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Abstract—Collective operations such as scatter, gather, re-
duce, etc are utilized broadly to implement distributed HPC
applications and are the target of extensive optimization in all
MPI implementations as well as dedicated collective libraries
by accelerator vendors (e.g. NCCL and RCCL by NVidia and
AMD respectively). We present ACCL, an open-source FPGA-
accelerated collectives library designed to serve applications
running primarily in Xilinx FPGAs. Compared to previous
collective communication solutions for FPGA, ACCL is flexible
and extensible, easily portable, and fast. We evaluate ACCL up
to 8 nodes and demonstrate that ACCL outperforms OpenMPI
over 100 Gbps TCP-IP for large messages.

Index Terms—FPGA, collectives, MPI

I. INTRODUCTION

Distributed and accelerated computation is essential to
many modern HPC and datacenter applications. Distribution is
achieved through specialized communication libraries such as
MPI, which in addition to simple peer-to-peer communication
primitives - send, receive - provide collective communication
primitives, which perform complex communication patterns
between 3 or more compute nodes.

Collectives are a powerful abstraction which enabled devel-
opment of GPU-accelerated distributed applications through
MPI extensions and dedicated communication libraries for
GPU-to-GPU data movement. RCCL [1] and NCCL [2] are
vendor-specific libraries from AMD and NVidia respectively
which provide efficient implementations of a subset of MPI
collectives when applications run on GPU. Optimizations
include the ability to perform collectives on GPU memory
directly, which greatly reduces the latency of communication
since a copy to host memory is avoided.

Recently FPGAs have become available in large-scale com-
pute infrastructure, primarily in the data-center (cloud) context
(AWS, Azure) [3]–[5]. Like GPUs, FPGAs enable a program-
mer to offload part of their application, i.e. a computation
kernel, to an accelerator card, where the kernel executes from
local memory under host control.

Unlike GPUs, FPGAs have a wide array of interconnection
options in addition to computational fabric, and most FPGA
accelerator cards are equipped with at least one network
port, capable of up to 100Gbps as is the case in high-end
Xilinx Alveo accelerators. Despite this excellent opportunity
for direct communication between FPGA accelerators in the

context of distributed computation, to date the collective
communication solutions [6]–[12] for FPGAs are incomplete,
providing a limited number of communication primitives, and
typically either inflexible, difficult to port between boards and
user designs, or slow.

We introduce ACCL, an open-source library for FPGA-
accelerated collective communication [13]. ACCL provides
support for MPI-like Send, Receive, Broadcast, Scatter,
(All)Gather, Reduce-Scatter and (All)Reduce. ACCL is de-
signed to utilize direct FPGA-to-FPGA networking, and im-
plements all communication functionality in a single Vitis [14]
kernel which can be linked alongside other user kernels in an
Alveo system. ACCL does not require making any changes
to user compute kernels, and interfaces with these through
Alveo DDR/HBM memory or AXI Streams [15]. ACCL has
bindings for both Python and C++, and in addition to the
above-listed collectives, provides a set of low-level commu-
nication primitives which users can utilize to implement their
own collective communication patterns from Python, which
can subsequently be ported to execute in-FPGA on ACCLs
software-defined control plane for maximum performance.

The contributions of this paper are the following:

• We describe in detail the architecture and implementation
of ACCL collectives on Alveo (Sections III and IV), and
provide ACCL as open-source code.

• We analyze performance bottlenecks on 100 Gbps Eth-
ernet, and describe optimizations where available (Sec-
tion V, targeting FPGA experts looking to extend and
improve ACCL),

• We compare the performance of ACCL to host-driven
collective communication with OpenMPI and Mellanox
100 Gbps NICs on collective microbenchmarks with up
to 8 nodes (Section VI).

Our evaluation of ACCL indicates that ACCL outperforms
host-driven MPI on messages larger than 1 MBytes, especially
when the to-be-collected data is produced in the FPGA itself.
As such, ACCL is appropriate for applications where the
majority of computation is performed on FPGA. ACCL is
also sufficiently open, flexible and programmable to serve as a
research platform for network traffic optimization approaches
such as application-specific compression and encoding.



II. BACKGROUND AND RELATED WORK

1) FPGAs in HPC: In an HPC context, FPGA acceleration
is achieved utilizing PCIe-connected accelerator cards, each
equipped with multiple types of on-board memory and com-
putational resources. The Xilinx Alveo range of PCIe accelera-
tors are each equipped with one FPGA device, which includes
computational fabric (Look-up tables and DSP processors) and
a small amount (tens of MB) of on-chip memory. Additionally,
two Alveo boards (U280 and U50) are equipped with 8GB, 32-
channel HBM memory, while the other two (U200 and U250)
are equipped with 64GB, 4 channel DDR4 memory. All Alveo
cards are equipped with QSFP28 transceivers and MACs
capable of implementing 100 Gbps Ethernet connectivity and
integrated directly into the computational fabric.

To harness the Alveo memory and computational resources,
software developers utilize the Vitis and Vivado tools which
enable them to describe the computational functionality to be
implemented in FPGA, i.e. computational kernels, specify the
desired connectivity between kernels, then compile the kernels
and link them into an executable file which is utilized to
configure the Alveo accelerator. Similar to a GPU acceleration
flow, developers can utilize pre-defined kernels from vendor-
provided acceleration libraries. However, unlike GPU kernels,
FPGA kernels can exchange data not only through shared
memory, but also through physically implemented stream
(pipe) interfaces which carry data directly from one kernel to
another, either via internal FPGA interconnect or the QSFP28
transceivers, allowing for very low latency, power efficient
information exchange.

