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(Dr. sc. ETH Zürich)
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Abstract

The Standard Model (SM) of particle physics is the most fundamental theory currently available to
describe the nature of the matter around us and the forces it interacts with. If including neutrino
oscillations in the model, it withstood all experimental tests and no significant deviations were found
until now. Some anomalies were observed however, which do not suffice to claim new discoveries
yet, but can be considered hints towards possible directions to find new physics. There is no
debate that new physics is needed due to cosmological observations such as dark matter or the
matter-antimatter asymmetry in the universe.

The search for the Charged Lepton Flavour Violating (cLFV) µ → eγ decay started shortly
after the discovery of the muon. It provides an excellent opportunity to search for evidence of yet
undiscovered physics due to the well understood SM decay channels of the muon. The most recent
upper limit on the branching ratio BR(µ → eγ) < 4.2× 10−13 at 90 % confidence level (C.L.) is
provided by the MEG experiment [1]. The upgraded MEG II experiment [2] is currently in the
commissioning phase. It aims to search for this decay with an improved sensitivity to a BR down
to 6× 10−14.

As part of this work, the code for the spectrometer calibration based on Mott scattered positrons
has been adapted to the new apparatus and extended to the timing counter. The analysis codes
have been proven to be working based on simulations. They allow to gather information about the
resolutions obtainable in positron momentum vector and time by the spectrometer.

Further, extensive simulations on new scintillating materials coupled to state of the art Silicon
PhotoMultipliers (SiPMs) were performed. In the direct comparison, LYSO performs better than
LaBr3(Ce) for the currently available crystal sizes. For 55 MeV photons, an energy resolution below
2 %, a time resolution of 30 ps and a position resolution of the order of a few mm is obtained for
available crystal sizes.

A prototype using a LYSO crystal will soon be built and tested as an auxiliary detector for
MEG II. It will represent an upgrade of the tagging detector used for the charge exchange reac-
tion calibration method (CEX calibration), crucial to assess the detector performances of the LXe
calorimeter, a prototype for future large high performance calorimeters working at this energy scale
and a first auxiliary detector to investigate new physics channels with the MEG II detector.

Moreover, two additional processes that can be investigated with the MEG II apparatus are
discussed. They provide an extension to the MEG II physics programme. The first option is to
search for the decay µ → eX with a yet unknown and elusive boson X in the vast amount of
ordinary muon decay data acquired as part of the µ→ eγ searches. The simulations done for this
purpose underline the importance of precise theoretical predictions as well as detailed calibration of
the detector. Given these, MEG II should reach a competitive sensitivity to a BR below 1× 10−5

with about 107 to 108 reconstructed events.
The second physics result studied as part of this work is an independent measurement of the

beryllium anomaly. It was observed by a Hungarian group at Atomki [3] and still lacks an indepen-
dent confirmation by a different experiment. As shown with simulations in this thesis, the MEG II
apparatus could provide such a confirmation or exclude their claimed region. This requires only a
minor adaptation of the experimental setup and could provide sufficient data within a few days of
physics data acquisition.

Zusammenfassung

Das Standardmodell (SM) der Teilchenphysik stellt zur Zeit die grundlegenste Theorie über die
uns umgebende Materie sowie deren Wechselwirkungen dar. Wenn man Neutrinooszillationen im
Modell einschliesst, hielt das SM allen experimentellen Überprüfungen stand und es wurden keine
aussagekräftigen Abweichungen festgestellt. Dennoch gibt es kleinere Ungereimtheiten, die als
solche nicht die Behauptung rechtfertigen, man habe Physik jenseits des SM gefunden. Jedoch kann
man diese als Hinweise sehen, in welcher Richtung man möglicherweise solche neuen, physikalischen
Phänomene finden kann. Denn es steht ausser Frage, dass das SM kosmologische Beobachtungen
wie das Verhältnis von Materie zu Antimaterie im Universum oder die Existenz von Dunkler Materie
nicht erklären kann.

Die Suche nach dem leptonfamilienzahlverletzenden Zerfall µ → eγ begann schon kurz nach
der Myonentdeckung. Dieser bietet aufgrund der wohlverstandenden Natur der Myonenzerfälle
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im SM eine ausgezeichnete Gelegenheit für die Suche nach bislang unentdeckter Physik. Die letzte
Messung durch das MEG Experiment ergibt bei einem 90 % Vertrauensintervall, dass nicht mehr als
4.2× 10−13 aller Myonen neutrinolos in ein Positron und ein Photon zerfallen [1]. Das erklärte Ziel
des MEG II Experiment ist es, dieses Resultat deutlich zu verbessern und mit einer Empfindlichkeit
von 6× 10−14 nach diesem unterdrückten Zerfall zu suchen.

Als Teil dieser Arbeit wurde der Programmcode, welcher für die Eichung des Spektrometers
mittels Mottstreuung von Positronen verwendet wird, den neuen Gegebenheiten des verbesserten
MEG II Experiments angepasst und erweitert. Neu umfasst diese Methode auch den Zeitzähler des
Spektrometers und Simulationen ergaben, dass die entsprechenden Methoden funktionieren und
Informationen zum Auflösungsvermögen des Spektrometers im vektoriellen Positronimpuls sowie in
der Positronzeit liefert.

Des Weiteren wurden neue Szintillatormaterialien simuliert, welche an eine Vielzahl von silizium-
basierten Photomultiplikatoren gekoppelt und so ausgelesen wurden. Im direkten Vergleich zeigte
sich klar, dass die zur Zeit verfügbaren LYSO-Kristalle den entsprechenden LaBr3(Ce) Kristallen
überlegen sind. Die Simulationen ergaben eine Energieauflösung unter 2 %, eine Zeitauflösung um
die 30 ps und eine Positionsauflösung von einigen wenigen mm für 55 MeV Photonen.

In naher Zukunft wird ein Prototyp mit einem LYSO-Kristall gebaut und als Hilfsdetektor
beim MEG II Experiment getestet. Dies stellt eine Verbesserung bei der Identifizierung geeigneter
Ereignisse für die auf Ladungsaustausch basierende Eichung des Flüssigxenonkalorimeters dar,
welche entscheidend zur Bestimmung des Leistungsvermögen des Kalorimeters beiträgt. Zusätzlich
handelt es sich um einen Prototypen für zukünftige Hochleistungsdetektoren in diesem Energie-
bereich, sowie um einen Detektor, mit dem man neue Zerfallskanäle beim MEG II Experiment
untersuchen kann.

Ferner werden zwei weitere Phänomene beschrieben, die ebenfalls mit dem MEG II Versuchs-
aufbau untersuchbar sind. Diese bieten eine attraktive Erweiterung des Physikprogramms des
Experiments. Einerseits bietet sich die Möglichkeit, nach dem Zerfall µ → eX mit einem bislang
unbekannten und schwer messbarem Boson X in den Myonzerfallsdaten zu suchen, welche während
der Suche nach dem µ → eγ Zerfall aufgezeichnet worden sein werden. Die dazu durchgeführten
Simulationen berkäftigen die Wichtigkeit von präzisen Theorievorhersagen und genauen Eichungen
der Detektoren. Sind diese gegeben, kann MEG II mit 107 bis 108 vermessenen Myonenzerfällen
eine Empfindlichkeit von unter 1 in 105 so zerfallenen Myonen erreichen.

Das zweite Physikresultat, das hier beschrieben wird, ist eine Überprüfung der so genannten
Berylliumanomalie, die auf eine ungarische Gruppe am Atomki zurückgeht [3]. Bislang mangelt
es an einer unabhängigen Bestätigung durch ein weiteres Experiment. Wie mittels Simulationen
in dieser Arbeit gezeigt wird, kann man mit dem MEG II Versuschsaufbau unter minimalen An-
passungen innert weniger Tagen Messzeit genügend Daten erheben, um eine solche Bestätigung zu
liefern oder deren Behauptung entkräften.
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Chapter 1

Charged Lepton Flavour Violation
Searches

1.1 A Brief Introduction to the Standard Model of Particle
Physics

This section provides a brief overview of the Standard Model (SM) of parti-
cle physics. In addition, a few selected observations are presented that could
potentially be interpreted as hints towards physics beyond the SM.

From ancient times, humans sought to understand the nature of their surroundings. Through
the ages, new explanations and descriptions of what we can observe were given. Models were
created, tested through experiments and compared to observations. Hypotheses were then either
advanced with the new findings or rejected due to shortcomings in explaining them.

With the discovery of new aspects of nature, new fields of research were opened and new hy-
potheses created. With improved technologies, developed through these advanced research, it was
possible to push further and further and on the quest for new physics, knowledge was gained that
revolutionised the life of humankind.

The last century was exceptionally fruitful in terms of scientific advancements. Amongst count-
less other improvements, one was trying to understand the most fundamental nature of our sur-
roundings. According to our latest understanding, all the matter around us consists of so called
fundamental particles such as electrons and quarks that interact through fundamental forces. Their
interplay is described by what is called the Standard Model (SM) of particle physics.

The SM is a collection of countless contributions and the most advanced theoretical model to
describe the behaviour of the observed particles. It describes all observables by a set of fundamental
particles and their interactions. At this point, it is noteworthy, that what an ordinary person
understands as a particle is treated as an excitation of a corresponding quantum field by the
theory.

The particles can be grouped in two main groups. On the one hand there are bosons char-
acterised by an integer spin. On the other hand, there are fermions characterised by a spin 1

2 .
Fermions are further separated in leptons and quarks. Please check Figure 1.1 for a graphical
representation of these particles.

The elementary bosons are the Higgs boson (H) and the gauge bosons (g, γ, W±, Z). Through
interaction with the Higgs field, the other particles acquire their masses. The gauge bosons are the
mediators of the three fundamental forces included in the SM.

The strong force is mediated by gluons. It couples to the colour-charge of particles such as
quarks. Gluons can actually interact with themselves which limits the range of the strong force
despite the massless mediator. Moreover, the strength of the strong force increases at lower energies
or larger distances. This leads to the fact that the energy added when separating quarks is sufficient
to create quark-antiquark pairs and cause the separating quarks to form individual hadrons. This
process is referred to as hadronisation.

The massless photon γ serves as mediator for the electromagnetic force. This replaces the electric
and magnetic fields known from classical physics. It couples to the electrically charged particles.

13
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Matter

Fermions

Quarks

tcu

bsd

I II III

Leptons

ντνµνe

τ−µ−e−

Anti-Matter

Anti-Fermions

Anti-Quarks

t̄ c̄ ū
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Figure 1.1: Particles of the Standard Model. The roman numerals refer to the family or generation
of leptons and quarks. Note that the antifermions are in fact fermions as well. This distinction
was made to underline the fact that for each fermion particle, there is a “mirrored” anti-particle.
Detailed description in the text.

Having massless mediators that do not directly interact with themselves, the electromagnetic force
is the only force in the SM that has an infinite reach. This allows light to travel throughout the
whole universe.

The weak force is mediated by the W± and Z bosons. These are massive particles, i.e. particles
that couple strongly to the Higgs. The mass of these particles limits the range of the weak force
which is thus only short ranged. In combination with the photon, it is referred to as the electro-weak
interaction and unified theories for these two forces are available [4, 5].

The known leptons are the electron (e−), muon (µ−) and tau (τ−) with their corresponding
neutrino (νe, νµ, ντ ) and for each of them the corresponding antiparticle (e+, µ+, τ+, ν̄e, ν̄µ,
ν̄τ ). While the charged leptons (e±, µ±, τ±) may interact either with the weak force or the
electromagnetic force, the electrically uncharged neutrinos may only interact via the weak force.

The electron and electron neutrino in combination with their corresponding antiparticles form
the first lepton family. The muon and its corresponding particles form the second family and the
third family consists of the tau and its associated particles. Note that the theory of the electro-weak
interaction does not allow the mixing of lepton flavours, i.e. the number of leptons of a family is
predicted to be conserved.

The known quarks are up u, down d, strange s, charm c, bottom or beauty b and top t as well
as their antiparticles. While the up-types (u, c and t) have an electric charge of 2

3 , the down types
(d, s, b) have a charge of − 1

3 . Opposed to leptons, quarks carry a colour-charge and thus are able
to interact with all fundamental forces.

Due to the nature of the strong force, quarks always form hadrons. They can either form mesons
consisting of a quark and an antiquark or baryons that consist of three quarks respectively three
antiquarks for an antibaryon. The most notable baryons are the proton (uud) and the neutron
(udd).

In the SM both the number of leptons and the number of baryons is conserved when assigning
a negative number to antiparticles. This immediately hints for a shortcoming as this allows for the
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production of a baryon only under simultaneous production of an antibaryon and the same goes for
leptons. This suggests that the amount of matter and antimatter in the universe should be equal,
yet only negligible amounts of antimatter are found.

For each of the particles in the SM, there is a set of defined propagators that define how this
particle moves through time and space as well as matrix elements that define the interactions
between the particles. Knowing them all through measurements, the SM allows precise predictions
from the magnetic moments of electrons, to various muon decays up to the behaviour of particle
collisions and subsequent decays at the large hadron collider.

Ever since the SM was established, its predictions matched with the experimental results. With
the discovery of the Higgs particle in 2012 [6, 7], the last missing piece was found. Thus the SM is
complete and appears to explain how the matter around us works.

However, as already hinted at before, even this highly sophisticated model has its shortcomings.
It completely fails to explain certain phenomena that are not observed in the laboratory but when
one is looking upwards into the depth of the universe. There is clearly more matter out there than
antimatter. According to the SM, no such clear asymmetry is supposed to exist. Furthermore, the
evidence of dark matter is rather well established while the Standard Model offers no explanation.

In addition to these cosmological observables, there are a few indicators that suggest the exis-
tence of new physics beyond the SM. A well established fact that goes against SM predictions are
neutrino oscillations [8, 9, 10]. This proves lepton flavour violation in the neutrino sector.

Further, some recent measurements with B-Mesons may suggest that differences from the SM
predictions potentially could exist [11]. Neither of them however reaches the necessary significance
to back the claim for the existence of new physics. Additionally, a 4.2σ deviation was measured for
the muon anomalous magnetic moment [12], which would indicate that there are contributions of
so far unknown physics missing in the theoretical prediction.

1.2 Charged Lepton Flavour Violation - a Possible Access
to new Physics

This section outlines why Charged Lepton Flavour Violation (cLFV) is a crucial
sector to test the SM on. Moreover, potential channels that would imply physics
beyond the SM are discussed. Special focus is given to the µ→ eγ decay channel.

These anomalies could be taken as hints towards the existence of not yet discovered physics
and potentially imply the existence of new particles. To unveil such new particles, one can either
directly detect them or find evidence in the form of deviations between measurements and SM
predictions. These deviations occur due to virtual contributions to intermediate states that will
potentially affect several processes simultaneously. To find such a deviation, one needs on the
one hand the experiment to perform the high precision measurement and on the other hand an
outstanding theoretical prediction of the SM value.

For this reason, charged lepton flavour violating processes are of extraordinary interest. The SM
offers a description of the electroweak interaction that is well understood and allows high precision
predictions. Moreover, in the SM on its own, the lepton flavour number is a conserved quantity.
This means, that not only the total number of leptons stays the same but the number of first (e,
νe), second (µ, νµ) and third (τ , µτ ) generation leptons are individually conserved.

That this is actually wrong was shown when observing neutrino oscillations [8, 9, 10]. Still, given
the extremely small neutrino masses compared to the W boson mass, the charged lepton flavour
mixing is highly suppressed and so are charged lepton flavour violating processes. These include
various decay channels for muons or taus or conversions of these particles to a charged lepton of a
different generation.

This makes the investigation of physics with either muons or taus worthwhile. Muons are lighter,
comparably long-lived and easier to handle. It is easily possible to guide them from production to
an experiment and stop them to observe muon decays at rest. Due to their low mass, the potential
number of decay channels is minimal. Taus on the other side are heavier and decay within a short
time. They decay through a host of leptonic and hadronic decay channels. Their larger rest energy
however may enhance the probability to interact with heavier, so far undiscovered particles.

When investigating for Charged Lepton Flavour Violation (cLFV) with muons, there are basi-
cally three channels to investigate. First, there is the decay of the anti-muon into a positron and a
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Figure 1.2: Different processes for the µ→ eγ decay.

photon. This decay is looked for by the MEG II experiment [2] at PSI. The second potential decay
channel is the decay of the anti-muon into two positrons and an electron searched for by the Mu3e
experiment [13]. The third option is the conversion of a muon into an electron in the proximity of
an atomic nucleus searched by Mu2e [14] and COMET [15].

While the SM on its own with massless neutrinos excludes these decays, the observed neutrino
oscillations would allow them albeit highly suppressed by the mass ratio of the neutrino to the
W -boson. Models used to explain the observed anomalies would add new particles with additional
contributions to these processes. Independent of the model to be used, precise knowledge about
the branching ratios of muon cLFV processes is used to confine the potential parameter space.

A selected few processes that could give rise to the µ → eγ decay are presented in Figure 1.2.
The first option is the SM process in combination with neutrino oscillations depicted in Figure 1.2a.
As stated above, this channel is highly suppressed.

Another possibility are super-symmetric particles that would mix [16]. One option for this is
depicted in Figure 1.2b. Note however that the first predictions of these SUSY models are nowadays
already heavily restricted. Thus, a new upper limit on the BR(µ→ eγ) immediately translates to
further restrictions on the parameter space of SUSY theories.

A more recent theory that could result in a sizeable branching ratio of the µ→ eγ decay is the
introduction of a singly charged singlet scalar [17] as depicted in Figure 1.2c. Although this model
aims to offer a different hypothesis in case the B-anomalies persist, the couplings could give rise
to the µ→ eγ decay for certain parameter choices. Thus the measurements of the branching ratio
already put severe constraints on the parameter space.

Even if one avoids making any kind of assumption on the theory that is supposed to complement
and complete the SM, the BR(µ → eγ) is a crucial quantity. By merely assuming that the SM
is an effective field theory approximation of the underlying high energy model, one can define a
set of potential operators corresponding to particle couplings, which would result in cLFV [18].
By measuring the BR(µ → eγ), coefficients for these operators can be constrained [19]. Thus,
observing or not observing these decays will restrict a broad variety of current and even future
theories not yet thought of.

1.3 A Brief History of the Muon Decay Channel µ→ eγ

1.3.1 The Discovery of the Muon

This section deals with the first experimental evidence and investigation of the
muon. This includes the discovery and its lifetime measurement.

The first hint of what is known nowadays as a muon was found in the early 1930s when investigating
so called “Ultrastrahlung”. P. Kunze observed a positive particle track of unknown nature [20].
He only stated that its ionisation neither matches a positive electron nor a proton, yet he didn’t
elaborate further. The identification of a new particle with a rest mass between the electron and
proton happened shortly thereafter in the second half of the 1930s by S. Neddermeyer and C.
Anderson. They were measuring energy losses of particles originating in cosmic ray showers when
passing either through lead or platinum inside a cloud chamber. Their data acquisition basically
consisted of a photo camera, either triggered by Geiger counters or at random. In their articles
[21, 22] they claimed that their experiments suggest a charged particle heavier than the electron
yet still much lighter than a proton. Further they proposed that these particles are removed by a
very effective process as they are not observed elsewhere.
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Shortly thereafter, J. Street and E. Stevenson found clear evidence of such a particle [23] with a
somewhat more dedicated setup. They were selecting the penetrating type of particles in cosmic ray
showers by using a three counter telescope with a lead filter in between. By adding veto counters
after their cloud chamber, they could trigger the camera on events originating from penetrating
particles near the end of their range. Out of the 1000 photos they took, there was one track that
suggested a particle with a rest mass of about 130 times the rest mass of an electron.

The results of a more accurate measurement were published in 1939 by S. Neddermeyer and C.
Anderson in [24]. As in the previous measurements, a cloud chamber in a magnetic field was used.
A Geiger-Müller counter placed inside the cloud chamber served as trigger for the camera in that
specific setup. A photograph taken with this apparatus indicates a muon mass of about 220± 35
electron masses.

Nowadays it is known that these particles called muons have a mass of mµ ≈ 106 MeV/c2 and
a lifetime of τ ≈ 2.20 µs. They are roughly by a factor of 200 heavier than electrons and almost a
factor 10 lighter than the proton, so Street and Stevenson were slightly off the true value, yet their
achievement is still remarkable, considering the equipment of their time.

Lifetime measurements of the muon were done in the early 1940’s by B. Rossi and N. Nereson[25,
26] amongst others. They used absorbers to stop cosmic muons, called “Mesotrons” (intermediate
particles [27]) at that time, which was the only known source back then. With the help of various
Geiger counters, referenced only as “counters” as there was nothing else available to turn radiation
into an electrical signal, they detected entrance and decay of the muon. Further they used a “time
circuit”, that generated an electric pulse equal to the delay between entrance and decay signal, and
a pen-writer. With these means, they managed to record the “integral disintegration curve”, from
which they could extract the lifetime τ = (2.15± 0.07)µs.

The use of an absorber of various materials to stop cosmic muons in combination with counters
is typical for the first era of muon science. The other detection system available at that time were
either cameras in combination with cloud chambers or later on photographic emulsions. Some of
these experiments are described in more details in the next section.

1.3.2 Detailed Investigation of the Muon Decay

A short overview over the experiments dedicated to the nature of the muon decay
is presented here. It concludes with the theoretical modelling of the Michel decay.

Early on, the parallels between the muon decay and the radioactive β-decay were recognised. As
at that time it was a common misconception, that only one neutrino was emitted during β decay,
a mono-energetic electron was expected at half the muon rest mass.

Consequently, C. Anderson et al.in 1947 concluded wrongly a muon mass, which is roughly by a
factor of 100 larger than the electron mass, when interpreting a photograph of a muon decay inside
a cloud chamber [28]. To obtain this photograph, the whole experimental apparatus was placed
inside a B29 plane and brought to an elevation of 9200 metres.

Out of the whole series, one photograph was interpreted as a positive muon that came to rest
inside the cloud chamber and thereafter produced a positron of 24 MeV. Based on the assumption
of a two-body decay, a mass between 90 and 110 electron masses was concluded, which is off by
a factor of 2. Further, it is annotated, that previous measurements [24] suggested twice the mass
obtained from this measurement, yet this discrepancy could be accommodated within the statistical
fluctuations.

In a work published by J. Steinberger in 1948 [29] it was shown, that the range spectrum of the
decaying electrons differs significantly from what would be expected for mono-energetic particles.
For this experiment, four counter trays separated by absorbers were used. He looked for coincidences
of the two upper trays, followed by a delayed coincidence in the lower two trays. This corresponds
to a muon entering through the upper two trays being stopped between tray 2 and tray 3. The
decay product then passes through the lower two trays.

To determine the range of the decay products, the event rate as a function of the absorber
thickness between tray 3 and tray 4 was measured. From the results reported in [29], one concluded
that the electrons from muon decays are not mono-energetic. Thus the conclusion was, that the
muon cannot decay into two particles only. As the obtained spectrum could not be fitted perfectly
well with the curve obtained from theoretical calculations, the possibility to explain this behaviour
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by two concurring decays was considered as an explanation, their low signal to background ratio
for highly penetrating electrons as another.

Not even a year later in 1949, a first energy spectrum distribution for the decay products of the
muon was published by R. Leighton et al. [30]. They were using a cloud chamber to determine the
energy of the decay particles directly out of the curvature of the electron or positron track observed.
Out of the 15 000 photographs taken at a rate of about ten events per hour, they found 75 tracks
that allowed for a proper determination of the energy of the decay products.

As they observed clearly a continuous energy spectrum, it was proven that the muon decays at
least into three particles. From the endpoint of the spectrum, they concluded that the other two
particles have to be neutral and of low mass. Assuming the simplest of all cases, where the muon
decays into an electron and two neutrinos, they concluded that the muon is of half-integer spin.

A theoretical description of the muon decay followed shortly after in 1950 by L. Michel in
his publication on the interaction of four half-spin particles [31]. He noticed that the observed
experimental curve matches perfectly with his theoretical predictions assuming the decay of the
muon into an electron and two neutrinos. As a result, the standard muon decay µ → eνµν̄e was
named after him as the “Michel decay”.

1.3.3 The Search for µ→ eγ Begins

In this section, a wide list of experiments searching for µ → eγ is presented.
Their setup is described and potential improvements with respect to the previous
ones outlined.

The first negative results in the search for the µ → eγ decay were published in 1948. One of the
measurement was performed by E. Hincks and B. Pontecorvo published in [32]. Their experiment
consisted of three separate rows of Geiger-Müller counters. Between the second and the third row,
a graphite absorber was placed with some lead placed towards the counter rows. A coincidence
between the first and the second row marked the entrance of a muon into the graphite absorber.
A photon emitted in the muon decay could potentially interact with the lead around the graphite
absorber and the subsequent electrons trigger a counter. In such a case, the signal would look as a
coincidence of the first and the second row followed by a coincidence in the second and the third
row.

