given an arbitrary
measure µ as in the statement, by Lemma 4.7.3 we can find an element u ∈ U
such that (τu)∗µ is special, where τu denotes conjugation by u. The properties
in Definition 4.0.9 are preserved by this conjugation. Then u∗ν is (τu)∗µ-ergodic
and stationary and hence it is H-invariant. But since u ∈ U 6 H, this implies
that ν itself is H-invariant.

So let us take g0 = k0a0 ∈ Γµ ∩ K ′A′+. Then, given an arbitrary g ∈ Γµ
written as g = kgagug in its K ′A′U factorization, by considering a sequence nk
such that knk0 → e as k → ∞, we get that the conjugates g−nk0 ggnk0 converge
to kgag. This implies that kgag and thus also ug belongs to Γµ. In other words,
Γµ contains all of its U -parts.

We next claim that for any proper connected normal subgroup S 6 H,
there exists g ∈ Γµ whose U -part ug does not belong to S. To see this, by way
of contradiction, let us suppose that all U -parts of elements of Γµ belong to
some proper normal subgroup S. Using Lemma 4.7.4, we deduce from this that
Ad(U) 6 Ad(S), which entails that U acts trivially in the adjoint representa-
tion of H on h/s. On the other hand, the image of a(1) in this representation
has determinant one, so that it cannot expand all nonzero elements of h/s,
contradicting a(1)-expansion of U .

Assuming that H is not contained in N , we can apply the above with
S = (N ∩ H)◦. Take g = kgagug ∈ Γµ with ug /∈ (N ∩ H)◦. By normality,
also the U -parts of g−nk0 ggnk0 do not belong to (N ∩ H)◦. On the other hand,
as observed above, these U -parts lie in Γµ 6 H ∩ StabG(ν) and converge to
the identity, which is impossible. This contradiction shows that H 6 N , and
hence that any ergodic µ-stationary probability measure ν is H-invariant.
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Finally, applying the H-invariance statement to the homogeneous mea-
sure νx from Theorem 4.0.5, we see that the conclusions of that theorem hold
with Yx = Hx. �

The following elementary but key equivariance property is the final ingre-
dient required for the proof of Theorem 4.0.10.

Lemma 4.7.5. For µ⊗N-almost every ω = (gi)i ∈ PN and every n ∈ N, we
have

aω,nuω = k−1
ω,nuTnωgω,n,

where T : PN → PN, (gi)i 7→ (gi+1)i denotes the shift map.

Proof. By Lemma 4.7.1, there exists a set Ω of full µ⊗N-measure such that
for every ω ∈ Ω, the sequence uω,n converges (to the limit uω). Replacing Ω
by ⋂i≥0 T

−iΩ if necessary, we may assume that TΩ ⊂ Ω. Let ω = (gi)i ∈ Ω
and n ∈ N. Writing gi = kiaiui in its K ′A′U factorization, a straightforward
computation shows that uω,n = a−1

1 k−1
1 uTω,nk1a1u1. Passing to the limit as

n → ∞, we obtain uω = a−1
1 k−1

1 uTωg1. The lemma now follows by iterating
the latter equality, using that A′ and K ′ commute. �

Proof of Theorem 4.0.10. Suppose the measure η is generated by the
probability measure µ supported on P = K ′A′U as in Definition 4.0.9. By
Theorem 4.0.5 and Proposition 4.7.2, we know that for every x ∈ X, for µ⊗N-
almost every ω = (gi)i ∈ PN, the sequence of points

(gω,nx)n
is equidistributed with respect to ν = νHx.

Replacing K ′ by a subgroup, we may assume without loss of generality that
prK′(Γµ) is dense in K ′, where prK′ : P → K ′ is the projection map. So the
action of prK′(Γµ) on (K ′,mK′) by left translation is ergodic, where mK′ is the
Haar probability measure on K ′. By a version of Moore’s ergodicity theorem
(see [4, Theorem III.2.5(i)]) applied to the regular representation on the Hilbert
space L2

0(X, ν) of square integrable functions with mean zero, the action of Γµ
on (X, ν) is weakly mixing. Therefore, the action of Γµ on (X ×K ′, ν ⊗mK′)
given by g(y, k) = (gy, prK′(g)k) is ergodic (cf. e.g. [117, Proposition 2.2]).
Thus it follows from [129, Corollary 5.5] that for almost every ω = (gi)i ∈ PN,
the sequence

(gω,nx, kω,n)n
is equidistributed with respect to ν ⊗ mK′ . Next, applying [129, Proposi-
tion 5.1], this can be upgraded to almost sure equidistribution of

(gω,nx, kω,n, T nω)n (4.7.3)

with respect to ν⊗mK′ ⊗µ⊗N, where T : PN → PN denotes the shift map. We
caution here that when the support of µ is non-compact, the above equidistri-
bution takes place in a non-locally compact space, so that the class of test func-
tions to consider is that of bounded continuous functions. The proof of [129,
Proposition 5.1], however, only needs minor amending to accommodate this
issue; see Lemma 2.2.9 in Chapter 2 and the short discussion before its proof.
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Applying the map ω = (gi)i 7→ (uω, g1) to the equidistribution in (4.7.3), we
conclude that, for almost every ω = (gi)i ∈ PN, the sequence

(gω,nx, kω,n, uTnω, gn+1)n (4.7.4)

is equidistributed with respect to ν⊗mK′⊗ η̃, where η̃ is a probability measure
on U × P that projects to µ in the second coordinate. Again, some caution
is needed at this step, since ω 7→ uω is not necessarily continuous. However,
also this can be dealt with by considering Lusin sets and continuous extensions
coming from Tietze’s theorem as in the proof of [129, Proposition 5.2].

