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ABSTRACT: In addition to activity, successful biological drugs
must exhibit a series of suitable developability properties, which
depend on both protein sequence and buffer composition. In the
context of this high-dimensional optimization problem, advanced
algorithms from the domain of machine learning are highly
beneficial in complementing analytical screening and rational
design. Here, we propose a Bayesian optimization algorithm to
accelerate the design of biopharmaceutical formulations. We
demonstrate the power of this approach by identifying the
formulation that optimizes the thermal stability of three tandem
single-chain Fv variants within 25 experiments, a number which is
less than one-third of the experiments that would be required by a
classical DoE method and several orders of magnitude smaller
compared to detailed experimental analysis of full combinatorial space. We further show the advantage of this method over
conventional approaches to efficiently transfer historical information as prior knowledge for the development of new biologics or
when new buffer agents are available. Moreover, we highlight the benefit of our technique in engineering multiple biophysical
properties by simultaneously optimizing both thermal and interface stabilities. This optimization minimizes the amount of surfactant
in the formulation, which is important to decrease the risks associated with corresponding degradation processes. Overall, this
method can provide high speed of converging to optimal conditions, the ability to transfer prior knowledge, and the identification of
new nonlinear combinations of excipients. We envision that these features can lead to a considerable acceleration in formulation
design and to parallelization of operations during drug development.
KEYWORDS: formulation, machine learning, artificial intelligence, biopharmaceuticals, antibodies, developability, stability,
Bayesian optimization

1. INTRODUCTION

Biotherapeutics represent an important class of drugs that have
proven successful for treating diseases such as certain types of
cancers and autoimmune and inflammatory disorders.1 This
success can be largely attributed to high specificity, high
efficacy, lower toxicity, and reduced side effects. In addition to
activity and safety, the translation of a candidate molecule into
a successful biotherapeutic drug requires consistent manufac-
turing at the highest possible standards as well as stability
during storage, transportation, and administration.2−5 These
requirements are challenging to achieve with complex
molecules such as proteins since they are amenable to a
variety of chemical and physical degradation pathways under
the different conditions encountered during the entire life
cycle.6,7 These risks can be reduced by developing molecules
with a variety of suitable biophysical properties that are
globally indicated as “developability” of the product.8−11 These
suitable properties are system-specific and can be optimized by

modulating either the protein primary sequence or the
formulation of the molecule.5

Liquid formulations currently represent the most common
administration route for monoclonal antibodies.12 These
formulations contain a variety of excipients to maintain pH
and tonicity and to increase protein stability and preserva-
tion.13−15 Typical categories of excipients include buffering
agents, tonicity modifiers, thermal stabilizers, surfactants, and
amino acids.15−18 This strategy offers many degrees of freedom
since in principle an infinite number of different excipients and
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their combinations can be selected to simultaneously optimize
multiple properties of a protein. The introduction of novel
excipients, however, is largely prevented by regulatory
considerations and corresponding increases in the approval
timelines.17,19,20 As a consequence, excipients are typically
selected from the approved list of molecules documented
under the FDA’s inactive substance database, which are
generally regarded as safe (GRAS).16

Figure 1 summarizes the excipients that are most commonly
used in marketed antibody formulations based on the data
available in the PharmaCircle database. In the last 5 years,
histidine has been the most common buffering agent in the
marketed antibody formulations followed by phosphates,
sodium hydroxide, citrate (citric acid), and acetate (acetic
acid) (Figure 1A). Polysorbates (Polysorbate 80 or 20) are the
most common surfactants, with Polysorbate 80 appearing more
often than Polysorbate 20 (Figure 1B). Among other
excipients, shown in Figure 1C, sucrose and sodium chloride
(NaCl) are the most predominant, followed by trehalose,
mannitol, sorbitol, and amino acids (AAs). AAs are commonly
added also to prevent issues with aggregation and high
viscosity.23 Arginine and methionine appear often, followed by
proline, while other AAs are less common (Figure 1D). In
particular, sodium chloride (NaCl) and arginine, often in the
form of its salt ArgHCl, are increasingly popular excipients for
high-concentration antibody formulations often used for
subcutaneous administration, as they often can reduce viscosity
and occasionally also aggregation propensity.23,24 Methionine
is introduced due to its antioxidant properties.24

