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Abstract

Tumours that are low in oxygen (hypoxic) tend to be more aggressive and respond less well to treatment. Knowing the
spatial distribution of oxygen within a tumour could therefore play an important role in treatment planning, enabling
treatment to be targeted in such a way that higher doses of radiation are given to the more radioresistant tissue. Mapping
the spatial distribution of oxygen in vivo is difficult. Radioactive tracers that are sensitive to different levels of oxygen are
under development and in the early stages of clinical use. The concentration of these tracer chemicals can be detected via
positron emission tomography resulting in a time dependent concentration profile known as a tissue activity curve (TAC).
Pharmaco-kinetic models have then been used to deduce oxygen concentration from TACs. Some such models have
included the fact that the spatial distribution of oxygen is often highly inhomogeneous and some have not. We show that
the oxygen distribution has little impact on the form of a TAC; it is only the mean oxygen concentration that matters. This
has significant consequences both in terms of the computational power needed, and in the amount of information that can
be deduced from TACs.
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Introduction

The rapid growth that is frequently associated with malignant

tumours results in regions of the tumour becoming low in oxygen,

in other words, hypoxic. Understanding tumour hypoxia is

important because hypoxic cells are both more aggressive and

harder to treat [1,2]. Furthermore, low oxygenation promotes the

growth of blood vessels within the tumour (angiogenesis)

contributing to the transition from avascular to vascular tumour

growth [3]. Yet tissue hypoxia is diffficult to identify in vivo.

Invasive techniques, such as the use of an Eppendorf probe, only

give local information and can seed cancerous cells along the line

of entry.

Non-invasive techniques for the detection of oxygen using

positron emission tomography (PET) scans are in the early stages

of clinical practice. With PET scanners, a patient is first injected

with a radioactive isotope of a molecule that takes a prominent

part in whatever process is of interest; most radioactive tracers that

are in clinical use focus on the metabolisation of glucose but there

are some new tracers, such as [F-18]-flouromisonidazole (Fmiso)

and Cu64 diacetyl-bis(N4-methylthiosemicarbazone) (Cu64-

ATSM), that are being developed to detect regions of low oxygen

concentration. The tracer is distributed around the body by the

blood. In the case of glucose detecting tracers, the highest

concentrations of the tracer will occur in very active areas, such as

tumours. Similarly with Fmiso or Cu64-ATSM the tracer will

accumulate in areas of hypoxic tissue. The PET scanner detects

the radiation that is emitted from the tracer as it undergoes

radioactive decay, and an image of the concentration of the tracer

at different parts of the body can then be re-constructed. This re-

construction process is difficult resulting in images of relatively

poor resolution, typically 2{3mm3. The time dependent decay

signal from the PET scanner is known as the tissue activity curve

(TAC).

The concentration of the tracer at any location gives a

qualitative picture of the degree of tumour hypoxia. Padhani [1]

notes that in clinical settings, such qualitative imaging can work

well enough, but does introduce a level of subjectivity and that

there is a need for greater quantitative understanding. In fact, the

concentration of the tracer at any given location is not related to

the oxygen concentration of the tissue in a trivial manner and

knowing the quantitative relationship between the tracer concen-

tration and tissue oxygenation levels is of great importance if

accurate deductions as to the radio-resistance of the tissue are to be

made [4]. Indeed, an image created by a snapshot at a single point

in time can give a misleading impression because, while for normal

tissue the TAC drops after an initial peak, for hypoxic tissue there

tends to be a gradual increase in the TAC. This can result in a

cross-over point where TACs from both normal and hypoxic tissue

give the same result [5] and it is therefore important to consider

the TAC at multiple time points. Methods that fit TACs to a

nonlinear mathematical model that includes the pharmaco-kinetic

behaviour of the tracer and thereby translate the concentration of

the tracer to the oxygenation level of the tissue have been

developed. The most widely tested of these mathematical models
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have been compartment models [5–8]. These divide the tracer

into, typically, three compartments: tracer in the blood plasma;

tracer that diffuses freely in the tissue, and tracer that is bound to

the tissue via a reaction that is dependent on the concentration of

oxygen. The resulting pharmaco-kinetic (PK) models have defined

rates of transfer between the different compartments and results in

a set of ordinary differential equations that can be solved

analytically. The total TAC is a weighted sum of the signal from

each of the compartments. The weights and some of the transfer

coefficients are calculated by fitting the experimentally determined

TACs to the TACs produced by the PK model. The values of the

weights and the transfer coefficients are then used to deduce

whether the tissue is hypoxic and what kind of hypoxia occurs.

Proof of concept experiments have been carried out which

demonstrate that PK models have the ability to qualitatively

reproduce the features of TACs and distinguish between different

types of hypoxia. However, compartment models take no account

of the spatial distribution of oxygen. So for PET scan data, the

fitting can be done for each individual 2mm3 voxel but there is an

inherent assumption that the tissue within that voxel is homoge-

neous and can be represented by an average value. This is not

necessarily the case–in vascular tumours, the vessels that deliver

oxygen tend to be irregular and tortuous making it likely that the

distribution of oxygen within a voxel is highly inhomogeneous.

There has been some initial work that includes space explicitly by

including tracer diffusion in the tissue and allowing the concen-

tration of oxygen to vary from one point to the next, initially by

Kelly and Brady [9] and subsequently by Mönnich et al [10].

These studies replace the ordinary differential equation compart-

ment model with partial differential equations. Our original

interest was in comparing a partial differential equation model for

tracer reactions and diffusion with the analogous compartment

model to investigate whether the inhomogeneity of the distribution

of blood vessels actually matters on the scale of a voxel. However,

this comparison is dependent on first establishing the oxygen

distribution within the tissue and that has led to a number of other

considerations. In general, if more than a qualitative understand-

ing is to be developed, then one needs to be able to quantify the

uncertainties/errors that occur, be they uncertainty that is

introduced because of modelling assumptions (for example,

whether the tissue can be treated as homogeneous or not),

uncertainty due to the difficulty of experimentally measuring

parameters that are critical to the model behaviour and finally,

computational errors that are introduced due to numerical

inaccuracies.

Consequently, the aim of this paper is three-fold. Our first aim is

to understand the impact of two particular modelling assumptions.

The first relates to the way that oxygen is delivered to tissue. This

is a subject that many authors have focussed on and a review

article on this subject is given by Goldman [11], yet in even the

simplest models of oxygen diffusion and consumption different

authors have used different methods and, as we will see, these

different assumptions can give quantitatively quite different results.

In particular we find that modelling the discrete blood vessels by a

‘source’ term gives a good approximation to the, more realistic,

mixed boundary conditions between the vessel walls and the tissue

and suggests that efficient algorithms in three-space dimensions

could be developed using a source method. The second modelling

assumption that we examine is to what extent, on the scale of a

voxel, it is important to take account of the spatial distribution of

the oxygen in deducing information from TACs, by comparing the

results of a partial differential equation model that accounts for

oxygen and tracer diffusion with the analogous compartment

model.

Our second aim is to examine the sensitivity of the computed

oxygenation level of tissue to the various parameters in the model.