Once the Alveo is configured with the compiled kernels,
the users can access, configure, and schedule work to FPGA-
resident kernels using the Xilinx RunTime (XRT) library.
XRT provides bindings for C++ natively and Python either
natively or through the PYNQ library, which provides sev-
eral Pythonic execution features such as kernel dependency
scheduling through Python futures. User applications build on
top of these bindings to access the FPGA computation and
memory resources.

2) MPI for GPU Architectures: As the large-scale comput-
ing infrastructure becomes more heterogeneous with the emer-
gence of compute accelerators, MPI implementations are be-
coming more accelerator-aware. Many MPI implementations
can target GPU memory [16]–[18]. In such a GPU-extended
platform, MPI relies on a commodity NIC to transfer network
packets and host CPUs for orchestrating and synchronizing the
data movement between network and the accelerator typically
via host memory. In GPU-specialized MPI-like extensions,
such as NCCL [2] and RCCL [1], the network data can be
directly forwarded to the GPU memory from the NIC via the
local PCIe switch instead of temporary buffering in the CPU
memory, reducing latency.

3) MPI for FPGA Architectures: In contrast, the architec-
ture of an collective implementation targeting FPGA could be
very different since the FPGA can directly process the network
packets, as indicated by projects such as Microsoft Catapult

TABLE I: ACCL compared with existing FPGA-based collec-
tive solutions.

Solution Performance Flexibility Portability

Easynet [6] High (˜90 Gbps) Low High
SMI [7] Medium (˜40 Gbps) Low Low

Galapagos [9], [31] Low (<10 Gbps) Low High
ZRLMPI [10], [32] Low (<10 Gbps) Low High

TMD-MPI [8] Low (<10 Gbps) High Low

ACCL (Ours) High (˜80 Gbps) High High

and Brainwave [3], [4], [19]–[22]. Therefore, it doesn’t require
a commodity NIC on the network data path. Collective offload
to the FPGAs with large scale infrastructure is possible due an
emerging research effort of communication protocol offload,
e.g., UDP [23], TCP/IP [24]–[28] and RDMA [29], [30], to
the FPGAs. Despite that a few research efforts have been
made for collective systems targeting FPGAs, scale-out of
FPGA-accelerated execution is still commonly achieved by
calling a communication-specific, FPGA-agnostic library such
as OpenMPI, which orchestrates host CPUs, memory and
NICs to connect nodes together over Ethernet or Infiniband.
This is because all existing FPGA-based collective solutions
fail to satisfy the following three requirements at the same
time. (1) The platform should provide high performance in
terms of throughput (targeting 100 Gbps network bandwidth).
(2) It should be flexible in terms of runtime configuration to
run different collectives without reprogramming the FPGA.
(3) It should be portable, which means that the collective
should run on top of transmission protocol that is widely
available in large-scale infrastructure, e.g. TCP/IP or RDMA,
and should not be constrained to specific FPGA boards. For
instance, Galapagos [9], [31] is a communication infrastructure
targeting FPGA cluster with 10 Gbps hardware TCP/IP stack
but they provide only send-recv primitives. EasyNet [6] is a
collective library running with 100 Gbps hardware TCP/IP
stack, but it doesn’t have runtime flexibility. TMD-MPI [8]
runs MPI implementation on top of embedded processors on
FPGAs, which gives high flexibility while it targets only 1
Gbps throughput. SMI [7] propose a collective library that
allows streaming message passing between computation and
communication, but it is not portable since it use a customized
protocol targeting FPGAs cluster with fixed topology.

As summarized in Table I, all existing solutions have their
own limitation. Therefore, we propose ACCL, which is a high
performance, flexible and portable collective library for FP-
GAs. The purpose of ACCL is to provide the FPGA kernel(s)
and runtime support for FPGA-accelerated applications to
communicate without host involvement and exchange FPGA-
resident data directly while maintaining MPI-like semantics
familiar to HPC developers.

III. ACCL: FPGA-ACCELERATED COLLECTIVES

The Accelerated Communication Collective Library
(ACCL) provides MPI-like primitives that allows users to
orchestrate data exchange between multiple FPGAs. ACCL is
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Fig. 1: System view of ACCL

a combination of software running on the host CPU, FPGA
data-moving hardware, and control firmware executing on
a FPGA-embedded microcontroller. Figure 1 illustrates an
high level overview of the ACCL structure. In the FPGA,
ACCL features a collectives offload engine (CCLO) and
one or more network protocol offload engines (POE), each
of which is implemented as a stand-alone Vitis kernel. The
CCLO implements the collectives on top of TCP or UDP.
The protocol offload engines implements the full network
stack up to UDP and TCP respectively and connect directly
to Ethernet ports, e.g. through Alveo Gigabit Transceivers
and QSFP28 ports. For TCP, the protocol offload kernel
requires access to external memory to reorder incoming
packets. The host communicates with the CCLO over PCIe
and Xilinx XDMA, but this complexity is hidden by XRT
and our drivers. The distributed application that runs on,
possibly multiple, hosts leverages the ACCL Python or C++
driver to control the CCLO. In this way, the user offloads
to ACCL, via MPI-like collectives, data distribution, results
collection or combination over multiple FPGAs. We provide
the following collectives: send, receive, broadcast, gather,
scatter, (all)gather, (all)reduce, reduce-scatter.