Formulation design is currently largely driven by previous
knowledge and experience, assisted by extensive analytical
characterization.25−27 Most of the reported studies analyze the
effect of individual excipients on a variety of biophysical
properties.28−30 However, different excipients could have a
synergistic effect, and their combinations may lead to drastic
improvements in the performance of molecules, in particular
because multiple properties must be simultaneously optimized.
Modern formulations, however, tend to keep the composi-

tion as simple as possible.15 Among the 1758 excipients
approved by FDA,31 only 30 excipients appear in the marketed
antibody formulations since 2015 and only 18 appear in more
than 10 products (Figure 1). This is also due to the fact that
performing screening campaigns of a larger number of
excipient combinations may not be feasible under the inherent
time pressure in drug development. A classical experimental

design has been applied,32−35 however mostly limited to a
reduced number of excipients identified from prior screenings.
This limitation motivates the development of new

theoretical and experimental methods to identify optimal
combinations of multiple excipients with minimal resource
utilization. In the context of this highly dimensional
optimization problem, advanced algorithms from the domain
of machine learning and mathematical optimization would be
extremely beneficial to complement rational design based on
analytical screenings and prior knowledge or experience36

(Figure 1E) (see refs 21 and 22, and references herein).
Bayesian optimization37,38 has become popular for the

optimization of “black-box” functions wherein the underlying
relationship between the input and output is unknown and
points in the input−output space can be determined only
experimentally. In brief, Bayesian optimization suggests
experiments sequentially using a surrogate model that mimics
the system under study based on the experiments observed
previously. Due to this property of adaptively sampling
locations, the algorithm is capable of achieving optimal
conditions faster and with reduced number of overall
experiments.
Bayesian optimization has been applied to various fields such

as the tuning of the hyperparameters of machine learning
algorithms,39 robotics,40 circuit optimization,41 synthetic gene
design,42 directed-evolution of proteins,43 and more recently
also in materials science.44

In this work, we demonstrate the potential of the Bayesian
optimization algorithm to optimize the biophysical property of
a target protein by identifying the ideal formulation
composition within a complex design space. Specifically, we
optimized the thermal stability, described via the melting
temperature (Tm), which is one of the most important quality
attributes of biologics. We applied our approach to three
different variants of a tandem single-chain variable fragment
(scFv) derived from the antibody Humira. Eight factors (pH,
sodium chloride, L-arginine, L-lysine, L-proline, trehalose,
mannitol, and Tween 20) were considered as independent
variables to maximize Tm. We show that using this technique
the optimal combination that maximizes Tm is achieved within
25 experiments. This number is at least 3-fold lower compared
to the experiments that would be required by a classical DoE
method and several orders of magnitude smaller compared to
the experimental screening of the entire combinatorial space,
also called the full screening method. Moreover, we

Figure 1. (A−D) Frequency of excipient appearance in the antibody formulations marketed since 2015. PO4: phosphates, NaOH: sodium
hydroxide, and HCl: hydrochloric acid. (E) In silico predictors and approaches from machine learning21,22 can accelerate formulation design by
complementing prior knowledge and analytical characterization.
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demonstrate the advantage of this method over conventional
approaches to efficiently transfer historical information as prior
knowledge for the development of new biologics or when new
excipients are available.
Finally, we highlight that the use of such techniques is even

more powerful when multiple properties of a molecule must be
simultaneously optimized. To this end, we simultaneously
optimize both the Tm and the stability of proteins toward
hydrophobic interfaces measured with a nanoparticle-based
assay recently developed in our laboratory. This operation is
important for instance to minimize the amount of surfactant in
the formulation, decreasing the risks associated with
corresponding degradation processes.45,46

2. MATERIALS AND METHODS
2.1. Sequential Design of Experiments Using Baye-

sian Optimization. Screening all possible combinations of
excipients at different concentrations (referred to as the grid
search or full screening) results in millions of experiments since
the number of experiments increases exponentially with the
number of factors and the number of compositions per factor
to be tested, therefore rendering it impractical. In principle, the
number of experiments can be reduced by testing one factor at
a time and fixing all of the others constant. This approach,
called the one factor at a time (OFAT), however, results in
suboptimal conditions since it does not probe synergistic
interactions between multiple factors. Thus, it becomes
important to strategically plan experiments to explore the
interactions between the different factors while minimizing the
experimental effort.
To this aim, several statistical DoEs plan experiments in a

structured manner, as summarized in the Supporting
Information (Figure S1).
However, a common drawback of all of these methodologies

is that they provide standard designs with fixed number of
experiments47 and allocate equal resources for both the “good”
and the “bad” performers, or, in other words, they are
nonadaptive.37 This is due to the fact that classical DoE treats
the design of experiment, modeling, and optimization as
independent blocks. Additionally, these designs require a
correct assumption about the response surface. In a real
application, the underlying relationship between the input and
output could be unknown, and the only possibility is to make

point evaluation through experimental measurements. In such
cases, the Bayesian optimization algorithm (BO) has proven to
be a very powerful method.38,48

