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Abstract

In this dissertation, we explore the interplay between strongly correlated
electrons and optical polaritons confined to two dimensions. This is im-
plemented experimentally with gallium arsenide quantum wells hosting a
two-dimensional electron gas (2DEG). The structure is further embedded
in an optical microcavity to reach the strong light-matter coupling regime.
Optically created excitons in the quantum well act as impurities in the sur-
rounding electron gas, forming collective excitations termed Fermi polarons.
The resulting polaron-polariton modes are used to study the quantum Hall
effect and allow tailoring photonic properties via control over the electrons.

The electronic ground states in the integer and fractional quantum Hall
regimes are investigated using polariton spectroscopy. This tool allows prob-
ing the spin polarization of the 2DEG by optical means. Many-body spin
textures are studied around integer filling, in particular for the case of vanish-
ing g-factor which is expected to favor large skyrmions. Using an optimized
device structure, we advance polariton spectroscopy by drastically reducing
unwanted modifications of the electron density upon optical illumination.
We observe coupling of the polaron-polaritons to different fractional quan-
tum Hall states as the filling factor is varied. In a second part, a polariton
Hall bar device is fabricated to investigate the connection between electronic
and polariton transport in two dimensions. We demonstrate acceleration of
polaritons by shaping the electron density with external electric and mag-
netic fields. For a spin polarized electron gas, we demonstrate the creation
of spin density gradients. They are used to route polaritons on the Hall bar
device in a spin selective manner, reminiscent of an optical spin Hall effect.
In the last part, we present four-wave mixing experiments performed with
polaron-polaritons. The nonlinear optical response of polaritons is measured
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while they are coupled to different quantum Hall states. A surprising in-
crease in nonlinear signal is found for the specific filling fractions 2/3 and
2/5. These results demonstrate enhanced polariton-polariton interactions
both compared to other fillings and to the case of exciton-polaritons with-
out 2DEG. This constitutes a step towards polariton blockade and suggests
that nonlinear optics may allow us to extract properties of the correlated
electronic states beyond linear spectroscopy.
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Kurzfassung

In dieser Dissertation wird das Zusammenspiel von stark korrelierten Elektro-
nen und optischen Polaritonen in zwei räumlichen Dimensionen untersucht.
Die experimentelle Realisierung basiert auf Quantentöpfen aus Galliumar-
senid in dotierten Heterostrukturen, worin ein zweidimensionales Elektro-
nengas erzeugt wird. Diese Strukturen werden in optische Resonatoren in-
tegriert um das Regime starker Kopplung zwischen Licht und Materie zu
erreichen. Exzitonen im Quantentopf lassen sich als mobile Störstellen im
Fermisee aus Elektronen betrachten, genannt Fermi-Polaronen. Die resultie-
renden Polaron-Polariton-Moden sind nützlich um den Quanten-Hall-Effekt
(QHE) zu untersuchen, sowie um die emittierten Photonen mit neuen Eigen-
schaften auszustatten.

Bei tiefen Temperaturen und im externen Magnetfeld tritt im zweidimensio-
nalen Elektronengas der QHE ein. Dabei ordnen sich die Elektronen zu exo-
tischen Zuständen, welche wir mittels Polaritonspektroskopie untersuchen.
Dieses Werkzeug erlaubt uns die Polarisation der Elektronenspins zu mes-
sen. Zusammen mit dem integralen QHE tritt ein ferromagnetisch geord-
neter Zustand auf, dessen Spintexturen wir studieren. Im Spezialfall eines
verschwindenden g-Faktors, welchen wir durch zwei sich kreuzende Landau-
Levels im Valenzband erreichen, werden besonders grosse Skyrmion-Texturen
erwartet. Wir präsentieren eine optimierte Probenstruktur die weniger an-
fällig ist auf Veränderungen der Elektronendichte durch optische Anregung
und bringen hiermit die Polaritonspektroskopie voran. Damit demonstrie-
ren wir die Kopplung der Polaron-Polaritonen an verschiedene fraktionelle
Quanten-Hall-Zustände. Als nächstes fertigen wir eine Probe mit Hallbar
Struktur, mit dem Ziel die Verbindung zwischen Transport von Elektronen
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und Polaritonen zu erforschen. Mit externen elektrischen und magnetischen
Feldern gelingt es uns die Elektronendichte zu verformen, womit wir be-
schleunigende Potentiale für Polaritonen erzeugen. Weiterhin zeigen wir die
Existenz von Gradienten in der Spindichte im Quanten-Hall-Regime. Dies
erlaubt uns ein Analogon des optischen Spin-Hall-Effekts zu realisieren und
Polaritonen abhängig von ihrem Pseudospin in verschiedene Richtungen zu
lenken. Im letzten Teil widmen wir uns den Wechselwirkungen von Polarito-
nen untereinander. Mithilfe von Vier-Wellen-Mischung charakterisieren wir
die optische Nichtlinearität der Polaritonen als Funktion des Füllfaktors. Es
präsentiert sich eine überraschend starke nichtlineare Antwort des Systems
bei Kopplung an die fraktionellen Zustände 2/3 und 2/5. Diese Resultate
suggerieren einerseits erhöhte Interaktionen zwischen Polaritonen, anderer-
seits die Möglichkeit mittels nichtlinearer Spektroskopie neue Informationen
über Quanten-Hall-Zustände zu gewinnen.
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Chapter 1Introduction

During the 20th century, tremendous progress was made in understanding
the microscopic laws of nature. Quantum mechanics took many myster-
ies out of atoms and helped to make sense of the materials that surround
us. Quantum electrodynamics unified the description of atoms and pho-
tons and their interactions. Our ability to control and manipulate quantum
states in the laboratory has grown astonishingly, leading to the implemen-
tation of ideas once put forward as thought experiments. This has led to
a deeper understanding of—while also highlighting remaining philosophical
problems with—the fundamentals of quantum mechanics and is spurring ap-
plications in quantum communication and information processing [1]. One of
the biggest challenges is the drastic increase of complexity of a microscopic
description of matter as the number of particles is increased. Its exponential
scaling renders it intractable for classical computers, in most cases already
in the two-digit range of particle numbers. A way forward was proposed by
Feynman [2] suggesting to use quantum machines to simulate other physical
systems and to check the sufficiency of our descriptions thereof.

One such strategy constitutes quantum simulation with photons [3, 4]. Their
greatest advantages lie in their almost lossless transmission through free
space, optical fibers or wave guides and the many degrees of freedom offered
by electromagnetic modes to encode information. However, it is difficult to
engineer the interactions necessary to create entanglement, the primary re-
source for quantum operations. A potential remedy is provided by strong
light-matter interactions where polariton modes emerge. They are hybrid
particles between light and matter, inheriting their properties from both
constituents. The goal is to leverage suitable materials to enhance entangle-
ment generating interactions. A promising example are Rydberg atoms, for
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1. Introduction

which single photon blockade has been achieved [5–7]. This entails an inter-
action strong enough for a single photon to prevent the injection of a second
one, thereby also realizing a single photon source. Another example is given
by excitons, bound electron-hole pairs in semiconductor materials, which led
to many exciting discoveries [8, 9]. Most notably, the interactions inherited
from excitons allowed for the observation of Bose-Einstein condensation [10]
and superfluidity [11] of polaritons. Simulators based on exciton-polaritons
[12–16] are being developed, where the technology of semiconductor fabri-
cation and integrated photonics could be leveraged [17, 18]. This might be
beneficial to scale the system to larger numbers of particles, compared to
an optical lattice arrangement or cloud of Rydberg atoms. Current limita-
tions of exciton-polaritons are their weak inter-particle interaction strength
and the difficulty to manipulate them with external control fields due their
electrical charge neutrality. Our approach combines this exciton-polariton
platform with a two-dimensional electron gas (2DEG) [19]. This combina-
tion provides new degrees of freedom to modify the material resonances that
hybridize into polaritons. Immersing exciton-polaritons in the Fermi sea of
electrons constitutes an impurity problem interesting in its own right, the
Fermi polaron [20, 21]. Furthermore, the 2DEG on itself has prospects for
topological computation [22] and photons might be used to measure and
manipulate the associated anyons [23, 24] or to emulate their behavior [25–
27].

1.1 Scope of this Dissertation

In the following chapter, we review the elements that form the constituents
of our experimental platform: quantum wells with excitons as their elemen-
tary optical excitations and optical microcavities. These are the tools that
allow for reaching the strong light-matter coupling regime and thereby the
hybridization of light with matter to create polaritons. The two-dimensional
(2D) electron gas is introduced, which hosts the quantum Hall (QH) ef-
fect in an external magnetic field. We introduce the experimental meth-
ods employed to perform optical spectroscopy at cryogenic temperatures as
well as the design and characterization of the heterostructures under study.
Equipped with these ingredients, we delve into the combined system, where
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1.1 Scope of this Dissertation

polaron-polaritons are created which are both sensitive to the electron gas
through Coulomb interactions and directly accessible to optical spectroscopy
due to their photon component.

Chapter 3 introduces polaron-polaritons from the vantage point of a spec-
troscopy tool. Coulomb interactions are responsible for the dressing of ex-
citons with electron-hole pair excitations in the 2D electron gas. But when
the electronic ground state evolves from a weakly interacting Fermi sea to
correlated QH states, also the coupling to excitons is drastically modified.
This renders polaron-polaritons susceptible to the properties of the electronic
ground state. A phenomenology of polaron-polariton spectra in the integer
and fractional quantum Hall regimes is presented. Through polarization re-
solved spectroscopy, we can assess the electronic spin polarization. Using
this tool, we study skyrmions which are many-body excitations accommo-
dating charge excitations out of quantum Hall states. On the technical side,
the robustness of the developed heterostructures to undesired perturbations
due to optical excitation is demonstrated.

In Chapter 4, we begin to explore the polaron-polariton platform from the
opposite perspective—instead of probing the quantum Hall phases by polari-
ton spectroscopy, we use the matter component to engineer functionalities
for polaritons and thereby the emitted photons. By tailoring the electron
gas, we find a new way to route polaritons, a step towards engineering artifi-
cial gauge fields for polaritons [28], addressing one of the main limitations of
exciton-polaritons. We developed a polariton Hall bar device to explore the
interplay between optical and electronic transport. With this, we demon-
strate the creation of electron density gradients across the 2DEG. These
density gradients provide means to accelerate polaritons across the Hall bar
using external electric and magnetic fields. In external magnetic fields, we
are able to convert density gradients to spin density gradients, which in turn
allow for polarization selective acceleration of polaritons.

Finally, polariton interactions are studied in Chapter 5, providing previ-
ously unexplored possibilities to move towards the strongly interacting limit.
A four-wave mixing setup is introduced to extract the nonlinear optical
response of polaron-polaritons. We benchmark our method using exciton-
polaritons, then probe polariton interactions as they are coupled to different
electronic ground states. Strikingly, we find an enhanced response for the
quantum Hall states ν = 2/5 and ν = 2/3. The result suggests enhanced
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1. Introduction

polariton-polariton interactions strengths relative to both neighboring fillings
and to the intrinsic exciton-polariton case. This motivates further studies of
the photon correlations emerging at these filling factors with prospects for
photon blockade [29–32]. While open questions remain about the underlying
mechanisms, the fact that the enhanced nonlinearity only occurs at isolated
filling factors suggests that nonlinear spectroscopy could reveal signatures
of the many-body system not accessible using linear optical or transport
measurements.
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Chapter 2Cavity QED with Exciton-Polaritons
and a 2D Electron System

We introduce concepts this thesis builds upon: two-
dimensional electronic and optical systems in gallium ar-
senide, light-matter coupling and exciton-polariton forma-
tion, and the quantum Hall effect. We present experimental
methods, as well as the structure of the studied samples
and some of the design considerations behind them. We
show experiments that characterize those samples and dis-
cuss their optical response in the absence of magnetic fields
and how it is affected by the presence of a two-dimensional
electron gas. Embedding such 2D systems into an optical
resonator leads to the creation of polaron-polaritons.

Many surprising physical effects arise in two-dimensional electronic and
photonic systems. Most notably, the integer and fractional quantum Hall ef-
fects, with discoveries like dissipation-less edge currents, composite fermions
and particles carrying fractional charge [33, 34]. For photons, creating con-
finement creates a low-frequency cutoff which results in a parabolic instead
of linear dispersion relation. Bose-Einstein condensation of photons [35] and
exciton-polaritons [10] was observed in such circumstances. In the follow-
ing sections, we outline how we realize a combination of a two-dimensional
electronic and photonic system.
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2. Cavity QED with Exciton-Polaritons and a 2D Electron System

2.1 Introduction to Exciton-Polaritons

2.1.1 Quantum Wells based on GaAs Heterostructures

Crystals of gallium arsenide (GaAs) can be produced with very high pu-
rity and feature both outstanding optical and electrical properties. For this
reason and their properties outlined below, the GaAs family materials are
the experimental platform of our choice. The band structure characterizes
the single particle energy-momentum relationship of electrons in a crystal.
Gallium arsenide is a semiconductor with zinc blende crystal structure. Its
band structure is depicted for bulk GaAs in Fig. 2.1(a). The band gap min-
imum lies in the Γ-valley, i.e. a region without electronic states between
valence band and conduction band around zero energy on the y-axis. For a
semiconductor at zero temperature, the valence bands are completely filled
with electrons (states below zero energy in Fig. 2.1(a)), while the conduction
bands (states above zero energy) are empty. The band gap is direct, mean-
ing that the conduction band minimum occurs at the same lattice momen-
tum as the valence band maximum. Since optical photons carry negligible
momentum compared to massive electrons, this property leads to favorable
luminescence properties. Excited carriers relaxing towards the lowest energy
states within the bands can efficiently recombine around the Γ-point. The
lowest energy conduction band (cb) corresponds to s-type orbitals (L = 0)
and has spin S = 1/2, with spin projection sz = ±1/2 along the z-direction
and is therefore two-fold degenerate. The highest energy valence band (vb),
on the other hand, is p-like (L = 1) with spin S = 1/2. The states carrying
total angular momentum J = 3/2 are labeled heavy holes (hh) for jz = ±3/2
and light holes (lh) for jz = ±1/2. Only this limited set of bands around
the Γ-point will be relevant for our discussions. Spin-orbit coupling ensures
that the next closest subband, the split-off valence band with J = 1/2, is
shifted down in energy by about 340 meV [36]. The dispersion of the energy
E with momentum k⃗ around the band extremum at the Γ-point is approxi-
mately parabolic E(k) = ℏ2k2

2m∗ . Electrons in this band behave almost like free
electrons but with a reduced effective mass m∗. For the conduction band in
GaAs, m∗ = 0.067me, with me being the free electron mass.

To achieve two-dimensional confinement, GaAs can be interfaced with
other materials with different band gap to create heterostructures. Alu-
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2.1 Introduction to Exciton-Polaritons

minum arsenide (AlAs) has almost the same lattice constant (566.1 pm) as
GaAs (565.3 pm, at room temperature) [36, 37] which allows alloying them
in fractions x into a ternary compound Alx Ga1–x As. For x < 0.45, the band
gap remains direct but its energy is increasing with x. For a fraction x > 0.45,
the band gap becomes indirect with the X-valley becoming the lowest en-
ergy conduction band state. Combinations of single crystalline materials
can be grown by molecular beam epitaxy (MBE) to form heterostructures.
Thereby, material properties, as for example the band gap, can be engi-
neered at will within a large parameter space given by all available material
combinations. Starting from a GaAs substrate, uniform two-dimensional
layers can be grown in the xy-plane with precision down to almost single
atomic layers, while the composition of the materials may be varied in the
growth or z-direction. The compound Alx Ga1–x As is prominently used in
our heterostructures. In Fig. 2.1(b), empirical approximations to the band
gaps Eg are shown for GaAs (black line) and Al0.19Ga0.81As (dashed line)
[36, 37] as function of temperature. To good approximation, the band gap
Eg = (1.424 + 1.247x) eV [37] depends linearly on the aluminum fraction
x, indicated in Fig. 2.1(c) for room temperature (RT), where the black line
shows the band gap as function of x. The red curve shows an estimate based
on interpolated empirical data for the optical refractive index n [38], also
as a function of aluminum content x close to zero temperature (right y-axis
in red). This variation of Eg and n is extraordinarily useful to create opto-
electronic devices, since the admixture of aluminum content x can be well
controlled during MBE growth. It will be used to engineer the electronic and
optical properties in our samples.

Effective two-dimensional systems can be realized by restricting the mo-
tional degrees of freedom to two dimensions. This is achieved by confining
electronic motion in, say, the z-direction which restricts the electron momen-
tum kz to discrete values. Quantum wells (QWs) that spatially confine both
electrons and holes in the z-direction (also called type-I band alignment)
can be realized by embedding a low aluminum content region with higher
aluminum content on both sides. Such a structure is depicted in Fig. 2.2(a),
showing the energy of the band edges for conduction and valence bands and
confined states in the GaAs regions. For small enough well width, the motion
in the z-direction is quantized into subbands j while the dispersion in the
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2. Cavity QED with Exciton-Polaritons and a 2D Electron System
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Figure 2.1: Band structure and material properties of GaAs. (a) Band structure
calculation for GaAs with direct band gap at the Γ point. Figure adapted from
[39]. (b) Band gap Eg of GaAs (solid line) and Al0.19Ga0.81As (dashed line) as
a function of temperature [36]. (c) RT Band gap Eg [37] and low temperature
optical refractive index n [38] at wavelength 825 nm for Alx Ga1–x As as a function
of aluminum content x. The index of refraction of AlAs at low temperature is 2.95
[38].
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2.1 Introduction to Exciton-Polaritons
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Figure 2.2: Gallium arsenide quantum well and allowed optical transitions.
(a) Schematic of a GaAs/AlGaAs QW with confined states in the growth direc-
tion (z). (b) Relevant states and selection rules with optically bright transitions
marked with red and blue arrows. Spin projections indicated for electrons in the
conduction band and total angular momentum of holes (opposite sign for electrons)
in the valence band. Blue transitions correspond to exciton / photon spin mz = +1,
red to mz = −1.

plane remains parabolic

Ej(k⃗∥) = Ej +
ℏ2k⃗2

∥
2m∗ , (2.1)

with the effective mass m∗ not necessarily coinciding with the bulk values.
We denote the in-plane momentum with k⃗∥ = (kx, ky) and the out-of-plane
momentum as k⊥ = kz. The confinement also lifts the degeneracy between
the light and heavy hole bands [40]. At the interface between GaAs and
AlAs, the conduction band offset to valence band offset divides into a ratio
of about 65 : 35, hence resulting in deeper potential barrier for the electrons
[41].

Optical transitions correspond to photon absorption and emission events.
Different types of transitions exist and are subject to various constrains from
transition matrix elements and selection rules. We are concerned with inter-
band transitions, where an electron is excited across the band gap of the
semiconductor forming a band electron-hole pair. It turns out that the lowest
energy, elementary optical excitations occur at an energy slightly below the
band gap. These excitations, termed excitons, are bound states of an electron
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2. Cavity QED with Exciton-Polaritons and a 2D Electron System

and a hole. Disregarding decay or recombination, they are mathematically
analogous to the hydrogen atom but at different energy scales. Due to the
low effective mass and high dielectric constant (ϵ ≈ 13) in GaAs, the binding
energy in a 10 nm QW is on the order1of EB ≈ 10 meV, and the Bohr radius
is about aB ≈ 10 nm.

Starting with the ground state of the semiconductor as vacuum state |0⟩,
we denote with x̂†

k⃗
the bosonic creation operator for an exciton with mo-

mentum k⃗. The excitons inherit their dispersion from the band structure
Ex(k∥) = Ex(0)+ℏ2k2

∥/(2mx) with the exciton mass mx given by the sum of
the electron and hole masses. The exciton energy Ex(k∥ = 0) = ℏωx corre-
sponds to the optical transition frequency ωx and contains the confinement
energy in the QW as well as the exciton binding energy. The constituting
electron and hole can carry angular momentum and spin, which leads to the
existence of different exciton species. We consider only the optically active
combinations with |∆jz| = 1, indicated in Fig. 2.2(b). This schematic shows
the relevant electronic states of the hh and lh valence and conduction bands,
labeled with their angular momentum projections. Furthermore, we use the
ground state excitonic states, i.e. the 1s bands which have the largest binding
energy. While the in-plane momentum is conserved during photon emission
and absorption events, the QW heterostructure breaks translational symme-
try in z-direction. The excitons hence couple to a one-dimensional continuum
of radiation modes and spontaneously emit with a rate [43]

Γx = e2

4ϵ0n
1
m∗c

fx (2.2)

with oscillator strength fx per unit area, c the speed of light and ϵ0 the
vacuum permittivity. In the envelope function approximation, the exciton
wave function is written as product of an envelope χc,v(z) and a function
describing the relative in-plane motion of electron and hole ϕ(re− rh). Then

1The values are increased in QWs with respect to the bulk, 3D GaAs case (EB = 4.2 meV
[42]) due to confinement and depend on the thickness of the well. These quantities are
further modified in a magnetic field or in the presence of itinerant charge carriers.
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2.1 Introduction to Exciton-Polaritons

the oscillator strength reads [43]

fx = 2
m∗Eg

|pcv|2
∣∣∣∣
∫
χc(z)χv(z)dz

∣∣∣∣ |ϕ(0)|2 (2.3)

with pcv the inter-band momentum matrix element. For 1s excitons one finds
ϕ(0) =

√
8/π a−1

B , leading to fx ∝ a−2
B .

Excitons x̂†
k⃗

can be well approximated as bosons, behaving as eigenstates
of a harmonic oscillator for each k⃗. But they are composite particles made
up of fermions. Interactions between excitons, especially in the limit of high
exciton densities, lead to an anharmonic spectrum. At very high densities
N ≥ (πa2

B)−1 when excitons start to overlap spatially, the Mott transition
occurs to unbound electron-hole pairs [44].

2.1.2 Microcavities and Strong Light-Matter Coupling

Optical resonators can store energy in the form of electromagnetic radiation
by supporting field patterns (modes) that reproduce themselves after a num-
ber of round-trips. They can be used to spectrally filter, store and spatially
confine beams of light. The possibility to engineer light-matter interactions
makes them a key ingredient for constructing lasers. We will make use of
optical microcavities to confine light and thereby enhance light-matter inter-
actions for a quantum well placed at the position of maximum electric field
amplitude inside the cavity. Viewed from another perspective, we suppress
the spontaneous emission of the QW by removing the electromagnetic con-
tinuum of modes in the z-direction and instead provide only one resonator
mode kz for the QW to emit into. We review a few resonator properties be-
fore discussing how polariton modes emerge in the strong-coupling regime.

We use one of the simplest resonator designs, the Fabry-Pérot resonator.
It consists of a dielectric spacer or cavity layer surrounded by reflecting pla-
nar mirrors. The thickness of the spacer is the cavity length L and defines
the resonance wavelengths λq = 2nL/q for q = 1, 2, 3, ... integers. As mir-
rors, dielectric layers of optical thickness λ/4 are stacked with alternating
refractive indices. This realizes a distributed Bragg reflector (DBR). A note-
worthy difference to a metallic mirror is the penetration of the electric field
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Figure 2.3: Transfer matrix simulation of the optical microcavity of sample A.
(a) The electric field (red) is confined to the cavity region in the center by the
DBR mirrors with refractive index contrast in black. The blue vertical lines indi-
cate the positions of the QW (center, antinode of electric field) and doping layers
(surrounding the QW, nodes of electric field). Top surface at 0 nm. (b) Microcavity
reflectivity (s-polarization) for normal incidence 0° (red), increasing to 10°, 20° and
30° (yellow).

into the mirror layers which increases the mode volume [45]. Typically, the
refractive index of dielectric DBR layers has a much smaller imaginary part
compared to metals, resulting in a reduction of optical losses. The geometry
being planar allows to integrate it into one monolithic structure during MBE
growth, resulting in a stable and robust resonator. The corresponding disad-
vantage is a lack of tunability. In practice, the wafers are grown with a radial
thickness gradient from the center to the perimeter, which allows for tuning
the cavity length and thereby the resonance wavelength λq by selecting the
radial position on the wafer.

Such a structure is displayed in Fig. 2.3(a), outlining the refractive index
contrast of the DBR layers in black. The red curve (right y-axis) shows
the modulus squared of the electric field. In the center, the electric field is
maximum. The penetration of the field into several layers of the mirrors is
also visible, which sets the effective cavity length Leff , the relevant quantity
replacing L when calculating the mode volume of the resonator. A photon
is stored for a time τcav in the cavity that increases with the reflectivity of
the enclosing mirrors. The mirror reflectivity R scales with the number of
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λ/4-pairs 2N as

R = 1 − 4nr
nl

(
n2
n1

)2N
, (2.4)

with nr,l the surrounding refractive indices on the right and left sides, n1 > n2
the indices of the alternating λ/4 layers. The quality factor of the cavity
Q = ωτcav = ω/γcav relates the mirror quality to the storage time τcav or loss
rate γcav for a given frequency ω. It is approximately given by [8]

Q = π(R1R2)1/4

1 − (R1R2)1/2 , (2.5)

in terms of the front and back mirror reflectivities R1,2.
While the momentum is restricted in the z-direction, the photons are free

to travel in the xy-plane. The cavity dispersion relation [8] reads

Ecav = ℏc
ncav

√
k2

⊥ + k2
∥ ≈ Ecav(k∥ = 0) +

ℏ2k2
∥

2mcav
(2.6)

with the effective photon mass in the cavity mcav = Ecavn2
cav/c

2. The struc-
ture is translationally invariant in the xy-plane and therefore the in-plane
momentum is conserved for light entering and exiting the cavity structure.
This leads to a one-to-one correspondence of in-plane momentum inside the
cavity to angle of incidence θ viewed from outside. For small k∥ ≪ k⊥ [8]

k∥ ≈ 2π
λ
θ, (2.7)

which is very convenient for experimental purposes: By exciting and detect-
ing at specific angles θ, the dispersion relation can be mapped out directly.
Figure 2.3(b) shows the cavity reflection signal (reflected intensity for s-
polarization) as a function of energy E = ℏω for θ = 0, 10, 20, 30° from red
to yellow. As expected, the energy where incoming photons are resonant
with the cavity mode increases with the angle of incidence.

Photons take many round-trips before leaving the cavity, which is equiv-
alent to observing an electric field enhancement in the center of the cavity.
The enhanced electric field amplitude allows boosting light-matter interac-
tions if an optically active material is placed close to the maximal field Emax.
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2. Cavity QED with Exciton-Polaritons and a 2D Electron System

We consider a two-dimensional quantum well and how its excitons couple to
the optical microcavity. Due to momentum conservation, the interaction will
be of the form [8]

Hint = ℏΩR

(
â†
k⃗∥
x̂
k⃗∥

+ â
k⃗∥
x̂†
k⃗∥

)
(2.8)

for a cavity photon in a particular longitudinal mode â
k⃗∥

and the light-
matter interaction strength ΩR (Rabi coupling), assumed to be independent
of k∥. This coupling rate depends on the oscillator strength of the underlying
optical transition and is enhanced by the microcavity [9]

ΩR =
(4πω
Leff

fx

)1/2 E(z)
Emax

, (2.9)

with E(z) the electric field at the position z of the quantum well. If this
coupling rate exceeds the dissipation rate of the cavity γc and non-radiative
decay rate of excitons γx, the system enters the strong-coupling regime and
the interaction term Eq. (2.8) hybridizes the exciton and photon modes into
new eigenmodes p̂, q̂

(
p̂k∥
q̂k∥

)
=
(

−C(k∥) X(k∥)
X(k∥) C(k∥)

)(
âk∥
x̂k∥

)
(2.10)

called polaritons2 [46]. The coefficients X, C ∈ C quantify the composition in
terms of the bare exciton and cavity fields. The corresponding eigenenergies
for the upper (q̂) and lower (p̂) polaritons are given by

EUP,LP(k∥) = 1
2

(
Ex + Ecav(k∥) ±

√
4Ω2

R + (Ex − Ecav(k∥))2
)
. (2.11)

For a given ΩR, this energy depends on the detuning ∆ = Ecav − Ex. This
dependence is plotted in Fig. 2.4(a). The dashed lines mark the energies
Ex (red) and Ecav (green), the uncoupled eigenstates. Full lines mark the
polariton energies, the new eigenmodes. The exciton and cavity contents
|X|2 and |C|2 can be tuned between zero and one by varying ∆, with both
polariton branches representing a 50:50 mixture at resonance ∆ = 0. The

2We abbreviate k⃗∥ by k∥ and assume an isotropic dispersion in x, y.
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Figure 2.4: Polariton anticrossing and energy-momentum dispersion relation.
(a) Anticrossing between exciton (red dashed) and cavity (green dashed) resonances,
as the cavity energy is tuned ∆ = Ecav −EX . The modes hybridize and form lower
(blue) and upper (orange) polariton modes. (b) Polariton energy-momentum dis-
persion relation for fixed ∆ = 0, stemming from the parabolic dispersion of the
cavity mode (green dashed).

dependence of the eigenenergies on in-plane momentum can be obtained by
inserting the exciton and cavity dispersions. The resulting in the in-plane
energy-momentum relation of polaritons is plotted in Fig. 2.4(b). Here, a
parabolic cavity dispersion Eq. (2.6) was inserted (green dashed line) and
the exciton energy is assumed constant (red dashed line), which is a good
approximation due to mx ≫ mcav. Again, the lower and upper polariton
eigenmodes are drawn as full lines. The in-plane momentum conservation
and correspondence to optical angle of incidence remains valid, which renders
the polariton dispersion relation experimentally accessible by angle resolved
spectroscopy.