The rest of the proof is the same as in [129, §12]; we reproduce it for
the convenience of the reader. Given f ∈ Cc(X), one considers the bounded
continuous function ϕ on X ×K ′ × U × P defined by

ϕ(x, k, u, g) =
∫ λ(g)

0
f(a(t)k−1ux) dt,

where g = kga(λ(g))ug is the decomposition according to P = K ′A′U . A direct
calculation using the invariance of ν under H shows that∫

ϕ d(ν ⊗mK′ ⊗ η̃) =
∫
P
λ(g) dµ(g)

∫
X
f dν. (4.7.5)

Suppose ω = (gi)i is a generic point with respect to the equidistribution
of (4.7.4) for which also Lemma 4.7.5 holds for every n. Using only the last
factor P in the equidistribution, it follows that

lim
n→∞

λ(gω,n)
n

= lim
n→∞

1
n

n∑
i=1

λ(gi) =
∫
P
λ(g) dµ(g) > 0. (4.7.6)

We thus obtain, by the equidistribution (4.7.4),∫
ϕ d(ν ⊗mK′ ⊗ η̃) = lim

n→∞

1
n

n−1∑
i=0

ϕ(gω,ix, kω,i, uT iω, gi+1)

= lim
n→∞

1
n

n−1∑
i=0

∫ λ(gi+1)

0
f(a(t)k−1

ω,iuT iωgω,ix) dt

= lim
n→∞

1
n

n−1∑
i=0

∫ λ(gi+1)

0
f(a(t)aω,iuωx) dt

= lim
n→∞

1
n

n−1∑
i=0

∫ λ(gω,i+1)

λ(gω,i)
f(a(t)uωx) dt

= lim
n→∞

λ(gω,n)
n

1
λ(gω,n)

∫ λ(gω,n)

0
f(a(t)uωx) dt

=
∫
P
λ(g) dµ(g) lim

n→∞

1
λ(gω,n)

∫ λ(gω,n)

0
f(a(t)uωx) dt,

where we used Lemma 4.7.5 in the third equality and the fact that λ(gω,i+1) =
λ(gω,i) + λ(gi+1) in the fourth. Together with (4.7.5), this implies

lim
n→∞

1
λ(gω,n)

∫ λ(gω,n)

0
f(a(t)uωx) dt =

∫
f dν. (4.7.7)
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Finally, notice that since the random variables λ(gω,n)− λ(gω,n−1) = λ(gn)
are i.i.d. with a distribution that has a finite first moment, it follows from the
law of large numbers that almost surely

λ(gω,n)− λ(gω,n−1) = o(n). (4.7.8)
Now (4.7.6), (4.7.7) and (4.7.8) together imply the Birkhoff genericity of uωx
with respect to (a(t))t≥0 and ν. �

4.8. Connections to Diophantine Approximation on Fractals

The goal of this section is to explain the connection between random walks
and Diophantine approximation on affine fractals, prove a general result (The-
orem 4.8.3) which will imply Theorem 4.0.11 on Diophantine properties of
Bedford–McMullen carpets, and mention some further directions.

4.8.1. Weighted Diophantine Approximation and Dani–Kleinbock
Flow. To begin with, we recall basic notions in Diophantine approximation of
matrices and the connection to homogeneous dynamics.

4.8.1.1. Badly Approximable Matrices and Dirichlet Improvability. Letm,n
be positive integers, r = (r1, . . . , rm) ∈ (0, 1]m and s = (s1, . . . , sn) ∈ (0, 1]n
be such that ∑m

i=1 ri = ∑n
j=1 sj = 1 and M ∈ Rm×n a matrix with rows

M1, . . . ,Mm. ThenM is called (r, s)-badly approximable or badly approximable
for the weights (r, s) if there exists a constant C > 0 such that

max
1≤i≤m

|Miq − pi|1/ri · max
1≤j≤n

|qj|1/sj ≥ C (4.8.1)

for every (p,q) ∈ Zm × (Zn \ {0}). Otherwise, M is called (r, s)-well approx-
imable.