In contrast to the static designs of classical DoE methods,
BO applies a sequential procedure in which a surrogate model
of the actual system suggests the next experiment(s) based on
the data already acquired, as schematically represented in
Figure 2A. BO plans the next experiment(s) by optimizing a
trade-off between “exploration” and “exploitation”. First, it
samples in areas that have not been explored before (based on
distances from experiments already performed). Second, it
samples in the region that has interesting behavior such as the
maximum value of response observed until that moment. BO
incorporates two main components:

2.1.1. Surrogate Modeling via Gaussian Processes (GPs).
GPs are specified by a mean function (m(x)) and the
covariance function (k(x,x′)).

y f x( )i i i= + ϵ (1)

f x GP m x k x x( ) ( ( ), ( , ))∼ ′ (2)

The covariance function is referred to as the kernel, which
indicates the closeness of two points x and x’ obtained from the
design space. Matern kernel was used in this work since it is a
flexible, smooth kernel. A Matern kernel is represented by the
following equation

k x x
x x x x
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The |x − x′| indicates the distance between two points. The
kernel value decreases as the distance increases (i.e., the
correlation between the points decreases) over the length scale,
θ. The value of θ is a hyperparameter that is obtained by fitting
the surrogate model to the training data set. The parameter ν
controls the smoothness, with smaller values of ν indicating
less smoothness. Typically used values of ν are 1.5 and 2.5. Γ is
the γ function, and Kν is the modified Bessel function.

2.1.2. Trade-Off Encoded in the Acquisition Function. The
trained GP model can now predict the distribution of response
values at each point in the design space. Owing to the
surrogate model being Gaussian processes, this prediction is a

Figure 2. (A) Schematic illustration of a sequential experimental design using Bayesian optimization. (B) Illustration of the unknown response
surface (red-dashed line), distribution of the response as predicted by the model (meanblack line, uncertaintygreen bands), corresponding
acquisition function (blue), and the resulting sampling (red triangle) in the different iteration.
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normal distribution that can be characterized by a mean (μ(x))
and uncertainty (σ(x)). This mean and uncertainty is used to
build the acquisition function, which is optimized by a local
optimization solver LBFGS49with multiple shootings to
suggest the next experiment. The acquisition function is
formulated to encode the trade-off between exploration (high
uncertainty) and exploitation (high mean). In this wok, the
LCB acquisition function is used to maximize the worst case
predicted by the surrogate model. It is important to draw this
trade-off efficiently to avoid getting trapped in local optimum
or exhausting resources in exploring the design space. This can
be ensured by a careful selection of the acquisition function
and its parameters to allocate appropriate weights between
exploration and exploitation. Another crucial aspect that could
lead to local optimality is improper hyperparameter tuning of
the kernels, as described in ref 50. This can be avoided by
some specific additions to the acquisition function such as in
ref‑50. This problem can also be addressed by performing an
initial space-filling design that provides the model with a
sufficiently good overview of the space to robustly learn the
hyperparameters. In this work, we followed the latter approach
for efficient hyperparameter learning. The sampling of
Bayesian optimization based on the acquisition function is
illustrated in Figure 2B. Several software packages exist that
provide the implementation of Bayesian optimization. The
current work is based on the implementation of “skopt” and
“gpflowopt” packages in python. All of the technical details
about the Bayesian optimization approach are provided in the
Supporting Information.
A traditional Bayesian optimization (BO) approach is

entirely sequentially, meaning that only one experiment is
suggested in every iteration. However, often it is more
pragmatic to perform multiple experiments in parallel, as in
our study. Under such circumstances, it is more convenient to
apply the batch Bayesian optimization (Batch BO) approach,
which allows for several experiments to be designed in parallel
at each iteration. Multiple strategies have been proposed in the
literature to perform batch BO such as in refs 51−54. Here, we
adopt the simplest “constant-liar” approach as proposed in ref
55.

