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Abstract

Security protocols are a crucial part of most applications. In recent years, auto-
mated formal verification tools, such as Tamarin and ProVerif, were effectively
used to prove security properties and find attacks on complex protocols, such
as 5G and TLS. To widen the range of protocols that can be modeled, we need
new symbolic models of the underlying cryptographic primitives. An exciting
family of signatures that have not been deeply studied in the symbolic model
are multi-party signatures. This class of signatures includes blind signatures,
which gained importance through e-voting, proxy signatures, which are crucial
for some distributed systems, and aggregate signatures, which are applied in
blockchains.

We present the first symbolic models for aggregate signatures, namely Boneh-
Lynn-Shacham (BLS) signatures, in the Tamarin Prover. Signature aggregation
enables combining multiple signatures into one short signature, which reduces
storage and bandwidth requirements. This is especially beneficial in applications
with a large number of signatures and signing parties, such as certificate chains
or blockchains.

In contrast to other multi-party signature models that only consider a fixed
number of parties, our model allows an arbitrary number of signers, which
poses interesting challenges to correctly represent the individual elements and
to achieve termination. We explore attacks on aggregate signatures and apply
methods of recent works that improved symbolic models of signatures. We
extend our models to cover attacks with two effective approaches: firstly, we
explicitly enable certain attacks, and secondly, we create models that implicitly
allow subtle behaviors that are not forbidden by the computational definition.
Those methods allow us to prove properties under fewer assumptions and to find
more attacks than with a standard model.

The evaluation of our models using a synthetic protocol shows that our models
are effective and the analysis of isolated examples provides confidence in the
correctness of our models. With our models, it is possible to develop models for
real-world protocols that rely on aggregate signatures. We developed different
techniques to model the aggregation of arbitrarily many signatures. Those tech-
niques are highly promising for future models of further multi-party signatures,
which would further enlarge the number of protocols that can be modeled by
automated formal verification tools.
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Chapter 1

Introduction

Security protocols are omnipresent in daily life. Each visit to a webpage or usage
of a mobile app includes multiple protocols. Thus, their correct design and security
implications are crucial for everyone. Automated formal verification tools, such
as Tamarin [22] and ProVerif [3], are powerful devices to analyze the properties of
security protocols. Proofing desired properties in the development of a protocol and
discovering existing attacks are essential to improve the security of systems. In recent
years, Tamarin was effectively used to prove security properties and discover attacks
on complex protocols, such as 5G [2] and TLS 1.3 [13].

We aim to increase the number of cryptographic primitives supported by Tamarin.
This enables Tamarin to model even more protocols. Tamarin operates on the symbolic
model, thus the primitives have to be abstracted. We will use Tamarin’s support for
user-defined functions and equational theories and some new techniques.

An exciting family of primitives that are not deeply studied in the symbolic model
are multi-party signatures. This class of signatures includes blind signatures, which
gained importance through e-voting, proxy signatures, which are crucial for some
distributed systems [5], and aggregate signatures, which are applied in blockchains.

We present the first symbolic models for aggregate signatures, namely BLS signatures,
in the Tamarin Prover. Signature aggregation was introduced by Boneh et al. [8]
on BLS signatures. It enables the aggregation of multiple signatures on different
messages and by different signers to one short signature. This reduces multiple
signatures to a single signature, which reduces storage and bandwidth requirements.
Also, for some aggregate signature schemes, such as BLS, the verification of one
aggregate signature can be more efficient than verifying all aggregated signatures
separately. Those properties are beneficial when a large amount of signatures is
involved and the data storage, bandwidth, or computing power are limited. Boneh
et al. [8] proposed using aggregate signatures for certificate chains or secure routing
protocols. Another prominent application is blockchains: for example, the Ethereum
2.0 specs [1] propose the use of BLS aggregate signatures. There is an Internet
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1. INTRODUCTION

Engineering Task Force (IETF) draft for BLS signatures [9], on which some aggregate
signature implementations are based [12], [21], [1].

The evaluation of our models using a synthetic protocol shows that our models are
effective. The analysis of isolated examples provides confidence in the correctness of
our models. With our models, it is possible to develop models for real-world protocols
that rely on aggregate signatures.

1.1 Related Work

Most automated tools work in the symbolic model; manual proofs mostly use the
computational model. Tamarin’s cryptographic primitives are abstractions with much
stronger assumptions than the primitives in the computational model. Jackson et
al. [17] point out that some subtle behaviors of signatures are not captured by those
symbolic models. An example of a subtle behavior is the colliding signature at-
tack, where the adversary can create a signature that verifies for multiple messages.
This attack does not violate existential unforgeability under a chosen message at-
tack (EUF-CMA) and is thus possible in the computational model. To close this gap
between the existing symbolic models and the computational model, the authors pro-
vide new models that allow such subtle behaviors and are closer to the computational
definition.

They present two classes of models: the first class adds individual subtle behaviors,
which enables the study of a protocol when allowing certain behaviors. This offers
great help in finding and analyzing attacks and is thus referred to as attack finding
models. As one cannot be sure that all possible subtle behaviors are covered, the
authors introduce a second approach to modeling cryptographic primitives. Instead of
explicitly allowing certain behaviors, everything that does not contradict the crypto-
graphic definition is allowed. Thus, the model is close to the computational model.
The cryptographic primitives provide weaker guarantees than in traditional symbolic
models. This is especially useful to prove security properties under fewer assumptions.
We thus refer to those models as validation models.

We follow this new approach to model aggregate signatures and create the same two
classes of models. Our first class of models follows the standard symbolic models of
signatures. Thus, to cover subtle behaviors, we have to provide the adversary with
additional attack capabilities. For our second class of models, we follow the idea of
Jackson et al. and derive the models from the computational definition.

The new formal verification tool Verifpal [18] supports ring signatures – a signature
scheme which allows one member of a so-called ring to sign a message and the
signature can be verified with the public key of any member of the ring. Verifpal
supports a fixed ring size of three. In contrast, our aggregate signature models support
arbitrarily many aggregated signatures. This involves exciting challenges: one is
finding a suitable representation of the primitive since function symbols in Tamarin
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1.2. Contributions

have a certain arity, and another is achieving termination the arbitrary number of ag-
gregated signatures contributes to non-termination. This requires creative techniques.
Those techniques are highly promising for future models of further multi-party signa-
tures, which would further enlarge the number of protocols that can be modeled by
automated formal verification tools.

1.2 Contributions

We develop the first practical symbolic models for aggregate signatures in Tamarin.
Our models are based on the computational definition of aggregate signatures provided
by Boneh et al. [8] and more specifically on BLS aggregate signatures and its IETF
draft [9]. Inspired by the models of Jackson et al. [17], we develop two classes of
models: attack finding models based on Tamarin’s built-in signatures and validation
models based on the computational definition. The development of our models
includes the following contributions:

• We discuss two known attacks on aggregate signatures: rogue public key attacks
and colliding signature attacks. We enable those behaviors for the attack finding
models and we show that colliding signatures can occur with the validation
models, without explicitly adding the behavior.

• We showcase our models on an example protocol and show that Tamarin can
proof properties and find attacks for this protocol model.

• Our models are the first symbolic models of a multi-party primitive for Tamarin
with arbitrarily many agents. We present different techniques that enable us to
model this arbitrary number of agents.

• As the arbitrary number of aggregated signatures has a negative impact on the
proof and attack finding time, we provide techniques to improve the perfor-
mance.

• We justify the correctness of our models by deriving them from the computa-
tional definition and we develop a setup to evaluate the behavior of our aggregate
signature models on isolated examples.

1.3 Outline

In the following chapter, we provide background on aggregate signatures and Tamarin.
In Chapter 3, we give an overview of our models and describe their properties on a
synthetic protocol. In the subsequent two chapters, we provide more detail on the
implementation in Tamarin: in Chapter 4, we describe the attack finding models, and
in Chapter 5, the validation models. In the final Chapter 6, we evaluate and compare
our models. All our models are available at [15] and [16].
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Chapter 2

Background

In this chapter, we provide background on aggregate signatures, specifically on Boneh-
Lynn-Shacham (BLS) signatures and on the Tamarin Prover.

2.1 BLS Aggregate Signatures

In this section, we provide definitions that we will need to create our models and
we give background information on signatures, and specifically aggregate signatures,
BLS signatures, and specific attacks on BLS aggregate signatures. Most provided
definitions are standard definitions from the textbook by Boneh and Shoup [11].

2.1.1 Signatures

Digital signatures are widely used in modern protocols, for example in certificates for
public key infrastructures or software updates. They are asymmetric cryptographic
primitives that can provide the authenticity and the integrity of a message. The
signer uses their secret key sk to sign some message m and creates the signature
σ

R←− sign(m, sk). Other parties, in possession of the signer’s public key pk can verify
the signature vfy(σ, m, pk). We use the following common definition, provided by
Boneh and Shoup [11]:

Definition 2.1 (Signature scheme [11], page 529) A signature scheme S = (gen,
sign, vfy) is a triple of efficient algorithms, gen, sign, and vfy, where gen is called
a key generation algorithm, sign is called a signing algorithm, and vfy is called a
verification algorithm. Algorithm sign is used to generate signatures and algorithm
vfy is used to verify signatures.

• gen is a probabilistic algorithm that takes no input. It outputs a pair (pk, sk),
where sk is called a secret signing key and pk is called a public verification key.

• sign is a probabilistic algorithm that takes as input a message m and a secret
key sk and outputs the signature σ

R←− sign(m, sk).

5



2. BACKGROUND

• vfy is a deterministic algorithm invoked as vfy(σ, m, pk) and outputs either
true or false.

The correctness property of a signature scheme requires for all key pairs (pk, sk)
output by gen and all messages m:

Pr[vfy(sign(m, sk), m, pk) = true] = 1. (2.1)

The messages lie in a finite message space M and signatures lie in some finite
signature space Σ. The signature scheme S(gen, sign, vfy) is defined over (M, Σ).

The most common security definition for signatures is existential unforgeability under
a chosen message attack (EUF-CMA). We define it using an attack game1. We
provide the attack game adapted from Boneh and Shoup [11] in the next definition.
We also provide the attack game in Figure 2.1.

Definition 2.2 (Attack game for EUF-CMA of signatures [11], page 530) The at-
tack game of a signature scheme S = (gen, sign, vfy), defined over (M, Σ) runs as
follows between the challenger and the adversary A.

• The challenger generates a key pair (pk, sk) with the key generation algorithm
gen. The public key pk is sent to A.

• A queries the challenger several times. For i = 1, 2, ..., the ith signing query
is a message mi ∈ M. Given mi, the challenger computes σi

R←− sign(mi, sk),
and then gives σi to A.

• Eventually A outputs a candidate forgery pair (m, σ) ∈ M× Σ.

The adversary wins the game, if the following two conditions hold:

• vfy(σ, m, pk) = true, and

• m is new, it was not queried by the adversary, namey m /∈ {m1, m2, ...}.
We defineA’s advantage with respect to S , denoted SIGadv[A,S ], as the probability
that A wins the game.

On this attack game, Boneh and Shoup [11] define the security of signatures:

Definition 2.3 (Security of signatures [11], page 531) We say that a signature scheme
S is secure if for all efficient adversaries A, the quantity SIGadv[A,S ] is negligible.
Signature schemes, that are secure under this definition are existentially unforgeable
under a chosen message attack.

Note, that the key pair created by the challenger is honestly generated and the secret
key is not revealed to the adversary. Thus, this security definition only implies that
signatures for honestly generated and not compromised keys cannot be forged. This
leads to some subtle behaviors, as discussed by Jackson et al. [17]. An example are
colliding signatures, which we will discuss in Section 3.2.1. Some other limitations
of this security definition are discussed by Boneh and Shoup [11] on page 532.

1For an explanation on attack games, see [11] Section 2.2.2
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2.1. BLS Aggregate Signatures

Adversary A Challenger

(pk, sk) R←− gen()

pk

...

mi

σi
R←− sign(mi, sk)

σi

...

output candidate
forgery: (m, σ)

msc Attack game for signatures

Figure 2.1: Attack game for EUF-CMA for signatures

2.1.2 Aggregate Signatures

Aggregate signature schemes, introduced by Boneh et al. [8], allow to compress
multiple signatures σσσ = (σ1, ..., σn) of different messages into one short aggregate
signature σagg. This compression reduces storage and bandwidth requirements. Boneh
et al. propose to use aggregate signatures for certificate chains or secure routing
protocols.

Boneh and Shoup [11] provide the following definition of aggregate signatures:

Definition 2.4 (Aggregate signature scheme [11], page 623) An aggregate signa-
ture scheme SA = (gen, sign, vfy, agg, vfyAgg) is a signature scheme with two
additional efficient algorithms agg and vfyAgg:

• A signature aggregation algorithm agg(pkpkpk, σσσ): takes as input two equal length
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2. BACKGROUND

vectors, a vector of public keys pkpkpk = (pk1, ..., pkn) and a vector of signatures
σσσ = (σ1, ..., σn). It outputs an aggregate signature σagg

• The deterministic aggregate verification algorithm vfyAgg(σagg, mmm, pkpkpk): takes
as input two equal length vectors, a vector of public keys pkpkpk = (pk1, ..., pkn),
a vector of messages mmm = (m1, ..., mn), and an aggregate signature σagg. It
outputs either true or false.

The scheme is correct if for all pkpkpk = (pk1, ..., pkn), mmm = (m1, ..., mn), and σσσ =
(σ1, ..., σn), if vfy(pki, mi, σi) = true for i = 1, ..., n then

Pr[vfyAgg(agg(pkpkpk, σσσ), mmm, pkpkpk) = true] = 1 (2.2)

Signatures can be aggregated without knowledge of the signing keys. Thus, any agent
can aggregate the signatures that are in their possession.