One can see by Dirichlet’s principle, or by Blichfeldt and Minkowski’s con-
vex body results, that for every matrix M ∈ Rm×n, there exist infinitely many
pairs (p,q) ∈ Zm×(Zn\{0}) such that the left-hand side of (4.8.1) is bounded
above by 1. As a consequence of a general form of Khintchine’s theorem [118],
the set of (r, s)-badly approximable matrices is a Lebesgue null set. However, it
has everywhere-full Hausdorff dimension; see [72, Corollary 4.5] and [73, §5.4].

Given weights (r, s), an equivalent way to express the aforementioned con-
sequence of the Dirichlet principle is to say that for every matrix M ∈ Rm×n

and for every t > 0, the following system of inequalities has a solution in
(p,q) ∈ Zm × (Zn \ {0}):

|Miq − pi| ≤ e−tri and |qj| ≤ etsj (1 ≤ i ≤ m, 1 ≤ j ≤ n).

One says that the matrix M ∈ Rm×n is (r, s)-Dirichlet improvable if there
exists ε ∈ (0, 1) such that for every t ≥ 0 large enough, the following system of
inequalities has a solution in (p,q) ∈ Zm × (Zn \ {0}):

|Miq − pi| ≤ εe−tri and |qj| ≤ εetsj (1 ≤ i ≤ m, 1 ≤ j ≤ n).
In the special case where the weights (r, s) are given by (m,n)—by which

we mean that ri = 1/m and sj = 1/n for all i, j—the notion of Dirichlet im-
provability was introduced and studied by Davenport–Schmidt, who showed
that the set of (m,n)-Dirichlet improvable matrices has zero Lebesgue mea-
sure [31] and that every (m,n)-badly approximable matrix is (m,n)-Dirichlet
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improvable [32]. The former result was generalized to arbitrary weights (r, s)
by Kleinbock–Weiss [72].

4.8.1.2. Dani–Kleinbock Flow. Let G = PGLd(R), Λ = PGLd(Z), and set
X = G/Λ. It is easy to see that the homogeneous space X can alternatively
be written as SLd(R)/ SLd(Z), which can be identified with the space of uni-
modular lattices in Rd via g SLd(Z)↔ gZd. For every ε > 0, we define

Kε :=
{
gΛ ∈ X

∣∣∣ g ∈ SLd(R), max
i=1,...,d

|(gv)i| ≥ ε for every v ∈ Zd \ {0}
}
.

Viewing X as space of unimodular lattices in Rd, Kε is nothing but the subset
of lattices all of whose nonzero vectors have length at least ε in the supremum
norm. The collection of sets Kε is clearly decreasing in ε. For ε < 1 the
set Kε has non-empty interior, and for ε > 1 one has Kε = ∅, as can be seen
by Minkowski’s convex body theorem from geometry of numbers. Moreover,
Mahler’s compactness criterion states that the sets Kε ⊂ X for ε > 0 are com-
pact and that a subset of X is relatively compact if and only if it is contained
in one of the Kε.

Now let d = m + n and denote by x0 the identity coset in X = G/Λ.
The Dani–Kleinbock correspondence principle—observed first by Dani [30]
and developed further, among others, by Kleinbock [75] and later Kleinbock–
Weiss [72]—states that, loosely speaking, the Diophantine properties of a ma-
trix M ∈ Rm×n are encoded in the behavior of the trajectory of the point
uMx0 inside X under suitable one-parameter diagonal subgroups of G, where
uM := ( 1m −M

0 1n ). We are going to use this principle in the form of the follow-
ing proposition. Given weights (r, s) ∈ (0, 1]m × (0, 1]n as before, let (a(t))t∈R
be the one-parameter subgroup of G corresponding to the diagonal matrix
a(1) = diag(er1 , . . . , erm , e−s1 , . . . , e−sn).

Proposition 4.8.1 (Dani–Kleinbock correspondence). A real matrix M is
• ([75]) (r, s)-badly approximable if and only if the forward-orbit

{a(t)uMx0 | t ≥ 0}
is relatively compact in X, and
• ([72]) (r, s)-Dirichlet improvable if and only if there exists ε ∈ (0, 1)
such that a(t)uMx0 /∈ Kε for every t ≥ 0 large enough.

An obvious consequence of this proposition is that given weights (r, s), if
the forward orbit {a(t)uMx0 | t ≥ 0} associated to a matrixM ∈ Rm×n is dense
in X, then M is (r, s)-well approximable and not (r, s)-Dirichlet improvable.

In fact, the ergodic theoretic approach that we adopt will allow us to estab-
lish the following finer Diophantine property.

Definition 4.8.2. Given weights (r, s) and the associated one-parameter
diagonal group (a(t))t∈R, a matrix M ∈ Rm×n is said to be of (r, s)-generic
type if the forward-orbit (a(t)uMx0)t≥0 equidistributes to the Haar measuremX

on X.