2.2. Experimental Part. 2.2.1. Tandem scFv Variants.
Expression plasmids for production of tandem scFv formats of
Humira were purchased from Geneart/Life technologies. The
variants were designed with a C-terminal HPC4 tag for
purification purposes. All compounds were expressed by
transient transfection of Expi293 cells following the instruc-
tions of the manufacturer (Expi system, Life technologies), and
the resulting compounds were purified from cell culture
supernatants using the anti-HPC4 immunoaffinity purification
step followed by a Superdex200 size-exclusion purification
step. The size-exclusion running buffer, in which the
compounds was initially formulated prior to the formulation
optimization study, was 20 mM Hepes, 150 mM NaCl, pH 7.4.
The resulting compound preparations were analyzed by SDS-
PAGE/Coomassie and SE-HPLSC analysis, and the identity of
each compound was verified by intact mass LC-MS analysis.
Protein concentrations were determined based on UV280
measurements.

2.2.2. Nano Differential Scanning Fluorimetry (nanoDSF).
The melting temperature (Tm) of each variant was measured
via nano differential scanning fluorimetry (nanoDSF) on a
Prometheus NT.48 system (NanoTemper, PR001). Samples
were prepared by filling standard capillaries (NanoTemper,
PR-C006) with 10 μL of 1 mg/mL protein solution. The
intrinsic tryptophan fluorescence was measured at 330 and 350
nm, while heating the sample from 20 to 90 °C using a 1 °C/
min temperature ramp. The data is analyzed using Nano-
Tempers PR Control software. An exemplary unfolding curve
of the three different variants is shown in the Supporting
Information (Figure S2). Tm was derived from the maximum
of the first derivative of the fluorescence ratio at 350 and 330
nm.56

2.2.3. Nanoparticle Assay for Interface Instability. The
stability of the different variants against hydrophobic surfaces
was evaluated following a recently developed accelerated assay
based on nanoparticles.57−59 Briefly, the variants were mixed in
1:1 ratio with the nanoparticle solution in 1.5 mL reaction
tubes (Eppendorf) to reach a final antibody concentration of
0.5 mg/mL and a final protein to nanoparticle surface ratio of
25:1. After incubation for 30 min, aggregates were precipitated

Figure 3. (A) Tm values of the three variants in the starting reference formulation. (B) Schematic representation of the conservative design space
(yellow region) and the extended design space (highlighted in red) demonstrated for a combination of two excipients. (C) Summary of the
parameters and the corresponding boundaries considered for formulation optimization.
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by MgCl2 addition. The mixture was transferred to filter plates
(Corning 96-well filter plates) and centrifuged for 30 min
(2500 rpm, 20 °C). The absorbance at 280 nm of the filtrates
was then measured in duplicate per sample in a Nanodrop
(ThermoScientific). For each condition, the experiment was
conducted in duplicate and two control samples were analyzed
in the absence of nanoparticles. Control solutions of
nanoparticles without protein were also measured in duplicate.

3. RESULTS AND DISCUSSION
In this work, we optimized the thermal stability of tandem scFv
variants based on sequences retrieved from the public domain
of the marketed antibody Humira. The tandem scFv variants
consist of two identical scFvs connected with an additional 25-
residue-long glycine−serine peptide linker to provide flexibility
for bivalent antigen engagement. Three tandem scFv variants
were used in this study including the wild type derived from
the sequence of Humira (Variant 1) and two additional
variants with improved thermal stabilityVariant 2 with two-
point mutation in each scFv domain (R16G_D30S) and
Variant 3 with one-point mutations in each scFv domain
(R16G). Full sequences are given in Table S2. Each individual
scFv moiety includes a 21-residue-long glycine−serine linker
between VH and VL domains. These variants originate from
the internal Tm optimization campaign.
These three variants showed different Tm values spanning a

range from 52 to 60 °C in a reference formulation condition

(10 mM L-histidine, 140 mM NaCl, pH 6) as indicated in
Figure 3A. Our goal was to optimize the composition of the
formulation to maximize Tm. Typical formulations consist of a
buffering agent, a tonicity modifier, a stabilizer, and a surfactant
(Figure 1). In our study, we considered single or multiple
options under each category, as tabulated in Figure 3C, which
shows the design space of our study. The upper bounds for the
different excipients were chosen within the values of currently
marketed formulations (Table S1).
Initially, a conservative upper limit for the amino-acid