A. Host Software Stack

The host software stack, illustrated in Figure 1, consists of
user application code which binds to ACCL drivers, through
Python or C++ bindings, to initialize and invoke ACCL
collectives. The drivers themselves rely on the Xilinx Run-
Time (XRT) and associated libraries, and OS services, to
communicate with the CCLO in hardware. ACCL is designed
to provide a dedicated high-speed connection between FPGAs
and does not provide general-purpose communication over
TCP or UDP as a traditional network stack would. Instead, the
host must provide a secondary, possibly low-speed connection
to other ranks over which the user application can be launched
in a distributed setting via e.g. mpirun.

The ACCL drivers expose three distinct APIs to the user
application: a housekeeping API which enables CCLO config-
uration and monitoring, a primitives API consisting of simple
data movement operations (send, receive, copy, reduce), and
a collectives API which exposes the ACCL performance-
optimized collectives. If users require specific collectives not
supported by the ACCL collectives API, these can be assem-
bled utilizing the primitives API in Python or C++.

We have aligned our API to MPI naming conventions to
facilitate code migration to ACCL if the original application
was already written using MPI for communication. As such,
FPGAs involved in the communication are called ranks and
are grouped in communicators. Listing 1 illustrates the three
APIs - the code initializes ACCL, invokes the ACCL send/recv
primitives to exchange data between ranks 0 and 1, and
executes an allreduce collective on all ranks.

Listing 1: ACCL host code in Python
1 from pynq import Overlay, allocate
2 from mpi4py import MPI
3 #receive binfile, ranks_dict as inputs
4 ol = Overlay(binfile)
5 accl = ol.cclo
6 rank = MPI.COMM_WORLD.Get_rank()
7 bs = 16384

9 accl.setup_rx_buffers(nbufs=16, bufsize=bs,
devicemem=ol.bank0)

10 accl.configure_communicator(ranks_dict, rank)
11 accl.open_port(); accl.open_con()

13 txb=allocate((bs,), target=ol.bank0)
14 rxb=allocate((bs,), target=ol.bank0)

16 if rank==0:
17 accl.recv(rxb, src=1, tag=1, to_fpga=True)
18 elif rank==1:
19 accl.send(txb, dst=0, tag=1, from_fpga=True)

21 ch = accl.allreduce(txb, rxb, count=256, async=
True)

22 accl.allgather(txb, rxb, count=256, waitfor=[ch])

24 accl.deinit() #releases FPGA memory, resets CCLO

ACCL is initialized by functions (lines 9-11) which allocate
and configure a set of buffers required for ACCL operation in
the FPGA memory (detailed in Sec III-E), and construct the
communicator according to rank information. In this example,
we utilize the python package mpi4py to determine the local
rank ID when the application has been launched with mpirun.
All configuration information is offloaded to the FPGA so that
the CCLO can rapidly access them. Afterwards, the user can
issue commands to open connections between each ranks in
the communicator via the protocol offload engine.

As with MPI, most ACCL collectives take two buffers as
arguments, one (source buffer) holds the to-be-communicated
data (line 13), while the the other (destination buffer) specifies
where to store the results (line 14). Lines 16-19 implement
data movement from rank 1 to rank 0 utilizing the primitives
API. Each ACCL function allows users to specify whether
each of the buffers reside in the host or in FPGA external
memory (to fpga/from fpga). If required, the ACCL driver
handles data movement between host and FPGA external
memories. However, when ACCL is used in conjunction with
user FPGA kernels, the additional data movement is not
required, reducing latency.

Lines 21-22 execute collectives on the entire communicator,
with the collectives API. When multiple collective primitives
are issued in a single application, additional latency reduction
can be achieved by utilizing asynchronous calls and call



chaining, a feature of XRT which the ACCL drivers expose
up to application code. When an ACCL collective is called
asynchronously, it returns immediately a handle to the XRT
descriptor (ch on line 21) of the on-going collective. Chaining
occurs when the invocation of one FPGA kernel depends
on the completion of a different invocation to the same or
other FPGA kernel. ACCL collectives also allow for these
dependencies to be specified (see line 22) and passed down to
the Xilinx Embedded Run-Time, a hardware scheduler which
starts the collective immediately after the dependencies have
been resolved, with typical latency in the nanosecond range.
Using these mechanisms, users can define execution chains of
arbitrary length which involve any ACCL collective and any
user FPGA kernels.

B. CCLO Kernel

The CCL Offload (CCLO) kernel implements the ACCL
primitives by orchestrating data movement between the net-
work fabric, FPGA external memory, and FPGA compute
kernels, with no host CPU involvement. Data movement to and
from the network is accomplished through custom interface
blocks to the TCP/UDP network protocol offload engines,
while FPGA external memory (DDR or HBM) is read and
written through DataMover engines (DMA).

Each primitive typically requires multiple transfers in spe-
cific sequences between ranks to achieve the desired result. Or-
chestrating the required transfers and the interaction between
various subsystems at high speed is a challenge. For this rea-
son, the CCLO kernel consists of two subsystems: a software-
programmable control plane which is extremely flexible, and a
high-throughput data plane consisting of DMAs, configurable
routing, and pipelined arithmetic, which is fast. Different
parts of the data plane can be activated at the same time in
parallel, e.g. to transmit and receive data simultaneously from
the network. Section IV describes the implementation of the
CCLO kernel in more detail.

The CCLO data plane is datatype-agnostic for non-reduce
collectives and supports in principle any user-defined datatype
for sum reductions. In this work, we have provided support for
single, and double precision floating point numbers, and 32-
and 64-bit integers. However, the data plane can be augmented
with additional arithmetic and custom streaming kernels, as
illustrated in Figure 1. As such, with the addition of corre-
sponding external logic ACCL can be extended to supports not
only arbitrary datatypes, but also arbitrary reduction functions
and conversions between types. Furthermore, the external data
plane extension capability enables the CCLO kernel to source
and sink data from/to user FPGA kernels via AXI Streams
instead of external memory, reducing latency.