Polaritons inherit properties from both their components. Through cavity
decay γcav, polaritons decay into photons at a rate proportional to the cavity
content |C|2, but at a photon energy corresponding to Eq. (2.11). Through
the exciton content |X|2, the polaritons inherit a finite amount of interac-
tions. Electron or hole exchange leads to interactions between excitons given
by Ux = 6e2aB/ϵ in the Born approximation [9, 47, 48], which results in a
Kerr-type nonlinearity for polaritons Up = |X|4Ux. These interactions are re-
sponsible for bi-stability, superfluidity and Bose-Einstein condensation, and
in most cases, can be described by a mean-field description [8, 9].
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2. Cavity QED with Exciton-Polaritons and a 2D Electron System

2.2 Introduction to 2D Electron Systems

2.2.1 Doped Semiconductor Heterostructures

In its intrinsic form, the electrical properties of GaAs are poor, the conductiv-
ity being low. To introduce additional carriers, a small amount of impurities
can be introduced to the host crystal. By providing bound electrons (holes)
slightly below the conduction band (above the valence band), additional car-
riers can contribute to transport after thermal excitation. At large enough
doping densities, an impurity band can form that conducts electricity even
at T = 0. However, incorporating impurities comes with the undesired side
effect of strong scattering of the charge carriers on the ionized donor (accep-
tor) sites left behind [49]. This can be avoided in heterostructures where the
dopants are spatially separated from the conducting quantum well of interest
(modulation or remote doping). The energy structure in the z-direction can
be engineered such that the conduction band in the QW is below the Fermi
energy at equilibrium, i.e. electrons are populating the QW. As impurities,
Silicon (Si) replacing a Ga atom is often used for electron (n-type) doping
and Carbon (C) replacing an As atom for hole (p-type) doping. Populating
a quantum well with electrons (or holes) creates a two-dimensional electron
(hole) gas. The density of states in two dimensions for a parabolic band
dispersion is constant (spin degeneracy gs)

D(E) = gsm
∗

2πℏ2 , (2.12)

and the states are occupied up to the Fermi energy EF . It is related to
the sheet density of electrons per area ne = D · EF and defines the Fermi
momentum kF via EF = ℏ2k2

F /(2m∗).
To probe electrical transport through the 2DEG as well as to thermally

anchor it, electrical contacts are established to outside reservoirs. Thermal
anchoring is necessary to experimentally control the electron temperature, es-
pecially at low temperatures close to 0 K where heat transport occurs mostly
via electron scattering. Depositing a metal electrode on the surface of a
semiconductor creates a Schottky barrier. Most metals form a barrier on
GaAs such that the Fermi energy in the metal is about 0.8 eV above the
conduction band in GaAs [40]. A depletion region forms in the vicinity of
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the interface and applying an additional voltage to the metal gate can be
used to control the charge carrier density in the QW via the field effect. The
transport characteristics of a Schottky barrier are diode-like. For electrical
transport measurements of a 2DEG, it is usually more desirable to have lin-
ear current-voltage relation, or ohmic contacts. The Schottky barrier can be
avoided by annealing an eutectic mixture (often based on germanium and
gold) to form an alloy with ohmic behavior between the surface electrode
and the 2DEG. Indium can also be used for annealing and to create ohmic
contacts to the 2DEG.

The simplest description of electric transport in response to an electric
field E⃗ is through Ohm’s law for the current density j⃗ = σE⃗ In terms of
resistivity ρ = σ−1, the matrix inverse of the conductivity, it reads

(
Ex
Ey

)
=
(
ρxx ρxy

−ρxy ρxx

)
·
(
jx
jy

)
. (2.13)

By performing a magneto-transport experiment with magnetic field in z-
direction in a Hall bar or van der Pauw device geometry, ρxx and ρxy can
be independently measured. In this scenario, a current is sourced in the
longitudinal (x) direction and the contact voltages are read out to infer the
electric fields Ex, Ey. This turns out to be a very useful tool to characterize
the 2DEG, through [40]

ρxx = m∗

nee2τ
(2.14)

ρxy = B

|e|ne
, (2.15)

both the sheet density ne and the scattering time τ can be extracted. The
scattering time is related to the mobility µ = |e|τ/m∗. In the Drude model
of diffusive transport, the electron drift velocity is vx = µEx (B = 0) .

2.2.2 Integer and Fractional Quantum Hall Effects

In the last section, we found the classical Hall resistance ρxy to increase lin-
early with B. In clean samples, at low temperatures and in external fields
in the range of Tesla, a more intricate dependence of ρxy and ρxx was ob-
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served. The integer quantum Hall effect (IQHE) [50] and fractional quantum
Hall effect (FQHE) [51] are characterized by a quantized Hall resistance ρxy
and zeros in the longitudinal resistance ρxx. An example of such a quantum
transport measurement is reprinted in Fig. 2.5(a), illustrating both these
features in the resistivities ρxx, ρxy occurring at particular magnetic fields
(x-axis).

In a magnetic field, parabolic energy bands of charged particles are quan-
tized into Landau levels (LLs) En = ℏωc(n + 1/2) which are degenerate
states with the spectrum of a harmonic oscillator. Their energy separation is
given by the cyclotron frequency ωc = eB

m∗ and the degeneracy of each level is
nB = B

h/e = 1
2πl2B

, given by the density of magnetic flux quanta threading the
sample surface [34]. The characteristic length scale lB =

√
ℏ/eB is called the

magnetic length. By normalizing the electron density ne by the flux density,
the filling factor

ν = ne
nB

= hne
eB

(2.16)

is obtained. Its integer part counts the number of completely filled Landau
levels. The IQHE occurs at integer values of ν, while the FQHE is visible at
particular rational fractions ν = p/q. To account for different subbands that
form LLs, we add an energy offset E0 and a Zeeman term accounting for the
electron spin projection s along the magnetic field

En = E0 +
(
n+ 1

2

)
ℏωc + gµBsB (2.17)

to the Landau level dispersion (g: g-factor of the electron, µB: Bohr magne-
ton).

Considering disorder and confinement at the edge of the sample provides
a picture to qualitatively understand the IQHE. A schematic, disregarding
the Zeeman splitting, is shown in Fig. 2.5(b). Landau levels have a finite
width in energy (shaded in gray) due to various broadening mechanisms,
for example the random electrostatic potential by the donor impurities in
the doping layers. Raising the magnetic field from zero starts to separate
the overlapping LLs in energy. Longitudinal conductance oscillations are
obtained as the Fermi energy (at fixed electron density) crosses the discrete
LL spectrum when the magnetic field is tuned (Shubnikov–De Haas effect).
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Figure 2.5: Integer and fractional quantum Hall effects. (a) Magneto-transport
experiment showing the evolution of the longitudinal ρxx and transverse resistance
ρxy. Figure from [54]. (b) Schematic of Landau level broadening due to disorder
and increase in energy at the sample edge. States in the bulk are localized by
disorder, while the edge confinement ensures that the Fermi energy EF crosses ⌊ν⌋
edge states.

When the cyclotron energy exceeds the LL broadening, the Fermi energy
may be situated in an energy gap, as drawn in Fig. 2.5(b). The combination
of magnetic field and disorder leads to localization of carriers in the bulk,
preventing them from contributing to electronic transport. The electrons
become incompressible, there is no phase space available to move without
traversing the energy gap. However, the confinement by the system boundary
ensures that each LL below the Fermi energy in the bulk will cross the
Fermi energy EF (red line) towards the sample edge. It turns out that each
edge states contributes one conductance quantum h/e2 [52]. To understand
the fractional quantum Hall plateaus, it is necessary to consider Coulomb
interactions between electrons. The transport signatures of the IQHE repeat
themselves at rational fractions of ν, suggesting the formation of new energy
gaps induced by electron-electron interactions. Many electrons correlate their
motion and from quasiparticles with fractional charge [53].
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For reference regarding the different energy scales, we quote approximate
numerical values for GaAs based systems as a function of magnetic field in
Tesla. The cyclotron energy ℏωc = 1.7 × B meV T−1 (20 K T−1) turns out
to be very large compared to the Zeeman energy EZ = 25 × B µeV T−1

(0.3 K T−1). An energy scale relevant for interactions is the Coulomb energy
EC = e2

4πϵ0ϵlB ≈ 4.3 meV/
√

T.

2.2.3 Trions and Exciton-Polarons

Having introduced the basic properties of 2D electron systems, we would like
to discuss their optical properties, at energies below the band gap. A natural
starting point is to consider how excitons could be modified in the presence
of an additional electron, leading to the trion picture; or in the presence
of a Fermi sea of electrons, which will lead to the polaron picture. Bound
complexes of charges with an exciton were first suggested by Lampert [55]
but only later observed in experiments [56–58]. This was enabled by the
enhanced binding energies of these complexes in quantum well structures
as compared to bulk crystals [59]. These complexes can only be observed at
temperatures below their binding energy, and for rather low electron densities
before screening takes over and the complexes are ionized. At zero magnetic
field, only the singlet trion configuration is bound [59, 60]. Even at high
electron densities, interaction effects still play a role [61] and the transition
from trion complexes at low densities to the Fermi edge singularity at high
densities was studied [62].

Pioneering studies reported the modifications to polariton resonances when
a 2DEG is embedded in a microcavity [63–65]. A linear relationship was
found between the electron (hole) density and the oscillator strength of the
trion-like resonance by measuring the normal mode splitting Ω2

R ∝ f . In the
context of polariton thermalization and Bose-Einstein condensation [8], in-
teractions between polaritons and electrons have been proposed and analyzed
as a mechanism for polariton thermalization [66–69]. Also the limit of high
carrier densities has been studied both experimentally [70] and theoretically
[71].

More recently, there has been renewed interest in the nature of optical
excitations of intermediate density electron gases [21, 72, 73]. Instead of
starting with an exciton and analyzing molecular complexes with charges, a
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many-body perspective can be taken, treating the exciton as an impurity in a
Fermi sea (Fermi polaron). These developments have been spurred by a con-
fluence of experiments with ultracold atomic gases, where atomic impurities
are studied, immersed in a Bose-Einstein condensate [74–76] or Fermi gas of
atoms [77]. In the solid state context, these excitations may be described by
dispersive interactions between the polarizable excitonic component of the
polariton and charge-density fluctuations of the Fermi sea [78–80]. Recently,
it has been demonstrated in transition metal dichalcogenide monolayers that
an accurate description of optical excitations in the presence of a degener-
ate electron gas is provided by the concept of Fermi polarons [20, 81–83].
These polaronic states consist of an exciton dressed by collective trion-hole
excitations of the Fermi sea, where the spin of the photo-excited electron is
opposite to that of the dressing Fermi sea electrons [21, 72, 84].

At the time of this writing, the discussion how to contrast and reconcile the
trion and polaron based pictures and more detailed calculations as to their
properties is progressing rapidly [85–88]. We chose to present our work from
the polaron perspective and use its nomenclature to label our resonances. We
refer to trions as excitons bound to localized electrons, excitations that could
be observable, akin to emission from excitons localized by donor/acceptor
sites [89, 90]. However, they should have vanishing oscillator strength in a
two-dimensional system—at odds with resonant absorption experiments and
observed strong light-matter coupling [21]. However, we want to clarify that,
as the theoretically more refined collective trion-hole and polaron models are
explored, it appears that the two points of view converge, yielding identical
results for many experimental signatures [91], except for an energy shift
between polaron and trion [88]. Hence, we do not claim that our experiments
can rule out one of the two perspectives at this stage. We further remark
that the polaron description applies well to excitons in TMD materials due
to the large exciton binding energy and symmetry between electron and hole
masses. In GaAs, a simple description based on the so-called Chevy Ansatz
[92] is rendered more difficult due to the large heavy hole mass compared to
the lighter conduction band electrons. However, we expect this restriction
to be lifted in the presence of an external magnetic field, the case considered
in Chapter 3.

We turn to experiments and show exemplary spectroscopic data of optical
resonances in a quantum well subjected to a 2D sheet of charge carriers in
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Figure 2.6: Spectroscopy of a 2D hole gas as a function of density nh, including
the depleted case nh = 0 of an empty QW. (a) Raw WL reflection counts per second
(Cps) in logarithmic scale. (b) Reference spectrum subtracted to obtain absolute
reflectivity, linear scale. Dark blue, R = 1, is where all light is reflected. Yellow
color is assigned to 0 < R < 1, where the sample absorbs light. (c) Line-cuts into (a)
at Vg = −9 V (blue) and −7 V (orange) and the reconstructed background spectrum
(black). (d) The same line-cuts for the normalized reflectivity (b).
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Fig. 2.6. Focusing on Fig. 2.6(a), unprocessed reflection spectra are shown
along the y-axis for a 2D hole gas3 where the hole density is controlled by
the gate voltage Vg. The hole density is zero on the left-hand side, becomes
finite above −9 V and is increasing towards the right-hand side. Starting out
with a depleted quantum well, we expect excitonic resonances. Three reso-
nances are visible, which we attribute to the heavy hole exciton (1524 meV),
light hole exciton (1534 meV) and 2s heavy hole exciton (1540 meV). In
the range from Vg = −12 V to −9 V, the gate voltage controls the electric
field in z-direction. The energies of the resonances shift due to the Stark
effect. Following the resonances to finite hole density, they split into the
lower energy attractive and higher energy repulsive polarons. The attrac-
tive polaron resonance appears at an energy below the exciton, separated by
the trion binding energy. The repulsive light hole branch is almost invisi-
ble, presumably due to vanishingly small binding energy of the associated
trion. Line-cuts for the cases of excitons (blue) and attractive and repul-
sive polarons (orange) are shown in Fig. 2.6(c), corresponding to Vg = −9 V
and Vg = −7 V, respectively. It is interesting to note the strikingly different
energy scaling of the light hole resonance as compared the the heavy hole
resonance. As nh becomes finite, the Fermi energy resides inside the heavy
hole valence band but not in the light hole band, i.e. all charge carriers are
heavy holes. As they fill up available states in the heavy hole band, the
optical absorption is pushed towards higher and higher energy. This effect is
absent for the light hole transition, and the resonance even red-shifts further
with density due to increased attraction to the higher density hole gas. The
other panels Figs. 2.6(b) and 2.6(d) serve to illustrate the background sub-
traction procedure explained later in Section 2.3.2. They contain the same
data but normalized with the reconstructed reference spectrum of the light
source (black line in Fig. 2.6(c)).

3Electron and hole gases behave qualitatively similar. Holes having a larger effective mass,
they tend to localize faster and display lower transport mobilities, i.e. shorter timescales
between scattering events.
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2.3 Experimental Methods

2.3.1 Cryogenic Systems

Many energy scales of interest in our experiments are lower than the ther-
mal energy kBT at ambient temperatures. In particular, this applies to the
exciton and trion binding energies, where increased temperatures lead to a
broadening of the optical transitions as the kinetic energy of electrons and
holes is increased. Scattering mechanisms via phonons and electrons are
also greatly suppressed at low temperatures. Most stringently, some frac-
tional quantum Hall states have small energy gaps governed by Coulomb
interactions corresponding to millikelvin temperatures. For those reasons,
we performed our experiments below T = 100 mK. Liquid nitrogen and liq-
uid Helium-4 can be used to achieve bath temperatures of 77 K and 4.2 K.
Alternatively, a pulse tube refrigerator can provide cooling power down to
the single Kelvin range. Sub-Kelvin temperatures can be reached by using
dilution refrigerators, where a liquid Helium-3 and Helium-4 mixture is kept
in conditions where it separates in two phases: a 3He-rich phase and a 3He-
poor phase. The cooling power stems from separating 3He from the rich into
the dilute phase. This process is continuously repeated by extracting 3He
from the dilute phase and circulating it back into the mixing chamber.

We used two experimental setups depicted schematically in Fig. 2.7. A
dilution refrigerator4 that inserts into a liquid 4He bath which is accessible
for optical experiments via a single-mode optical fiber. The bath cryostat
is equipped with a superconducting solenoid magnet5 that allows applying
magnetic fields up to 16 T. The sample is mounted in a fixed copper holder,
while the confocal objective and fiber tip can be translated in all three di-
mensions. This allows to chose the x, y position on the sample as well as
to move the focal point of the objective with respect to the sample in the
z-direction. The electron temperature achieved in the sample tends to be
above the base temperature of the dilution refrigerator. To establish an es-
timate for the electron temperature, we track the evolution of the optical
signature of a fragile quantum Hall state (ν = 2/5, detailed later in Chap-
ter 3) while warming up the cryostat. In Fig. 2.8, the time evolution of
4Leiden Cryogenics MCK 76-400, Attocube ULT-CFM.
5Cryogenic Ltd. low-loss liquid helium system with 16 T superconducting magnet.
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Figure 2.7: Cryogenic optical setups. (a) Fiber-based confocal microscope for
optical measurements. Reflected photons are separated from incident light on a
beam splitter (BS) and analyzed in a spectrometer. Excitation and detection arms
are equipped with quarter (λ/4) and half (λ/2) waveplates and polarizers (POL) for
polarization-resolved spectroscopy. (b) Free-space optical access through a thermal
radiation blocking window port. This configuration allows for more freedom in the
design of optical experiments. In particular, it enables angle resolved spectroscopy.

the spectrum is plotted, with the energy of photons along the y-axis. Two
resonances are visible as dark blue minima on a brighter background, their
energy separation is a measure of the electron spin configuration. Following
the energy splitting between the two resonances, first signs of an increase
appear at 100 mK (1000 s). Later after 1600 s, this energy splitting drasti-
cally increases at about 200 mK. The temperature readings are taken from
a calibrated resistive ruthenium oxide probe that is mounted in the copper
block that holds the sample. This measurement establishes an upper bound
on the sample temperature of 100 mK.

The second setup (depicted in Fig. 2.7(b)) is based on a pulse tube and di-
lution refrigerator system6 with a 9-3 T vector magnet. Its base temperature

6BlueFors LD250 with American Magnetics Inc. 9 T + 3 T vector magnet.
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Figure 2.8: Electron temperature estimation. Tracking the optical signature of
the ν = 2/5 state during the warm-up procedure of the cryostat in the fiber-based
setup. First changes appear after 100 mK, drastic changes follow above 150 mK.
Cts, counts.

is about 20 mK. The sample is optically accessible via windows through the
thermal stages of the cryostat, which allows for more sophisticated optical
setups. The main disadvantage is an increased susceptibility to mechanical
vibrations compared to the compact fiber based setup. Vibrations are in-
duced by the pulse tube and the pumps used to circulate the 3He mixture
and transferred to the optical setup. Here, the sample is mounted on xyz-
positioners7 that allow translations with respect to the objective lens, which
is fixed in place.

It is interesting to note that the energy of individual photons we will use as
a probe is orders of magnitudes higher than kBT for all sample temperatures
T . If all this energy was dissipated to the sample and its electrons, this
would severely limit the applicability of optical spectroscopy at cryogenic
temperatures. However, this type of energy dissipation need not occur, as
long as the photons are re-emitted with the same energy. This is why we will
most often resort to resonant optical spectroscopy experiments. Nevertheless,
the incident photon flux is kept low such that the incident power is on the
order of pW to nW, way below the cooling power of the dilution units in
the µW range. In our experiments, heating of the sample is generally not
an issue. Undesired changes to the charge environment through background
absorption of photons by defect sites appear before heating effects become
7Attocube ANPx101/RES, ANPz102/RES.
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Figure 2.9: (a) Confocal configuration, with the core of an optical fiber acting as
pinhole for spatial resolution. (b) Focusing the light emitted from an optical fiber
to the back focal plane of the objective allows to excite with well-defined angle of
incidence. Displacing the fiber ∆x varies the angle of incidence θx.

prominent, which will be evidenced in Chapter 3.

2.3.2 Optical Measurement Setup

We give a general introduction to the optical experimental setups we used.
This covers linear optical spectroscopy used throughout the thesis and in
particular in Chapter 3. Specialized extensions are given later before the
relevant experiments in Chapters 4 and 5. Our experiments were performed
in reflection geometry with confocal microscopes. The setups can be divided
into three parts. One constitutes the cold part inside the cryostat including
the sample. The other two are dedicated to the excitation, sending light
to the sample, and detection, to analyze light reflected or emitted from the
sample.

In the first cryogenic system Fig. 2.7(a), light is delivered by an optical fiber
glued into a ceramic ferrule and rigidly mounted in a lens holder. Therein is
a pair of single aspheric lenses, NA-matched to the fiber. The first collimates
the fiber output, the second acts as objective lens focusing the light to a spot
on the sample. This arrangement realizes a confocal geometry, schematically
shown in Fig. 2.9(a). The fiber core acts as a pinhole for spatial filtering.
The single-mode optical fiber is coupled out to a free-space setup on a nearby
optical table. It consists of a beam splitter (BS) that allows to both send
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2. Cavity QED with Exciton-Polaritons and a 2D Electron System

and detect light through the fiber port, and optics to control the polarization
of the beam.

An experimental challenge in the case of fiber-based access is polarization
control. The polarization of light changes uncontrollably while propagating
through the fiber which acts like a combination of unknown waveplates. Its
properties depend sensitively on the geometry of the fiber path, strain and
fluctuations therein and the temperature. A linear input polarization is
typically converted into an arbitrary elliptical polarization once it arrives
at the sample. Furthermore, the polarization is changed as a function of an
applied magnetic field. This occurs due to the Faraday effect in the fiber and
cold lenses, as well as residual mechanical movement induced by magnetic
components inside the cryostat (which are avoided as much as possible).
We went around this challenge by using the circular selection rules of our
sample in a magnetic field and used the signal from the sample to select the
polarization. The polarization optics was adjusted iteratively to maximize
signal strength or signal contrast for a selected resonance. This effectively
compensates the action of the fiber to realize circular polarization at the
sample.

For resonant reflectivity measurements, we were using an attenuated super-
luminescent light emitting diode8 as a broadband source, with center wave-
length equal to 822.4 nm and a 3 dB bandwidth of 25 nm. This excitation
source is later referred to as white light (WL) source. For non-resonant,
above band gap excitation a Helium-Neon laser9 at λ = 632 nm was used.
At this wavelength, the top DBR does not act as mirror anymore. This
allows for the non-resonant injection of electron-hole pairs. A wavelength-
tunable, continuous wave (CW) external cavity diode laser10 was used for
resonant spectroscopy.

On the detection side, a spectrometer11 and CCD camera12 was used to
disperse the signal light spectrally and record the intensity as a function of
wavelength. To obtain the reflectivity spectrum in the case of WL excitation,
the background from the source has to be accounted for. This can be a diffi-
8Exalos EXS210036-01.
9Melles Griot 05-SRP-812.
10Sacher TEC500.
11Princeton Instruments Acton SP2500.
12Roper Scientific back-illuminated liquid N2 cooled CCD.
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cult problem in general if there is no straightforward experiment available to
measure the spectral shape of the source. In most cases, a two-dimensional
data set could be used to reconstruct the reference spectrum quite accurately:
If the signal from the sample varies in response to a tuning parameter (gate
voltage, position on the sample, magnetic field), the constant reference spec-
trum can be reconstructed by stitching together spectral regions where the
sample acts as a mirror. For this purpose, we treated each wavelength (pixel
on the CCD camera) individually and estimated the background spectrum
by taking the maximum values across the tuning parameter. We obtain the
reflectivity spectrum R(E) = s(E)/b(E) by normalizing the measured spec-
trum s(E) by the reference spectrum b(E) of our white light source. This
only works if the sample has an absorptive line shape, in case interference
effects lead to dispersive line shapes, taking the maximum value does not
suffice. In this case, and when no external tuning parameters enabled two-
dimensional data sets, we were using the fact that the spectral shape of the
WL is Gaussian and smooth compared with the narrow, peaked resonances
in our samples. We resorted to a low order polynomial fit to the background
in spectral windows where there are no visible optical resonances to obtain
an estimate of b(E).

The second cryogenic system Fig. 2.7(b) allows for separate configurations
of the excitation and detection paths as well as free space imaging. A single
cold aspheric lens is placed by its focal distance from the sample surface.
This allows for a confocal configuration as before but the field of view of this
lens can be imaged onto a camera13. Furthermore, the back focal plane of the
objective lens (see configuration sketched in Fig. 2.9(b)) can be imaged onto
a camera to obtain the Fourier space representation. Again an optical fiber
tip was used as a pinhole but here to filter spatial frequencies, allowing for
collecting light at different emission angles. Finally, this arrangement can be
used in the reversed direction to inject light at particular spatial frequencies.
This creates polaritons with well defined in-plane momentum, if the laser
energy matches the polariton dispersion relation. A wave packet is launched
and propagates with a group velocity vg = ∂ωLP/dk∥. This arrangement
works like a 4f optical setup, however our system was not fully conjugated
due to the large distance between the sample and the cryostat window. The

13FLIR CM3-U3-13S2M-CS.
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2. Cavity QED with Exciton-Polaritons and a 2D Electron System

distance between the back focal plane of the cold objective and the next lens
(relay lens) is larger than the focal length of the relay lens.

In principle, transmission experiments in addition to reflection are highly
desirable because the microcavity also acts as a filter. Only light accepted
into the cavity mode is transmitted, rejecting any remaining excitation light.
Implementing this would be possible in the future but requires two modi-
fications. First, the sample has to be optically transparent—currently the
thick GaAs substrate absorbs light in the wavelength range of interest pre-
venting transmission. This could be achieved by performing epitaxial lift-off
where the microcavity is removed from the substrate and bonded to another
transparent substrate. Second, another optical port has to be build into the
cryogenic setups to access the transmission signal, including the necessary
degrees of freedom to align both the reflected and transmitted beams.

2.4 Sample Design and Characterization

Our samples were grown by molecular beam epitaxy (MBE) on (001) GaAs
substrates. MBE growth for all projects of this thesis was performed by
Dr. Stefan Fält in the group of Prof. Werner Wegscheider at ETH Zurich.
The measurements in the following chapters refer to the sample structures
summarized in Fig. 2.10. The material compositions of the structures is
drawn schematically, MBE growth is starting from buffer layer on top of
the substrate. The labels A, B, B∗, and C refer to entire wafers grown in
one run each. Apart from the substrate and grown buffer layer, which are
larger than depicted, the layer thicknesses are drawn to scale in the growth
direction (upwards). Due to the geometry of the MBE source cells and the
substrate rotation during growth, the wafers are thickest in the center and
become (parabolically) thinner towards the edge. For all experiments, chips
sized around 5 × 5 mm2 were cleaved from the wafers for further processing.
They were taken at the radial position where the cavity thickness is such
that the polaron resonances anticross within the area of the chip. The la-
bels of the individual chips were omitted throughout this thesis as we found
no indication of differences between their properties relevant for our exper-
iments. The electrical properties of the samples were characterized at the
temperature T = 1.6 K by performing magneto-transport measurements of
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Figure 2.10: Sample heterostructures A, B, B∗ and C along the growth, z-direction
upwards. Samples A and B feature a 2DEG embedded in an optical microcavity.
Sample B∗ is structurally similar to B, but grown without optical cavity. Sample
C contains a 2DHG and a Silicon back gate to control the hole density. Buffer and
substrate layers not drawn to scale.

the longitudinal and transverse resistivities. Indium contacts in van der Pauw
geometry were used in this characterization. In this geometry, contacts are
placed along the circumference of a rectangular chip without further process-
ing. Otherwise the necessary sample processing steps have been performed
in a cleanroom environment14.