4.8.2. Matrix Sponges and Self-Affine Measures. Here we briefly
describe the iterated function system (IFS) construction of affine fractals and
introduce the subfamily of affine fractals (matrix sponges) and self-affine mea-
sures whose Diophantine properties will be studied in the subsequent part.
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4.8.2.1. Affine Fractals. Let φ be an affine transformation of RD given by
φ(x) = Ax + b where A ∈ GLD(R) and b ∈ RD. It is called contracting if
the operator norm of its linear part A with respect to the standard Euclidean
structure of RD satisfies ‖A‖ < 1. We shall refer to a finite set Φ = {φ1, . . . , φk}
of contracting affine transformations φi of RD as a contracting affine IFS. Given
such an IFS Φ, there exists a unique non-empty compact subset K of RD

satisfying K = ⋃k
i=1 φi(K), referred to as the attractor of Φ. Putting less

emphasis on the IFS, K is also called an affine fractal or self-affine set. In the
particular case where all the φi are similarities, the attractor K is also called a
self-similar set.

The natural projection Π associated to a contracting affine IFS Φ is the
map defined by

Π: ΦN → RD, (φij)j 7→ lim
n→∞

φi1 · · ·φin(x) (4.8.2)

for some x ∈ RD. The limit in the definition is independent of x. The image
of the natural projection Π is precisely the affine fractal K, and we have the
following equivariance property with respect to the shift map T on ΦN:

Π((φij)j) = φi1Π((φij+1)j) = φi1Π(T (φij)j). (4.8.3)

Our results on random walks on homogeneous spaces also allow us to study
a more general situation where the IFS is not required to be finite and where
one can allow contraction to only take place on average. To describe this,
let Φ be a compact subset of the group GLD(R) n RD of invertible affine
transformations of RD. Then Φ is said to be a compact affine IFS. Given a
probability measure µ with supp(µ) = Φ, we shall refer to the couple (Φ, µ) as
a contracting-on-average compact affine IFS if there exists N ∈ N such that∫

log‖AφN · · ·Aφ1‖ dµ⊗N(φ1, . . . , φN) < 0, (4.8.4)

where Aφ denotes the linear part of an affine transformation φ. This definition
does not depend on the choice of operator norm.

Using only boundedness of the translation parts, it is not hard to see that
the limit limn→∞ φ1 · · ·φn(x) exists and does not depend on x ∈ RD when-
ever the sequence (‖Aφ1 · · ·Aφn‖)n≥1 decays fast enough (e.g. exponentially).
Under the contraction-on-average assumption, this holds for µ⊗N-almost every
sequence (φj)j, as one can see using submultiplicativity of the operator norm
and Kingman’s subadditive ergodic theorem. Thus, in this case, we again
obtain a measurable map Π: (φj)j 7→ limn→∞ φ1 · · ·φn(x) defined µ⊗N-almost
everywhere on ΦN that we refer to as the natural projection of (Φ, µ). Note
that the subset Ω of elements of ΦN for which the limit in the definition of Π
exists satisfies TΩ ⊂ Ω and that on this set we have the same equivariance
relation as in (4.8.3). In the case of a compact affine IFS Φ comprising only
contractions, the natural projection Π is a continuous map defined everywhere
on ΦN and its image K coincides with the support of Π∗µ⊗N for any probability
measure µ on Φ with full support.

Finally, we shall say that a compact IFS Φ of affine transformations of RD

is irreducible if there does not exist a proper affine subspace W of RD such
that φ(W ) = W for every φ ∈ Φ.
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4.8.2.2. Self-Affine Measures. Let (Φ, µ) be a contracting-on-average com-
pact affine IFS and Π the associated natural projection. Then the probability
measure νµ = Π∗µ⊗N on RD is called the associated self-affine measure (or self-
similar measure if the IFS comprises only similarities). It is with respect to
these self-affine measures that we will study the typical Diophantine behavior
of vectors in RD or more generally matrices in Rm×n. The measure νµ is the
unique stationary probability measure for the random walk on RD given by the
IFS; see [33]. In the case of a finite IFS Φ = {φ1, . . . , φk}, this just means that
νµ is the unique probability measure on RD satisfying νµ = ∑k

i=1 µ({φi})(φi)∗νµ.
For a finite contracting IFS Φ consisting of similarities of RD, under a sepa-

ration condition (see [65]), the Hausdorff measure on the attractorK is given by
a self-similar measure which is also the unique measure on K whose pointwise
dimension matches the Hausdorff dimension of the similarity fractal. For gen-
uinely self-affine fractals, the situation is considerably more complicated (see
e.g. [1, 66, 91, 92] and the references therein). On the other hand, for the
Bedford–McMullen carpets introduced in §4.0.6 and their higher-dimensional
generalizations, there exists a unique ergodic shift-invariant probability mea-
sure on ΦN whose pushforward ν by the natural projection has full Hausdorff
dimension [68]. This measure ν is self-affine. In dimension 2, it was already
explicitly constructed and used by McMullen [89], and is referred to as the
McMullen measure in the literature.