Measuring physical parameters such as consumption rate of

oxygen, diffusivity of oxygen and permeability of blood vessels and

the distribution of oxygen is challenging, making it hard to validate

any particular mathematical model. However, by understanding

the mathematical models one can examine which parameters have

a significant effect on predictions that are made by a model and,

therefore, which parameters one needs to find for an accurate

prediction or, equivalently, to what extent the uncertainty in a

particular parameter leads to an uncertainty in the results.

Our final aim is to demonstrate the impact of numerical error

that results in the solution of the partial differential equations on

too coarse a mesh. We provide computational parameters where

the discrete approximations can confidently be considered to be

close to the continuous PDE solution.

The paper is outlined as follows. In section 1.1 the simplest

models for the diffusion and consumption of oxygen in tissue are

re-visited. The different approaches to the different ways of

modelling the boundary between the vascular structures that

deliver the oxygen and the tissue are examined and a limit is

derived in section 1.2 where one expects the mixed boundary

conditions used by some authors [12] and the Dirichlet boundary

conditions of others [13] to give similar results. In order to

separate out the effects of the parameters on the oxygen

distribution as compared with how multiple vessels modify the

final oxygen distribution we consider a sequence of problems. In

section 1.3 we look at just a single vessel and then, we consider a

pair of vessels at different distances apart in section 1.4. In section

1.5 we consider multiple vessels and examine to what extent the

multivessel results can be understood as a superposition of the

single vessel results. In section 2.1 we introduce the particular

model of tracer reaction and diffusion that we have studied and

examine first the tracer dynamics around a single vessel in section

2.2 and then for multiple vessels in section 2.3, comparing the

TACs that results from both random and regular arrangements of

vessels. In section 2.4 we fit the TACs produced by the partial

differential equation model with a compartment model. In spite of

the heterogeneity of the oxygen model we find that the

compartment model can distinguish between different levels of

oxygen.

Analysis

1. Oxygen Distribution
Many mathematical models of oxygen transport are built on the

Krogh-Erlang cylinder model [14] that models oxygen transport

by a diffusive process through a homogeneous medium governed

by the equation

LP

Lt
~D+2P{K , ð1Þ

for the oxygen partial pressure P within the tissue, where D is the

diffusivity of oxygen in tissue and K describes oxygen consumption

by the tissue. In the original Krogh-Erlang model [14], the oxygen

partial pressure was fixed at the vessel wall (a Dirichlet boundary

condition) with the consumption rate K set to be constant. This

latter assumption means that equation (1) has to be supplemented

with a requirement that the consumption rate is zero when P is

zero to prevent the equations from giving solutions with regions of

negative partial pressures. A more realistic form for the oxygen

consumption term in equation (1) is the Michaelis-Menten form,

Tumour Oxygenation
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K~
KmaxP

PzP50

: ð2Þ

With this nonlinear consumption rate, as P?? the consumption

asymptotes to the constant value K~Kmax, so that when oxygen is

abundant, consumption is approximately constant. However,

when oxygen is scarce, oxygen consumption is proportional to

the amount of oxygen available. This choice for K means that the

oxygen partial pressure remains positive (or zero) at all times.

In Goldman [11] all the underlying assumptions of the Krogh-

Erlang cylinder model are listed and a thorough review of current

work that relaxes these assumptions is given. Of particular

relevance here is the intravascular O2 resistance (IVR); in the

original Krogh-Erlang model the use of Dirichlet boundary

conditions at the vessel wall excluded the possibility that the

oxygen delivery to the tissue may be dependent on the partial

pressure difference across the vessel wall. As discussed further

below, this is only valid if the vessel wall is sufficiently permeable to

oxygen.

One way of including IVR is to ignore intravascular processes

but to model the flux of oxygen as it diffuses across the vessel wall,

and then on into tissue explicitly via a mixed boundary condition,

sometimes known as a Robbins boundary condition. This mixed

boundary condition arises as follows: assuming that a blood vessel

wall consists of two concentric cylinders of outer radius R with

width w between the two cylinders, as shown in cross-section in

figure 1, and that there is just diffusion and no consumption by the

wall tissue, then the flux at r~R, FR is given by

FR~{Dw
LP

Ln DR~{
Dw

R

P0{P

ln 1{
w

R

� � ð3Þ

where Dw is the diffusivity in the wall and P0 is the partial pressure

of oxygen inside the vessel. For capillaries w%R, (typical vessel

radii are 7mm [12] and vessel walls are 0:2{1mm [9]) and

equation (3) becomes

FR&
Dw

w
P0{Pð Þ~Pm P0{Pð Þ, ð4Þ

where Pm~Dw=w is the permeability of the vessel. The inclusion

of IVR can therefore be modelled by using the boundary condition

(4) at the vessel wall.

An alternative model that includes IVR is to model the vessels

by a so-called distributed source where instead of modelling the

vessels as discrete entities leading to the solution of the diffusion

equation on a punctured domain, the source is represented by a

function which has localised spikes at the vessel positions [9]. With

such a source term, the diffusion model becomes

LP

Lt
~D+2P{Kz

2Pm

R
P0{Pð Þ:S, ð5Þ

where S is referred to as the vascular map and is a function that

takes the value 1 for regions inside the vessel and 0 otherwise. This

is a modification of a term that was first introduced by Baxter and

Jain [15] for modelling tumours at the whole tumour scale. The

motivation for the particular form for the source term comes from

considering the flux across a membrane as in equation (4). Then

the net rate of oxygen diffusing for an individual blood vessel per

unit volume is given by

1

pR2L

ð
Lv

F :dn~
1

pR2L
2pRLFRf g~ 2Pm

R
P0{Pð Þ, ð6Þ

where Lv is the surface of the blood vessel. So the diffusion model

(1) then becomes equation (5).

The derivation of equation (4) and subsequently equation (6)

assume that oxygen within the blood vessel is well-mixed and that

consequently the partial pressure at the interior of the vessel is

fixed at P0. Detailed earlier work by Hellums and co-workers has

shown that IVR actually arises as a consequence of the way that

oxygen is transported and released by red blood cells [16,17].

Hellums et al [17] showed that the delivery of oxygen to tissue

could be described well by a flux of the same form as equation (6),

where P0 is the partial pressure in the vessel corresponding to the

mean haemoglobin saturation.

Some studies have included IVR [18] and some have not [13],

but there has been no systematic comparison of the two. Likewise,

although some authors have used source terms [9,12] and some

have used models that describe capillaries as discrete entities there

has been no comparison of these two methods. This is relevant

because, Dirichlet boundary conditions may sometimes be used for

the pragmatic reason that they are easier to code but, in fact, can

only be justified in the situation that the permeability of the wall is

sufficiently high. Similarly, there are computational advantages to

having a domain that is simply connected, as occurs if the source

term formulation is used. A number of studies have investigated

oxygen diffusion in three space dimensions [18,19]. However, the

difficultly in correctly implementing the vascular structure and the

high computational cost of such simulations mean that it is

valuable to thoroughly examine the modelling issues relating to the

boundary conditions at the vessel wall in two space-dimensions

before considering the three-dimensional problem.