The main background for this experiment were events, where a second muon would trigger the
coincidence between the second and the third row of counters within the specified time window
after the first muon triggering the coincidence between the first and the second row. After the
background subtraction, they published the result, that the coincidence rate was 0+0.06

−0 counts per
hour. Based on their expectation of about one count per hour, should µ→ eγ be the default muon
decay, one can consider their measurement as a first upper limit for the branching ratio of the
µ→ eγ decay.

In a similar measurement R. Sard and E. Althaus came to the same conclusion [33]. The basic
concepts of their apparatus were identical to the one used by Hincks and Pontecorvo, yet their
detection scheme and some materials were different. Instead of graphite, they used brass to stop
the cosmic muons. Further, they used five rows of Geiger-Müller counters with the brass absorber
to stop the muons between the second and the third row.

Thus a coincidence of the first two in anti-coincidence with the third row indicates the arrival
of a muon stopped in the brass absorber. A photon emitted downwards would likely pass through
the third row of counters and has some chance to be converted into an electron-positron pair inside
a lead layer below the third row. Either of the particles could thereafter trigger a coincidence in
the fourth and the fifth row of detectors.

With this setup, they were looking for the delayed emission of a γ photon rather than the
µ→ eγ decay, yet still they excluded the emission of γs in most of the cases. They suggest that less
than 5 % of the muon decays are accompanied by a high energy photon. This upper limit matches
perfectly fine with the previous observation by Hincks and Pontecorvo.

At this point it is noteworthy, that both of their experiments would potentially detect a radiative
muon decay µ → eννγ as a µ → eγ decay. This is due to the simple reason that neither of their
experiments was able to perform any kind of energy measurements and the angular resolutions were
restricted to say whether a particle was moving upwards or downwards. However, their upper limits
of 5 % on the branching ratio for the emission of a high energy photon are not yet sensitive enough
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to detect the radiative muon decay whose branching ratio is of the order of 1 %, depending on the
energy cut placed on the photon.

With the availability of proton accelerators to produce pion beams, the possibilities in particle
physics in general improved drastically. This affected the opportunities to search for µ → eγ in
particular. Instead of waiting for cosmic muons to arrive in the experiment, one could obtain large
numbers of pions stopped in a target that would then decay to muons.

To benefit from a good stopping power for the incoming pions and having as few material as
possible in the path of the emitted positrons, Parker, Anderson and Rey [34] decided to use a
slanted target. This feature is still used in today’s MEG II experiment. To detect the emitted
γ they relied on conversion in lead. Moreover, they used a combination of scintillators and spark
chambers to detect the direction of the charged particles together with carbon plates to estimate
the range thereof.

Given the high rate of the pions (20 000 1
s ) in comparison to the readout speed of the detector,

they had to deal with the fact that many of their recorded events were accidental background.
While the angular resolution was good enough to serve as cut criterion in the analysis, the range
could only be used to reject the low energy positrons but not in the detailed analysis. Based on their
likelihood analysis, they claim that the most probable BR(µ → eγ) = 0 and that this probability
falls to 10 % of the maximum for a BR(µ→ eγ) = 2.2× 10−8 [34].

About a decade later, another experiment was performed at SIN by H.P. Povel et al. that
benefited from two major steps forward [35]. On the one hand, they could use a muon beam. In
combination with advancements in the data acquisition electronics, this allowed to use a higher rate
of 5× 105 muons per second stopped on the slanted target.

On the other hand, they used sodium iodide crystals to detect photons and positrons. This
technology allowed to measure the energy deposited by the particles. Later, such a detector will be
named calorimeter. While the position of the positron was measured by MultiWire Proportional
Chambers (MWPC), the position reconstruction for photons relied on conversion prior to the large
sodium iodide crystal.

While the previous experiments had to rely on the timing and the angular distribution to reject
background, this experiment now additionally added photon and positron energies. They reported
that the observations matched the expectations of the radiative Michel decay µ+ → e+νν̄γ and
published a new upper limit of BR(µ→ eγ) < 1.1× 10−9 [35].

The trend to more complex experiments continued. The next notable experiment searching for
cLFV in muon decays was Crystal Box [36]. It is noteworthy that unlike previously mentioned
experiments, this experiment was given a name, that stems from the design of the apparatus. As
the name suggests, Crystal Box featured a large number of sodium iodide crystals that formed an
outer box around the target and the inner drift chamber as well as scintillator detectors.

It is designed to detect the position of charged particles with the drift chamber. Their time is
estimated based on the scintillators and their energies using the outer sodium iodide detectors. To
reconstruct photons the information from the sodium iodide crystals forming the outer box is used.
Given its large acceptance, this experiment was sensitive to a broader range of cLFV decays such
as µ→ eγ, µ→ eee or µ→ eγγ.

Although the beam rate was lower with respect to the previous experiment, this experiment
improved the stopping rate by using a beam of surface muons with a lower momentum compared
to the previous one. Additionally, this experiment features a significantly increased acceptance for
potential signal events given the much larger amount of detectors deployed.

Another novelty used for this experiment was the simulation of the detector response. Due
to improvements on the available computational power, Monte Carlo simulation of events inside
the detector geometry could be performed. Moreover, they described various calibration methods
deployed, some of which are still in use in state of the art experiments with appropriate adaptions.
Their likelihood analysis suggests a BR(µ→ eγ) < 4.9× 10−11 at 90 % confidence level [36].

In the next decade, a different approach to measure the energy was deployed. The MEGA
experiment [37] was using spectrometers to measure the momentum vector of the positrons and
photons. These spectrometers basically consisted of three main ingredients. First, a magnetic field
was used to curve the tracks of the charged particles similar to what was used previously in cloud
chambers on a different scale. Second, a gaseous detector was used to detect hits along the tracks
of the charged particles while having a minimal effect on the tracks. Third, plastic scintillators are
used to measure the timing information after sufficient information is gathered about the track.
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The MEGA positron spectrometer was formed of a set of eight MWPC. This formed the inner
part of the detector around the slanted target. The scintillators for time measurements were placed
towards the upstream respectively downstream of the detector in a barrel around an absorber to
terminate the positron tracks. Due to the curved tracks, the initial momentum from the muon decay
is estimated by propagating the measured positron momentum in the chambers back to the target
structure. This makes detailed knowledge about the target position and deformations crucial.

In order to detect photons with a spectrometer, they first have to be converted to an electron
positron pair. This is done by the use of some dense material. For MEGA lead foils have been
used. This process implies a loss of detection efficiency as the conversion efficiency of a photon to
an electron-positron pair is limited. To counteract this, the photon spectrometer consisted of three
concentric layers. Each layer consisted of MWPCs and drift chambers to detect the hits along the
track and scintillators inside the lead layer such that they are hit only after the charged particles
passed through the drift chambers.

This design however has the issue that positrons from the decay that are emitted close to
perpendicular to the homogeneous magnetic field keep spiraling there for a comparably long time.
Not only will they generate a large signal due to multiple hits inducing cross-talk between channels.
They also exhibit a high chance to pile up with further events. Even more so given the fact that
the used beam exhibited a macro-structure, i.e. the incoming muons were not homogeneously
distributed over time.

The data acquisition period for the physics data spanned over the years 1993 - 1995. They
published a new upper limit BR(µ→ eγ) < 1.2× 10−11 at 90 % confidence level in 2002 [37]. This is
by about two orders of magnitude worse than the previously estimated sensitivity of 4× 10−13. They
attribute this to the fact, that cross-talk in the positron spectrometer degraded the performance
thereof and limited the muon stopping rate. Similar effects degraded the performance of the photon
spectrometer and an incident with the crane reduced the scintillator efficiency and affected the time
resolution between the particles [37].

Benefiting from half a century of µ → eγ searches and their experiences the MEG experiment
was designed [38]. Aiming for a high number of stopped muons while keeping accidental background
at a minimum, the choice fell naturally to the PiE5 beamline [39] at PSI providing a continuous
surface muon beam. Positron detection works by means of a spectrometer with some significant
changes to correct for the shortcomings of the MEGA design. Photons were detected by the means
of a calorimeter based on liquid xenon.

The MEG spectrometer consists of drift chambers to detect the positron tracks and thus re-
construct the initial momentum and vertex by propagating the track back to the target plane and
a timing counter made of plastic scintillators. These are placed on the upstream and downstream
side of the detector.

While MEGA used a uniform magnetic field, MEG was designed to use a dedicated magnet such
that the bending radius depended only on the positron momentum but not their angle of emission
relative to the target. Thus it is referred to as COnstant Bending RAdius (COBRA) magnet. This
offers the additional benefit that positrons emitted almost perpendicular to the beam axis will
experience a Lorentz-force that accelerates them along the beam axis and thus removes them from
the spectrometer in an efficient manner.

The liquid XEnon Calorimeter (XEC) consisted of one large volume containing up to 900 l of liq-
uefied cryogenic xenon. This yields a single large sensitive volume. PhotoMultiplier Tubes (PMTs)
were placed on all surfaces of the vessel to collect the scintillation light to determine the deposited
energy and the position of the conversion. Due to the faster light emission in xenon compared to
the previously used sodium iodide, the xenon based calorimeter was able to simultaneously pro-
vide a high precision in energy and time. This was a huge improvement with respect to previous
experiments.

The MEG experiment completed data acquisition in 2013 after several years and published in
2016 the final result BR(µ → eγ) < 4.2× 10−13 at 90 % C.L. [40]. The original sensitivity goal
[41] was missed by an order of magnitude as the positron track matching efficiency between drift
chambers and timing counter was by a factor two worse and the detector performance was worse
than assumed in the design phase. This is reported in more detail in [38].

In addition to the µ→ eγ search, events where two photons were detected have been analysed
and a search for the decay µ→ eX,X → γγ with a yet unknown particle X was performed. Upper
limits in dependence of the mass of the X particle were published in 2020 [42].



Chapter 2

The Search for Exotic Physics with
the MEG II Experiment

While the MEG II experiment is designed to search for the µ → eγ decay,
its capabilities reach beyond this single process. Using the highly performing
detectors of the MEG II apparatus, additional signatures originating from exotic
particles may be observed. Two candidates are briefly discussed in this chapter.

2.1 Majoron Search

Multiple theories predict low energy particles (X) that could be candidates for
the decay µ → eX. A brief listing of candidates is mentioned in the theoret-
ical introduction. Further, the current state of research and how MEG II can
contribute will be discussed.

2.1.1 Theoretical Introduction

Assuming any particle candidate X with a mass mX < mµ that could result from the decay µ→ eX,
its lack of detection so far makes it obvious, that this branching ratio is bound to be comparably
low with respect to the default Michel decay of the muon. The signature to detect is an at leading
order monochromatic peak on top of the Michel positron spectrum. Radiative corrections at Next
to Leading Order (NLO) may broaden the peak.

As the name of the section suggests, one potential candidate is the Majoron. This particle was
introduced as Goldstone boson arising from spontaneous global symmetry breaking of the lepton
number yielding majorana mass terms for neutrinos [43, 44, 45]. Further candidates are axions and
axion like particles [46, 47, 48, 49, 50, 51], familons [52, 53, 54, 55], flavons [56, 57], the flaxion [58]
or the hierarchion [59].

Although these candidates commonly arise from spontaneous symmetry breaking resulting in
a neutral boson with low mass, their origins differ and so do their couplings. Thus, searching
independently of the model for a monoenergetic signature in the Michel background is a good
approach to detect such a new particle or to place new constraints on the BR(µ → eX). Thus,
such a search is limiting the parameter space for current and future theories.

2.1.2 Current State of Research

The current limits on branching ratios that result in monoenergetic positron signals are set by two
different experiments, depending on the assumed mass mX of the boson and its coupling. For
masses in the range from 13 MeV/c2 to 80 MeV/c2 the upper limits are provided by the TWIST
collaboration [60]. For masses below 13 MeV/c2, the older results by Jodidio et al. [61] are currently
the best available upper limits for certain couplings.

This separation is easily explained by the design of the corresponding experiments. The exper-
iment by Jodidio et al. was explicitly considering positrons emitted backwards with respect to the
anti-muon spin [61]. For positrons emitted towards the kinematic endpoint of the Michel spectrum,
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this direction is suppressed by the parity violating nature of the weak interaction. Thus, they had a
clearly reduced background, yet required that the decay µ→ eX does not exhibit the same parity
violating behaviour as the Michel decay. They published the upper limit BR(µ→ ef) < 2.6× 10−6

where they denote the familon by f [61], for which an isotropic emission is assumed.
On the other hand, the TWIST detector [62] follows a different geometry. The sensitive volume is

placed perpendicular to the beam axis and is thus collecting more positrons from the ordinary Michel
decay µ → eνν. Furthermore, their experiment was designed to perform a precision measurement
of the Michel decay spectrum and thus enabled to accept lower positron energies. This allows to
set limits on the BR(µ→ eX) for a wide range of mX .

In addition, the large angular acceptance of the detector allows the analysis of different models
for anisotropic emission of positrons. They can thus provide a meaningful result even under the
assumption that the µ→ eX decay follows the same parity violating pattern as the ordinary Michel
decay. They obtain upper limits for BR(µ → eX) depending on the mass and coupling model of
the order of O(10−5) for 13 MeV/c2 < mX < 80 MeV/c2 and values that go up to 5.8× 10−5 for
mX < 13 MeV/c2 [60].

2.1.3 Majoron Search with the MEG II Apparatus

The MEG II experiment provides an excellent spectrometer to measure the energy spectrum of
positrons emitted from muon decays. In addition large amounts of positron data will be recorded
when the MEG II reaches the intended sensitivity for the µ → eγ decay. From this data a subset
can be selected to search for the decay µ → eX. In addition, once can consider the option of a
dedicated run to search for µ→ eX using the dedicated Michel trigger.

The MEG II spectrometer was designed to detect µ→ eγ events, which results in good angular
acceptance while the momentum acceptance is limited to high energy positrons to reduce pileup
from low energy positrons. The trigger efficiency for positrons below 45 MeV worsens drastically
and is almost negligible once the positron energy drops below 40 MeV. This reduces the sensitivity
to the µ→ eX decay channel for larger masses mX of the Majoron or other candidates.

The theoretical prediction on the probability density function for the Michel decay changes
rapidly close to the kinematic endpoint around 52.8 MeV. In a situation where the absolute en-
ergy scale of the experiment is affected by some unknown systematic offset, this will degrade the
sensitivity to the BR(µ→ eX) for low masses mX of the unknown particle.

As stated above, the signature of the decay µ → eX is a monoenergetic positron peak. This
is due to the fact that any of the above mentioned X candidates is interacting very weakly with
matter and thus will escape detection unless very short-lived and decaying into SM particles (i.e.
X → ee or X → γγ).

The most prominent background is the ordinary Michel decay µ → eνν. This makes detailed
theoretical knowledge about this decay mandatory to perform a search like this. Predictions and
tools to do so are available up to the NNLO [63, 64, 65] with more precise calculations on their way
[66].

Thus, the search for the Majoron or any other boson that may act as candidate in the decay
µ→ eX is an excellent addition to the main physics goal to push the sensitivity for the BR(µ→ eγ)
down by another order of magnitude. No dedicated adjustments to the apparatus or data acquisition
are required. However, detailed theoretical models need to be included in the simulation code and
the experimental systematics well understood.

2.2 Fifth Force Search
This section offers a brief overview over the beryllium anomaly, which was ob-
served by A. J. Krasznahorkay et al. [3]. Their experimental observation could
either be interpreted as particle or a combination of detector geometry and higher
order contributions to the process within the SM. A second, independent mea-
surement with the MEG II apparatus is set to provide clarity.

2.2.1 Current State of Research

The first indication of a potential new particle that is referred to as X-Boson was published by A.
J. Krasznahorkay in [3]. They were investigating transitions from excited 8Be states to the ground
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state under the emission of an electron-positron pair and observed a deviation from the theoretical
predictions of that time. In more detail, they populated the 17.6 MeV and the 18.15 MeV excited
states by the use of the nuclear reaction

7Li + p→ 8Be∗ (2.1)

where the inbound proton beam is tuned to the Ep = 441 keV respectively to the Ep = 1.03 MeV
resonance.

By default, these excited 8Be∗ states decay to the ground state by the emission of a photon.

8Be∗ → 8Be + γ (2.2)

However, there is a certain chance that an electron-positron pair is emitted instead of the photon.

8Be∗ → 8Be + ee (2.3)

Later decay was investigated by A. J. Krasznahorkay and his colleagues. The SM explains it by
the conversion of a virtual photon and this process is referred to as internal pair conversion (IPC).

In the description of their detector [67], they give an energy resolution of about 10 % at 1.8 MeV
and an angular resolution of below 10°. MWPCs were used to detect the position of the emit-
ted electron-positron pairs and five ∆E − E detector telescopes to measure energies and assert
coincidences.

They report [3] the observation of an anomaly in the isoscalar magnetic dipole transition from
the excited 18.15 MeV state to the ground state of 8Be. In more detail, the distribution of the angle
between the emitted electron and the emitted positron was investigated. An excess with respect to
the theoretical IPC prediction of that time was observed above 130°.

No such anomaly could be observed for the transition from the 17.6 MeV excited state to the
ground state. It is suggested in the same publication, that this anomaly could be best explained
by a boson with a mass of 16.70± 0.35(stat)± 0.50(syst) MeV/c2 and a branching ratio of about
5.8× 10−6 with respect to the deexcitation of the 18.15 MeV state through emission of a γ.

Initially, there was some major doubt about this finding due to the outdated theoretical model.
Although no nuclear effect was known to cause this anomaly, the models were not precise enough
to exclude the existence of such an anomaly.

The same group published new evidence for the existence of this hypothetical particle in 2019
[68].They report the observation of a similar anomaly in 4He. When observing the transition
from the 21.01 MeV state of 4He, they observed an excess with a 7.2σ significance. They explain
their observation by assuming a particle with a rest mass of 16.84± 0.16(stat)± 0.20(syst) MeV/c2,
which could be the same particle used to explain the anomaly in beryllium.

2.2.2 Theoretical Explanation

A first attempt to explain this anomaly within the known physical theories was performed by
X. Zhang and G. A. Miller [69]. They noticed that the nuclear model used in the analysis was
missing some additional corrections. They provide an advanced model that reduces the significance
of the observed beryllium anomaly by at least one standard deviation. Moreover, they manage to
explain the anomaly by adding a form factor. This however does not seem plausible as such a form
factor would have shown up in previous measurements.

Just recently in 2021, A. Aleksejevs and his colleagues published NLO QED calculations for the
transition from the excited 18.15 Mev state of 8Be to the ground state [70]. With these corrections,
they managed to describe the shape of the observed anomaly using non-resonant SM processes in
combination with the detector configuration used by Krasznahorkay et al. and thus could explain
the observed anomaly without the need for exotic physics beyond the SM. Yet, the paper does not
provide information if the anomaly observed in helium can be explained in a similar way.

2.2.3 Fifth Force Search with the MEG II Apparatus

As all experimental measurements of the anomaly were performed by the same group with the
same detector technology at the same laboratory, an independent measurement using a different
experimental setup is needed. The MEG II experiment offers ideal conditions for this cross check.
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Assuming the higher order theoretical corrections by Aleksejevs and his colleagues [70] in com-
bination with the detector setup used by Krasznahorkay and his group are the true explanation
for the observed anomaly, the anomaly should take a different shape due to the fact the MEG II
experiment deployed a clearly different detector configuration. The detailed studies were not yet
finished by the time this thesis was completed.

Moreover, the MEG II apparatus is designed for an outstanding positron momentum reconstruc-
tion. Being able to measure the momentum of the involved electron and the positron as well as
their relative angle, the invariant mass spectrum can be investigated with the MEG II apparatus.
This enhances the ability to discriminate between the hypothesis of the higher SM corrections using
non-resonant processes and the resonant new exotic physics hypothesis with the new X-Boson.

With respect to the measurement, the Cockcroft-Walton proton accelerator used for calibrations
of the xenon calorimeter is available and can be used for this purpose. The beam energy needs some
adjustment to excite the 18.15 MeV resonance in beryllium rather than the 17.6 MeV resonance used
for the XEC calibration.

Moreover, the spectrometer of the MEG II experiment is designed for the reconstruction of
53 MeV positrons. One must however consider, that the electrons and positrons of interest have a
lower energy than the usual MEG II signal positron. Thus an adaptation of the magnetic field is
required for the X-Boson measurement. The reduced field was already mapped by collaborators
and found to scale reasonably well. Moreover, a minor adjustment of the analysis code is needed
for an appropriate reconstruction of electron-positron pairs emitted.

Additionally, the lithium borate target used for calibration purposes does not match the geo-
metric requirements for the planned measurement. A new target is thus designed with a thin layer
of lithium oxide placed on a thin substrate layer. Moreover the material budget is much lower for
the electron-positron pair with respect to the γ photons used in the XEC calibration. Thus, a ded-
icated target structure needs to be developed to confirm or refute the claim of the newly discovered
X(16.7) boson.



Chapter 3

The MEG II Experiment

This chapter offers a summary of the MEG II experiment. It discusses its
sensitivity, signal and background as well as the detector construction.

The ultimate goal of the MEG II experiment is to find the branching ratio BR of the cLFV decay

µ −→ e+ γ

or to set a new upper limit to it. The current upper limit BR(µ → eγ) < 4.2× 10−13 at 90 %
Confidence Level (C.L.) is set by the preceding MEG experiment [1]. The MEG II experiment will
be more sensitive by approximately an order of magnitude. It is estimated that MEG II reaches a
sensitivity down to a branching ratio of 6× 10−14 within three years of data taking in the upcoming
years[2, 71].

For this purpose, an anti-muon beam is stopped in such a way that the anti-muons decay at rest
in the laboratory frame. This will lead to an emission of a positron and a gamma, each carrying half
of the energy (52.8 MeV) in a back-to-back geometry in the lab frame [1]. Anti-muons are favoured
because they do not get trapped by the atomic nucleus. Muons can enter specific orbitals around
the nucleus, thus leading to an additional uncertainty in the total energy prior to the decay. In the
worst case, muons can even get absorbed by the nucleus [72].

3.1 Event Signature and Backgrounds

This section shortly describes the properties of the µ → eγ signal as well as
the irreducible background from radiative Michel decay µ+ → e+ν̄µνeγ and the
accidental background of multiple events that fake a signal.

The µ → eγ decay is a two body decay. This implies that in the centre of mass frame, the
signature is bound to be a back to back geometry where each particle carries exactly half the muon’s
rest energy. Moreover, as both particles originate from the same decay, they are in coincidence.

E∗e = E∗γ =
1

2
mµ = 52.8 MeV (3.1)

Θ∗eγ = 180° (3.2)

∆t∗eγ = 0 ns (3.3)
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Figure 3.1: Signal Events and Backgrounds
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In the equations above, the energies E∗ of the respective decay particles are given in the centre of
mass frame as well as the angle Θ∗eγ between the positron and the photon and the time difference
∆t∗eγ between the emission of the particles.

By stopping the muons in the centre of the experiment, the laboratory frame and the centre
of mass frame coincide. Consequently these conditions apply to the particle energies Ee, Eγ , their
relative angle Θeγ and the time difference ∆teγ between their emission

Ee = Eγ =
1

2
mµ = 52.8 MeV (3.4)

Θeγ = 180° (3.5)

∆teγ = 0 ns. (3.6)

The expected signal event is depicted in Figure 3.1a. This signal signature gives rise to two main
backgrounds, the irreducible background depicted in Figure 3.1b and the accidental background
depicted in Figure 3.1c.

The irreducible background stems from so called radiative muon decay or RMD for short. This
refers to the muon decay, where a positron, two neutrinos and a photon are produced.

µ+ −→ e+γνeν̄µ (3.7)

The two neutrinos produced are so weakly interacting, that they are invisible to any reasonable
detector dedicated for the µ→ eγ search.

If the undetectable neutrinos carry a vanishing amount of energy, it may appear that the decay
particles’ energies Eγ ≈ Ee ≈ 1

2mµ sum up to the total muon mass within the uncertainties as well
as the needed back to back geometry of the signal signature. As this background stems from the
decay of a single particle, the positron and the photon are a priori coinciding in time.

Although excellent resolutions in terms of position and energies can improve the situation, this
kind of background cannot be suppressed and it scales with the muon beam rate as do the signal
events. This background has to be countered with solid theory predictions in the end [73].

The accidental background is a collection of events that fake the signature of a signal event.
Typically it consists of a Michel decay with the positron at its kinematic endpoint at 52.8 MeV that
overlaps with a photon from any other source, such as a second muon decaying via a RMD with
the photon carrying half the muon rest energy. Alternatively, such a photon may originate from an
annihilation in flight of a positron with an electron.

If the positron and the photon from these two totally uncorrelated events pass close enough on
the target in almost a back to back geometry, they can easily be mistaken for an actual signal event.
Due to their nature to include two different decays, an intelligent detector design in combination
with excellent detector performance can remedy the situation and reject these background events
to a certain extent.