Intuitively, the security of an aggregate signature states that an adversary that is not
in possession of all of the signatures σ1 to σn cannot forge the aggregate signature
agg(pkpkpk, σ1, ...σn). We define this more formally with the attack game, provided by
Boneh and Shoup [11], which is adapted from the attack game introduced by Boneh
et al. [8]. Figure 2.2 illustrates the attack game.

Definition 2.5 (Attack game for EUF-CMA of agg. signatures [11], page 626) For
a given aggregate signature scheme SA = (gen, sign, vfy, agg, vfyAgg) with message
spaceM, and a given adversary A, the attack game runs as follows:

• The challenger runs (pk, sk) R←− gen() and sends pk to A.

• A queries the challenger. For i = 1, 2, ..., the ith signing query is a message
m(i) ∈ M. The challenger computes σ(i) R←− sign(m(i), sk), and then gives
σ(i) to A.

• Eventually A outputs a candidate aggregate forgery (pkpkpk, mmm, σagg) where pkpkpk =
(pk1, ..., pkn) and mmm = (m1, ..., mn) ∈ Mn .

We say that the adversary wins the game if the following conditions hold:

• vfyAgg(σagg, mmm, pkpkpk) = true,

• there is at least one 1 ≤ j ≤ n such that (1) pk j = pk, and (2) A did not issue
a signing query for mj , meaning that mj /∈ {m(1), m(2), ...}.

We define A’s advantage with respect to SA, denoted ASIGadv[A,SA], as the
probability that A wins the game.

On this attack game, Boneh and Shoup [11] define the security of aggregate signatures:

Definition 2.6 (Security of aggregate signatures [11], page 626) We say that an ag-
gregate signature scheme SA is secure if for all efficient adversaries A, the quantity
ASIGadv[A,SA] is negligible.

8



2.1. BLS Aggregate Signatures

Adversary A Challenger

(pk, sk) R←− gen()

pk

...

m(i) ∈ M

σ(i) R←−
sign(m(i), sk)

σ(i)

...

output candi-
date forgery:
(pkpkpk, mmm, σagg)

msc Attack game for aggregate signatures

Figure 2.2: Attack game for EUF-CMA for aggregate signatures

2.1.3 Bilinear Pairings

Bilinear pairings, also called bilinear maps, are definied by Boneh and Shoup [11] as
follows:

Definition 2.7 (Bilinear pairing [11], page 618) Let G0, G1, GT be three cyclic
groups of prime order q where g0 ∈ G0 and g1 ∈ G1 are generators. A pair-
ing is an efficiently computable function e : G0 ×G1 → GT satisfying the following
properties:

1. bilinear: for all u, u′ ∈ G0 and v, v′ ∈ G1 we have
e(u · u′, v) = e(u, v) · e(u′, v) and e(u, v · v′) = e(u, v) · e(u, v′),

2. non-degenerate: gT := e(g0, g1) is a generator of GT.

9



2. BACKGROUND

If G0 = G1, the pairing is symmetric.

We refer to G0 and G1 as the pairing groups or source groups, and refer to GT as the
target group.

A central property of pairings, provided by Boneh and Shoup [11], which we will use
to construct BLS signatures, is: for all α, β ∈ Zq we have

e(gα
0 , gβ

1 ) = e(g0, g1)
αβ = e(gβ

0 , gα
1) (2.3)

2.1.4 BLS Signatures

BLS signatures were introduced by Boneh, Lynn, and Shacham [10]. The scheme is
based on bilinear pairings. We here present the fomulation by Boneh and Shoup [11]:

Definition 2.8 (the BLS signature scheme [11], page 621) Let e : G0 ×G1 → GT
be a pairing where G0, G1, GT are cyclic groups of prime order q, and where g0 ∈ G0
and g1 ∈ G1 are generators. Let H be a hash function that maps messages in a finite
setM to elements in G0.

The BLS signature scheme, denoted SBLS = (gen, sign, vfy), has message spaceM
and works as follows:

• gen() (key generation algorithm):

– secret key: sk R←− Zq

– public key: pk← gsk
1 ∈ G1.

• sign(m, sk): To sign a message m ∈ M using a secret key sk ∈ Zq, do
σ← H(m)sk ∈ G0

• vfy(σ, m, pk): To verify a signature σ ∈ G0 on a message m ∈ M, using the
public key pk ∈ G1, output true if e(H(m), pk) = e(σ, g1)

The BLS signature scheme SBLS, is proven to be secure under the Computational
Co-Diffie-Hellman (co-CDH) assumtion [10]. Boneh et al. [8] define this property as
follows:

Definition 2.9 (Computational Co-Diffie-Hellman [8]) Given g1, ga
1 ∈ G1 and h ∈

G2 compute ha ∈ G2.

Theorem 2.10 ([11], page 622) Let e : G0 ×G1 → GT be a pairing and let H :
M → G0 be a hash function. Then the derived BLS signature scheme SBLS is a
secure signature scheme assuming co-CDH holds for e, and H is modeled as a random
oracle.

For a more formal definition and proof, see [10] and [11] Section 15.5.1.
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2.1. BLS Aggregate Signatures

2.1.5 BLS Aggregate Signatures

BLS signatures support signature aggregation. We will derive the aggregation function
by first presenting a naive approach, that is not secure.

Definition 2.11 (Naive BLS aggrgate signature [11], page 624) The aggregate sig-
nature scheme SABLS = (SBLS, agg, vfyAgg):

• agg(pkpkpk ∈ Gn
1 , σσσ ∈ Gn

0) := {σagg ← σ1 · σ2 · · · σn ∈ G0, output σagg ∈ G0}

• vfyAgg(σagg, mmm ∈ Mn, pkpkpk ∈ Gn
1) = true if

e(σagg, g1) = e(H(m1), pk1) · · · e(H(mn), pkn) (2.4)

Note that the aggregation algorithm does not require the public keys. As the aggrega-
tion does not require to validate the aggregated signatures, we will omit the public
keys in our models.

The verification of BLS aggregate signatures can be optimized if all signed messages
are identical m1 = m2 = ... = mn = m. In that case, the public keys can be
aggregated to one aggregate public key pkagg = pk1 · · · pnn ∈ G1, which is used for
the verification:

e(σagg, g1)
?
= e(H(m), pkagg) (2.5)

This reduces the computation of n + 1 parings to two pairings. The aggregate public
key can even be precomputed and reused.

2.1.6 Rogue Public Key Attack

As mentioned, the above construction is insecure since it is vulnerable to a rogue
public key attack. The adversary can forge an aggregate signature that makes it seem
as if a message m ∈ M was signed by a target agent whose public key is pktarget. The
adversary creates a so-called rogue public key pkrogue for a target public key pktarget:

The adversary chooses a random value α
R←− Zq and computes:

pkrogue ← gα
1/pktarget ∈ G1 (2.6)

The corresponding secret key is skrogue = α− sktarget. However, since the adversary
has no access to the target secret key sktarget, the adversary also does not know the
rogue secret key skrogue. The adversary can still create a valid, rogue aggregate
signature:

σaggrogue
:= H(m)α ∈ G0 (2.7)

11



2. BACKGROUND

This aggregate signature is valid for twice the message m, the target public key pktarget
and the rogue public key pkrogue: vfyAgg(σaggrogue

, (m, m), (pktarget, pkrogue)) as:

e(σaggrogue
, g1) = e(H(m)α, g1) = e(H(m), gα

1)

= e(H(m), pktarget · gα
1/pktarget)

= e(H(m), pktarget) · e(H(m), gα
1/pktarget)

= e(H(m), pktarget) · e(H(m), pkrogue)

The adversary creates a forgery and thus violates our security definition for aggregate
signatures, Definition 2.6. Thus, we need to extend our BLS aggregate signature
scheme with mitigations to prevent the rogue public key attack.

2.1.7 Mitigating the Rogue Public Key Attack

There are different methods to prevent the rogue public key attack. We present three
of them here.

Prevent Duplicate Messages

Note that the rogue public key aggregate σaggrogue
validates for twice the message

m. In fact, this attack is only possible with multiple times the same message. The
first mitigation, presented by Boneh et al. [8], addresses this, by enforcing distinct
messages. The verification algorithm verifies the distinctness of the messages and
otherwise rejects. This is only suitable for applications with unique messages, for
example certificate chains.

Message Augmentation

The second method can be applied, if distinct messages are not given. In that case,
the distinctness is achieved by prepending the signing public key to every message,
before signing.

Definition 2.12 (BLS agg. signature with message augmentation [11], page 626)
Our modified aggregation scheme, denoted SA(1)

BLS, is the same as SABLS in 2.11
except that the signing algorithm now uses a hash function H : G1 ×M→ G0 and
is defined as

sign(m, sk) := H(pk, m)α where sk = α ∈ Zq and pk→ gα
1 (2.8)

In effect, the message being signed is the pair (pk, m) ∈ G1 ×M. The verification
and aggregate verification algorithms are equally modified to hash the pairs (pk, m).
Specifically, aggregate verification works as

vfyAgg(σagg, mmm ∈ Mn, pkpkpk ∈ Gn
1) = true

if e(σagg, g1) = e(H(pk1, m1), pk1) · · · e(H(pkn, mn), pkn) (2.9)
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2.1. BLS Aggregate Signatures

As described in Section 2.1.5, the naive approach for BLS aggregate signatures of
Definition 2.11 can be verified faster, if all messages are the same. This optimization
is not possible with this method.

Proof of Possession of the Secret Key

This method preserves the fast verification described in Section 2.1.5. Recall that in
the rogue public key attack, the adversary is not in possession of the rogue secret key
pkrogue. We use this fact for this mitigation approach: The signers have to prove the
possession of their secret keys, referred to as Proof of Possession (PoP).

Definition 2.13 (BLS aggregate signature with PoP [11], page 627) The modified
aggregation scheme, denoted SA(2)

BLS, is the same as SABLS defined in 2.11 except
that the key generation algorithm also generates a proof π to show that the signer
has possession of the secret key. We attach this proof π to the public key, and it is
checked during aggregate verification. In particular, the key generation and aggregate
verification algorithms use an auxiliary hash function H′ : G1 → G0, and operate as
follows:

• gen() :=

{
α

R←− Zq, u← gα
1 ∈ G1, π ← H′(u)α ∈ G0

output pk := (u, π) ∈ G1 ×G0 and sk := α ∈ Zq

}
.

• vfyAgg(σagg, mmm ∈ Mn, pkpkpk) :
Let pkpkpk = (pk1, ..., pkn) = ((u1, π1), ..., (un, πn)) be n public keys, and let
mmm = (m1, ..., mn). Accept if

– valid proofs: e(πi, g1) = e(H′(ui), ui) for all i = 1, ..., n, and

– valid aggregate: e(σagg, g1) = e(H(m1), u1) · · · e(H(mn), un)

The new term π = H′(u)α in the public key is used to prove that the public key
owner is in possession of the secret key α. This π is a BLS signature on the public
key u ∈ G1, but using the hash function H′ instead of H. The aggregate verification
algorithm first checks that all the terms π1, ..., πn ∈ G0 in the given public keys are
valid, and then verifies that the aggregate signature σagg is valid exactly as in SABLS.

The above presented schemes SA(1)
BLS and SA(2)

BLS are secure in the sense of Defini-
tion 2.6, assuming co-CDH holds for e, and the Hash functions H and H′ are modeled
as random oracles, see [7] and [11] Section 15.5.3.3 for the proofs.

Aggregate signatures and multi-signatures are sometimes confused, also because
there are multi-signature schemes for BLS signatures, for example the schemes from
Boldyreva [4] or Boneh et al. [6]. Aggregate signatures and multi-signatures both
reduce multiple signatures to a single short signature. The main difference between
the two is that the signatures of a multi-signature have to be on the same message
where aggregate signatures allow signatures on different messages. Multi-signatures
also contain some more elements such as a system parameter. The multi-signature is
created collectively between the parties and the signing algorithm is interactive.
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2.1.8 Implementations

There exists a Internet Engineering Task Force (IETF) draft of BLS aggregate sig-
natures [9]. The document is work in progress. It documents the three rogue public
key mitigations that we mentioned above in form of three schemes. The PoP scheme
supports fast verification, as described in Section 2.1.5 on page 11. As mentioned
above, the BLS aggregation algorithm does not require the public keys, in contrast to
the definition of aggregate signatures 2.4 which includes the public keys. The IETF
draft also defines the arguments without the public keys:

1 signature = Aggregate((signature_1, ..., signature_n))

There are several implementations of this IETF draft, mostly related to blockchains.
Here are three examples:

• Chia, a blockchain company, provides an implementation [12], which is not yet
reviewed.

• The blockchain company Algorand has a work in progress BLS signature
implementation [21].

• The Ethereum 2.0’s beacon chain specification [1] includes BLS aggregate
signatures.

2.1.9 Attacks on BLS Signatures

Quan [19], [20] describes several attacks on BLS aggregate signatures, with a focus
on the IETF draft [9]. In this section, we describe three of those attacks. We evaluate
the second attack with our models.

Identity Element Keys with a Single BLS Signature

Quan [19] describes an attack on BLS signatures. The adversary can choose a
malicious signing key, which results in signatures that are accepted for all messages.

The adversary chooses the private key to be equal to zero, this results in the corre-
sponding pubic key and all signatures signed with it being the identity element:

skadv := 0 (2.10)

pkadv := gskadv
1 = g0

1 = 1 (2.11)

σadv := H(m)skadv = H(m)0 = 1 (2.12)

As vfy(σadv, m, pkadv) = true if e(H(m), pkadv) = e(σadv, g1), and e(H(m), 1) =
e(1, g1) for any message m ∈ M, the signature σadv validates for the public key pkadv
and any message m ∈ M.

This attack does not violate the security definition of signatures 2.3, as the signing
key skadv is not honestly generated. This attack is an instance of a colliding signature
attack, which we will discuss in Section 3.2.1.
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The BLS IETF draft [9] requires in the verification algorithm to check that the public
key is not the identity element. According to Quan [19], some libraries implementing
the IETF draft, omit this check or implement it incorrectly, which makes this attack
practical for those implementations.