In the rest of this section a quantity that determines whether

Dirichlet boundary conditions are appropriate is derived. Then, in

order to examine which parameters are significant in determining

the level of oxygenation we non-dimensionalise the equations and

consider a sequence of problems: first considering the impact of

the parameters on the oxygen distribution created by a single

vessel and then examining how a pair of vessels interact before,

finally, considering tissue with realistic vascular structures.

1.1 Mixed versus Dirichlet boundary conditions. If a

boundary is sufficiently ‘‘leaky’’, one would expect mixed and

Dirichlet boundary conditions to give the same results. An idea for

what is ‘‘sufficiently leaky’’ can be obtained by considering steady-

states of equation (1) for a single vessel which satisfy

D+2P~K: ð7Þ
Figure 1. Cross-section of a single vessel with a wall.
doi:10.1371/journal.pone.0038597.g001
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For a cylindrical vessel with no axial dependence, this reduces to

1

r

d

dr
r

d

dr

� �
P~

K

D
: ð8Þ

In case that K is constant, equation (8) is exactly soluble and

gives

P~
1

4

K

D
r2zA ln rzB,

where A and B are integration constants. At some radius r~rm the

oxygen partial pressure will drop to zero and there will be no flux

of oxygen. Applying the boundary conditions P~dP=dr~0 at

gives

P~
1

4

K

D
r2{r2

m

� �
{

1

2

Kr2
m

D
ln

r

rm

:

The maximum oxygen diffusion distance, rm, is determined by

the boundary condition at r~R. Using P~P0 at r~R leads to the

equation

r2
m{R2

� �
z2r2

m ln
R

rm

z
4DP0

K
~0: ð9Þ

Using the mixed boundary condition gives

r2
m{R2

� �
1{

2D

PmR

� �
z2r2

m ln
R

rm

z
4DP0

K
~0: ð10Þ

As
2D

PmR
?0 equations (9) and (10) for rm become identical,

suggesting that provided
2D

PmR
%1 both mixed and Dirichlet

boundary conditions will give similar results. Typical values for

D,Pm and R for tumour blood vessels (see table S1). result in a

value for 2D=PmRw1, suggesting that Dirichlet boundary

conditions are unlikely to give similar results to mixed boundary

conditions.

1.2 Non-dimensionalisation. The original problem has six

parameters describing tissue and vessel properties, namely, the

tissue consumption parameters P50 and Kmax, the oxygen

diffusivity D, the permeability of the blood vessel to oxygen Pm,

the partial pressure of the oxygen within the blood vessel P0 and

the vessel radius, R. The process of non-dimensionalisation shows

that the six tissue and vessel parameters are not truly independent,

and the problem can be reduced to just three non-dimensional

parameters namely, the scaled partial pressure inside the vessel u0;

the scaled permeability ePPm and the scaled vessel radius, eRR. The

advantage of studying the non-dimensionalised equations is that

one has a much reduced parameter space to investigate.

The equations are rescaled by defining P~P50u and scaling the

length by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DP50=Kmax

p
. Consequently, for the steady-state

solution of the reaction-diffusion equation with rate given by

equation (2) three different problems are considered: (i) Dirichlet

boundary conditions, (ii) mixed boundary conditions, (iii) distrib-

uted source term. These are listed below.

For Dirichlet boundary conditions:

+2u~
u

uz1
for (x,y)[(0,Lx)|(0,Ly), (x,y)[=vessel , ð11Þ

u(vessel wall )~u0:

For mixed boundary conditions:

+2u~
u

uz1
for (x,y)[(0,Lx)|(0,Ly) (x,y)[=vessel ð12Þ

+uDvessel wall ~{ePPm u0{uð Þ,

where ePPm~Pm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P50=KmaxD

p
.

For the source term:

+2u~
u

uz1
{

2ePPmeRR u0{uð Þ:S for (x,y)[(0,Lx)|(0,Ly),ð13Þ

where

S~
1 for (x,y)[ vessel interior

0 for (x,y)[= vessel

	
Typical values for the measured physical parameters are listed in

table S1 and the corresponding ranges of values for the non-

dimensional parameters are given in table S2.

1.3 Computations for a single vessel. With a single vessel

the diffusion problem is axi-symmetric and the diffusion problem

in two-space dimensions can be reduced to a diffusion problem in

one, radial, direction. For example, equation (12) becomes

1

r

d

dr
r

du

dr

� �
~

u

uz1
for r[(eRR,L), u(eRR)~u0: ð14Þ

and the source case becomes

1

r

d

dr
r

du

dr

� �
~

u

uz1
{

2ePPmeRR u0{uð Þ:S for r[(0,L), ð15Þ

where

S~
1 rveRR
0 r§eRR:

(

Each case leads to a boundary-value problem. For the flux and

Dirichlet cases this problem was solved on the large but finite

domain, r[(eRR,L), corresponding to the region outside a vessel of

radius eRR. The value for L was chosen sufficiently large (typically

L~20) that the results were independent of whether Dirichlet or

Neumann boundary conditions were chosen at r~L. In the cases

of the source term, r[(0,L) with Lu=Lr~0 at the lefthand

boundary. Each one-dimensional problem was solved using the

matlab boundary value problem solver bvp4c; typical solutions are

shown in figure 2. All boundary conditions lead to a simlar,

Tumour Oxygenation
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monotonically decreasing, profile: in fact the maximum principle

can be used to show that the maximum value of the oxygen has to

occur on the boundary. The difference between the various

boundary conditions is that with Dirichlet boundary conditions,

this maximum value is pinned to the value of u0, the scaled partial

pressure in the blood vessel, but in all other cases the maximum

value is at some value that is lower than this. The consequence of

this pinning of the partial pressure to the value of u0 at the vessel

boundary is that the Dirichlet boundary conditions tend to give

higher levels of oxygenation than mixed boundary conditions or

the source term. On figure 2 the vertical dashed line represents the

boundary of the vessel. The ‘maximum diffusion distance’ for

oxygen in tissue is often quoted as 70 microns, equating to

approximately 4 units in the non-dimensional units used in

figure 2. Considering just a single vessel with a Michelis-Menten

consumption term, there is no maximum diffusion distance for

oxygen in that the oxygen decreases monotonically with distance

from the vessel, with u(r)?0 only as r??. The ‘maximum

diffusion distance’ can therefore only be specified in terms of a

distance below which the level of oxygen is too small to be

detected.

In order to compare the different solutions systematically as the

parameters are varied, we have considered two different measures.