2.4.1 Sample A – Low Density 2DEG

The structure A consists of a 2DES in a 20 nm modulation doped GaAs
QW. The QW is embedded at the center of a length 2λ microcavity made
14FIRST Center for Micro- and Nanoscience at ETH Zurich.
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from Al0.19Ga0.81As. It is placed at the antinode of the electric field. The
front (top surface, higher z-position) distributed Bragg reflector (DBR) is
composed of 19 pairs of AlAs / Al0.20Ga0.80As layers plus one additional
pair including the GaAs capping layer at the surface. There are 25.5 DBR
pairs on the back side. This imbalance in the number of pairs is chosen to
compensate the refractive index mismatch between vacuum above the top
surface and buffer/substrate below the bottom DBR. The measured quality
factor of the microcavity is Q ≃ (5.5±0.1)×103. The QW features a double-
sided silicon δ-doping with a set-back distance of 3λ/4 (≃ 184 nm) above and
below the center of the cavity.

Earlier studies on the optics of 2DES have shown extreme sensitivity of
the electron density ne to optical power [19, 93–95]. Increasing the opti-
cal power not only changes ne, but also causes qualitative changes in the
reflectivity spectrum [96], which is detrimental to the study of fragile QH
states. The light-sensitivity of ne is attributed to photo-excitation of DX
centers in Si-doped AlxGa1–xAs with x > 0.2 [40, 97]. To minimize the
photoexcitation of DX centers, we keep a low Aluminium content x ≤ 0.2 in
the material surrounding the doping regions: we place the dopants in GaAs
doping quantum wells (DQW) and we use Al0.19Ga0.81As in the rest of the
cavity spacer. We further protect the dopants by placing the DQWs in nodes
of the electric field inside the cavity, where the intracavity electric field is
minimal (as demonstrated in the diagram Fig. 2.3(b)). The thickness of the
DQWs is chosen to be 10 nm to increase their confinement energy. This en-
sures significant blue-detuning of their optical transitions compared to the
main 20 nm QW which allows probing optically the 2DES independently of
the DQWs.

From magneto-transport measurements, we estimate the 2DES electron
density ne = 3.3 × 1010 cm−2 and the mobility µ = 1.6 × 106 cm2 V−1 s−1.
We deliberately choose a relatively low ne to access the physics of the lowest
Landau level in the range of magnetic fields available at that time in our
experimental setup (|B| ≤ 8 T, later extended to 16 T). The relatively high
µ ensures that we can still probe FQH physics.

The conduction band diagram of sample A is shown in Fig. 2.11. It is
based on solving the Schrödinger-Poisson equations to find the charge dis-
tribution and band edge for a given material composition. We used the
Matlab AQUILA package [98] for this calculation. It displays the energy
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Figure 2.11: Conduction band diagram for sample A. The conduction band edge
is shown in black (sample surface on the left). The inset displays an enlarged view
of the DQWs and 2DEG, together with the lowest energy wave function confined to
the respective quantum well. Fermi energy indicated in in red.

of the conduction band edge on the y-axis against position, the growth di-
rection pointing to the right. The magnitude of the wavefunctions of the
lowest energy confined states in the different quantum wells are shown in
the inset. The Fermi energy is displayed as red line. Most importantly, the
charge carriers originating from the DQWs populate the center QW to form
a 2DEG. Furthermore, in equilibrium there should be no carriers penetrating
into mirrors as these states are located at much higher energies.

2.4.2 Sample B – High Density 2DEG

Structure B is very similar to A above, with two main differences: Increased
number of DBR pairs with the goal to increase the Q-factor and increased
electron density suitable for studies in magnetic fields up to 16 T. We used 24
and 29.5 pairs for the top and bottom DBR layers, respectively. The 2DEG
is buried quite far below the surface in our structures due to the thickness of
the DBR layers. It is often desirable to have direct access to the 2DEG for
electrical contacting and optical experiments without polariton formation.
We employed a binary wet-etching scheme to remove all but a few DBR
layers. Two to four pairs were kept to avoid exposing the doping layer too
close to the sample surface. Surface states can pin the Fermi level and lead
to depletion of the 2DEG [40]. To remove a certain number of pairs, the
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Purpose Solution Composition Time

Etch AlxGa1–xAs Citric acid (50 %) / H2O2 4:1 20 s
Stop etch, dry H2O, N2

Etch AlAs H3PO4 / H2O2 / H2O 3:1:50 10 s
Stop etch, dry H2O, N2

Table 2.1: Wet etching procedure to remove a single pair of DBR layers. Solutions
kept at room temperature.

process listed in Table 2.1 was repeated the desired number of times.
The quality factor realized in this microcavity is only Q = 4500 despite

the increased number of DBR pairs. It could be that the higher mirror
reflectivity was compensated by increased background absorption in the DBR
layers. The thickness gradient in this sample is very steep at the radial
position of interest. The cavity resonance shifts by about 10 nm across a
lateral distance of 1 mm. However, taking a measurement in the center,
flat region of the wafer did not show an improved Q-factor. This hints at
an MBE growth problem, which we were not able to identify yet. It could
be due to a drift in growth rates within the run. Alternatively, an increased
accumulation of strain in the thicker lower DBR could deteriorate the quality
of the top layers. We also observe a reduced absolute contrast of 35 % in the
reflection signal from this sample which is most likely related to this growth
imperfection. Magneto-transport measurements characterize the 2DEG at
ne = 1.9 × 1011 cm−2 and µ = 1.4 × 106 cm2 V−1 s−1.

Structure B∗ is a copy of B without microcavity. To keep the layout compa-
rable, the top DBR has been replaced by Al0.20Ga0.80As. Most importantly,
this replicates the electrostatic environment by maintaining the distances be-
tween surface, doping layers and 2DEG. Magneto-transport measurements
yielded ne = 1.0×1011 cm−2 and µ = 5.0×106 cm2 V−1 s−1, values quite dis-
tinct from sample B. This again hints at potential growth issues for sample
B, although we typically observe higher quality 2DEGs without a bottom
DBR on which the 2DEG is grown.
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Figure 2.12: Chip processing and contacting example. (a) Schematic of sample C
patterned into an etched region (ER) and a cavity region (CR). (b) Scanning electron
microscope side-view of a typical microcavity sample. The left (right) image shows
the same chip before (and after) performing the wet etching steps to remove the top
DBR.

2.4.3 Sample C – Tunable Hole Gas

Sample C features a 15 nm QW. It is modulation doped on one side with
carbon and embedded in a single λ microcavity15. The cavity is surrounded
by 20 (24.5) pairs of DBR mirrors with resulting Q-factor of 5 × 103. The
sample was processed to achieve two goals: Contacting the two-dimensional
hole gas (2DHG) in the QW separately from the n-type back gate and cre-
ating an etched region that allows accessing the 2DHG without microcavity.
This was realized with two wet-chemical etching steps, resulting in a struc-
ture schematically drawn in Fig. 2.12(a). The 2DHG was contacted with
In0.96Zn0.04 and the n layer with In. Another chip was patterned into a
Hall bar geometry to characterize the 2DHG at T = 250 mK. A mobility
µ = 1.1 × 106 cm2 V−1 s−1 was found at a density of nh = 1.9 × 1011 cm−2.
A diode-like structure is formed between the n-layer and the 2DHG which
allows reducing the hole density (approximately linearly) by applying a neg-
ative bias voltage. At a density of nh = 0.6 × 1011 cm−2, the mobility is
reduced to µ = 0.3 × 106 cm2 V−1 s−1.

Figure 2.12(b) shows a side-view of a typical microcavity structure ac-

15All device fabrication related to sample C was performed by Dr. Mirko Lupatini. Detailed
processing steps may be found in [99] or the thesis [100].
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Sample (ID) Density Mobility Q-factor
(1011 cm−2) (106 cm2 V−1 s−1) (103)

A (D160411A) 0.3 1.6 5.5
B (D170308A) 1.9 1.4 4.5
B∗ (D170508A) 1.0 5.0 -
C (D170807B) 0 to 1.9 0.3 to 1.1 5.0

Table 2.2: Summary of the electrical and optical sample characterization. For
sample C, the mobility varies between the stated numbers from nh = 0.9 ×
1011 cm−2 to 1.9 × 1011 cm−2.

quired using a scanning electron microscope (SEM). The layers with differ-
ent aluminum fractions x appear contrasted in brightness in this image. The
two panels show the same structure before (left) and after (right) performing
the binary wet etching procedure described above to remove a certain num-
ber of layers. The parameters extracted from the sample characterizations
discussed in this section are summarized in Table 2.2.

2.5 Polaron-Polariton Spectroscopy
Here, we combine all of the concepts explored so far and turn to experiments.
Embedding a 2DEG inside an optical cavity allows studying the strong light-
matter coupling regime with polarons instead of bare excitons. This leads
to the emergence of new quasiparticles that we call polaron-polaritons. We
carry out cavity spectroscopy of a 2DEG, presented in Fig. 2.13(a). Here,
there is no external magnetic field applied, in particular there will be no QH
effect. Such experiments will follow in the next chapter. In the diagram, nor-
malized white-light reflectivity spectra are displayed along the y-axis, taken
at different positions (x-axis) on a contacted but otherwise unprocessed chip
of sample A. Due to the cavity wedge, this allows tuning of the cavity energy
(diagonal dotted line labeled Ecav). The diagram shows the experimental
realization of the anticrossing between material and cavity resonances intro-
duced in Fig. 2.4(a). However, instead of a single excitonic mode [101], sev-
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eral resonances appear in the doped QW under study. For the lowest energy
anticrossing, we measure a normal mode splitting of 2ΩR ≃ 2.00 ± 0.01 meV.
Since ΩR is larger than the bare-cavity linewidth γcav ≃ 280 ± 10 µeV, the
system is in the strong coupling regime of cavity-QED and the elementary
excitations should be characterized as cavity-polaritons.

Since the cavity-exciton coupling in this system is comparable to energy
level splittings of the three exciton-like resonances, the polariton modes ob-
served in the reflection spectrum can only be described as a superposition
of all underlying resonances. A schematic of the relevant energy levels is
provided in Fig. 2.13(b). We identify the lowest energy exciton-like reso-
nance observed as the heavy hole attractive polaron (Xattr)—a heavy hole
exciton dressed by Fermi sea electron-hole pair excitations [21]. Since the
attractive polaron resonance is associated with the bound-molecular singlet
trion channel, it is also referred to as trion mode [59, 102]. We assign the
middle-energy excitonic resonance to the heavy hole repulsive polaron (Xrep)
[21, 84]. The energies of these two resonances are indicated by white dotted
lines and labeled Eattr and Erep, respectively. Finally, we tentatively identify
the highest energy excitonic mode to the light-hole exciton. The absence
of attractive and repulsive polaron branches associated with the light-hole
exciton may stem from the absence of a bound light-hole trion, or from the
lower oscillator strength and the larger broadening of these resonances.

It is evident from the experimental data that the simple Hamiltonian de-
scription of the polariton problem is not fully adequate. The upper polaritons
in Fig. 2.13(a) are much broader than the lowest polariton mode. The fact
that there is no symmetry between the different modes suggests that there are
more dissipation channels than just cavity decay γcav. Indeed, this is already
the case for exciton-polaritons in the absence of a 2DES. This is shown in
Fig. 2.14(a) by depleting the charge carriers from sample C using a large neg-
ative gate voltage of Vg = −9 V. This measurement shows the cavity mode
anticrossing with two resonances of the depleted quantum well: heavy hole
exciton (Ehh) and light hole exciton (Elh). Due to spatially inhomogeneous
fluctuations of the QW width on the order of one to few atomic monolayers
[103, 104], the exciton energies in our samples are distrubuted across several
100 µeV. On larger length-scales on the order of 10 µm to 100 µm, we observe
line defects on the surface that may originate from strain accumulated from
the finite lattice mismatch inside the thick DBR stacks. Finally, there could
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Figure 2.13: Polaron-polariton formation in a GaAs QW. (b) White light reflec-
tivity spectrum of the system as we tune the cavity frequency. (b) Instead of bare
heavy-hole excitons, the attractive and repulsive polaron branches of the 2DES cou-
ple to the optical mode of the microcavity. In the strong coupling regime, the lowest
energy eigenstates of the coupled system are the lower polariton (LP) and the upper
polariton (UP).
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be a finite nonradiative decay rate for excitons. The upper polariton states
are not perfect eigenstates and can decay into lower polaritons or optically
dark excitons. The polariton linewidths are further increased in the presence
of a 2DEG. The continuum of excitations supported by the electrons leads
to further polariton scattering and therefore line broadening.

We turn to the dependence of polaron-polariton formation on the carrier
(hole) density in Fig. 2.14. The low density case, where the polaron model
is most adequate, is shown in Fig. 2.14(b). Comparing to the depleted case,
a new anticrossing appears as the heavy hole exciton splits into attractive
and repulse polaron branches (marked with Eattr and Erep). Again, here the
position on the sample (x-axis) is used to tune the cavity energy, which is
approximately linearly increasing towards the right. This is a prototypical
example for the regime we will be using throughout this thesis in terms of
carrier density. The scaling of the attractive polaron (or collective trion)
normal mode splitting has been found to increase with the square root of
the density [64, 65]—akin to collective enhancement effects in cavity QED
when coupling a single cavity mode to N atoms or emitters. In contrast, at
more elevated densities (see third panel Fig. 2.14(c)), the repulsive polaron
branch disappears and a description in terms of free electron hole pairs is
more adequate [70, 71]. Line-cuts featuring a single background subtracted
WL spectrum are shown in the lower panels Figs. 2.14(d) to 2.14(f). They
have been taken across the lowest energy anticrossings, as indicated by the
dotted lines in the upper panels.

It is insightful to look back at Fig. 2.6, which displays the underlying
resonances that are now embedded in the cavity. We could infer the suscep-
tibility of the quantum well as function of density and predict the resulting
polariton modes. The complicated, non-Lorentzian structure of the polaron
resonances can account for the broadening of upper polaritons in this picture
[105]. Whenever the polariton branches overlap with a spectral region where
the medium is lossy (imaginary refractive index), the resulting polariton
mode is broadened. This perspective highlights the protection of the lower
polariton mode from broadening that we make use of throughout this thesis.
Thanks to the normal mode splitting Eq. (2.11), the lowest polariton mode
is red-detuned from the onset of absorption in the medium and therefore
protected from the dissipation that the bare resonances and upper polari-
tons experience. This requires the strong coupling condition to be satisfied
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Figure 2.14: The anticrossing between cavity mode and polaron branches in a
2DHG for different hole densities nh visible in white light spectroscopy. The matter
resonances are marked with white dashed lines. (a) Depleted hole gas nh = 0,
Vg = −9 V. (b) Low hole density nh = 2 × 1010 cm−2, Vg = −7 V. (c) Higher hole
density nh = 1.1 × 1011 cm−2, Vg = −2 V. (d-f) Line-cuts into the panels above,
showing a single spectrum each, taken along the dotted lines in (a-c).

and the matter content |X|2 low enough to prevent the lower polariton line
from overlapping with the (potentially inhomogeneous) attractive polaron
distribution.
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Chapter 3Polaron-Polaritons in Integer and
Fractional Quantum Hall States

Elementary quasiparticles in a two-dimensional electron
system can be described as exciton polarons where electron-
exciton interactions lead to dressing of excitons by Fermi-
sea electron-hole pair excitations. A relevant open ques-
tion is the modification of this description when the elec-
trons occupy flat bands and electron-electron interactions
become prominent. In this chapter1, we perform cavity
spectroscopy of a two-dimensional electron system in the
strong coupling regime, where polariton resonances carry
signatures of strongly correlated quantum Hall phases. We
demonstrate the modification of polaron dressing under an
external magnetic field that we associate with filling factor
dependent electron-exciton interactions. The light-matter
coupling strength is used to infer the electronic spin polar-
ization and study magnetic ordering as well as skyrmion
formation in the lowest Landau level. Discontinuities due
to jumps in the Fermi energy and due to electronic incom-
pressibility are identified in the optical spectra.

1This chapter is based mainly on the work in article [106] and was done in collaboration
with Dr. Sylvain Ravets. The hole spin polarization experiments were published in [99,
107] and performed together with Dr. Mirko Lupatini.
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Two-dimensional electron systems (2DES) evolving in large magnetic fields
are a fertile ground for many-body physics due to prominence of electron-
electron interactions [108]. Formation of skyrmion excitations in the vicinity
of filling factor ν = 1 is a consequence of such interactions [109]. More spec-
tacularly, electron correlations lead to the formation of fractional quantum
Hall (FQH) states where the ground state exhibits topological order [110,
111]. Moreover, it has been proposed that a sub-class of FQH states ex-
hibit non-abelian quasi-particles which can be used to implement topological
quantum computation [22, 33].

It has recently been demonstrated that embedding a 2DES inside a mi-
crocavity realizes an alternate method for probing quantum Hall states [19].
In the strong coupling regime, polariton excitations are sensitive to elemen-
tary properties of the many-body ground state, such as spin-polarization
and incompressibility due to their part-exciton character. In contrast to
bare excitons though, polaritons are immune to decoherence processes such
as phonon or impurity scattering due to their ultra-light mass, ensuring
that they are delocalized. Consequently, the energy resolution achievable
in polariton-based spectroscopy is only limited by the polariton decay rate
due to mirror losses, which can be on the order of 20 mK in state-of-the-art
microcavities [112]. The merits of the proposed sample design (Section 2.4)
will be demonstrated. The design involves adjusting the separation distance
between the 2DES and the doping layers to substantially reduce unwanted
light-induced variations of the 2DES electron density ne. This constitutes
a major step forward for leveraging optical spectroscopy as a tool to study
integer and fractional quantum Hall physics.

Using cavity spectroscopy is one of a diverse set of approaches to inves-
tigate quantum Hall physics. Electronic transport measurements are the
most prominent experimental tool to investigate the celebrated quantized
Hall conductance [40, 108]. But these measurements are macroscopic in na-
ture, and many efforts are made to extract complementary information—in
particular, local observables about the electronic wave function, chemical
potential and compressibility. A non-exhaustive list of examples includes
optical techniques [113, 114], quantum point contacts [115], coupling to Tera-
hertz radiation [116], microwave impedance microscopy [117], scanning probe
techniques [118], and many other local or near-field approaches.
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3.1 Optical Excitations in Magnetic Fields

This chapter starts with a brief review of experiments and theory regarding
optical excitations of 2DEGs, extending our previous discussion to the case
of an externally applied magnetic field. We revisit previous work by explor-
ing Landau level spectroscopy in the quantum Hall regime in the absence of
strong-light matter coupling, characterizing the polaron or collective trion-
like resonances that will be hybridized with the optical cavity. We present the
phenomenology of polaron-polariton modes coupled to integer quantum Hall
(IQH) states before moving to a more quantitative analysis of the electronic
spin polarization of the quantum Hall ferromagnet (QHF) at unity filling in
the lowest Landau level. Investigating the QHF depolarization upon adding
charged excitations, we find signatures of skyrmions in line with previous
reports and study the special case of vanishing effective g-factor. We con-
clude with the coupling of polaron-polariton modes to fractional quantum
Hall states and a discussion of perturbations to the 2DEG induced by light
illumination.

3.1 Optical Excitations in Magnetic Fields

A magnetic field modifies the appropriate description of the optical response
of a 2D electron system and also leads to the emergence of new transitions
visible in experiments. We consider excitons in a magnetic field as a model
system for the understanding of polarons. There are two important limits
in terms of magnetic field strengths. For low magnetic fields, the states are
perturbed and experience diamagnetic and Zeeman shifts [119]. In large
magnetic fields (lB < aB), particles are restricted to a single Landau level.
As the magnetic field tends to localize particles in the 2D plane, binding
energies tend to increase with B. Above a few Tesla, the triplet trion becomes
bound in GaAs and will appear in the emission spectrum [120]. The Zeeman
shift splits the states linearly in B according to their angular momentum
projection along the field axis. The diamagnetic term leads to a quadratic
increase of the exciton energy with magnetic field. In the high magnetic field
limit, excitons behave as free non-interacting particles [121].

On the experimental side, early magneto-optical studies found excitonic
absorption into Landau levels [122]. Trions and excitons and their properties
in magnetic fields were determined [59]. Various works explored modifica-
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3. Polaron-Polaritons in Integer and Fractional Quantum Hall States

tions of optical spectra in the presence of integer [123–126] and fractional
[95, 127–132] quantum Hall states. We will pursue cavity spectroscopy [19],
which is sensitive to optical transitions that are bright, i.e. visible in resonant
optical spectroscopy. This reduces the number of states that are accessible
and simplifies the composition of polaritons as opposed to the numerous
dark transitions observed in photoluminescence (emission) studies. In par-
ticular, isolated localized emitters are not efficiently coupled to the cavity
and thereby avoided, which sidesteps some effects induced by disorder. On
the other hand, this avoidance of optically dark states can be a disadvantage
because also the (nominally) dark transitions can be a very useful spectro-
scopic tool, as has been shown for the triplet trions [113, 131].

Landau level quantization leads to flat electronic dispersion while excitons
retain a finite effective mass [121, 133, 134]. This alleviates a limitation of
the polaron model for the B = 0 case in GaAs, namely the large heavy hole
mass compared to the electron effective mass. However, there has been less
research dedicated to the description of Fermi polarons in a magnetic field.
A step forward has recently been made [84], while progress towards a more
detailed understanding in the presence of electron interactions is ongoing
[135].

3.2 Landau Quantization and Integer Quantum Hall
States

We study the optical response in the presence of a magnetic field perpendicu-
lar to the 2DES. Heavy hole valence band and the conduction band split into
Landau levels LLnhh and LLncb. The LL spectrum spectrum as a function of
magnetic field is shown schematically in Fig. 3.1(a). Red (blue) mark allowed
optical transitions ncb = nhh for left-hand (right-hand) circularly polarized
light. We use a fiber-based dilution refrigerator setup for the following exper-
iments. A pair of aspheric lenses of numerical aperture NA = 0.15 arranged
in confocal configuration focuses the incident light down to a 3.5 µm diame-
ter (1/e2) spot, and collects the light reflected off the sample. We refer back
to Section 2.3 for experimental details. For some experiments, the objective
was slightly defocused—away from the confocal configuration—to reduce the
effective NA and thereby the range of k∥ that the measurement integrates
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Figure 3.1: Optical transitions in a magnetic field perpendicular to the 2DEG
plane. (a) Fan of Landau levels spaced by the cyclotron energy. Spin z states
are split by the Zeeman energy and support circularly polarized dipole transitions
across the band gap. (b) Optical absorption processes into a filled lowest Landau
level (ν ≲ 1). Left: σ− transition suppressed, right: σ+ transition possible.

over. We remark that the magnetic field is the control variable in our exper-
iments and not the LL filling factor. This is because samples A, B and B∗

do not allow for gate control of the electron density.
We start out by introducing Landau level spectroscopy of the bare 2DES

as a function of magnetic field without optical cavity (top mirror removed,
sample B) in Fig. 3.2. This allows to inspect the material resonances that
will hybridize with the optical cavity mode to form polaritons. Figure 3.2(a)
shows optical absorption into the Landau level fan, measured by white light
reflectivity. The graph displays the measured spectra (with lamp spectrum
normalized out) along the y-axis, repeated for different magnetic fields (x-
axis). The colormap displays the reflectivity contrast: multiple resonances
appear as yellow peaks which are the spectral regions where the 2DES ab-
sorbs light. The resonance energies are roughly linearly increasing in energy
and correspond to different orders of LL to LL transitions, as expected from
the picture presented in Fig. 3.1. The electron density is fixed, meaning the
Fermi energy is only tuned via the magnetic field increasing the LL degen-
eracy. Starting from low magnetic fields, high energy LL indices nhh, ncb
appear at first, because the lower lying LLs are completely filled with elec-
trons. This forbids absorption of a photon, as there is no available density of
final states to accommodate the excited electron. This observation implies
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that we can estimate the fillings factor by detecting the onset of absorption
into lower and lower energy LLs as B is increased. At some point, the avail-
able states per unit area in the Landau levels surpass the electron density
and the lowest energy transitions are reached. This occurs below 3 T in the
experiment shown in Fig. 3.2(a), with fillings ν = 2 and ν = 1 marked with
white lines. The filling factor is counted with spin degeneracy broken, i.e.
ν = 2 already means that the transitions reach LL0. Therefore, ν = 1 corre-
sponds to the case where the number of electrons equals the available states
in one spin subband only.

Various signatures of coupling to quantum Hall states arise, beyond the
single particle expectation Fig. 3.1 based on the Landau level fan. Filling
factors ν = 1 and ν = 2 are marked and accompanied by sharp disconti-
nuities in the spectra. They appear as vertical stripes across the colormap,
breaking the otherwise smoothly connected resonances as function of mag-
netic field. Further discontinuities are observed in the spectra towards lower
magnetic fields which are higher ν = 3, 4, 5, 6, ... integer states. There are a
multitude of transitions, and the optical polarization degree of freedom is not
yet resolved—the detected light is approximately linearly polarized so that
both circular transitions have a finite projection into the detection basis. In
the following sections, some of the deviations from the single particle Lan-
dau fan will be analyzed in more detail and linked to coupling of the optical
excitations to the electrons experiencing the quantum Hall effect.

Figure 3.2(b) shows the optical emission spectrum (PL) for the same con-
ditions, i.e. the same position of the optical spot on the sample and the same
magnetic fields. Also, the optical detection setup is kept identically, just the
excitations source is replaced by a red He-Ne laser at 632 nm (1960 meV),
with excitation power on the order of 10nW. However, due to chromatic
aberrations of the aspheric lenses, the excitation laser spot and detection
area cannot simultaneously be confocal, so that a larger area of the sample
is illuminated during PL experiments. The graph again plots the measured
spectra along the y-axis, with different magnetic fields concatenated along
the x-axis. The colormap displays the collected PL counts per second on
a logarithmic scale, to highlight weaker features. In contrast to the reso-
nant reflectivity measurements above, where background subtraction yields
an absolute measure of the reflectivity contrast, the absolute count rate is
not straightforward to interpret here. It does not solely depend on the tran-
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Figure 3.2: Landau level spectroscopy and coupling to QH states in sample B.
Comparison between absorption and emission in a region without optical cavity.
(a) White light reflectivity detected in approximately linear polarization, so that
both circular branches are visible. (b) Photoluminescence for above band gap CW
illumination, spectra in logarithmic scale.
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sition oscillator strength but also on the populations of electron-hole pairs
across different energies and momenta that follow multiple relaxation pro-
cesses as well as exciton formation and carrier diffusion. However, for our
purposes it suffices to track the emission lines in energy, while we leave out
the analysis of emission intensity. First of all, it is striking how the emission
lines are at lower energy overall compared to the absorption (the two panels
use the same energy scale). For emission, the lowest energy recombining
electron-hole pair is located at the bottom of the conduction band at zero
momentum. In contrast, the absorption edge is shifted up in energy, also
termed Moss-Burstein effect. This is due the lowest energy conduction band
states being occupied by the 2DEG electrons, preventing absorption into the
bottom of the band. This discrepancy between absorption and emission di-
minishes for ν < 1, when all electrons and the optical excitation reside in the
same LL. Furthermore, there are broad emission features below the lowest
LL recombination (the brightest yellow line extending from 0 to 9 T) which
correspond to processes where energy is left behind in the Fermi sea after
emission. They correspond to shakeup processes [136–138], for example, an
electron-hole pair recombines and an electron is promoted from LL ncb to
ncb + 1. Next, one is tempted to compare the x-axes of the absorption and
emission panels. However, a redistribution of emission in energy just below
4.5 T appears to mark filling factor 1, which is shifted to lower magnetic
field compared to Fig. 3.2(a). This is somewhat expected as above band
gap illumination causes significantly stronger light sensitivity (perturbation
of the 2DEG by illumination, most prominently affecting the density ne) and
in this case leads to a reduction in electron density. We have not explored
this effect systematically but the effect appears to depend on the energy
of incoming photons and the detailed design of the heterostructure (other
2DEG samples show an increase in electron density with illumination). We
also point out the decrease of emission strength towards higher photon en-
ergies, which is a consequence of carrier thermalization towards the lowest
energy states at the band edges—but the population of electron-hole pairs
is far from equilibrium before radiative recombination sets in because the
bandwidth of emission energies observed is much larger than kBT ≈ 10 µeV.
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3.2.1 Cavity Spectroscopy in the IQH Regime

We proceed with a side-by-side comparison of LL spectroscopy in the quan-
tum Hall regime with and without optical cavity to illustrate the conse-
quences of strong light-matter coupling. We use two separate regions on one
chip of the hole gas sample C2 for this purpose, one without cavity, realized
by removing the top mirror (results from this area are shown in Figs. 3.3(a)
and 3.3(b)) and one with cavity (Figs. 3.3(c) and 3.3(d)). Since the top
gate controlling the hole density nh has finite electrical resistance, there is
no position-independent relation between gate voltage Vg and nh. We chose
the panels to match approximately in density but a small difference remains.
All four panels constitute normalized white light reflectivity measurements.