C. Protocol Offload Kernel

The protocol offload kernel contains hardware communica-
tion stacks that work on top of UltraScale+ Integrated 100G
Ethernet Subsystem (CMAC) [33]. Currently it supports both
UDP and TCP/IP and it can be extended in the future to sup-
port other protocols, such as RDMA. We utilize open-source

protocol offload engines for UDP [23] and TCP/IP [24], [26],
both of which can process data at 100 Gbps line rate and are
integrated into the Xilinx Vitis development framework [25].
The TCP/IP network stack supports up to 1,000 connections
and can be configured to support window scaling and out-
of-order packet processing. The TCP/IP stack requires two
hardware memory spaces, which serve as temporary buffers
for re-transmission of Tx data and buffering of Rx data
respectively.

We note that all of the functionality of ACCL is available
with either one of the protocol offload kernels, therefore in
most user systems, only one offload kernel will be present, to
reduce resource utilization. However, the CCL offload kernel
supports simultaneous transmission and reception from both
offload kernels.

D. ACCL Message Protocol

In ACCL, we implement a light-weight communication
protocol above the transport layer protocol (e.g., TCP/IP) to
carry metadata information for each message. Each ACCL-
emitted message consists of a 512-bit (64-byte) header and the
payload consisting of user data. The header contains the rank
IDs of the message source and destination, message length
and tag, a sequence number which is used to keep track of
the order of the messages, and padding. The 64-byte header
represents one word of the CCLO datapath and is therefore
convenient to insert in the message without additional logic
overhead, but may reduce performance on small messages.
Future versions of ACCL may implement smaller headers.

E. ACCL Memory Requirements

In the current implementation, ACCL utilizes an eager
protocol to communicate between ranks, i.e. message data is
sent as it becomes available. The eager protocol potentially
minimizes message latency, however in a distributed setting
it is possible for a message to arrive before the user at
the destination rank has allocated a destination buffer for it,
i.e. before the user has posted the corresponding receive. To
handle this scenario, ranks are responsible for storing received
messages until the user requests them. As a consequence,
message reception is divided in two steps. First, received
messages are moved in a staging area in DDR or HBM. Each
message is stored individually in what we call a spare receive
buffer. Then, when the corresponding receive is posted by the
user, data is moved into the user buffer. This approach requires
to allocate some memory in advance for ACCL spare buffers.
The number and the size of spare buffers can be configured
at initialization through the ACCL housekeeping API.

IV. COLLECTIVES IMPLEMENTATION

A. Data Plane Structure

Each ACCL primitive and the collectives assembled from
the primitive represent sequences of operations involving the
CCLO control and data planes. This section describes in detail
the hardware structures and sequences of operations involved,
demonstrating the flexibility of the ACCL hardware, which
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could be extended by expert users to perform collectives not
currently supported.

Figure 2 presents a high level overview of the CCLO
data plane structure which consists of multiple functional
units (FUs) - three AXI DataMover engines (DMA0, DMA1,
DMA2), AXI Stream (AXIS) interconnects (e.g. S0, S1), an
internal arithmetic unit (A0) and network interface logic (UD,
UP, TP, TD). Data flows through all those components via 512
bit wide AXIS interfaces [15], that are connected together via
the central AXIS Switch.

AXI DataMover engines (DMA) provide high throughput
data transfer between AXI memory mapped (AXIMM) and
AXI stream (AXIS) domains. Each DMA is connected to
FPGA external memory via AXI interface [34] and pro-
vides two channels dedicated to read (memory to stream)
and write (stream to memory) operations respectively. Each
of the channels is independently controlled through a pair
of AXI Streams, carrying DMA commands and command
acknowledgements respectively.

The network interface logic decouples data movement and
the network offload engines. The communication is accom-
plished by means of custom HLS blocks - for each pro-
tocol, one packetizer and one depacketizer. The packetizers
(UP, TP) are responsible for inserting the ACCL message
header into the stream, dividing up the stream into individual
packets of pre-set lengths, and forwarding the packet to the
respective protocol offload kernel. The depacketizers (UD,
TD) perform the reverse operation. The AXIS Switch (S0)
provides a flexible interconnection in the data plane. S0 is
programmable via AXI-mapped registers to implement any
connectivity pattern between its inputs and outputs. Therefore,
data plane components are not arranged in a fixed datapath but
rather the order in which data traverses different components is
set at run-time by the control firmware. However, we highlight
that received data, via UD and TD, is served by a fixed
datapath that connects the depacketizers directly to the DMA
engines via dedicated streams.

B. Control Plane Structure

Figure 3 illustrates the detailed structure of the control
plane. Central to the control plane is a MicroBlaze single-
core, FPGA-optimized microprocessor [35]. The role of the
Microblaze CPU in the CCLO design is to provide the re-
quired flexibility to execute many different collectives utilizing
a multitude of FUs in combination, which is difficult to
achieve utilizing logic described in HLS or RTL. Firmware
executing on the Microblaze is able to generate commands
to the various FUs - the DMAs, (de)packetizers, switch,
etc. These commands can be assembled into data movement
primitives, e.g. copy, transmit to network, which themselves
are assembled into collectives. By implementing the control in
software (compiled C code), the control logic can run at fairly
high frequencies (up to 250 MHz) with reasonable resource
utilization [36] and can also be adapted and improved over
time with relative ease, without requiring re-synthesis of the
CCLO kernel. Compiling and debugging the firmware is pos-
sible utilizing Vitis and the Xilinx command-line tool XSCT,
which enables all common software development features -
breakpoints, step-by-step execution, profiling and others.