Firstly the the L1 norm, EuE1, where

EuE1~

ðð
DuDdx dy: ð16Þ

The L1 norm is related to the average level of oxygenation, �uu, of

a piece of tissue of area A by

�uu~
EuE1

A
:

Oxygenation of tissue samples on the microscale are often

examined using tissue staining where a dye that is oxygen sensitive

is applied to a tissue slice. This tends to lead to a binary measure:

either oxygen is present or not (or only at a concentration below a

threshold value). Results are often quoted as a hypoxic fraction,

that is the fraction of the tissue that is hypoxic. In order to mimic

this kind of measure we have also calculated the ‘oxygenated area’,

Aox, which is the area for which the oxygen partial pressure is

greater than a threshold value uh

Aox~

ðð
dx dy, and uwuh, ð17Þ

For a given area of tissue A the hypoxic fraction Ah could then be

calculated from

Ah~
A{Aox

A
:

As can be seen from figure 2, the calculated value for the

oxygenated area will depend strongly on the particular value of the

threshold uh that is chosen: for the Dirichlet boundary case

depicted in figure 2, threshold values uh~4 and uh~2 lead to

oxygenated radii of 2:28 and 3:15 respectively. In turn, these

values lead to oxygenated areas of 16:3 for uh~4 and nearly

double that value, 31:2 for uh~2. Different threshold values are

important for different aspects of a cell function, but broadly

oxygen levels below 5{15mmHg (uh~2{6, for typical param-

eter values) have a significant impact on the outcome of cancer

therapies [1]. In the case of radiation treatment, half-maximal

sensitivity to radiation therapy occurs at oxygen levels of

2{5mmHg (uh~0:8{2). Typical tissue staining techniques stain

tissue at threshold values of between 5mmHg and 10mmHg
(uh~2 and 4). Given the sensitivity of the results to the value of the

threshold, if comparison is to be made with experimental data, it is

particularly important that an accurate value for this threshold is

known and this in itself can be difficult. In Pogue et al [12] a careful

study fitting a diffusion model for oxygen with vascular maps

derived from real tissue samples was performed. They found their

results were very sensitive to the threshold that was chosen and

that their model fitted the data best for a value for the threshold

that was much lower than the conventionally accepted value. For

many of the results that are presented in this paper, we have

selected the value uh~2.

Results for the oxygenated area for fixed radius but varying

vessel partial pressure u0 and permeability ePPm are shown in

figure 3. As is to be expected, these show that at high permeability,

all three sets of boundary conditions give similar results. At low

permeability, the source term representation gives a reasonable

approximation to the mixed boundary conditions. Note that the

condition found in }?? for the Dirichlet and flux boundary

conditions to coincide translates to ePPm
eRR&2 or, for eRR~0:55,ePPm&3:6. For the experimentally measured range of values ofePPm~0:55{2:75, figure 3(c) and (d) show that modelling

oxygenation using Dirichlet rather than flux boundary conditions

will result in an over estimate for the oxygenated area and that this

is more significant the lower the vessel partial pressure. So, for

example, for the low scaled vessel partial pressure of u0~8
(equivalent to 20mmHg), mixed boundary conditions give an

oxygenated area of 4:9 and Dirichlet boundary conditions give a

value that is more than two and a half times bigger of 12:7. Even

at the highest scaled vessel partial pressures, u0~40 (equivalent to

100mmHg), mixed boundary conditions give an oxygenated area

of 57:0 and Dirichlet boundary conditions give a 50% larger value

of 86:1.

In figure 4 the oxygenated area for varying scaled vessel radius

is shown. These show that the oxygenated area is approximately

linearly related to the scaled vessel radius.

Together, figures 3 and 4 show that, for the typical ranges of

permeability that are quoted for blood vessels, it is important to

take account of the IVR and that either using a mixed boundary

Figure 2. Typical solutions for the oxygen profiles from a single
vessel for different boundary conditions. Parameter values areeRR~0:55,u0~16,ePPm~2:75.
doi:10.1371/journal.pone.0038597.g002
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condition or a source term will give similar results. The

oxygenated area is sensitive to the scaled vessel partial pressure

and to the scaled permeability and an uncertainty of 10% in either

of these values will lead to a similar order of uncertainty in the

oxygenated area. The oxgyenated area is much less sensitive to the

scaled vessel radius.

1.4 Two vessels. In a piece of tissue there is typically many

vessels, not just a single isolated one. If two vessels are sufficiently

far apart, then each will be unaffected by the presence of the other,

as illustrated in figure 5(a) and (c). As they become closer and

closer, the oxygen distribution around each vessel will become

more and more affected by its neighbour, see figure 5(b) and (d).

The computations shown in figure 5 were carried out on a two-

dimensional domain with a grid of 401|201 grid points using a

square mesh of grid size 0:1. Grid refinement checks were carried

out to check that this was sufficiently fine (see table 1). The grid

refinement checks suggest that, for results that are accurate to

10%, a grid of between two and four grid points per vessel should

be used. We note that in order to minimize computational cost,

previous studies have frequently used a grid of spacing of the same

size as the vessel and that this will introduce an error of 30{40%,

depending on the type of boundary conditions used.

We have systematically examined how the L1 norm and the

oxygenated area vary as the separation between the vessels is

changed and the results are summarised in figure 6 as a function of

the separation. Only the oxygenated area is shown as the results

for the L1 norm are qualitatively similar. For vessels sufficiently far

apart, the L1 norm and the oxygenated area are twice the values

calculated in }?? for one vessel. This corresponds to the flat section

to the far right of figure 6 and shows that for a separation s greater

than about ten the vessels interact only minimally. Note that in

these non-dimensional units, this represents a separation of

approximately nine vessel diameters.

As the vessels get closer, the oxygenation of the tissue initially

increases but then decreases approaching the value of the

oxygenation produced by a single vessel as s?0. The increase is

much more prominent in the L1 norm than in the oxygenated

area, reflecting the fact that the dominant effect of two vessels close

together is that the level of oxygenation of the oxygenated tissue

increases, rather than that more tissue reaches the oxygen

threshold value of uh.

1.5 Multi-vessel. In normal tissue, blood vessels are regularly

spaced in order to deliver oxygen to tissue in an optimal manner.

In tumour tissue, this is not the case and the position of blood

vessels is much more closely represented by a random distribution,

resulting in a log-normal distribution for the distance between

blood vessels.

First we outline how we distribute vessels on the plane while still

being able to carry out computational grid refinements. In order to

randomly place the vessels without overlap we first construct a

‘vascular grid’ that has a grid length of 2eRR. Vessels are placed so

that their centres are at random points of the vascular grid. The

choice of grid length means that no vessels can overlap each other.

A computational mesh is then constructed that forms a sub-grid of

the larger vascular grid, one example is shown in figure 7. This

computational mesh can be refined to give adequate numerical

Figure 3. Oxygenated area for a single vessel with non-dimensional radius eRR~0:55 and uh~2. (a) Fixed permeability, ePPm~2 and varying

vessel partial pressure, u0 . (b) Fixed permeability, ePPm~50 and varying vessel partial pressure, u0. (c) Fixed vessel partial pressure, u0~8 and varying

permeability, ePPm. (d) Fixed vessel partial pressure, u0~40 and varying permeability, ePPm .
doi:10.1371/journal.pone.0038597.g003
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resolution. Computations were carried out on a domain of 55|55

in non-dimensional units, equating to 1mm2 of tissue for typical

values of the parameters. As for the two vessel case, a grid spacing

of 0:1 gave good resolution. The effect of varying microvessel

density (MVD), was considered by solving equations (13) for a

sequence of different MVDs. For each value of the MVD, ten

different random vascular maps were created and the L1 norm

and the oxygenated area calculated. The random selection of

Figure 4. Oxygenated area of a single vessel for uh~2 and varying vessel radius, eRR. (a) ePPm~2,u0~8. (b) ePPm~2,u0~40. (c) ePPm~50,u0~8.