4.8.2.3. Matrix Sponges. We now describe the family of affine fractals and
self-affine measures that will be of interest to us. Let r = (r1, . . . , rm) ∈ (0, 1]m
and s = (s1, . . . , sn) ∈ (0, 1]n be such that ∑m

i=1 ri = 1 = ∑n
j=1 sj. Consider

the diagonalizable one-parameter groups A′r ⊂ GLm(R) and A′s ⊂ GLn(R)
given by {ar(t) := diag(etr1 , . . . , etrm) | t ∈ R} and {as(t) := diag(ets1 , . . . , etsn) |
t ∈ R} respectively. Denote by Kr the compact group CGLm(R)(A′r) ∩ Om(R)
and similarly for Ks substituting s for r and n for m.

We identify the matrix space Rm×n with Rmn and consider affinities φ
of Rm×n of the type

M 7→ A1MA2 +B, (4.8.5)

where B ∈ Rm×n, A1 ∈ GLm(R) and A2 ∈ GLn(R). We will refer to affinities
of this form as matrix affinities and use the notation (A1, A2, B) to denote
such a map. If a matrix affinity φ can be written as φ = (A1, A2, B) with
A1 ∈ ar(t)Kr and A2 ∈ as(t)Ks for some t ∈ R, then we call it an (r, s)-matrix
sponge affinity.

Given a contracting-on-average compact IFS (Φ, µ) of (r, s)-matrix sponge
affinities, we call the associated attractor K an (r, s)-matrix sponge.

A cautionary remark is in order about our terminology. In the literature, the
terms “carpet” (in dimension 2) or “sponge” (in general dimension) are used to
describe self-affine fractals associated to IFS’s whose linear parts are simultane-
ously diagonalizable with non-trivial (i.e. non-scalar) diagonals. However, the
matrix sponge affinities that we just described also comprise many similarities
of Rmn. Similarities of Rmn of this form are called “algebraic similarities” by
Simmons–Weiss [129, §8.4], which thus form a strict subclass of matrix sponge
affinities. For example, specializing to n = 1 we can record that the class
of (m, 1)-matrix sponges contains all self-similar fractals in Rm and the class
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of (r, 1)-matrix sponges contains many examples of Bedford–McMullen carpets
and their higher-dimensional analogues—the self-affine Sierpiński sponges—for
suitably chosen weight vectors r.

4.8.3. Relation With Random Walks and Consequences. Here we
first adapt the constructions of Simmons–Weiss [129] relating algebraic similar-
ities with elements of PGLd(R) to the more general setting of matrix affinities.
Then, we state and prove the main result of this section (Theorem 4.8.3) on
Diophantine properties of matrix sponges.

4.8.3.1. Embedding Matrix Sponge Affinities Into PGLd(R). Let d = m+n.
Given a matrix affinity φ = (A1, A2, B) of Rm×n with B ∈ Rm×n, A1 ∈ GLm(R)
and A2 ∈ GLn(R), we consider the element Âφ of PGLd(R) corresponding to
the matrix

Âφ =
(
A1 0
0 A−1

2

)
.

The following basic relation in PGLd(R), which is readily verified, plays a
key role in transferring the results on random walks on homogeneous spaces
to the study of Diophantine properties of matrix sponges: For M ∈ Rm×n, we
have

ÂφuM Â
−1
φ uB = uφ(M), (4.8.6)

where, as before, uM = ( 1m −M
0 1n ). We set gφ := Â−1

φ uB ∈ PGLd(R). Given
matrix affinities φ1, . . . , φn, iterating (4.8.6) yields

gφn · · · gφ1 = Â−1
φn
· · · Â−1

φ1 uφ1···φn(0). (4.8.7)
4.8.3.2. Genericity of Typical Points on Matrix Sponges. To state the fol-

lowing main result of this section, recall that given a contracting-on-average
compact affine IFS (Φ, µ), we denote by Π the associated natural projection
and by νµ the pushforward of the Bernoulli measure β = µ⊗N by Π.

Theorem 4.8.3. Let (Φ, µ) be an irreducible contracting-on-average com-
pact IFS consisting of (r, s)-matrix sponge affinities. Then νµ-almost every
point of Rmn is of (r, s)-generic type; in particular, (r, s)-well approximable
and not (r, s)-Dirichlet improvable.

In the classical case where the weights are given by (r, s) = (m,n), this
result corresponds to Simmons–Weiss’ [129, Theorem 8.11], which implies one
of the main results of that article ([129, Theorem 1.2]). We are going to see
in the proof that the contracting-on-average assumption in the theorem above
amounts to asking that the µ-average of the t-parameters associated to the
(r, s)-matrix sponge affinities φ in the IFS is negative. This allows for easy
checking of this condition.

Remark 4.8.4. The conclusion of Theorem 4.8.3 also holds for any mea-
sure ν̃µ obtained as pushforward of νµ by an affine transformation of the linear
space Rm×n of the form M 7→ αMβ + γ, where α ∈ GLm(R) commutes with
the diagonal group A′r, β ∈ GLn(R) commutes with A′s and γ ∈ Rm×n. In
particular, these Diophantine properties of νµ are invariant under translation
of νµ. �
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We will deduce the theorem above by combining Theorem 4.0.10, Dani–
Kleinbock correspondence and the introduced constructions.