Splitting Zero Attack

Quan [19] extends the above attack for BLS aggregate signatures. The splitting zero
attack bypasses the identity element check, by using multiple malicious keys.

The adversary chooses two malicious keys, such that skmal1 + skmal2 = 0. And both
skmal1 and skmal2 are non-zero. Thus, the corresponding public keys are not the identity
element and the public keys will validate. The adversary then signs some message
m with each malicious key skmal1 and skmal2 . This results in the aggregate of those
signatures being the identity element:

σaggmal
:= σmal1 · σmal2

= H(m)skmal1 · H(m)skmal2

= H(m)skmal1+skmal2

= H(m)0

= 1

Note that the product of the two malicious public keys is the identity element:

pkmal1 · pkmal2 = 1 (2.13)

The adversary can aggregate this malicious signature σaggmal
= 1 with some third valid

signature σ3. This results in a aggregate signature equal to this third signature σ3:

σagg1,2,3 := σmal1 · σmal2 · σ3 = σ3 (2.14)

This aggregate signature will validate against the messages vector (m′, m′, m3) where
m′ can be any message. We show this in the following: As σ3 is a valid signa-
ture, we have e(g1, σ3) = e(pk3, H(m3)). The following derivation shows, that
vfyAgg(σagg1,2,3 , (m′, m′, m3), (pkmal1 , pkmal2 , pk3)) = true for any message m′:

e(g1, σagg1,2,3) = e(g1, σ3)

= 1 · e(pk3, H(m3))

= e(g1, H(m′))0 · e(pk3, H(m3))

= e(g1, H(m′))skmal1+skmal2 · e(pk3, H(m3))

= e(g1, H(m′))skmal1 · e(g1, H(m′))skmal2 · e(pk3, H(m3))

= e(g
skmal1
1 , H(m′)) · e(g

skmal2
1 , H(m′)) · e(pk3, H(m3))

= e(pkmal1 , H(m′)) · e(pkmal2 , H(m′)) · e(pk3, H(m3))
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As the above zero bug, this attack does not violate the security definition of aggregate
signatures 2.6. It is still an unexpected behavior of aggregate signatures. One might
expect, that if two agents are in possession of the same aggregate signature, they will
validate it with the same messages. However, this cannot be expected if the scheme
only guarantees EUF-CMA.

This attack may be a problem if one expects a signature to provide consensus. But this
is not the case for aggregate signatures nor signatures. There are no guarantees for
malicious keys. Other primitives or protocols have to provide consensus, this cannot
be achieved by signatures.

Interestingly, the first two methods to prevent the Rogue public key attack (preventing
duplicate messages and message augmentation), will also prevent this attack, since
aggregating signatures on the same message will be prevented. But the PoP method
does not resolve this problem, as the adversary is in possession of the two malicious
keys.

As each subset of public keys with the same signed message could be colluded, the
attack could only be prevented, by checking each such subset of public keys. This
would be quite expensive.

Splitting Zero Attack against FastAggregateVerify

As described in Section 2.1.5, BLS aggregate signatures enable a faster verifica-
tion if all signatures are equal. This option is also included in the IETF draft [9].
For the PoP scheme, there are two algorithms to verify an aggregate signature:
AggregateVerify and FastAggregateVerify. The first one performs a
normal vfyAgg and validates every public key individually, where the second algo-
rithm performs the optimization and validates the aggregate of the public keys. Thus,
in the following example, the two algorithms will return different results for the same
input:

Example 2.14 We validate a malicious aggregate signature, as in the above splitting
zero attack: σaggmal

:= 1 with two malicious public keys with a product equal to
the identity element: pkmal1 · pkmal2 = 1. The two verification algorithms will now
provide different results:

AggregateVerify((m, m), (pkmal1 , pkmal2), 0) = true (2.15)

FastAggregateVerify(m, (pkmal1 , pkmal2), 0) = false (2.16)

As mentioned above, AggregateVerify will validate the two public keys pkmal1
and pkmal2 separately. As they are both not the identity element, the algorithm returns
true. FastAggregateVerify aggregates the two public keys by multiplying them
pkmal1 · pkmal2 = 1. The validation of this aggregated public key will fail, as it is
equal to the identity element.
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This could be prevented, by additionally validating the aggregated key in the algo-
rithm AggregateVerify if all messages are the same. This would lead to some
computational overhead, which may not be desirable.

2.2 Tamarin

The Tamarin Prover [22] is an automated formal verification tool to model and analyze
security protocols. When providing a symbolic model of the protocol and the desired
security properties to Tamarin, it can construct a proof or an attack on the property, or
it does not terminate due to the undecidability of the problem.

As Tamarin operates in the symbolic model, cryptographic messages are modeled as
terms. Each cryptographic message is a constant, a variable, or a function symbol
applied to some messages. The properties of functions are modeled using equational
theories, which are sets of equations. To illustrate this, let us look exemplary at the
function symbol pair. It models a pair of two messages. To access the first and
second argument, we use the two additional function symbols fst and snd. Tamarin
supports the following two equations:

1 fst(pair(x,y)) = x
2 snd(pair(x,y)) = y

In this thesis, we will write <x, y> for pair(x, y), which is supported by
Tamarin as syntactic sugar. Tamarin supports various equational theories for crypto-
graphic primitives. For example, Tamarin’s built-in equational theory for signatures is
defined as follows:

1 functions: sign/2, verify/3, pk/1, true/0
2 equations: verify(sign(m,sk), m, pk(sk)) = true

The verification returns true if the message and secret key inside the signature function
sign match the message and public key provided for the verification, stated as the
second and third argument of verify. As described in Section 1.1, Jackson et al. [17]
discussed that this standard model does not capture some subtle behaviors, such as
colliding signatures, which we will discuss in Section 3.2.1. Functions and equations
can also be defined by the user. We will use this functionality and some other
mechanism to model our aggregate signatures.

The protocols are modeled using labeled multiset-rewrite rules, which define a labeled
transition system. The current protocol state is represented by a multiset of facts,
which can transition into a new state through the application of a rule. Let us look at
the following example rule and discuss its components:

1 rule Example:
2 [ Fr(~m) ]
3 --[ Label(~m) ]->
4 [ State('1', ~m), Out(pair(~m, ~m)) ]

17



2. BACKGROUND

A multiset-rewrite rule in Tamarin consists of a name, here Example, a left hand
side on line 2, a right hand side on line 4, which are both multisets of facts, and a
multiset of labels on line 3, called action facts.

A rule can be applied if there is a subset of facts in the current state that matches the
left hand side of the rule. Applying the rule results in the removal of this matching
subset of facts and the addition of instantiations of the facts in the right hand side with
the matching substitution.

Note that the above rule contains two special facts: Fr and Out. Fr is used to access
so-called fresh variables, marked with the prefix ~. Tamarin has built-in rules that
generate instances of Fr(x) and Tamarin ensures that each term instantiating x is
unique. In the above example rule, we have the fresh variable ~m and the public
constant ’1’, which is a publicly known atomic message. The Out fact, together
with the In fact are used to model the Dolev-Yao adversary, which represents the
untrusted network. Out facts are used to model agents sending messages, in the above
example pair(~m, ~m), to the network and In facts for receiving messages from
the network.

The execution of a protocol is represented by the repeated application of multiset
rewrite rules to the protocol’s state, where the first state is an empty multiset. The
trace of such an execution is defined by the sequence of the instantiated action facts
of the rewrite rules. For example, if a protocol execution consisted of the application
of the following two rules consecutively,

1 rule FirstRule:
2 [ ]
3 --[ L1() ]->
4 [ F('1') ]
5

6 rule SecondRule:
7 [ F(a) ]
8 --[ L2(a), L3() ]->
9 [ G('2') ]

the trace of this execution would be {L1()}, {L2(’1’),L3()}. Note that the
trace contains the action fact L2(’1’) while the second rule contains L2(a). The
variable a is instantiated by the constant ’1’. The rules could of course also be
applied in a different order, which would result in different traces, for example:
{L1()}, {L1()}, {L1()}. We define the semantics of a security protocol as the
set of all traces of the protocol’s labeled transition system. We express the security
properties as trace properties, which are also sets of traces. This means a protocol
satisfies a security property if the protocol’s set of traces is a subset of the propriety’s
traces. If this is not the case, attacks on the protocol that violate the property are
possible. Those attacks are represented as traces that are not in the property’s set of
traces.

In Tamarin, we formulate the security properties as first order logic formulas, so-called
lemmas. There are two kinds of lemmas: the most common one express that the
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property must hold for all traces of the protocol, while the executability lemmas,
marked with the keyword exists-trace, state that there exists a trace for which
the property holds. The first kind of lemmas is used to express, that a property holds
for a protocol, while the second kind of lemmas is mostly used to check that the
protocol model is executable.
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Chapter 3

Overview

This overview presents an introduction to our aggregate signature models1. We first
introduce a motivating protocol and then discuss our two families of models in detail.
In a similar vein as Jackson et al. [17], we created two classes of aggregate signature
models: one for attack finding and one for validation. The attack finding models are
built around equational theories, whereas the validation models rely on Tamarin’s
support for restrictions.

3.1 Motivating Example Protocol

We first provide a motivating example for aggregate signatures. We look at a synthetic
protocol to crowdsource weather data. Figure 3.1 illustrates this protocol. In a
meteorological project, private weather stations share their measurements with the
public. We assume the weather stations do not have access to the internet; they
have however, some means of wireless broadcasting. Volunteers in the role of the
aggregator collect the measurements of multiple stations. They provide the collected
data to the public. To ensure the authenticity of the data, the weather stations sign their
measurements and broadcast the signatures along with the measurements. To save
bandwidth, the volunteers aggregate the signatures. The verifiers access the published
data and confirm its authenticity by validating the aggregate signatures.

The message sequence chart in Figure 3.2 shows the protocol in more detail.

1. The weather stations S1 to Sn each send out their measurement mi, the corre-
sponding signature σi = sign(mi, ski) and their agent name Si.

2. The aggregator receives them and publishes all the collected measurements
along with the stations’ names and the aggregated signatures agg(σ1, ..., σn).

3. The verifier first looks up the keys with the station names and then verifies the
aggregation.

1All our models are available at [15] and [16]
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3. OVERVIEW

Figure 3.1: Visualization of the crowdsourced weather protocol

3.1.1 Protocol Properties

To characterize this protocol, we formulate two authentication properties, namely
message authenticity and weak agreement.

The message authenticity property states that when the verifier V has received a
message m from a station S, the station S has previously sent out that message m
or one of the agents V or S is not honest. This is an extension of the well-known
aliveness property with an additional agreement on the message. We define this
property more formally as Lemma 6.1 on page 49.

From the security definition of aggregate signatures (see Definition 2.6 on page 8), we
know that for an honestly generated public key pki and a message mi for which an
aggregate signature σagg validates

vfyAgg(σagg, (m1, ..., mi, ..., mn), (pk1, ..., pki, ..., pkn)) = true (3.1)

the agent owning the corresponding secret key ski must have created the signature
σi = sign(mi, ski). Thus the message authenticity property holds.

The well-known weak agreement property states that when the verifier V has run the
protocol apparently with the station S then the station S must have run the protocol
apparently with V. This is defined more formally as Lemma 6.2 on page 49.

As the station S does not include the intended destination, any verifier will accept the
message. And thus, weak agreement does not hold.
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Station 1 (S1) ... Station n (Sn) Aggregator Verifier

1. m1, S1, σ1 = sign(m1, sk1)

1. mn, Sn, σn 2.
(m1, ..., mn),
(S1, ..., Sn),
agg(σ1, ..., σn)

3. Look up
keys and

verify
aggregation

msc Crowdsourced weather protocol

Figure 3.2: Message sequence chart of the crowdsourced weather data protocol

3.2 Attack Finding Models

The aggregate verification function vfyAgg is defined over whether the aggregated
signatures validate or not. Thus, we have to choose a signature model with which
we design the aggregate signature model. In a first step, we choose Tamarin’s built-
in signatures: A signature σ, is accepted (vfy(σ, m, pk(sk)) = true), exactly if
σ = sign(m, sk) where pk(sk) is the public key corresponding to sk. This is
independent on whether the key is honestly generated or not.

The definition of aggregate signatures (see Definition 2.4 on page 7) defines the
aggregation function to have as input a list of public keys and a list of signatures.
However, the aggregation of BLS aggregate signatures (see Definition 2.11 on page 11)
only multiplies the signatures and omits the public keys. Also, the IETF draft of
BLS [9] omits the public keys in the aggregation algorithm. Thus we will only include
the signatures in the aggregation.

Based on the above, we define:

Definition 3.1 (Aggregate signatures based on Tamarin’s built-in signatures)

vfyAgg(σagg, (m1, ..., mn), (pk(sk1), ..., pk(skn))) = true (3.2)

exactly if σagg = agg(σ1, ..., σn) where σi = sign(mi, ski) for all i = 1, ..., n.
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Our attack finding aggregate signature model is based on this definition. We model
our weather protocol with this aggregate signature model. It behaves as expected: we
can prove message authenticity and disprove the weak agreement property.

3.2.1 Colliding Signatures

Our model so far does not differentiate between honestly generated and maliciously
created keys. In practice, non-honestly generated keys can lead to severe attacks.
Jackson et al. [17] discuss different attacks on signatures that are possible due to
non-honest keys. One example is the colliding signature attack:

Definition 3.2 (Colliding signatures) The adversary constructs a key pair skmal, pkmal
and a signature σmal such that the signature will validate against multiple messages:
vfy(σmal, m, pkmal) = vfy(σmal, m′, pkmal) = true where m 6= m′.

Note that this attack does not violate the security definition of signatures: in the attack
game for signatures (see Definition 2.2 on page 6), the challenger generates the key
pair honestly and the adversary does not learn the secret key. Thus, the security of
signatures only gives guarantees for honestly generated keys.