While the detector design and some reasoning behind is presented in the next section, it is note-
worthy that both signal and irreducible background originate from the decay of a single muon. The
corresponding rates are thus expected to be proportional to the beam rate Rµ, the corresponding
branching ratios, the detector acceptance and the detection and selection efficiencies. The acciden-
tal background on the other hand includes at least two different muons decaying. For the accidental
background rate Racc it is predicted by integrating the appropriate probability density functions
that

Racc ∝ R2
µ ×∆E2

γ ×∆pe ×∆Θ2
eγ ×∆teγ (3.8)

where ∆Eγ refers to the photon energy resolution, ∆pe to the positron momentum resolution, ∆Θeγ

to the resolution in the relative angle between positron and photon and ∆teγ the resolution on the
time difference between the emission of the two particles [2]. It is crucial to be aware of the fact,
that this rate is modified by the geometrical acceptance of the detector, as well as detection and
rejection efficiencies. Some special measures to get a good rejection efficiency are discussed in the
next section.
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Figure 3.2: Schematic design of the MEG II experiment. Taken from [2].

3.2 Setup of the MEG II Apparatus

This section describes the apparatus of the MEG II experiment in some more
detail. The important subsystems are described in dedicated subsections. More-
over, some of the calibration methods necessary for the understanding of this
thesis are described. For more details, please refer to the dedicated publica-
tion [2].

The purpose of the MEG II apparatus is to stop the beam muons and to detect the signature of
a µ → eγ event while rejecting the backgrounds as efficiently as possible. To detect the signature
of the µ → eγ decay, a 52.8 MeV photon and a 52.8 MeV positron have to be registered in a
back-to-back geometry at the same time.

As the MEG II apparatus is an upgraded version of the MEG apparatus, their basic design is very
similar and multiple parts are recycled. The schematic design published in [2] is shown in Figure 3.2.
The shortcomings of the MEG apparatus were analysed, substantial upgrades implemented and
improved equipment installed. Roughly speaking, the goal of the upgrade was to improve each
aspect of the apparatus by a factor of two.

As in previous experiments, the muons are stopped in the centre of the experiment on a dedicated
slanted stopping target, which is placed inside a magnetic field. It is arranged in such a way that
the emitted positrons curve through the spectrometer, that consists of the cylindrical drift chamber
(CDCH) and the pixelated timing counter (pTC) placed inside the superconducting solenoid.

Just outside of the superconducting solenoid, the calorimeter for photon detection is located. It
consists of a C-shaped volume filled with liquid xenon. While the CDCH surrounds the target in
almost all directions, the xenon calorimeter (XEC) just covers a small fraction of the solid angle.
The pTC is placed in such a way, that a positron from a µ→ eγ event should hit it, if the photon
hits the XEC.

The magnetic field needed is provided by the COBRA-magnet. COBRA stands for COnstant
Bending RAdius, referring to the special gradient field resulting in a bending radius that only
depends on the energy of the emitted positron and not its emission angle - at least not in the angular
range of interest for the µ → eγ search. The magnet itself consists of an inner superconducting
solenoid and an outer compensation coil.

3.2.1 Beam

The MEG II experiment uses the PiE5 beamline at PSI [39]. It is able to provide one of the
most intense, continuous muon beams worldwide. For the MEG II experiment, surface muons at
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a momentum of 28 MeV/c are chosen. By adjusting the tuning of the beamline, one can select to
transmit either positrons or pions as well.

Notable elements of the beamline are a set of slits, a separator and a dedicated Beam Transport
Solenoid (BTS). The slits can be set remotely and are used to adjust the beam rate for the MEG II
experiment. The separator works based on electric and magnetic fields and is used to select between
muons and positrons. In normal operation, it is used to suppress the positron contamination in the
beam reaching the experiment.

The superconducting BTS is the final element of the beamline directly connecting to the ex-
periment. It is crucial to transport the muon beam into the experiment and obtain the desired
distribution on the target. The use of a superconducting magnet over an ordinary quadrupole
triplet was selected as the iron core of an ordinary magnet would badly interfere with the COBRA
magnetic field.

Although the exact rate varies and depends on the beam current delivered by the main proton
accelerator, the whole beamline is able to deliver around 108 µ+/s. For the operation of the MEG II
experiment, the slits are adjusted in such a way, that the number of stopped muons is 7× 107 µ+/s.

3.2.2 Target

The main purpose of the target is to stop the incoming muons in the centre of the detector. As in
previous experiments, the target is tilted with respect to the beam axis to provide maximum muon
stopping power while having a minimal impact on the muon decay products.

Currently, a target made of polyvinyltoluene is in use. It has a thickness of 130 µm and measures
260 mm×70 mm without frame [2]. This material has additional scintillating properties. Thus, the
incoming beam can be monitored via mirror and CCD-camera during the data acquisition without
disturbing the experiment itself.

High mechanical stability and precise measurements of the position are crucial for the target,
since the curved tracks as reconstructed from the measurements are propagated back to the target
plane to estimate the vertex where the muon decayed. Moreover, the target has a measurement
and a parking position inside the experiment. The measurement position is at the centre of the
experiment and highly reproducible as it is used for most of the data taking. The parking position is
slightly upstream and off-axis. The main target is moved there if an alternative target for calibration
measurements is used.

3.2.3 Liquid Xenon Calorimeter

To detect the emitted photons, a C-shaped tank filled with liquid xenon is used as calorimeter.
The inner surface of the xenon calorimeter (XEC) is covered with silicon photomultipliers (SiPMs).
Photomultiplier tubes (PMTs) are placed on the other surfaces of the xenon volume. Installing the
SiPMs on the inner surface was one of the main efforts of the MEG II upgrade. As described in the
upgrade proposal [71], this was done to improve the homogeneity of the light detection for shallow
events and thus improving the overall performance.

The use of a single large volume filled with a liquid scintillator is preferred over a segmented
approach using solid scintillating crystals, as energy deposits in dead material between crystals is
avoided and the scintillation light is distributed over more photon sensors, eventually allowing for
improved reconstruction of the position of the first conversion. Simulations presented in [2] suggest
a photon energy resolution of about 1 %, a time resolution of about 50 ps to 70 ps and a position
resolution of a few millimetres for photons of the signal energy.

3.2.4 Cylindric Drift Chamber

The cylindric drift chamber (CDCH) is used to reconstruct the track of the positrons. It consists
of an almost 2 m long cylinder filled with a gas mixture of 90 % helium due to its radiation length
and 10 % isobutane as quencher. During preengineering runs, this gas mixture was slightly changed
and tiny amounts of isopropyl alcohol and oxygen added. This was done to enhance the electric
stability of the CDCH and was required to operate at the designed working point [74].

The drift chamber uses gold coated tungsten sense wires and silver coated aluminium field wires.
Additionally, there are guard wires to ensure the desired field on the innermost and outermost layer.
In total, there are a bit more than 12 000 wires. Due to corrosion in the presence of humidity, some
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of the 40 µm field wires were damaged critically, resulting in broken wires which had to be removed.
Similar effects were observed for the 50 µm guard wires, although at a much lower rate. More details
are found in [75].

The wires are arranged in drift cells with an approximately square shape and a width of 6.6 mm
for the innermost to 9 mm for the outermost cells. They are arranged in a criss-crossing pattern
to enhance the resolution. First estimates predict a Gaussian resolution of σr = 110 µm in radial
direction perpendicular to the beamline and σz = 1 mm in the axial direction for the hit position[2].

A charged particle passing through a drift cell will lead to an ionisation cluster. This is used
to reconstruct the passing of a particle referred to as a hit. Based on the reconstructed hits, the
positron track is fitted. From the fit, the positron momentum along the track is estimated and
eventually propagated back to the target structure. Based on this propagation, the position of
the muon decay vertex is calculated as well as the initial positron momentum vector at the vertex
position. Simulations suggest a positron energy resolution of 130 keV, and an angular resolution of
a few mrad. The vertex position resolution should be of the order of 1 mm. More detailed numbers
are given in [2].

3.2.5 Pixelated Timing Counter

The pixelated timing counter (pTC) is the second part of the MEG II spectrometer. Its primary
purpose is a precise measurement of the time of the detected positrons. This is necessary as the
CDCH does an excellent job in vertex and momentum reconstruction yet is comparably slow and
does not match the time resolution requirements to identify a time coincidence of a photon-positron
pair.

The pTC consists of two main parts, referred to as the upstream (US) pTC and the downstream
(DS) pTC. Each of them is made of 256 tiles made of plastic scintillators coupled to SiPMs.
Although they only cover a small fraction of the solid angle, they are placed such that a positron
from a µ→ eγ decay will pass through the pTC if the photon of that decay is emitted in the XEC
acceptance. The tiles are arranged such that a signal positron track passes close to perpendicular
to each tile.

For a single tile, the timing resolution of a positron hit is estimated to be around 70 ps to 90 ps.
Proper positron tracks at signal energy will however pass multiple tiles of the pTC. Thus pTC
clusters are formed. The time resolution of reasonably large clusters is clearly improved and below
40 ps.

3.2.6 Auxiliary Detectors

3.2.6.1 Radiative Decay Counter

The radiative decay counter is mounted at the downstream end of the experiment. It consists of
LYSO crystals and plastic scintillating plates. It’s purpose is to detect positrons that are too low
in energy to enter the drift chamber. They potentially emerge from the process µ→ eν̄νγ and are
thus a tell-tale sign if they appear in time coincidence with a high energy photon in the XEC. Thus
this detector is used as a veto to reduce the accidental background.

3.2.6.2 BGO Auxiliary Detector

As the name suggests, this auxiliary detector uses BGO crystals coupled to photomultipliers. Its
purpose is the detection of high energy photons as part of the charge exchange (CEX) calibration.
The detector is designed movable such that it can be placed opposite to any part of the XEC and
be used as trigger for back-to-back events of the CEX calibration described below.

3.2.6.3 Cosmic Ray Counter

Cosmic rays are used for calibration purposes of the CDCH. In order to trigger on such an event,
a dedicated cosmic ray counter (CRC) has been installed. For this purpose, some scintillator bars
of the old MEG timing counter were recycled. Four of these were installed on top of COBRA and
another four below. They are arranged in such a way that a muon passing through the upper and
the lower CRC will pass through the CDCH.
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3.2.7 Calibration Methods

For the MEG II experiment a wide set of calibration methods are deployed. They range from light
sources to radioactive sources over nuclear reactions up to low energy particle physics processes.
For listing of all potential methods, please consider the appropriate tables in [2] and [38] for the
description of most methods in the context of the previous MEG experiment. Here, only a selected
few methods are presented as required for the context of this thesis.

3.2.7.1 The Double Turn Method

For the best possible result of the data gained, the exact resolutions in the positron momentum
as well as polar and azimuthal angle of the positron have to be known. The ordinary calibration
method based on Mott scattered positrons may yield quasi monochromatic positrons, yet their
momentum still exhibits variations due to the momentum spread of the incoming positron beam as
well as its divergence.

An elegant solution to circumvent these restrictions is selecting a positron track that passes the
drift chamber at least twice. Knowing that both partial tracks in the drift chamber are created
by the same particle, one should obtain the same momentum and direction by analysing them
individually. The difference between the two values may either be explained by the extra material
passed between the turns or in statistical uncertainties in the reconstruction and analysis process.

Due to the low material budget of the drift chamber, a collision with a significant amount of
matter is rare. It may occur by a second pass through the target structure, a collision with a drift
chamber wire or, if the track leaves the drift chamber to the outside, a hit on the timing counter
structure. The fine tuned merging algorithm however rejects the merging of tracks in the case of
an excessive energy or direction mismatch.

This implies that for any two partial tracks that pass the merging criteria, the underlying
positron’s momentum and emission angle is equal to a rather high precision. Thus, it is safe to
assume that the true values are equal for both parts. The deviations of the two reconstructed
variables thus can be presumed to origin from reconstruction uncertainties of the detector.

These differences obtained from individual tracks by Mott scattered positrons of 53 MeV are
computed and their overall distribution considered. These distributions contain vital information
about the intrinsic resolution achievable by the drift for positrons in the signal region.

Due to the updated geometry of the pixelated timing counter, a similar approach can be used
to extract the intrinsic time resolution of the spectrometer. This is referred to as the double cluster
method and discussed later in more detail.

3.2.7.2 The Charge Exchange Calibration

To determine the absolute energy scale of the liquid xenon calorimeter in the interesting energy
regime around 52.8 MeV a γ source in this very regime is required. Such a source is offered by the
charge exchange (CEX) reaction of negative pions on hydrogen and the subsequent decay of the
boosted neutral pion into two photons.

Practically, the default MEG II target is replaced by a dedicated liquid hydrogen target. The
π− beam is stopped therein and the reaction

π− + p −→ π0 + n

takes place. After this reaction, the π0 is boosted with respect to the laboratory frame and moves
with a momentum of 28 MeV with respect to the detector, corresponding to 20 % of the speed of
light.

The neutral pion π0 is short-lived and decays predominantly into two photons

π0 −→ γγ.

By going through the simple math, one finds that the extremal energies of the photons are given
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by

Emax
γ =

mπ0

2

√
1 + β

1− β
= 82.9 MeV (3.9)

Emin
γ =

mπ0

2

√
1− β
1 + β

= 54.9 MeV (3.10)

where β = 0.2 represents the speed of the initial π0 as fraction of the speed of light.
The extremal energies are observed if one photon is emitted in forward direction while the other

is emitted in backwards direction with respect to the π0 movement. Such an event is characterised
by a back to back geometry event in the laboratory frame.

As a result, the photon energy is known to either be 54.9 MeV or 82.9 MeV if a back to back
geometry is observed. Such a geometry can be enforced by a dedicated experimental modification by
a lead collimator in front of the LXe calorimeter and an auxiliary detector directly on the opposite
side of the target. By requiring a coincidence in both detectors, two clearly distinct lines for
54.9 MeV and 82.9 MeV are obtained that can be used to define the energy scale of the calorimeter
as well as to estimate the achievable photon energy resolution in the signal energy range.

For this purpose solely, any kind of calorimeter that is able to detect an inbound γ will suffice
to assert the back to back geometry. As such, it provides an excellent opportunity to test out new
technologies as auxiliary detector and determine their potential for future experiments in the cLFV
sector.

3.2.7.3 Proton Beam based Calibrations

While in usual operation mode, the muon beam arrives from the upstream side to the experiment,
there is the possibility to stop this operation and move the muon stopping target to the parking
position. Thereafter, a dedicated proton beam line ending in a dedicated lithium borate target
can be inserted from the downstream side. A low energy proton beam from a dedicated Cockcroft-
Walton (CW) accelerator can then be shot at the target.

Depending on the energy of the proton beam, different resonances can be triggered. At lower
accelerating voltages of 500 kV, the reaction 7Li(p, γ)8Be is predominant, which emits high energy
photons in the deexcitation process of the 17.6 MeV resonance of beryllium. These photons are
then used to ascertain the stability of the XEC energy scale, monitoring its purity and uniformity.

Alternatively, by tuning the proton beam energy at 900 keV one can excite the transition
11B(p, γγ)12C which produces two photons at 4.4 MeV and 11.6 MeV respectively. For the pur-
pose of the calibration, these are coinciding in time and thus are used to calibrate the time offset
between pTC and XEC.

Please note that this dedicated CW accelerator is operated mostly independent of the main
proton accelerator and the secondary beam lines of PSI. While it is connected to the main person
safety elements for obvious reasons, this accelerator can be operated when the main accelerator
is switched off and the assembly of this proton beam line is within the MEG II collaborators
responsibility. Thus this beam line can be modified to accommodate the X(17.6 MeV)-boson search
if deemed non-interfering with the main MEG II goals.

3.2.8 Data Acquisition

As part of the MEG II upgrade, the number of channels for the subdetectors increased by more than
a factor of two. The most notable increase in terms of absolute numbers stems from the replacement
of the comparably large PMTs by much smaller SiPMs on the XEC inner surface. Apart from the
additional channels associated with the improved subdetectors, further channels are required for
newly added detectors such as the RDC.

This increased number of channels comes along with additional electronics and an increased
amount of data to be digitised and handled. Simply extending the previous MEG data acquisition
concept to MEG II was not an option for lack of space at the experimental area. Furthermore,
the increase of the beam rate implies an increased trigger rate which the MEG concept could not
sustain.
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For these reasons, a new system was developed [76]. Its main component is the newly developed
WaveDREAM board (WDB). Each WDB offers 16 readout channels, digitises the waveforms and
is able to perform low-level trigger tasks. A programmable high-voltage supply can be mounted
piggy-back. This enables the WDB to provide the individual bias voltage for each connected SiPM
individually.

Up to 16 WDB can be placed in a custom crate. They are complemented by a trigger concen-
trator board (TCB) for real-time data analysis and a data concentrator board (DCB) which is used
for remote operating the WDBs and eventually getting the recorded data written to disks. Thus
one such a crate offers a flexible and programmable trigger and data acquisition (TDAQ) system.

For the MEG II experiment, numerous crates are combined by arranging the TCBs in a tree
structure. For this purpose, extra TCBs are placed in a dedicated trigger crate. Moreover, ancillary
boards were designed to distribute reference clock and control signals to the individual TDAQ crates.
Finally, the DCB of each crate is directly connected to the back end computer via ethernet. More
details can be found in [76].
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Chapter 4

Detector Hut Temperature
Control

4.1 Introduction
A short note to why the temperature in the detector hut needs to be controlled
with a PID controller.

The temperature inside the MEG II detector hut environment is highly affected by various param-
eters. On the one hand there are daily and seasonal fluctuations in the temperature of the main
experimental hall that pass on to the detector hut. On the other hand, there are various sources
of heat inside the detector hut, ranging from the electronics to the normal conducting coil of the
COBRA magnet.

These fluctuations were found to eventually carry over to the data acquisition electronics. Un-
fortunately, the performance of the data acquisition depends on the temperature. Although it is
possible to calibrate for this effect, that calibration only holds for a certain temperature. This effect
was found to affect the performance of the XEC adversely [77].

Moreover, the massive heat load by the equipment would increase the overall temperature to
the point where the electronics overheats and automatically switches off [78]. A first attempt to
counter this effect was undertaken by the installation of a cooling system. This chiller would start
cooling once an upper limit is reached and then run at maximum power until the temperature of
the coolant dropped again below a predefined value.

This managed to lower the effect of the environment outside the hut on the temperature inside,
yet caused fluctuations on its own. These appeared as spikes in the temperature when the chiller
started or stopped. In order to improve the situation further, the decision to implement a PID-
control was taken.

4.1.1 The PID-Control

This section describes the working principle of a PID control. Further, the
parameters to be used in this context are defined.

A possible way to handle these spikes generated by the chiller is to control the valve connecting
the cool water tank with the heat exchanger. In this situation a PID-control is implemented. Its
name comes from the three terms acting on the controlled valve opening: a proportional term P ,
an integral term I and a differential term D.

The proportional term P is most straight forward. It is proportional to the deviation ∆T
between the measured temperature and requested (constant) temperature. The constant kp has to
be determined experimentally.

P = kp∆T (4.1)

This term reacts linearly on the deviation and yields no contribution once the measured value equals
the desired one. Thus this term will yield a constant difference ∆T under ideal circumstances where
the cooling due to the proportional term compensates the heating of the experiment.

35
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Figure 4.1: Schema of the cooling system. Description in text.

The integral term I is proportional to the integral of all the previous deviations ∆Tn with a
constant ki, that needs experimental determination.

I = ki
∑
n

∆Tn (4.2)

This term is crucial to remove residual deviations that the proportional part cannot take care of.
Even a small deviation summed over a long enough time will become significant enough to result
in an appropriate impact of the integral term.

The differential term D is proportional to the first derivative of the deviation with respect to
time. The constant kd has to be determined from measured data as well.

D = kd
d∆T

dt
(4.3)

As this term reacts to changes of the temperature difference, it leads to a faster response on
sudden changes either in the measured or requested temperatures. Additionally it helps to reduce
overshooting, i.e. it helps to dampen oscillations.

The controlled variable v (e.g. valve position) is then determined by the sum of the three terms.

v = P + I +D = kp∆T + ki
∑
n

∆Tn + kd
d∆T

dt
(4.4)

The controlled variable is calculated after every step and the system adjusted accordingly, e.g. the
valve opens a bit more if it is too hot. After some time, an adjustment of the controlled variable
(e.g. opening the valve) has an effect on the temperature. Using this feedback, the temperature
can be controlled. Any deviation from the requested temperature will then lead to an appropriate
counter measure, providing that the parameters kp, ki, kd were tuned correctly.

4.2 Hard- and Software

This section first describes the hardware used for the temperature control in the
detector hut. In the second half, the software developed to control the hardware
is described. This includes user interfaces for easy access.

The cooling system for the temperature control of the detector hut is depicted schematically in
figure 4.1. It consists of a water circuit on the left side coupled to the air cycle of the hut on the
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Figure 4.2: Schema of the custom board attached to the Raspberry Pi. Apart from the ground
(GND) and voltage (12V/24V) it provides two analogue outputs (AOUT0, AOUT1, two digital
outputs (DOUT0, DOUT1) and four analogue inputs (AIN0 - AIN3). Board and Schematics
produced by U. Hartmann [80]

right side. They are coupled by a heat exchanger. In addition sensors are placed in the air cycle
for a feedback on the temperature.

The chiller to the very left is the source of cooling. It maintains the water in the 35 l tank between
11 °C and 13 °C. Whenever the measured water temperature goes above the upper threshold, cooling
kicks in until the lower threshold is reached. This yields a characteristic pattern observable in the
hut temperature if it were not for the regulation discussed in this chapter.

The water fed to the heat exchanger consists of a mixture of cold water from the tank and warm
water returning from the heat exchanger. The mixture is adjustable by the valve. The valve’s
position can be set continuously by the Raspberry Pi (megpi1). Thus the temperature of the water
fed into the heat exchanger can be controlled.

The cold air from the heat exchanger is then fed to the detector hut. On the way there it passes
two temperature sensors. The LM35 sensor [79] is the first one and currently in use. The second
one was delivered and built in with the entire setup. It does not serve any particular use and is
depicted only for legacy reasons. After passing through the detector hut the warmed up air returns
to the heat exchanger passing the third temperature sensor.

The heart piece of the control is a Raspberry Pi (megpi1) reading the sensors out, setting the
valve and providing an interface to adjust parameters. It runs Linux to host the custom software
needed. In addition to the usual input and output channels, a custom board is attached. The block
schematics for this board is presented in Figure 4.2.

The control of the valve is attached to the analogue output channel 0 (AOUT0). The valve
can be set by adjusting the voltage between 0 V and 10 V, although the valve does not respond
linearly. No significant changes were observed below 4 V and above 8V. This suggests that the ideal
operation point would be somewhere in between.

The built in temperature sensors of the venting system are connected to analogue input channels.
The sensor measuring the cooled air fed to the detector hut is connected to AIN0. Although read
out, the obtained data is not used any further. The sensor measuring the air returning from the
detector hut is read out using AIN1. Their resolution is unfortunately limited to 0.1 °C leading to
jumps in the measured temperature.

To bypass this limitation an additional LM35 temperature sensor was installed. In a first step
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Figure 4.3: Obtained signal from the LM35 temperature sensor. To the left is the signal without
any measures taken to reduce the noise. The middle figure shows the signal obtained after filtering
voltage supply and signal in addition to shielding the connection. The right signal is obtained after
averaging numerically in the readout software. Note that these measurements were taken one after
another while the ambient temperature was gradually increasing, hence the increase in temperature
from left to right.

it was connected directly to the analogue input channel AIN2 using twisted cables. This however
was found to be noise dominated and unfit for the designed usage. The signal obtained that way is
shown in the leftmost picture of Figure 4.3.

To improve the signal quality a shielded cable was taken. In addition filters have been added. A
first set stabilises the voltage supplied from the Raspberry Pi. A capacitor just next to the voltage
supply of the LM35 sensor filters high frequencies from the supplied voltage collected on the way
through the cable. A final lowpass filter clears high frequency noise from the signal cable just before
the Raspberry Pi. The sum of these hardware based measures yields the signal shown in the middle
of figure 4.3.

The final signal used is shown on the right of figure 4.3. In addition to the hardware measures,
the software was improved. Instead of one individual measurement, a set of 10 000 measurements
is taken over a period of 1 s and then integrated afterwards.

In order to achieve the final goal of a constant temperature in the detector hut, two types of
disruptions need to be considered. The first one comes from the chiller itself. Its periodic cooling
pattern leads to jumps in the temperature of the air feed and as a consequence results in oscillations
of the hut temperature itself. The second type comes from changes in the surroundings, e.g. day
and night cycle.

The chiller effects can be dealt with a first feedback loop with the purpose to control the
temperature of the air feed. Therefore the temperature measured by the LM35 sensor is compared
to the requested value. Based on the difference between these two temperatures, the valve position
is adjusted by the Raspberry Pi. This allows to adjust the temperature of the air feed to a desired
value.