stabilizers and the sugars (Trehalose and mannitol) was chosen
(column UB in Figure 3C). First, we obtained an optimal
formulation in this design space by applying our Bayesian
optimization framework. Next, the design boundaries were
extended to the maximum possible values (Extended UB), as
schematically shown in Figure 3B, to assess the optimal
formulation outside of the explored design space. Using the
data and surrogate model generated in the conservative design
space as the prior knowledge, further iterations of experiments
were suggested using the same framework to identify the
optimal formulation in the extended design space.

3.1. Initial Screening Experiments. To first obtain the
model parameters described in Section 2, we designed an
initial set of 20 training experiments (“initial round”) using the
conservative design space indicated with the upper bound in
Figure 3C. A space-filling design called Latin hypercube
sampling60 was used for continuous factors, namely, salt and

Figure 4. (A) Evolution of Tm values during the different rounds of sequential planning, starting from the Initial round of 20 experiments, followed
by “Round 1” of 4 experiments and “Round 2” of the final experiment. The blue, yellow, and red colors indicate Variant 1, Variant 2, and Variant 3,
respectively. (B) Comparison between the number of experiments required for a traditional full screen compared to the Bayesian optimization
approach (BO) to identify near-optimal formulation. (C) Comparison between the number of experiments required for a one-factor-at-a-time
(OFAT) approach that will lead to suboptimal formulation selection (red) and BO that leads to near-optimal formulation (green). (D)
Comparison between the number of experiments required for DoE approaches that can lead to optimal formulation with further techniques such as
response surface methodology and BO that leads to near-optimal formulation (green). The minimum number of experiments required by the DoE
(with not sufficient resolution) is indicated in red. The orange and transparent segments respectively indicate the minimum and maximum number
of experiments that are required considering different DoEs (with sufficient resolution). (E) Comparison of increase in Tm values caused by
mutation and formulation optimization. WT, 1 Mutation, and 2 Mutation correspond to Variant 1 (V1), Variant 3 (V3), and Variant 2 (V2),
respectively.
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amino acids. pH was considered as a discrete factor with 4
levels (5, 5.5, 6, 6.5), while trehalose, mannitol, and Tween 20
were considered discrete factors with two levels (0, upper
bound). A random design was used for all of the discrete
factors.
The bivariate distribution of the different excipient

compositions suggested by the design for the “initial round”
is summarized in Figure S3. From the bivariate plots, it can be
seen that the initial design chose a combination of continuous
variables (indicated by the crimson dots in Figure S3) to cover
the mutual design space. Moreover, the bivariate plots of a
continuous factor against a discrete factor (green dots in Figure
S3) show that the design was spread across the range of
continuous factors at each level of the discrete factors. Finally,
the bivariate plot of the discrete factors (gray dots in Figure
S3) indicates the presence of combinations of the different
levels of the discrete factors. Such a design allows the surrogate
model to learn much more efficiently the multivariate
interactions of the different factors, which are potentially
nonlinear, within the design space.
The label “Initial” in Figure 4A showcases the distribution of

Tm measured under the formulation conditions chosen by the
space-filling design for the three different variants. The
corresponding density distribution plots are provided in Figure
S4. As a result of the space-filling design, these initial 20
experiments provided a broad distribution of Tm. A total of 12
(out of the 20) formulation conditions led to a Tm higher than
the reference formulation. The maximum observed Tm in this
round was 55.4, 62.1, and 58.9 °C for the three variants,
respectively, corresponding to a 3, 2.5, and 3.3 °C increment
with respect to the values measured in the reference
formulation conditions.
3.2. Optimal Formulation Design: Conservative

Design Space. As the next step, these “initial round”
experiments were used as a training data set to define the
Gaussian process (the surrogate model in our study). We
noted that we trained a different surrogate model for each of
the variants since we performed the optimization of
formulation conditions independently for the different variants.
However, since the initial design is independent of the
response and was designed with the purpose of filling the
design space, a common design was used for all of the variants.
By applying the Bayesian optimization framework (Figure