So far, we have assumed that all weather stations are honest. In a small meteorology
association, this might be realistic. But what if the project is open to everyone? What
if some weather station owners have malicious intentions? For example, a hotel owner
reports good weather to attract tourists. Of course, in our protocol, the hotel owner
could send any message as weather measurement. In this case, every verifier would
work with the same incorrect data. But what if the hotel owner could, for example,
make sailors believe that there is a lot of wind and sunbathers that the wind is calm?

For a single signature, this is possible with a colliding signature attack. For BLS
signatures, a secret key equal to zero can be used as a malicious key. But this would
lead to the public key being the identity element, which can be detected easily. The
IETF draft of BLS [9] requires validation that the public keys are not the identity
element. For BLS aggregate signatures, Quan [19] describes the splitting zero attack
which is more difficult to detect.

We describe the splitting zero attack in detail in Section 2.1.9. Here we provide a brief
abstract. The adversary constructs colluded malicious keys skmal1 , ..., skmalk to create
signatures on an arbitrary message m. These malicious signatures are aggregated
possibly with some honest signatures (σl , ..., σn):

σaggmal
= agg(sign(m, skmal1), ..., sign(m, skmalk), σl , ..., σn) (3.3)

In the verification step, the message m can be replaced by any message m′.
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vfyAgg(σaggmal
, (m, ..., m, ml , ..., mn), (pkmal1 , ..., pkmalk , pkl , ..., pkn))

=vfyAgg(σaggmal
, (m′, ..., m′, ml , ..., mn), (pkmal1 , ..., pkmalk , pkl , .., pkn))

=true

Note that only the messages signed by the malicious keys (marked in red) can be
replaced. The messages ml to mn signed by honest keys cannot be replaced. Following
the same argumentation as for the colliding signature attack, this attack does not violate
the security definition of aggregate signatures.

The IETF draft of BLS [9] does not specify measures against splitting zero attacks.
As explained in Section 2.1.9 on page 16, it would be computationally expensive to
detect such attacks. Thus, this is a realistic attack and our model should account for it.

In the splitting zero attack, all the messages signed by the colluded malicious keys
must be the same. But according to the security definition, each message signed by
a malicious key could be replaced separately. We model this more general colliding
signature attack. We define the additional colliding signature behavior as follows:
For some malicious keys skmal1 , ...skmalk , messages m1, ..., mk, ml , ..., mn, honest keys
skl , ..., skn, and honest signatures σl = sign(ml , skl), ..., σn = sign(mn, skn), the
aggregate signature

σaggmal
= agg(sign(m1, skmal1), ..., sign(mk, skmalk), σl , ..., σn) (3.4)

will validate against any messages m′1, ..., m′k and the messages ml , ..., mn:

vfyAgg(σaggmal
, (m′1, ..., m′k, ml , ..., mn),

(pkmal1 , ..., pkmalk , pk(skl), .., pk(skn))) = true (3.5)

With this extended model for finding colliding signature attacks, we can produce an
attack trace that corresponds to the splitting zero attack described by Quan [19]. The
attack is depicted in Figure 3.3. The adversary aggregates an honest signature σ and a
malicious signature sign(ma, skmal). The adversary sends this aggregate signature
to two verifiers but with different messages mb and mc. Both verifiers validate σagg
successfully, although they did not use the same messages for the verification. Note
that the message signed by the station cannot be exchanged. Thus, the colliding
signature attack is not an attack on our message authenticity property as the property
must only hold for honest agents. Our colliding signature model is still able to prove
message authenticity and disprove weak agreement.

Let us have another look at our malicious hotelier. The colliding signature attack
enables reporting wind to some verifiers and no wind to others, although everyone is
in possession of the same aggregate signature. This points out that the possession of
the same signature (aggregate or not) does not provide consensus.
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Station (S) Adversary (A) Verifier 1 Verifier 2

m, S, σ =
sign(m, skS)

σaggmal
=

agg(σ, sign(ma, skmal))

σaggmal
, (m, mb), (S, A)

σaggmal
, (m, mc), (S, A)

msc Splitting zero attack

Figure 3.3: Attack trace of a splitting zero attack with one honest skS and one malicious key
skmal.

3.2.2 Rogue Public Key Attack

The rogue public key attack, described in detail in Section 2.1.6, enables an adversary
to forge an aggregate signature. The adversary creates a rogue public key for a
target public key and a rogue aggregate signature that validates for this rogue public
key and the target public key. When Boneh et al. [8] introduced BLS aggregate
signatures, they pointed out that one has to prevent rogue public key attacks. But some
implementations might still miss the mitigations or implement them incorrectly. Thus,
rogue public key attacks might still be possible in practice. Therefore, we want to be
able to explore what consequences a rogue key attack has on a protocol. We provide
an attack finding model which enables the adversary to perform a rogue public key
attack.

We introduce two new functions: roguePk enables the adversary to create a rogue
public key for a target public key pktarget:

pkrogue = roguePk(pktarget) (3.6)

and rogueAgg enables the adversary to create a rogue aggregate signature for a target
message m and rogue public key pkrogue:

σaggrogue
= rogueAgg(m, pkrogue) (3.7)
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This rogue aggregate signature validates for twice the message m, the rogue public
key pkrogue, and the victim’s public key pktarget:

vfyAgg(σaggrogue
, (m, m), (pkrogue, pktarget)) = true (3.8)

Note that the possession of the public key is sufficient for the attack. The adversary
does not need a valid signature nor the victim’s secret key. The forged signature lets
a verifier believe that the station owning sktarget signed the message m. Thus, the
message authenticity property no longer holds. With this additional attack, we have
almost no security guarantees left, but a colliding signature attack is here not possible.
A rogue aggregate signature will not validate against different messages.

The malicious hotelier could perform a rogue public key attack on a competing hotel
by reporting bad weather at that hotel. In contrast to the colliding signature attack,
all verifiers in possession of the rogue signature will have to validate with the same
message.

3.3 Validation Model

We have seen in Section 3.2.1 that the splitting zero attack does not violate the
security definition but it is not covered by a standard model based on Tamarin’s
built-in signatures. Variants of the subtle attacks described by Jackson et al. [17] for
signatures, as described in Section 1.1, may also be possible for aggregate signatures.
We can add more attacks to the attack finding model, but there is no guarantee that
we would cover all possible subtle behaviors. Jackson et al. solve this problem
by introducing a validation model. It is based on the computational definition of
signatures. Each subtle behavior that is not ruled out by the computational definition
of signatures is allowed. We follow this idea and create a validation model for
aggregate signatures.

Our validation model relies on the Correctness Definition 2.4 and the EUF-CMA secu-
rity Definition 2.6. The correctness of aggregate signatures states that if all signatures
σi in an aggregation agg(σ1, ..., σn) are valid and their signing keys are honest, the ag-
gregation has to be valid as well. Existential unforgeability states that if an aggregate
signature is accepted by the verification algorithm (vfyAgg(σagg, mmm, pkpkpk) = true), all
aggregated signatures σi are either valid or the public key pki is non-honest. Note
that the correctness and security definition describe the result of verifications for
honest keys. There is no statement for non-honest keys. Thus a verification includ-
ing a non-honest key could be true or false; however, as the verification algorithm
vfyAgg is deterministic, the result of a verification always has to be the same. We
call this property consistency. We model the verification of aggregate signatures with
those three properties: correctness, security and consistency. We define them more
formally in Section 5.1 on page 38 and express them in Tamarin as restrictions (see
Restrictions 5.1, 5.3, 5.4).
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When disallowing malicious keys, this validation model behaves similarly to the attack
finding model without additional adversary capabilities. When adding the ability to
register malicious keys, our Tamarin theory finds the splitting zero attack. In contrast
to the attack finding models, we do not need to explicitly allow attacks, but they are
implicitly allowed by our aggregate signature definition. Thus, other attacks that
we did not study are also possible. The attack finding models and the validation
model behave differently when verifying with non-honest keys. While the result in
the validation models could be either true or false, the malicious aggregations of the
attack finding models will, if correctly aggregated, always validate to true.

As mentioned above, the rogue public key attack violates the security definition of
aggregate signatures. Thus in the default validation model, the rogue public key attack
is not possible. To validate protocols that are potentially vulnerable to rogue key
attacks, we create a model with additional adversary capabilities for the rogue key
attack.

3.4 Summary

In this chapter, we gave an overview of our aggregate signature models. In the next
two chapters, we will go into more detail and discuss the implementation in Tamarin.

The validation model can be used to verify the security properties of a protocol,
allowing all subtle behaviors of aggregate signatures. As the attacks are not modeled
individually, it can be difficult to reason about a found attack. Reasoning about attacks
is easier with the attack finding models, as the attacks can be evaluated separately.

In our measurements, the attack finding models performed better. But all models have
potential for proof time improvements. We will have a deeper look at our evaluation
in Chapter 6.
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Chapter 4

Attack Finding Models

In the previous chapter, we gave an overview of our models and their properties. We
will now look at their implementation in Tamarin. In this chapter, we discuss the
attack finding models in detail, and in the next chapter we describe the validation
models. We evaluate both model classes and compare them in Chapter 6.

4.1 Naive Equation-Based Approach

To motivate our implementation, we first look at a naive approach, for which Tamarin’s
precomputation does not terminate.

Most of Tamarin’s cryptographic primitives are modeled using functions and equations.
In Section 2.2 on page 17, we provide the equational theory for signatures. The
verification succeeds, if the message and secret key match the message and public key
provided for the verification. We defined aggregate signatures in Definition 3.1 on
page 23 in a similar manner. All the messages and public keys of the signatures in the
aggregation need to match those provided for the verification. Thus, translating an
aggregate signature in the same manner seems intuitive.

Analogous to Definition 3.1, we represent a signature aggregation as the function
agg/1 applied to a list of signatures. The signatures are modeled by Tamarin’s built-in
signature theory stated in Section 2.2. For the verification, we use the function symbol
verifyAgg/3. The arguments are a signature aggregation, a list of messages, and
a list of public keys. We formulate the verification with the following recursive
equations:

1 equations: verifyAgg(agg(<sign(m1, sk),sRest>)
2 , <m1, mRest>, <pk(sk), pkRest> )
3 = verifyAgg(agg(sRest), mRest, pkRest)
4 equations: verifyAgg(agg(sign(m, sk)), m, pk(sk)) = true

Each application of an equation represents a verification step, where one signature
is verified. The first equation describes the general case: the first signature in the

29



4. ATTACK FINDING MODELS

aggregation is compared to the first message and the first public key. If they match, the
signature is valid. We omit the signature, message and public key and the remaining
signatures can be verified. The second equation represents the base case, where only
one signature in the aggregation is left. If this signature is also valid, the whole
aggregation was valid and we get the result true. Note that if at some point of the
verification the signature is not valid, the equations cannot be applied and we will not
reach the result true.

The precomputation of this model does not terminate. Informally, the problem lies
in the fact, that the variables s, m, and k in the term vfyAgg(agg(s), m, k) can be
arbitrarily long tuples. Thus, our first verification equation can be applied arbitrarily
often. Therefore, a rule containing the above term has infinitely many instantiations.
When Tamarin tries to derive those instantiations in the precomputation, it will not
terminate. This non-termination relates to the finite variant property, which we will
not define here. See [14] Section 6 for more details.

4.2 One Verification Step

To remove the recursion in the verification, we want a single equation that is ap-
plied once. This equation should state: “The messages provided for the verifica-
tion are the same as the signed messages. And the provided public keys match
the secret keys used for the signatures”. We can state this by representing the ag-
gregate signature as a list of messages and a list of public keys. The aggregation
agg(sign(m1, sk1), ..., sign(mn, skn)) is represented by

1 agg(<m1, ..., mn>, <pk(sk1), ..., pk(skn)>)

Note that the representation in Tamarin contains the public keys and not the secret keys.
Thus, for the verification we can directly compare the public keys of the aggregate
signature and the public keys provided for the verification. We define the functions
agg and verfiyAgg and verification equation as follows:

1 functions: agg/2 [private]
2 functions: verifyAgg/3
3 equations: verifyAgg(agg(m_list, pk_list), m_list, pk_list) = true

The verification function accepts if the list of messages m list and the list of public
keys pk list inside the aggregation function are the same as the ones provided to
the verification function as the second and third arguments.

An agent should only be able to create a valid aggregation if they are in possession of
the signatures. To prevent an adversary that is in possession of messages m1, ..., mn
and public keys pk1, ..., pkn but not in possession of the corresponding signatures from
creating an aggregation, the function agg is private. In Tamarin, private functions can
only be used in rules. The adversary is not able to construct private functions. But
the agent rules can directly apply the aggregate function. The following rule gives an
example on how an agent can aggregate two signatures.
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Example 4.1 An agent is in possession of two signatures and aggregates them.

1 rule Aggregator_receives_and_aggregates:
2 [ A_1(sign(m1, sk1), sign(m2, sk2)) ]
3 -->
4 [ A_2(agg(<m1, m2>, <pk(sk1), pk(sk2)>)) ]

The agent state fact A 1 contains two signatures. The agent extracts the messages and
secret keys and creates an aggregation with them. The aggregation is added to the new
agent state fact A 2.

Note that this example rule cannot be applied on arbitrary terms. The pattern matching
ensures that only valid signatures can be aggregated. In practice, one can aggregate
arbitrary terms. Thus, the above rule contains an implicit signature verification. Some
implementations and protocols might require a verification step while aggregating
but others might not. This has to be kept in mind when using the aggregate signature
models. Otherwise, one might miss some attacks.

In practice, anyone can aggregate signatures, also the adversary. We provide the
adversary an aggregation oracle, modeled by the following two rules:

1 rule Adv_Aggregate:
2 [ In(<sign(m, sk), agg(messages, keys)>) ]
3 -->
4 [ Out(agg(<m, messages>, <pk(sk), keys>)) ]
5

6 rule Adv_Aggregate_BaseCase:
7 [ In(sign(m, sk)) ]
8 -->
9 [ Out(agg(m, pk(sk))) ]

The adversary accesses the oracle via In and Out facts. The aggregation is done in
an incremental manner. In the first rule, the adversary provides a signature and an
aggregate signature to the oracle via an In fact. The oracle adds the signature to the
aggregation and provides the new aggregation to the adversary via an Out fact. The
second rule represents the base case, where one signature is aggregated.