Changes based on the environment like the day-night cycle or ramping up the magnets can be
observed in the temperature measured in the hut and the air flowing back to the heat exchanger.
Under typical running conditions, these changes are much slower than the effects from the chiller.

These changes are dealt with through a second feedback loop by adjusting the requested tem-
perature of air feed controlled by the first feedback loop. Thus a small increase in the temperature
of the hut will lead to a reduced temperature of the air blown into the hut. This results in an
increased cooling power countering the temperature increase.

The software on the Raspberry Pi is written in C++. It contains both PID controls used in
the feedback loops mentioned above along with all the sensor readouts and valve steering. Each
of the feedback loops is updated once every second. The updated status then is added to the
memory-resident history and written to a history file.

To avoid running out of memory and stay efficient none the less, a cyclic design of the memory-
resident history was chosen. This means that a container of defined size is allocated when the
process gets started. The current position in this array is stored in an index. Whenever an entry is
added it is placed at the position the index is pointing to. This potentially overwrites an old entry
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Figure 4.4: Temperature response curve to suddenly closing the valve. This is used to estimate the
parameters kp and ki of the feedback loop.

at that position. Afterwards, the index is increased and if it passes the end of the container set
again to the start.

In addition the software runs a lightweight web server [81] providing easy access to most of the
aspects. It can be reached under http://megpi1:8080 from the PSI internal network if running.
To avoid accidental messing up with certain parameters, the human access is separated into default,
user and expert access.

The default access http://megpi1:8080/index.html is used for display only purposes. It
displays the temperatures read out from the sensors as well as the valve position and the requested
temperatures. In addition the history in a desired time window is displayed in a diagram.

The user access http://megpi1:8080/user.html provides in addition to the default access the
possibility to adjust the requested hut temperature and to switch both feedback loops together on
or off. This is intended for usage by anyone operating parts of the experiment.

The expert access http://megpi1:8080/expert.html provides access to all relevant aspects.
One can switch on or off each of the feedback loops individually. Furthermore the relevant param-
eters for each of the feedback loops can be read or set for each of the feedback loop or the valve
position directly accessed if not controlled by the first feedback loop. This should only be used by
experienced users.

In order to read the current status of the hut temperature control automatically, a dedicated
UDP is created. This interface is used as access by the appropriate MIDAS slow control front end.
Consequently, the full functionality of MIDAS is available to monitor the status of the temperature
control. Manipulation of the PID control software through this UDP connection would be an option
yet was not implemented to avoid modifications by shifters or other non-expert users.

4.3 Tuning of the PID Cycles

This section describes the first approach to determine the factors kp, ki and kd.
Further the issues encountered with them are shortly mentioned and the way
they were resolved. This is however not a detailed manual on how to fine tune
a PID control. Finally, the impact of the PID control on the temperature of the
air feed is shown.

In a first step only proportional and integral terms are considered by setting kd = 0. The values
for kp and ki are estimated by the use of the Nichols Ziegler method [82]. For this purpose, the
cooling was activated to reach a certain temperature without being necessarily stable. At a certain
point, the valve was suddenly fully closed and the response of the temperature acquired.
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Figure 4.5: Effect of the PI-Feedback loop. On the left side, the temperature control is on regulating
the air temperature to 18 °C. Any effects from the chiller can be seen as small peaks that get
countered aggressively with some overshoot. On the right side, an unregulated curve is plotted for
reference.

The obtained temperature curve is displayed in figure 4.4. The tangent to the point of inflexion
of this curve is estimated. From this tangent one can estimate the slope m = 0.031 25 °C

s and the
time difference tu ≈ 7 s between closing the valve and the point where the tangent crosses the
original temperature 18 °C.

From these two values one can estimate the parameters kp and ki by adjusting the tuning rules
by Nichols and Ziegler to the given situation:

kp = 0.9
1

tum
· 5 = 20.57

1

°C
ki = 0.27

1

t2um
· 5 = 0.88

1

°C s
(4.5)

The factor ·5 is not part of the original formula but was introduced based on experience and
intuition. Earlier attempts without this factor showed to be slow to react and unfit to counter
fluctuations efficiently.

A first test of these parameters is represented in Figure 4.5. The result with the control switched
on is displayed in the left, a curve taken with the feedback switched off is displayed on the right
for reference. One can clearly see that the effects of the chiller that cause the large oscillations on
the right get reduced to small, sharp peaks. Each of the peaks is countered in aggressive manner
at the cost of some overshooting.

These overshoots on their own are not a problem for the system as the final goal is to keep the
hut temperature at a constant level. The observed spikes and the overshoots thereafter are only
visible in the temperature of the air streaming into the detector hut. The detector itself will hardly
react to these fluctuation due to its large heat capacity.

During operation when hardly any cooling was necessary due to the cold environment and
many devices being switched off, large overshooting and slowly damped oscillations in the cold air
temperature were temporarily observed. These were dealt with by setting kd = 60 s

°C and leaving
kp = 20.57 1

°C and ki = 0.88 1
°C s . These parameters worked very well in keeping the temperature

stable during the pre-engineering run in 2020.

Using the same approach as initially used for the air temperature control, the parameters for
the hut temperature control were estimated. During the pre-engineering runs, the parameters
kp = 5 1

°C and ki = 0.007 51 1
°C s proved to work. The differential part was not required to stabilise

the temperature and thus kd = 0 s
°C was used for the hut temperature control.

Note however that these parameters were estimated without having the full electronics available
inside the detector hut. Nonetheless, the PI-control implemented for the detector hut managed
to stabilise the temperature inside the detector hut when the COBRA magnet was switched on
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respectively off. The ideal working temperature has yet to be determined once all heat loads are
installed in the final configuration during the upcoming engineering run later this year.
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Chapter 5

Calibrations based on Mott Events

5.1 Introduction

This introduction sums up the theoretical background and formulas used for the
Mott scattering process of the positron on the MEG II target. This builds the
foundation for the implementation of the process in the MEG II simulation code
briefly summarised in the second subsection.

5.1.1 A Short Summary of the Theoretical Background

The name “Mott Events” refers to the underlying Mott scattering process [83], that happens when
a particle with spin, a positron in this case, scatters off a resting nucleus. In order to profit from this
process, a positron beam from the target E is used. By tuning the PiE5 beam line [39] appropriately,
a positron beam of highly relativistic 53 MeV positrons is obtained.

Given that the positron momentum is a factor 100 larger than the positron mass, one can treat
it as massless for the purpose of calculating the scattered momentum p′. Under this assumption
and neglecting the thermal motion of the scattering target, it can easily be shown that the scattered
momentum p′ can be calculated as

p′ =
p

1 + p
Mc (1− cos Θs)

(5.1)

where p is the momentum of the positron before it was scattered and Θs the angle between the
incoming and the outgoing direction. The mass M is given by the nuclei in the scattering target,
which corresponds to the ordinary muon stopping target made of polyvinyltoluene. The mass of a
hydrogen nucleus is M = 938 MeV/c2 whereas for a carbon nucleus, the value M = 11.2 GeV/c2 is
assumed.

When considering the ratio between momentum of the positron and the mass of the nucleus
only small changes to the positron momentum are expected in case of a hydrogen nucleus and a
minimal one for carbon. The analytical functions are shown in Figure 5.1.

With the incoming beam well controlled, positrons with known properties are passing through
the spectrometer. Note that for the scattering process on carbon nuclei, the momentum difference
due to the recoil is comparable to the initial momentum spread due to the acceptance of the positron
beam.

In order to estimate the rate obtained by this process in the spectrometer, one requires the
probability for a positron to be scattered under a certain angle. Thus, the differential scattering
cross-section is required. It is described in detail by Hofstadter [84] and a short summary of the
most important findings is presented here. For a pointlike nucleus, this can be written as(

dσ

dΩ

)
point

=

(
Ze2

2E0

)2
cos2 (Θ/2)

sin4 (Θ/2)

1

1 + 2E0

Mc2 sin2 (Θ/2)
(5.2)

with the atomic number Z = 1 for hydrogen nuclei and Z = 6 for carbon. The energy E0 is the
initial energy of the incoming positron. As the positron is highly relativistic in this particular case,
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Figure 5.1: Momentum p′ of the scattered particle as function of the scattering Angle Θ.

energy and momentum are considered to be equal, i.e. E0 = pc. As described by Hofstadter, the
finite size effects can be dealt with by adjusting the formula to

dσ

dΩ
=

(
Ze2

2E0

)2
cos2 (Θ/2)

sin4 (Θ/2)

|F (q)|2

1 + 2E0

Mc2 sin2 (Θ/2)
(5.3)

where a nuclear form factor F (q) was introduced. It is the same form factor as observed in x-ray
and electron diffraction, which seems reasonable, considering how closely related the processes are.
The implementation for the MEG experiment is documented in [85] and no reason was seen to
change any of the models or numerical values when adapting the method for MEG II. In summary
the form factor was approximated as

F (q) = 3
sin(x)− x cos(x)

x3
x =

qRu
hc

(5.4)

where q stands for the momentum transfer and the radius Ru is obtained when approximating the
atomic nucleus as an uniformly charged sphere. This approximation was taken from [86] and is
fully sufficient for these considerations. The momentum transfer q can be calculated as

q =
√

2pp′ (1− cos θ) (5.5)

as can be confirmed with a simple calculation.

5.1.2 The Implementation of Mott Events in the Simulation

In order to optimise the performance of the simulation in GEM4, a dedicated primary particle
generator was implemented for the MEG experiment. As the underlying physics remains unchanged
for MEG II, no major changes were needed to adapt this part of the code to the new needs of the
MEG II experiment. This dedicated particle generator allows to take control over the detailed
generation process. This is crucial, as the scattering cross-section is largest for small scattering
angles, i.e. for positrons that are scattered at angles too small to enter the acceptance of the
detector.

The generation of the scattered positron consists of several steps. The first of which is to
determine its initial momentum and direction, which happens based on the measured beam profiles.
This includes properties like the beam momentum and its standard deviation, the beam position
and extent as well as the beam divergence. These parameters are set by a macro at run time.

Based on the incident momentum, the Mott scattering cross-section for that very momentum is
calculated for each event. For practical reasons, only the relative ratio between different scattering
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Figure 5.2: The number of hits per reconstructed track. On the right side, they are split by the
numbers of turns in the CDCH the track is associated with. Roughly 42 % of the good reconstructed
tracks are single-turns, 47 % are double-turns.

angles is considered while the distribution is not normalised in this step. Eventually, a scattering
angle is randomly selected according to the calculated distribution. This step then defines the
outgoing direction as well as the outgoing momentum. The generator is designed in such a way
that it allows to accept minimal scattering angle and bounds in terms of the resulting azimuth
direction. These limitations are set by a macro at run time of the simulation.

In a last step, the particle is placed on the MEG II target structure with the calculated outgoing
momentum and direction. Only at that point, the propagation of the particle starts through the
use of usual Geant4 particle propagation tools [87]. The further processing happens through
the simulation procedures by GEM4, detector response generation by MEGBartender and event
analysis by MEGAnalyzer. More details about the MEG and MEG II simulation software can be
found in [88].

5.2 Characterisation of the MEG II Cylindrical Drift Cham-
ber with Mott Simulations

This section deals with the potential of using Mott scattered positrons for the
characterisation of the drift chamber. The first part is about the benefits without
deploying additional analysis techniques while the last part deals with the double-
turn method. While these methods are not new and were already used in the
MEG experiment [85], they have been adapted, improved and applied to the
MEG II situation.

5.2.1 Expected Number of Hits per Track

The first thing one needs are good criteria to select the tracks worth being further investigated. The
simplest possible criterion is based on the number of hits in the drift chamber. Their distribution
is shown in Figure 5.2.

In the left graphic, the number of hits per reconstructed track is shown. On the right side,
they are sorted by the number of turns of the associated track in the detector. From this, one can
extract that a single-turn track consists of 35 to 70 hits, a double-turn of 50 to 100.

The two peaks to the left below 35 hits have their origin in only partially reconstructed tracks.
Although it was possible to fit the cluster of CDCH hits, they could not be merged with any other
clusters to form a complete track. This can happen for several possible reasons.

The most obvious one is that the positron track hits some pixels of the timing counter (pTC)
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Figure 5.3: The number of hits in dependency of energy on the left side and in dependency of
theta on the right side. They are coloured according to the number of reconstructed turns. To
discriminate between noise and ordinary single turns, a threshold of 35 hits was set.

or any other material. This leads to an energy loss or scattering of the positron. If the positron
then returns back into the CDCH, its momentum vector has been altered to the point where the
matching algorithm does not combine these tracks as the second half with the altered energy would
spoil the resolution.

Additionally it is possible that the track passes through the end face getting just a few hits in
the CDCH itself. Due to the low amount of hits, the track does not get fitted properly with large
deviations in the parameters. These parameters differ too much from the rest of the track such
that they don’t get matched.

Thus, partial tracks that are not properly matched can get reconstructed even if the algorithm
does not provide meaningful results. They can come either from a partial crossing of the CDCH (e.g.
ending in the endplate) or a single crossing that remains unmatched for good reasons. Observing
two peaks in Figure 5.2 implies that a single crossing of the CDCH corresponds to roughly 15 to
35 hits.

This explanation is supported by the results shown in Figure 5.3. For clusters containing only
about 10 hits, the reconstructed energy in the left plot seems to behave arbitrarily in a range from
far below the nominal value to far above the initial energy. Especially the second case can only
happen if the momentum of the positron is badly estimated. Although the Θ distribution does
not show such a clear evidence of bad reconstruction, the Θ distribution is naturally spread out in
contrast to the energy distribution. Thus a similar relative error is far less obvious in Θ than in
energy.

The well reconstructed turns are separated in single-turn tracks (blue), double-turn tracks
(green) and tracks with at least three turns (red). For a good track, the number of recorded
hits is roughly proportional to the track length inside the CDCH. On the left plot one can see,
that the resolution of the reconstructed energy increases with the number of turns, corresponding
to more data points for the fit.

For the positrons scattered on carbon, their energy of roughly 52 MeV does not show any
correlation with the number of hits in the CDCH. Positrons scattered on a hydrogen core exhibit a
dependency between energy and the number of hits. This is due to the fact that for these kind of
positrons there is a strong correlation between scattering angle Θ and the energy of the scattered
positron.

For geometric reasons, there is a strong dependency between the total length of the track inside
the CDCH and the scattering angle Θ. This immediately implies a dependency of the number of
hits on the scattering angle. This can be seen from the different curves present in figure 5.3. In
general, the closer the angle Θ is to 90°, the shorter is one crossing of the drift chamber - thus the
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Figure 5.4: Energy in the simulation vs the polar angle Θ. The figure on the left side represents
the simulated values as generated in the simulation code. The figure on the right shows the values
obtained by the reconstruction algorithms. Three different sets of data are drawn. They correspond
to different values for the spread in momentum of the incoming positron beam.

number of hits per segment of the track decreases towards 90°.
At certain scattering angles (e.g. between 63° and 67°), the track starts to cross the CDCH an

additional time, leading to a new segment of the track in the CDCH and thus generating another
cluster. This results in an increase of detected hits. If the additional cluster is added from the center
to the outer part of the drift chamber as it is the case around 65°, the track begins an additional
turn.

Although geometry predicts only one number of turns for a given angle Θ, there are more than
one number of matched segments present for certain angles. Especially around 80°, single and
double-turn tracks appear at the same time. The most probable reason for this is a failed matching
in the analysis code. For some of the tracks at a given angle, the last partial track gets attached
to the full track while for others, the deviation from the rest of the track is too large and thus the
last fragment is rejected. This results in additional tracks in the CDCH that act as source of the
noise described above.

5.2.2 Reconstruction of the Positron Variables

Based on the analysis of the number of hits per good track, only tracks with more than 35 hits are
considered in the further evaluations. Amongst the reconstructed positron variables in the CDCH,
three of them are of major interest for the MEG II experiment. These are namely the energy of
the positron, the polar angle Θ with respect to the direction of the incoming positron beam and
the azimuthal angle φ.

In Figure 5.4 the reconstructed energy is plotted against the polar angle Θ. On the left side, there
are the simulated values as they are generated in GEM4. On the right side are the reconstructed
values obtained after running the analysing algorithms. Three sets of data are plotted. The red one
corresponds to no spread in the momentum of the incoming beam. The set represented in green
corresponds to a momentum spread of σ = 200 keV/c which is an optimistic estimate of the true
beam quality and the blue set was generated with a pessimistic assumption of a beam spread of
σ = 400 keV/c. The exact value depends on the tuning of the beamline as well as the chosen slit
positions. Closing the slits lowers the momentum spread as well as the positron rate such that a
trade-off has to be made.

As expected, the larger the spread in momentum of the incoming beam, the larger the spread
is in the reconstructed energy. Note that there is a negligible amount of events reconstructed with
a polar angle Θ larger than 140°. This is due to the geometric acceptance of the DCH. Another
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Figure 5.5: Energy spectra of the simulation. The figure on the left side represents the simulated
values as generated in the simulation code. The figure on the right shows the values obtained by
the reconstruction algorithms. Three different sets of data are drawn. They correspond to different
values for the spread in momentum of the incoming positron beam.

expected feature is that the separation between carbon based events and hydrogen based events is
less clear and starts to vanish with the reconstruction.

A notable observation is the spread in energy for small angles around 60°. As can be best seen
from the red dataset, the energy is more spread out than for events in the central region. This is
due to the fact that tracks at these angles have at most one turn in the drift chamber and rather
few hits. Thus their energy resolution is lower with respect to events with longer tracks in the drift
chamber. This effect can hardly be observed on the other side of the drift chamber due to the low
number of positrons scattered in this direction.

Further, there appears to be a slightly lower number of events for the low beam spreads in
the lower hydrogen-branch at around 90°. This is due to the fact, that tracks at these angles
usually perform a very large number of turns in the DCH, thus resulting in more hits than the
reconstruction algorithm can take. Thus the algorithm fails for some of these events resulting in a
lower reconstructed event rate around these angles.

The obtained energy spectra are shown in Figure 5.5. Again, the left side shows the generated
values at GEM4 level whereas the right side shows the results of the reconstruction algorithms.
The clear separation of carbon based and hydrogen based events for low beam spread is replaced
by a small dip in the energy spectrum just above 51 MeV. The second dip below 50 MeV is due
to the strong correlation between energy and polar angle for hydrogen based events. This energy
corresponds to an emission angle of 90° where the reconstruction algorithms fail in some cases.

The main carbon based peak can be fitted with a Gaussian or the sum of two Gaussians as
represented in the following equation

f(E) = Nce
− (E−µ)2

2σc2 +Nte
− (E−µ)2

2σt
2 (5.6)

where both of the two Gaussians share the same mean µ but core and tail have an individual
constant Nc,t and an individual standard deviation σc,t.

For the fit each set of data was additionally divided in two separate ranges. The centre holds all
events with a polar angle between 70° and 110°. These events hit the drift chamber in its central
region and usually perform a double-turn track. The edge holds the rest of the events that often
perform only a single turn track. The results of each fit are shown in table 5.1.

As one would already expect from Figure 5.4, the central part performs better yielding an
increased resolution with respect to all the events of the same dataset. The result obtained for no
beam spread hint for an energy resolution of (74.4± 1.1) keV in the central region of the detector
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Beam Spread Region µ Nc Nt σc σt
(keV/c) (MeV) (×103) (×103) (keV) (keV)

0 all 51.83 5.46(5) 1.33(5) 95.8(10) 237(4)
0 centre 51.79 2.98(5) 0.39(5) 74.4(11) 160(6)
0 edge 51.86 3.03(4) 1.01(5) 100.4(16) 243(4)

200 all 51.83 3.04(4) 0.34(5) 232(2) 421(13)
200 centre 51.78 1.281(10) - 223.4(10) -
200 edge 51.86 1.82(5) 0.32(5) 235(3) 414(14)
400 all 51.83 1.951(9) - 436.3(15) -
400 centre 51.78 0.699(5) - 408(2) -
400 edge 51.86 1.262(7) - 447(2) -

Table 5.1: Energy resolutions extracted from the energy spectra for different beam spreads. For
some cases the sum of two Gaussians for core and tail are used whereas in other cases the core
Gaussian already offers rather good results. The data is divided into two regions: the central part
of the detector with a polar angle between 70° and 110° and the edge of the detector outside this
range. Note that this implies that the edge region mainly contains events from the DS side. This
explains the slightly lower average µ for the central region as these events lose more energy in the
Mott scattering process.

for double-turn tracks and for an energy resolution of (100.4± 1.6) keV at the edge of the detector
for single turn tracks. This difference is explained by the number of hits available to extract the
positron variables.

One can observe further, that there is less contribution of the Gaussian describing the tail in
the central region. A rough estimate for the dataset without any beam spread shows, that there are
almost 80 % of the events in the central region in the core Gaussian. For the edge of the detector,
there are roughly the same amount of events in the core Gaussian as are in the tail Gaussian.

This can be explained by a dependence of the energy resolution on the polar angle Θ. This can
be seen from Figure 5.4. One can clearly see, that the data for no beam spread in red has a rapidly
changing width in energy for Θ below 60° and is more or less constant between 70° and 110°. Thus
for the central range, the assumption of a single core Gaussian matches well with the reality and
needs only a small correction. However on the edge, many more different spreads contribute to the
distribution. Thus the assumption of a single core Gaussian needs a large correction hence a large
contribution of the tail Gaussian.

At the level of higher beam spreads, the uncertainty in energy due to the beam spread increases
and becomes dominant over the uncertainties due to the reconstruction. As a result, the small
differences in the resolution of the reconstructed energy vanish with respect to the beam spread
and the spectrum can be fitted with a single Gaussian. A beam spread of 400 keV/c dominates
completely over the deviations in resolutions for different Θ and thus for these sets of data, all
spectra can be fitted with a single Gaussian.

Another interesting observation can be made by looking at the fitted means of the distribution
in Table 5.1. The obtained values for the central regime are slightly below the obtained value for
the entire set and the values obtained for the edge are slightly above these values. This effect is
very small yet still significant. This is due to the fact, that the edge mainly contains DS events.
These get scattered at a rather small angle (Θ < 70°) compared to the ones in the central region
(70° < Θ < 110°). Due to the larger angle, the positrons detected in the central region transfer
slightly more energy to the carbon nuclei when scattered on the target and thus have slightly lower
momentum in the CDCH.

In order to extract only the detector response, one can calculate the difference between the true
energy of the positron as obtained in the generation process and the reconstructed value obtained
by the analysing algorithms. With this method it is possible to access not only the resolution in
energy but the resolutions in the polar angle Θ and the azimuthal angle Φ as well. This is only
possible for MC simulations where the values can be extracted directly from the generation process.
For a real experiment, these values are not accessible.

In order to confirm the above statement, the deviation between reconstructed energy and gener-
ated energy has been plotted against the generated polar angle. The results are shown in Figure 5.6.
The plots confirm the expectation from above that the resolution depends on the angle Θ. In addi-
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Figure 5.6: The difference between reconstructed energy and generated energy vs the generated
polar angle Θ. Three different assumptions on the beam spread σ are presented.
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Figure 5.7: Distributions of the reconstruction errors for the positron variables energy, polar angle
and azimuthal angle. Due to their similarity, only the results for a beam spread of 200 keV/c are
shown. They are split in two regimes. The central part covers polar angles 70° < Θ < 110°. Other
values are considered to hit the edge of the drift chamber. Each of the curves is fitted with the sum
of two Gaussians as given in Equation 5.6. The results are shown in table 5.2

tion it becomes apparent that the obtained distribution widens up again for polar angles Θ > 110°.
This is due to the symmetry of the CDCH. However, the US region is much less populated than
the DS region due to the asymmetry of the Mott cross-section.

One can further notice, that there is no visible impact of the beam spread on the final distri-
bution. For that, only the differences between generated and reconstructed values for the dataset
with a beam spread of 200 keV/c are plotted in Figure 5.7. They are fitted with the sum of two
Gaussians as described by equation 5.6 and the results of the fit are gathered in Table 5.2.

Like already observed in previous plots, it is confirmed once more that the energy resolution is
better in the central region of the CDCH compared to its outer region. This trend however does
not apply to the polar angle Θ where the resolution appears to be far less dependent of the region.
The same applies to the azimuthal angle Φ.

The resolutions for the energy stay in the same order of magnitude as in the previous Table 5.1.
However, the obtained resolution in the central region and the overall resolution are clearly better
than what was obtained from the energy spectra with no beam momentum spread. On the other
hand, the resolution at the edge of the CDCH does not change on a significant level.

This can be explained through the relation between incoming and outgoing momentum in the
Mott scattering process as described with Equation 5.1. The momentum of the outgoing positron
depends on the scattering angle Θs which corresponds to the polar angle Θ up to the beam diver-
gence.

Due to the recoil on the carbon nuclei, the momentum of the generated positrons differ in the
central range significantly more than in the range between 55° and 70° contributing most to the
edge region. As a result, the energy resolution for the central region extracted from the energy
spectra is affected by this initial momentum spread of roughly 40 keV/c. In the outer region, the
energy resolution is much larger than the initial momentum spread of roughly 10 keV/c on the DS
side.