2A) to these trained models, we defined the next sets of
formulation conditions, measured the corresponding Tm,
updated the model with the new experiments, and iterated
until meeting the objective.
Given the considered conservative design space, Bayesian

optimization could converge to the condition with maximum
Tm within two rounds of experiments, using a total of five
additional experiments. Figure 4A shows the evolution of Tm in
the different rounds for the three variants, with Round 2
indicating the converged optimal value of Tm. Bayesian
optimization could identify the formulation conditions
resulting in a Tm of 56.3, 62.7, and 59.5 °C, corresponding
to an increase of 1, 0.6, and 0.6 °C with respect to the values
observed from the initial experiments. Altogether, we could
identify formulation conditions that provided an increase of
the Tm of 4, 3, and 4 °C for the three variants with respect to
the reference formulation.
The excipient composition corresponding to the maximum

Tm for each of the three variants is tabulated in the Supporting
Information (Table S3). Since the optimal conditions in this

case lie at the boundaries for Variant 1 and Variant 3, it could
be argued that any classical DoE methodology such as the
fractional factorial design could have identified the optimal
formulation. However, applying the formula shown in Figure
S1C for eight factors, we estimated that fractional factorial,
central composite, and Box−Behnken designs would require
128 (or 64, less precise), 145 (or 81, less precise), and 113
experiments, respectively, to arrive at the same optimal Tm.
Bayesian optimization could achieve the same result with only
25 experiments, using at least three times less resources and
correspondingly speeding up the design procedure. We
compared the number of experiments required by BO with
the full screening approach (Figure 4B) and with the
suboptimal OFAT (Figure 4C) or classical DoE that could
lead to optimal formulation when coupled with other methods
such as response surface modeling (RSM) (Figure 4D). We
note that classical DoE additionally provides information about
the main and interaction effects of the factors on the target
variable. This analysis of the influence of each factor and the
corresponding nonlinearity is specific to the linear or quadratic
model (which are still linear in parameter). In our approach,
the influence of specific factors on the target can be inferred by
analyzing the length scales of the surrogate GP model.
In addition to formulation, the thermal stability of a

molecule can be improved by mutations of the sequence. As
shown in Figure 4E, in this study, the Tm of the wild-type
variant (Variant 1) of 52.4 °C could be increased to 55.6 °C by
performing a single-point mutation (Variant 3). With our
approach, we could achieve a comparable increase of the Tm
(56.3 °C) by changing the buffer formulation. It is important
to note that this approach also opens the opportunity of
synergistic effects between mutational studies and formulation
design. In the optimal formulation conditions, Variant 2
(which exhibits two mutations compared to the wild type)
exhibits a Tm as high as 62.7 °C, corresponding to an increase
of 10 °C with respect to the wild-type variant in the reference
buffer condition. We envision that even higher Tm could be
achieved by co-engineering the mutations together with the
formulations based on such a Bayesian optimization approach.
These considerations demonstrate that machine learning can

not only assist experimental design and accelerate current
procedures but also open opportunities to change the current
workflow to drastically improve product quality. Specifically, it
opens possibilities to parallelize protein engineering, develop-
ability, and formulation since the early stages of drug
development.

3.3. Optimal Formulation Design: Extended Design
Space. A key feature of the Bayesian approach is the use of
prior belief about the system as starting point and the
continuous update of this belief using new experiments. The
prior belief could be based on expert knowledge or based on
historical experiments performed in the same system or similar
systems. We expect that this ability to transfer knowledge
within and across similar systems to aid experimental design
will be very impactful in the biopharmaceutical industry, where
typically multiple products are present in the pipeline. We
demonstrate the advantage of this approach by extending the
design space considered previously to the extended UB
indicated in Figure 3C. For a classical DoE, this operation
would require redetermining the design from scratch, as now
one of the levels (“high” in this case) has changed due to the
re-definition of the design boundaries. All of the data and the
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information there-in cannot be used anymore even if only such
a subtle modification is imposed.
In contrast, with the Bayesian optimization strategy, this

adjustment can be done in a straightforward manner. The
posterior distribution obtained from the study performed with
conservative bounds can be used as the prior belief for the
extended design space. Following the same sequential design
procedure, new experiments in the extended design space can
be generated with the same objective to maximize the Tm, as
demonstrated in Figure 5A (“Round 3”, “Round 4”, “Round
5”).
With the extended boundaries, the Tm values could be