However, the latency of firmware-directed control is higher
when compared to RTL control logic. To counteract the higher
latency of the MicroBlaze we employed a pipelined control
plane architecture as illustrated in Figure 3 whereby most
functional blocks are controlled through hardware First-In-
First-Out (FIFO) memories, decoupling control issuing from
the execution. Less performance-sensitive FUs (AXI Stream
switches, arithmetic) are controlled through an AXI bus using
register-mapped interfaces. These AXI interfaces to the FUs
are utilized at most once per collective execution, to set
long-duration configurations, such as the reduction function,
network MTU, etc.

Interaction with the host is achieved through a call controller
and shared mailbox memory (exchange memory module),
which are accessible by both the MCU and the host. The
call controller is an HLS IP which implements the host-facing
handshake protocol allowing the CCLO to appear to the Xilinx
Run-Time (XRT) as a call-able Vitis kernel. The 4KB mailbox



memory is accessible by both the host and Microblaze and
enables large and stable configuration parameters to be set by
the host and used by the firmware. These structures include:
a list of spare buffers to be used as receive memory by the
CCLO, a list of communicators describing rank information
(IP addresses, ports, session IDs), data type and compression
scheme information, and error reporting registers utilized for
CCLO debugging.

C. Receive Pipeline

As described in section III-E, ACCL utilizes an eager
protocol for message transmission which requires receivers to
typically divide message receipt in two steps. First, incoming
messages are moved to a spare buffer, i.e. a staging area in
DDR or HBM, via the receive datapaths from depacketizers
to D0/D2 write channels. Subsequently, when the ACCL user
has posted the receive or indicated the desired collective, the
MicroBlaze issues commands to move data from the spare
buffer to an appropriate destination. To avoid applying back-
pressure to the network fabric, the write channels of the
receive datapath are primed ahead-of-time by the Microblaze
with commands via RX command FIFOs M0, M4. As these
commands are consumed by incoming messages, the write
channels issue status words into FIFOs S1, S5. Upon their
reception, the firmware interprets the statuses and marks the
corresponding spare buffers as reserved, to avoid issuing
further commands to the same addresses. The firmware also
collects received message headers from the depacketizer status
FIFOs S6, S9 which are saved as spare buffer metadata.
To minimize latency and avoid RX pipeline starvation, the
occupancy of both command and status FIFOs are monitored
by hardware and interrupts are generated to the MicroBlaze
when either the command FIFOs become under-full or the
status FIFOs becomes non-empty. We note that one incoming
message may be split among multiple spare buffers if the
message size is larger than the maximum size of a DMA
transfer, which is configurable up to 8MB.

In the current implementation of the ACCL receive pipeline,
simultaneous interleaved receive of multiple messages is not
supported. To ensure this scenario is not encountered in
practice, we implement collectives with ring-based algorithms
that ensure each rank’s fan-in is at most 1, as will be described
in subsequent sections.

D. Data Movement Primitives

The primitive functionalities that the CCLO implements are:
copying buffers to and from FPGA external memory, sending
and receiving data to and from the network fabric, and per-
forming reduction operations on data. The following detailed
description refers to blocks indicated in fig. 2. In ACCL, these
primtives are implemented in Microblaze firmware but are also
exposed as part of the user-facing Python API, allowing users
to create complex communication behaviour.

Copy: To copy a buffer from one address (addr0) to an-
other (addr1), the MicroBlaze first activates the copy datapath
connecting D1R to D1W by programming the switch S0, then

emits commands to D1 channels via the corresponding FIFOs
M2 and M3. D1R reads from addr0 and D1W writes to addr1.
In the process, data gets loaded in stream 1 and traverses
the AXI switch to stream 2 . DMAs signal completion by
emitting a status words into FIFOs S2 and S3. The firmware
polls these FIFOs until both statuses are received.

Send: To send a buffer to a different rank over the
network, the MicroBlaze configures the switch S0 to connect
D1R to T0 or U0 depending on the desired protocol TCP
or UDP. A packet header is sent to the relevant packetizer
TP or UP and then D1 is commanded to read the required
bytes from the FPGA external memory. The data read from
D1 1 flows through the S0 to the appropriate packetizer 8
which prepends the message header and segments the message
into packets of size equal or less to the network MTU. The
protocol offload engine handles the rest of the transmission
process independently.

Receive: As the receive pipeline is automated by the
mechanisms described in the previous section, the receive
primitive involves identifying whether a required buffer has
been received and where it is located, and if necessary waiting
for it to arrive. When the receive request is issued, either
by the host or by the firmware as part of a collective, the
MicroBlaze will scan through the reserved spare buffers to
perform matching based on the source rank and tag in the
saved headers. If no match is found, the firmware re-attempts
the matching until either the message arrives, or a timeout is
triggered. As part of the execution of the receive primitive, the
message data may be subsequently copied to a user-accessible
buffer. In case the message had been segmented between
multiple spare buffers, a DMA gather will be performed
utilizing D1. The datapath for receive is configured exactly
as it is for Copy, since the dataflow is physically identical.

Reduction: To apply a reduction function to two buffers
(addr0, addr1 respectively), the MicroBlaze programs S0 to
activate the reduction datapath which connects D0R and D1R
DMA read channels to S0 outputs A0 and A1, corresponding
to inputs to reduction logic, and output D1W to input A2,
corresponding to reduction result. The MCU then commands
D0, D1 to read from addr0 and addr1 respectively and D1
to write results in another address. The stream from D0(D1)
read enters S0 1 ( 3 ) and exits at A0 4 (A1 5 ). Note that
additional routing logic e.g. S1 enables multiple arithmetic
units to be instantiated and utilized for reduction. These
can implement various reduction functions (sum, maximum,
elementwise) or the same function for multiple data types. By
default, CCLO supports sum reduction only.