The resolution of the polar angle Θ only differs slightly between the central region and the edge
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Variable Region Nc Nt σc σt
(×103) (×103)

Energy all 16.88± 0.11 2.57± 0.08 (82.4± 0.7) keV (250± 3) keV
Energy centre 8.82± 0.09 0.64± 0.06 (65.5± 0.7) keV (170± 5) keV
Energy edge 8.84± 0.07 1.28± 0.07 (108.2± 1.3) keV (306± 6) keV
Theta all 8.37± 0.05 0.69± 0.04 (0.270± 0.002)° (0.711± 0.012)°
Theta centre 2.92± 0.03 0.26± 0.02 (0.259± 0.003)° (0.65± 0.02)°
Theta edge 5.43± 0.04 0.46± 0.03 (0.274± 0.002)° (0.722± 0.015)°
Phi all 8.55± 0.05 1.11± 0.04 (0.232± 0.002)° (0.670± 0.009)°
Phi centre 3.34± 0.04 0.43± 0.03 (0.205± 0.003)° (0.554± 0.013)°
Phi edge 5.22± 0.04 0.70± 0.03 (0.249± 0.002)° (0.722± 0.012)°

Table 5.2: Resolutions for the positron variables energy, polar angle and azimuthal angle for a beam
spread of 200 keV/c. The centre is defined by polar angles 70° < Θ < 110°, the edge contains the
rest of the events in the outer regions of the DCH. Especially for the energy resolution, a clear
difference between central and outer region can be observed whereas the angular resolutions appear
more stable.

of the CDCH. This implies that a good reconstruction of the polar angle is possible even with a
lower number of hits.

For the azimuthal angle Φ, there is a clear difference between the centre and the edge of the
CDCH. This is due to the fact, that the extraction of the angular positron variables requires an
extrapolation of the track to the target. The changes in Θ are not affected by the curvature of the
track in the same extend as the changes in Φ. As can be seen in figure 5.8 an overestimation in the
track’s radius and thus an overestimation in the positron momentum will lead to an underestimation
in the azimuthal angle.

For the entire dataset obtained at a beam spread of 200 keV/c, a resolution in the polar angle
of σΘ = (0.270± 0.002)° is obtained. This corresponds to a value of (4.71± 0.03) mrad. For the
azimuthal angle a resolution of σΦ = (0.232± 0.002)° corresponding to (4.05± 0.03) mrad was
obtained.

5.2.3 The Double-Turn Track Method

A more elegant way to extract the resolution of the positron variables momentum, polar angle
and azimuthal angle for the CDCH is to consider tracks with at least two fully reconstructed and
matched turns in the CDCH. Such a double-turn track can be separated into two parts called the
first turn and the second turn. Each of the turns is fitted individually and separate values for the
positron variables are extracted.

As both turns are obtained from the same positron track, they should yield the same values.
Their differences relate to the uncertainties of the estimated positron variable and thus to the
resolution in said positron variable. This method is unaffected by the momentum spread of the
incoming beam and the detailed scattering process. In contrast to the method above, comparing
reconstructed values to the MC truth values, the double-turn method does only rely on the available
information in a track and thus can be used on real data.

For the CDCH, the double-turn analysis is performed while merging the partial tracks obtained
from CDCH clusters to the complete track of the positron. The following steps are performed:

1. Find all pairs of matching partial tracks. Look for the pair that matches closest to the target
on the inside of the CDCH. The first partial track of this pair is the last of the first turn, the
second partial track is the first of the second turn.

2. Based on the found pairs of matching partial tracks, determine the order in which these have
to be combined to form the complete track.

3. Combine the partial tracks up to the last of the first turn to get the complete first turn.
Combine the rest of the tracks to form the second turn.
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Figure 5.8: Estimated deviations in energy plotted against the estimated deviations in the azimuthal
angle. The correlation factor of approximately −0.5 suggests that an overestimation in energy comes
along with an underestimation in the azimuth and vice versa.

4. Fit both turns separately. Extract for each of the two turns the positron variables of interest
(namely: momentum, polar angle and azimuth angle). Save this information together with
the information about the two turns for further analysis.

5. Combine the first and the second turn together. Fit the final track again to get the final result
for that track.

Note that with this algorithm, every partial track not belonging to the first turn is considered as
part of the second turn. This implies that despite the name the second turn may consist of more
than just a single turn and usually contains one and a half turns for a useful track. Further it may
only contain half a turn due to the details of the algorithms. These tracks are flagged to contain
insufficient information for the double-turn analysis.

This method is not only restricted to Mott events but may be used on Michel events as well
as any positron track with two turns in the CDCH is eligible. The simulation results obtained
from Mott, signal and Michel events are shown in Figure 5.9. They are fitted with the sum of two
Gaussians as given by the following equation:

f(x) = Nce
− (x−µc)2

2σ2c +Nte
− (x−µt)2

2σ2t (5.7)

In this equation, the x stands for the positron variable of choice - either momentum p, polar angle
Θ or azimuth angle Φ. Further, it is separated between a core Gaussian denoted by a subscript c

for the peak and a tail Gaussian denoted by a subscript t to fit the wider part of the distribution.
Note that the two Gaussians don’t share any parameters in this function in contrast to Equation 5.6
used earlier. The results of the fits are shown in Table 5.3.

The histograms obtained and displayed in figure 5.9 are normalised to the same area to get
comparable results. The most important feature to notice is that the results for Mott events
in orange are really close to the results for signal events in green for all of the positron variables
considered. Opposed to this, the unfiltered Michel events in violet differ clearly. Even after selecting
only Michel events with an energy close to the kinetic endpoint, the difference does not vanish
completely. These observations are confirmed by looking at the obtained fit results in Table 5.3.
The consistency between Mott and signal events and their discrepancy with Michel events state
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Figure 5.9: The distributions of the differences obtained by the double-turn analysis. On the left
side, the obtained results based on Mott events (orange) are compared to MEG signal events (green)
and to Michel events (violet/blue). On the right side, the obtained distributions are shown for Mott
events assuming different initial beam spread in momentum. Each dataset is fitted with the sum
of two Gaussians. The results obtained by this fit are listed in Table 5.3
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Event Type Variable Nc Nt σc σt

Mott
400 keV/c

p 24.7± 0.5 0.84± 0.07 (128± 2) keV/c (684± 28) keV/c
Θ 9.7± 0.3 1.7± 0.3 (7.1± 0.2) mrad (15.5± 0.7) mrad
Φ 11.3± 0.3 1.15± 0.14 (6.3± 0.2) mrad (19.5± 0.9) mrad

Mott
800 keV/c

p 24.1± 0.5 0.83± 0.06 (130± 2) keV/c (713± 29) keV/c
Θ 9.7± 0.3 1.4± 0.3 (7.2± 0.2) mrad (17.1± 1.0) mrad
Φ 11.3± 0.2 1.0± 0.2 (6.4± 0.2) mrad (21.5± 1.5) mrad

Signal
p 25.0± 0.4 0.91± 0.07 (127± 2) keV/c (618± 24) keV/c
Θ 10.1± 0.2 1.03± 0.13 (7.52± 0.13) mrad (18.5± 0.7) mrad
Φ 11.1± 0.2 1.25± 0.10 (6.21± 0.11) mrad (20.0± 0.6) mrad

Michel
p 11.6± 0.2 2.60± 0.08 (164± 3) keV/c (711± 10) keV/c
Θ 5.41± 0.09 1.57± 0.05 (8.6± 0.2) mrad (30.7± 0.4) mrad
Φ 7.00± 0.10 1.21± 0.05 (8.11± 0.14) mrad (30.4± 0.6) mrad

Michel
Ee > 50 MeV

p 20.6± 0.8 1.17± 0.14 (136± 5) keV/c (732± 44) keV/c
Θ 8.8± 0.4 1.0± 0.2 (7.8± 0.4) mrad (24± 2) mrad
Φ 9.7± 0.4 0.9± 0.2 (6.8± 0.4) mrad (27± 3) mrad

Table 5.3: The obtained results from fitting the histograms in Figure 5.9. For each event type
the standard deviation and the constant of the two Gaussians is shown for the positron variables
momentum (p), polar angle (Θ) and azimuth angle (Φ).

that Mott events are better at mimicking a signal event. Thus Mott events are given preference if
it comes to predicting the behaviour of signal positrons.

Further the results displayed for Mott events show that a somewhat pessimistic assumption of
an initial beam spread of 400 keV yields a statistically equal outcome to a very pessimistic model
of 800 keV/c. This leads to the conclusion that the double-turn method is in fact independent of
the momentum spread of the incoming beam and is a good way to extract the intrinsic resolu-
tion in the positron variables in the CDCH. Yet considering the fact that Michel events with a
wider distribution in positron momentum show clear deviations from the values obtained for signal
positrons, one should still keep an eye on the momentum spread of the beam and keep it as low
as reasonably possible. Otherwise, the benefit from the quasi monochromatic beam is lost as the
resolution probably changes for different energies.

By comparing the results obtained from Mott in the previous analysis shown in Table 5.2 clear
discrepancies between the obtained standard deviations can be observed. This is due to the fact
that in the previous analysis, the reconstructed value is compared to the true value used in the
simulation. Thus only one of the values is affected by the limited positron variable resolution inside
the CDCH. In the double-turn analysis two reconstructed values are compared, both of them are
subjected to uncertainties based on the CDCH itself and on the reconstruction. In addition, the
fit results are based on just parts of the full track and thus access only a fraction of the total
information. When fitting the full track, more information can be used in the fit and thus a lower
uncertainty in the positron variables is predicted.

Both effects lead to a worsening of the observed standard deviation with the double-turn analysis
compared to the actual resolution in the positron variables in the CDCH. If only the first effect
were present, it could be corrected for easily by applying a factor

√
2 that compensates for the

accumulation of the two uncorrelated uncertainties. Including the second effect is harder and not
done here, as the measured CDCH response in the final configuration will only be measured later
this year during the engineering run.
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Figure 5.10: Estimated number of hits in the pTC for Mott and Michel events. Mott events are
expected to have the same properties as a µ → eγ signal positron, Michel events are the most
dominant background in the spectrometer.

5.3 Characterisation of the Pixelated Timing Counter for
MEG II with Mott Simulations

The geometry of the newly designed pixelated timing counter allows to benefit
from Mott scattered positrons in unique ways. While the first part aims to
get an understanding of the behaviour of the pixelated timing counter (pTC),
the third subsection about the double-cluster method describes a new calibration
method. The underlying method is similar to the double-turn analysis for the
drift chamber and fully benefits of the pixelated nature of the timing counter.

5.3.1 Expected Number of Hits

The pixelated timing counter (pTC) is the second part of the MEG II positron spectrometer. It is
needed as the CDCH may have a good resolution in the position of the hits and thus in positron
energy and direction but not in the time at which the positron arrived. Thus the time of the
positron is measured with the pTC specifically designed for this purpose. Again, the number of
expected hits for a good signal cluster is of great interest as it allows to reject background events
with too few hits.

The expected number of hits is shown in Figure 5.10 for Mott and Michel events. Note that
the positrons from Mott scattering have very similar properties as the signal positrons from the
µ→ eγ decay. The positrons from Michel decay are the most dominant background in the positron
spectrometer. Unlike the CDCH case, there is no clear separation between a good reconstructed
cluster and an insufficient one. However, there is a small dip around 3 hits. This is used as a cut
criterion for further studies on the MC data.

Further Mott and thus signal events have a larger number of pTC hits compared to background
Michel events. This is due to the fact, that Mott events are just at the kinematic endpoint of the
Michel spectrum. Thus a Mott positron has more energy and thus a larger radius than the average
Michel positron. As the TC is constructed just to be on the outermost part of the spectrometer and
thus of the track, this larger radius implies a longer path through the pTC and thus more pixels
are crossed and potentially fired.
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This pre-study does only consider the clusters matched in the pTC. Thus only the hits per
cluster are recorded and not the total number of pTC hits per track. A track potentially can cross
the TC twice or in rare cases even three times.

5.3.2 Reconstructed Positron Hit Time

0 2 4 6 8 10 12 14 16 18 20
 t (in ns)

1

10

210

310

410

Estimated Hit TimeEstimated Hit Time

Figure 5.11: Estimated hit time of the clusters. These values are not yet corrected for the position
of the cluster. The peaks for different amounts of turns in the spectrometer can be clearly distin-
guished. The first peak at 2 ns corresponds to half a turn from the centre directly to the TC. The
second peak around 5 ns corresponds to one and a half turns etc.

For each of the clusters, the hit time is estimated as part of the analysing process. This time
corresponds to the time it takes the positron to propagate from the target to the fired pTC clus-
ter. The obtained results are shown in Figure 5.11. One can clearly distinguish individual peaks
corresponding to a different number of turns before the pTC cluster was fired.

The first peak just below 2 ns marks the most direct way possible to get to the pTC. It corre-
sponds to only a half turn in the spectrometer and a hit at the closest point to the target in the
pTC. Its population is comparably low as only positrons with a limited point of scattering on the
target and in the very right angle of emission can hit the pTC after just half a turn.

The second peak around 5 ns corresponds to one and a half turns through the spectrometer
before the cluster was fired. This is the most populated state. For each further peak following
after, the corresponding track contains an additional turn just before triggering the cluster. The
separation of the peaks allows to approximate that it takes roughly 2 − 3 ns for a complete turn.
This corresponds to the expectation for a particle travelling near the speed of light along a track
of the typical curvature expected for MEG II.

A further observation about the second peak is that it appears to have a bump just about half
a nanosecond later. It can be explained by a small discrepancy between different locations in the
TC. This is the first hint to a strong dependence of the estimated hit time on the position of said
hit.

The detailed behaviour of the reconstructed hit time in dependence of the position z along the
beam axis is shown in Figure 5.12. As above one can clearly separate between clusters fired after



5.3. PTC CHARACTERISATION WITH MOTT SIMULATIONS 57

Figure 5.12: Estimated time plotted versus the position of the first hit in the cluster along the
beam axis. Positive z-Values represent DS, negative Values stand for the US. The target is placed
at z = 0 cm. With increasing distance from the target, the cluster is fired later as the positron
needs to propagate a longer distance. Further, one can clearly distinguish the numbers of turns a
track took before firing a cluster, starting from half a turn on the bottom. From the lower plot it
becomes visible that the second cluster of a track appears just a little earlier than a first cluster of
a track with similar properties and with a larger uncertainty in time.
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Figure 5.13: By fitting the time spectra for segments with individual Gaussians, the mean value
and standard deviation is estimated for local positions (black). The lowest one is fitted with the
formula 5.8 and then shifted by a constant factor to match the other ones. The corrections at any
location are then estimated as the difference between the minimum value of the curve and the local
value of the curve.

half a turn, one and a half turns etc. Each accumulation shows an increased time with an increased
distance from the centre. This comes naturally as with an increased distance from the centre, the
path from the vertex to the pixel increases as well. The longer the path is, the longer the positron
takes to travel to that pixel as all of them are in the highly relativistic regime.

Another interesting feature is highlighted in the second plot. The recorded clusters have been
sorted according to their number on the track. The first fired by a positron is marked in blue. Some
tracks hit the TC once more after an additional turn. These second clusters on a track are colored
in green. They appear towards the outside of the detector and appear just a little earlier than the
first hits at the same location (in blue).

To explain this effect, one needs to consider the happenings during the first fired cluster. As
can be seen in Figure 5.10, a cluster consists of 5 to 12 or even more hits. On average, each hit
is linked to an energy deposit of around 1 MeV. Accumulated this results in an energy deposit of
5 MeV to 12 MeV. This corresponds to 10 % to 20 % of the total energy of the highly relativistic
positron.

Thus, by passing through the TC, the positron loses 10 % to 20 % of its total momentum yet
remains highly relativistic. Assuming a constant magnetic field leads to a reduction of the radius
of the trajectory by the same factor. As the velocity of the positron hardly changes but the path
length for the following turn is reduced, the next full turn is completed faster by roughly 10 % to
20 % with respect to an unaltered turn. This matches roughly with the observation in Figure 5.12.
Furthermore, this serves as explanation for the larger spread of the second clusters.

On a really rare occasion, there is even a third cluster fired by the same positron track. These
are marked in red in the lower plot. They appear only in the outermost area of the TC as at least
two clusters have to appear further inside. They are even further spread out in time as these tracks
already passed twice through the TC and thus a larger spread is introduced.

In order to estimate the timing resolution of the TC, it is best to rely only on the first hit cluster
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Uncorrected
µ1 in ns σ1 in ns µ2 in ns σ2 in ns µ3 in ns σ3 in ns µ4 in ns σ4 in ns

First 4.906(2) 0.3407(11) 7.506(5) 0.444(3) 10.106(11) 0.440(7) 12.71(3) 0.46(2)

Second 5.048(11) 0.222(9) 7.527(4) 0.335(3) 10.095(10) 0.342(7) 12.63(3) 0.38(3)

Corrected
µ1 in ns σ1 in ns µ2 in ns σ2 in ns µ3 in ns σ3 in ns µ4 in ns σ4 in ns

First 4.2963(6) 0.1481(5) 6.939(2) 0.186(2) 9.484(7) 0.237(7) 12.05(2) 0.23(2)

Second 3.929(12) 0.241(9) 6.466(3) 0.314(3) 9.051(8) 0.312(7) 11.58(2) 0.30(2)

Table 5.4: Time resolutions of the timing counter extracted from the fits shown in Figure 5.14. The
upper two rows contain the results for the uncorrected data displayed in the upper diagram and
the lower rows show the results obtained after the correction has been applied.

marked in blue as they have the least intrinsic uncertainties. Further, as there is a clear dependency
between the time a cluster is fired and the position of that cluster, a correction based on the first
hit clusters can be calculated and applied to get an overall time resolution for the timing counter.

For this purpose, the TC was split into several slices of 10 cm thickness and the time spectra has
been fitted with three individual Gaussians in the range from 4 ns to 11.5 ns. The obtained values
are plotted in black in Figure 5.13. The width of the slice is assumed as error in the horizontal
direction and the standard deviation of the fitted Gaussian as the error in vertical direction.

The graph obtained for the lowest peak corresponding to one and a half turns is first fitted with
a function modelling the time required for a helical trajectory. It is given by the formula

t(z) =
1

v

√
l2p + z2 (5.8)

where v stands for the speed of the positron and lp stands for the length of the track perpendicular
to the beam axis. The values obtained by the fit are v = (29.7± 1.4) cm/ns and lp = (129± 8) cm.
These values match perfectly with the expectations.

Although the same assumption matches the other graphs as well, those results are without
meaning as the bending radius increases as the track propagates through the detector. For these,
an additional constant shift is assumed on top of Equation 5.8 for the additional turn. This has
the advantage that the correction can be calculated only from the position along the beam line (z-
coordinate) and does not require a separate treatment for the individual turns. The final functions
fitted to each of the graphs are shown in Figure 5.13.

By applying the spatial corrections to the time spectra, one obtains the new, corrected spectra
in Figure 5.14. Note that the spectra have been drawn individually for the first and the second
registered cluster. The first thing to observe is that the blue peaks representing the first cluster are
clearly narrower than one would estimate without the corrections.

Further, the green peaks of second clusters are shifted to the left and did not get narrower on a
similar scale. This is due to the fact that the green clusters appear only at a larger distance from
the centre. This implies on the one hand that large corrections are subtracted shifting them to the
left. On the other hand, their lower spread along the beam axis leads to small differences in the
corrections and thus the effect cannot be as visible as for the blue clusters.

The four most dominant peaks between 3 ns and 14 ns are fitted with the sum of four Gaussians.
The fits themselves are shown in Figure 5.14 and their results are listed in Table 5.4. The most
notable result was a time resolution of (148.1± 0.5) ps for the most dominant peak at 4 ns. This
peak represents roughly two thirds of all events in the pTC.

Over all the peaks fitted for the first recorded clusters the time resolution is improved by roughly
a factor of two. For the second cluster, the obtained values get slightly reduced yet not significantly
as their spread is not determined by the spatial deviations of the TC. Whereas in the uncorrected
case the time resolution of the second cluster was better, the first cluster offers a better resolution
in time once the corrections are applied.

From the mean values of the different peaks, one can see that the peaks are separated by
approximately 2.5 ns. This value holds for both - the first and the second recorded clusters and
thus implies that this is the time needed for a theoretical full turn perpendicular to the beam axis.
A real full turn needs slightly longer as it propagates along the z-Axis as well.
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Figure 5.14: The extracted hit time before and after the corrections are applied. The clusters are
separated into first (blue) and second (green) cluster along the track. The four most dominant
peaks are fitted with a Gaussian. The results can be found in Table 5.4. After the corrections are
applied, a resolution of (148.1± 0.5) ps can be extracted for the most dominant peak (two thirds
of the events).
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Figure 5.15: Basic principle of the double-cluster method. A track with two pTC clusters is chosen.
The timing information (t1, t2) is extracted from both and their difference compared to the expected
time of flight ttof = l/c between the clusters.

5.3.3 The Double-Cluster Track Method

Based on the same idea as for the double-turn track method for the drift chamber described above
in Section 5.2.3, the double-cluster track method can be used to gain insight on the intrinsic time
resolution of the timing counter (pTC). Instead of two matching partial tracks (turns), one is looking
for two pTC clusters that are connected by a track and thus origin from the same positron.

The basic principle is depicted in Figure 5.15. For both clusters the hit times (t1, t2) are
extracted. In the ideal case the difference ∆t = t2 − t1 between the two times should be equal to
the time of flight ttof between the two clusters. Any deviation is then due to uncertainties in the
reconstruction of the variables.

For this reason a proper way to estimate the time of flight has to be developed. Therefore the
track information obtained by the CDCH is used. All wire hits associated to the track between
the two clusters are considered and fitted with a helix. Despite the fact, that the magnetic field is
inhomogeneous, this approximation fits well as can be seen in Figure 5.16.
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Figure 5.16: Helical approximation of the track. The left figure shows the xy plane perpendicular
to the beam axis. In this perspective, the helix is seen as a circle that describes the drift chamber
data points (blue) rather well. The track moves in clockwise direction and connects to the first
cluster (orange) at around (x = 10 cm, y = −30 cm) and to the second cluster at around (x = 23 cm,
y = −23 cm). The right figure shows the same data points in the z,Φloc frame. The z-Axis points
along the beam axis and the axis of the helix. The angle Φloc is measured with respect to the axis
of the helix corresponding to the center of the circle depicted in the left figure. In this frame all
data points line up on a straight line described by the helix.
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The blue points in Figure 5.16 represent the data points obtained from the CDCH. They are
first fitted with a circle in the xy plane as depicted on the left side. This matches the data from
the drift chamber rather well. Based on this circle, a new reference frame in cylindrical coordinates
with its origin in the circle’s centre is considered. This frame is later used for the figure on the
right, where the CDCH data is now fitted with a straight line.

The data points obtained from the pTC deviate in the xy plane for two reasons. First, the pTC
data has no radial information associated apart from the tile’s position. Second, the positron looses
energy on its way through the timing counter and the radius is decreased. For the clockwise track
in Figure 5.16 the second reason explains the hits in the first cluster (orange) far off the fitted track
and the first reason explains the different curvature observed.

As can be seen on the right side, there is hardly any discrepancy observed neither in the lon-
gitudinal z-direction nor in the local angular Φloc direction. The data points obtained from the
pTC align rather well with the line defined by the CDCH data. The respective centres are used to
estimate the cluster’s position in terms of z and Φloc.

The path length l of the track between the clusters is now calculated based on the differences
of ∆z and ∆Φloc obtained by the clusters themselves and the radius r of the circle obtained by the
drift chamber data as

l =
√

(r∆Φloc)2 + (∆z)2. (5.9)

Although the positron looses some of its energy in the pTC, it remains highly relativistic and its
speed can be approximated by the speed of light. Even assuming that the positron’s energy drops
down to 20 MeV, this approximation yields an error of around 1 ps for reasonable track lengths. A
similar deviation is obtained by an error in the estimated path length in the sub-millimetre range.
This yields

ttof =
l

c
=

1

c

√
(r∆Φloc)2 + (∆z)2 (5.10)

for the time of flight.
Comparing the time difference between the two pTC clusters to the calculated time of flight

yields information about the intrinsic positron time resolution of the detector. The obtained dis-
tributions are shown in Figure 5.17 for Mott, Michel and signal events. Each distribution has an
equal number of initial events.

As only positrons emitted under a certain angle are able to fire two separate clusters in the
pTC, there are more entries in the distribution for signal events compared to Mott. In addition
positrons of lower energies may not be able to fire two clusters due to their smaller bending radius.
This explains the clearly lower amount of Michel events compared to the other two kinds.

Each distribution is fitted by the sum of two Gaussians to take care of the tails on both sides.
The fit results are given in the lower part of Figure 5.17. The results obtained for signal and Mott
events are very well consistent with each other. A standard deviation of around 50 ps is suggested
for each of the two. Michel events seem to be slightly off, yet their low statistics denies a conclusive
result.