increased further to reach values of 57.24, 63.23, and 60.55 °C
for the three variants, respectively. These values are,
respectively, ∼5, 3.5, and 5 °C higher than the Tm values of
the three variants in the reference formulation. Additionally,
the optimal formulation could be obtained using only 13
additional experiments when knowledge (in the form of priors)
from conservative design space could be transferred through
the surrogate model. Furthermore, in contrast with the
conservative design space, in the extended design space, the
optimal formulation (tabulated in Figure 5B) does not lie
along the boundaries of the different excipients. Thus, classical
DoE such as full/fractional-factorial designs would not be able
to identify these conditions.
Given the exploration−exploitation search of Bayesian

optimization, during the sequential experimental campaign,
we could identify multiple formulations that had Tm values
similar to the observed maximum Tm value for the respective
variant (Table S4). This indicates that there could be multiple
combinations of the excipients that could lead to desired
objective (maximum Tm), signifying that the objective function
has a nonconvex behavior in the design space. This situation
can change when multiple properties must be simultaneously
optimized, as discussed in Section 3.4.

3.4. Trade-Offs with Multiple Objectives. So far, we
could demonstrate that the Bayesian optimization approach
can considerably accelerate the identification of optimal
formulations to maximize a single biophysical property. In
practice, the development of a biological drug requires the
optimization of multiple biophysical properties. The use of
such algorithms to find optimal formulations becomes even
more valuable with the increasing number of target properties.
Indeed, when considering multiple target properties, it might

not be possible to achieve the individual optimality of each
target property simultaneously. For instance, formulation
conditions resulting in the highest Tm might not necessarily
represent the ideal solutions to protect against other stresses.
Often a trade-off needs to be established. In such cases,
multiple optimal solutions (also called the pareto solutions) lie
on a curve known as the pareto front, as shown in Figure S5A.
When the underlying response surface for each objective is
known, determining the pareto front is straightforward.
However, for our system, where the mathematical representa-
tion of underlying response surface is unknown, the
optimization algorithm must converge to these pareto
solutions while simultaneously learning the underlying
response function and ensuring minimal utilization of
resources. In this context, Bayesian optimization is a very
suitable method for such task due to its exploration−
exploitation property.
Similar to the case of single objective optimization (e.g.,

maximization of Tm), Bayesian optimization can also be used
for multiobjective optimization to traverse the design space
strategically such that the pareto front can be obtained quickly
and with minimal requirement of experiments. To illustrate
this concept, we selected Variant 2 and simultaneously
monitored two biophysical properties, adding to the Tm the
stability of the proteins toward hydrophobic interfaces, which
was measured with a nanoparticle-based assay recently
developed in our laboratory.57,58 This assay evaluates the %

Figure 5. (A) Evolution of the Tm values during the different additional rounds, “Round 3”, “Round 4” and “Round 5”, of the sequential planning
with the extended design space (indicated as Extended UB in Figure 3C). The blue, yellow, and red colors indicate Variant 1, Variant 2, and Variant
3, respectively, and the experiments performed with the conservative design space is represented in the shaded region. (B) Optimal composition of
the excipients resulting in maximal Tm for the three different variants.
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of monomer loss in the presence of a negatively charged
hydrophobic interface, with a higher value of monomer in
solution indicating higher stability. A subset of excipients (pH,
sodium chloride, trehalose, mannitol, and Tween 20) were
considered within the ranges indicated in Figure S5B.
Following the same procedure adopted earlier for the
maximization of Tm, we performed an initial design of
experiments for 15 formulation conditions using a space-filling
strategy. Subsequently, the multiobjective Bayesian optimiza-
tion was applied to iteratively determine the next batches of
experiments to learn the pareto front. Figure 6 plots the value
of the two properties, i.e., Tm and % monomer in solution, for
the formulation conditions tested in the different iterations.