The detection is performed polarization resolved. The left column shows
light detected in left-circular, σ− polarization coupling to the lower lying
spin state. The right column corresponds to right-circular, σ+ polarization
which couples to the higher lying spin state. Since the optical transitions
Xattr have spin-singlet character and couple to opposite spins for the cir-
cular polarizations, the optical response depends strongly on the electronic
spin configuration. We focus on the most prominent feature at B = 2.5 T
in the vicinity of unity filling ν = 1. Figure 3.3(a) displays a dark blue
interruption in the lowest LL absorption line while the resonance with the
third LL brightens at E = 1531 meV (white mark). Due to the formation of
a quantum Hall ferromagnet, all hole states are occupied in the lowest LL
Fig. 3.1(b) or equivalently, no electrons are available to be excited across the
band gap. The oscillator strength is transferred to the transition into the
next higher energy LL. The behavior is opposite for the other polarization
Fig. 3.3(b). Here, the increased spin polarization due to the ferromagnetic
state removes holes |↑⟩ and the transition connecting nhh = 0 and ncb = 0
brightens up.

We can understand the polariton spectra in the lower panels by trans-
lating the observed features in the region without cavity. As the oscillator
strength is the only variable determining the light-matter coupling strength
in Eq. (2.9) at fixed energy of the resonance, the observed contrast in the
2At this level, the hole and electron gas samples are interchangeable in the sense that
qualitative understanding is based on equivalent arguments after exchanging the electron
population with a hole population in the valence band in Fig. 3.1(b).
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upper panels translates to normal mode splitting between lower and upper
polaritons for the cavity region. The normal mode splitting collapses in
Fig. 3.3(c) and the polariton branches touch at ν = 1. On the contrary, the
two branches separate further in Fig. 3.3(d) (white mark). We make sim-
plifying assumptions in this description, most importantly: only two modes
are relevant, namely the cavity and one attractive polaron in the lowest LL.
Second, that the detuning in Eq. (2.11) is zero, as such an energy difference
between the cavity mode and the material resonance leads to an additional
separation between lower and upper polaritons. The detuning is set by the
position on the sample which controls the cavity energy and its choice is
verified by the fact that the polariton splitting vanishes in Fig. 3.3(c). The
first assumption is not strictly correct as we clearly see multiple resonances
in the upper panels. However, their importance diminishes roughly with
(ΩR/∆E)2 for an energy detuning ∆E from the cavity. Another way to
interpret coupling to other material transitions is factoring it into an effec-
tive cavity mode that already contains a small but finite matter content and
an energy shift due to these couplings. Now if the couplings and detunings
vary slowly across the parameter space of interest, they will not alter the
simplified two-mode picture significantly.

We conclude with an exploration of the IQHE in the low electron density
and high mobility sample A. To explore the interplay between quantum Hall
states and polaritonic excitations, we again tune Ecav to ensure that the
dressed photonic mode resulting from non-perturbative coupling between
the bare cavity mode and the higher energy excitonic states is resonant with
Xattr at unity filling. We estimate the energy of the bare cavity mode to be
Ecav ≈ 1526.6 meV. In Fig. 3.4, a feature qualitatively similar to sample C
is observed at ν = 1. The spin state of the optically generated electron is
again determined by the photon polarization: left-hand circularly polarized
light σ− probes transitions to the lower electron Zeeman spin subband |↑⟩,
displayed in Fig. 3.4(a) and right-hand circularly polarized light σ+ probes
transitions to the upper electron Zeeman spin subband |↓⟩, Fig. 3.4(b). Now
the schematic in Fig. 3.1(b) applies for the case for carriers in the conduction
band and the observed spectral signatures are strongly dependent on how the
electrons are arranged in the LLs i.e. on the spin-polarization of the different
ground states of the 2DES [94, 95]. Coupling to integer QH states with ν ≥ 2
is also visible in Fig. 3.4. Albeit less and less pronounced than for ν = 1, a
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Figure 3.3: Polarization resolved Landau level spectroscopy on the hole gas sam-
ple C. Comparison of white light reflectivity spectra without (a-b) and with (c-d)
optical cavity in the IQH regime. Left column detected in σ−, right column in σ+

polarization. All panels display similar hole gas densities with nh = 0.6×1011 cm−2

(VG = −5.5 V) in the top row and nh = 0.56×1011 cm−2 (VG = −5 V) in the bottom
row resulting in ν = 1 around B = 2.5 T.
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Figure 3.4: Cavity spectroscopy of sample A in the IQH regime, as we tune B
for fixed cavity energy Ecav ≈ 1526.6 meV. White light reflectivity measurements
performed with (a) σ− and (b) σ+ circularly polarized light.

similar spectral feature repeats at every odd integer ν = 1, 3, 5, ... filling: a
polariton gap closes in σ− polarization but not in σ+. In particular, the σ−

lower polariton energy shifts upwards at odd integer fillings, while the σ+

branch shifts down in energy.

3.2.2 Electronic Spin Polarization and Skyrmion Formation

By probing |↑⟩ and |↓⟩ electronic spin states independently using σ− and
σ+ polarized light, we can evaluate the spin polarization of the underlying
2DES. This makes the analysis of the previous section quantitative, by mea-
suring the normal mode splittings Ωσ− and Ωσ+ which allows calculating the
normalized ratio P :

P =
Ω2
σ+ − Ω2

σ−

Ω2
σ+ + Ω2

σ−
, (3.1)

where Ω2
σ± is directly proportional to the oscillator strength of the asso-

ciated optical transitions. This assumes the cavity energy Ecav has been
tuned into resonance, as for the case with two polariton modes Eqs. (2.9)
and (2.11). The values Ω2

σ± are extracted by fitting Lorentzian line shapes
to the upper and lower polaritons to extract the resonance energies. It has
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been demonstrated that there is a direct correspondence between the the
oscillator strength ratios in the two circular polarizations and electronic spin
polarization Sz of the underlying 2DEG [95, 124, 125, 139, 140]. We trans-
late this to cavity spectroscopy, where the oscillator strength manifests as
normal mode splittings [19], so that P provides an estimate for Sz:

Sz = N↑ −N↓
N↑ +N↓

≃ P, (3.2)

with N↓(↑) the number of spin-down (spin-up) electrons in LL0. In particu-
lar, for ν ≤ 1, P and Sz were claimed to coincide exactly [95, 124] for optical
absorption if two assumptions are met. The intensity of the singlet trions
Iσ+(σ−) ∝ f↓(↑)N↓(↑) scales with the number of spin up (down) electrons N↑(↓)
and the fraction of unpaired spins available for singlet formation f↑(↓) is unity
for ν ≤ 1. To simplify the analysis, we make a further assumption that leads
to Eq. (3.2) holding only approximately: we disregard the additional cavity
detuning introduced when oscillator strength is transferred from LL transi-
tion n to n+1. For optical absorption, the corresponding condition is to inte-
grate Iσ+(σ−) over all LL transitions n, which is also challenging to implement
in the presence of other resonances. We briefly compare the two procedures
based on absorption and cavity spectroscopy to determine the spin polariza-
tion. Absorption spectroscopy requires the determination of the transition
oscillator strengths, accurately resolved in circular polarizations σ+ and σ−.
This information can be inferred from intensity measurements. Cavity spec-
troscopy provides a more robust technique by relaxing this condition: The
transitions strength is converted to an energy difference between polariton
modes which can very accurately be determined via spectroscopy. Further-
more, imperfect polarization control leads to the appearance of two families
of polariton modes in one shot, but without changing the extracted polariton
energies and therefore without affecting the extracted value Sz. These bene-
fits are traded against the new requirement to either set the detuning between
cavity mode and polaron to zero or to measure it independently and to take
it into account. The absorption measurement allows for a local measurement
on micrometer scales given by the diffraction limit, while the cavity modes
being planar in nature tend to be delocalized over larger areas. The reduc-
tion of spatial resolution is a disadvantage but comes with corresponding
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Figure 3.5: Electronic spin polarization in sample A around ν = 1 and evidence
for skyrmions. (a) Difference between the spectra in σ− and σ+ polarization shown
in Fig. 3.4 close to the ν = 1 plateau. (b) Polariton polarization P (green circles)
extracted from the polariton energies in (a). Inferred spin polarization Sz = P of
the 2DEG with expected depolarization due to Skyrmions with size 1 (single-particle
case, black) and size 4 (green).

benefits, such as the possibility to reduce the undesired consequences of light
illumination on the sample, as detailed in Sections 2.4 and 3.3.4. Finally, the
polariton resonance line widths are mostly determined by the cavity quality
factor and are, for our systems, much narrower then the underlying polaron
transitions which presents a technical advantage. A side-by-side comparison
between both methods can be found in the thesis [100, Chapter 5] for sample
C, with an exemplary case where cavity spectroscopy was advantageous.

We perform an analysis of Sz in the vicinity of ν = 1 for sample A. Fig-
ure 3.5(a) shows the normalized white light reflection spectrum as a function
of the filling factor ν, varied by scanning B. Here, we tuned Ecav close to
resonance with the |↑⟩-transition of the lowest Landau level LL0 at ν = 1.
The difference between σ− (red) and σ+ (blue) spectra is shown to directly
compare both pairs of lower (LP) and upper polariton (UP) branches. The
extracted polarization and estimate for the spin polarization is presented in
Fig. 3.5(b) (green circles). We obtain Sz ≃ 70 %, suggesting that full polar-
ization is not achieved at ν = 1, contrary to what is expected for a perfect
quantum Hall ferromagnet. In our low ne sample, incomplete polarization
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may arise due to disorder and reduced screening of impurity potentials [139,
141]. Furthermore the cyclotron frequency is comparable to the exciton bind-
ing energy, ensuring that exciton formation has a sizable contribution from
higher LLs which might affect the relationship between P and Sz. Also,
contribution of higher energy levels to polariton formation, via off-resonant
coupling, could lead to a non-vanishing Ωσ− at exactly ν = 1, so that P only
gives a lower-bound to the actual value of Sz. We return to these points
and the sharp feature visible at the right edge (ν = 1.125) of the plateau in
Section 3.3.4. However, we also want to point out that there is no inherent
limitation in the cavity spectroscopy approach that would limit the maxi-
mum resolvable spin polarization. As we we will see throughout this chapter,
fillings ν = 2/5 and 1/3, as well as ν = 1 in sample C can indeed yield an
extracted spin polarization close to 100 %.

Tuning the filling factor away from ν = 1 leads to a rich structure in
the reflectivity spectrum presented in Fig. 3.5 that relates to the way the
electrons arrange in the different LLs as we detune B. We first observe a
rapid, symmetric depolarization on both sides of ν = 1 which is compatible
with formation of many-body spin excitations in the ground state. The de-
polarization was interpreted in terms of skyrmions and anti-skyrmions [124–
126, 139, 140, 142]. They were proposed as lowest energy charged excita-
tions of the QHF [143, 144] resulting from a competition between Coulomb
and Zeeman energies, with first evidence from nuclear magnetic resonance
experiments [145, 146] and magneto-transport [147]. Exchange interactions
favor locally parallel spins [148] so that a spin texture arises where spins are
slowly canted from one spin at the origin to the opposite spin far outside
in a vortex-like pattern. They have an energy cost of about 30 K and are
therefore frozen out at ν = 1. But moving slightly off ν = 1, they constitute
the lowest energy configuration to accommodate the additional charge [148].

The solid lines in Fig. 3.5(b) show a model for the evolution of Sz based
on skyrmions [125, 145], where the modification of available density of states
due to skyrmion formation is parameterized by A (ν ≤ 1) and S (ν > 1)
which characterize the size of the spin texture in terms of number of spin

63



3. Polaron-Polaritons in Integer and Fractional Quantum Hall States

flips per charge excitation:

Sz =




S
(

2−ν
ν

)
− (S − 1) , ν > 1,

1
ν − (2A− 1)

(
1−ν
ν

)
, ν ≤ 1.

(3.3)

We obtain S = A ≈ 4 (green curve), in agreement with previously reported
values for samples of similar electron densities [124, 125, 139]. Note the
striking difference between the experimental data and the case S = A = 1
(black line), which constitutes the single-particle picture. Summarized in
other words, the rapid depolarization away from ν = 1 implies that for
each electron added to the system, three additional spins from the QHF are
reversed to arrive at S = 4 instead of S = 1.

3.2.3 Skyrmions at a Landau Level Crossing

We return our attention to Skyrmions once more, for the case of a 2D hole gas
[149, 150]. This system will allow us to tune the energy ratio g̃ = EZ/EC
between effective Zeeman energy and Coulomb energy scales which deter-
mines the energy and optimal size of skyrmions [109]. Strong Coulomb in-
teractions EC ∼ e2

4πϵ0ϵlB favor distributing the charge excitation over a large
area while a large Zeeman energy tends to limit the excitation to single
spin flips. Tuning the effective Zeeman energy to zero at a Landau level
crossing [151–157] should enhance the Skyrmion size [158, 159]. Other stud-
ies used hydro-static pressure [158] or a particular Aluminum concentration
(Al0.13Ga0.87As/GaAs) [159] to tune the g factor close to zero. Using cavity
spectroscopy, we are able to extract the hole spin polarization to map out
the order of the QHF in the vicinity of vanishing g factor. This is achieved
in proximity to a crossing between two valence band Landau levels.

We demonstrate the occurrence of a LL crossing in Figs. 3.6(a) to 3.6(c).
They depict cavity spectroscopy performed for increasing hole gas densities
of 2.9, 3.6 and 4.2 × 1010 cm−2, with the difference between σ− and σ+ po-
larizations color-coded from red to blue in the colormap. Within each panel,
the magnetic field is then varied (x-axis) to tune the filling factor. As the
hole density is increased, the critical magnetic field Bcr of the LL crossing
turns out to change and can be tuned across ν = 1. This is manifest in
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the polarization resolved white light reflectivity by a change in roles between
the σ+ and σ− transitions and thereby the σ± polariton branches. Fig-
ure 3.6(b) highlights the change in roles at B = 1.46 T. The diagrams in
Figs. 3.6(a) and 3.6(c) look qualitatively the same, but with red and blue
colors swapped, as expected for the LL crossing occurring between those
hole densities. The experimental observation of the LL crossing is supported
by a 8x8 Kane model simulation [160] for nh = 4 × 1010 cm−2 in a 15 nm
GaAs/Al0.21Ga0.79As quantum well. While the conduction band LLs scale
linearly with magnetic field, the behavior in the valence band is more com-
plex. Due to mixing between heavy hole and light hole bands, they disperse
nonlinearly as function of magnetic field and may cross. The two lowest lev-
els (mz = ±3/2 at B = 0) are expected to cross around Bcr = 1.6 T. This
prediction, the intersection of the blue and red-dashed valence band Landau
levels in Fig. 3.6(d), agrees well with the observed spin flip. The blue line
corresponds to a pure heavy-hole state with mz = 3/2, while the red-dashed
level starts out as mz = −3/2 but acquires a light-hole character mz = 1/2
of 10 % at B = 5 T (not displayed).

White light reflectivity measurements have been obtained as a function of
both magnetic field and hole density and the polarization extracted accord-
ing to Eqs. (3.1) and (3.2). The results are condensed in Fig. 3.6(e), where
the white region (absence of spin polarization) marks the spin flip or level
crossing. This region separates the spin polarized ⇑ blue and ⇓ red regions in
the phase diagram. A fast re-polarization of the QHF is observed along the
y-axis on both sides of the crossing at ν = 1. There is no mirror symmetry
around the ν = 1 axis due to the effects of the LL crossing. This asymmetry
is also captured by the simulation Fig. 3.6(d). The energy difference between
the two spin subbands (i.e. the distance between blue and red-dashed lines)
is much smaller for B < Bcr than it is for B > Bcr. Therefore, the lack
of symmetry need not imply a violation of particle-hole symmetry. Further
considering the evolution along the x-axis, the spin polarization drops very
abruptly towards the LL crossing from both spin polarized states. The de-
polarization slopes suggest skyrmion sizes increasing up to S,A ≈ 15 [99]
towards the LL crossing.

3The simulations of the LL fan diagram and crossing were kindly provided by
Prof. Roland Winkler.
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Figure 3.6: Landau level crossing and associated hole spin flip of the ground state
in sample C. The depolarization of the QH ferromagnet as a function of ν varies
strongly with hole density which could be due to proliferation of skyrmions at low
effective Zeeman splittings. (a-c) Difference of polarization resolved white light
reflectivity spectra around ν = 1. From (a) to (c), the LL crossing is tuned (via hole
density) across this magnetic field range, as evidenced by σ+ and σ− polarizations
switching roles. (d) Numerical simulation confirming the LL crossing in the valence
band3. (e) Map of Sz inferred by polariton polarization P .
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An alternative explanation to skyrmions for the depolarization depen-
dence, especially the broadening of the white transition region in Fig. 3.6(e)
could be provided by a nematic phases [161–167]. So far, we have not found
clear discriminating evidence between these alternatives from our experi-
ments.

3.3 Fractional Quantum Hall States

We continue our investigation with fractional quantum Hall states in the
lowest Landau level. They can be detected via the electronic spin polarization
as is the case for the integer fillings studied before. Furthermore, we explore
effects that can be attributed to incompressibility of the electron gas. We
conclude with FQH features in the second Landau level and an investigation
of the polariton response at high magnetic fields.

We investigate coupling to FQH states in sample A by scanning the mag-
netic field to up to 5 T for an increased value of Ecav ≈ 1527.8 meV. The
experiment is displayed in Fig. 3.7. Normalized white light reflectivity spec-
tra are shown as function of magnetic field, tuning the filling factor at fixed
ne. Increasing B reduces ν, thus leading to absorption in a partially filled
lowest LL [131, 168, 169]. Cavity coupling to several FQH states is observed
as a ν-dependent normal mode splitting in both polarizations (Fig. 3.7(c)).
The behavior is reminiscent of the ν-dependence in the integer QH regime
shown in Figs. 3.3 and 3.4, in that the polariton branches merge for even ν
and split for odd ν, shown up to ν = 7. Remarkably, these signatures are
also present in the fractional QH regime, where we observe features at filling
factors ν = 1/3, 2/5, 3/7, 2/3 and 5/3 (not shown). Such spectral signatures
are particularly striking when ν reaches the fractional values ν = 1/3, 2/5,
and 2/3. We observe that Ωσ− and Ωσ+ differ significantly at ν = 1/3, 2/5,
which shows that these fractional QH states carry a sizable spin-polarization.
On the contrary, Ωσ− ≈ Ωσ+ and the merging of the two lower polaritons
lines at ν = 2/3 shows that this state is not polarized, as expected for samples
with ne in the range of the one studied here. Increasing ne should allow us to
probe the phase transition from an unpolarized to a polarized 2/3-state [19,
170] as we will show in sample B below.

We now focus on filling factor ν = 2/5, an enlarged version of the σ−
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Figure 3.7: Cavity spectroscopy (sample A) in the fractional quantum Hall regime,
as we tune B for fixed Ecav ≈ 1527.8 meV. (a) Highlight of the optical signature
at the spin-polarized fractional state ν = 2/5 in σ− polarization. (b) Relevant
energy levels and optical transitions around ν = 2/5. In contrast to ν = 1, phase
space filling is blocking neither of the circular polarizations. Formation of a singlet
polaron at ν = 2/5 is nevertheless prevented in σ− polarization, due to the absence
of screening electrons of opposite spin. (c) Sum of σ− and σ+ spectra against filling
factor (magnetic field).
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experiments is shown in Fig. 3.7(a). For ν = 2/5, we observe a high degree
of the polarization Sz ≥ 92 %. In stark contrast with the integer QH states,
both |↑⟩ and |↓⟩ states are available and phase-space filling can only play
a marginal role here. An energy level drawing is depicted in Fig. 3.7(b).
One striking feature is that the collapse of Ωσ− around ν = 2/5 is not
accompanied with an appreciable increase in Ωσ+ , contrary to what was
observed for ν = 1. Because the LLs are partially filled, the mechanism
leading to modification of the polariton splitting is indeed modified. We
argue that the decrease Ωσ− for a spin-polarized state is due to the polaron
nature of optical excitations that are accessible when promoting an electron
into the |↑⟩ state with σ−-polarized light. For a fully polarized state, all
electrons are in the same |↑⟩ state and there are no electrons in the |↓⟩ state.
Since the oscillator strength of the σ− singlet Xattr is proportional to the
density of |↓⟩ electrons, perfect spin polarization would lead to vanishing
cavity coupling. In contrast, promotion of an electron in the |↓⟩ state with
σ+-polarized light always leads to formation of a singlet polaron excitation
with electrons available in the |↑⟩ state, and the polariton splitting is only
marginally modified.

In Fig. 3.8, we study the coupling to FQH states at higher electron density
and magnetic fields in sample B in a region with optical cavity. The overall
signal to noise ratio is reduced compared to sample A, solely due to a less
optimized optical cavity which manifests itself in a reduced reflectivity con-
trast. We plot white light spectroscopy data in Fig. 3.8(a) in roughly linear
polarization, which is the cavity counterpart to Fig. 3.2 in the IQH regime.
The features already described in the previous sections are reproduced in
this sample. The lowest polariton modes split at odd integers and merge
at even integers, heralding the modulation of spin polarization with ν. At
B = 3.5 T, a new branch appears due to the lowest LL transition becoming
available below ν = 2. Faintly visible resonances between 0 and 3 T, increas-
ing linearly in energy with magnetic field are reminiscent of the Landau level
fan. The LL fan is visible almost unperturbed by cavity coupling due to the
low cavity content of those polariton branches. Fractional states are visi-
ble in Figs. 3.8(b) and 3.8(c). The panels are labeled with σ± polarizations
but only imperfect polarization resolution was achieved in this measurement,
leading to a finite contamination by branches of the opposite polarization.
The ν = 2/3 state underwent a phase transition to a spin polarized state
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[170, 171] and features a signature between 8 and 9 T that resembles the
spin polarized ν = 2/5 in sample A.

Finally, we compare WL and PL measurements at B = 8.7 T, close to
ν = 2/3, as a function of positions across the sample. This connects to
Section 2.5 where we showed such data in the absence of a magnetic field.
Figure 3.8(d) demonstrates the strong coupling and formation of well resolved
polariton branches at this elevated electron density ne ≈ 1.9 × 1011 cm−2.
The polariton mode starts out purely photonic (|C|2 ≈ 1) in the bottom
right hand corner and hybridizes with material excitations towards smaller
positions. A diagonal line from the top left corner to the bottom right
corner of this panel provides a good first estimate to the bare cavity energy.
Figure 3.8(e) shows emission following above band gap excitation for the
exact same positions. Efficient relaxation to the lowest energy excited state
ensures that the emission originates predominantly from the lowest polariton
branch.

Throughout this section, the cavity detuning has been chosen to probe the
IQH and FQH effects with the lowest polariton which is the narrowest and
therefore easiest to resolve. However, the upper polaritons also display com-
plex features. These remain to be studied in the future. The cavity detuning
was adjusted to split the cavity weight about equally between the lowest two
branches, which would correspond to ∆ = 0 if there were no higher energy
resonances contributing. During magnetic field sweeps, we keep Ecav con-
stant, which substantially simplifies WL background subtraction and avoids
artifacts from spatial inhomogeneity accrued when moving across the sam-
ple. This procedure has the disadvantage that ∆ is not constant but slowly
varying with magnetic field, mainly due to diamagnetic shifts.

3.3.1 Composite Fermions and Incompressibility

We briefly abandon cavity spectroscopy and investigate sample B∗ without
optical cavity in search for features of electronic incompressibility in the emis-
sion spectrum. We study the PL emission from 0 to 16 T in Fig. 3.9(a). The
logarithm of the acquired spectra is displayed with emission energy along
the y-axis. At low fields 0 T to 3 T, the LL fan emission is visible, simi-
larly to Fig. 3.2(b). The jumps in chemical potential as integer fillings are
crossed by the magnetic field are especially well resolved. They are marked
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Figure 3.8: Cavity spectroscopy in the QH regime for sample B. (a) Overview from
0 to 8 T with estimated integer fillings indicated on top. (b) FQH regime in σ− and
(c) σ+ polarization. (d) Spectra taken at B = 8.7 T along a line of different positions
on the sample, tuning the cavity energy. Color scale as in (a-c). (e) Exactly the same
positions as in (d) but detecting PL emission following above band gap excitation.

71



3. Polaron-Polaritons in Integer and Fractional Quantum Hall States

with white marks in the top left corner, starting with ν = 1 to 2, 3 and
4. We reproduce the experimental features observed in [169] where internal
structure in the emission line and a jump in energy just above ν = 1/3 were
attributed to fractional quasiparticles coupling to the exciton and electronic
incompressibility. The authors speculate that the two resonances at fillings
ν ≤ 1/3 correspond to an exciton (high energy resonance) and a exciton
dressed by magnetorotons (lower energy resonance). At the end of the Hall
plateau indicated by σxy towards lower field ν ≥ 1/3, a new lower energy
resonance occurs which is attributed to a exciton dressed by fractionally
charged quasi-particles. They argue that a process akin to trion formation
takes place lowering the emission energy, once quasiparticles become mobile
in a metallic phase outside the Hall plateau [169]. We focus on the disconti-
nuity in the region marked by the gray box. The white mark in Fig. 3.9(a)
marks ν = 1/3 extrapolated from the discontinuities at integer fillings at
lower fields to B = 9.6 T. Consistent with the analysis in the work [169],
the largest jump in energy occurs at field below ν = 1/3, here at 9.2 T.
An enlarged colormap of spectra versus magnetic field is plotted in the two
circular polarizations in Figs. 3.9(b) and 3.9(c) on a linear scale4. Similar
fine structure of the emission lines around ν = 1/3 have been reported [132,
172]. We mention another work where a blue-shifted optical signature around
ν = 1/3 was tentatively attributed to the Coulomb gap of an incompressible
Laughlin liquid [173]. While the interpretation of these experiments around
ν = 1/3 remains speculative, the experimental signatures are both striking
and reproducible. We believe this situation warrants further work.