Proof of Theorem 4.8.3. Recall that r = (r1, . . . , rm) ∈ (0, 1]m and
s = (s1, . . . , sn) ∈ (0, 1]n are such that ∑m

i=1 ri = 1 = ∑n
j=1 sj, where m

and n are positive integers. Let d = m + n and set G = H = PGLd(R) and
Λ = PGLd(Z). Moreover, we let A′ = {a(t) | t ∈ R} be the one-parameter di-
agonalizable subgroup of G containing a(1) = diag(er1 , . . . , erm , e−s1 , . . . , e−sn),
and denote by A′+ its positive ray {a(t) | t > 0}. Take U to be the unipotent
subgroup of G given by the image of Rm×n under the map M 7→ uM . It is a(1)-
expanding (see Example 4.2.9). In view of Dani–Kleinbock correspondence
and Theorem 4.0.10, all we need to check is that the pushforward η0 of the
self-affine measure νµ by the map M 7→ uM is generated by a(1)-expanding
random walks in the sense of Definition 4.0.9.

We begin by defining the probability measure µ0 on G. Given a matrix
affinity φ = (A1, A2, B), recall the notation gφ = Â−1

φ uB ∈ PGLd(R) introduced
in §4.8.3.1. We take

µ0 := c∗µ, (4.8.8)
the pushforward of µ by the map c : φ 7→ gφ. Then it follows from our con-
structions that µ0(P ) = 1, where P = K ′A′U is defined as before Defini-
tion 4.0.9. Moreover, we claim that the contraction-on-average assumption
implies that

∫
P λ(g) dµ0(g) > 0. To see this, endow Rm×n ∼= Rmn with the

standard Euclidean structure and denote by ‖·‖ the associated operator norm
on End(Rm×n). Given an (r, s)-matrix sponge affinity φ, let us denote by
Aφ ∈ End(Rm×n) its linear part. By definition, we may write φ = (A1, A2, B)
as in (4.8.5) with A1 ∈ ar(t)Kr and A2 ∈ as(t)Ks for some t ∈ R. Observe that
by construction, the t-parameter is given by t = −λ(gφ). This implies that

‖Aφ‖ ≥ eκt = e−κλ(gφ),

where κ := mini,j(ri+sj) > 0. Plugging this inequality into the contraction-on-
average property (4.8.4) and observing that λ(gφN ···φ1) = λ(gφN ) + · · ·+ λ(gφ1)
yields

∫
P λ(g) dµ0(g) =

∫
λ(gφ) dµ(φ) > 0, hence the claim.

We now show that the irreducibility assumption entails that U 6 Zcl(Γµ0).
As in the proof of Proposition 4.7.2, we will first reduce to the case of special
measures µ0 for which Γµ0 contains an element of K ′A′+. Indeed, given a
general µ0 as in (4.8.8), using that

∫
P λ(g) dµ0(g) > 0 and Lemma 4.7.3, it

follows that there exists u0 ∈ U such that the pushforward by conjugation
(τu0)∗µ0 is special. The closed group generated by the support of (τu0)∗µ0 is
u0Γµ0u

−1
0 and if the Zariski closure of this group contains U , then that of Γµ0

also contains U . Moreover, this conjugation corresponds to conjugating the IFS
by a translation, so that also irreducibility is preserved. So we now suppose that
µ0 is special. Then as in the proof of Proposition 4.7.2, for every g ∈ Γµ0 written
g = kgagug in its K ′A′U -factorization, we know that also kgag and ug belong
to Γµ0 . It follows that for every g ∈ Γµ0 , the one-parameter unipotent subgroup
of U containing ug is contained in the Zariski closure of Γµ0 . Now consider the
connected unipotent group V = Zcl(Γµ0)∩U and let WV be the corresponding
subspace of Rmn under (the inverse of) the identification M 7→ uM . We claim
that the subspaceWV is invariant by the IFS of matrix sponge affinities. Indeed,
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by construction, for any φ = (A1, A2, B) in the IFS, the unipotent part uB of
the associated element gφ belongs to V and hence B ∈ WV . Moreover, for
any g ∈ Γµ0 , its K ′A′-component kgag normalizes V . In view of (4.8.6), this
translates to the statement that for any φ of the IFS, the linear part of φ leaves
the subspaceWV invariant. It follows that the subspaceWV of Rmn is invariant
by the IFS. Hence, by the irreducibility hypothesis, we have WV = Rmn, or
equivalently, V = U .

It remains to check that the measure η0 coincides with the image of µ⊗N0
under the map ω 7→ uω defined by Lemma 4.7.1. To do this, let ω = (gφj)j.
By definition of the natural projection (4.8.2) and the map ω 7→ uω, it suffices
to observe that for every n ∈ N, factorizing gφn · · · gφ1 as kω,naω,nuω,n with
kω,n ∈ K ′, aω,n ∈ A′ and uω,n ∈ U , we have uω,n = uφ1···φn(0); see (4.8.7). This
finishes the proof. �

Finally, we state and prove the corollary of the previous theorem regarding
the higher-dimensional analogues of Bedford–McMullen carpets, which was
announced at the end of §4.0.6. These higher-dimensional fractals are con-
structed by the exact analogue in Rm of the procedure for Bedford–McMullen
carpets described before Theorem 4.0.11, now using pairwise distinct integers
a1, . . . , am ≥ 2 and a division of [0, 1]m into an a1×· · ·×am-grid. The obtained
fractals are called self-affine Sierpiński sponges (see Kenyon–Peres [68]).