(d) ePPm~50,u0~40.
doi:10.1371/journal.pone.0038597.g004

Figure 5. Contour plots and solution profiles for two vessels placed at different separations. In all cases, u0~16,ePPm~2:75,eRR~0:55 and
the source model for the delivery of oxygen to the tissue was used. (a) Contour plot for two widely separated vessels, seperation s~15. (b) Contour
plot for two vessels that are close enough to interact, separation s~5. (c) Oxygen concentration profile along the line y~0 for s~15. (d) Oxygen
concentration profile along the line y~0 for s~5.
doi:10.1371/journal.pone.0038597.g005
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points on the vascular grid results in vascular maps which have a

log normal distribution of nearest neighbour distances. As the

MVD increases, both the mean and the variance of this

distribution decreases (mean !1=
ffiffiffiffiffiffiffiffiffiffiffiffi
MVD
p

, variance !1=MVD).

We have considered MVDs in the range 0{200 per mm2, which

includes the values used in previous studies of tumour oxygenation

[9,13].

Commonly quoted values for vessel partial pressures range from

20mmHg to 100mmHg where, 100mmHg is typical of arterioles

and 40mmHg typical of venules. Often tumour supply is from the

venule side, and although some of the results that are presented

below are for the full range from 20mmHg to 100mmHg (8 to 40
in nondimensional units), more detailed results are shown for the

case of vessel partial pressure 40mmHg (16 in nondimensional

units). The results for the fraction of the area of the tissue that is

oxygenated for three different values of the vessel partial pressure

u0 and varying hypoxic levels uh are shown in figure 8. The

general trends are not surprising: more vessels are needed to

oxygenate more tissue up to some cut-off number beyond which

all the tissue is oxygenated; the vessel density that is needed for the

tissue to be oxygenated depends on the value that is used to specify

oxygenation (uh), with more vessels needed the higher the value of

uh. Typically, tissue is considered to be hypoxic if it has partial

pressures in the range 1-10mmHg and necrotic for partial

pressures less than 1mmHg. So, for example, in figure 8(b)

corresponding to vessel partial pressures of u0~16 (40mmHg) and

for a micro-vessel density of 50 vessels/mm2, typically 90% of the

tissue receives some level of oxygen, but for most of the tissue this

is at too low a level to be significant resulting in the fact that only

approximately 15% is oxygenated, 35% is hypoxic and the

remaining 50% is necrotic.

The computational cost of simulating multi-vessel distributions

to attain average quantities leads one to ask whether one could

predict the multi-vessel results just from the one-vessel results. In

particular, if the vessel density is low, one might expect the

oxygenated area of the multi-vessel distribution to simply be the

oxygenated area given by a single vessel multiplied by the number

of vessels, i.e.

Aox&NAoxs , ð18Þ

where N is the number of vessels and Aoxs is the oxygenated area

of a single vessel. Figure 9 shows the oxygenated area for two

different values of uh in more detail and compares the results with

a number of approximations. We focus on the value of scaled

vessel partial pressure u0~16 (P0~40mmHg for typical param-

eter values) since this is the most widely quoted value for the vessel

partial pressure in tumour tissue. For microvessel densities up to

around 50 mm{2, the vessels do not interact, and the approxi-

mation give by equation (18), the dashed line in the figure, works

well. That the vessels do not interact is further underlined by the

fact that up to a MVD of around 50, there is no difference in the

oxygenated area produced by a regular grid of vessels (shown by

the thick line in figure 9) and that produced by a random

arrangement of vessels.

2. Tracer
Having discussed some aspects of modelling oxygen diffusion in

tissue, we now consider the issues with trying to detect that oxygen

using a tracer. First we solve a model for tracer reaction and

diffusion that includes the spatial distribution of oxygen. We then

examine to what extent a compartment model for tracer dynamics

can accurately determine the level of oxygenation.

2.1 Modelling and non-dimensionalisation. The detection

of oxygenation via PET scanning techniques first requires a

radioactive tracer to be injected into the blood. The tracer is

transported by the blood: some is removed from the blood by the

kidneys and some diffuses into other body tissues. Once in the

tissue, some of the tracer will bind at a rate that is dependent on

the local oxygen concentration with the tracer being bound more

Table 1. Grid refinement check.

Grid spacing grid/vessel ratio Dirichlet DDuDD1 Source DDuDD1

1.0000 1 1089.671 818.8468

0.5000 2 1716.200 1270.952

0.2500 4 1641.403 1036.248

0.1250 8 1774.854 1146.761

0.0625 16 1808.991 1141.513

0.0400 25 1831.189 1147.694

The L1 norm as a function of grid size for two vessels separated by 5 units with

u0~40 and ePPm~2:75.
doi:10.1371/journal.pone.0038597.t001

Figure 6. (a) DDuDD1 norm and (b) oxygenated area as a function of separation. Different vessel partial pressures are shown corresponding to,
uh~0:04,0:4,0:8,2 and 4 (typically corresponding to Ph~0:1,1,2,5 and 10 mmHg). The source term model for oxygen delivery has been used; the

behaviour for Dirichlet or flux boundary conditions is qualitatively similar. Each vessel has a scaled radius eRR~0:55 and scaled permeability ePPm~2:75.
The scaled vessel partial pressure is u0~16 (typically corresponding to P0~40 mmHg).
doi:10.1371/journal.pone.0038597.g006
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effectively at low oxygen levels. A detailed pharmacokinetic study

of the binding process for FMISO was carried out by Casciari et al

[6]. Although their compartment model did not allow for any

spatial variation, nevertheless they were able to show that the

model could replicate typical behaviour of TACs from both a

more complicated, but still spatially homogeneous, model and

clinically extracted TACs. They did find that including some

transport limitations into the compartments representing tracer in

the tissue was important.

In order to take account of the diffusion of tracer and the spatial

distribution of oxgyen, Kelly and Brady [9] suggest taking the

model for the partial pressure of oxgyen, equation (5) and coupling

it to a partial differential equation for the tracer,

LTf

Lt
~DT+2Tf {KtracerTf z

2PT

R
Tblood{Tf

� �
:S,

LTb

Lt
~KtracerTf , ð19Þ

where Tf is tracer that is free to diffuse and Tb is bound tracer.

The parameter Ktracer is the rate at which the free tracer is bound

and is dependent on the oxygen partial pressure P,

Ktracer~
kmaxP1

PzP1

� �
P

PzP2

� �
:

The second term in brackets acts as a switch to turn off the

binding if tissue is necrotic. The concentration of tracer in the

blood, also known as the plasma input function, Tblood , is modelled

as the sum of two exponential decays,

Tblood~A e{k0tzbe{kkt
� �

: ð20Þ

The first term represents the dispersal of the tracer around the

body, the second the renal term representing the removal of tracer

by the kidneys. Typically, kk%k0. Implicit in modelling the tracer

in the blood in this way is that the tumour is a small volume

compared with the volume of the rest of the body. Consequently

the fact that some tracer flows into the tumour has a negligible

impact on Tblood .