E. Collective implementation

ACCL collectives are implemented by assembling the prim-
itives described earlier. We note that in ACCL there are two
methods of assembling collectives: host-side collectives are
assembled by combining host-side calls to ACCL primitives
API, and are therefore flexible but slow, while firmware
collectives assemble primitives in firmware code, increasing
performance.
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Fig. 4: Allreduce algorithm graphical representation. Grey
boxes indicate non valid data.

Broadcast: The root rank j sends its buffer to all the
ranks in the communicator. Each rank i 6= j receives from
rank j in its destination buffer.

Scatter: The root rank j divides the source buffer into n
chunks. It then sends the i-th segment of the buffer to rank
i. Finally it copies chunk j its destination buffer. Each rank
i 6= j receives from rank j in its destination buffer.

Gather: The non root ranks send their source buffer
and relay the buffer of the others - using send and receive
primitives- in a clockwise ring fashion toward the root rank.
The root rank (with ID i) receives n− 1 buffers and fills the
destination buffer in a anticlockwise fashion from (i − 1)-th
segment to segment 0 and to segment n−1 to segment (i+1).
The root rank then copies its source buffer to destination buffer
at i-th segment offset.

Reduce: Reduction is implemented by forwarding data
from one rank to the other towards the root, which performs
accumulation.

Allgather, Reduce-scatter, and Allreduce: We imple-
mented a ring based version of the allreduce algorithm pre-
sented in [37]. The algorithm segments each buffer in n
smaller buffers (segments or chunks) where n is equal to the
number of ranks involved in the collective. The algorithm is
divided in two steps: a ring-based reduce-scatter followed by
a ring all-gather. The advantage of this algorithm is that in any
moment, each rank processes a different part of the the buffer,
so as to take advantage of all the arithmetic units available. The
second benefit of this approach is a reduction by a factor of n
in the size of the intermediate messages to be exchanged by the
ranks. Finally, the same firmware control code can implement
either all-gather (by skipping the reduce-scatter), allreduce or
reduce-scatter (by skipping the all-gather).

Figure 4 shows a graphical representation of the allreduce
algorithm with 3 ranks. The reduce-scatter step is to compute
one of the n segments of the final buffer in each rank. In the
allgather step, each rank will send its reduce-scatter result in
the ring (and relays the result of the others) such that every
rank ultimately gathers all the reduced segments.

V. PERFORMANCE TUNING

A. Message Segmentation and Memory Organization

In the simplest implementation of the receive pipeline, the
receiving data from a given message is temporarily stored in

a single spare buffer which is not read for further processing
until the whole message is delivered. This store-and-forward
behavior of the message creates latency overhead, especially
for large messages. Therefore, one optimization is to segment
the original large message into several small messages, and
store them into different spare buffers such that the receiving of
the message segment can be overlapped with the consumption
of other message segments. Theoretically, this approach gives
increasing performance with finer granularity of segmentation.
However, in ACCL, two factors limit the achievable speed-up
through segmentation. First, the consumption of each spare
buffer interrupts the MicroBlaze which needs to collect infor-
mation about the received message and schedule a new write
command. This creates certain amount of overhead which
is difficult to avoid. Secondly, because each segment of the
message is prepended its own header, as granularity increases
the ration of header to payload increases and therefore the
efficiency of network fabric utilization decreases. Therefore,
the segmentation size of the message should be set to an
adequate large number which balances out these effects to
achieve optimal performance.

As we segment the message into different spare buffers, two
spare buffers could be activated at the same time, receiving
data from the network and reading other data for further
processing. In the most simple implementation of the receive
subsystem and CCLO system design, all the spare buffers are
assigned to single memory channel. However, each activated
buffer requires a memory bandwidth of 100 Gbps to saturate
the network throughput, yielding an aggregated required band-
width of 200 Gbps, which is beyond the typical achievable
bandwidth of a single memory channel on FPGA (about 128
Gbps). Therefore in some execution scenarios the memory
bandwidth limitation creates backpressure from the DMAs
through the datapath and out into the protocol offload engine,
creating challenge for the underlying hardware network stack.
In case of UDP, this leads to unrecoverable packet loss. Despite
that the TCP/IP is a reliable transmission protocol with proper
flow control mechanism, packet drop could still happen when
the CCLO applies backpressure, which in turn might trigger
expensive re-transmission timeout in the TCP/IP.

The solution to this problem is to allocate spare buffers
in multiple memory channels in an interleaved fashion, such
that consecutive access of the spare buffers are served with
high probability by different memory channels to minimize
the interference between memory access and network proto-
col functionality. In the state-of-the-art FPGA boards, there
are commonly more than one DDR channel (Xilinx U250
has 4 DDR channels), and some are equipped with high-
bandwidth-memories (Xilinx U280 has 32 HBM channels)
[38]. However, some of these channels may be required for
other user computation kernels, while in the case of DDR
channels, each additional channel has a resource utilization
cost of approximately 50 kLUTs and increases the difficulty
of timing closure, therefore we are interested in the minimum
number of memory channels required to effectively remove
the identified memory bottleneck.