3.3.2 Effective Polaron-Polariton Mass
We address the question of the modification of the polaron-polariton effective
mass in the vicinity of ν = 2/5 using a setup with free space access. We use
a NA = 0.68 lens to excite a broad range of in-plane momenta k∥ using the
same broadband light emitting diode as before. A lower NA lens couples
the reflected light into a fiber, which enables angle selective measurements,
as discussed in Section 2.3.2. The energy-momentum dispersion relation in
Fig. 3.10(a) at ν = 2/5 clearly shows the anticrossings of the cavity mode
4The few isolated bright spots are artifacts induced by cosmic rays exciting pixels the CCD
camera.
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Figure 3.9: Emission from sample B∗ without cavity in the FQH regime and fea-
ture of electronic incompressibility. (a) Overview of PL emission from 0 to 16 T,
showing the Landau level fan at low fields and a discontinuity just above 9 T before
entering ν = 1/3 (white mark). (b,c) Zoom into the gray box in (a), featuring the
discontinuity for (b) σ− and (c) σ+ polarized detection.
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Figure 3.10: Polaron-polariton energy-momentum dispersion around ν = 2/5.
(a) Cavity spectroscopy at ν = 0.4 for different in-plane momenta k∥ (σ− polariza-
tion). The energies are plotted relative to E0, the energy of the k = 0 µm−1 lowest
polariton at ν = 2/5. The flat reflection signal observable between the lower and
upper polaritons around k = 0 µm−1 is an experimental artifact, stemming from an
etalon effect in the detection path. (b) Fitted energy of the lower polaron-polariton
for small k∥ at filling factor ν = 0.42 (green), ν = 0.4 (orange) and ν = 0.37 (blue).
The error bars are statistical errors from Lorentzian fits of the lower polariton line.
Dashed lines show parabolic fits to the lower polariton energies.

with the heavy hole polarons Xattr and Xrep. But in contrast to Fig. 2.13(a),
the cavity energy is tuned through its parabolic dispersion instead of the
cavity length being varied as previously.

We extract the peaks of the (faintly visible) lower polariton dispersion at
ν = 2/5 from the measured spectra and plot their energies in Fig. 3.10(b).
We fit a parabola (dashed orange line) the the LP energies and compare it
to the energy-momentum dispersions at filling factors slightly above (green)
and below (blue) ν = 2/5 extracted by the same procedure. Here, the energy
is referenced to the bottom of the orange parabola, while the x-axis shows
a smaller range of in-plane momenta compared to the left panel. Strikingly,
we find an increase of the effective mass m∗ at ν = 2/5 (orange) by a factor
of 4 ± 2 compared to ν = 0.42 (green) and ν = 0.37 (blue). A precise
estimation of the lower polariton mass at ν = 2/5 is rendered difficult due to
the low curvature of the parabola, its absolute value extracted from the fit is
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Figure 3.11: FQH regime below ν = 1/3 and beyond ν = 1. White light cavity
spectroscopy. (a) Small fillings ν ≤ 1/3 in sample A and (b) fractional states in the
second LL ν > 1 for sample B.

m∗ = 5 × 10−4me. This observation further illustrates the strong reduction
in oscillator strength of the attractive-polaron resonance which reduces the
cavity-character and enhances m∗.

3.3.3 High Field and Density Limits

We trace the evolution of the polariton response at very small fillings in
Fig. 3.11(a) for sample A, a continuation of Fig. 3.7(c). At and below
ν = 1/3, we observe full spin-polarization of the 2DES when all electrons
occupy the same spin state and the polariton gap completely vanishes in
σ− polarization. Therefore, the singlet-polaron resonance in this polariza-
tion loses its oscillator strength. The σ− mode below ν = 1/3 is still a
polariton albeit mostly photon-like. It shows strong but detuned coupling
to higher-energy polaron excitations. Unfortunately, no further structure is
visible at fractions below ν = 1/3 in this measurement neither are signatures
of Wigner crystallization [174–177] visible, which might occur at very small
fillings [178]. They do display optical signatures, at least for the case of
transition metal dichalcogenide monolayers [179].

Figure 3.11(b) displays FQH states in the second Landau level, namely
spectral features in WL close to fillings ν = 4/3 and ν = 5/3. While we
have not yet studied these states in detail, it is interesting to note that they
are indeed optically accessible. In a next generation of experiments, more
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exotic FQH states could be addressed with cavity spectroscopy, for example
the ν = 5/2 state [180–183].

3.3.4 Optical Power Dependent Effects

Optical studies of 2DES generally require the use of low optical power ≤ 1 pW
due to the sensitivity of the electron density ne to illumination. When in-
creasing the optical power, significant changes in the position and shape of
the spectral features associated with the quantum Hall effect have been ob-
served [96]. This is a major limitation for applications that require precise
knowledge of the filling factor, or equivalently of the electron density. Fur-
thermore, when studying ground state properties of the 2DES, care must be
taken not to perturb the system under study away from this ground state
with the experimental probe. These considerations motivate our sample de-
sign presented in Section 2.4. In this section, we demonstrate the robustness
of our device (sample A) to optical power, which constitutes a major improve-
ment over previous devices. Furthermore, we highlight remaining challenges
presented by slowly varying changes in ne and incoherent emission and how
they were avoided in our experiments. We base this analysis mostly on the
ν = 1 state and continue to discuss those measurements of the spin polar-
ization that are still affected by illumination even for an optimized sample.

We test the robustness of ne against applied optical power by measuring
reflectivity spectra around ν = 1 for total incident optical powers ranging
from a few pW to a few hundred nW. We use CW white light, where the total
power is spectrally distributed across approx. 45 meV. We chose to work
with ν = 1 because it provides a clear optical signature that can be used
to track the filling factor. Figure 3.12 shows these spectra obtained using
σ−-polarized light, with the panels arranged in increasing incident optical
power. We observe that the position of the main spectral signature, namely
the symmetric decrease of the polariton splitting on both sides of ν = 1
leading to an extended plateau with reduced splitting around ν = 1, remains
very stable as we increase the optical power. Specifically, the variation of
magnetic field where the plateau occurs suggest relative variations in ne
below 1 %—while previous devices exhibit variations by tens of percent. We
refer to the Supplementary material in [106] and previous works [19, 96]
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Figure 3.12: Light sensitivity of sample A, investigated at the ν = 1 plateau.
The panels show white light reflectivity spectra recorded for increasing values of the
optical power. We used, in this case, σ−-polarized light and we varied the magnetic
field from 1.2 T to 1.45 T i.e. around filling factor ν = 1.

for further comparisons. We remark that the changes in ne observed in
Fig. 3.12 occur over the timescale of seconds after starting CW illumination
and display hysteretic behavior as function of optical power. Depending on
the sample, the strength of this effect varies. Occasionally, we encountered
a small magnetic field dependence of light sensitivity by noticing that the
magnetic field to filling factor conversion is not perfectly described by B ∝
1/ν.

We observe, in Fig. 3.12, the presence of a sharp spectral feature particu-
larly prominent for an optical power of 80 pW where the polariton branches
almost touch. This feature of unknown origin, shows residual light sensitiv-
ity as it moves from one edge to the other edge of the ν = 1 plateau when
increasing the optical power. This observation has been reproducible at dif-
ferent positions on the sample and for multiple cool-down cycles. A similar
feature has been reported previously and identified as an indication of the
presence of large scale skyrmions around a sharp region of full polarization
at exactly ν = 1, accompanied with fast depolarization on both sides [124].
Nonetheless, no mention of its power-dependence was made. To rule out the
possibility of a power-dependence of ne associated with this sharp feature,
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we repeated the power-dependent measurements around ν = 2/5. In that
case, no sharp feature was identified and the optical feature associated with
ν = 2/5 in reflectivity spectra showed the same robustness of ne against
optical power (not shown). Therefore, based on our analysis, we conclude
that the origin of the light-sensitivity of the sharp feature observed around
ν = 1 is distinct from an overall modification of ne. Strong sensitivity of this
feature to temperature was found [124], in agreement with inelastic light
scattering experiments [184]. In the latter, it was argued that the ferromag-
netic order persists but breaks down into domains above TZ = µBgB/kB.
More recent resistive nuclear magnetic resonance experiments [185] support
the hypothesis that disorder stabilizes the QH Ferromagnet to some degree
by limiting Skyrmion sizes. This is in line with our observation, hinting at
a fragile QHF surrounded by a glassy phase of Skyrmions, limiting spin po-
larization. Note also that the hole gas sample C with lower mobility and
stronger disorder displays perfect spin polarization over a larger parameter
space. However, in our experiments in sample A, the electron density and
thereby the magnetic field B ≈ 1.3 T is lower than in most other studies.
This reduces both Zeeman and cyclotron energy scales, which should lead to
an increased susceptibility to temperature.

We conclude this chapter by pointing out another effect that may occur
at any magnetic field and depends on the illumination conditions. We show
an energy-momentum dispersion of sample A in Fig. 3.13(a) which, in con-
trast to most other measurements in this chapter, was acquired using a free
space optical setup to allow further resolution of k∥. The vertical stripes
(brightness oscillations) are interference fringes due to the imaging system.
Red dashed circles highlight an anomalous emission present even for resonant
white light excitation. A similar feature was observed in sample C, visible as
bright yellow feature in Fig. 3.13(b). The anomalous emission line is pinned
in energy below the attractive polaron asymptote but does not follow its
blueshift due to phase space filling. Since the feature is present at 0 T, we
attribute it to localized trion-like emission, most likely bound to ionized Si+
donor sites or possibly other impurity states.

For the experiments presented in this and other chapters, we tried to cir-
cumvent these power and illumination dependent effects. The incoherent
emission is prevented by restricting the excitation source in either power,
energy or in-plane momentum (or a combination thereof). We found that
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Figure 3.13: Features of incoherent emission due to excitation with higher power
(∼ 10 µW) and high energy (NA) white light. (a) Dispersion measurement on sample
A with emission features encircled in red at the outermost edge of the LP branch.
The white line marks the attractive polaron asymptote. (b) Gate scan on sample
C, as in Fig. 2.6 (without optical cavity). Note the emission line visible in bright
yellow, starting at 1531 meV.

restricting the NA to within the green-dashed lines or blocking all excita-
tion energies above the white line in Fig. 3.13(a) removes this artifact. This
condition is satisfied for all experiments in the fiber-based setup, due to the
lower NA. From this we can conclude that population in the upper polari-
tons (the upper branches are slightly visible in dark blue in the dispersion
Fig. 3.13(a)) feeds the emission line via incoherent relaxation processes. The
remaining sensitivity of ne is mitigated by working at constant and minimal
optical powers. In Chapter 5, we use a time-resolved spectroscopy technique
to probe the system at timescales much faster than the observed variations
in ne.

The filling factors indicated in our diagrams are designating regions rather
than precise positions on the magnetic field axis. They are our best estimates
based on the identification of LL absorption edges and spectral discontinu-
ities. The macroscopic transport characterization of the electron densities of
our devices are the starting point for these estimates but are often not accu-
rate enough to convert B to ν for local optical experiments. The problem is
exacerbated by local modifications of the electron density due to light illumi-
nation, which was discussed in detail in this section. While this problem has
been mitigated by special sample design for resonant excitation, it remains
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relevant for above band gap illumination. Finally, there is no a priori reason
why optical signatures due to incompressibility of the 2DEG should always
occur at center of Hall plateaus found in magneto-transport. In the work
[169] for example, a discontinuity in emission was found aligned with the
edge of a Hall plateau.

3.4 Conclusion and Perspectives

We demonstrate that cavity spectroscopy is a viable platform to probe inte-
ger and fractional quantum Hall states, extending the work by Smolka et al.
[19]. Electron-exciton interactions lead to optical signatures of the electronic
ground states. Polarization resolved spectroscopy allowed us extract elec-
tronic spin polarization. We applied this technique to study ferromagnetic
order [109, 148] in the vicinity of the ν = 1 state and to optically detect
various integer and fractional quantum Hall states. Signatures for electronic
incompressibility appear as discontinuities in the reflectivity and emission
spectra.

We emphasize that theory of exciton-polarons has been previously devel-
oped for excitons interacting with a 2DES in the limit B = 0 [21, 72]. A
quantitative modeling of our experiment requires extending prior theoretical
work to the case of screening of excitons by electrons occupying a single LL: a
significant advance in this direction was the recent development of the theory
of exciton-polarons in the limit of strong magnetic fields but without taking
into account electron-electron interactions leading to FQH states [84]. Our
work focused on the singlet channel which plays a prominent role in the limit
of moderate magnetic fields (B ≤ 3.5 T) used in our experiments. A more
challenging problem is exciton-electron interactions in the vicinity of FQH
states: polaron-polariton formation in this limit may be described using po-
lariton dressing by fractionally charged quasi-particle-hole pairs [23]. The
latter problem is related to identification of signatures of incompressibility
of the many-body ground state in the polariton excitation spectrum.

Our experiments focused on the lowest energy polariton. The upper po-
laritons show a more complex structure that we attribute to coupling to
higher available LLs as we tune B, see for example Figs. 3.4 and 3.7(c).
Although subject to additional line broadening due to its spectral overlap
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with material resonances, the UP contains richer structures that have not
been analyzed yet. On the same note, it could be interesting to move Ecav
into resonance with LLs n ≥ 1 to study how their optical excitations are
modified by coupling to quantum Hall states and whether the triplet trion
channel plays a role in the polariton spectrum in high magnetic fields. On
the technical side, increasing the quality factor of the cavity could further
enhance the sensitivity of our measurements. Steps in this direction have
been taken in similar MBE-grown exciton-polariton structures [112] by op-
timizing the growth conditions for the DBR mirrors. An alternative route
consists of replacing the DBR mirrors with higher quality dielectric mirror
coatings.

We note that injecting σ− polaritons may introduce (optically excited)
electrons into the partially filled LL0 and thereby increases ν. Given that the
polariton splitting depends on ν, this observation suggests that the system
will exhibit a novel form of optical nonlinearity that depends strongly on
ν. This constitutes a motivation for our nonlinear optical experiments in
Chapter 5. An inspiring long-term goal is to enable optical manipulation of
anyon quasi-particles associated with strongly-correlated phases [22]. Many
challenges remain, in particular the short length scales and coherence lengths
associated with these quasiparticles. Recent breakthroughs in the detection
of quasi-particle braiding statistics lend optimism [186, 187].
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Chapter 4Transport of Polaritons with
External Electric and Magnetic

Fields

Photons cannot be directly manipulated with electric and
magnetic fields because they do not carry charge. Hy-
bridization of photons with electronic polarization to form
exciton-polaritons allows exploiting the excitonic response
to external fields. However, the neutral bosonic nature of
these quasi-particles still limits their response to external
gauge fields. In this chapter1, we demonstrate polariton
acceleration by external electric and magnetic fields in the
presence of non-perturbative coupling between polaritons
and itinerant electrons. We identify the generation of elec-
tron density gradients by the applied fields to be primar-
ily responsible for inducing a gradient in polariton energy,
which in turn leads to acceleration along a direction de-
termined by the applied fields. Additionally, we observe
different circular polarization components of the polaritons
being accelerated in opposite directions when the electrons
are close to the ν = 1 integer quantum Hall state.

1The experiments that constitute this chapter were published in the article [188], with
corresponding experimental data available in the ETH Research Collection [189]. This
work was carried out together with Dr. Thibault Chervy. We both contributed equally.
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4. Transport of Polaritons with External Electric and Magnetic Fields

Controlling photons with external electric or magnetic fields is an out-
standing goal. On the one hand, coupling photons to artificial gauge fields
holds promises for the realization of topological and strongly correlated
phases of light [9, 28, 190, 191]. On the other hand, effecting forces on
photons constitutes both a problem of fundamental interest in electromag-
netism and an important step in view of technological applications [17, 18,
192, 193]. One promising avenue towards this goal is to hybridize photons
with material excitations that are genuinely sensitive to gauge fields [194]. In
this non-perturbative regime, exciton-polariton states are formed, ensuring
that the forces acting on the material excitations are directly imprinted onto
the photon. However, the neutral bosonic nature of polaritons has so far
severely limited their response to gauge fields [195–198].

A particularly appealing approach to circumvent this limitation is to lever-
age on the interaction between excitons and free charge carriers. Indeed,
early reports on the drift of trions in an electric field [199, 200], as well as
on the Coulomb drag effect in bilayer systems [201–204] indicated that it
may be possible to manipulate neutral excitations using electric fields in a
solid-state setting. Recently, experimental [205] and theoretical studies [206]
reported the electrical control of the speed of a polariton superfluid, raising
new questions and possibilities regarding the interplay between the normal
and condensed fractions of the fluid in the presence of electron-exciton inter-
actions.

Upon decreasing the electron density, the quasi-particle weight of the re-
pulsive polaron branch, quantifying its excitonic character, increases. In the
limit of vanishing electron density, the repulsive (attractive) polaron asymp-
totically becomes the bare exciton (molecular trion) state with strong (van-
ishing) coupling to the cavity mode [21]. The many-body polaronic states
are expected to be charge neutral [21, 80], suggesting the absence of coupling
to external fields. In a recent theoretical study however, it was shown that
neutral polarons are sensitive to the average force on electrons, leading to
a finite polaron trans-conductivity in the non-equilibrium limit—an effect
that should be observable even when polarons hybridize with cavity photons
[207].

In the following sections, we demonstrate experimentally that external elec-
tric and magnetic fields effect forces on polaron-polaritons. In contrast to
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4.1 Experimental Methods and Sample Characterization

earlier proposals, we find that the observed polariton acceleration primarily
originates from a source-drain voltage induced density gradient in the two di-
mensional electron gas in which polaritons are immersed. We show that the
direction of the resulting force can be changed by an externally applied mag-
netic field, since the induced Hall voltage creates transverse density gradients.
Finally, we extend this approach to demonstrate spin-selective acceleration
of polaritons when the 2DEG is in the integer quantum Hall regime.

4.1 Experimental Methods and Sample
Characterization

4.1.1 Polariton Hall Bar

In the following, we describe our approach to design a device with the aim
to study the interplay between electronic and polariton transport. In or-
der to have a well-defined overlap between polariton and current density, we
patterned a Hall bar with width on the order of 100 µm suitable for optical
experiments. Furthermore, we maintained the planar, 2D geometry of the
cavity which preserves in-plane momentum conservation and allows to mea-
sure the in-plane motion of polaritons in response to external fields. Thereby,
either a relative shift in polariton dispersion relation or an accumulation of
in-plane momentum could be detected. Conversely, polaritons can be ex-
cited in particular directions inside the Hall bar with well-defined in-plane
momentum and a change in electrical current could be measured.

Starting from the structure introduced in Section 2.4, samples were etched
in the form of a Hall bar with annealed electrical contacts to the 2DEG,
as depicted in Fig. 4.1. A recipe listing the essential fabrication steps, per-
formed in a cleanroom environment, can be found in Table 4.1. To establish
contacts that display close to ohmic behavior with low contact resistance,
the top mirrors have been etched allowing to place the metal contacts closer
to the 2DEG. Figure 4.1(a) shows a schematic side-view of the structure
and contacting process. A few λ/4 layers of the top mirror were kept, to
avoid exposing the quantum wells to the surface which can lead to loss of
carriers. Next, the Hall bar geometry is defined by etching to below the QW
layers outside the Hall bar region, leading the structure shown in Figs. 4.1(b)
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4. Transport of Polaritons with External Electric and Magnetic Fields

Figure 4.1: Polariton Hall bar device structure and electrical contacts. (a) Side-
view. The top mirror has been removed by wet etching to contact the 2DEG located
in the center QW. DQW, doping quantum well. (b) SEM image showing a junction
of the Hall bar and the exposed layers of the Bragg reflector on the etched surface.
(c) Photograph of a processed device. (d) Schematic corresponding to (c) indicating
the electrical wiring and introducing labels for the contacts.

and 4.1(c). Finally, aluminum wire-bonds establish the electrical connections
to the chip carrier. The device is mounted in a dilution refrigerator which
is cooled to its base temperature of about 20 mK where the wires pass a
second-order low-pass filter to the grounded mixing chamber plate for ther-
malization and noise rejection. The exact electron temperature is difficult to
assess experimentally, but we can give an estimate based on a temperature
measurement performed previously with a similar experimental setup in the
same dilution refrigerator. It is based on measuring the thermal occupa-
tion of electrons in a quantum dot [208]. The temperature of the Fermionic
reservoir was found to be about 100 mK.
2Gallium was used for mounting the wafer on the MBE sample holder and is removed to
avoid contamination of other cleanroom equipment.

3Micro resist technology ma-N 1400.
4MicroChemicals HDMS.
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4.1 Experimental Methods and Sample Characterization

Step Parameters
Cleave sample to conveniently sized chip 4 mm to 8 mm
Clean and dehydration bake 120 s at 120 °C
Protect surface with photoresist (PR)
Remove excess gallium2 from backside HCl:H2O 1:1 for 25 min
Remove PR and clean Acetone
Coat PR, pattern contact geometry
Binary etching of top DBR Recipe Table 2.1
Remove PR and clean Acetone for 30 min at 50 °C
Coat PR, pattern contact geometry
Metal deposition Ge/Au/Ge/Au/Ni/Au 53/207/53/107/80/100 nm
Lift-off and clean Acetone for 30 min at 50 °C
Annealing 30 s at 500 °C
Coat PR, pattern Hall bar geometry
Hall bar etching in H2SO4/H2O2/H2O 3:3:100 for 15 min ∼7 µm
Remove PR and clean
Mount in chip carrier, bond wires

Table 4.1: List of process steps to pattern the polariton Hall bar device. A nega-
tive tone photoresist3was used before applying an adhesion promoter4. Clean means
placing sequentially in acetone, isopropanol, H2O and blow drying with N2, option-
ally oxygen plasma treatment.
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4. Transport of Polaritons with External Electric and Magnetic Fields

4.1.2 Electrical Transport Properties
We characterize the electrical properties of the sample by a four-point
current-voltage (I-V) measurement yielding the characteristic shown in
Fig. 4.2(a). At low source-drain bias applied between terminals R (source)
and L (drain), the I-V curve is linear with a 2DEG resistivity of 210 Ω/sq.
Increasing the source-drain bias to about ±1 V, the I-V curve becomes
nonlinear, moving away from electrostatic equilibrium. In this regime, the
externally applied electro-chemical potential (i.e. the voltage applied to
the leads) creates a spatially varying chemical potential in the 2DEG. At
even larger source-drain bias, the 2DEG is depleted and we recover a linear
I-V characteristic with an increased resistivity of 1500 Ω/sq, corresponding
to electrical conduction in parallel channels, the DQWs in particular. As
sketched in Fig. 4.1(a) the annealing technique used to contact the 2DEG
also contacts the lower mobility doping QWs. Our device thus corresponds
to a field effect transistor where the gate potential, nominally defined by
the donor impurities, can be modified by the source-drain bias leading to
the pinch-off of the 2DEG [209], [210, Chapter 6].

We show, in Figs. 4.2(b) and 4.2(c), the longitudinal (measured via V12,
blue curve) and transverse (measured via V23, orange curve) resistivities as a
function of magnetic field in z-direction, perpendicular to the 2DEG. They
were recorded using two lock-in amplifiers5 with excitation current of 1 nA
at a modulation frequency of 13.8 Hz. The excitation current was derived
using a large resistance in series between the source contact and the oscillat-
ing source voltage from signal generator in the lock-in. We clearly identify
Shubnikov–De Haas oscillations in the longitudinal resistivity and the onset
of Hall plateaus in the transverse resistivity. Expected 2DEG filling factors
are marked and match the minima of the longitudinal resistance oscillations.
The existence of parallel conduction channels results in an overall trend in
the resistivity curves that deviates from standard quantum Hall transport.
This effect, well known in 2DEG transport [211–214], explains the lack of
quantization in the transverse conductance and the rise observed in the lon-
gitudinal resistance minima as opposed to the expected behavior of minima
extending to zero (compare to Fig. 2.5). The parallel conductance is a conse-
quence of a trade-off in our device geometry between optimizing the optical
5Signal Recovery 7265 DSP Lock-in Amplifier.
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Figure 4.2: Electrical transport characteristics of the Hall bar device used in the
following experiments. (a) IV-characteristic of the Hall bar device at zero magnetic
field. (b) Magneto-transport measurement, showing the longitudinal (blue) and
transverse (orange) resistivity versus magnetic field and Landau level filling factor.
(c) Zoom into panel (b), focusing on the onset of Shubnikov–De Haas oscillations in
the low magnetic field regime.

properties and retaining good transport characteristics. Another contribut-
ing factor to the overall increase of resistivity with magnetic field could be a
lack of optimization of the contact geometry [215, Chapter 8], i.e. too little
linear cross-sectional overlap between the 2DEG and the contacts.

4.1.3 Optical Imaging Setup

The following experiments were performed with a dilution refrigerator that
allows for free space optical access to the sample surface through optical
windows, in contrast to the optical fiber based system (we refer back to Sec-
tion 2.3 for an overview). This optical access enables simultaneous position
and momentum resolved microscopy. Figure 4.3(a) shows a more detailed
schematic of the optical setup used in this study. The free space optics used
for excitation, collection and imaging are mounted in a cage assembly that is
attached to the bottom of the dilution refrigerator. Optical windows through
the different shields of the cryostat offer optical access to the sample which is
thermally anchored on the mixing chamber at a base temperature of 20 mK.
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Figure 4.3: Schematic of the free space optical setup. (a) Upper part of the cage
assembly showing the excitation and collection arms of the microscope attached to
the dilution refrigerator and the real space imaging CCD camera. (b) Schematic ray
tracing for Fourier space imaging. The intermediate real space image planes (R)
and Fourier space image planes (F) are shown in black dashed lines.
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4.1 Experimental Methods and Sample Characterization

A single cold, high numerical aperture NA = 0.7 objective lens6 allows for
high resolution microscopy of the sample. The excitation light is delivered by
a single mode optical fiber and is collimated and directed to the microscope
objective lens. The light emitted or reflected by the sample is refracted by
the same objective lens and is simultaneously imaged onto real space and
Fourier space CCD cameras7 as well as on the facet of a single mode opti-
cal fiber conjugated with the back-focal plane of the microscope objective.
This collection fiber is mounted on a motorized stage and can thereby be
displaced in the back focal plane, i.e. along ∆x in the schematic Fig. 2.9(b).
This allows to collect light with angular resolution or well defined in-plane
momentum k∥. The light coupled into this fiber is brought to a spectrometer,
allowing to record spectra at desired angles within the NA of the objective
lens. Conversely, light can be sent via this collection fiber in order to excite
polaritons with finite in-plane momentum. The motion of the polaritons in
the xy-plane can then be tracked on a real-space imaging camera, with light
leaking from the top mirror along the polariton trajectory. Alternatively,
a camera positioned at a Fourier plane can be used to record the (kx, ky)
dependence in one shot (schematic ray tracing is depicted in Fig. 4.3(b)).
The excitation, detection and imaging arms are all equipped with linear po-
larizers8 and quarter-wave plates9. They allow controlling the incident and
detected polarizations, and in particular enable us to measure in resonance
fluorescence configuration where detection and excitation polarizations are
chosen orthogonal. It is possible to achieve a suppression of incident laser
light to the signal on the order of 104. Due to the long distance between
the sample and the bottom of the dilution refrigerator (about 50 cm), the
optical setup is not fully conjugated and relies instead on an image forming
lens L1 and a 2f optical relay lens L2. The resulting Fourier space resolution
(point-spread function of the collection fiber) is 0.15 µm−1 at the center of
the Fourier plane, and degrades to 0.3 µm−1 at large momenta due to optical
aberrations of the imaging setup. At the inflection point of the lower polari-
ton branch, this finite momentum resolution yields an energy broadening of
300 µeV which is significantly larger than the polariton linewidth expected
6Thorlabs Aspheric Lens 354330-B.
7FLIR CM3-U3-13S2M-CS.
8Thorlabs LPVIS050.
9Thorlabs WPQ05M-808.
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Figure 4.4: Map of the lower polariton PL emission energy measured close to
normal incidence k∥ = 0 as function of position x, y. The gradient along the x-
axis stems from the radial thickness gradient of the wafer. The experiments in this
chapter are based on this Hall bar, fabricated on a chip of sample A.

from the finite cavity lifetime. At k∥ = 0, the polariton dispersion is flat and
a conservative estimate for the energy resolution of our imaging setup based
on the polariton group velocity at ±0.15 µm−1 yields 30 µeV, which is well
below the 100 µeV resolution of our spectrometer. In order to account for
the spectral shape of the white light source, the dispersion spectra through-
out this chapter are corrected by the following procedure. First a numerical
low-pass filter is applied to remove spectral etaloning fringes at high spa-
tial frequency. The slowly varying spectral shape of the white light is then
extracted using the fact that the polariton signal disperses as a function of
some tuning parameter (position, momentum or magnetic field), while the
lamp spectral shape remains relatively constant. By sorting the individual
spectra along this tuning parameter axis we can extract the spectral shape
of the source and use it to normalize the reflection spectra, as previously.