Mönnich et al use a similar model [10], but instead of using a

source term to model the entry of tracer from the blood they use

mixed boundary conditions. In section 1 we found that for oxygen

diffusion using a source term gave comparable results to the use of

mixed boundary conditions, and we would expect this to be the

same for the tracer. Kelly and Brady [9] show that this model can

reproduce typical TACs by considering random distributions of

vessels. Mönnich et al do a similar comparison, but this time using

vascular maps that are obtained from tissue staining. Comparing

with experimentally determined TACs shows that the partial

differential equation model does mimic the behaviour that is seen

in practice. Our aim here is to examine to what extent the partial

differential equation (19) model is needed in order to accurately

model the behaviour that is seen and to what extent a

compartment model is adequate.

As for the oxygen problem, we first non-dimensionalise by

rescaling space by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DP50=Kmax

p
and the oxygen partial pressure

P~P50u and introducing Tf ~Avf ,Tb~Avb,Tblood~Avblood ,

t~
DP50

DT Kmax

t. This results in the model for the oxygen and tracer

as:

Figure 8. Mean of ten realisations of the oxygenated area versus vessel density (MVD). (a) u0~8 (b) u0~16 c) u0~40. In all cases,ePPm~2:75 and the source model for oxygen entry from the blood vessels is used. The different lines on each plot represent different values of the
threshold, uh used to measure the level of oxygenation.
doi:10.1371/journal.pone.0038597.g008

Figure 7. Vascular grid versus computational grid. Blood vessels
are located randomly on a fixed coarse vascular grid (solid black lines)
allowing a refined computational grid (light grey lines).
doi:10.1371/journal.pone.0038597.g007
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+2u~
u

uz1
{

2ePPmeRR u0{uð Þ:S for (x,y)[(0,Lx)|(0,Ly), ð21Þ

and for free and bound tracer,

Lvf

Lt
~+2vf {

~kk~PP1

uz~PP1

 !
u

uz~PP2

� �
vf z

2ePPTeRR vblood{vf

� �
:S,

Lvb

Lt
~

~kk

uz~PP1

 !
u

uz~PP2

� �
vf , ð22Þ

where the scaled plasma input function is

vblood~ e{~kk0tzbe{~kkkt
� �

, ð23Þ

and

S~
1 for (x,y)[ vessel interior

0 for (x,y)[= vessel:

	
Since at the start there is no tracer in the tissue, only in the blood

plasma, both vf and vb are set to zero initially.

The scaled parameters for the tracer dynamics are

~PPT ~PT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P50D

KmaxD2
T

s
, ~kkmax ~

kmaxDP50

DT Kmax

,~PP1 ~
P1

P50
,~PP2~

P2

P50
,~kk0~

DP50

DT Kmax

k0,~kkk~
DP50

DT Kmax

kk. The process of non-dimensionalisa-

tion reduces the original 17 parameters to 10.

2.2 Single vessel. Before considering how randomly distrib-

uted vessels within a piece of tissue behave, we first examine a

single vessel. Equations (21) are solved to find the steady-state

oxygen distribution as shown in figure 10(a). Then, equations (22)

are solved to give the concentrations of free and bound tracer as a

function of time and space. For these computations and for those

in the following sections we have chosen representative values

from the literature for the various parameter values. The

parameter ranges are given in in table S1 for the dimensioned

parameters and in table S2 for the corresponding non-dimensional

parameters.

Typical concentrations of the free and bound tracer as are

shown in 10(b) and (c) respectively for three different points in

time. These show how, initially, the dominant effect is the diffusion

of the tracer into the tissue–at t~10 there is essentially no bound

tracer but tracer has diffused a considerable distance from the

vessel (note the vessel radius is 0:55 in these non-dimensional

units). However, as time goes on the binding process becomes

important–by t~500 the way that the binding is dependent on the

oxygen level is apparent, with both the low binding rate at high

oxygen concentrations and the effect of the necrotic term resulting

in the shape of the bound oxygen profile in 10(c). In fact, the

maximal binding rate occurs when u~
ffiffiffiffiffiffiffiffiffiffiffi
~PP1

~PP2

p
which, for the

parameters we have used is u~0:38.

In order to further illustrate the behaviour, in figure 11(a) the

decay of the plasma input function, equation (23), as a function of

time is shown and, in figure 11(b) and (c), the concentration of free

and bound tracer respectively are shown for three different points

Figure 9. Mean tissue oxygenation and oxygenated area. (a) The mean oxygen level for three different values of the vessel partial pressure. (b)
and (c) The fraction of area that is oxygenated for u0~16 using uh~0:4 in the case of (b) and uh~2 in the case of (c).
doi:10.1371/journal.pone.0038597.g009

Figure 10. Oxygen and tracer distributions in space. (a) Oxygen partial pressure against r. (b) Free tracer against r for three different times. (c) Bound

tracer against r for three different times. The parameters are: u0~16,~RR~0:55,ePPm~2:75,~PPT~4,~PP1~0:6,~PP2~0:24,kmax~0:01,~kk0~5,~kkk~0:01,b~0:5:
doi:10.1371/journal.pone.0038597.g010
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in space. For the parameters we have chosen the initial

concentration of the plasma in the blood vessel is 1:5. However

as ~kk0%~kkk this value rapidly drops, so fast that on the timescale

shown this is not visible, and in fact the blood plasma term is

dominated by the second term in equation (23). As time continues,

the free tracer diffuses from the blood vessels into the tissue, so that

at any particular location the free tracer concentration initially

increases with time, as seen in figure 11(b). The further from the

blood vessel, the longer it takes the tracer to diffuse, so the slower

this increase. At the same time as diffusing in space, the free tracer

binds at a rate dependent on the oxygen, and this ultimately leads

to the decay of the free tracer over time. In figure 11 (c) the growth

of the bound tracer as a function of time for three different points

are shown. At r~10, the bound tracer is zero because the oxygen

concentration is so low that the tissue is necrotic.

A TAC consists of the sum of signals from the plasma, free and

bound tracer,

TAC~

ðð
vblood :Sz vf zvb

� �
:(1{S)

� �
dxdy: ð24Þ

The general characteristics of TACs from normoxic, hypoxic

and necrotic tissue can be seen by considering the three points

r~1,r~5 and r~10 respectively, as shown in figure 11. For r~1,

the sum of the free and bound tracer will show a very rapid

increase from zero initially to a high level and then a slower but

still fairly rapid decline. Whereas, for r~10, the tissue is necrotic

and there is effectively no bound tracer. The only tracer

contribution to the TAC then comes from the free component,

which because of the distance of this point from the blood vessel,

shows only a gradual increase that is diffusion limited. The point

r~5 sits between these two extremes. That there is a cross-over

point, as mentioned by Wang et al [5], where both oxygenated and

hypoxic tissue would give the same image is clearly seen.

2.3 Multi-vessels. In section 1 it was seen that the

distribution of oxygen can be considered as a superposition of

the oxygen distribution from single vessels for low enough vessel

densities, or equivalently that the oxygen distribution from a

regular grid of vessels and that for a random arrangement of

vessels give similar oxygenation levels below a vessel density of

about 50 for a scaled partial pressure of u0~16 (equating to a

partial pressure of 40mmHg if typical parameter values are used).