Note that this rule only allows the aggregation of valid signatures. Thus, the resulting
aggregate signature is valid by construction. The same is true for example 4.1. An
invalid aggregation can be modeled by an arbitrary term. The verification equation
cannot be applied to verifyAgg(term, m, k). Thus, the arbitrary term term
will not validate as an aggregate signature.

In the above example 4.1, the agent aggregates two signatures in one step. This could
be extended to more signatures. But it would always model the aggregation of a
fixed number of signatures. We can apply the approach of the adversary aggregation
oracle to the aggregation by protocol agents. The aggregation is done incrementally,
in each rule one signature is added to the aggregation. This enables us to model the
aggregation of arbitrarily many aggregated signatures. But it has to be kept in mind
that some aggregate signatures such as BLS support incremental aggregation, while
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others do not. When modeling aggregate signatures that do not support incremental
aggregation, one has to adapt the adversary aggregation rules.

We have so far modeled the aggregation as two tuples, one containing the messages
and one containing the public keys. Alternatively, one could use a multiset of pairs
where each pair contains a message and a public key. The aggregation
agg(sign(m1, sk1), sign(m2, sk2), ..., sign(mn, skn)) would be represented as

1 agg(<m1, pk(sk1)> + <m2, pk(sk2)> + ... + <mn, pk(skn)>)}

In a preliminary evaluation, we did not find a difference in proof time for the two
approaches. We decided to use the version with two tuples as it is closer to the com-
putational representation and thus more intuitive. Multisets in Tamarin are modeled
as the associative-commutative operator +, see the Tamarin manual [22]. Thus, we
can access each message and key pair by pattern matching with agg(<mi, pki>
+ rest). In contrast, we cannot do this with Tamarin’s tuples. We can only ac-
cess elements with a given index; for example, we can access the third element e3
in <e1, <e2, <e3, rest>>>. Depending on the protocol, one might need to
access arbitrary elements, in that case, the multiset of pairs version would be better
suited.

4.3 Extension for Attacks

Our model so far does not support special adversary capabilities. As described in
Section 3.2, we extended our models to enable the adversary to perform colliding
signature attacks or rogue public key attacks. In this section, we will describe those
attack models in detail. We first introduce the public key infrastructure. And then
we begin with the rogue public key attack model, as it is simpler than the colliding
signature model, which we will describe afterward.

We use the key infrastructure provided by the Tamarin manual [22]:

1 rule Register_pk:
2 [ Fr(~ltkA) ]
3 --[ RegisterHonestKey(pk(~ltkA)) ]->
4 [ !Ltk($A, ~ltkA)
5 , !Pk($A, pk(~ltkA))
6 , Out(pk(~ltkA)) ]
7

8 rule Reveal_ltk:
9 [ !Ltk(A, ltk) ]

10 --[ LtkReveal(A) ]->
11 [ Out(ltk) ]

The first rule models the registration of a new long-term key ~ltkA for agent $A.
The agent $A can access ~ltkA through the fact !Ltk. And other agents can access
the public key pk(~ltkA) through the fact !Pk. The public key is also provided to
the adversary over an Out fact.
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The second rule models a long-term key reveal. This corresponds to the agent being
compromised. The adversary learns the long-term key ltk.

4.3.1 Rogue Public Key Attack

We described the rogue public key attack in Section 2.1.6 and defined functions to
model it in Section 3.2.2. We defined a rogue public key as

pkrogue = roguePk(pktarget) (4.1)

and a rogue aggregation as

σaggrogue
= rogueAgg(m, pkrogue) (4.2)

We model rogue public keys with the new function roguePk/1. We differentiate
between honest aggregations and rogue aggregations. For that, we rename the function
agg/2 to validAgg/2 and we introduce the new private function rogueAgg/2.
validAgg represents an aggregation of honest signatures and rogueAgg represents
an aggregation that contains at least one rogue aggregation. Therefore, aggregating
rogue aggregations and valid aggregations results in a rogue aggregation. The ver-
ification equation for valid aggregations stays the same and we add an equivalent
verification equation for rogue aggregates.

1 equations: verifyAgg(validAgg(m, k), m, k) = true
2 equations: verifyAgg(rogueAgg(m, k), m, k) = true

As we use equivalent equations for valid and rogue aggregations, we could use one
function symbol for both. But this differentiation is useful when analyzing attack
traces. We recognize the rogue aggregates immediately. However, one has to be
cautious when pattern matching with the aggregation functions: for example, when an
agent receives an aggregate signature and we use the fact In(validAgg(m, k))
on the left hand side of an agent rule, the agent will only receive valid aggregations.
The adversary could not provide an aggregation of the form rogueAgg(m, k). It
would be safer to use the fact In(aggregation)where the variable aggregation
could be instantiated by a validAgg(m, k) or rogueAgg(m, k).

To enable the adversary to create rogue aggregations, we add another aggregation
oracle in the form of rules:

1 rule Adv_RogueKey_Aggregation_new:
2 let pkRogue = roguePk(pkTarget)
3 in
4 [ In(<m, pkRogue>) ]
5 -->
6 [ Out(rogueAgg(<m, m>, <pkTarget, pkRogue>)) ]

To create a rogue aggregation, a message m and a rogue public key roguePk(pkTarget)
are provided. Note that the adversary can create such a key for a target public key
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pkTarget. The oracle returns a rogue aggregation for twice the message m, the
target public key pkTarget and the rogue key roguePk(pkTarget).

With this rule, the adversary can create a rogue aggregation for a target public key and
a corresponding rogue public key. Such a rogue aggregate can be aggregated with
other rogue aggregates or honest signatures. Therefore, we add three more oracle rules
that enable the adversary to aggregate a rogue aggregation and a valid aggregation, a
valid signature and a rogue aggregation, and two rogue aggregations.

The adversary can create rogue public keys for any public keys. But so far, honest
agents cannot access the rogue public keys. Thus, we add the following rogue key
registration rule.

1 rule Register_rogue_pk:
2 [ In(roguePk(m, pkTarget)) ]
3 --[ Malicious($Adversary)]->
4 [ !Pk($Adversary, roguePk(m, pkTarget)) ]

This enables honest agents to access the rogue public key over the !Pk fact.

4.3.2 Colliding Signatures

In Section 3.2.1, we defined the colliding signature attack as follows: The adver-
sary creates malicious keys skmal1 , ...skmalk . Signatures of those malicious keys
sign(mi, skmali) validate for any messages. Such malicious signatures can be aggre-
gated with some honest signatures σl , ..., σn that validate for the messages ml , ..., mn
and public keys pkl , ..., pkn. The aggregate signature of those malicious and honest
signatures will validate for the messages ml , ..., mn and any messages m′1, ..., m′k. We
express this in the following equation.

vfyAgg(agg(sign(m1, skmal1), ..., sign(mk, skmalk), σl , ..., σn),
(m′1, ..., m′k, ml , ..., mn), (pkmal1 , ..., pkmalk , pkl , .., pkn)) = true (4.3)

The representation of aggregate signatures agg(m, k)that we have used so far
explicitly states for which messages it will validate. But with the colliding signature
attack, the messages corresponding to the malicious keys can be replaced by any
messages. Consequently, we cannot use the equation:

1 verifyAgg(agg(m, k), m, k) = true

On first glance, the equation
1 verifyAgg(zeroAgg(m1, k), m2, k) = true

seems to work. But this would enable us to replace all the messages and not just
those corresponding to malicious keys. Thus, we need to differentiate between the
malicious and the non-malicious signatures.
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We model a signature aggregation that contains a colliding signature attack with the
private function zeroAgg/2 after the splitting zero attack. The first argument is a
valid aggregation and the second is a list of malicious public keys. The aggregation
from the above equation 4.3 would be represented as:

1 zeroAgg(validAgg(<ml, ..., mn>, <pk(skl), ..., pk(skn)>)
2 , <pk(skMal1), ..., pk(skMalk)>)

In the verification, only the messages of the valid aggregation are checked. We
formulate this with the following equations.

1 equations: verifyAgg(zeroAgg(validAgg(m, k), kZero)
2 , <mMalicious, m>, <kZero, k>) = true
3 equations: verifyAgg(zeroAgg(validAgg(m, k), <kZero1, kZero2>)
4 , <mMalicious1, <mMalicious2, m>>
5 , <kZero1, <kZero2, k>>) = true

The first equation models the case of one malicious key and the second equation
represents the case of two malicious keys. The malicious and honest signatures
are validated separately. The malicious keys kZero, kZero1, and kZero2 must
be the first ones in the list of keys provided for the verification and they must be
the second argument of the malicious aggregation zeroAgg. The corresponding
malicious messages mMalicious, mMalicious1, and mMalicious2 can be
arbitrary. Where the remaining messages m and keys k need to match those inside the
valid aggregation validAgg.

With those two equations, we can only cover the case of one or two malicious keys.
We can add more equations, but we cannot cover arbitrarily many malicious signatures.
However, a fixed number of malicious signatures is sufficient for an attack finding
model. With those two equations, Tamarin can find the splitting zero attack described
by Quan [19].

To create the private function zeroAgg and to register malicious keys, we add rules
similar to those in the rogue public key model. In both the rogue public key attack
model and the colliding signature model, only the adversary can aggregate malicious
signatures. An honest agent cannot accidentally aggregate some malicious signatures.
In our weather protocol example this does not matter as the aggregator only performs
the aggregation and this can also be done by the adversary. But for other protocols,
where the aggregator performs some additional operations, for example encrypting
the aggregate signature, one would need to add additional rules for an aggregator that
accidentally aggregates malicious signatures.

35





Chapter 5

Validation Models

In Section 3.3, we demonstrated the need for validation models and described them
broadly. In this chapter, we describe our implementation in detail. In the next chapter,
we evaluate our models, compare it to the attack finding models, and evaluate the
performance of our models.

In the attack finding models we presented so far, the verification and adversary
capabilities are modeled through equations and rules. Each additional adversary
capability has to be added explicitly. We now present an opposite approach that
follows the computational definition of aggregate signatures. The correctness and
security definition describe the verification results for honestly generated keys whereas
the verification result for non-honest keys is only restricted through the deterministic
nature of the verification algorithm. Thus, every attack that is not explicitly forbidden
by the cryptographic definition is possible. We model this using Tamarin’s restrictions.
Jackson et al. [17] first introduced this method of using Tamarin’s restrictions to model
cryptographic primitives.

Restrictions restrict which traces Tamarin analyzes. Let us look, as an example, at the
following restriction, which is adapted from the Tamarin manual [22]:

1 restriction Equality:
2 "All x y #i. Equal(x,y)@i ==> x = y"

This restriction ensures that Tamarin only considers traces, where in all appearances
of the fact Equal, the first and second arguments are equal. We can use this, for
example, to model a signature verification. One adds the action fact

1 Equal(verify(signature, m, pk), true)

to the agent rule where the verification takes place. Thereby, Tamarin only considers
traces where the verification verify(signature, m, pk) is equal to true.

We extend this idea by translating the computational definition of aggregate signa-
tures into Tamarin restrictions. We formulate the restrictions around the action fact
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VerifyAgg. This fact contains the signature aggregation, the messages and public
keys, and the expected verification result. In most cases, the expected verification
result is true, but if a protocol expects a certain behavior in case of an invalid signature,
one can use the new nullary function false/0.

5.1 Formalizing the Restrictions

We now formulate the correctness, security, and consistency of aggregate signatures,
motivated in Section 3.3, more formally.

5.1.1 Correctness

The correctness definition of aggregate signatures 2.4 on page 8 states that if all
signatures in an aggregation are accepted, the aggregation has to be accepted as well:

∀pkpkpk, mmm, σσσ.(∀i ∈ {1, ..., n}.vfy(σi, mi, pki) = true)

=⇒ vfyAgg(agg(σσσ), mmm, pkpkpk) = true (5.1)

where pkpkpk = (pk1, ..., pkn), mmm = (m1, ..., mn) and σσσ = (σ1, ..., σn)

We want to describe the result of vfyAgg independently of the result of vfy. For that
we use the correctness definiton of signatures, which states: For a key pair (sk, pk)
output by the key generation algorithm and all messages m, we have:

vfy(sign(m, sk), m, pk) = true (5.2)

Analogous to Jackson et al. [17], we use the predicate Honest(pk) to state that the
public key pk was honestly generated by the key generation algorithm.

As Honest(pk) ∧ σ = sign(sk, m) implies that the signature verification succeeds,
we can formulate the following correctness restriction.

Restriction 5.1 (Correctness of aggregate signatures)

∀pkpkpk, mmm, σσσ.(∀i ∈ {1, ..., n}.(Honest(pki) ∧ σi = sign(mi, ski))

=⇒ vfyAgg(agg(σσσ), mmm, pkpkpk) = true (5.3)

5.1.2 Security

We will first derive our security restriction from the computational security definition
and then explain the restriction on an example.