Corollary 4.8.5. Let m ≥ 2 and a1, . . . , am ≥ 2 be pairwise distinct
integers satisfying

1
m

∑
j 6=i

log aj < log ai <
2

m− 1
∑
j 6=i

log aj (4.8.9)

for i = 1, . . . ,m. Let K ⊂ Rm be a self-affine Sierpiński sponge invariant under
the toral endomorphism T corresponding to the matrix A = diag(a1, . . . , am)
such that K is not contained in any affine hyperplane. Then for the choice of
weights

r =
(
m log ai −

∑
j 6=i log aj∑

j log aj

)
1≤i≤m

, (4.8.10)

the set of r-badly approximable vectors on K has measure zero with respect to the
unique T -invariant ergodic probability measure νK of full Hausdorff dimension
on K.

This corollary directly implies Theorem 4.0.11.

Proof. We start by noting that K is the attractor of a finite contracting
affine IFS Φ = {φ1, . . . , φk}, where φi : x 7→ A−1x+bi with translation vectors bi
contained in ∏m

j=1{0, 1/aj, . . . , (aj − 1)/aj}. Denoting by Π: ΦN → Rm the
natural projection, the proof of [68, Theorem 1.2] shows that νK = νµ = Π∗µ⊗N
for some probability measure µ on Φ of full support. Then the assumption that
K is not contained in any affine hyperplane implies that the IFS Φ is irreducible.
We wish to arrange that the φi can be seen as (r, 1)-matrix sponge affinities.
By definition, this means that we have to write the common linear part A−1 =
diag(a−1

1 , . . . , a−1
m ) as etar(t) for some t ∈ R, where ar(t) = diag(etr1 , . . . , etrm).

Solving the resulting system of equations under the constraint r1 + · · ·+rm = 1
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yields the weights specified by (4.8.10). The condition (4.8.9) ensures that
r ∈ (0, 1)m. Hence, Theorem 4.8.3 applies and gives the desired conclusion. �

We end our discussion of Diophantine approximation by mentioning that
our approach has serious limitations when trying to tackle the general prob-
lem of understanding the measure-theoretic size of badly approximable vectors
or matrices—weighted or not—in general self-affine fractals. Even seemingly
tractable cases—e.g. r-badly approximable vectors on an affine fractal for which
r represents the average contraction ratio—require a further understanding of
diagonal flows and, frustratingly, remain open.



APPENDIX A

Epimorphic Subgroups and Subalgebras

In category theory, an epimorphism is by definition a morphism f : A→ B
satisfying the right cancellation property: g ◦ f = h ◦ f implies g = h for any
two morphisms g, h from B to another object of the category. In categories
where morphisms are maps with certain properties between underlying sets, the
epimorphism property is equivalent to the question whether the values on the
image of f uniquely determine morphisms from B to other objects. In this case,
surjective morphisms are clearly epimorphisms. In many familiar categories,
the converse, i.e. that only surjective morphisms can be epimorphisms, is also
true. For example, this holds in the categories of C∗-algebras, groups, finite
groups, all Lie algebras over a field k, and finite-dimensional Lie algebras over
a field k of positive characteristic; see [12, 113]. However, there are notable
exceptions. These include the categories of finite-dimensional Lie algebras over
a field of characteristic 0 and that of algebraic groups, which are our main
interest. The corresponding lines of study were initiated by Bergman [12] and
Bien–Borel [14, 15], respectively, who proved the following.

Proposition A.1.
(i) ([12, Corollary 3.2]) Let f ⊂ g be finite-dimensional Lie algebras over

a field k. Then the inclusion f ↪→ g is an epimorphism if and only if in
every finite-dimensional representation of g, the subspaces annihilated
by f and g coincide.

(ii) ([14, Theorem 1]) Let G be a Zariski connected linear algebraic group
over an algebraically closed field k, and F 6 G an algebraic subgroup.
Then the inclusion F ↪→ G is an epimorphism if and only if in every
finite-dimensional algebraic representation of G, the subspaces of F-
and G-fixed vectors coincide.

We take this representation-theoretic characterization as the defining prop-
erty of an epimorphic subgroup of a semisimple real Lie group.

Definition A.2.
(i) Let f be a subalgebra of a finite-dimensional real Lie algebra g. We

say that f is epimorphic in g if for any finite-dimensional real represen-
tation of g, the subspaces annihilated by f and g coincide.

(ii) Let G be a connected semisimple real Lie group. A subgroup F of G
is said to be epimorphic in G if for every finite-dimensional represen-
tation of G, the vectors fixed by F are also fixed by G.