4.1.4 Cavity Wedge and Polarization Eigenbasis

A photo-luminescence (PL) scan map of the sample is shown in Fig. 4.4 out-
lining the shape of the Hall bar. It has been acquired by scanning the (x, y)
positions of the sample and collecting with the Fourier space fiber tip moved
close to k∥ = 0 (normal incidence). Emission spectra at each position were
fitted to find the lower polariton peak energy. This peak energy is displayed
in the colormap. The increase in emission energy of about 3 meV/mm from
left to right is due to a wedge in the cavity length introduced during sample
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Figure 4.5: Linear polarization eigenbasis presumably defined by mechanical strain
in the polariton Hall bar device. Lower polariton photoluminescence peak energy
(a) and intensity (b) as function of linear polarization angle, controlled by a half-
wave plate (HWP). (c,d) Real-space images measured in cross-linear polarization at
(c) 0° and (d) 45° with respect to the Hall bar x-axis. These measurements were
obtained in the absence of any source-drain bias and at B = 0.

growth.
In this paragraph, we discuss the optical polarization properties of our

sample and how they were used to obtain measurements in resonance flu-
orescence (RF) configuration. In a first experiment, we excited the system
non-resonantly at 632 nm and measured the k∥ = 0 lower polariton photolu-
minescence center energy (Fig. 4.5(a)) and intensity (Fig. 4.5(b)) as a func-
tion of polarization angle for a fixed position (x, y). A half-wave plate (HWP)
in front of a horizontal polarizer was used to rotate the detection angle, so
that orthogonal polarizations are separated by 45° rotations of the HWP).
We observe an energy splitting of ∆xy = 20 µeV between the linear polar-
ization eigenstates pointing along the crystalline axes of our sample. These
axes also align with the long and short edges of the Hall bar and thereby the
x- and y-axes used throughout this chapter. Excited carriers form exciton-
polaritons and relax towards the LP k∥ = 0 state through scattering with
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phonons, electrons and other polaritons. This explains the reduced intensity
in the higher energy eigenstate. We did not resolve such an energy split-
ting in an unprocessed device, from which we deduce that it originates from
the patterning by etching. A second experiment was performed in order to
verify that this birefringence still dominates compared to the TE-TM mode
splitting [216] at excitation angles relevant to our experiments. Resonant
CW excitation was set to focus in real space to excite polaritons at finite
|k∥|. In Fig. 4.5(c), polaritons are excited with polarization along x and de-
tected along y which should be compared to Fig. 4.5(d), where polaritons
are excited at 45° and detected at −45° to the x-axis. Displayed are real
space images with the recorded intensity color-coded, plotted as function of
positions (x, y). The excited polaritons are traveling radially outwards due
to their initial in-plane momentum. The bright, saturated center spot marks
the excitation and is due to a part of the reflected laser beam that penetrates
the detection polarizer. The fact that the emission from the polariton cloud
is still well suppressed in the field of view shown in Fig. 4.5(c) demonstrates
that the eigenbasis is aligned with the x and y axes, at least up to relevant
in-plane momenta of |k∥| ≤ 2 µm−1.

4.2 Polariton Transport by Electric Fields

4.2.1 Electron Density Gradients

The different regimes of the 2DEG transport behavior discussed in Sec-
tion 4.1.2 above have their counterpart in the optical response of the system
which we will discuss here. The following measurements show the reflectivity
contrast, resolved either in real or Fourier space using broadband, white-light
excitation. The sample is wired according to the drawing in Fig. 4.1(d), with
100 kΩ series resistors on contacts L and R and while the remaining contacts
are floating. For the remainder of this chapter, we denote with VL a voltage
applied to the left (L) side of the Hall bar against the right (R) contact kept
grounded. Analogously, VR denotes a voltage applied to the right (R) con-
tact against the left (L) side kept at ground level. Figure 4.6(a) shows the
energy-momentum dispersion relation of the polaron-polariton states at zero
source-drain bias. It shows normalized white light reflectivity data, recorded
using the scanning fiber tip in Fourier space. We identify four branches re-
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Figure 4.6: Electrically controlled polariton landscape via density gradients.
(a) Normalized white-light reflectivity spectra showing the polaron-polariton energy-
momentum dispersion at the nominal electron density. (b) Exciton-polariton dis-
persion in the depleted regime (VL = −6 V). Dashed lines are coupled oscillators
fits to the data. (c,d) Normalized white-light reflectivity spectra at k∥ = 1.2 µm−1

(vertical line in (a,b)) as a function of position with a negative bias voltage applied
to the left contact (VL = −2.4 V) (c) and to the right contact (VR = −2.4 V) (d).
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sulting from the hybridization of the cavity photon with the attractive and
repulsive heavy-hole polarons and with the light-hole resonance. The 2DES is
at its nominal density. The opposite limiting case is displayed in Fig. 4.6(b),
which shows the dispersion measurement performed while applying a very
large bias of VL = −6 V. There, we measure a typical exciton-polariton
dispersion of an intrinsic QW with anticrossings about the heavy hole and
light hole exciton energies, as expected from the 2DEG depletion already
suggested by the I-V characteristic.

The polariton energy dispersions are well reproduced by coupled oscillator
fits [8, 9] involving four states representing the cavity, attractive polaron,
repulsive polaron and light hole exciton

H2DEG =




Ecav Ωattr Ωrep Ωlh
Ωattr Eattr 0 0
Ωrep 0 Erep 0
Ωlh 0 0 Elh


 (4.1)

with couplings Ωj only between the cavity mode and each material resonance.
In principle, we expect the light hole exciton to split into attractive and
repulsive branches as well. But the measurements of Fig. 4.6 do not resolve
this feature and therefore we did not introduce additional fit parameters
for the light hole polarons. For the depleted 2DES, it suffices to take into
account three states

HQW =



Ecav Ωhh Ωlh
Ωhh Ehh 0
Ωlh 0 Elh


 , (4.2)

cavity, heavy hole and light hole excitons. The cavity dispersion can be
approximated by a parabola close to k∥ = 0 (Eq. (2.6)). The results are
shown as dashed lines in Figs. 4.6(a) and 4.6(b) with the corresponding best
least-squares fits listed in Table 4.2. The table summarizes the two cases
of nominal density H2DEG (left panel Fig. 4.5(a)) and depleted HQW (right
panel Fig. 4.5(b)).

In between these two extremes of nominal electron density and full deple-
tion, at intermediate bias voltages, the electron density shows smooth spatial
gradients across the Hall bar as demonstrated in Fig. 4.6(c) for VL = −2.4 V.
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Parameter Nominal density Depleted QW
Ecav(k∥ = 0) 1524.04 meV 1524.96 meV
ncav 3.21 3.32
Ehh - 1525.96 meV
Eattr 1524.92 meV -
Erep 1527.86 meV -
Ωhh - 1.63 meV
Ωattr 0.94 meV -
Ωrep 1.13 meV -
Elh 1530.38 meV 1529.53 meV
Ωlh 1.07 meV 1.04 meV

Table 4.2: Least-squares curve-fitting results of the coupled oscillator models
Eqs. (4.1) and (4.2) to the polariton energy-momentum dispersions in Figs. 4.6(a)
and 4.6(b) respectively.

Here, the polariton spectrum is recorded at positions across the long axis (x)
of the Hall bar. The y position is kept centered and the collection angle is
also fixed, corresponding to k∥ = 1.2 µm−1. This particular choice for the in-
plane momentum is not essential, but leads to a favorable cavity to attractive
polaron detuning which highlights the two lowest polariton branches. On the
left side, where the negative bias is applied, the sample is devoid of electrons
and the spectrum resembles a vertical cut in the dispersion of Fig. 4.6(b) at
k∥ = 1.2 µm−1. Moving to the right, the electron density increases and we
gradually recover polaron-polariton spectra corresponding to the dispersion
of Fig. 4.6(a) as the oscillator strength is transferred from the excitonic to
the polaronic resonances. Reversing the applied electric field (VR = −2.4 V)
inverts this density gradient, as shown in Fig. 4.6(d). Such electron density
gradients constitute electrically tunable potential landscapes for polaritons
which we utilize in the following to transport neutral optical excitations. We
note two imperfections where the polariton energies bend upwards at 220 µm
and 570 µm which most likely originate from strain induced by the contact
crossing regions. There is also an indication of this effect visible in a distor-
tion of the LP emission energies, shown in the map Fig. 4.4. We find that
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the polaritons experience an energy shift in this region also in the absence
of source-drain bias but cannot rule out that a non-homogeneous current
distribution adds to this effect at finite bias. Finally, we note a slight asym-
metry in the dispersion between inflection +k∥ 7→ −k∥ which could have a
contribution from finite misalignment of the optics, but note that the sample
already breaks reflection symmetry because of the cavity thickness gradient.

We provide additional data from two other devices to further substantiate
our ability to shape the polariton potential landscape with applied electric
fields. In Fig. 4.7(a), white light reflectivity spectra (low |k∥|) are shown as
function of position along sample C. The gate voltage is kept fixed at −9.5 V
but due to finite resistance of the gate, the electric field drops laterally and
leads to a hole density gradient. This gradient manifests optically by splitting
the lower polariton in two branches as an attractive polaron resonance occurs,
moving towards the right. The feature is not as clearly resolved as in the
measurements above due to higher sample temperature of about 300 mK
during this experiment. White light reflection (not normalized, low |k∥|) is
shown in Fig. 4.7(b) for a Hall bar device fabricated from sample B. At fixed
lateral position between two contacts, the source drain voltage is swept from
−8 V to 8 V in steps of 1 V. The lower polariton resonance is continuously
tuned by the source drain voltage. This demonstrates that shaping of the
2DEG density can be achieved reproducibly in these devices.

4.2.2 Polariton Acceleration

To demonstrate polariton transport, we resonantly excite a polariton cloud
with a CW laser and image its expansion in two opposing electron density
gradients. The excitation laser, at 1524.0 meV (813.54 nm), is linearly po-
larized and focused in the central region of the Hall bar (x = 450 µm), thus
injecting a radially expanding cloud of polaritons with finite k∥. The decay-
ing polariton signal is recollected and separated from the scattered excitation
beam by polarization filtering. A finite strain along the crystalline axes in
the structure allows us to obtain this RF signal by polarizing the excitation
beam at 45° with respect to the polarization eigenbasis (as evidenced in Sec-
tion 4.1.4). Two real space images, IR and IL, of this RF signal are acquired
under source-drain biases of VR = −2.4 V and VL = −2.4 V, respectively.
These two voltages were chosen such that at the injection spot on the Hall
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Figure 4.7: Additional evidence for voltage controlled polariton dispersion and
electronic density gradients in other devices. (a) Normalized WL reflectivity as a
function of position on a chip of sample C at fixed gate voltage. (b) Raw reflection
signal from another Hall bar fabricated on sample B. Lower polariton signal as a
function of source drain bias applied to two opposing Hall bar contacts.
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Figure 4.8: Polariton acceleration in density gradients on Hall bar device sample
A. (a) Normalized difference between two RF images of polariton flow in opposing
electron density gradients. (b) Comparison with a trajectory based model (dashed
green line). The red-blue dots are a line-cut of panel (a) at y = 25 µm while the
black line is an average of the experimental data between y = 10 and y = 40 µm.
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4. Transport of Polaritons with External Electric and Magnetic Fields

bar, the electron densities are the same and the gradients are of opposite
signs. This choice is not necessary but simplifies the observation of polariton
acceleration as there is no trivial difference between dispersions and thereby
group velocities between the two images to be compared. Such a difference
in group velocities would result in additional differences between the emis-
sion intensities IR and IL. Tuning the experimental parameters into said
regime removes the additional modeling and data processing steps necessary
to deconvolve the trivial changes in group velocity from the desired left-right
acceleration. Figure 4.8(a) shows the normalized difference (IR−IL)/(IR+IL)
of two such RF images, clearly demonstrating the ability to route polaritons
by electrical means10. The polaritons are seeking the high electron density
regions. Consider for example depletion on the right side (IR) which traces
to positive (red) values to the left of the excitation spot and negative (blue)
values to the right of the excitation spot.

We chose to analyze the normalized difference of images because this quan-
tity is independent of the excitation laser power. Taking just the difference of
images without normalization leads to qualitatively the same features. Since
the specular reflection of the laser beam is orders of magnitude stronger than
the signal and the dynamic range of our detection is limited, a finite circu-
lar region of a few µm2 in the center of the image (x, y) = (25 µm, 25 µm)
remains saturated by the laser, which leads to a contrast of zero.

4.2.3 Coupled Oscillator Model

In order to understand the polariton acceleration effect, we characterize the
local polariton dispersion. This will allow us to predict the changes in po-
lariton group velocity and finally the expected shape of the polariton cloud
subject to this dispersion. The goal is to calculate the emission intensity
I(x), for the two energy landscapes created by opposing density gradients.
We proceed by measuring four dispersion relations, two at each side of the
optical field of view at x = 0 and x = 50 µm in Fig. 4.8(a) using the same
voltage configurations as above VR = −2.4 V and VL = −2.4 V. We repeat
the coupled oscillator fits Eq. (4.1) for the four cases individually. Here, the

10We chose a new coordinate system (x, y) for a single field of view for this and the following
images, instead of referring to the global coordinates as in Fig. 4.4.
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4.2 Polariton Transport by Electric Fields

electron density and therefore also the fit variables will take intermediate
values between the limiting cases of nominal density and complete depletion.

We restrict ourselves to the one-dimensional case of propagation along the
x-direction which should suffice for the experiments without magnetic field.
We identify the cavity thickness variation and the electron density gradi-
ent as most important contributions to LP energy variations. By linearly
interpolating across the optical field of view for each voltage configuration,
we characterize the lower polariton energy landscape ELP(x, kx), separately
for the two density gradients used to measure IR and IL. Specifically, we
suppose 



Ecav(x, kx) Ωattr(x) Ωrep(x) Ωlh(x)
Ωattr(x) Eattr 0 0
Ωrep(x) 0 Erep 0
Ωlh(x) 0 0 Elh


 (4.3)

where we keep the energies of the asymptotes fixed, namely the attractive
polaron energy Eattr = 1524.4 meV, the repulsive polaron energy Erep =
1525.9 meV and the light hole exciton Elh = 1529.5 meV. This simplifies
curve-fitting by reducing the number of free parameters and is justified by
observing that the Rabi couplings Ωj vary more strongly than the bare po-
laron energies as a function of electron density. Indeed, the coupling strength
of the attractive polaron branch scales as the square root of the electron den-
sity, more precisely as kFaT where kF is the Fermi momentum and aT is the
trion Bohr radius [88]. The residual energy shift of the attractive polaron
resonance is small due to a competition of the redshift from polaron forma-
tion and a blueshift from phase space filling. We accept a finite error from
neglecting the repulsive polaron blueshift. In this approximation, the largest
difference in acceleration induced by the electron density gradients to the po-
lariton dispersion are expected to occur near the inflection point of the polari-
ton dispersion, where the group velocity is most sensitive to variations in the
Rabi coupling. Also entering the model is the bare cavity dispersion which
we again approximate as a parabola Ecav(x, kx) = E0(x)+ℏ2k2

x/(2mcav) with
the effective mass of cavity photons mcav = E0n2

cav/c
2 ≈ 3 × 10−5me mea-

sured independently. The cavity wedge in this region is 2.7 meV mm−1 and
the cavity detuning ∆cav is measured from E0 = 1524.2 meV at x = 0. The
results are displayed in Fig. 4.9(a) with full lines referring to bias applied
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to the right and dashed lines to bias applied to the left contact. The Rabi
couplings and cavity wedge have been interpolated linearly between the two
measured points at x = 0 and x = 50 µm. The full and dashed lines cross
at the center of the field of view. This confirms the choice of position and
voltages to achieve the same electron density but gradients of opposite signs
for the two configurations.

By diagonalizing Eq. (4.3), we extract the LP energy ELP(x, kx) for right
and left bias, which is color-coded in Figs. 4.9(b) and 4.9(c). Following the
approach of previous work on polariton acceleration due to the cavity wedge
alone [112], we write the classical Hamilton’s equations of motion for the
lower polariton

∂x

∂t
= 1

ℏ
∂ELP
∂kx

and ∂kx
∂t

= −1
ℏ
∂ELP
∂x

, (4.4)

under which we propagate trajectories corresponding to the initial conditions
of our experiment x(t = 0) = 26 µm and kx(t = 0) = ±1.2 µm−1. These
trajectories are shown as red lines for the two cases of bias voltages inside
the lower polariton energy landscape. In order to predict the RF signal
obtained in our experiment we consider two more ingredients. First, the
polaritons decay while propagating with a lifetime of τ1/e = ℏ/ΓFWHM ≈
10 ps. Second, to model the RF configuration we assume that the injected
polarization state at 45° slowly rotates in accordance with the polarization
splitting determined from Section 4.1.4 to ∆xy/ℏ ≈ 0.03 ps−1. Since we
detect a real-space image, we create a histogram of the x-positions visited
by the trajectories and weight them with the factor w = exp (−t/τ1/e) ·
(1 − cos(∆xyt/ℏ)) to obtain Fig. 4.9(d). It shows the expected intensity
distributions as functions of position x, for the two opposing bias cases.
As in the experiment, we calculate the normalized difference between the
two cases and compare the result with the experiment in Fig. 4.8(b) (green
dashed line). The red-blue colored points correspond to a line cut through
Fig. 4.8(a) at y = 25 µm and the black curve is an average over y between 10
and 40 µm. Remarkably, this simple approach allows us to obtain reasonable
quantitative agreement with our data. We verified that the result does not
depend sensitively on the parameters τ1/e and ∆xy. We want to point out
that for the interpretation of the real-space images, one has to take into
account the effective mass of the polaritons, which might be negative at
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4.3 Polariton Transport by Magnetic Fields

Figure 4.9: Coupled oscillator model to predict the polariton acceleration. (a) Lo-
cal dispersion fit results. (b) Corresponding ELP for depletion on the right and
(c) depletion on the left side. Trajectories of lower polaritons are drawn with initial
values marked by gray dots. (d) Expected emission from the trajectories shown in
(b,c).

large |kx| due to the non-parabolic polariton dispersion relation. Consider
the full line in Fig. 4.9(d), where polaritons are accelerated to the left. Due
to the large in-plane momentum kx, the acceleration actually reduces the
group velocity during propagation. This leads to an excess of polaritons on
the left side compared to acceleration in the opposite direction (dashed line).
If we had access to a larger field of view, we would expect the normalized
difference to change sign. In this model, the total number of polaritons
remains constant when subjected to accelerating potentials but the position
where they are re-emitted as photons is affected.
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Figure 4.10: Polariton acceleration in external electric and magnetic fields. (a-i)
Normalized difference between RF images (IR − IL)/(IR + IL) acquired for a range
of magnetic fields from −56 mT to 56 mT displayed above the images. All other
parameters are kept identical for the different panels; performed with sample A.
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4.3 Polariton Transport by Magnetic Fields
4.3.1 Acceleration by Hall Voltage
We can further control the polariton flow by applying a magnetic field per-
pendicular to the QW plane. In conjunction with a finite source-drain bias,
this induces a Hall voltage transverse to the applied potential leading to
charge redistribution in the y-direction [217, 218]. The combined electric
and magnetic fields now shape the electron density gradient which can be
tuned in angle and magnitude, as demonstrated in Fig. 4.10. All Figs. 4.10(a)
to 4.10(i) correspond to alternating voltage biases of VR = −2.4 V and
VL = −2.4 V and a fixed magnetic field indicated above each panel. Fig-
ures 4.10(b) and 4.10(f), at ±8 mT show the possibility to orient the polari-
ton flow in a diagonal direction. Further increasing the magnetic field to
tens of mT leads to polariton transport in the up-down direction with an
intensity contrast of roughly 50 %. Moreover, flipping the sign of the applied
magnetic field reverses the direction of polariton transport.

While these results demonstrate the possibility to transport dressed pho-
tons (i.e. polaritons) by electric and magnetic fields, it should be noted that
we do not observe here a Lorentz force for photons. In particular, the force
acting on polaritons does not appear to depend on the direction of their
motion. As clearly shown, for example, by inspecting Fig. 4.10(h), both the
polaritons propagating to the left and to the right are deflected in the same
direction for a particular choice of bias voltage. The polariton acceleration is
determined only by the electron density gradient which in turn is controlled
by the combination of magnetic field and electrical bias. In other words, the
non-perturbative coupling of polaritons to itinerant electrons allows for the
control of photons by electromagnetic forces acting on the electronic sector.

4.3.2 Spin Density Gradients
We extend our work to higher magnetic fields, where the 2DES enters the
quantum Hall regime. We aim to exploit spin-density gradients instead of
unpolarized electron density gradients to further our control over polari-
ton acceleration. In this section, we establish the presence of spin-density
gradients. We start by briefly restating the underlying features of polaron-
polaritons in the IQHE that were studied in detail in Chapter 3 and then
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Figure 4.11: Spatial tuning of the polariton energy landscape by spin density gra-
dients in the quantum Hall regime. (a) Normalized white light reflectivity spectra
measured at k∥ = 1.2 µm−1 as a function of magnetic field without bias voltage.
(b) Normalized reflectivity spectra at k∥ = 1.2 µm−1 and B = 1.1 T across the ver-
tical y-direction on the Hall bar, with a source-drain bias VR = −0.17 V. Black
points indicates the electron spin polarization Sz measured at three different posi-
tions. (c) Opposite spin density gradient to (b) with VL = −0.35 V. Error bars are
extracted from the fit parameters; measurements performed with sample A.
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extend the discussion to involve electron density gradients.

At low temperature and under a strong magnetic field, the optical exci-
tation spectrum of a high mobility 2DEG exhibits energy gaps due to the
quantization of cyclotron orbits. The corresponding Landau levels are fur-
ther split in energy by a Zeeman field, forming a ladder of spin subbands for
the electrons. As the occupancy of this ladder is varied (e.g. by tuning the
magnetic field), the 2DEG undergoes phase transitions between electronic
ground states of different spin polarization Sz. In particular, when the lower
spin subband of the first Landau level is completely filled (ν = 1), the elec-
tronic ground-state is an itinerant ferromagnet with strong spin polarization.
The fact that polaron dressing occurs exclusively in the configuration where
the optically excited electron and the electrons in the 2DEG dressing cloud
have opposite spin, renders the polaron very sensitive to the spin polariza-
tion of the 2DEG. At ν = 1, the polaron oscillator strength is maximum for
right-hand circularly polarized light σ+ since most of the 2DEG electrons
are in the spin up state, thus allowing for efficient dressing. Conversely, the
oscillator strength is reduced for left-hand circularly polarized light σ− due
to the absence of spin-down electrons. The ensuing variations of polaron os-
cillator strength have a direct counterpart in the Rabi splittings Ωσ± of the
corresponding polaron-polariton branches, as shown in Fig. 4.11(a) for the
polariton Hall bar sample. The optical polarization was set to linear, so that
both circularly polarized polariton branches are visible. The degree of elec-
tron spin polarization can be inferred from the Rabi splittings by Eq. (3.2),
leading to about Sz ≈ (Ω2

σ+ − Ω2
σ−)/(Ω2

σ+ + Ω2
σ−) ≈ 70 % at ν = 1 (1.26 T)

as we found previously.

In this quantum Hall regime, the charge density gradients demonstrated
above may translate into gradients of 2DEG spin polarization, resulting in
optical spin-contrasted forces for polaritons. To this end, we detune the
magnetic field slightly from ν = 1 to 1.1 T so that the polaron branches are
most sensitive to changes in electron density. Note that ν ∝ 1/B makes it
possible predict the effect of electron density gradients from the magnetic
field dependence in Fig. 4.11(a). The spatial dependence in Fig. 4.11(b)
shows the evolution of the polariton spectrum at k∥ = 1.2 µm−1, recorded
from the lower edge to the upper edge of the Hall bar (its y-direction) under
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a voltage bias11 of VR = −0.17 V and a magnetic field of 1.1 T. The in-
plane momentum was chosen to optimize the cavity detuning. We observe
four energy branches, as expected from a vertical cut in Fig. 4.11(a) near
ν = 1, where the two inner branches are the σ−-polarized lower and upper
polaritons and the two outer branches are the σ+-polarized lower and upper
polaritons. To assess the degree of spin polarization Sz of the 2DEG, we
measure polariton dispersions in σ+ and σ− polarizations at three different y-
positions (not shown). From the dispersions, the Rabi splittings are extracted
by a fit based on coupled oscillators Eq. (4.1). As can be seen in Fig. 4.11(b),
the degree of electron spin polarization of the 2DEG (black markers, right
axis) evolves across the Hall bar. The magnitude of the spin gradient is
sizable across the optical field of view, ranging from about 30 to 60 % spin
polarization. Furthermore, it can be controlled electrically as demonstrated
in Fig. 4.11(c), where VL = −0.35 V reverses the gradient. The combination
of voltages correspond to a balanced situation where the filling factors at
y = 25 µm are equal and the gradients opposite. Such variations in Sz
constitute gradients of opposite signs for the σ+ and σ− polaron-polariton
energy landscapes.

4.3.3 Polariton Spin Sorting
We demonstrate how this idea of spin-density gradients can be extended to
realize transverse polariton spin currents reminiscent of an intrinsic spin-
Hall effect when the 2DEG is close to the ν = 1 integer quantum Hall
state. To investigate the resulting spin-dependent polariton acceleration, we
first perform momentum-resolved measurements by imaging the polariton
RF emission. An excitation energy of 1523.8 meV (813.62 nm) is chosen to
intercept both the σ+ and σ− lower polariton dispersions at finite k∥. Fig-
ures 4.12(a) and 4.12(b) show the momentum-resolved polariton RF signal
for VR = −0.17 V and VL = −0.35 V respectively. It has been acquired using
a CCD camera in Fourier space, the excitation laser being filtered out by
polarization suppression. As can be seen in the left panel Fig. 4.12(a), the
inner σ−-polarized branch is shifted up towards positive ky while the outer
σ+-polarized branch is shifted down towards negative ky. This observation
11Lower bias voltages are required to remain in the quantum Hall regime, as compared to

the measurements performed without magnetic field.
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Figure 4.12: Spin-selective polariton acceleration. (a,b) Momentum-resolved po-
lariton RF emission under cross-linear polarization at 1523.8 meV (813.62 nm) for
(a) VR = −0.17 V and (b) VL = −0.35 V. The dashed lines are guides to the eye
highlighting the elliptical shape of the dispersion cuts. (c,d) Normalized difference
between two RF images of right-propagating polaritons acquired with VR = −0.17 V
and VL = −0.35 V. (c) Excitation of σ− polaritons at kx = −0.9 µm−1, ky = 0.
(d) Excitation of σ+ polaritons at kx = −1.3 µm−1, ky = 0. The horizontal dashed-
dotted lines delimit the width of the Hall bar, the large circle is the field of view of
the microscope. The red and blue rings in (a-d) show the excitation spots in real
and momentum spaces for σ+ and σ− polaritons, respectively.
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directly demonstrates an in-plane acceleration whose sign depends on the
polaritons spin polarization Spol

z in the given state, that is the component of
the polariton pseudo-spin normal to the sample surface [219]. The effect is
reversed in Fig. 4.12(b), where the external bias and thereby the gradient in
electron spin polarization points in the opposite y-direction. The real-space
counterpart of this acceleration allows for the generation of transverse optical
spin currents, reminiscent of an intrinsic optical spin-Hall effect [220–226].