The existential unforgeability definition of aggregate signatures (Definition 2.6 on
page 8) states that no adversary, capable of winning the attack game with an non-
negligible probability, exists. We abstract this and assume that no adversary can win
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the attack game. Winning the attack game means, after having access to a signing ora-
cle, the adversary produces a forgery (pkpkpk, mmm, σagg) where vfyAgg(σagg, mmm, pkpkpk) = true
where one of the public keys pk j ∈ pkpkpk is the honestly generated one provided
by the challenger, the corresponding secret key sk j is not known to the adver-
sary, and the corresponding message mj ∈ mmm was not queried by the adversary.
As we assume that such a forgery is not possible, for each triple (pkpkpk, mmm, σagg)
where vfyAgg(σagg, mmm, pkpkpk) = true, each public key pki ∈ pkpkpk is either not hon-
est or there is an corresponding signature σi that is honestly created, which means
σi = sign(mi, ski). Note that σagg can be an arbitrary term if all public keys are not
honest. Only if some public keys are honest, it has to be an aggregation of signatures
σagg = agg(σσσ). We express this in the following equation, which we will provide an
example for:

∀pkpkpk, mmm, σagg.vfyAgg(σagg, mmm, pkpkpk) = true

=⇒ (∀i.¬Honest(pki) ∨ (∃σσσ.σagg = agg(σσσ)

∧ (∀i.¬Honest(pki) ∨ ∃σi ∈ σσσ.σi = sign(mi, ski)))) (5.4)

As stated above, if no public key is honest (∀i.¬Honest(pki)), there are no security
guarantees. Otherwise, there has to be a list of signatures σσσ, such that σagg = agg(σσσ).
We now explain the last part of the restriction on the following example:

Example 5.2 We verify an aggregate signature agg(σ1, σ2) on two messages m1, m2
and two public keys, one honest public key pkhonest and a maliciously created public
key pkmalicious. The verification returns true:

vfyAgg(agg(σ1, σ2), (m1, m2), (pkhonest, pkmalicious)) = true (5.5)

The restriction now states that each public key has to be non-honest or the correspond-
ing signature has to be valid. We first look at our honest public key pkhonest. As it
is honest, σ1 has to be sign(m1, skhonest) where skhonest is the secret key of pkhonest.
Now for the malicious key pkmalicious, the corresponding signature σ2 can be anything
as the public key is not honest.

To simplify the security restriction, we make the following assumptions:

• The message and public key vectors mmm and pkpkpk need to be of the same length.

• The signature aggregation σagg needs to be of the form agg(σσσ).

• There must be a signature σi for each message and key pair (mi, pki) and vice
versa.

We justify those assumptions with the fact that, in practice, a verification algorithm
first does some input validations. For example, the IETF draft for BLS aggregate
signatures [9] requires the public key and message vector to be of the same length and

39



5. VALIDATION MODELS

stipulates multiple additional checks such as checking the subgroup of the signature.
We enforce the above assumptions with some additional restrictions, which we will
discuss further in Section 6.2.2. With those assumptions, we can simplify Equation 5.4
and get the following security restriction:

Restriction 5.3 (Security of aggregate signatures)

∀pkpkpk, mmm, σσσ.vfyAgg(agg(σσσ), mmm, pkpkpk) = true

=⇒ (∀j.(¬Honest(pk j) ∨ σj = sign(mj, sk j))) (5.6)

We add additional restrictions to enforce our above-mentioned three assumptions.

5.1.3 Consistency

We stated in Section 3.3 that the verification with non-honest keys can either be true or
false. But due to the determinism of the verification algorithm, the same verification
needs to always have the same result. We express this in the following consistency
restriction:

Restriction 5.4 (Consistency of aggregate signatures)

∀pkpkpk, mmm, σagg, b1, b2.vfyAgg(σagg, mmm, pkpkpk) = b1

∧vfyAgg(σagg, mmm, pkpkpk) = b2 ⇒ b1 = b2 (5.7)

5.2 Signature Aggregation in Tamarin

In this section, we discuss how we represent the signature aggregation and verification
in detail.

The above-mentioned correctness and security restrictions all quantify over the sig-
natures in the aggregation. Thus, we need to be able to express this quantification.
So far, we have used tuples to model the lists of signatures, messages, and public
keys. As mentioned in Section 4.2, we cannot access elements of an arbitrary index in
tuples. This is, however, possible with multisets. The use of multisets makes it for the
restrictions possible to quantify over the signatures, messages, and keys. We show
how we express those quantifications in the next section.

A drawback of multisets compared to tuples is that the elements are not ordered due
to their associativity-commutativity. Our restrictions contain statements on the public
keys, messages, and signatures of a certain index. We need a binding between σi, mi,
and pki. Thus, we add an explicit index. We add this index to each signature, message,
and public key.

The aggregation is represented by the function agg/1 applied to a multiset of tuples
of signatures and indexes. For example, we model

agg(sign(m1, pk1), sign(m2, pk2)) (5.8)

40



5.2. Signature Aggregation in Tamarin

as
1 agg(<sign(m1, pk1), ind_1> + <sign(m2, pk2), ind_2>)

The public keys and messages provided for the verification are represented as a
multiset of tuples, each being a triple of a message, a public key, and an index. Let us
look at the following example:

Example 5.5 When validating some signature aggregation agg on some messages
m1, m2 and public keys pk1, pk2, expecting the result true one adds the following
action fact to the corresponding agent rule.

1 VerifyAgg(agg, <m1, pk1, index_1> + <m2, pk2, index_2>, true)

We now discuss how to model the index. The index of an honest aggregation needs to
have the following two properties:

1. The adversary needs to be able to provide and create the index as the adversary
needs to be able to aggregate signatures and provide messages and keys for the
verification.

2. Each index needs to be distinct. There cannot be multiple message and key
pairs for one signature or vice versa.

We considered the following options to represent the index:

• fresh value

• constants, such as ’1’, ’2’, ’3’, ...

• counter, such as ’1’, ’1’+’1’, ’1’+’1’+’1’, ...

• a value provided by the adversary

• the public key and messages

We did not find a definite best representation for the index. There are different
advantages and disadvantages for each option. We focused on the representation as a
constant and a fresh value. A constant is the most intuitive representation but it has
the disadvantage that it has to be stated explicitly. We cannot use it to model arbitrary
large aggregations. On the other hand, we can model arbitrary large aggregations with
fresh values.

The adversary can construct each constant. When using fresh values, one has to
provide the fresh value to the adversary after the aggregation. To ensure that the
indexes in one aggregation are distinct, we add restrictions.

The function agg/1 is public. Thus, anyone, honest agents and the adversary, can
aggregate the signatures in their possession. In addition, we can aggregate any term,
valid signature or arbitrary symbol. This makes this model a lot more flexible than the
attack models described in Chapter 4. But the aggregation has to be done in one step.
Incremental aggregation is not supported. However, the model can be extended.
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5.3 Restrictions in Tamarin

In the above two sections, we defined our restrictions and discussed how we represent
signature aggregations in Tamarin. We now apply those concepts to formulate the
restrictions in Tamarin notation. We discuss the correctness restriction as an example.
We reformulate Restriction 5.1 on page 38 to the following equivalent restriction:

Restriction 5.6

∀pkpkpk, mmm, σσσ.vfyAgg(agg(σσσ), mmm, pkpkpk) = false

=⇒ (∃i ∈ {1, ..., n}.(¬σi = sign(mi, ski) ∨ ¬Honest(pki))) (5.9)

We translate this into the following Tamarin restriction which we will discuss in detail:

1 restriction Verification_Correctness_morePrecise:
2 "All aggregation mAndPk #i.
3 VerifyAgg(aggregation, mAndPk, false)@i
4 ==>
5 ((Ex si ind thetaAgg mi ski thetaMPk.
6 VerifyAgg(agg(<si, ind>+thetaAgg)
7 , <mi, pk(ski), ind> + thetaMPk, false)@i
8 & (not(si = sign(mi, ski))
9 | not(Ex #j. RegisterHonestKey(pk(ski))@j)))

10 |(Ex si ind mi ski.
11 VerifyAgg(agg(<si, ind>), <mi, pk(ski), ind>, false)@i
12 & (not (si = sign(mi, ski))
13 | not(Ex #j. RegisterHonestKey(pk(ski))@j))))"

Lines 2 to 3 are the left hand side of the implication. We express

vfyAgg(σagg, mmm, pkpkpk) = false (5.10)

with the action fact VerifyAgg(aggregation, mAndPk, false). We quan-
tify over the occurrences of verification with the result false and over all signature
aggregations, messages, and public keys. In other words, for each trace that con-
tains an action fact VerifyAgg with the verification result false, the right hand side
expressed in lines 5 to 13 must hold.

For the right hand side, we have to do a case distinction. Lines 5 to 9 treat the
case of two or more aggregated signatures and lines 10 to 13 the case of one aggre-
gated signature. To explain why we need this distinction, we first have a look at
how we express the existential quantification of the right hand side. The existential
quantification ∃i ∈ {1, ..., n} quantifies over the signatures, messages and secret
keys: ∃σi ∈ σσσ, mi ∈ mmm, ski ∈ sksksk. We now look at how we express ∃σi ∈ σσσ. The
aggregation agg(σσσ) is represented as

1 agg(<s1, ind1>+ ... +<sn, indn>)

Due to the associative-commutative property of multisets, this matches
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1 agg(<si, ind>+thetaAgg)

See the following equation:

〈σ1, ind1〉+ 〈σ2, ind2〉+ .... + 〈σn, indn〉
≡AC 〈σi, indi〉+ 〈σ1, ind1〉+ ... + 〈σi−1, indi−1〉+ 〈σi+1, indi+1〉+ ... + 〈σn, indn〉︸ ︷︷ ︸

ϑagg

(5.11)

Thus we can express the existential quantification ∃σi ∈ σσσ with

1 Ex si ind thetaAgg. aggregation = agg(<si, ind>+thetaAgg)

where thetaAgg is a variable that can be instantiated by the remaining signatures.
Instead of using this equality, we restate the action fact VerifyAgg in lines 5 and 6
with aggregation replaced with agg(<si, ind>+thetaAgg). We discuss
those different formulations at the end of this section.

Now back to the case distinction: In our model, we do not use an empty element in
the multisets. thetaAgg will be instantiated by a multiset or a tuple <si, ind>.
Thus, with agg(<si, ind>+thetaAgg), we can only represent signature ag-
gregations with two or more elements. Therefore, we need to cover the case of one
aggregated signature separately. See line 11, where the aggregation of one signature
is represented by agg(<si, ind>). In other words, we need the case distinction,
as agg(<si, ind>+thetaAgg) and agg(<si, ind>) do not pattern match.
For other restrictions, we had to add a second restriction to cover the case of one
aggregated signature.

The rest of the implication ¬σi = sign(mi, ski) ∨ ¬Honest(pki) can be translated
straightforwardly in lines 8, 9, 12, and 13.

We noted above, that we can express σi ∈ σσσ by stating

1 aggregation = agg(<si, ind>+thetaAgg)

or by restating the action fact where aggregation is replaced by agg(<si,
ind>+thetaAgg). Let us look, as an example, at the following two restrictions:

1 restriction OneMessageKeyPairPerSignature_RestateActionFact:
2 "All si thetaAgg ind messagesKeys #i.
3 VerifyAgg(agg(<si, ind>+thetaAgg), messagesKeys, true)@i
4 ==> Ex mi ski thetaMPk.
5 VerifyAgg(agg(<si, ind>+thetaAgg)
6 , <mi, pk(ski), ind> + thetaMPk, true)@i"
7

8 restriction OneMessageKeyPairPerSignature_Equation:
9 "All si thetaAgg ind messagesKeys #i.

10 VerifyAgg(agg(<si, ind>+thetaAgg), messagesKeys, true)@i
11 ==> Ex mi ski thetaMPk.
12 messagesKeys = <mi, pk(ski), ind> + thetaMPk"
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The two restrictions are equivalent. They ensure that there is a signature for each
message and key pair. Note that the first one restates the action fact VerifyAgg
after the implication, while the second explicitly equates messagesKeys and <mi,
pk(ski), ind>+theatMPk. The two formulations are equivalent. But interest-
ingly, using the first formulation results in non-termination. Exploring how different
formulations of the same restriction are treated by Tamarin would be interesting for
future work.

5.4 Extension for Attacks

As the correctness and security restriction only cover verifications with honest keys,
we can enable various attacks, by adding the ability to register malicious keys. Similar
to the malicious and rogue keys described in Section 4.3, we add the following rules
for the adversary to register malicious keys:

1 rule Register_malicious_pk:
2 [ Fr(~ltkMalicious) ]
3 --[ Malicious($A) ]->
4 [ !Ltk_malicious($A, ~ltkMalicious)
5 , !Pk($A, pk(~ltkMalicious))
6 , Out(pk(~ltkMalicious)) ]
7

8 rule Reveal_malicious_ltk:
9 [ !Ltk_malicious(A, ltkMalicious)]

10 --[ LtkReveal(A) ]->
11 [ Out(ltkMalicious) ]

In contrast to the honest key registration rule, stated in Section 4.3, we here create
a malicious key, instead of an honest key. To prevent that honest agents use the
malicious keys as their own, we call the long-term key fact Ltk malicious. The
adversary gets the malicious keys through the reveal rule. And any honest agent can
access the malicious public keys through the !Pk fact.

The addition of those two rules is sufficient to model the splitting zero attack. We will
discuss the possible attacks in more detail in Section 6.1

5.4.1 Restriction-Based Rogue Public Key Model

The rogue key attack violates the aggregate signature security definition. Thus our
validation model does not allow a rogue key attack. To enable the attack, we add
an attack oracle, similar to the one presented for the attack finding model in Section
4.3.1. In contrast to the attack finding model, the aggregation function contains the
signatures and not only the messages and public keys. So when creating an attack
oracle, we need access to the rogue secret key. Note that in practice the attacker
creates the rogue public key without the secret key. So in our model, the attacker
cannot learn the rogue secret key. We replace the public function roguePk/1 with
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the private function rogueSk/1. We then add the following rule to register a rogue
key:

1 rule Register_RogueKey:
2 let pkRogue = pk(rogueSk(pkTarget))
3 in
4 [ In(pkTarget) ]
5 --[ Register($Adversary, pkRogue)
6 , Malicious($Adversary) ]->
7 [ !Pk($Adversary, pkRogue)
8 , Out(pkRogue) ]

The adversary requests the rogue public key for a target public key pkTarget.
The registration rule provides the rogue public key pk(rogueSk(pkTarget))
without revealing the rogue secret key.