The initial screening of formulation conditions resulted in a
broad range of values for both properties. The Tm spanned
from 59 to 62 °C, while the % monomer loss varied from 5 to
35%. The subsequent iterations led to a combination of target
values that approached the pareto front. Finally, the
formulations tested in “Round 3” and (partially) “Round 2”
provided the set of optimal solutions resulting in the pareto
front, shown with the violet dashed line in Figure 6. With the
optimized formulation, Tm could be improved by about 3.2 °C
(from 59.7 to 62.9 °C) while the % monomer loss from the
nanoparticle assay could be reduced by 15.5% (from 18.1 to
2.5%) in comparison to the reference formulation (Figure
S5C).
Only 33 experiments were required to obtain the optimal

formulation that simultaneously optimized both properties. As
before, this number is ∼3 times smaller than the traditional
DoE methods. Additionally, the experimental conditions
converging to the pareto region (Table S5) do not lie at the
boundaries or at the center point of the design space. Thus,
with a classical DoE, an additional optimization step must be
performed (also called the response surface methodology or
RSM) to arrive at the optimum inside the design space.
However, the RSM will be able to identify these conditions
only when the underlying assumption of quadratic response
surface holds. Moreover, in multiobjective optimization,

classical DoE methods cannot identify the full pareto front
but only a single objective derived from the weighted sum of
the multiple objectives, which may converge to a single point
on the pareto front.
We finally note that the Tm is optimized by formulations that

lack surfactant, while some amounts of polysorbate is required
for interface stability. Our method identifies the minimum
amount of surfactant that represents the best compromise.
This is important to optimize different biophysical properties
while minimizing the risks associated with polysorbate
degradation.45,46

4. DISCUSSION AND CONCLUSIONS
Formulation design, currently performed by analytical screen-
ing and prior knowledge, can largely benefit from computa-
tional tools based on machine learning. These are crucial not
only to extract patterns from large sets of data but also to guide
experimentation.22 In this work, we present a surrogate model-
based sequential optimization, called Bayesian optimization, to
identify a formulation that optimizes the thermal stability of
three different tandem single chains. We could demonstrate
that the framework is capable of converging to the optimal
condition using only 25 experiments. This is approximately
one-third of the experimental burden required by classical DoE
and orders of magnitude lower in comparison to the millions of
experiments required under the full screening or grid search
approach.
We additionally demonstrate how data or information

generated in a previous campaign can serve as an efficient
starting point (so-called “prior-belief”) for a new campaign,
something which is not feasible with the traditional DoE.
Overall, these two combined aspects, the high speed of

converging to optimal conditions and the ability to incorporate
and transfer prior knowledge across campaigns, lead to a
considerable acceleration in the development time scale and
also minimize the amount of resources required. For instance,
in this case, we required only 125 μg of sample in comparison
to the ∼500 g of sample required for full screening study (to
execute 108 experiments, c.f. Figure 4B) or 400 μg for OFAT
study or around 600 μg for DoE study. We expect that the
qualitative trend of the number of experiments required by the
full-screen, OFAT, classical DoE, and Bayesian optimization
will remain the same independently of the molecule and the
number and type of excipients, while the actual numbers of
experiments may strongly differ.
These aspects become even more important with increasing

the number of properties of the molecule to be optimized. This
not only drastically increases the design space but also requires
the identification of optimal formulations that guarantee a
delicate trade-off among multiple properties. In this work, we
demonstrated this concept through an exemplary study that
considered both thermal and interface stabilities, which
highlighted the need of compromises in the final formulation
and minimized the amount of required surfactant.
We expect that Bayesian optimization for multiobjective

optimization will be very useful to strategically plan experi-
ments and reach trade-offs between properties. In analogy with
protein engineering, where machine learning methods can
accelerate directed evolution of proteins43,61−63 and antibod-
ies,64 Bayesian optimization can complement rational design of
formulations to accelerate their optimization.
As next steps, further robustness can be added into the

surrogate model by incorporating physically relevant con-

Figure 6. Trade-off between two biophysical properties, thermal
stability (Tm) and interface stability (expressed as the % monomer in
solution from nano-particle assay), for Variant 2. The violet dot line
indicates the pareto front obtained after Round 3. “Ref” indicates the
initial reference formulation.
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straints (e.g., physiological osmolality) and information gained
by experience (Figure 1E). Such approaches are gaining
popularity in bioprocessing under the so-called “hybrid
modeling” framework,65−67 which combines knowledge-based
and data-driven models. Extending this concept to formulation
optimization will be a very interesting direction of future
works.
Moreover, since the success of the Bayesian optimization

framework depends on the feedback from experiments, the
approach will highly benefit from advances in emerging high-
throughput screening (HTS) technologies, such as methods
based on microfluidics68 and robotic platforms that can ensure
rapid inflow of data. The coupling of advances in experimental
methods, algorithms, and in silico predictors69 is expected to
further accelerate biotherapeutic formulation screening22

(Figure 1E).
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