To demonstrate the generation of transverse polariton spin currents, we
inject polariton wave packets of well defined momenta by focusing the ex-
citation beam in the back-focal plane of the objective lens. Figures 4.12(c)
and 4.12(d) correspond to excitation at kx = −0.9 µm−1, ky = 0 and kx =
−1.3 µm−1, ky = 0, resulting in right propagating12 polaritons with σ− and
σ+ polarization, respectively. The normalized difference of the propagation
images (RF, real space), acquired with the two different voltage biases, indeed
reveals opposite acceleration of σ− and σ+ polaritons along the y-direction.
The spin-dependent momentum shifts demonstrated here, although capable
of generating transverse spin currents, remains fundamentally different from
the usual Rashba type coupling at the origin of standard spin-Hall effects.
Instead, the interaction reported here is analogous to a force for photons,
where the spatially varying electron spin polarization (Sz) acts as an ac-
celerating potential, sorting polaritons of different spin (Spol

z ) in different
directions:

F⃗Photon ∼ Spol
z ∇⃗Sz. (4.5)

It should be noted that the evolution of electron spin polarization around
ν = 1 quantum Hall plateau is widely believed to involve the prolifera-
tion of skyrmions in the quantum Hall ferromagnetic state due to the inter-
play between Zeeman and Coulomb energies [227]. The spin-singlet polaron-
polariton dressing thus constitutes a new interface for coupling the optical
spin of photons to the electronic spin excitations of 2DEGs. The behavior of
such interactions in the fractional quantum Hall regime where excitons may
be dressed by fractionally charged quasi-particles remain to be explored.

12The situation appears mirror-reflected since we reference the momentum as viewed in
the direction of excitation.
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4.4 Conclusion and Perspectives

In summary, we demonstrated novel ways of controlling photons with ex-
ternal electric and magnetic fields, which are enabled by their hybridization
with polarization waves in a medium. While these results were obtained
in the context of exciton-polaritons interacting with electrons, we highlight
that the underlying mechanism is general and could allow for the electrical
control of photons hybridized with other kinds of polarization waves such as
phonons or plasmons, provided that the quanta of polarization concurrently
interact with free electrons or holes.

A non-equilibrium electron density gradient is shown to act as an artificial
electric field for polaron-polaritons which is tunable in strength and direc-
tion. We foresee that this effective electric field could be further controlled
by tailoring the 2DEG density by using patterned electrodes. By mapping
the energy landscape of the lower polariton, we reach quantitative agreement
between a simple trajectory based model and the observed polariton accel-
eration. Our experiment constitutes an alternative to the already proposed
polariton drag effect for exerting electro-magnetic forces on neutral optical
excitations [203, 207]. We emphasize that the electron density gradients we
exploit are generic for low density 2DEGs when large source-drain voltages
are applied and therefore need to be considered in view of polariton drag
experiments. In the integer quantum Hall regime, we demonstrated that
electron spin depolarization, induced by the proliferation of skyrmions as
the electron density gradient pushes the system away from ν = 1 filling,
constitutes a scalar potential for the optical spin of photons and results in
spin-dependent acceleration.

The polariton spectrum probes the bulk properties of the 2DES, contrary
to electrical transport measurements which are dominated by edge currents in
the QH regime. For studying the interplay between edge currents and polari-
tons, our current approach is severely limited by degradation of the polariton
linewidth some micrometers from the sample edge (see Fig. 4.1(b)). This is
due to leakage of light from the cavity on the sides and probably amplified
by the lack of a sharply defined sample edge due the wet etching technique
we used. Another limitation is the low amount of electrical current density
our device can sustain before it enters the nonlinear transport regime. Prob-
ably for this reason, we were unable to clearly demonstrate the predictions
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in [203, 207] even using interferometric techniques [194]. For this purpose
a device optimized for higher current density in the linear transport regime
should be developed.

Recently, there has been exciting progress on the problem of detecting
quasi-particle exchange statistics and towards anyon braiding [186, 228]. In
the context of these works, screening quantum wells were employed above and
below the 2DEG resulting in a qualitatively analogous structure to our DQW-
QW-DQW layout (Fig. 4.1(a)). In this work, separate gates were deposited
to selectively deplete the screening quantum wells. This allows to remove
the parallel conductance to restore good electrical transport properties in
the presence of screening quantum wells. The structure could be adapted
to create Hall bar devices without the trade-off we faced between optical
and electrical properties. This would create an ideal platform for studying
the interplay between polariton and electronic transport. Furthermore, high-
quality quantum Hall transport measurements could be performed in parallel
to optical cavity spectroscopy. An easier alternative might be a reduction of
the DQW thickness with the goal to quench the carrier mobility within these
layers. However, this reduction of mobility would also remove the ability to
act as screening layers against charge fluctuations, induced for example by
light absorbed at defects in the cavity spacer or within the DBR layers.
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Chapter 5Polariton Interactions in the
Fractional Quantum Hall Regime

The linearity of Maxwell’s equations—which implies the su-
perposition principle—excludes optical photons from inter-
acting directly with each other. Hybridization of photons
with material resonances, in particular exciton-polaritons,
circumvent this limitation by using the interactions of
quasiparticles in a medium. It is an ongoing challenge to
create stronger optical nonlinearities that remain relevant
in the single photon regime. We follow our approach of
the previous chapters to hybridize photons with exciton-
polarons but turn to the nonlinear response of the result-
ing polaritons1. We find that their nonlinear response is
enhanced at fractional filling factors ν = 2/5 and ν = 2/3,
relative to neighboring fillings. In addition to prospects for
polariton blockade, these measurements suggest that non-
linear spectroscopy could provide new insights into quan-
tum Hall states not accessible in linear optical spectroscopy
and motivate further study.

1The experiments that constitute this chapter were published in the article [229], with cor-
responding experimental data available in the ETH Research Collection [230]. The work
presented here was performed together with Dr. Sylvain Ravets, both of us contributing
equally.
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Engineering strong interactions between optical photons is a great chal-
lenge for quantum science. Envisioned applications range from the realization
of photonic gates for quantum information processing [192] to synthesis of
photonic quantum materials for investigation of strongly-correlated driven-
dissipative systems [9]. Polaritonics, based on the strong coupling of photons
to atomic or electronic excitations in an optical resonator, has emerged as
a promising approach to implement those tasks [17]. They have recently
attracted considerable interest, motivated by the fact that their interactions
can be engineered through the tunability of their matter component. For ex-
ample, strongly interacting Rydberg polaritons have been obtained using the
nonlinear behavior of Rydberg excitations in an ensemble of atoms, which led
to the demonstration of Rydberg polariton blockade [7] where the presence
of a single polariton in a well-delimited region of space prevents the resonant
injection of other polaritons. In parallel, efforts are being made to realize
polariton blockade in condensed matter systems that hold great potential for
realizing compact and integrated synthetic quantum materials [17]. Exciton
polaritons in semiconductor materials are part light part matter particles
that arise from the strong coupling of a quantum well exciton and a cav-
ity photon [8]. These photonic particles inherit a nonlinear behavior from
exciton-exciton interactions [8, 9] which lead to striking observations of op-
tical bi-stability, Bose-Einstein condensation and superfluidity. For efficient
polariton blockade to be obtained, the polariton interaction energy Up needs
to be greater than the inverse lifetime γ of the polaritons [30].

Recent state-of-the art experiments based on photon correlation measure-
ments in semi-integrated microcavities attained optimized values of the ratio
Up/γ ≃ 0.1 in a photonic dot with about 3 µm2 area [31, 32]. These exper-
iments represent the culmination of decade long technological developments
aimed at increasing Up/γ through reducing the photonic mode area [31, 32,
231] as well as increasing the lifetime [232]. They demonstrated the onset of
quantum correlations in the exciton-polariton system [31, 32], showing that
strong polariton blockade [30] could be achieved if interactions were one or-
der of magnitude stronger. Recently, several possibilities have been explored
for enhancing Up through an increase of exciton-exciton interactions Ux, fo-
cusing either on bi-exciton Feshbach resonance [233] or on excitons with a
permanent dipole moment [234–236]. The experiments we report here re-
veal a hitherto unexplored mechanism for optical nonlinearity emerging for
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5.1 Experimental Methods and Polariton Spectroscopy

polaritonic excitations out of a two dimensional electron system in the frac-
tional quantum Hall regime. Using time resolved four-wave mixing (FWM)
experiments, we find that polaron-polaron interactions U are enhanced by
more than an order of magnitude around the fractional state at filling factor
ν = 2/5 as compared to other neighboring compressible states. A comparison
of interaction strengths for ν = 2/5 shows a factor of 4.6 ± 0.9 enhancement
with respect to Ux of an undoped QW. Our experiments indicate that strong
correlations in the electronic ground state play key role due the observed de-
pendence on filling factor. In addition, exciton-electron interactions leading
to the formation of polaron polaritons [21, 82, 84, 106] and their residual
Coulomb interactions could be contributing to the enhanced nonlinear op-
tical response. Moreover, we find that the lower polariton linewidth γ in
our sample is similar to the values reported in recent experiments demon-
strating modest quantum correlations [31, 32], indicating that upon spatial
confinement polariton blockade regime could be reached. Besides potential
applications in realization of strongly interacting photonic systems, our find-
ings suggest that nonlinear optical measurements could provide information
about fractional quantum Hall states that is not accessible in linear optical
or transport measurements.

This chapter is structured as follows. We begin by looking back at linear
spectroscopy of the polariton resonances at filling factors ν = 1, 2/3 and 2/5
to establish the exact experimental conditions for the following experiments.
We introduce the FWM setup employed and proceed with measurements of
the nonlinear optical response as a function of filling factors to demonstrate
the enhanced nonlinearity. We discuss our attempts to model the response
and open questions that remain.

5.1 Experimental Methods and Polariton Spectroscopy

5.1.1 Setup and Linear Polariton Spectroscopy

The following experiments were performed with samples embedded in DBR
microcavities. If not stated otherwise, the experiments involved sample A,
containing a low density electron gas (details in Section 2.4.1). The sample
was mounted inside a dilution refrigerator with fiber optical access, as shown
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Figure 5.1: Quantum Hall polariton resonances—linear polarization resolved spec-
troscopy as function of filling factor. Normalized white light reflectivity spectra
recorded around filling factors (a) ν = 1, (b) 2/3 and (c) 2/5. The plots show the
difference between two spectra obtained separately using σ− (red) and σ+ polarized
light (blue).

in Fig. 2.7(a). The extension to the optical setup described in the next section
concerns only the parts outside of the dilution unit.

We first characterize our sample using optical spectroscopy in the low-
power (linear) regime. We record polarization-resolved white light reflectiv-
ity spectra for several values of ν by changing B using a few nanowatts of
circularly-polarized light from a broadband light source. Figure 5.1 plots
an overview of the polaron-polariton resonances for our system, obtained by
calculating the difference between the spectra measured separately using σ−

(red) and σ+ (blue) polarized light. We observe generic strong dispersion
of the polariton energies with magnetic field around integer and fractional
values of ν. This striking behavior of the linear optical spectrum stems from
strong modification of electron-exciton interactions in and around gapped
quantum Hall states, which in turn leads to a ν-dependent modification of
the cavity-polaron coupling strength. We recall that the electron density is
fixed for this sample, so that the filling factor ν is tuned via the magnetic field
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Figure 5.2: Polaron-polariton characterization at ν = 2/5. (a) White light reflec-
tivity spectra as a function of magnetic field. The red dashed line is indicating the
line-cut (b), which shows the background-subtracted reflectivity (blue circles) at
B = 3.2 T with a fit (black line) consisting of a sum of three Lorentzian resonances.

only. The panels are centered around the spin polarized integer state ν = 1
(Fig. 5.1(a)), the spin unpolarized fractional state ν = 2/3 (Fig. 5.1(b)) and
the spin polarized fractional state ν = 2/5 (Fig. 5.1(c)).

To evaluate the interaction strength from the nonlinear response, we will
require a few input parameters from the linear spectra. We summarize, in
Fig. 5.2, the fitting procedure for the ν = 2/5 case. The spectra around ν =
2/5 are replicated once more in Fig. 5.2(a). We fit the white light reflectivity
spectrum obtained at B = 3.2 T (marked by the red dashed line) by a sum
of three Lorentzian functions to extract the LP linewidth γ = 67±5 µeV, the
LP cavity content |C|2 ≈ 0.12 and LP peak amplitude ≃ 0.40. We note that
the LP linewidth is narrower than the bare cavity linewidth γcav = 275 µeV
despite the large matter component of 88 %: reduction of the cavity content
has resulted in a reduction of the polariton linewidth as would be expected in
a sample where excitons only decay through their coupling to the cavity. This
indicates that the presence of the 2DES does not broaden the lower polariton
linewidth. The line-cut together with the fit are plotted in Fig. 5.2(b).

5.1.2 Time-Resolved Four-Wave Mixing Setup

Figure 5.3 shows the principle of the time-resolved interferometer we devel-
oped, inspired by traditional FWM techniques, to characterize our sample in
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Figure 5.3: Optical setup for four-wave mixing experiments: schematic of the inter-
ferometer used for measuring the nonlinear response of the system. Two laser pulses
separated by a variable delay τ generate an induced polarization in the sample, after
the amplitude of one pulse was modulated with an electro-optical modulator (EOM).
The emitted photons are sent onto an APD for detection where linear contributions
are separated from nonlinear contributions by demodulating the harmonics of the
modulation frequency. Polarizer (POL), half waveplate (λ/2), quarter waveplate
(λ/4).

the nonlinear regime. We use a pulsed Ti:Sapphire laser2 with a Tpulse = 4 ps
pulse duration, a 76 MHz repetition rate and center frequency tuned to the
σ− polarization lower polariton resonance (LPσ−). We split the laser into
two paths with the first polarizing beam splitter (PBS) and introduce a vari-
able time delay τ between the two pulses using a motorized translation stage.
For optical excitation, we recombine both beams onto another beam splitter
(BS). After passing another PBS and BS, which is used to separate out the
collected light later, the linearly-polarized light is coupled into an optical
fiber routed to the sample. The excitation light is then focused onto the
sample surface using a low NA = 0.15 objective. This implies that the two
beams are co-propagating and collinear albeit with low but finite angular
spread given by this NA. The total field incident on the sample is given by
E(t, τ) = E1(t) + E2(t, τ), where the average intensities of the two beams
are chosen to be equal. For detection, we collect the generated resonance
fluorescence using the same fiber as the one used for excitation, and we filter
out the laser background light by detecting along the cross-polarized axis.

2Coherent Mira Optima 900-P.
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5.1 Experimental Methods and Polariton Spectroscopy

The collected light is finally sent onto an avalanche photodiode (APD) for
detection. Modeling our system as a third order nonlinear medium, we can
expand the total intensity reaching the photodetector Idet as:

Idet(t, τ) ∝ ϵ0
∣∣∣P (1)

1 (t) + P
(1)
2 (t, τ) + P (3)(t, τ)

∣∣∣
2
. (5.1)

The linear polarizations in response to the incoming fields E1, E2 are written
as P (1)

1,2 (t), understood as the inverse Fourier transforms of P (1)
1,2 (ω). The

nonlinear polarization P (3)(t) is the inverse Fourier transform of P (3)(ω).
To isolate weaker nonlinear terms in this expansion ∝ P

(1)∗
i P (3) from the

dominant linear contributions ∝ P
(1)∗
i P

(1)
j (i, j = 1, 2), we modulate the field

amplitude E1(t) sinusoidally at frequency ωm. By calculating I(ω, τ), the
Fourier transform of Idet(t, τ), we can separate different terms: the (mostly)
linear term I(ωm, τ) and the nonlinear term I(3ωm, τ). In the following, we
use these two terms to quantify the nonlinearity of the system.

One standard method for evaluating interactions between exciton-
polaritons in 2D uses a resonant continuous wave excitation laser to monitor
the blue-shift experienced by the lower polariton line due to the (Kerr-like)
nonlinearity as the polariton population increases. In these experiments,
however, one cannot differentiate between the contribution due to fast
(∼ 10 ps) polariton-polariton interactions, and other unwanted contributions
due to the slow (> 100 ps) buildup of an excitonic reservoir [237]. This
issue is critical in the context of quantum Hall polaritons since the 2DES
electron density is particularly sensitive to optical power due to possible
photo-ionization of DX centers when illuminating the sample: increasing
the optical power density may lead to unwanted modifications of ne and
therefore to slow variations of the (ν-dependent) polariton energies, which
in turn may prevent us from properly evaluating the interactions. In
order to isolate pure polariton-polariton interactions, we use a carefully
designed sample structure with reduced sensitivity of ne to light, and
perform time-resolved experiments in the pulsed-excitation regime in which
the pulse duration (4 ps) is shorter than the polariton lifetime (≥ 12 ps).
A traditional approach to isolate the nonlinear contribution in four-wave
mixing experiments consists in introducing an angle between the two
exciting beams in order to generate a background-free nonlinear response at
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5. Polariton Interactions in the Fractional Quantum Hall Regime

a different angle [238]. However, the requirement for ultra-low temperatures
render standard FWM experiments technically challenging to implement
in our experimental geometry that uses a fiber coupled scanning confocal
microscope in a dilution refrigerator. Note that access to the sample is
restricted to reflection in collinear configuration: to separate the resonance
fluorescence emitted by the sample from the laser light that reflects off the
surface, we use linearly polarized light in excitation and cross-polarized
detection. In this way, we suppress the background laser light by 3-4 orders
of magnitude, limited by the fiber. This leaves the resonance fluorescence as
the dominant contribution to the detected signal. The RF configuration is
enabled by the circular selection rules in a magnetic field. To distinguish the
linear response from the (weaker) nonlinear response as explained above,
we use an EOM placed between two crossed polarizers as an amplitude
modulator in one arm of the interferometer (see Fig. 5.3). We apply a
triangular voltage profile to the EOM to create an electric field amplitude
with sine modulation at frequency of ωm/2π = 8011 Hz. We optimize the
EOM input voltage profile and the EOM alignment to realize a clean sine
modulation at this frequency, with less than a percent of higher order
harmonic contributions at 2, 3, 4 × ωm. The modulated excitation field
becomes E(t, τ) = E1(t) sin (ωmt) + E2(t, τ). We finally couple the reflected
signal to a single-mode fiber and send it to an APD, making sure that the
count rate is well in the linear regime of the APD (∼ 80 000 s−1). Due to the
modulation, the power spectral density I(ω, τ) contains terms that oscillate
at multiples of the modulation frequency ωm. Expanding the first order
terms in Eq. (5.1)

∣∣∣P (1)
1 (t) sin (ωmt)

∣∣∣
2

+
∣∣∣P (1)

2 (t, τ)
∣∣∣
2

+2ℜ
(
P

(1)
1 (t)

∗
sin (ωmt)P (1)

2 (t, τ)
)
,

we find that a field autocorrelation term appears at frequency ωm. The next
order terms are the cross-products between linear and nonlinear polarizations
with subscripts denoting fields originating from optical paths 1 and 2

2ℜ((P (1)
1

∗
sin (ωmt) + P

(1)
2

∗
)

· (P (3)
111 sin (ωmt)3 + P

(3)
112 sin (ωmt)2 + P

(3·)
122 sin (ωmt) + P

(3)
222)).
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5.1 Experimental Methods and Polariton Spectroscopy

It turns out that 3ωm is the first frequency for which P (3) contributes to all
terms with no background from P (1), so I(3ωm, τ) is used to monitor the
nonlinear response. Similar techniques have been used for four-wave mixing
experiments in collinear geometry [239–244].

The measurement procedure goes as follows. For a chosen magnetic field,
we first set the cavity energy which defines the polaron content for the LPσ− .
We then tune the laser pulse central energy to the LPσ− resonance and sup-
press the reflected laser light. We note that when scanning B (typically
by few 100 mT) around a given filling factor (e.g. ν = 2/5) the singlet
polaron resonance energy shift is small compared to the polariton normal
mode splitting3: as a consequence, we can keep the cavity energy constant
while studying a given filling factor. We also keep the average intensities of
pump (1) and probe (2) equal, which was found to result in a good signal
to noise ratio. For each time delay τ , we acquire photon counts for 1 s, with
the exception of Fig. 5.4, where we used 10 s acquisition time. The APD
sampling frequency is 1 MHz, but data binning then leads to an effective
sampling frequency of 9ωm. We then calculate the absolute value of the
Fourier transform I(t, τ) 7→ I(ω, τ) for the recorded time traces, from which
we extract frequency bins corresponding to the first multiples of ωm. After
background removal, we finally obtain I(ωm, τ) and I(3ωm, τ). The back-
ground is estimated by averaging I(ω, τ) in frequency bins in the vicinity of
the frequency of interest, because the background noise was not completely
white, i.e. showed some frequency dependence.

We perform two test experiments to verify the procedure (not displayed).
First we red-detune the laser away from any polariton resonances. Our sam-
ple then acts as a simple mirror due to the high cavity reflectivity. We adjust
the detection polarizers such that the ADP count rate matches the one used
in the main experiment. By applying the same experimental procedure to
the signal, we observe that I(ωm, τ) corresponds to the laser pulse spec-
trum, whereas no signal is observed at the frequency 3ωm. This excludes
the possibility that the detector or any other optical elements in the setup
contribute to the observed nonlinear signal. In another test experiment, we
check the behavior of I(3ωm, τ) in response to cavity-polaron detuning. We

3This does not imply a small energy shift for the polariton formed from this singlet polaron,
as presented in Fig. 5.1.
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5. Polariton Interactions in the Fractional Quantum Hall Regime

observe that the nonlinear signal decreases when we red-detune the cavity
with respect to the polaron energy: this is the expected behavior since the
polaron content of the polaritons is decreased, and the polaritons are thus
more photon-like and the interaction strength decreases.

5.2 Time-Resolved Interaction Measurements

5.2.1 Enhanced Nonlinear Response at Fractional Fillings

We focus on the LPσ− around ν = 2/5 (B = 3.15 T). The signal extracted
at the modulation frequency ωm is plotted against time delay τ between
the pulses in Fig. 5.4(a). We observe that I(ωm, τ) features a fast oscilla-
tion modulated by an exponential envelope. This is the expected waveform
since I(ωm, τ) is, to lowest order, the autocorrelation signal of the resonance
fluorescence emitted by the sample: the carrier frequency of the fast oscil-
lation corresponds to the (under-sampled) optical frequency and the char-
acteristic decay time of the envelope is the polariton coherence time TLP =
24±1 ps (dashed black line). The nonlinear contribution I(3ωm, τ), depicted
in Fig. 5.4(b), also exhibits fast oscillations as function of time delay τ but
its envelope has a more complex structure as a consequence of the interplay
between several interfering nonlinear terms, with characteristic timescales
TLP and TLP/3. The different contributions appear to compensate exactly
at short delays (τ = 0). Figure 5.4(c) shows a double-logarithmic plot of the
integrals ⟨I(ωm, τ)⟩τ =

∫ I(ωm, τ)dτ and ⟨I(3ωm, τ)⟩τ =
∫ I(3ωm, τ)dτ as a

function of the average incident power. We observe that the former exhibits
a power law with exponent 1.3 ± 0.3, which is consistent with the expected
linear behavior. By contrast, ⟨I(3ωm, τ)⟩τ shows a power law with exponent
2.2 ± 0.3 that is consistent with the anticipated dependence of third-order
nonlinear response, validating that ⟨I(3ωm, τ)⟩τ is indeed a good measure of
the nonlinearity. The observed deviation of the power law exponents from
the expected values 1.0 and 2.0 is most likely due to systematic errors on
the input power calibration. We emphasize that the measured nonlinearity
occurs on timescales that are comparable to the polariton lifetime, which
demonstrates that our method allows us to access (fast) polariton-polariton
interactions. We also note that the nonlinear response saturates at high op-
tical powers (Fig. 5.4(c)). The saturation behavior of ⟨I(3ωm, τ)⟩τ at high
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Figure 5.4: FWM traces and power dependence obtained for ν = 2/5 (B =
3.145 T). (a) Autocorrelation signal at ωm. (b) Nonlinear terms at 3ωm. All data is
normalized to the maximal value of the linear response (red diamond). The dashed
black line in (a) shows a double-sided exponential decay fitted to the envelope of
the linear response to obtain TLP. The input average power was set to I2 = 2 nW.
(c) Evolution of the linear (blue squares) and nonlinear (orange circles) signal in-
tegral values as a function of the incident optical power (double logarithmic plot).
The input power is given as the average power of the delayed pulse (i.e. I2), and
the error bars correspond to the statistical error on the counts only. We fit the data
before saturation of the nonlinearity (full circles) by a power law (blue and orange
lines). Errors on the power law exponents are dominated by systematic errors on
the input power.
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optical powers may be attributed to the saturation of the LPσ− red shift
induced by a change in ν. Saturation could also be a consequence of (slow)
light-induced modifications of ne, which may start to play a role at the high-
est powers investigated.

We now analyze the evolution of ⟨I(ωm, τ)⟩τ and ⟨I(3ωm, τ)⟩τ as a func-
tion of ν by measuring I(t, τ) for different values of B. The data consists of
three sets centered around filling factors 1, 2/3, and 2/5 that exhibit clear
signatures of optical coupling to quantum Hall states, as demonstrated by
the linear spectroscopy experiments in Fig. 5.1. For each data set, we tune B
to access neighboring filling factors while keeping the cavity energy constant
and adjusting the laser frequency to resonantly excite LPσ− . Our main result
is the remarkable ν-dependence of the nonlinear signal I(3ωm, τ) shown in
Fig. 5.5(a). The three panels show this nonlinear signal extracted around
filling factors ν = 1, 2/3 and 2/5, shown in the colormap as function of
magnetic field B and pulse delay τ . We observe a strong increase of the
nonlinearity at fractional filling factors ν = 2/3 (B ≃ 1.95 T) and ν = 2/5
(B ≃ 3.15 T), as compared to neighboring filling factors. Away from these
states, e.g. for B = 3.5 T, the nonlinearity becomes weaker and eventually
comparable to the noise level of our apparatus. This gives clear evidence that
polariton-polariton interactions are enhanced around the fractional quantum
Hall states ν = 2/3 and ν = 2/5. In stark contrast, we observe that I(3ωm, τ)
is only marginally modified around the integer filling factor ν = 1. We sum-
marize our results in Fig. 5.5(c), where we provide values of the enhancement
of polariton-polariton interactions close to fractional filling factors, obtained
by calculating the ratio of the areas Ra = ⟨I(3ωm, τ)⟩τ / ⟨I(ωm, τ)⟩τ and the
ratio of the signal peak-to-peak values4Rpp. At ν = 2/5, both measures show
a significant enhancement of the interaction, of the order of 10, as compared
to neighboring filling factors.

We speculate that the enhanced optical nonlinearity we observe for polari-
tons generated by σ− excitation is a consequence of the fragility of FQHE
states against changes in ν. Due to the absence of electron-hole symmetry
at low B fields, optical excitation of an electron to the spin-up LL0 mod-
ifies the effective filling factor by creating quasiparticles. The size of the
incompressibility gap should determine the number of extra electrons that

4Def. Rpp = (max(I(3ωm, τ)) − min(I(3ωm, τ))) / (max(I(ωm, τ)) − min(I(ωm, τ))).
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Figure 5.5: Enhancing interactions between quantum Hall polaritons at frac-
tional filling factors. (a) Nonlinear response I(3ωm, τ)/I0 and (b) linear response
I(ωm, τ)/I0 as a function of B, in vicinity of filling factors ν = 1, 2/3 and 2/5.
All data is normalized by the same value I0 as in Fig. 5.4. (c) Enhancement of
the nonlinearity, as revealed by the ratio of 3ωm and ωm responses. Two different
measures of the enhancement strength are plotted, the area Ra integrated over τ
(squares) and the signal peak-to-peak Rpp (triangles). In order to obtain a lower
bound for the enhancement of interactions, we compare the signal to the noise level.
Taking the outermost points in each panel as reference points, the y-axis on the
right hand side gives the relative enhancement of U . The gray shaded area is the
standard deviation of the reference points. The excitation power for all measure-
ments is I = 20 ± 3 nW.
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can be excited (by photons) before the electronic system becomes compress-
ible. Optical modification of the electronic ground-state in turn modifies the
ability of the electrons to dynamically screen the excitons, resulting in a con-
ditional shift of the polaron-polariton resonance that underlies the nonlinear
response. In contrast, for IQHE state ν = 1, we do not observe a significant
enhancement of interactions because the electronic state is robust against
small deviations in the filling factor, which in turn leads to a small modifica-
tion of the photonic resonances. One might wonder whether the nonlinearity
is simply proportional to the derivative dELP/dν, induced for example by
light-induced changes in ne. The polariton energies do disperse with filling
factor even for ν = 1 Fig. 5.1(a). We therefore conclude that a simple light
induced change in ne (disregarding the relevance of the timescale at which
this change occurs) cannot explain the observed magnetic field dependence
of the nonlinearity.