Assuming that the deviations between time of flight and cluster time difference originate mainly
from the time difference, one concludes that the intrinsic positron time resolution of the pTC is
around or below 40 ps for the abundant cluster types. This agrees very well with the results obtained
by other methods [89].



5.3. PTC CHARACTERISATION WITH MOTT SIMULATIONS 63

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
 (in ns)

tof
t - t∆ 

0

100

200

300

400

500

600

Time Resolution

Mott Events
 = 0.051(2) nscoreσ

Michel Events
 = 0.0581(14) nscoreσ

Signal Events
 = 0.0517(10) nscoreσ

Figure 5.17: Obtained deviations of the difference between the times obtained by the cluster from
the obtained time of flight.
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Chapter 6

Calibration of the Radiative Decay
Counter

This chapter contains simulations for what was considered a possible new cali-
bration method of the downstream Radiative Decay Counter (RDC) based on a
positron beam. It was later abandoned as the benefits do not justify the efforts.

6.1 Simulation of a Low Momentum Positron Beam for RDC

In order for the RDC to work properly, two calibrations are needed. First there is a need to
calibrate the matching between plastic scintillators for the timing and the LYSO crystals for the
energy deposit. Second, the LYSO crystals need to be calibrated amongst each other to determine
the total energy deposit in all crystals together. Only once both calibrations are performed, one
can effectively detect low energy positrons coinciding in time with a XEC signal and thus reject it
as RMD event.

The use of a positron beam of low momentum around 28 MeV offers the possibility to do both
calibrations simultaneously. In addition it offers the advantage of providing positrons in the same
energy regime as the expected positrons from RMD that just did not make it to the CDCH. For
this purpose, the standard muon beam needs to be switched to positrons and adjusted in such a
way that the entire crystal gets illuminated.

Different beam configurations have been tested and the distribution of RDC hits has been
analysed. The configuration refers to the beam properties at the centre of COBRA. The spatial
distributions for the four most promising settings are shown in Figure 6.1. For each configuration
the same amount of MC events was generated yet not all of the events resulted in a hit on the RDC.

For the first setting displayed on the top left with COBRA switched on and a beam width
of 7 mm most of the positrons hit in the central region of the RDC despite the comparably large
divergence. This effect is due to the fact that the distance between the COBRA centre and the
RDC is just a multiple of the z-distance of a turn for the most divergent positrons. Thus these
positrons start to fly away from the beam axis yet due to the magnetic field, they get curved back
to the z-Axis and end up hitting the RDC in the central region.

By increasing the width of the incoming beam (top right), the events get distributed better
over the entire detector. Yet still the outermost regions get considerably fewer hits. They get
significantly more hits if one switches the magnetic field off and stays within a beam width of 7 mm
as displayed on the bottom left. Due to the large divergence a majority of the events miss the RDC
as the positron tracks don’t get curved back to the z-Axis due to the missing magnetic field. The
rest of the hits are distributed more or less uniformly over the RDC.

The best results are obtained by switching COBRA off and aiming for a low beam width (7 mm)
and a common beam spread of 30 mrad as displayed on the bottom right. As the positron tracks
don’t get curved back, this small divergence is enough to cover the entire RDC. Yet due to the
lower divergence, significantly more tracks hit the RDC. This leads to an increase in the event rate
for all of the crystals, but especially for the ones in the centre. For further evaluations, only this
setting is considered.

65
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For each of the LYSO crystals the simulated energy deposit is estimated. The obtained spectrum
is fitted with a gauss like function with extended tails as given by the equation

f(E) =

Ne
− 1

2
(E−µ)2

(σ1+(E−µ)σ2+(E−µ)2σ3)2 E ≤ µ

Ne
− 1

2
(E−µ)2

(σ1+(E−µ)σ2)2 E > µ
(6.1)

with the fitting parameters for the peak height N , the mean µ and the standard-deviation-like
parameters σ1, σ2 and σ3. For a selected set of crystals the spectra are shown in Figure 6.2 and
the results of the corresponding fit are listed in Table 6.1.
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Figure 6.1: The hit distribution on the RDC for different beam configurations at the COBRA
centre.

Comparing the obtained results from the different crystals, one can see that the high energy
part of the different spectra is rather independent of the crystals position. The only large difference
observed is the number of recorded hits as the beam positrons are more likely to hit the centre.
The differences in the fitted means µ are well within the expectations based on their estimated
uncertainties. Thus this method would suit well to check the calibrations of the crystals amongst
each other for the expected positron energy.

One potential concern is the radiation damage done to the RDC by pointing a low momentum
positron beam directly at it. However, the amount of positrons needed for this calibration is low
compared to the amount of expected Michel positrons collected during the main physics run or
the positrons scattered at very low angle from the Mott calibration of the MEG II spectrometer.
Thus the damage due to this calibration method should not exceed the already expected radiation
damage.
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Figure 6.2: The energy deposit in different crystals. Only events have been selected where said
crystal was the first to be hit by the incoming particle.

Crystal Number µ σ1 σ2 σ3

of Hits MeV MeV 1/MeV
0 3519 18.2± 0.4 9.5± 0.8 −0.58± 0.10 −0.030± 0.010
2 4190 18.1± 0.3 8.5± 0.8 −0.48± 0.08 −0.014± 0.009
7 8638 18.1± 0.2 8.0± 0.4 −0.46± 0.04 −0.019± 0.004
14 14377 18.30± 0.14 7.8± 0.3 −0.48± 0.03 −0.020± 0.003
23 20606 18.44± 0.13 8.4± 0.2 −0.56± 0.03 −0.030± 0.003
33 24639 18.38± 0.12 8.8± 0.2 −0.60± 0.03 −0.035± 0.003

Table 6.1: The obtained parameters from fitting the spectra of different crystals shown in Figure 6.2.
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Chapter 7

Upgrade of the CEX Auxiliary
Detector

In this chapter, new scintillating materials for future calorimeters are studied
extensively. The simulations are used to decide on a first prototype to be used
as upgraded CEX auxiliary detector. Moreover, the benefits of larger crystals
are considered with the idea to use them in calorimeters of future high precision
experiments. The most important results were published in [90, 91, 92].

As described in Section 3.2.7.2, an auxiliary detector is used for the charge exchange (CEX) cali-
bration. Its main purpose is to assert time coincidence and back to back geometry of two γs from
a π0 decay and thus select photons at the kinematic endpoints at 55 MeV and 83 MeV.

From this point of view, it is not mandatory to use an auxiliary detector with ultra-precise time
resolution and supreme energy resolution, yet it offers the opportunity to test new materials and
technologies that may soon become viable candidates for future experiments.

Two very promising materials on the market are BrilLanCe (cerium doped lanthanum bromide,
LaBr3(Ce)) and LYSO (Lutetium Yttrium OxyorthoSilicate, Lu2(1–x)Y2xSiO5(Ce)). Their main
features are listed in Table 7.1.

Cerium doped lanthanum bromide stands out due to its ultra-high light yield (1.65 × NaI(Tl))
and a by an order of magnitude faster decay time compared to NaI(Tl). With these properties
LaBr3(Ce) performs well at low energies O(1 MeV), limited by the size of the available crystals.

Due to recent developments, larger crystals up to a diameter of 8.9 cm and a length of 20.3 cm
may be produced commercially. A calorimeter built from such a large crystal is an eligible candidate
for the detection of γs at higher energies O(50 MeV). This corresponds to the signal energy of
current cLFV experiments. Thus LaBr3(Ce) may be a suitable candidate for future experiments in
this sector.

LYSO on the other hand exhibits a very high density comparable to BGO and thus features
short radiation length and Molière radius. Despite the fact that its LY is only roughly 70 % of NaI
and the decay time roughly three times longer compared to LaBr3(Ce), its density makes LYSO
a possible candidate - especially considering that the available crystal size is one of the limiting
factors.

These already exciting features can be improved even further by coupling the crystals to state
of the art Multi-Pixel Photon Counters (MPPCs). Due to their small thickness of a few mm, a
double-readout is possible: A custom MPPC array is placed on the front side and one on the back
side of the crystal. This configuration improves the detection efficiency of the scintillation photons
with minimal impact on the energy loss while passing through the front readout. Independent of
the chosen crystal a lot of light will be generated. To keep saturation effects at a minimum, the
smallest available pixel size for the MPPCs is considered.

In addition, the granularity due to the MPPCs allows some geometrical reconstruction of the
event. This allows to identify and remove events close to the crystal’s lateral surface where energy
leakage is common and thus the resolution worse. On the other hand, the number of Data AcQuisi-
tion (DAQ) channels has to stay within a reasonable amount. A trade-off between number of DAQ
channels and granularity is made by choosing MPPCs with an active area of 6 mm× 6 mm.

69
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Material Density Light Yield Decay Time Radiation Length
ρ (g/cm3) LY ( ph/keV) τ (ns) X0 (cm)

LaBr3(Ce) 5.08 1 63 1 16 1 2.1 2

LYSO 7.1 3 29 3 41 3 1.21 4

LXe 2.95 5 40 6 45 6 2.9 5

NaI(Tl) 3.67 38 245 2.59
BGO 7.13 9 300 1.12

Table 7.1: Properties of commonly used scintillators. The information was taken from Review of
Particle Physics ([93]) unless specified otherwise:
1 Manufacturer’s Datasheet [94] 2 Private Communication [95] 3 Manufacturer’s Datasheet [96]
4 Geant4 based estimate 5 PDG Online [97] 6 MEG II values for XEC

MPPC Size Active Area Number Fill Factor PDE
(mm2) (mm2) of Pixels (%) (%)

Hamamatsu
S13360-6025PE

7.35× 6.85 6.0× 6.0 57 600 47 25

sensL
MicroFJ-60035TSV

6.13× 6.13 6.07× 6.07 22 292 75 38 to 50

Table 7.2: Comparison of the SiPMs. Data is taken from corresponding data sheets [98, 99].

For further studies, two different MPPC candidates by different manufacturers are considered.
The first candidate is the type S13360-6025PE manufactured by Hamamatsu [98]. It features 57 600
pixels with a total size of 25 µm× 25 µm each.

The second candidate is the type MicroFJ-60035TSV by sensL [99]. It features a lower number of
pixels (22 292) with an active size of 35 µm×35 µm each. However, it has a significantly increased fill
factor and a smaller support structure enhancing the overall coverage and photodetection efficiency
(PDE). An extensive comparison is given in Table 7.2.

The simulations are based on the Geant4 libraries [87] with dedicated code to take care of the
SiPM’s responses. For each pixel, the dead time and the quantum efficiency is considered. Dark
current and crosstalk are not implemented. For each side, the SiPM that detected the most photons
is selected. For this SiPM and its neighbours, the waveform is generated and stored separately for
analysis.

Unless stated otherwise a photon of 55 MeV hitting the centre of the crystal is simulated.
Further SiPMs based on the type S13360-6025PE manufactured by Hamamatsu are implemented
if not stated otherwise. The histograms representing the number of detected photons are fitted by
a tailed Gaussian function given by

f(x|N,µ, σ1, σ2, σ3) =

N exp
(
− (x−µ)2

2(σ1)2

)
if x > µ

N exp
(
− (x−µ)2

2(σ1+σ2(x−µ)+σ3(x−µ)2)2

)
if x < µ

(7.1)

using five parameters for fitting. This function looks like an ordinary Gaussian from the upper side
(x > µ) and has a tail on the other side. The resolutions quoted always refer to the ratio given by
σ1/µ.

In a first step, the effect of the double-readout is investigated. Therefore, a lanthanum bromide
crystal with a diameter of 8.89 cm and a length of 20.32 cm is considered. Separate runs were
performed for a back-only, a front-only and a double readout scheme. The results are shown in
Figure 7.2.

On the left side in Figure 7.2a the total amount of energy deposited in the crystal is shown.
These numbers are directly extracted from the simulation. Independently of the readout scheme,no
difference could be observed. This confirms the hypothesis on a simulation level, that SiPMs on
the front face don’t have any significant effect in terms of energy loss.

When considering the total number of detected photons, the advantage of the SiPMs in the
front-readout scheme becomes clear. Using only a readout on the front face, the number of detected
photons increase and the resolution changes from (7.76± 0.15) % (back-readout) to (5.63± 0.12) %
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(a) total view (b) readout view

Figure 7.1: Constructional drawing of the Prototype. Published in [90]. The crystal is coated with
aluminum on the lateral sides and sealed with quartz windows on the faces. MPPCs (in red) are
attached to each of the faces as seen on the right. The support structure (green) contains all the
electrical connections needed for the SiPMs. To seal the entire prototype, carbon fibre structures
are placed on each face.

(front-readout). A resolution of (2.25± 0.07) % is estimated for a double-readout scheme as shown
by the green line in Figure 7.2b. Based on these preliminary results, only double readouts are
considered for all the following configurations.

7.1 Expected Energy Resolution

This section presents the first set of studies of LYSO and BrilLanCe crystals
including the obtained energy deposit and number of collected photons. The
expected energy resolution is extracted from the number of photons collected in
each configuration.

The energy deposit and number of detected photons were estimated based on MC simulations
for several different geometrical configurations. For lanthanum bromide crystals of different radii
ranging from 4.45 cm to 7.62 cm, the results are shown in Figure 7.3.

For the currently available size with radius 4.45 cm and length 20.32 cm, significant leakage
effects occur as seen on the left side (Figure 7.3a). This is not surprising as the crystal radius
(4.45 cm) is just about twice the Molière radius (RM ≈ 2.3 cm) [95]. As a result, leakage effects are
limiting the achievable energy resolution to roughly (2.36± 0.08) % as estimated by the number of
detected photons.

By increasing the radius of the crystal, the performance in terms of energy deposit is clearly
increased. As a result, the resolution improves to (1.23± 0.04) % for a crystal of radius R = 6.35 cm
and to (0.96± 0.03) % for a crystal of radius R = 7.62 cm. Later radius corresponds to roughly
three times the Molière radius of lanthanum bromide. Unfortunately, crystals of that size are not
yet available.

Further an increase in crystal length from 20.32 cm to 22.86 cm has been studied for crystals with
a radius of 7.62 cm. The results are shown in Figure 7.3 as well. There is no significant difference
observable neither in terms of energy deposit nor in terms of collected photons. This is expected
as the crystals are already roughly ten times longer than the radiation length (X0 ≈ 2.13 cm).

As the currently available size of the crystal is a limiting factor to the resolution achievable
with the prototypes, LYSO becomes an eligible candidate due to the higher density and thus
shorter radiation length (X0 = 1.21 cm). As can be seen in Figure 7.4, the available LYSO crystal
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Figure 7.2: Different readout schemes based on S13360-6025PE Type MPPC for a LaBr3(Ce) crystal
(8.89 cm diameter, 20.32 cm length). Back Only refers to a SiPM readout on the back and the front
face closed with a thin layer of aluminium. Front only to the situation with a SiPM readout on
the front and an aluminium layer on the back. Double is characterised by a SiPM readout on both
sides.

0 10 20 30 40 50 60 70 80 90
Energy Deposit (in MeV)

0

200

400

600

800

1000

1200

1400

1600

1800

R = 4.45 cm, L = 20.32 cm

R = 6.35 cm, L = 20.32 cm

R = 7.62 cm, L = 20.32 cm

R = 7.62 cm, L = 22.86 cm

(a) Energy Deposit

0 20 40 60 80 100 120 140 160

310×

Number of Photons

0

100

200

300

400

500

600

R = 4.45 cm, L = 20.32 cm

N/N): 0.0236(8) σResolution (

R = 6.35 cm, L = 20.32 cm

N/N): 0.0123(3) σResolution (

R = 7.62 cm, L = 20.32 cm

N/N): 0.0090(4) σResolution (

R = 7.62 cm, L = 22.86 cm

N/N): 0.0096(3) σResolution (

(b) Number of Photons

Figure 7.3: Energy deposit and number of detected photons for Cerium doped Lanthanum Bromide
crystals of different sizes. The currently available size is (R = 4.45 cm, L = 20.32 cm). The larger
crystals are of hypothetical nature to investigate the change of performance.
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Figure 7.4: Comparing the available BrilLanCe crystal (R = 4.45 cm, L = 20.32 cm) to the available
LYSO crystal (R = 3.5 cm, L = 16 cm) as well as larger crystals of both materials.

(R = 3.5 cm , L = 16 cm) performs better in terms of energy deposit compared to the largest
available LaBr3(Ce) crystal despite the smaller size of the LYSO crystal.

This has a direct impact on the resolution obtainable when considering the number of detected
photons. Although cerium doped lanthanum bromide has roughly twice the light yield of LYSO
and provides thus better photon statistics, the resolution of a LaBr3(Ce) crystal is limited by the
energy leakage.

Thus the simulations suggest that the available LYSO crystal (R = 3.5 cm , L = 16 cm) performs
better in terms of energy resolution than the available LaBr3(Ce) crystal (R = 4.45 cm , L =
20.32 cm). A resolution (σE/E) of 1.5 % is obtained for the LYSO crystal whereas a resolution of
2.4 % is estimated for a slightly larger LaBr3(Ce) crystal. The detailed numbers and histograms
are shown in Figure 7.4b.

In a further set of studies, the two SiPM candidates were investigated. The S13360-6025PE
Type manufactured by Hamamatsu offers 57 600 Pixels of smaller sizes compared to the MicroFJ-
60035TSV type with less than half the pixel number. Yet the candidate manufactured by sensL
(MicroFJ-60035TSV) offers a significantly increased PDE and a smaller support structure. Thus
the active area of the SiPMs in the readout arrays covers a larger fraction of the total area. This
suggests that the sensL SiPM (MicroFJ-60035TSV) will collect more photons yet is more susceptible
to saturation effects due to the larger pixels.

These expectations are clearly confirmed when considering the results obtained with a LaBr3(Ce)
crystal as shown in Figure 7.5 on the left side. Although the sensL candidate collects roughly twice
as many photons, there is hardly any difference in terms of resolution. This effect can be attributed
to saturation effects in connection with the ultra-high LY (63 ph/keV) of the lanthanum bromide
crystal.

As the LYSO has roughly just half the LY (27 ph/keV) of lanthanum bromide, the total number
of detected photons decreases for both candidates as shown in Figure 7.5 on the right side. As
expected the sensL candidate (MicroFJ-60035TSV) collects significantly more photons than the
other candidate (S13360-6025PE) manufactured by Hamamatsu. However, the use of the sensL
candidate yields a slightly better resolution (σN/N ≈ (1.28± 0.05) %) compared to the Hamamatsu
candidate (σN/N ≈ (1.48± 0.04) %).

A possible explanation for this behaviour are again saturation effects that mainly affect the sensL
type SiPM (MicroFJ-60035TSV) due to the larger pixel size. Using LYSO instead of LaBr3(Ce)
results in less photons and consequently less photons lost in the SiPM due to saturation effects. By
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Figure 7.5: The number of collected photons for the two SiPM candidates. The candidate S13360-
6025PE manufactured by Hamamatsu offers 57 600 Pixels and a PDE of 25 %. The candidate
MicroFJ-60035TSV manufactures by sensL has less than half the pixels yet offers significantly
increased fill factor and total coverage.

reducing the saturation effects the scales are tilted towards the sensL SiPM (MicroFJ-60035TSV)
as they provide a better PDE and the increased photon statistics improve the resolution.

7.2 Expected Timing Resolution

This section treats the expected time resolution for different crystals. In order to
extract a time, the waveform for a selected few SiPMs is simulated and various
sets of different time extraction algorithms are compared.

Apart from the energy resolution, the timing resolution is one of the key features for a detector
to be used for cLFV searches, especially when the signal is characterised by a time coincidence of
two or more particles.

For the prototype, several different time reconstruction algorithms have been tested. With each
of the algorithms the detection time of an event has been recorded for the front readout array and
the back readout array.

The “First Photon” algorithm considers the time, at which the first photon in any of the SiPMs
on the readout array is detected. The time is directly extracted from the MC simulation and thus
is not accessible in an experimental setup. It is introduced as reference.

The “Constant Fraction” (C.F.) method considers the waveform recorded in the SiPM with the
highest amplitude on the readout array. The time at which the waveform crosses a threshold of
15 % of its maximum is taken. Any information from further SiPMs is neglected.

The “Average of C.F.” method applies a C.F. algorithm to the waveform with highest amplitude
and to all waveforms recorded by neighbouring SiPMs. The obtained values are then weighted
according to the amplitude of the corresponding waveform and averaged.

The “C.F. on Sum of Waveforms” method sums the waveform with the highest amplitude and
all waveforms recorded by neighbouring SiPMs for each readout array up. The time is extracted
by finding the point, where the sum of waveforms passes a threshold of 15 % of its maximal value.

The “First of C.F.” method applies a C.F. algorithm to the waveform with the highest amplitude
and to all waveforms recorded by neighbouring SiPMs. The values are compared amongst each
readout array and the minimum for each is taken.

By assuming that the initial high-energy photon travels at the speed of light in vacuum and
the scintillation photons at the speed of light in the given medium in one dimension the time t0 at
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Figure 7.6: Different time extraction algorithms under comparison. The first photon algorithm is
based on the arrival time of the first photon on each side. The constant fraction refers to the time
at which the waveform passes 15 % of the maximal amplitude in the SiPM with the most photons.
The average of C.F. is computed as the weighted average over the available waveforms. For the C.F.
on sum on waveforms, the available waveforms were first summed up and then the C.F. method
was applied to this sum. First of C.F. refers to the first time of any C.F. result.

which the original photon passes the front face of the crystal can be calculated using the formula

t0 =
(n− 1)tf + (n+ 1)tb − L

c (n2 + n)

2n
(7.2)

where n stands for the refractive index (1.9 for LaBr3(Ce) [94], 1.81 for LYSO [96]) of the crystal,
L stands for the crystal’s length, c = 29.98 cm

ns for the speed of light in vacuum and tf (tb) for the
reconstructed event time on the front (back) readout array.

This formula was applied to each of the time reconstruction algorithms. The results are displayed
in Figure 7.6. The detection time tf on the front readout array is represented in the top left. The
detection time tb is drawn on the top right. The estimated entrance time t0 is shown on the bottom
left for each of the algorithms.

For each of the readout arrays, the “First Photon” method provides values lower than the C.F.
based methods. This is not further astonishing as this one triggers on the first arrival whereas the
C.F. based methods are waiting until the waveform is built up and thus trigger on the arrival of
the bulk of optical photons.

The time reconstructed on the front using any of the C.F. methods features an additional peak
at around 3.5 ns, caused by events deeper inside the crystal. Due to reflections on the lateral sides
of the cylinder, the waveform with the highest amplitude is dominated by photons that are reflected
off the walls and thus travelled a longer distance compared to the direct path.

For the back readout array a similar feature can be observed. For the C.F. based reconstruction
methods there is a small, barely visible peak around 3.5 ns. It has its origin in events close to
the back of the crystal and thus direct photons are dominant in the most intense waveform. These
events are rare as most of the photons interact closer to the front face and thus the reflected photons
are dominant resulting in the main peak around 4 ns.

When applying the theory based Formula 7.2, the distributions obtained feature a peak that can
be fitted with an ordinary Gaussian function. The obtained standard deviations provide an estimate
of the timing resolution associated with the corresponding algorithm. The obtained resolutions are
displayed on the bottom right of Figure 7.6.

Clear variations between the different methods can be observed. The “First Photon” method
provides the earliest t0 for the reason as mentioned above. The obtained value is closest to the
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Figure 7.7: Reconstructed entrance time t0 and timing resolutions based on the “Average of C.F.”
method. On the left side the results for different sizes of a LaBr3(Ce) crystal are shown. On the
right side the expectations for the available crystals (R = 4.45 cm , L = 20.32 cm for LaBr3(Ce),
R = 3.5 cm , L = 16 cm for LYSO) are displayed. All distributions are fitted with a Gaussian and
the obtained mean µ and standard deviation σ are provided in the legends.

MC truth value yet is highly susceptible to statistical fluctuations of the single photons. Thus it
provides the worst resolution.

The methods based on a C.F. method perform better in terms of resolution yet are biased for
the reason mentioned above. This effect can easily be taken care off by calibrations. Considering
the argument of the statistical fluctuations again it is not astonishing, that the “Average of C.F.”
and the “C.F. on Sum of Waveforms” provide the best resolution as they include all the available
information in the final estimate of the time.

For simplicity, only the “Average of C.F.” method is considered in the further studies. The
results obtained are displayed in Figure 7.7. Each of the distributions is fitted by a Gaussian and
the obtained mean µ and standard deviation σ are given in the legend.

On the left side (Figure 7.7a) the results obtained for LaBr3(Ce) crystals of different sizes are
displayed. The chosen sizes correspond to the sizes already considered for the energy resolution
studies in the previous section. For the currently available crystal coupled to Hamamatsu S13360-
6025PE type SiPMs a time resolution of 35 ps is suggested by the simulation.