Below, the analogous behaviour is considered for the TAC that

results from different microvessel density distributions. For each

microvessel density both random and regular vessel distributions

are considered. Having specified an arrangement of vessels, the

oxygen map is first calculated by solving equations (21). One

example of the resulting oxygen map is shown in figure 12 (a). The

tracer equations (22) are then solved as a function of time with the

plasma input function shown in figure 12(b). The resulting maps

for the free and bound tracer at a sequence of points in time are

shown in figure 12 (c),(e),(g) and (d),(f),(h) respectively. In

figure 12(b) and (c) it is seen how the initial phase is diffusion

dominated, with tracer only occuring close to the blood vessels and

the bound tracer at a rather lower level than the free tracer. Over

time, as seen in (d) and (e) and then in (f) and (g) the free tracer

continues to diffuse and is also gradually converted to bound

Figure 11. Plasma input function and tracer time evolution. (a) Plasma input function. (b) Free tracer against time for three different points in
space. (c) Bound tracer against time for three different points in space. (d) Tissue activity curve.
doi:10.1371/journal.pone.0038597.g011
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tracer, with highest levels of bound tracer occuring in the hypoxic

‘rings’ that form around blood vessels. These rings have a

maximum value at a distance of around five non-dimensional units

and are the two-dimensional manifestation of the maximum seen

in the tracer profile in figure 10(c). The corresponding TAC for

this square of tissue was then calculated by combining the plasma

input function, and the free and bound tracer using equation 24.

The resulting TACs for different vessel densities are shown in

figure 13. At the lowest vessel density of five vessels per mm2, as

shown in the top row, a regular arrangement of vessels would be

indistinguishable from a random arrangement of vessels. More

surprisingly, even at high vessel densities, the differences between

the random arrangement of vessels and the regular arrangements

are rather subtle. This suggests that it is in fact not the random

nature of the vessel distribution that is most critical, on the scale of

a millimetre.

2.4 Comparison with compartment models. Having

computed the oxygen map and the resulting TAC, one can ask

Figure 12. Oxygen map and contours of free and bound tracer as a function of time. A microvessel density of 100 mm{2 has been used.
(a) Oxygen concentration. (b) Plasma input function as a function of time. (c) vf at t~10. (d) vb at t~10. (e) vf at t~50. (f) vb at t~50. (g) vf at
t~500. (h) vb at t~500.
doi:10.1371/journal.pone.0038597.g012
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to what extent a compartment model can extract parameters such

as the mean level of oxygenation. Previous authors have compared

both compartment models and partial differential equation models

with real experimental data. The advantage of trying to fit a

compartment model with ‘experimental data’ generated from a

partial differential equation is that one has much greater

knowledge and control over the the exact parameter values that

are used. If fitting cannot work in this idealised scenario, then it

has little hope in the real world.

In order to compare the behaviour of compartment models with

a model that includes diffusion of the tracer and the spatial

dependence of the oxygen within the tissue we consider the

compartment model constructed by Thorwarth et al [7] and used

in [5,8,10]. This model considers three compartments, one for the

tracer in the blood, one for the free tracer and one for the bound

tracer. The tracer in the blood is modelled by equation (20), the

remaining two compartments are modelled by the coupled

ordinary differential equations,

dCf

dt
~k1Cblood{ k2zk3ð ÞCf ,

Figure 13. Mean levels of free and bound tracer and TACs computed from the PDE model. Each row corresponds to a different
microvessel density (5, 50, 100 and 150 per mm2 respectively). The first column shows the contribution to the TAC from the tracer in the blood
plasma and the free and bound tracer in the tissue. Ten different random vessel distributions were considered, so ten different sets of curves are
shown for each contribution. The central column shows the TACs that result from the ten different random vessel arrangements (solid line) and the
TAC as computed from a regular arrangement of vessels (dashed line). The final column shows the hypoxic fraction for each of the different random
realisations.
doi:10.1371/journal.pone.0038597.g013
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dCb

dt
~k3Cf : ð25Þ

Here, Cf represents the free tracer, Cb represents the bound

tracer. The constants k1 and k2 represent the rate at which tracer

enters/leaves the free compartment and is related to the

permeability of the vessels to the tracer. The constant k3 is the

net binding rate of the tracer in the tissue and is related to the level

of oxygenation of the tissue. Non-dimensionalising by letting

vblood~ATblood , wf ~ACf ,wb~ACb and t~
DH

Dtq
t leads to the

equations

vblood~ e{~kk0tzbe{~kkkt
� �

, ð26Þ

dwf

dt
~~kk1vblood{ ~kk2z~kk3

� �
wf ,

dwb

dt
~~kk3wf : ð27Þ

Initially there is no free or bound tracer so that

wf (0)~wb(0)~0, leading to the analytical solution to equations

(27)

wf ~
~kk1

~kk2z~kk3{~kk0

e{~kk0tz
~kk1b

~kk2z~kk3{~kkk

e{~kkkt ð28Þ

{~kk1
1

~kk2z~kk3{~kk0

z
b

~kk2z~kk3{~kkk

� �
e{(~kk2z~kk3)t, ð29Þ

wb~{
~kk1

~kk3

~kk0
~kk2z~kk3{~kk0

� � e{~kk0t{
~kk1

~kk3b

~kkk
~kk2z~kk3{~kkk

� � e{~kkkt ð30Þ

z
~kk1

~kk3

~kk2z~kk3

1

~kk2z~kk3{~kk0

z
b

~kk2z~kk3{~kkk

� �
e{(~kk2z~kk3)t ð31Þ

z
~kk1

~kk3

~kk2z~kk3

1

~kk0

z
b

~kkk

� �
: ð32Þ

Typical time tracers of vblood ,wf and wb are shown in figure 14.

There are three time scales that are important here corresponding

to the three different rates that appear in the exponential terms.

Typically kk%k0 and kkvk2zk3, but k2zk3 can be either

greater or less than k0 depending on the oxygenation level of the

tissue. It is the two timescales kk and k0 that are relevant for vblood ,

and the fact that ~kkk%~kk0 is seen by the very rapid decline in vblood

in the first few time units followed by a much slower decline

thereafter. For the free tracer, although all three timescales appear

in the solution, it is the influence of ~kkk and ~kk2z~kk3 that are most

clearly seen in figure 14. The concentration of free tracer first

increases then decreases over time as tracer first diffuses from the

blood into the free compartment and then leaves to become

bound. However, the position and height of the consequent

maximum in the free tracer depends on how fast the free tracer is

converted to bound tracer relative to the dispersal of tracer around

the body as is shown by the two cases in figure 14. In 14(b)
~kk2z~kk3w

~kk0, and as soon as the tracer enters the free compartment

it is converted to bound tracer so the amount of free tracer remains

low.

The TAC consists of a signal with different weightings of the

three components, vblood , wb and wf . Fitting of the weights along

with the rate constant ~kk3 are used to give some idea if tissue is

hypoxic or not: hypoxic tissue should have a relatively high value

for ~kk3 and more bound tracer than normal tissue

Figure 14. Plasma input function and free and bound tracer concentrations computed from the compartment model. The parameters
~kk0~5,~kkk~0:01,~kk1~0:5,~kk2~~kk3,b~0:5 are used in both cases and in (a) ~kk2z~kk3~0:1, (b) ~kk2z~kk3~4.
doi:10.1371/journal.pone.0038597.g014
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In each case, we first compute a TAC by solving the partial

differential equation model for a particular microvessel density.