The adversary can create rogue public key aggregations with an attack oracle, similar
to the one for the attack finding model, described in Section 4.3.1. The adversary
provides a rogue secret key pk(rogueSk(pk(skTarget))) and a message m.
The attack oracle returns the corresponding rogue public key aggregation:

1 agg(<sign(m, skTarget), index_target>
2 + <sign(m, rogueSk(pk(skTarget))), index_rogue>)

Note that the oracle extracts the target secret key skTarget and the rogue secret key
rogueSk(pk(skTarget)) to create the rogue aggregation, while the adversary
has access to neither of the two secret keys. We provide an additional attack oracle
rule to aggregate additional signatures to the rogue aggregate. Note that the rogue
public key is not an honest key and thus it can be used by the adversary to perform all
attacks that are possible with a regular malicious key.
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Chapter 6

Evaluation

In this chapter, we discuss the properties of our aggregate signature models. We
structure this discussion in three sections:

In the first section, we look at what influence the different aggregate signature models
have on the properties of our example weather protocol. In Section 6.2, we contrast
the behavior of our two approaches, the attack finding and validation models, by
comparing the verification results for different aggregations. And in the last section of
this chapter, we evaluate the proof times and attack finding times of different lemmas
on our example weather protocol.

6.1 Comparing the Models

In this section, we summarize the properties of our attack finding and validation
models. We first describe four lemmas which we then use to point out the differences
between our models.

6.1.1 Lemmas

To evaluate our models, we use the example weather protocol described in Section 3.1.
We describe the protocol properties by formulating four lemmas: two authentication
lemmas, which we described in Section 3.1.1 and which we will now phrase more
formally, and two new lemmas that each rule out one of our attacks.

To formulate our lemmas, we need to add action facts to our protocol. Figure 6.1
shows the message sequence chart of the protocol with the additional action facts
Running, Verify, Commit, and ClaimHonest.

We add the action fact Running(Si, V, mi) to the station roles. The four action facts,
Verify(σagg, mmm, pkpkpk), Commit(V, Si, mi), ClaimHonest(V), and ClaimHonest(Si),
are stated one after another on the verifier role; however, the four action facts happen
simultaneously.
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Station 1 (S1) ... Station n (Sn) Aggregator Verifier (V)

Running(S1, V, m1)

m1, S1, σ1 = sign(m1, sk1)

Running(Sn, V, mn)

mn, Sn, σn

mmm =
(m1, ..., mn),
(S1, ..., Sn),
σagg =
agg(σ1, ..., σn)

Look up
keys pkpkpk and

verify
aggregation

Verify(σagg, mmm, pkpkpk)

Commit(V, Si, mi)

ClaimHonest(V)

ClaimHonest(Si)

msc Crowdsourced weather protocol

Figure 6.1: Message sequence chart of the synthetic crowdsourced weather data protocol
with action facts
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We now formulate the two authentication lemmas from Section 3.1.1 using those
action facts.

Message authenticity states that for each message m, signed with a key of sensor Si
and received by a verifier V, the sensor Si must have signed the message m or one of
the agents Si or V is not honest.

Lemma 6.1 (Message authenticity)

∀Vi, S, m, i.Commit(Vi, S, m)@i
=⇒ (∃Vj, j.Running(S, Vj, m)@j)

∨ (∃C, r.LtkReveal(C)@r ∧ClaimHonest(C)@i)
∨ (∃C, r, Malicious(C)@r ∧ClaimHonest(C)@i) (6.1)

The fact LtkReveal relates to a compromised agent as shown in the rule Reveal ltk
in Section 4.3 on page 32. And the action fact Malicious refers to the registration of
malicious keys, such as the registration of rogue keys in Section 4.3.1.

Note that the Commit and Running facts contain two different verifier names Vi and
Vj. Thus there is no statement on which destination the sensor S intends. We include
the intended destination in the following standard weak agreement property:

Lemma 6.2 (Weak agreement)

∀V, S, mi, i.Commit(V, S, mi)@i
=⇒ (∃j.Running(S, V, mj)@j)

∨ (∃C, r.LtkReveal(C)@r ∧ClaimHonest(C)@i)
∨ (∃C, r, Malicious(C)@r ∧ClaimHonest(C)@i) (6.2)

Note that this lemma contains no statement on the received message mi and the sent
message mj. As discussed in Section 3.1.1, the weak agreement property does not
hold for our protocol as the stations do not include the intended destination in their
message.

We formulate two additional lemmas for the attacks covered by the extended models.
The first lemma states the absence of a splitting zero attack. With the splitting zero
attack, an aggregate signature σagg validates for different messages. Thus, our lemma
states that there cannot be action facts Verify with the same aggregate signature σagg
but with different messages mmma and mmmb.

Lemma 6.3 (No splitting zero attack)

¬(∃σagg, mmma, mmmb, kkk, i, j.Verify(σagg, mmma, kkk)@i
∧Verify(σagg, mmmb, kkk)@j ∧mmma 6= mmmb) (6.3)
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The last lemma states that no rogue public key attack is possible. The rogue public
key attack enables an adversary to forge a signature. The verifier could receive a
forged aggregate signature that validates for a message m and the public key of a
sensor S. But the sensor S has not signed this message m and the sensor S was not
compromised. The following lemma expresses that this described attack cannot occur.

Lemma 6.4 (No rogue key attack)

¬(∃Vi, S, m, i.Commit(Vi, S, m)@i ∧ ¬(∃Vj, j.Running(S, Vj, m)@j)

∧ ¬(∃k.LtkReveal(S)@k) ∧ ¬(∃l.Malicious(S)@l)) (6.4)

6.1.2 Results

In Chapter 3, we gave an overview of our models and summarized how the weather
protocol behaves assuming the different aggregate signature models. We now present
the concrete results of letting Tamarin prove or disprove the four lemmas for each
model1. We compare the following three attack finding models:

1. without additional adversary capabilities (See Section 4.2)

2. allowing colliding signatures (See Section 4.3.2)

3. allowing the rogue key attack (See Section 4.3.1)

And the following validation models:

4. without malicious keys (See Sections 5.1 to 5.3)

5. with rules to register malicious keys (See Section 5.4)

6. allowing the rogue key attack (See Section 5.4.1)

Table 6.1 summarizes the results:

As described in Section 3.1.1, the weak agreement property cannot hold for our
weather protocol as the stations do not state the intended destination. Thus the weak
agreement property does not hold for any of the models. The other three lemmas are
proven for the models without additional adversary capabilities, for the attack finding
model 1 and the validation model 4. The aliveness lemma holds as expected and the
two attacks, splitting zero and rogue public key, are not possible.

The attack finding model 2 with colliding signature attack and the validation model
5 with malicious keys also behave the same on our lemmas. They both additionally
allow a colliding signature attack, which results in the falsification of the no splitting
zero lemma. What the table does not show, is that the validation model allows various
additional attacks,which we have not as yet addressed. In Section 6.2.2 for example,

1As described in Section 6.3, not all proofs and attack searches terminated for all models and
lemmas. Thus, we performed the proofs with restrictions that limit the number of aggregated signatures
to two. We discuss and justify this approach in Section 6.3.
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Lemma

Model
Message
authenticity

Weak
agreement

No splitting
zero attack

No rogue
key attack

1 Attack finding model Proven Falsified Proven Proven

2
Attack finding model
colliding signatures

Proven Falsified Falsified Proven

3
Attack finding model
rogue public key

Falsified Falsified Proven Falsified

4 Validation model Proven Falsified Proven Proven

5
Validation model
with malicious keys

Proven Falsified Falsified Proven

6
Validation model
rogue public key

Falsified Falsified Falsified Falsified

Table 6.1: Proven and falsified lemmas for all models

we will introduce an attack on the DEO property, which is possible with the validation
model 5 but not with the attack finding model 2. In other words, we can formulate
additional lemmas that falsify for the validation model 5 and are proven for the attack
finding model 2.

In contrast to models 1, 2, 4, and 5, the rogue public key models 3 and 6 do not behave
the same regarding our four lemmas. They both enable the rogue public key attack
and thus lemma no rogue key attack is falsified. As this is an attack on the message
authenticity lemma, it is also falsified. The difference between the two models 3
and 6 is pointed out by lemma no splitting zero attack. The attack finding model 3
explicitly allows the rogue public key attack. A rogue aggregation will only verify for
one specific message and not, as required for the splitting zero attack, for multiple
messages. Thus, the splitting zero attack is not possible for the rogue public key attack
finding model 3. On the other hand, there is an attack on the no splitting zero attack
lemma for the validation model 6 with rogue public keys. However, the validation
model 6 does not have the malicious key rules of model 5. Furthermore, the rogue
public keys are not honest keys and thus they can serve as malicious keys for the
splitting zero attack, which leads to the falsification of lemma no splitting zero attack.

6.2 Correctness Evaluation

As stated in Section 5.3, it was necessary to cover the case of one signature in the
restrictions for the validation models separately. This and other details can easily be
overlooked. We found them due to our correctness evaluation, which we performed
repetitively during the development of our models.

We evaluate the models on individual aggregate signature verifications. In the next
section, we discuss how we construct the model for this correctness evaluation and in
Section 6.2.2, we discuss the results.
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6.2.1 Setup

We represent each aggregate signature verification with a rule. Here is an example for
both the attack finding and validation model:

Example 6.5 We evaluate the verification result for a single aggregated signature
that is validated with the correct message and key pair:

vfyAgg(agg(sign(m, sk)), m, pk(sk)) (6.5)

For this verification and the expected result true, we formulate a multiset rewriting
rule. The rules differ for the validation and attack finding model.

For the validation model, we use the verification fact VerifyAgg, on which we
formulated the restrictions, stated in Section 5.1. Here we use the constant ’1’ as
index:

1 rule OneValidSignature_ValidationModel:
2 [ Fr(~m), !Ltk($A, ~sk) ]
3 --[ VerifyAgg(agg(<sign(~m, ~sk), '1'>), <~m, pk(~sk), '1'>, true),
4 OneValidSignature() ]->
5 [ ]

For the attack finding model, we use the action fact Equal. By adding the equality
restriction, stated in Chapter 5 on page 37, we can ensure that this fact only occurs in
a trace, if the verification result is equal to true. The verification is modeled with the
function verifyAgg which is evaluated with the equation stated in Section 4.2 on
page 30.

1 rule OneValidSignature_AttackFindingModel:
2 [ Fr(~m), !Ltk($A, ~sk) ]
3 --[ Equal(verifyAgg(validAgg(~m, pk(~sk)), ~m, pk(~sk)), true),
4 OneValidSignature() ]->
5 [ ]

Note that both rules have an additional action fact OneValidSignature. Each
rule contains such a distinct action fact on which we formulate a lemma. Depending
on the verification, the lemma states whether this action fact can occur or not. Let us
look at the lemma for the above rules:

Example 6.6 The following lemma states that the above evaluation can occur in a
trace:

1 lemma OneValidSignature:
2 exists-trace
3 "Ex #i. OneValidSignature()@i"

The lemma states that there must be a trace that contains the action fact OneValid-
Signature. Such a trace would also contain the VerfyAgg or Equal fact from
above. This means that we expect that the aggregate signature agg(sign(m, sk))
validates for message m and secret key sk to true.
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We also evaluate each verification with the result false. For that we duplicate each
rule, state the verification result false, and formulate an additional lemma as follows:

Example 6.7 For the validation model, we duplicate the rule from example 6.5 but
with the verification result false instead of true.

1 rule OneValidSignature_ValidationModel:
2 [ Fr(~m), !Ltk($A, ~sk) ]
3 --[ VerifyAgg(agg(<sign(~m, ~sk), '1'>), <~m, pk(~sk), '1'>, false),
4 OneValidSignature_false() ]->
5 [ ]

For the attack finding models we need a different approach as there is no explicit
evaluation to false. A verification is false if there is no evaluation to true. Thus, we
replace the Equal fact with NotEqual:

1 rule OneValidSignature_false:
2 [ Fr(~m), !Ltk($A, ~sk) ]
3 --[ NotEqual(verifyAgg(validAgg(~m, pk(~sk)), ~m, pk(~sk)), true),
4 OneValidSignature_false() ]->
5 [ ]

And add the following restriction:
1 restriction NoEquality:
2 "All v b #i. NotEqual(v, b)@i ==> not (v = b)"

For the attack finding model, the function verifyAgg will evaluate to true. And for
the validation model, the correctness restriction states, that in case of the verification
result false, there must be a non-honest public key or an incorrect signature. As this
is not the case, this verification with result true cannot occur in any trace. Thus we
formulate the following lemma, which states, that the action fact of the above rules
cannot occur in any trace:

1 lemma OneValidSignature_false:
2 "not (Ex #i. OneValidSignature_false()@i)"

We differentiate between two main groups of verifications:

Valid verifications expect to verify
e.g.: vfyAgg(agg(sign(m, sk)), m, pk(sk))

Invalid verifications expect to not verify
e.g.: vfyAgg(agg(sign(m1, sk)), m2, pk(sk)) where m1 6= m2

For each verification and verification result, we formulate a lemma that either states
that this verification exists, such as in Example 6.6, or a lemma that states that such
a verification cannot occur, such as in the lemma in Example 6.7. Table 6.2 shows
which lemma is formulated for which group of verifications and which verification
result.

We provide a script that generates the theory from the above-described rules and the
aggregate signature model, runs the proofs, and highlights the results.
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Verification result = true Verification result = false

Valid verification Trace exists No occurrence
Invalid verification No occurrence Trace exists

Table 6.2: The appropriate lemma to formulate for which group of verifications and verification
result

Result = true Result = false

Not honest keys Trace exists Trace exists
Wrong formats No occurrence No occurrence
Missing numbers Trace exists No occurrence

Table 6.3: Special groups of verifications and the corresponding lemmas for the verification
results

6.2.2 Results

The correctness evaluation proved to be a useful tool to evaluate the behavior of our
aggregate signature models. This was especially true for the validation models where
we could discover edge cases that had to be covered separately.

Our correctness evaluation also reveals the differences between the attack finding and
validation models.