Further experimental evidence supporting this tentative explanation is pro-
vided by exciting the LPσ+ resonance at ν = 2/5, where we did not observe
any enhancement of the nonlinearity. Since σ+ excitation generates an elec-
tron in the spin-down LL0, it does not lead to a direct modification of ν;
the absence of an enhancement of nonlinearity for σ+ excitation is therefore
consistent with our explanation. We repeated the experiment around the
ν = 1/3 state (B = 3.9 T), where we also did not observe an enhanced non-
linearity. We argue that this is due to the suppression of σ− polarized polaron
formation due to perfect spin polarization of the 2DES at ν ≤ 1/3, leaving
the polariton mode mostly photonic (we refer back to Section 3.3.3). The
large incompressibility gap of ν = 1/3 may also contribute to the suppression
of the nonlinearity.

Last but not least, we measured enhanced nonlinearity also on a second
sample with higher electron density (sample B) for the ν = 2/3 state at
B ≃ 8.6 T. We plot, in Fig. 5.6(a), the white light reflectivity measurement
recorded in (imperfect) σ− polarization around filling factor ν = 2/3 (B ≃
8.6 T) at the detuning chosen for FWM measurements. Note that, contrary
to the low electron density device presented in Fig. 5.1(b), the ν = 2/3 state
is spin-polarized at this magnetic field. This is observed in the reflection
spectrum, that resembles the spectrum recorded for the (spin-polarized) state
at ν = 2/5 in sample A. There is a sharp reduction of normal mode splitting
at B = 8.65 T. We note however that the coupling efficiency of incident light
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Figure 5.6: Additional FWM data from sample B. (a) Normalized white light
reflectivity spectrum recorded using σ− polarized light. At B = 8.6 T, the optical
signature of ν = 2/3 shows as a reduction of the polariton splitting around 1527 meV
(note that the upper polariton is particularly faint). (b) FWM experiment around
filling factor ν = 2/3. The top row shows I(ωm, τ) while the bottom row shows
I(3ωm, τ). All data has been normalized to the maximal value of I(ωm, τ) at B =
8.65 T (red diamond). The integration time was chosen equal to 10 s and the input
power was 35 ± 5 nW.

into the polariton modes was reduced in this high-density sample. We show,
in Fig. 5.6(b), the results of our time-resolved four-wave mixing measurement
around ν = 2/3. We observe a clear nonlinear response I(3ωm, τ) when ν
is tuned to 2/3 exactly. As we go away from ν = 2/3, the nonlinearity
decreases (bottom row). This behavior is very similar to the one presented
above for the low-density sample, since we observe a strong dependence on
the filling factor of the nonlinear response I(3ωm, τ). The top row also
shows the linear response I(ωm, τ) for comparison. With this measurement,
we demonstrate the repeatability of our measurement, using another sample
with higher electron density. A quantitative comparison of the interaction
strengths between the two samples, is however rendered difficult due to the
different experimental conditions relevant for the two samples; in particular,
due to the strong difference in coupling efficiency of incident light into the
polariton modes in the two samples.
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5.2.2 Interactions and Kerr Model for an Intrinsic QW

We have demonstrated that the nonlinear response of polaron polaritons
increases as we tune the system to fractional quantum Hall filling factors.
This enabled us to quantify the enhancement of polariton interactions at
fractional filling factors as compared to more generic filling factors in the
vicinity of these particular fractional quantum Hall states. This is a rela-
tive comparison and experimentally very robust because a change in mag-
netic field by a fraction of a Tesla is the only control variable. However,
we would like to attempt a more quantitative estimation of the interactions
strengths from the measured nonlinear response. For this purpose, we per-
form the same FWM experiment on sample C with a gate voltage applied
in order to remove the 2D hole gas. It is a model system for an intrinsic,
undoped QW but structurally more comparable to sample A. In this sec-
tion, we will report aforementioned FWM experiments on the QW sample
and develop a model based on the driven-dissipative Gross-Pitaevskii equa-
tion for polaritons [245, 246] to account for the nonlinear response. This
will establish a direct link between the measured nonlinear response and the
underlying polariton-polariton interaction strength. It also allows a compar-
ison to known values of the exciton-exciton interaction strength. In the next
section, we will extend this analysis to the experiments in the FQH regime.

In order to approximate the experimental conditions in the quantum Hall
regime, we performed this measurement under a 10 T magnetic field5. This
ensures that we are able to address a single exciton spin species by us-
ing linearly polarized excitation pulses. Furthermore, it allows for cross-
polarization, i.e. orthogonal detection of resonance fluorescence from a σ−

polarized LP resonance. To quantify the interaction, we compare our mea-
surements with solutions of a single mode Gross-Pitaevskii equation for the
complex field ψ(t), which requires that we estimate the polariton number
N = |ψ(t)|2 created by laser excitation in our experiment. Since we use
pulsed resonant excitation with a low excitation duty cycle, we do not in-
clude in our model contributions from a dark exciton reservoir. We estimate
the polariton occupation number N under pulsed picosecond laser excita-
tion. The (Gaussian) laser pulse has a measured full width at half maxi-
mum (FWHM) that is equal to 460 µeV, while the LP resonance (Lorentzian)
showed a FWHM of 300 µeV. From this, we estimate the spectral overlap
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Figure 5.7: Polariton characterization for the depleted QW. (a) Evolution of the
reflectivity spectra as we tune the cavity energy across the exciton resonance. The
red line marks the cavity energy for the spectrum shown in the right panel. (b) Back-
ground subtracted spectrum (blue dots). The black line shows Lorentzian fits to
the spectrum. From the peak areas, we determine the exciton content |X|2 = 0.7.
The lower polariton amplitude is ηc = 0.24.

between the laser pulse and the LP line ηs = 0.57. We show normalized
white light reflectivity in Fig. 5.7 as function of cavity energy (position on
the sample). The measurement was taken in linear polarization, so that two
branches are visible for the lower polariton. In the line-cut, the upper polari-
ton does not display a resolved polarization splitting due to its high cavity
content. Based on this data, we also estimate the exciton content |X|2 = 0.7
and the coupling efficiency into the LP mode ηc = 0.24, from Lorentzian
fits in Fig. 5.7(b) to the relevant detuning marked by the red dashed line.
Knowing the laser power impinging on the sample surface, we can estimate

N = ηsηcnph,

where nph = pcw/(ℏωLfrep) is the photon number per pulse, pcw is the average
input power, frep = 76 MHz is the pulse repetition rate and ωL is the laser
center frequency.

To model the time-resolved experiment described above, we use a single

5For B = 10 T, we do not expect the magnetic field to strongly influence the strength of
exciton-exciton interactions since the exciton Bohr radius is still of the same order as the
magnetic length.
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mode Gross-Pitaevskii equation for the lower polariton wave function:

dψ(t)
dt

= −γ

2ψ(t) − ig|ψ(t)|2ψ(t) + F (t, τ, tmod) , (5.2)

where g is the nonlinearity and γ = 0.1 ps−1 is inherited from the cavity
decay rate. The (modulated) drive term reads:

F (t, τ, tmod) = A1(tmod)G(t) +A2G(t− τ)eiωLτ ,

where G(t) and G(t−τ) are 4 ps FWHM Gaussian envelopes delayed by τ , A1
is the (modulated) amplitude of the first pulse and A2 the (constant) ampli-
tude of the delayed pulse. In the simulation, we adjust the pulse amplitudes
A1 and A2 to match the intra-cavity polariton number N we estimated in the
previous paragraph. The pulse intensities, averaged over a modulation cycle,
are chosen to be equal, as was the case for the experiments. Of course there is
only one physical time axis t, but we introduced a separate variable tmod for
numerical convenience. Because of the large separation between timescales
1/frep ≪ 1/fmod, we can consider tmod = const. for each individual pulse.

We calculate the solution ψ(t) for every τ and we repeat this procedure for
different values of A1(tmod) =

√
I1 sin(ωmtmod), thus simulating the experi-

mental procedure (time-resolved four-wave mixing). We then Fourier trans-
form ψ(t) to obtain the calculated Fourier spectrum Imodel(ω, τ) that we
directly compare to the experiment as shown in Fig. 5.8. The top row shows
the linear response at ωm, the bottom row the nonlinear response at 3ωm,
both evaluated for increasing input powers towards the right. In the end, the
simulation includes only two free parameters: the interaction strength g and
a global scaling factor ϕ that accounts for the finite detection efficiency in our
experiment I(ω, τ) = ϕImodel(ω, τ), where ϕ is common to all values of ω and
τ . We determine the parameter ϕ by fitting Imodel(ω = ωm, τ) to our experi-
ments. Then, we obtain g by adjusting Imodel(ω = 3ωm, τ) to best reproduce
our measurements. Note that, given the estimate ofN = |ψ|2 ∝ I(ωm, τ), the
information about g is contained in the ratio of I(3ωm, τ)/I(ωm, τ), where
ϕ drops out.

We show, in Fig. 5.8, the results of our fit, which yields a value of g =
0.54±0.08 µeV for the polariton interaction strength (accounting for statisti-
cal errors only, s.d.). To convert this single mode interaction energy into a 2D
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polariton-polariton interaction constant Up, we multiply g by the polariton
mode area A: Up = A × g. Based on the numerical aperture of our objec-
tive NA = 0.15, we expect the excitation beam to extend over A = 11 µm2,
which results in U = 6.2 µeV µm2. Finally, we estimate the exciton-exciton
interaction strength by dividing Up by the exciton content squared:

Ux = A · g/|X|4 = 12.5+2 (18)
−2 (9) µeV µm2 (5.3)

This result is compatible with other values reported in the literature [11, 31,
32, 47, 48, 231, 235, 247, 248]. The largest sources of errors on the measure-
ment of Ux originate from the estimate of N and A which are subject to large
systematic errors (given in parentheses). Our estimate of N could indeed eas-
ily be off by a factor of two. Additionally, our estimate of A might deviate
from the spot size estimate due to polariton diffusion and will eventually be
modified by the exciton-exciton interactions. Altogether, this leads to the
error estimate of Eq. (5.3). We observe a small deviation in the power depen-
dence between experiment and fit. This discrepancy is due to a systematic
calibration error of the input power which also led to the observed devia-
tion in the slopes measured in Fig. 5.4(c). However, the resulting systematic
error on g is small compared to the first two contributions. We expect our
measurement technique to give more accurate results in experimental geome-
tries that allow imaging the polariton cloud in real-space and measuring in
transmission. This would lift the constraint of cross-polarization between
incident and detected light and allow for additional separation of nonlinear
terms according to emission angle.

5.2.3 Interaction Strength in FQH States

By estimating the polariton occupation number N and analysis of the FWM
signal for exciton-exciton interactions, we were able to benchmark the mea-
surement technique in absolute terms. The agreement between the experi-
ments and the model, as well as obtaining the expected strength of exciton-
exciton interactions validates our approach. We now return to the interaction
strength in the FQH regime. Applying the same analysis to the nonlinear
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Figure 5.8: Comparing FWM data to GPE predictions for an intrinsic QW. Top
row: comparison between the measured (blue circles) and calculated (shaded area)
I(ωm, τ) for different input powers, used to calibrate the detection efficiency ϕ.
Bottom row: comparison between the measured (orange circles) and calculated
(shaded area) I(3ωm, τ) for different input powers, yields a value of g = 0.54 µeV
for the polariton interaction strength.
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signal at ν = 2/5 yields

Up = 57+7 (80)
−7 (40) µeV µm2, (5.4)

where the first uncertainty is statistical (s.d.) and the second (in parenthesis),
is our best estimate of systematic errors stemming from our estimation of the
polariton number and mode area. We note again that, while the absolute
measurement of Up is susceptible to large systematic errors, the relative
variation of Up is only susceptible to statistical errors.

Although our model reproduces the delay-time-dependence of our mea-
surements for the neutral QW, the observed response close to fractional
filling factors is not fully captured by this description in terms of a Kerr
nonlinearity, as is evident from Fig. 5.9. While the signal at ωm matches to
the experiment (top row), the nonlinear part at 3ωm (bottom row) deviates.
Most notably, although the mean-field model predicts that I(3ωm, τ) only
takes large values for positive delays (see I(3ωm, τ) in Fig. 5.8, we observe,
in the fractional quantum Hall polariton case, that I(3ωm, τ) is symmetric
about τ = 0 and thus takes large values for negative delays as well (see for
example the symmetric shape of I(3ωm, τ) in Fig. 5.4(b) above). To obtain a
quantitative estimate of the interaction constant of fractional quantum Hall
polaritons that we can compare to the value obtained for exciton polaritons
in a neutral quantum well, we therefore apply the procedure described in
the previous paragraph (measurement and model of exciton-polariton inter-
actions), where we restrict the fit to the signal observed at positive delays.

This remark notwithstanding, we repeat the steps described above to give
a first estimate of the interaction constant. The lifetime was adjusted to
γ = 16 ps to account for the observed narrowing of the linewidth. We find
that interactions are enhanced by a factor 4.6 ± 0.9 in the 2DES sample
as compared to the neutral QW sample. For estimating the relative en-
hancement of interactions, note that the only relevant error bar is statistical
(U = 57±7 µeV µm2) since the systematic error affects all the measurements
the same way. We emphasize that the measured LPσ− linewidth at ν = 2/5,
γ ≃ 67 ± 5 µeV, is comparable to linewidths used in recent state of the art
experiments [31, 32]. The lower polariton matter content and linewidth were
extracted from Fig. 5.2(b). Finally, the same analysis is repeated once more
for the case ν = 2/3.
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Figure 5.9: Estimation of the polariton interaction constant at 2/5. Comparison of
the linear I(ωm, τ) (top row, blue circles) and nonlinear response I(3ωm, τ) (bottom
row, orange circles) at ν = 2/5 with the GPE model (gray).

The results for all of our measurements of U are summarized in Table 5.1
for the 2DEG sample at different filling factors as well as for the undoped
sample. In the table, we only provide the statistical error bars that are
relevant to compare relative variations of U between columns of the Table. At
ν = 2/5, we observe that interactions are enhanced by more than an order of
magnitude as compared to a neighboring filling factor (taken at B = 3.0 T).
This is consistent with our estimation of the enhancement of interaction
based on measuring the area of I(3ωm, τ). Compared to the undoped QW,
we find that U is increased by a factor 4.6 ± 0.9 at ν = 2/5. This result
indicates that away from ν = 2/5 and ν = 2/3, polaron-polariton interactions
may be reduced as compared to exciton-polaritons in the neutral quantum
well. Nevertheless, in the ν = 2/5 case, the ratio U/(Aγ) approaches unity
(for A = 1 µm2), which indicates that polariton blockade is within reach.

We conclude by discussing a possible objection to our claims based on
changes in detuning between the cavity and attractive polaron resonances.
Since polaritons interact through their matter part, a change in the attractive
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Parameter Undoped 2DES 2DES 2DES
QW ν = 2/3 ν = 2/5 B = 3 T

U (µeV µm2) 12.5 ± 2 38 ± 4 57 ± 7 ≤ 4.5
γ (µeV) 300 ± 30 87 ± 4 67 ± 5 97 ± 4
N (nW−1) 7.5 ± 1 3.6 ± 0.3 2.2 ± 0.3 3.3 ± 0.4

Table 5.1: Summary of the estimated interaction constants and fitted linewidths
for the undoped and 2DES experiments. The polariton number N is estimated
as described in Section 5.2.2 given per cw-equivalent laser excitation power. The
quoted error bars are statistical (1 s.d.).

polaron content of the polaritons as a function of B would also lead to a
modification of polariton-polariton interactions: polaritons with a higher
polaron content will indeed show larger interactions6. Therefore, for ν = 2/5,
we may ask if part of the enhancement of the nonlinear signal, presented
in Fig. 5.5, could be due to variations in the matter content of LP as we
vary the magnetic field. This is in fact not the case as we demonstrate
in the following. Our estimation of the enhancement of the nonlinearity is
based on a comparison of the quantity Ra = ⟨I(3ωm, τ)⟩τ / ⟨I(ωm, τ)⟩τ for
different values of ν. We note that Ra is proportional to UpN , where N is
the injected number of lower polaritons. For a pulsed excitation experiment
where the pulse spectral width is larger than the polariton linewidth, N is
proportional to the LP photonic content |C|2 = 1 − |X|2. Therefore, the
nonlinear signal Ra is proportional to UN ∝ |X|4(1 − |X|2), which reaches
its maximum for |X|2 = 2/3. In the specific case of ν = 2/5, the lower
polariton becomes more matter-like at B = 3.15 T (|X|2 = 0.88) than it is
at B = 3 T (|X|2 = 0.8). Because |X|4(1 − |X|2) is a decreasing function of
|X|2 for |X|2 > 2/3, it turns out the observed change in matter component
by itself cannot explain the measured increase of Ra. Equivalently, if Up had
remained constant as we increased the field from B = 3 T to B = 3.15 T, we

6Recent T-matrix calculations actually suggest that polariton interactions may exceed
exciton interactions in certain conditions [249, Chapter 2], which is beyond the simple
picture Up = |X|4Ux we introduced earlier.
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would have observed a reduction of Ra. As a result, we conclude that our
estimation of the enhancement of U based on the evolution of Ra around
ν = 2/5 is conservative and that we may be underestimating the increase of
Up by not taking into account the changes in |X|2.

5.2.4 Increase of Polariton Coherence Time

We have observed, in Fig. 5.5(b), an interesting evolution of the (mostly
linear) term I(ωm, τ) as we tune B: the characteristic decay time of I(ωm, τ)
(i.e. the polariton coherence time TLP) increases for ν = 2/3 and ν =
2/5. We present, in this section, a detailed study of this effect versus input
pump power. We show, in Fig. 5.10(a), a semi-log plot of a typical delay
trace I(ωm, τ) (green). To extract TLP, we fit the envelope of this trace
by a double exponential decay (black line): TLP is directly given by the
exponential decay time. In the following Figs. 5.10(b) to 5.10(d), we plot the
fitted values of TLP as a function of input pump power around filling factors
ν = 1, 2/3, 2/5. In every panel, we show a data set recorded when B is
tuned to the corresponding quantum Hall states (blue points), and another
data set recorded at a slightly different filling factor (orange points).

At exactly ν = 2/3 and ν = 2/5, we observe that TLP first increases sharply
and then stabilizes at a value two to three times larger to its low-power value.
This increase of TLP coincides with the enhancement (and high power satu-
ration) of the nonlinearity at filling factors ν = 2/3 and ν = 2/5 discussed
above. In stark contrast, slightly away from these filling factors, as well as for
ν = 1, TLP stays relatively stable around its low power value. In another set
of experiments, we extracted TLP by measuring the Lorentzian width of LPσ−

in white light reflectivity spectra as a function of input power; this study (not
shown here) led to the same observations. These results suggest a nonlinear
behavior of I(ωm, τ) at fractional filling factors. However, monitoring the
average value ⟨I(ωm, τ)⟩τ versus power (particularly evident in Fig. 5.4(c))
shows that ⟨I(ωm, τ)⟩τ remains linear in excitation power. At this stage, the
origin of this power dependent enhancement of TLP thus remains unknown.
While the measured increase in nonlinearity is clearly an advantage for im-
plementing strongly interacting polaritons, it is unclear whether the observed
(high power) increased coherence time and thus decreased linewidth could
also be beneficial for realizing polariton blockade. This is due to limitations
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Figure 5.10: Increase in polariton coherence time TLP with input power at frac-
tional quantum Hall states. (a) Extraction of TLP, showing an exemplary linear
response in a logarithmic plot with the fit to the envelope in green. The inverse
slope corresponds to TLP. (b-d) Dependence of TLP on input power for the filling
factors ν = 1, ν = 2/3 and ν = 2/5. Blue circles correspond to the magnetic field
at the quantum Hall state, orange circles to a magnetic field nearby.

on the photon number, which might constrain such an experiment to input
powers below a few nanowatts [30]. We remark that the enhanced coherence
time was also reproduced on sample B, shown in Fig. 5.6(b). Despite these
comments, the observed increase in coherence time has its merits. One would
expect a decrease in polariton coherence time with increased pump power
due to accumulation of excitons and charge carriers [250]. The fact that the
coherence time is not decreasing at these input powers is encouraging for
future experiments, and is consistent with the fact the we observe narrow
LP linewidths even with large attractive polaron contents.

5.3 Conclusion and Perspectives
We demonstrated an increased nonlinear optical response at FQH states
ν = 2/5 and ν = 2/3. Strong enhancement of polariton-polariton inter-
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actions around FQHE states opens up new perspectives for the study of
strongly correlated electron as well as for photonic systems. Our experi-
ments show that despite their qualitatively similar linear optical response,
fractional and integer QH states show strikingly different nonlinear optical
signatures: this suggests that nonlinear spectroscopy could reveal signatures
of strongly correlated electronic systems that are not accessible by linear
optical or transport measurements. Understanding the physical mechanism
for enhanced nonlinear response and prolonged polariton coherence times for
FQHE states constitutes an interesting problem for future studies.

Embedding our sample in a zero-dimensional cavity with a mode area
of A = 1 µm2 would yield Up/(Aγ) = 0.85, which indicates that polariton
blockade regime is within reach. Since GaAs is the material of choice for
high quality 2DEGs, the GaAs substrate should be removed to allow for
optical transmission experiments [128]. The substrate could be replaced by
a dielectric mirror which would improve the cavity quality considerably. For
confinement into zero dimensions, a dimpled fiber cavity could be used [251].
However, due to increased vibration noise in a dilution refrigerator compared
to a helium bath at 4 K, it might be desirable to give up mechanical degrees
of freedom for cavity alignment and tunability in exchange for a more robust
cavity design to ensure stable cavity operation [252–255]. In addition to
prospects for realizing antibunched single photon emission, improving on
previous works [31, 32], we envision photon correlation measurements as
a promising spectroscopic tool for investigating electronic phase transitions
between different quantum Hall states.
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In this dissertation, we studied a unique combination of photonic and elec-
tronic systems. An optical cavity was resonantly coupled to excitations of
a 2D electron gas, and together they were subjected to millikelvin tempera-
tures and external magnetic fields. This opened up experimental studies of
one of the most fascinating strongly correlated electronic systems discovered
to date, the quantum Hall regime of a two-dimensional electron gas. Further-
more, special heterostructure design and reaching the strong coupling regime
of cavity QED allowed for the hybridization of photons with many-body po-
laron excitations in the 2DEG to form a sensitive optical probe. Thanks
to said hybridization, this platform allows for non-perturbative control of
polaritons, and thereby photons, simply by tailoring the polaron part of the
wave function. This feature takes polaron-polaritons beyond a tool to study
the quantum Hall effect—but enables engineering of novel photonic devices
by making use of well-developed technologies to control electronic systems.

Polaron-polaritons are collective excitations of excitons dressed by Fermi
sea electron-hole pairs. The cavity character ensures further delocalization in
space over micrometer length scales. Via their polaron component, these par-
ticles remain sensitive to the surrounding electron gas. We identified jumps
in the Fermi energy connected with transitions between quantum Hall states
and found discontinuities related to the incompressible nature of the electrons
at particular fillings. Through careful sample design, protecting the donor
impurities from optical illumination, perturbations of the electron density by
the probe were minimized compared to earlier devices. Polarization selective
polariton spectroscopy reveals the electronic spin polarization. We studied
skyrmion spin textures in the vicinity of the ν = 1 quantum Hall ferromagnet
by measuring the evolution of the spin polarization as function of ν. We an-
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alyzed the question whether it is possible to move neutral optical excitations
with electric and magnetic fields in the context of polaron-polaritons. We
found that tailoring electron density profiles directly exerts in-plane forces
on the immersed polaritons. Hence, the transport of polaritons could be
achieved via the much easier task of controlling the charge carrying elec-
trons, which readily respond to the external fields. Extending this idea to
spin polarized electrons yields polariton polarization control, allowing us to
exert spin-selective forces on polaritons. Finally, we turned our attention to
the problem of polariton-polariton interactions. It is an ongoing challenge
to increase such interactions, because they remain too weak to realize strong
single photon interactions. Achieving this task could lead to a new type of
high repetition rate single photon source based on polariton blockade while
at the same time realizing the building block for an optical analog comput-
ing and quantum simulation platform. We observed an enhanced nonlinear
response from polaron-polaritons when coupled to fractional quantum Hall
states ν = 2/5 and ν = 2/3. This suggests enhanced effective photon-
photon interactions. Our findings demonstrate the prospects of this avenue
to progress towards stronger interactions: instead of relying on ever increas-
ing optical and excitonic confinement—to tailoring the exciton or polaron
into more exotic complexes that increase the bare interaction strength.

There are limitations to our work that simultaneously highlight fruitful
areas for further advancements. We discussed how our sample layout faces a
trade-off between optical and electronic transport qualities. While the doping
quantum well design minimizes the impact of undesired impurity ionization,
they inhibited electronic transport experiments by providing parallel chan-
nels for the current to flow. This limitation could be overcome by patterning
additional gate structures to selectively deplete the DQWs (see e.g. [228])
and hence improve the transport properties, without compromising the op-
tical properties of the device. While we achieved polariton acceleration via
density control of the 2DEG, other proposed mechanisms could be investi-
gated which are of both practical and fundamental interest, such as polaron
transconductivity [207], polariton transport via Coulomb drag [202–204] or
the complementary effect of photon drag [256]. An exciting goal consists of
the realization of artificial gauge fields for polaritons [28, 194, 257], with po-
tential applications for analog (quantum) simulation with polaritons [12, 13]
and creating topological [191] and correlated states of light [25, 29, 258, 259].
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We expect such studies to advance the understanding of optical excitations
in doped semiconductors and their interactions, which is a topic of current
interest [84, 85, 87, 88, 91].

The most important challenge to advance quantum simulation based on
polaritons, and optical systems in general, lies in realizing an effective sin-
gle photon nonlinearity [4]. The strength of interactions has to be com-
pared with the photon bandwidth, hence a significant step forward could be
achieved by improving the microcavity quality [112, 260], preferably by re-
placing the MBE grown DBR stacks altogether. This would entail multiple
benefits, besides reduced loss and higher reflectivity dielectric coatings for
the cavity. The 2DEG quality in terms of mobility (and observable frac-
tional states) is an order of magnitude lower for our structures compared to
optimized 2DEGs from the very same growth chamber, capable of realizing
state-of-the-art 2DEGs. Furthermore, the 2DEG being buried deeply from
the surface, below the top DBR stack, is a hindrance when it comes to pro-
cessing and gating the devices—especially on short length scales relevant for
exotic quasiparticle braiding [22, 186, 187]. Another step into this direction
might require the spatial separation of the 2DEG and the optical probe and
control into separate quantum wells to further reduce the perturbation in-
duced by optical pumping. In the context of tunneling spectroscopy, the idea
of a remote probing quantum well was applied with great success [261, 262].
Exploring exciton-polariton mediated superconductivity of 2D electrons re-
mains an outstanding goal [263, 264]. We conclude by mentioning that all
our ideas could find a natural implementation with 2D van-der-Waals mate-
rials as alternative to the GaAs platform. Semiconducting layers providing
optoelectronic functionality [265] can readily be integrated with graphene
hosting the quantum Hall effect [266–268] and other correlated states [269,
270], creating a rich playground for further study at the interplay between
photonics, light-matter coupling and strongly correlated electrons.
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