B. Network Stack Tuning

To better cope with the potential backpressure due to spare
buffer interference, the underlying hardware TCP/IP stack
should also be tuned to transfer data in a more conservative
way. One factor is the window scaling option, which increases
the receive window size allowed above the actual size of
the receiving buffers (64 KB) within the TCP/IP stack. It is
widely adopted in a network with high transmission latency to
compensate the bandwidth-delay-product. However, this needs
to be revisited in a high bandwidth network with low latency
hardware network stack. In ACCL, 100 Gbps bandwidth with
about 5us round-trip-time yields 62.5 KB bandwidth-delay-
product, reaching the actual receiving buffers in the network
stack. Therefore, we disable window scaling to avoid the
unnecessary packet drop due over-sizing the receiving window.

C. Non-arithmetic Collectives

Our optimizations have so far targeted the receive sub-
system, to better deal with pressure from incoming network
data. This pressure can also be reduced by modifying the
scheduling of data transmission at the origin of the transaction,
especially in single-source non-arithmetic collectives such as
broadcast and scatter collectives. During these, the root rank
sends a number of bytes to all the other ranks. The naive
implementation of these collective sends the entire buffer
to one destination rank before moving to the next one. To
increase data locality and to decrease network bandwidth
consumption we can segment the buffers into smaller chunks
and transmit to each rank in a round robin fashion until there
is no segment left. For the transmitter there is no significant
difference in the network stack load, however at the receiver
the data is spaced out over a larger time.

VI. EVALUATION

The objective of our evaluation of ACCL is two-fold.
Firstly, we aim to identify the effect of various ACCL tuning
parameters (segment size, number of memory banks, type of
memory) on the performance of ACCL. Secondly, we aim to
compare ACCL to host-driven MPI in scenarios where data
originates in host and FPGA memory respectively, over a range
of user-configurable application parameters, notably message
size and number of ranks.

A. Set-Up and Methodology

We evaluate the ACCL on the ETH Zurich Xilinx Adap-
tive Compute Cluster (XACC [39]), which consists of four
FPGA-equipped servers, each of which has a mix of Alveo
U250 and Alveo U280 cards. Each Alveo card features two
100 Gb/s Ethernet interfaces: one is connected to a Cisco
Nexus 9336C-FX2 switch and the another is connected to
its Alveo neighbor. Every server also has two 100 Gb/s
Mellanox Network Interface Card (NIC) connected to the
switch. This configuration allows users to explore arbitrary
network topologies for distributed computing.

In this work we utilize both U250 and U280 Alveo cards
to demonstrate the capabilities of ACCL. Each XACC server

TABLE II: Resource utilization of ACCL components

Component kLUT DSP BRAM18 URAM

CCLO 78 56 169 0
TCP POE 111 0 813 1
UDP POE 23 0 115 0

CMAC 12 0 34 9

partitions its resources to several VMs such that each VM has
acces to one Alveo card and one Mellanox NIC, for a total of 8
usable FPGA-accelerated virtual nodes in the XACC, equally
distributed between U250 and U280 cards. The VM software
environment is based around Ubuntu 18.04 and includes many
software frameworks for FPGA accelerator deployment: XRT,
PYNQ for Alveo, Jupyter Lab, OpenMPI.

In our evaluation we utilize only the through-switch connec-
tions and the TCP network stack to evaluate the achievable
throughput and latency for Send/Recv and each supported
ACCL collective and compare against the same metrics mea-
sured on OpenMPI 4.1.1 over the Mellanox 100 Gbps NICs.
We utilize messages ranging in size from 1KB to 32MB, and
for collectives we also evaluate communicator sizes from 3
to 8 ranks (maximum achievable at XACC) to determine the
effect of scale on the throughput and latency. The maximum
transfer unit is set to 2 KB for both the software and hardware
TCP/IP stack. We tune the network buffers in the Linux
network stack to be 32 MB to accommodate the experi-
ment requirement. We do not enforce the implementation
algorithm for collectives in OpenMPI, i.e. we let the library
self-configure. ACCL utilizes rings for all gather and reduce
collectives as described in previous sections. We execute each
experiment 100 times in order to calculate accurate average
runtimes as well as to estimate variability (jitter).

We evaluate both ACCL and OpenMPI for host-to-host and
FPGA-to-FPGA communication. In all figures following, H2H
and F2F indicate experiments where source and destination
data buffers are in host and FPGA memory respectively. F2F is
relevant for applications producing data in FPGA, while H2H
is relevant for host-executing applications. In the OpenMPI
F2F and ACCL H2H scenarios, XRT is utilized to move data
to and from the FPGA.

B. Resource utilization

The resource utilization of ACCL components is listed in
Table II. The majority of resource utilization is dedicated to
the protocol engines, in particular the TCP POE. The CCLO
utilizes relatively few LUT and memory resources but also
requires DSPs for floating point arithmetic. However, resource-
conscious users can easily modify the CCLO to eliminate
support for datatypes not needed in their applications. We
estimate a requirement of approximately 32 DSP per reduction
datatype supported. Readers should also note that only one of
the UDP/TCP POEs are required for ACCL operation.



Fig. 5: Effect of segmentation and channels on throughput.

Fig. 6: Send/Recv throughput comparison.

C. Microbenchmark Results

1) Send/Recv: We examine the efficiency of our control and
data paths and the effects of various tuning parameters with
the Send/Recv primitive. Its performance is most indicative
of achievable throughput as the communication pattern is
very simple - one rank sends, another receives. Figure 5 is a
composite analysis of the effects of segment size and number
of memory channels on achievable send/receive throughput,
where each cell indicates the maximum achieved throughput
for the respective combination of segment size and memory
channels, at any message size. Various configurations may
reach their peak at different message sizes. We utilize the
Alveo U280 for this experiment.