For the attack finding models, we have the two groups of verifications that we men-
tioned above: valid signatures and invalid signatures. The result of a verification is
either true or false.

The validation models behave a bit differently. Without the restrictions, every verifica-
tion of any aggregation with any messages and keys and any verification result can
appear in a trace. And thus, every verification could result in true or false. By adding
restrictions, we exclude some of those traces: namely, only valid aggregations with
matching messages and keys can occur in a verification fact with true and only invalid
aggregations can occur in a verification fact with false.

One would expect that an aggregation with some messages and keys would either
only occur in valid verifications or in invalid ones. There are, however, some special
cases where this is not the case. We summarize them in Table 6.3 and describe them
in detail in the following sections:

Non-Honest Keys

As stated in previous sections, the correctness and security restrictions only make
statements in the case of honestly generated signing keys. There are no guarantees for
malicious keys. When an adversary maliciously creates a key pair and the public key
is used to verify a signature, the adversary can manipulate the result of a verification.
The result can be true or false as long as the signatures belonging to honest keys are
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valid. Also, due to the consistency restriction, the same verification must have the
same result in a trace.

This behavior stands in contrast to the attack finding model where the result of a
verification is well-defined. This additional flexibility enables the validation model to
model various attacks without stating the attacks explicitly. For example, it enables
an attack on the Destructive Exclusive Ownership (DEO) property, as described for
signatures by Jackson et al. [17]. We translate this attack for the aggregate signature
setting:

Definition 6.8 (Attack on DEO property for aggregate signatures) The adversary
is provided with an aggregate signature σagg, that validates for some messages mmm
and public keys pkpkpk. The adversary then creates a message m′i and a public key pk′i
such that m′i 6= mi and pk′i 6= pki and replaces mi with m′i in mmm, resulting in m′m′m′, and
replacing pki with pk′i in pkpkpk, resulting in pk′pk′pk′, such that vfyAgg(σ, m′m′m′, pk′pk′pk′) = true.

Note that the adversary can replace multiple message and public key pairs, but they
have to be of the same index. The adversary cannot, for example, replace only mi and
pk j where i 6= j.

We now provide, as an example, a rule that represents the above-described attack:
1 rule DEO:
2 [ !Ltk($A, ska), !Ltk($A, sk2), Fr(~skb)
3 , Fr(~ma), Fr(~mb), Fr(~m2) ]
4 --[ VerifyAgg(agg(<sign(~ma, ska), '1'> + <sign(~m2, sk2), '2'>),
5 <~mb, pk(~skb), '1'>+<~m2, pk(sk2), '2'>, true)
6 , DEO() ]->
7 [ ]

Note that we use the Ltk fact for honest keys and that we use fresh values to represent
the malicious keys. As this attack does not violate the computational definition
of aggregate signatures, this rule can occur in a trace. It can also occur with the
verification result false. In some sense, the adversary can choose the result of a
verification with malicious public keys.

Wrong Formats

As stated in Section 5.1.2, we make some assumptions on the format of the validated
aggregate signature and also on the indexes. To enforce those assumptions, we add
additional restrictions. The restrictions are formulated on the verification facts with
the verification result true. They ensure the following:

• There is a message and key pair for each aggregated signature and the indexed
match.

• There is a signature for each aggregated message and key pair and the indexed
match.

• The indexes inside the aggregation are distinct
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• The indexes of the message and key pairs are distinct

Thus, verifications with an incorrect input format are forbidden. Examples of such
wrong formats are:

• Too many signatures:
1 VerifyAgg(agg(<sign(m1, sk1), '1'> + <sign(m2, sk2), '2'>)
2 , <m1, pk(sk1), '1'>, true)

• Non-matching indexes:
1 VerifyAgg(agg(<sign(m, sk), '1'>), <m, pk(sk), '2'>, true)

• Missing function agg:
1 VerifyAgg(<sign(m, sk), '1'>, <m, pk(sk), '1'>, true)

• Missing index:
1 VerifyAgg(agg(<sign(m, sk)>), <m, pk(sk), '1'>, true)

In practice, such wrong format inputs would be rejected by a verification algorithm.
Thus, such verifications cannot appear in any trace. Studying this behavior further
could be interesting for future work. Handling malformatted input is often not consid-
ered by symbolic models, although it plays an important role in the implementation of
cryptographic primitives.

Missing Numbers

There is another special case where both the aggregation and the message and key
pairs do not include an index, as shown in the following rule:

1 rule MissingNumber:
2 [ Fr(~m), !Ltk($A, ~sk) ]
3 --[ VerifyAgg(agg(<sign(~m, ~sk)>), <~m, pk(~sk)>, true),
4 MissingNumber_correctSignature() ]->
5 [ ]

In the case of the verification result being false, the correctness restriction excludes
such traces. In the case of a true verification result, however, no restriction covers it.
The attempt at formulating a restriction for this special case failed. Thus, this case is
treated by Tamarin as if it was a valid aggregation. We argue that this is acceptable,
since the verifying agent should provide a valid input where each message and key
pair includes an index. Otherwise, the verifier misuses the API and cannot expect a
valid result.

6.3 Experiments

We evaluate the performance of our aggregate signature models on our example
weather protocol from Section 3.1. We use the same four lemmas as for the model
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Model
Lemma Attack finding model Validation model
Executable one signature
(exists-trace)

1.0 s 1.4 s

Executable two signatures
(exists-trace)

1.2 s 13.8 s

Message authenticity
(prove)

Time out after 1h Time out after 1h

Weak agreement
(falsify)

8.5 s 23.3 s

No splitting zero attack
(prove)

0.2 s Time out after 1h

No rogue key attack
(prove)

Time out after 1h Time out after 1h

Table 6.4: Proof and trace finding times in seconds of the attack finding model and validation
model, both without additional adversary capabilities. The measurements represent the CPU
time of a single proof or falsification. Measured on Intel Xeon 2.20GHz 48 core with 256GiB
RAM

comparison in Section 6.1.1, as well as two additional executability lemmas: one
lemma for one aggregated signature and one for two aggregated signatures. The
two executability lemmas prove the existence of a protocol trace without adversary
interference.

We compared the proof and trace finding times with the attack finding model and
the validation model. Both models do not have adversary capabilities apart from the
long-term key reveal rule, stated in Section 4.3 on page 32. They correspond to the
models 1 and 4 from Section 6.2.2. Table 6.4 shows the results of running each lemma
for the two models. We choose a timeout of one hour, since the proofs might not
terminate, due to the undecidability of the problem.

The executability lemmas, marked with the key word exists-trace, both terminate
for both models. However, the trace finding takes longer for the validation model,
especially for two signatures. We observe the same behavior for the falsification of
lemma weak agreement. The models have more difficulties with the proofs. The
message authenticity and the no rogue key attack proofs do not terminate for both
models. However, the no splitting zero attack proof for the attack finding model is very
fast, while it does not terminate for the validation model. Tamarin can perform this
proof that fast with the attack finding model since the splitting zero attack contradicts
the aggregation function. The function vfyAgg does not allow an aggregate signature
to be aggregated once with one set of messages and then with a different set of
signatures.

The non-termination probably occurs through the repeated application of rules. We
constructed the protocol model such that the aggregate signature can be arbitrarily
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long. Thus, the aggregation and key lookup consist of the application of arbitrarily
many rewriting rules, similar to the adversary aggregation rules in Section 4.2 on
page 31. It is important to note that the proof time is highly dependent on the protocol.
We present the results for our artificial example protocol but other protocols could
behave completely differently.

6.3.1 Improve Performance

As not all proofs terminate, we evaluate some techniques to improve the proof times.
We consider the following three techniques:

Limit the number of signatures: We observed that the proof finding incrementally
proofs for every possible number of aggregated signatures. To prevent this
infinite loop, we can add a restriction that restricts the number of aggregated
signatures. With this addition, we can prove that the properties hold for this lim-
ited number of signatures. In our evaluation, we limit the number of signatures
once to two and once to three.

Omit the aggregator role: As the aggregation can be done by the aggregator or by
the adversary, we can omit the aggregator role. This omission simplifies the
protocol and could thus help with the performance.

Model the key lookup with restrictions: Another approach is to model the key lookup
with restrictions instead of using pattern matching. We replace the recursive
key lookup rules with one rule, where the adversary provides the keys and we
define restrictions that ensure that the provided keys match the agent names.

Table 6.5 shows the results of evaluating these three simplifications on the attack
finding model and on the validation model.

Limiting the number of signatures results in terminating proofs for the attack finding
and the validation models. This is not surprising as we limit the search space for
Tamarin. The proof times for weak agreement lemma are also faster with the limited
number of signatures. There is an outlier for the validation model with three signatures
and the proof of the no splitting zero lemma, which we cannot explain. The technique
of limiting the number of signatures has proven to be very effective, but it has the
drawback that we can only prove the properties for this limited number of signatures.
Thus we may miss some attacks. On the other hand, if an attack is possible for a small
number of signatures, this simplification can be very effective for attack finding.

Omitting the aggregator role did decrease the proof times, but the same lemmas time
out.

It turned out that modeling the key lookup with restrictions increased the proof times.
The trace finding for the executability lemmas was increased (not shown in the table)
and the falsification of the weak agreement lemma did not terminate in one hour.
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Message
authenticity
(prove)

Weak
agreement
(falsify)

No splitting
zero attack
(prove)

No rogue
key attack
(prove)

Attack finding model
No simplifi-
cations

Time out
after 1h

8.5 s 0.2 s
Time out
after 1h

Limit number
of signatures
to two

2.6 s 2.8 s 0.2 s 1.0 s

Limit number
of signatures
to three

10.3 s 5.2 s 0.2 s 1.1 s

Omit
aggregator
role

Time out
after 1h

3.5 s 0.2 s
Time out
after 1h

Validation model
No simplifi-
cations

Time out
after 1h

23.3 s
Time out
after 1h

Time out
after 1h

Limit number
of signatures
to two

10.4 s 13.0 s 5.7 s 9.6 s

Limit number
of signatures
to three

70.4 s 19.6 s 293.9 s 61.2 s

Omit
aggregator
role

Time out
after 1h

10.5 s
Time out
after 1h

Time out
after 1h

Model the key
lookup with
restrictions

Time out
after 1h

Time out
after 1h

Time out
after 1h

Time out
after 1h

Table 6.5: Proof and trace finding times in seconds for different approaches to simplify the
models. The measurements represent the CPU time of a single proof or falsification. Measured
on Intel Xeon 2.20GHz 48 core with 256GiB RAM
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6.4 Summary

Our evaluation showed that we have the strongest assumptions on the security of
the signatures in the attack finding models without additional adversary capabilities.
This model is analogous to Tamarin’s built-in signature model. The validation model
with rogue key attack presumes the least assumptions. Thus, proofs using this model
provide the strongest security guarantees. This means, the validation model can
capture some attacks, that are proven to be impossible by the attack finding models.
The drawback of the validation models is the increased proof time. Our evaluation
showed that for both models, some proofs did not terminate. We solved this by
limiting the number of aggregated signatures. This, in turn, could again result in
missing attacks that are only possible for a large number of signatures. Those trade-
offs between termination and capturing all possible attacks have to be considered
when using our models. Note, however, that the proof and falsification times depend
highly on the protocol and its model.
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Chapter 7

Conclusion

In this work, we developed the first symbolic models of aggregate signatures in
Tamarin and studied different approaches.

We created two new classes of aggregate signature models: attack finding models,
which are close to the standard symbolic model of signatures, and validation models,
which are derived from the computational definition. This second approach is inspired
by Jackson et al. [17]. It extends their technique of using Tamarin’s restrictions
to model signatures by adding quantification over the elements in a multiset to the
restrictions.

We analyzed two attacks on aggregate signatures. We showed that our models are
practical for attack finding and proving security properties. With our simplification
techniques, we could produce fast proofs on an artificial protocol.

Our models and the techniques we developed enable future research. Further symbolic
models of multi-party signatures can be developed and our models can be improved for
specific use cases. On our example protocol, some proofs and attack searches did not
terminate without simplifications. The termination of proofs is highly dependent on
the protocol. Thus, the performance needs to be improved for a specific protocol and
should be approached when using our models in a specific protocol. This optimization
is related to the problem of how to model the aggregation of arbitrarily many signatures.
Our repeated application of rewrite rules results in loops, which in turn results in non-
termination. Resolving this would also be beneficial for modeling further multi-party
signatures.

Our models could be expanded at different points, the assumptions could be changed,
more attacks could be examined or a different aggregate signature scheme could be
considered. There are, however, two concrete points, that can be improved on the
attack finding models: (1) As stated in Section 4.2 on page 31, an honest agent can
only aggregate valid signatures and no arbitrary terms. For example, an honest agent
cannot accidentally aggregate malicious signatures provided by the adversary. To
capture such cases, additional rules would be needed. (2) Our colliding signature

61



7. CONCLUSION

attack finding model, described in Section 4.3.2, has the limitation that only a fixed
number of malicious signatures can be aggregated. Finding a method to model the
aggregation of arbitrarily many malicious signatures would be interesting for future
work.

In Section 5.3 on page 44, we discovered that with some restriction a proof did
terminate, and with an equivalent reformulation of the restriction the proof did not
terminate. It would be very interesting to evaluate this further and evaluate whether
Tamarin can be optimized regarding restrictions. This could be especially beneficial
for further explorations of using restrictions to model cryptographic primitives.

BLS signatures are based on bilinear pairings. Thus, it seems intuitive to use Tamarin’s
built-in theory for bilinear pairings. But the aggregation of BLS signatures needs the
multiplication in the target group, which is not supported by Tamarin. One might
be able to create an alternative bilinear pairing model that supports multiplication in
the target group. The benefit of such a model would be that the attacks are closer to
real-world attacks.

With this work, we began exploring how to model multi-party primitives in Tamarin.
The techniques developed for our models could be used for other primitives, such as
threshold signatures or group signatures. Future research in this direction could help
to model various protocols.
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