This computed TAC is then fitted to the formula for the TAC

given by (33). We assume that the plasma input parameters, ~kk0,~kkk

and b, are known and fit for ~kk1,~kk2,~kk3 and the weights a and b. A

sequence of calculations for increasing microvessel density was

carried out, for each of three vessel partial pressures–u0~8,

u0~16 and u0~40 respectively. The results are summarised in

figure 15 and figure 16. The parameters ~kk1 and ~kk2 in the

compartment model are the rates at which tracer enters and leaves

the free tracer compartment. As can be seen from figure 15, the

values of this parameter are dependent on both the vessel partial

pressure and the mean oxygenation level–or equivalently the

microvessel density. The parameter ~kk3, as shown in figure 15(c) is

the rate at which oxygen binds to the tissue, and here the

nonlinear relationship between the amount of oxygen and the

mean value of oxygen is apparent with a binding rate that is

highest for hypoxic tissue and low both for very low levels of

oxygen, where tissue is predominantly necrotic, and low for high

values of oxygen. The parameters ~kk1, ~kk2 and b are strongly

correlated with each other, as demonstrated in figure 16.

Consequently, without knowing the vessel partial pressure it is

not possible to deduce information about the mean oxygen levels

or, equivalently, the microvessel density from these parameters

alone. Values for the parameter ~kk3 do give a clear indication of

hypoxia, with the maximum value of ~kk3 occuring for a non-

dimensional mean oxygen level of around 1 (corresponding to 2:5

mmHg). Low values of ~kk3 can occur for one of two reasons, either

because tissue is necrotic or because tissue is normoxic. The

difference between these two cases can be deduced by considering

both ~kk3 and ~kk1: normoxic tissue would have a low value of ~kk3 and

a high value of ~kk1 wherease necrotic tissue would have a low value

of ~kk3 and a low value of ~kk1.

Figure 15. Fitted parameter values. The fitted values of (a) ~kk1 , (b) ~kk2 , (c) ~kk3 and (d) b as a function of the mean oxygen level of the tissue. For the
computation of each point, first the MVD is fixed. The oxygen map is then computed from equation (21) and the mean oxygen level of the tissue
determined. The TAC from the PDE is then constructed by solving equations (22) and computing the expression given in (24). Finally, values of
~kk1,~kk2,~kk3 and b are determined by fitting the TAC from the PDE to the compartment model TAC, equation (33). The circles, points and crosses are
calculations for different vessel partial pressures: circles represent calculations with u0~8; points represent calculations with u0~16, and crosses
represent calculations with u0~40.
doi:10.1371/journal.pone.0038597.g015
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The parameter ~kk3 in the compartment model represents the

binding rate. This rate is dependent on the mean oxygenation level

in the free tracer compartment and should be directly related to

the binding rate in the partial differential equation model given in

equation (22),

~kk3~
~kk

uz~PP1

 !
u

uz~PP2

� �
:

By assuming that the parameters ~kk,~PP1 and ~PP2 are known, one can

invert this relationship and examine to what extent the value of k3

given by fitting the compartment model correlates to the actual

mean value of oxygen given by the partial differential equation

calculation, see figure 17.

Discussion

Modelling the distribution of tracer in the body is a difficult task.

There are a number of different levels of uncertainty and

inaccuracy. Firstly, in writing down a mathematical model various

modelling assumptions are made as to which processes may be

neglected and which cannot. Secondly, in most models there are

parameters which have to be determined. The value of these

parameters can affect both the qualitative and quantitative

behaviour of the model. Finally, there are computational errors

that are introduced when numerical methods are used to solve

equations. If a mathematical model is to be of use, these different

types of error need to be quantified and, ideally, an estimate of the

uncertainty of any result made.

In this paper we have sought to quantify the effect of some of

these sorts of error for the particular problem of oxygen diffusing

in a (two-dimensional) piece of tissue and the consequent tracer

dynamics. We have addressed two particular modelling issues:

firstly the consequence of using different kinds of boundary

condition to describe the flow of oxygen from blood vessel to tissue

and secondly the extent to which compartment models can be

used to describe tracer concentration in tissue where the oxygen

distribution is inhomogeneous. For typical vessel permeabilities

and partial pressures for tumour tissue, we have found that using a

Dirichlet type boundary would typically result in an overestimate

of the amount of oxygen by a factor of two, suggesting that either

mixed, or the source method should be used. The fact that the

source method gives good results, is significant as this is a method

that is likely to be easier to implement in three space dimensions

than modelling blood vessels as discrete entities with flux boundary

conditions. The second modelling assumption that we have

investigated is to what extent the heterogeneous nature of the

vascular supply is important/detectable by a TAC that averages

over a region of a square millimetre. In fact, the actual distribution

of the vessels does not significantly affect the form of the TAC:

TACs from both regular and randomly arranged blood vessels

Figure 16. Correlation of ~kk1 with (a) ~kk2, (b) ~kk3and (c) b. The circles are computations with a vessel partial pressure u0~8; the points are for
u0~16, and the crosses are for u0~40.
doi:10.1371/journal.pone.0038597.g016

Figure 17. Predictions of the compartment model. (a) The value of the mean oxygen level as predicted by fitting the compartment model to
the TAC that is computed from the partial differential equation versus the actual mean oxygen level. (b) The predicted value of the parameter b
versus the actual value. The circles represent computations with a vessel partial pressure of u0~8; the dots represent computations with u0~16 and
the crosses represent computations with u0~40.
doi:10.1371/journal.pone.0038597.g017
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were strikingly similar with the qualitative and quantitative

features much more strongly dependent on the partial pressure

of the vessels and their number. In part, this is because after the

first few minutes, although one can still see the after-effects of the

position of the blood vessels in the spatial distribution of the tracer,

as shown in figure 12, the actual magnitude of the variation at any

point in time is relatively small. This is because typical diffusion

times for tracers, x2=2DT , are an order of magnitude shorter than

typical times associated with the binding for tracers, as given by

1=kmax. In real tissue, the vessels are not only highly heteroge-

neous in their position, but also in their size, vessel partial pressure

and vessel blood flow rates. However, the difference in timescales

between the diffusion and the chemical kinetics suggests that this

heterogeneity is averaged out by the diffusion process and is not

detectable on the timescale of the chemical kinetics. The

consequence is that fitting a TAC to a partial differential equation

model including the full heterogeneity in the distribution and the

characteristics of the vessels will result in essentially the same

prediction for mean oxygen partial pressure as fitting to a

compartment model. While the partial differential equation

models that include vascular structures are valuable for allowing

the investigation of how changes to the underlying physiological

parameters affect the results, this suggests that compartment

models will be sufficient in a clinical setting.

One of the difficulties in comparing with experiment is that

some of the parameters are hard to measure. The sensitivity results

of section 1.3 showed that a 10% error in the scaled permeability
~PPm or the scaled partial pressure u0 will result in a similar error in

the oxygenated area. Similarly the value of the oxygen threshold

used to define the oxygenated area, uh, has a significant effect on

the results.

Finally we note that one source of error is the computational

error: for the sake of computational time, many authors have used

a single point to represent a vessel. As we have seen, this in itself

can introduce an error of approximately 30%.
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