Effect of Segmentation Size: Focusing on the horizontal
axis of Figure 5, we observe that larger segments enable ACCL
to achieve higher peak throughput. Although in theory finer-
grained segmentation should increase performance, in practice
the additional control overhead of scheduling receive buffers
for the large numbers of resulting segments nullifies any gain.
Smaller segments do have a slight edge for small messages,
where the total number of segments per message is less. We
conclude that segmentation is beneficial, and optimal segment

size is 1 MByte. For 2 MByte or larger segments performance
begins to decrease.

Effect of Number of Memory Channels: On the vertical
axis of Figure 5 we observe the dependency of peak through-
put on the number of memory channels allocated to the receive
pipeline. We observe a significant speedup with the increase
of the number of channels at all message sizes beyond 2MB,
with peak observed throughput increasing from 50 Gbps at
1 channel to almost 80 Gbps at 3 channels and saturating
thereafter, especially for large segments. This result indicates
that it requires only 3 independent memory channels to reach
the ACCL peak, which is practical even with non-HBM cards.
As a result of this finding, our ACCL designs for the Alveo
U250 utilize all four DDR interfaces: 3 for ACCL and one for
the TCP protocol engine.

Portability and Comparison with OpenMPI: Figures 6
compares the throughput of ACCL with best configuration
running on U280s and U250s and the software OpenMPI.
Reflecting our findings in the previous sections, for both U280
and U250, the segmentation size is set to 1 MB. For the
U250, we assign 3 DDR channels to ACCL while we assign
5 HBM channels on U280. Despite the board difference and
slight difference in configuration, the performance on U280
and U250 is similar, demonstrating that our design is portable
across different boards. We observe that ACCL delivers a
higher peak throughput (7̃6 Gbps) than its software counterpart
(2̃5 Gbps). We believe this is because OpenMPI uses a
single TCP/IP connection for point-to-point communication,
mapping to a single CPU core, and the TCP packet parsing
overhead outweighs the processing capability of the single
core. In contrast, despite ACCL having a single data path for
all packets, it is highly pipelined to hide the packet parsing
overhead, and does not require any processing by the host
CPU.

2) Collectives: Figures 7 present microbenchmark results
for collectives running on four nodes. ACCL results were
gathered with Alveo U280 and U250, which performed sim-
ilarly so U250 data was omitted for clarity. We observe that
generally ACCL outperforms software MPI at large message
sizes (over 1MB roughly) but not for smaller messages. This
is because ACCL has larger invocation overhead, which can
not be amortized with small message size. Across the range
of message sizes, buffer transfers between the host and FPGA
cause approximately 300 microseconds of fixed overhead for
both ACCL and OpenMPI execution, which is expected since
both rely on XRT for data transfers between host and FPGA. In
addition, ACCL experiences an additional 150 microseconds
of overhead, caused by the latency of initiating the call to
the CCLO kernel in the FPGA through XRT. Among all the
collectives, scatter and Gather are the most competitive for
OpenMPI while Broadcast, Allgather and arithmetic collec-
tives favor ACCL. In reduce and allreduce particularly, F2F
ACCL performs better than H2H OpenMPI on message sizes
over 256 bytes. This is expected given that the streaming
arithmetic embedded in the ACCL FPGA kernel minimizes the
latency of data manipulation for reductions and can perform
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Fig. 7: ACCL Collective Performance

parallel reduction on a wide 512-bit data path. However, for
reduce with messages larger than 8MB, the CCLO is not able
to keep pace with the POE which causes TCP packet loss and
retransmission, leading to very high latency which we have
not plotted here.

3) Scalability: Figure 8 evaluates the scalability of ACCL
compared to OpenMPI when executing allreduce from 3 to 8
ranks (message size 8MB), as well as the range of execution
times encountered in the 100 runs of each configuration. Given
the ring algorithm employed in ACCL, we expect very little
increase in runtime with increase in scale, which is what
we observe. Since ACCL utlizes dedicated logic in FPGA
to schedule the collectives, we observe very little execution
jitter compared to OpenMPI which executes on the host
CPUs. Overall runtime variability is greater for OpenMPI
compared with ACCL, both between runs at different scales,
and between different runs at the same scale. We believe
the scale-related variability is caused by OpenMPI selecting
different implementations for the allreduce at different scales.

VII. CONCLUSION AND FUTURE WORK

We have presented ACCL, a collective communication
library executing on an FPGA and utilizing the FPGA IO to
implement direct Ethernet connectivity. ACCL can be utilized
to connect applications executing on FPGA with less latency
than traditional approaches which require FPGA-produced
data to be moved to the host before inter-node communica-
tion. Our evaluation demonstrates that, at least for message
sizes larger than 1 MByte, ACCL outperforms OpenMPI and
can therefore potentially improve the scalability of FPGA

Fig. 8: Allreduce latency versus world size (8MB messages).

applications. We also observed much less execution jitter,
making applications more predictable. Despite these results,
ACCL still does not saturate the 100 Gbps TCP-IP link, so
further performance improvement through control plane tuning
is possible. Fortunately, ACCL is extremely flexible, consisting
of a configurable dataplane and a programmable control plane
exposed to the user through Python and C++ APIs. This
makes optimisation relatively easy, and we believe ACCL
will be a useful tool for future research in distributed FPGA
computation. Future research will focus on applying ACCL to
FPGA-accelerated applications such HPCG FPGA [40], [41]
and utilizing the ACCL streaming kernel and external arith-
metic attachments to construct application-specific compressed
collectives which we will apply to optimize communication in
neural network training.
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