By increasing the radius to 6.35 cm respectively 7.62 cm the timing resolution is worsened to 52 ps
respectively (77± 1) ps. By increasing the length of a crystal with 7.62 cm radius, the time resolution
is improved to (54± 1) ps. This effect can be possibly explained by the additional transverse
distance that is covered by optical photons reflected off the wall. This distance is not included in
the theoretical model used to obtain the Formula 7.2 and its impact increases the longer it gets
compared to the longitudinal distance along the cylinders axis.

On the right side (Figure 7.7b) the obtained timing distributions for the available LaBr3(Ce)
crystal (R = 4.45 cm , L = 20.32 cm) and the LYSO crystal (R = 3.5 cm , L = 16 cm) coupled to
the S13360-6025 type SiPM manufactured by Hamamatsu are shown. In addition the distribution
obtained for the LYSO crystal coupled to MicroFJ-60035TSV SiPMs by sensL is displayed.

For the LYSO coupled to the Hamamatsu SiPM a timing resolution of 49 ps is estimated. Two
effects lead to this worse behaviour compared to LaBr3(Ce). For lanthanum bromide the decay
time is quoted to be 16 ns whereas LYSO is by a factor 2.5 slower with a decay time of 41 ns and
thus the waveform for LYSO is more stretched out. Further LYSO has only half the light yield of
LaBr3(Ce). This implies that the rising edge of the waveform is defined by less photons when using
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Figure 7.8: The spatial resolutions in terms of x and y for different crystal sizes. Note that only
LYSO crystals of L = 16 cm length are investigated.

a LYSO crystal and consequently more susceptible to statistical fluctuations.
By coupling the LYSO to the sensL SiPMs (MicroFJ-60035TSV) instead of the Hamamatsu ones

(S13360-6025PE), the timing resolution can be increased to 40 ps. This is due to the better coverage
and PDE that results in improved photon statistics. As can be seen in Figure 7.5 the photon
statistics from LYSO coupled to the sensL SiPM is comparable to the one obtained with LaBr3(Ce)
and the Hamamatsu SiPM. Nonetheless the available lanthanum bromide crystal performs better
due to the faster decay time.

7.3 Expected Spatial Resolution

This section deals with the three dimensional reconstruction of the first point of
interaction inside the scintillating crystal. It explains the reconstruction algo-
rithms as well as the expected resolutions that are obtainable by using them.

So far all simulated photons were incident along the crystals axis on the centre of the front face.
In reality, the photons are spread out all over the crystal’s front. Therefore the question arises how
to reconstruct the position of the first interaction point and what the spatial resolution with a given
crystal and reconstruction algorithm is.

For this purpose a set of simulations was conducted for different geometrical configurations
where the entire front face of the crystal was illuminated by 55 MeV photons. All photons were
generated in one spot 60 cm away from the crystal’s centre. They were assigned some divergence
to achieve illumination of the entire crystal front.

For the reconstruction the formula

xrec = ax̄f + bx̄b + c (7.3)

has been used where x̄f stands for the mean of the x positions of the SiPMs weighted by the number
of photons collected on the front readout array and x̄b stands for the mean on the back readout
array. The parameters a, b and c are estimated by an individual fit method comparing xrec to xMC

for each crystal geometry in use. The same method has been used for the y direction.
To extract a resolution of this method, the reconstructed values are compared to the MC truth

values. The obtained results are shown in Figure 7.8. One can see immediately, that distribu-
tions obtained for the x-reconstruction correspond pretty well to the ones obtained for the y-
reconstruction. This was to be expected as the cylindrical crystal is symmetric under rotation
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Figure 7.9: The difference between the reconstructed z position and the MC truth values are shown.
On the left side, the results for different reconstruction methods are displayed for a LYSO crystal
of 3.5 cm radius and 16 cm length coupled to S13360-6025PE SiPMs. The methods are described
in the text. On the right side different radii and SiPM types are compared.

around the z-axis. Only the readout array has some asymmetry as it is impossible to optimise
coverage using a rotational symmetric arrangement of the SiPMs.

Further there is no need of fitting to see that the histogram associated with a LYSO crystal
of 6 cm radius is much wider than the others. The reason for that is the assumption of linear
contributions of the means on the front and back readout array to the reconstructions as shown
in Formula 7.3. This does not quite match the truth here. The remaining residues contribute
significantly to the width of the distribution.

A Gaussian curve has been fitted to all distributions. The standard deviations are given in the
legend. A discrepancy between fit and data can be seen by bare eye for the crystal of 6 cm radius.
Nonetheless, a resolution of (7.3± 0.1) mm is suggested for this crystal and method.

The other distributions are described rather well with a Gaussian function. For a LYSO crystal
with a radius of 3.5 cm a resolution of 3.6 mm in x and 3.8 mm in y is observed for the Hama-
matsu S13360-6025PE SiPM and a resolution of 3.5 mm in both directions for the sensL MicroFJ-
60035TSV SiPM. For a crystal of 7.5 cm radius coupled to Hamamatsu manufactured SiPMs provide
3.9 mm resolution in x direction and 4.0 mm in y direction.

Although it is not required for the geometrical cut the z-component of the position may be
crucial for other purposes and thus is reconstructed. The z-coordinate of the event affects the time
difference detected between the readouts and the number of photons collected by each SiPM array.
Thus both quantities provide useful information that can be used for the reconstruction of the
z-position.

The method easiest to understand and most straight forward to implement is based on the
time difference between front and back readout. The further away the event happens the longer
the photons take to arrive at the SiPMs. As a consequence, the z-coordinate should be a linear
function of the time difference. The reconstruction uses the formula

zrec = a(tf − tb) + b (7.4)

where a and b are parameters determined by the fit method provided by the ROOT framework
[100] and tf,b stand for the estimated time for the front respectively back readout. This method is
represented by the black histogram in Figure 7.9a for a LYSO crystal of a radius of 3.5 cm and a
length of 16 cm.
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Another method is based on the charge only. Observations with scintillating fibres [101] suggest
a strong, linear correlation between the z-coordinate and the logarithm of the charge ratio between
the two readouts. The corresponding reconstruction uses the formula

zrec = a ln

(
Nf

Nb

)
+ b (7.5)

where again the parameters a and b are estimated by ROOT’s built in fit method and Nf,b stand
for the number of collected photons on the respective readout. The results are shown by the blue
histogram in Figure 7.9a. It can be seen that the resolution is worse compared to the previous
method relying on the time difference.

A more advanced method combines the information obtained from the time with the information
obtained from the charge. As seen in the previous section, there are some deviations from the 1D
model of light propagation. The subsequent time reconstruction on the back side triggers on photons
reflected from the walls and not on the direct light. As a result the simple assumption of the linear
dependence on the time difference may need adjustment. As a consequence, the following formula
has been used for the reconstruction

zrec = atf + btb + c ln(Nf) + d ln(Nb) + e (7.6)

where the five parameters a, b, c, d and e are estimated based on an individual fitting algorithm.
The results are referred to as “Best Linear” and represented as green histogram in Figure 7.9a.

This method has a massive drawback though. It accesses the times tf,b directly which cannot be
repeated in the real experiment as the true time of the initial γ is unknown. In the experiment one
has to do with the relative time between auxiliary detector and the main LXe calorimeter. This
will introduce an additional uncertainty based on the 50 ps resolution of the XEC. It was taken
care of by smearing the obtained times accordingly. The results are represented in Figure 7.9a as
orange histogram and referred to as ”Best Linear (Smeared Time)” in the legend.

In Figure 7.9b the performance of this method for the different geometrical configurations already
used above are shown. Hardly any differences can be seen in the distributions for crystals of
different radii coupled to Hamamatsu S13360-6025PE type SiPMs. Fitting provides statistically
equal results between 6.1 mm and 6.2 mm for the standard deviation. The individual values are
given in the legend. A slightly better resolution is obtained for the LYSO crystal coupled to the
MicroFJ-60035TSV SiPM manufactured by sensL. Here a z-resolution of around 5.4 mm is obtained.

7.4 Geometrical Cut
For events close to the lateral regions of the scintillating crystal, the estimated
resolutions are worse, spoiling the overall performance. This section explores
the potential use of geometrical cuts to reject the most lateral events and to
improve the resolutions of the photon variables for the remaining events.

Another point to be addressed are the energy and time resolutions achievable once the photons
are spread out. In a first step, a set of simulations has been done using a LYSO crystal of 3.5 cm
radius and 16 cm length. Different divergences were chosen, such that all photons hit within a
circular area given by the radius rb around the crystals centre on the front face. The obtained
results for energy and time resolution are represented in Figure 7.10.

The first thing to notice is the drastic decrease in detection efficiency when the entire front face
of the crystal is illuminated. This can be seen from the orange histogram in Figure 7.10a where the
lowest bin with no detected photons is the most populated. Divergent photons that enter the crystal
close to the edge need to pass a drastically reduced amount of material before leaving the crystal
through its lateral side. Due to the shorter distance in the LYSO the probability of an interaction
is reduced and so is the detection efficiency for these events. Nonetheless these undetectable events
make up less than 8 % of the total amount. This suggests a detection efficiency of above 90 % in
this case.

To extract the resolutions the data of the detected number of photons is fitted with a tailed
Gaussian as given by Equation 7.1 and the obtained distribution of the entrance time t0 is fitted
with an ordinary Gaussian function. As the radius where the incident photons can hit the crystal
increases the extracted resolution decreases. This effect becomes more significant as the outermost
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Figure 7.10: The effect of a spread out distribution of photons incident on a LYSO crystal of the
available size R = 3.5 cm , L = 16 cm. Both energy and time resolutions start to worsen once the
incident photons start to hit near the edge of the cylindrical crystal.

events approach the edge of the crystal and get closer than the Molière radius of RM ≈ 2.1 cm of
LYSO.

A possible way to tackle this issue on the hardware level is to place a lead collimator in front of
the assembled detector prototype. Incident photons that would hit the outer parts of the crystal’s
front face are absorbed in the collimator instead. As a consequence the detection rate gets reduced.
This affects the CEX calibration of the LXe calorimeter adversely as the auxiliary detector serves
the primary purpose of asserting time coincidence and back to back geometry of the two photons
emitted by the π0 decay.

A more sophisticated approach is to take advantage of the granularity of the readout arrays.
All events get recorded for the CEX calibration purpose. In a second step for the prototype
characterisation a selection is applied on the software level to select only events that are well
contained and don’t spoil the resolution due to leakage effects.

On the one hand it is possible to reconstruct the position (x, y, z) of the event using the methods
described in the previous section and then select only events at a certain distance from the edge. For
obvious reasons, this requires the determination of the reconstruction parameters needed for the x
and y direction first. In total seven parameters have to be fixed (three for x reconstruction, three for
y reconstruction and one for the radial cut). The advantages are that the position is reconstructed
in parallel respectively the cut is implemented easily if the position is already reconstructed.

On the other hand it is possible to discriminate directly on the patterns observed in the readouts.
They differ significantly depending on the position of the first conversion. Two of the possible
pattern styles are shown in Figure 7.11. The upper image (Figure 7.11a) shows a typical pattern
for an event in the central region of the crystal. Most of the photons are collected in the central
region of the SiPM array on the front readout and on the back readout.

The lower image (Figure 7.11b) shows the pattern for an event in the outer region of the crystal.
Most of the photons stay in the outer region of the SiPM arrays and illuminate parts of a ring. The
distribution is reminiscent of the illuminated shape on the bottom of a pan when the sun shines
diagonally into it. As a matter of fact, both shapes have their origin in the same phenomena:
reflection of light on a curved surface. In cases where the event happens very close to the front
readout, there is but one bright spot and the pattern is only observable on the back readout.

The easiest possible way to distinguish them is by the radial distribution of the photons. Central
events (Figure 7.11a) have their photons distributed uniformly or with a tail towards higher radii.
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Figure 7.11: The spatial distribution of the detected photons on the readout arrays. Each square
represents one SiPM. Yellow coloured SiPMs collected the most photons in the given array and
event. Blue coloured SiPMs collected the least. The scales are not comparable.

Events from the outer part (Figure 7.11b) have most of their photons at larger radii with clearly
observable tails towards lower radii. This has an immediate impact on the distribution’s skewness.

The transition however is somewhat continuous and thus the cut has to be carefully selected
to find a good trade-off between cutting away events with an adverse effect and not cutting good
events. The cut on the radial skewness has to be adjusted for each crystal geometry. This method
requires only one parameter for the cut to be estimated.

For two of the considered setups the result of the geometrical cut is displayed: For the case of
a LYSO crystal of 3.5 cm radius and 16 cm length coupled to S13360-6025 SiPMs manufactured by
Hamamatsu the obtained distributions are shown in Figure 7.12. For the case of a LYSO crystal of
7.5 cm radius coupled to the same SiPM type are shown in Figure 7.13.

For both setups a cut based on the reconstructed radius is shown in green, a cut based on the
skewness is shown in blue and a cut based on the MC truth value of the radius is shown in orange.
On the left side, the radial distribution of the cut events is displayed: Events passing the cut are
displayed in solid colour while events failing the cut are displayed in the hashed histogram. They
sum up to the black curve. On the right side the distribution of the collected photons is displayed
for the events passing the cut (lighter hue), for the ones that fail the cut (darker hue) and for all of
them (black).

In addition to the two cuts discussed above, a cut based on the MC truth value is shown in
orange on the bottom of each plot. This serves as reference and rough estimate of the resolutions
obtainable with a collimator in front of the crystals front face. One can observe that the cuts based
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(c) Cut based on the MC truth radius

Figure 7.12: The effect of a geometrical cut shown for the available LYSO crystal (R = 3.5 cm,
L = 16 cm) coupled to S13360-6025 SiPMs. On the left side, the radial distribution as obtained
from MC truth values for events passing the cut is shown in the solid filled histogram. The ones
failing the cut are represented by the hatched, stacked histogram. On the right side, the number
of collected photons for both groups and the combination of the two is shown.
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(c) Cut based on the MC truth Radius

Figure 7.13: The effect of a geometrical cut shown for a larger LYSO crystal (R = 7.5 cm, L = 16 cm)
coupled to S13360-6025 SiPMs. The same plots are displayed as already shown in the previous one.
It can be seen clearly, that again both cuts lead to the desired goal. One is able to remove the
events close to the edge of the crystal. The efficiency of the cut increased drastically compared to
the smaller, available crystal.
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on the skewness or the reconstructed radius perform very similar to the cut on the MC truth values.
For the smaller crystal the aim is to recover the resolutions obtained with a reduced area of

impact of 2 cm radius as discussed above in Figure 7.10. The results are displayed in Figure 7.12.
An efficiency of roughly 30 % was estimated for all of the cuts. This corresponds to the fraction of
events inside the desired sensitive area.

By fitting the obtained distributions for the number of detected photons with a tailed Gaussian
function as given by Formula 7.1 one can estimate the resolution in terms of energy. The obtained
resolution after applying a geometrical cut is around 2 %. This corresponds to the resolution
obtained for an area of impact with the radius of 2 cm as shown above in Figure 7.10a.

Comparing the larger crystal of radius R = 7.5 cm to the available one, it can be seen imme-
diately, that the solid coloured area increases. This is due to the fact that the efficiency of the
detector increases as the fraction of the volume further away from the edge of the crystal increases.
An efficiency of around 70 % is estimated.

Again both of the cuts lead to the desired result of removing the outermost events in the crystal
which then leads to an improved resolution for the inner events. The events on the inside are now
competitive with the resolutions already obtained for the point-like distribution of the incoming
photons.

This suggest that once larger crystals are commercially available, it would become feasible to
build a detector from either LYSO or LaBr3(Ce) crystals coupled to SiPMs. Using a geometrical
cut, one can get rid of events close to the edge where a lot of energy leakage has to be expected.

7.5 Waveform Simulations and Noise Effects
This section treats advanced waveform simulations for all channels. This in-
cludes the full data acquisition electronics. The effects on the previously men-
tioned reconstruction methods are discussed.

So far, the waveform was only considered for a selected few channels. Each photo-electron was
assumed to produce an identical response and noises were neglected. However, all these factors are
potential sources of uncertainties on the final resolutions. For these reasons, some more advanced
simulations including the waveform generation for each channel were performed.

To generate the full waveform the following assumptions were made for the response to one
photo-electron: The rising edge is described by a Gaussian shape with a rise time of 0.6 ns as
standard deviation. The maximum is reached 1.8 ns after the photon hits. After the maximum, an
exponential decay with a characteristic decay time of 2.8 ns is assumed. The total amplitude for
one photon is given by 1.0± 0.1 r.u. where a Gaussian distribution of the amplitude is presumed.

To obtain the full waveform, the responses for all photo-electrons are summed up distributed
in 1024 bins representing a 200 ns time window as given by the DRS chips on the WaveDREAM
board [76]. In addition, some random noise is added to each of the bins. It is assumed to follow a
Gaussian distribution with a standard deviation of 0.5 r.u. for the low noise scenario, 5 r.u for the
medium noise scenario and 10 r.u. for a high noise scenario. The low noise scenario assumes ideal
conditions. The medium scenario corresponds to a pessimistic assumption for the development of
the electronics, recently proven too pessimistic. The high noise scenario corresponds to a highly
exaggerated situation.

For each of the channels, the charge associated to the waveform is calculated as the integral over
the whole time window, i.e. the sum over all bins of the waveform. The time for each waveform
is estimated by the use of the constant fraction method using a threshold of 15 % of the total
amplitude.

Note that this method may produce bad results in case of low signal and high noise conditions
where the random noise easily exceeds the threshold. To counteract this issue, the sum of all
waveforms on each face of the crystal is calculated. Then the constant fraction method is applied
to this summed waveform yielding a time for the front side respectively for the back side.

To estimate the time resolution, the same formula as in the previous Section 7.2 is used.

t0 =
(n− 1)tf + (n+ 1)tb − L

c (n2 + n)

2n
(7.7)

The only difference is how the times tf and tb in this equation are estimated. Now that all waveforms
are available, the following algorithms are used and displayed in Figure 7.14.
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Figure 7.14: Comparison of different time algorithms under different noise conditions. All simulation
data is obtained for the configuration of Hamamatsu S13360-6025PE SiPMs coupled to a LYSO
crystal with R = 3.5 cm, L = 16 cm. Description of the individual algorithms is in the text.

The first option labeled ”all” averages the obtained constant fraction times of all channels
associated with one face. It uses the corresponding charges as weights. These results are represented
in black colour in Figure 7.14. One can observe that this works rather well in the low noise high
signal environment. However, as soon as the noise gets higher, this method ceases to work as can
be seen from the medium noise scenario. This method is not used in the high noise scenario as it
completely fails to produce results within reasonable bounds.

The second option labeled ”square” is based on the previously used ”Average of C.F.” method
described in Section 7.2. It finds the one channel with the most collected charge on each side and
then averages the times over all channels inside a square centred on this channel. The results from
this method are represented in red colour in Figure 7.14.

The third method labeled ”intense” selects simply the ten channels on each side providing
the most charge. For each side, the time is estimated as the weighted average of the constant
fraction times weighted by the collected charge in said channel. The results are represented in blue
colour. As can be seen from Figure 7.14, the ”intense” and the ”square” method perform almost
identically. This can be explained by the fact, that the brightest spot on each face is a somewhat
localised phenomena - as a consequence the channels selected for the two methods often correspond
to each other.

Another attempt was made by using the ten channels which provide the earliest times. This
method is labeled ”first”. Again the times obtained are averaged and weighted by the collected
charge. Although this method looks rather promising on first sight, the problems start once larger
crystals are trialed where the number of channels is increased drastically. As a similar amount of
light now spreads over many more channels, the signal in at least some of the channels will be
lowered. As soon as the noise level surpasses the constant fraction threshold, arbitrary times are
obtained from this algorithm. This effect is not yet visible in the simulations for the available LYSO
crystal as represented in Figure 7.14.

The most promising algorithm so far was the so called ”sum” method. Here, the waveforms of



86 CHAPTER 7. UPGRADE OF THE CEX AUXILIARY DETECTOR

800 900 1000 1100 1200 1300 1400 1500 1600

3
10×

q(a.u.)

0

20

40

60

80

100

120

140
c
o

u
n

ts
Low Noise (0.5 pe)

 = 0.0167(5) µ/σ

Med Noise (5 pe)

 = 0.0168(5) µ/σ

High Noise (10 pe)

 = 0.0171(4) µ/σ

Charge

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
t_0 (ns)

0

100

200

300

400

500

600

700

800

c
o

u
n

ts

Low Noise (0.5 pe)

 = 0.0260(2) nsσ

Med Noise (5 pe)

 = 0.0517(4) nsσ

High Noise (10 pe)

 = 0.0855(6) nsσ

Time

40− 30− 20− 10− 0 10 20 30 40
 x (mm)∆

0

50

100

150

200

250

300

c
o

u
n

ts Low Noise (0.5 pe)

 = 2.38(5) mmσ

Med Noise (5 pe)

 = 2.37(6) mmσ

High Noise (10 pe)

 = 2.46(5) mmσ

x Difference

40− 30− 20− 10− 0 10 20 30 40
 z (mm)∆

0

20

40

60

80

100

120

140

160

180

c
o

u
n

ts Low Noise (0.5 pe)

 = 4.42(8) mmσ

Med Noise (5 pe)

 = 5.29(14) mmσ

High Noise (10 pe)

 = 5.7(2) mmσ

z Difference

Figure 7.15: Effect of the noise on the reconstruction variables energy, time and position. Three
different noise scenarios are considered as described in the text.

all channels get summed up to form a collective waveform for the front side and another one for
the back side. The constant fraction method is then applied to these sums. The obtained results
are represented in green in Figure 7.14.

It is observable that the ”sum” method is more resistant to noise compared to the other methods
in this section. Based on these results it was decided to continue only with the sum method. Any
further reference to time refers to this method.

In a second step, the effect of the noise on the reconstructed variables energy, time and position
was investigated. For this purpose it is assumed, that the energy is proportional to the total charge
collected. The time is estimated in the way mentioned above and the positions are estimated based
on the algorithms mentioned in the previous Section 7.3.

The most important results are represented in Figure 7.15 where a LYSO crystal with R =
3.5 cm, L = 16 cm coupled to Hamamatsu SiPMs (S13360-6025PE) is considered. One can observe
that the charge distribution for this configuration is unaffected by an increased noise level. The
same basically holds true for the x difference between MC truth and reconstructed value.

This appears reasonable as the signals are rather high compared to the amount of noise expected.
Furthermore, the reconstruction of charge and x position relies on the integrated charges only,
making them somewhat more resilient to the Gaussian distributed noise. This is due to the fact,
that the effect of the noise scales with the square root of the number of bins used in the integration
while the charge is estimated as the sum over all channels.

On the other hand the noise has significant impact on the time reconstruction. The time estimate
as used in the current algorithm relies basically on three bins of the summed waveforms: The bin
with the highest amplitude defines the threshold and the two bins at the crossing are used to extract
the time. Now that the constant fraction method includes the calculation of differences between
the values of these bins, the relative uncertainties get increased. This eventually results in the large
effect observed in the top left histograms in Figure 7.15.

Furthermore an effect of the noise on the reconstructed z position is observed as well. This
originates from the fact that the reconstruction of the z position adapted from Equation 7.6

zrec = atf + btb + c ln(Qf) + d ln(Qb) + e (7.8)

relies on the reconstructed times ti and the reconstructed charges Qi. In this equation, the recon-
structed times are affected by the noise, the charges are not.
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Noise a b c d e
low 104 27 53 −57 −512
medium 9 −9 −265 254 131
high 0.5 −0.2 −307 296 134

Table 7.3: Parameters for z reconstruction obtained from the first 20 % of the data for the available
LYSO crystal (L = 16 cm, R = 3.5 cm) coupled to Hamamatsu SiPMs.

By opening the box, one finds values similar to the ones given in Table 7.3 for the parameters.
These values are based on 20 % of the dataset obtained for the available LYSO crystal (L = 16 cm,
R = 3.5 cm coupled to Hamamatsu SiPMs. Fluctuations ofO(1) are observed by selecting a different
set of equal size. Larger fluctuations appear for smaller sets.

Despite the fluctuations, the tendency is clearly observable: As soon as the noise increases, the
parameters a and b associated with the times are decreased while the parameters c and d associated
with the charges are increased. This implies that in the case of high noise, the reconstruction relies
more on the reconstruction of the noise-insensitive charges and less on the noise-sensitive times.

7.6 Light Yield Studies

This section includes studies of hypothetically modified light yields. These are
ultimately used to assess the potential benefits of the higher light yield of Bril-
LanCe.

As mentioned before in Table 7.1, BrilLanCe convinces by its high light yield and fast decay
time. LYSO on the other hand features a high density, short radiation length and smaller Molière
radius and thus better energy containment. To determine which of these characteristics is more
beneficial to the final resolution, alternative values for the LYSO light yield were tested.