In the literature, it has been common to only introduce and study the
concept of epimorphic subgroups for algebraic groups. Let us therefore check
that our definition coincides with the usual one when the groups involved are
algebraic.

161
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Proposition A.3. Let G be a Zariski connected semisimple real algebraic
group and F a Lie subgroup of G such that F ◦ is Zariski dense in F . Suppose
that F is epimorphic in G in the category of real algebraic groups, meaning
that in every finite-dimensional real algebraic representation of G, the vectors
fixed by F are also fixed by G. Then F ◦ is epimorphic in G◦ in the sense of
Definition A.2.

To be precise, by G being a real algebraic group we mean that G = G(R)
is the group of real points of an underlying complex algebraic group G defined
over R, and a real algebraic representation is the restriction to real points of
an algebraic representation of G defined over R. Moreover, F ◦ and G◦ denote
the connected components of F and G, respectively, in the Lie group topology.
It is easy to see that the converse of the proposition is also true. Finally, we
remark that F is epimorphic in G in the category of real algebraic groups if
and only if F is epimorphic in G in the category of complex algebraic groups.

The idea of the proof of the proposition above is to pass to the Lie algebra
level, where all representations are algebraic thanks to semisimplicity. The
following two lemmas enable this step.

Lemma A.4. Let G be a connected semisimple Lie group and F a closed
subgroup of G. If f = Lie(F ) is an epimorphic subalgebra of g = Lie(G), then
F is epimorphic in G.

Proof. A representation of G naturally induces a representation of its Lie
algebra. A vector that is F -fixed on the Lie group level is then f-annihilated on
the Lie algebra level. Therefore, such vectors are annihilated by g and hence
fixed by G, since G is connected. �

Lemma A.5. Let F and G be as in Proposition A.3. Then f = Lie(F ) is
an epimorphic subalgebra of g = Lie(G).

Proof. If f is not an epimorphic subalgebra of g, then using complete
reducibility of g-representations, we can find a non-trivial irreducible represen-
tation ρ : g→ gl(V ) such that the subspace

V0 = V f = {v ∈ V | ρ(f)v = 0 for all f ∈ f}

is nonzero. Let gC and VC be the complexifications of g and V , respectively. It
follows from the discussion in [97, §8] (Theorem 1 and Corollary 1) that either
(1) gC acts irreducibly on VC, or (2) V has a complex structure and g acts by
C-linear transformations. In both cases, we thus obtain an irreducible complex
representation of gC (either on VC or on V ), which we denote by ρC. We also
set k = R in the first case and k = C in the second, and record that since g
acts k-linearly, the subspace V0 is k-invariant.

We claim that there exists n ∈ N such that the tensor product representa-
tion ρ⊗kn of g lifts to a real algebraic representation of G. Assuming the claim
and using that F ◦ is Zariski dense in F , we find that V ⊗kn0 is a nonzero F -fixed
subspace of V ⊗kn. Since F is an epimorphic subgroup of G in the algebraic
category, the space V ⊗kn0 is G-fixed. It follows that g annihilates V ⊗kn0 , hence
g annihilates V0. This contradicts the assumption that (ρ, V ) is a non-trivial
irreducible representation, and thus establishes the statement of the lemma.
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It remains to prove the claim. Let G be a Zariski connected semisimple
complex algebraic group defined over R such that G = G(R). Then gC is
the Lie algebra of G. By [27, Corollary A.4.11] there is a simply connected
algebraic cover G̃ of G defined over R.

In case (1), since the representation ρC : gC → gl(VC) is algebraic by semisim-
plicity, it lifts to an irreducible algebraic representation G̃ → GL(VC) defined
over R (with respect to the real structure on VC given by V ). The kernel N
of the covering map G̃ → G is finite and central. By Schur’s lemma and
irreducibility, N thus acts on VC by scalar multiplication by roots of unity.
Therefore, there exists n ∈ N such that N acts trivially on V ⊗Cn

C . Since the
representation of G̃ on V ⊗Cn

C is defined over R, we deduce that it induces a real
algebraic representation of G on V ⊗kn = V ⊗Rn.

In case (2), ρC : gC → gl(V ) lifts to an irreducible algebraic representation
G̃ → GL(V ). By the same argument as in the first case, for some n ∈ N the
kernel N of the covering map acts trivially on V ⊗Cn. Hence, the action of G̃ on
V ⊗kn = V ⊗Cn factors through an algebraic representation of G. By restriction
of scalars, we can view G and GL(V ⊗Cn) as groups of real points of algebraic
groups defined over R. Composing the map G → G with the representation
of G on V ⊗Cn we obtain the desired lift of ρ⊗kn. �

Proof of Proposition A.3. By Lemma A.5, f = Lie(F ) is an epimor-
phic subalgebra of g = Lie(G). Then Lemma A.4 implies that F ◦ is epimorphic
in G◦ in the sense of Definition A.2(ii). �
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