For each configuration, the obtained variable distributions were fitted with the corresponding
function. This corresponds to a tailed Gaussian for the charge distribution and an ordinary Gaussian
for position and time. For the position resolutions an additional Gaussian is used to fit the tails.
These are in general rather small yet still enough to disturb a fit with just a single Gaussian.

The results obtained are displayed in Figure 7.16. The data was acquired for a LYSO crystal
coupled to the sensL MicroFJ-60035TSV type SiPM. The generation and analysis of the waveform is
included and the low noise scenario considered. For the available crystals, the radius is R = 3.5 cm
and the length is L = 16 cm. For the large one, the values are R = 7.5 cm and L = 16 cm.

For the charge resolutions one can observe that it saturates at a light yield of around 30 ph/keV,
probably even earlier. This corresponds to the real light yield of LYSO. Thus one can conclude
that the charge resolution at energies O(50 MeV) does not significantly benefit from the higher light
yield of lanthanum bromide and the light yield is not a limiting factor at this point. The results
however confirm that the geometry itself is.

The observed behaviour for the time resolution shows a different picture. There is an obvious de-
crease of the uncertainties with an increased light yield. On the whole scale, the changes due to light
yield exceed the geometrical factors clearly. Even when going from 30 ph/keV (LYSO) to 60 ph/keV
(lanthanum bromide: 63 ph/keV) a significant increase of the time resolution is observable.

This suggests that the time resolution would in principle favour an increased light yield. The
previous comparison between LYSO and LaBr3(Ce) in Section 7.2 appears to support this. However,
it has to be considered that the time reconstruction algorithm was adapted to the new situation
where all waveforms are available. A comparison with the available and large crystal is given in
Figure 7.17. A comparison with the previous results in Section 7.2 shows that mainly LYSO profits
from the updated time reconstruction algorithm based on the sum of all waveforms. As a result,
both materials provide a time resolution around 30 ps.

Considering this additional information, the scales could tilt to either side in terms of time
resolution. Detailed simulations and probably dedicated time reconstruction algorithms are required
to chose the better option if one is only interested in time resolution.

For the x-position resolution hardly any dependencies on the light yield are found as can be
seen in Figure 7.16c. For the two datasets associated with a point-like beam distribution, the
reconstruction parameters obtained form the spread distribution are used and then compared to
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Figure 7.16: The effect of the light yield on the reconstructed variables. The resolutions for charge
and x-position are already reaching their limits at the LYSO light yield. The z-position and time
resolution increases when increasing the light yield. Error bars show uncertainties of the fit.
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Figure 7.17: Time Resolution Comparison between LYSO and LaBr3(Ce). Both materials provide
excellent resolutions. The updated time algorithm based on the sum of all waveforms on each side
has been used.
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the MC truth value. For each light yield and crystal size, individual parameters were estimated for
the reconstruction.

For the training it was observed that these parameters are susceptible to the underlying data
and vary from light yield to light yield. In theory, this should not happen as these are of pure
geometrical nature and only the center of the charge distribution enters the reconstruction. The
light yield however determines only the amount of photons created but not their distribution.

The reconstruction of the z-position follows a similar behaviour as the time resolution. This
is not further astonishing as the z-position reconstruction relies on the observed times and the
charges collected at each side. However, the improvement for light yields above 30 ph/keV is
smaller compared to the time as the z-position uses the charges to some extend which are already
stable.

In the end one can say that the resolutions in charge and x position are not limited by the light
yield of LYSO. Some minor improvements can be achieved in terms of z-position. For the time
resolution there are some improvements due to the light yield yet a direct comparison to cerium
doped lanthanum bromide does not hold clear evidence for a better performance of LaBr3(Ce).
Depending on the concrete application either of the materials could be the one with slightly better
timing resolution.

Concerning the MEG II experiment where good resolutions are mandatory to reject the back-
ground, as can be taken from the MEG II proposal [71], the accidental background rate Racc can
be estimated by the following simple formula:

Racc ∝ R2
µ ·∆E2

γ ·∆Pe ·∆Θ2
eγ ×∆teγ (7.9)

Here the muon beam rate Rµ and the momentum resolution of the positron ∆Pe are of no further
interest. The properties of a potential γ calorimeter would enter through the resolutions in the
photon energy (∆Eγ), in the relative angle between positron and photon (∆Θeγ) and in the relative
time (∆teγ).

This implies that the charge resolution enters through the energy resolution with a power of two,
the (x, y) position resolutions enter through the relative angle with a power of two as well and the
time resolution enters linearly. Thus in the case that a decision has to be made, a future calorimeter
benefits more from improved charge and position resolutions rather than time resolution. With this
in mind, LYSO provides currently the better option than lanthanum bromide.

Based on these results, the decision was taken to build a prototype using a LYSO crystal with
a diameter of 7 cm and a length of 10 cm. The shorter length is chosen as the manufacturer Epic-
Crystal [102] could not guarantee a 16 cm long crystal without defects [103]. As the light yield and
the PDE was found to be not the major limiting factor, the decision to go with the Hamamatsu
S13360-6025PE SiPM was taken. While the constituents were already delivered, the assembly was
not yet completed at the time this thesis was completed and thus no actual results can be presented.

7.7 The Ideal Situation

Assuming no further restrictions in terms of crystal size, this section deals with
the expected performance of the scintillating materials for crystals that easily
contain the whole shower. Therefore, crystals with a length corresponding to 15
radiation lengths and a radius of 10 Molière radii are considered.

The ultimate goal to be achieved is to build a calorimeter for future cLFV experiments. For this
purpose, larger areas have to be covered with active material. This triggers the question on the
performance of larger crystals. Therefore, LYSO and LaBr3(Ce) crystals of 15X0 length and 10RM

radius are considered in the following. This corresponds to a LYSO crystal with L = 17 cm and
R = 20 cm and to L = 31.5 cm and R = 23 cm for LaBr3(Ce).

The results are displayed in Figure 7.18. Both materials provide excellent resolutions in terms
of all the interesting variables. In an ultimate scenario with a hypothetical crystal size not yet
available, the geometrical factors are not as limiting as for the smaller crystals. Therefore a better
energy resolution can be obtained for BrilLanCe as it would be profiting from its better light yield.

This theory gets supported by the fact that the sensL SiPMs perform better than the Hama-
matsu ones as sensL SiPMs provide a significantly higher PDE. Furthermore, one can see that the
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Figure 7.18: Resolutions obtained for crystals with L = 15X0 and R = 10RM.
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Configuration Resolution σ1/µ Peak Position µ σ1/
√
µ

LYSO + sensL (0.242± 0.004) % 3.54× 106 4.56± 0.08
LYSO + Hamamatsu (0.334± 0.005) % 1.56× 106 4.18± 0.07
LaBr3(Ce) + sensL (0.196± 0.004) % 5.79× 106 4.72± 0.09
LaBr3(Ce) + Hamamatsu (0.304± 0.005) % 2.59× 106 4.90± 0.08

Table 7.4: The products of resolution and peak position. If the resolutions obtained were limited
by the light yield only, the values in the last column were constant. The variations are too large
for the light yield to be the only limiting factor.

resolutions increase as the peak position in terms of collected charge increases - independently of
the crystal considered in that specific configuration.

In the ideal case where the light yield is the only limiting factor, the resolution is determined
by the photon statistics and thus follow an N−

1
2 dependency. As the charge is expected to be

proportional to the number of photons, the value of σ/
√
µ should turn out constant if the light

yield is the dominant limitation.
The obtained values displayed in Table 7.4 however exhibit quite some fluctuations amongst

each other. A standard deviation of around 0.27 is observed between them. This is roughly 3.3
times the uncertainty in each value, suggesting that at least some of them are inconsistent with a
constant value and the hypothesis that all the variations originate from the photon statistics only.

Looking at the time distribution in Figure 7.18b, one can observe on the one hand that the
position of the distributions for LYSO and LaBr3(Ce) are shifted by a constant offset. This offset
comes from the theory based formula used for the time reconstruction and is of no significance as
it will be taken care of by the time calibration in any detector.

Furthermore, the LaBr3(Ce) distribution exhibits a tail towards lower values as already observed
in earlier time distributions for this material. They are none the less fitted with the same function
as the LYSO to get comparable values, keeping in mind that an advanced analysis algorithm may
increase the time resolution for LaBr3(Ce). Keeping this in mind, these two crystals provide similar
resolutions for the time.

Considering the x position reconstruction, LYSO seems to perform better yielding resolutions
below 4 mm. LaBr3(Ce) on the other hand provides resolutions just above 5 mm. The first notion
to explain this goes in the same direction as what has been seen in the previous chapter on the
position reconstruction: Although a linear approximation is used, there are significant higher order
terms that were neglected.

The residues are plotted in Figure 7.19. Although one can observe that some non-linear terms
remain, they cannot explain the observed difference in resolution. In fact, the data for LaBr3(Ce)
provides a larger spread in the residues even when considering a specific value for the centre of the
front charge distribution. The charge distribution obtained from the back behaves in a very similar
fashion.

Thus the nature of this deviation in terms of x position resolutions remains unclear for the
moment. Likely not due to the finite size of the shower as the Molière radii are closer together than
the radiation lengths. If this were the true nature, a similar effect should be observable from the z
deviations. These however do not show any preference in terms of scintillator material or sensors
used - at least not in the studied configurations.

To sum up the ideal case, cerium doped lanthanum bromide provides better charge resolution
in the studied configuration. LYSO however provides a better resolution in terms of position
perpendicular to the impinging direction. The charge resolution directly determines the energy
resolution ∆Eγ in Equation 7.9. The position resolution enters together with positron variable
resolutions through the resolution ∆Θeγ in the relative angle between them.

Both terms enter the background rate for the µ→ eγ search in quadratic form so it is too early
to conclude which material performs better in the very end for MEG-type experiments. For other
experiments however, one of the resolutions may easily outweigh the other. The Majoron search
for example aims to find evidence for a decay µ → e + X where X represents an yet unknown,
undetectable particle. It’s basic signature consists of a peak on top of the Michel energy spectrum.
At this point, only the energy resolution is of importance as only the electron can be measured.
Thus it is too early for a final conclusion about the material best suited.
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Figure 7.19: Deviations of the reconstructed x-Position from the position of first interaction in
dependencies of the centre of the charge distribution on the front x̄f . Similar dependencies are
observed for the back side.
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Chapter 8

The Search for the Fifth Force

8.1 Description of the Large Chamber Setup

In order to perform the fifth force search with the MEG II apparatus, minor
adaptations are required. First of all, a different target needs to be manufac-
tured. While different approaches were considered, only the large chamber setup
is presented here. This chamber replaces the lithium borate target used for cali-
brations and the corresponding insertion system.

An alternative approach to a carbon fibre chamber about the same size as the proton beam pipe is
a much larger chamber of about 13 cm to 14 cm radius and 30 cm total length. This configuration
is depicted in Figure 8.1. The carbon fibre structure is planned to have a width of about 200 µm.
The target structure is mounted on an arm inside the chamber.

The inside volume is directly connected to the proton beam pipe from the Cockcroft-Walton
(CW) accelerator and consequently evacuated. The outer radius of the construction allows for
a minor separation from the inner Mylar foil of the CDCH. This gap is filled with air. The in-
sertion system usually used in combination with the CW beam line is completely removed. This
automatically forces any measurement with this setup to take place during the long maintenance
shutdowns of the main accelerator at the beginning of each year yet reduces the amount of material
for multiple-scattering of electrons and positrons between target and CDCH.

The target structure is mounted inside the large vacuum chamber. It is kept in position by
an approximately 15 cm long arm at COBRA centre. The target itself consists of a thin layer of
lithium oxide placed on a substrate foil. The substrate foil is supported by a frame with about
1 cm width and an inner radius of around 3 cm. The material for the substrate, the frame and the
target arm are either copper or aluminium. Copper is favoured in terms of heat conductivity while
aluminium is preferable in terms of avoiding multiple-scattering of particles.

Figure 8.1: The Large Chamber setup. A carbon fibre chamber with a radius of about 14 cm and
a length of 30 cm contains the Lithium oxide target. It is attached to an Aluminium ground plate,
that serves as adapter to the proton beam line from the CW accelerator. Image provided by A.
Papa [104].
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Figure 8.2: Invariant mass versus vertex separation d (left) and invariant mass versus total energy
(right). The cuts applied are requesting that the total energy of the pair is within 1 MeV of the
resonance energy (18.15 MeV) (left) respectively requesting that the two vertices are no further
apart than 6 mm (right).

The details of the target geometry are worked out based on the simulations presented in the
following sections. Apart from the different materials, the thickness of the lithium oxide target as
well as the thickness of the support foil have to be determined. Moreover, the optimal orientation
with respect to the MEG II detector has to be found.

8.2 Event Selection in Simulations

This section describes the criteria used to select the reconstructed electron-
positron pairs to be used in the further analysis. Two cuts are used. The first
one requests that the total energy of the pair corresponds to the total energy
of the beryllium resonance. The second one requests that the tracks of the two
particles intersect on the target plane.

The signal to be reconstructed consists of an electron-positron pair emitted from the decay of an
X-Boson. Their invariant mass corresponds to the X-Boson mass expected to be around 16.7 MeV.
A well reconstructed event consequently consists of an electron track and a positron track that
originate from the same vertex. Additionally, the sum of their respective energies has to add up to
the energy of 18.15 MeV of the excited beryllium resonance.
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Figure 8.3: Invariant mass Mee distribution for different cuts. “No Cut” refers to the minimal
request of an electron and a positron track reconstructed with some reasonable energy. The “Vertex
Cut” refers to the request that the intersections of the tracks with the target plane are closer than
6 mm. The “Energy Cut” enforces that the total reconstructed energy lies between 17.15 MeV and
19.15 MeV. “Both Cuts” refers to enforcing both conditions in the data selection.

From the pair production through the decay of the X-boson to the fully reconstructed event,
several issues may occur: From the scattering of a particle to the wrong reconstruction of a track.
such bad events contribute to the background and should be discarded. The most obvious and
straight forward requirement for a good event is the reconstruction of an electron and a positron
track with an energy suitable for a particle emitted in such a process.

Plotting the reconstructed invariant mass Mee versus either the reconstructed total energy Etot

or the vertex separation d of the two reconstructed tracks yields Figure 8.2a. In both cases there
is a clear peak representing well reconstructed events with the expected invariant mass (16.7 MeV)
and a vanishing vertex separation or a total energy of 18.15 MeV respectively.

Figure 8.2b displays the same distributions again when requesting that the total energy is within
1 MeV of the resonance energy at 18.15 MeV for the left plot showing invariant mass versus vertex
separation and that the vertex separation is below 6 mm for the right plot showing invariant mass
versus total energy. It becomes obvious that the two cuts are complementary and allow for an
efficient rejection of badly reconstructed events.

The effect on the reconstructed invariant mass distribution is displayed in Figure 8.3. Each
distribution is fitted with a Gaussian, which allows for a crude and fast comparison neglecting
detailed and specific assumptions about a single distribution. Through considering all events for
which a positron and an electron track has been reconstructed with a reasonable energy each, the
blue distribution (No Cut) is obtained. This distribution has significant tails, especially towards
lower invariant masses.

Both cuts work to reduce the tails to some extent, yielding the black (Vertex Cut) curve, for
demanding a vertex separation below 6 mm, or the green (Energy Cut) curve for demanding that the
sum of the energies corresponds to the energy of the resonance. Applying both cuts simultaneously
yields the orange distribution. This removes the tails on both sides almost completely while the
peak is largely untouched. Very similar observations are made for all configurations simulated in
this and further investigations.
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Figure 8.4: Invariant mass distributions for different slanting angles. The efficiency ε refers to the
fraction of events that get fully reconstructed and thereafter pass all cuts. The standard deviation
σ of the Gaussian fit is quoted here as expected resolution.

8.3 Evaluation of Different Target Orientations

In this section, the geometric orientation of the target is discussed. Two quan-
tities are considered relevant for this. First there is the detection efficiency
and second the expected invariant mass resolution near the expected X-boson
resonance.

The target orientation offers two degrees of freedom. On the one hand, an appropriate slanting
angle with respect to the beam axis (z-axis) has to be found. On the other hand, the slanted target
can be rotated around the beam axis itself. For each orientation, an elliptical target configuration is
chosen, such that the lithium oxide layer appears as a circle of 2 cm radius as seen along the proton
beam. This implies that the eccentricity of the target increases the more slanted it is. The active
part of the target is considered to be made of a 50 µm copper substrate with 100 µm of lithium
oxide deposited on it.

The two parameters of interest are the efficiency and the resolution in terms of invariant mass.
The efficiency accounts for the amount of events for which both, the electron and the positron,
reach the drift chamber and get reconstructed in an acceptable manner. The resolutions indicate,
how well the events can be reconstructed.

The obtained spectra for different target slanting angles are represented in Figure 8.4. The



8.3. EVALUATION OF DIFFERENT TARGET ORIENTATIONS 99

10 11 12 13 14 15 16 17 18 19 20
 (MeV)ee M

0

100

200

300

400

500

600

700
 = -90 degΦ

 = 0.0812(9) ε
 = 0.569(6) MeVσ
 = -45 degΦ

 = 0.0808(9) ε
 = 0.572(6) MeVσ
 =   0 degΦ

 = 0.0867(9) ε
 = 0.565(5) MeVσ
 =  45 degΦ

 = 0.0957(9) ε
 = 0.574(5) MeVσ
 =  90 degΦ

 = 0.0961(9) ε
 = 0.566(6) MeVσ

Invariant Mass

Figure 8.5: Distributions obtained for different target rotations. The rotation −90° refers to a target
where the irradiated side points upwards, 90° refers to a downward looking target. A rotation of
0° describes a target facing away from the liquid xenon detector. The other two cases refer to
the intermediate situations. Efficiencies ε refer to the events passing all cuts and the standard
deviations σ are taken from a Gaussian fit.

target is rotated around the Y -axis and the protons are going to be shot at the target from the
positive z-axis as indicated in Figure 8.4b. The positive x-axis faces away from the liquid xenon
detector used in the MEG II experiment.

The efficiencies ε are calculated as the fraction of events that get suitably reconstructed and pass
all cuts. The resolutions σ are extracted as the standard deviations obtained from a simple Gaussian
fit. The results suggest that a slanted target is preferred in terms of efficiency and resolution over
a target aligned along the xy-plane. The situations worsens again if an angle too large is chosen.
An angle between 27° and 45° appears to be most suitable. To simplify everything, a slanting angle
of 45° is chosen henceforth.

The simulation results about the target rotation around the z-axis are shown in Figure 8.5.
The target rotation Φ refers to the rotation with respect to the case considered in the slanting
angle studies. The case Φ = −90° refers to the situation, where the surface irradiated from positive
z-direction faces in upward direction. The case Φ = 0° corresponds to the case where it is facing
away from the liquid xenon detector and the case Φ = 90° refers to a target facing downwards.

Based on these studies, hardly any effect in terms of invariant mass resolution is observed. The
efficiencies however clearly prefer a target facing downwards. The most likely explanation for this
behaviour is the fact, that on the upper part of the drift chamber, there are two sectors missing,
i.e. not able to detect any tracks. Being unable to detect tracks facing that direction immediately
worsens the detection efficiency and consequently the overall efficiency. Based on these results,
the decision to go with a target slanted by 45° facing downwards is made. This configuration is
considered henceforth.
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8.4 Selection of the Target Substrate

This section discusses the selection of the material to place the lithium oxide
layer on. Aluminium for its lower density and copper for its better heat con-
ductivity are considered.

With the fixed target orientation, a decision for a suitable substrate has to be made. For this
purpose, different thicknesses of the substrate are considered. The simulations presented here
evaluate the effect of the target thickness on the invariant mass resolution as well as the efficiency.

The impact on the mechanical aspects as well as the impact on the heat conductivity are dealt
with in separate studies [105]. In a short summary, from these points of view, a thicker target
support structure made of copper is clearly preferred. The lack of an efficient way to remove the
heat produced by the proton beam on the target will result to stress in the target and eventually
to its destruction.

From the reconstruction point of view, the very opposite is preferred. This can be seen from
Figure 8.6, where the simulated results for a 10 µm Lithium Oxide deposited on a copper substrate
of varying thickness is displayed. Both, reconstruction efficiency and achievable resolution in terms
of the invariant mass, improve the thinner the target. Not depicted in this figure is the fact, that
the simulations would prefer an aluminium substrate over one made of copper.

Comparing the limitations from the mechanical point of view to these results based on the par-
ticle physics simulation, a 25 µm copper substrate is chosen as the best option available. Moreover,
a thin lithium oxide layer of around 10 µm is preferable from the reconstruction point of view. Ded-
icated simulations on the interaction of the incoming protons suggest that an even thinner target
of about 5 µm thickness is desirable [105].
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8.5 Estimation of the Runtime
This section describes the resampling process to obtain the expected distributions
under the assumption of IPC background and an appropriate X-boson admix-
ture. It further describes the fitting procedure of these distributions and the
extraction of the significances. This is finally converted to an estimation of the
run time needed to confirm or refute the existence of this new X-boson.

The data obtained from X-Boson and IPC simulations in the invariant mass Mee range between
12 MeV and 20 MeV and with a relative angle Ψee between the electron and the positron track
above 90° is arranged in bins with a size of 400 keV in terms of invariant mass and 5° in terms of
relative angle. These bin sizes are selected to be just below the expected resolutions.

Based on the known branching ratios and the detection efficiencies obtained from simulations,
the chance that an observed event with an invariant mass Mee between 12 MeV and 20 MeV with
a relative angle above 90° is an X-Boson event is estimated to be around 4.6 %. This serves as the
basis for the resampling techniques used to estimate the runtime required to observe an excess with
at least 5σ significance.

For each number of events to be investigated, value pairs (Mee,Ψee) are picked randomly from
the above mentioned distributions with the estimated probabilities. These values are evaluated
using identical binning as described above. Three distributions are considered individually, namely
the distribution of the invariant mass on its own, the distribution of the relative angle on its own
and the correlated distribution of the two. The whole procedure is repeated 100 times for each
number of events selected. One example of these distributions is shown in Figure 8.7. While the
signal excesses are easy to spot in the 1D distributions, a closer look is needed to observe it around
17 MeV and just below 140° in the correlated distribution.

In order to fit the background, the signal window has been set to a range between 120° and 160°
in terms of relative angle and between 15.2 MeV and 18 MeV in terms of invariant mass. Bins that
include data in this range are excluded from the background fit. In this simple model, only one
parameter is used to adjust the scale of the IPC distribution as obtained through the simulation
to the obtained mixed distribution. The distributions for invariant mass, relative angle and the
correlated distribution are fitted and evaluated individually. To fit this one parameter, a likelihood
method based on Poisson likelihoods for each bin is used. In this specific case with just one scale
parameter, this boils down to counting events in all background bins and determining the ratio.

The significance s of an excess is estimated based on the formula

s =
Nsignal√
Ntotal

=

∑
Ni −N IPC

i√∑
Ni

=

∑
Ri√∑
Ni

(8.1)

where Ntotal refers to the total number of detected events, Nsignal = Ntotal − N IPC refers to the
suspected amount of signal events, corresponding to the total number of events minus the expected
number of background events in the excess region. These numbers are obtained by summing the
number Ni of events and the expected number N IPC

i of IPC events in each bin over all bins of the
excess. Note that the difference Ni −N IPC

i corresponds to the residual Ri estimated by the fit.
In the 1D distributions of the invariant mass of the pair respectively the relative angle between

the electron and the positron, the most significant excess is searched, i.e. the set of neighbouring
bins that maximises the value of the significance. An example is shown in the two bottom plots of
Figure 8.8 where the blueish filled region marks the most significant excess observed. This is done
for each of the distributions individually and independently for each of the 100 tries. The average
in terms of significance is then quoted as the expected significance for a certain number of events.

For the 2D distributions, an additional 100 tries were undertaken at the highest number of
events to be resampled. These are used to define the 2D region of bins for which the significance
has to be estimated. For each of the individual runs, the region of the most significant excess is
estimated. For each of these 100 additional tries, a separate region is obtained. The region to
evaluate the significance in the analysis is then defined by the bins that appeared in at least 50 %
of the tries to be contributing to the most significant excess.

This evaluation region is then applied to the same data as used for the analysis of the 1D
distributions. An example is shown in Figure 8.9. On the left side, the resampled data is shown,
binned into bins of 400 keV width in terms of invariant mass and 5° in terms of angle between the
electron and the positron. On the right side, the residuals after subtracting the best background
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Figure 8.7: Distributions in the resampling process. An example using 5300 events is shown. The
X-Boson and IPC distributions refer to the distributions obtained from the respective simulations
and are independent of the number of events. The Mixed distributions are the product of the
resampling. Poisson errors are shown.
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Figure 8.8: The resampled distribution obtained by mixing X-Boson and IPC events (blue) with the
best background fit (green) for invariant mass and relative angle are shown on top. The residuals
are shown on the bottom. The most significant excess is highlighted in blue.
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Figure 8.9: Distribution of the correlated data on the left side, residuals after subtracting the best
background fit on the right side. The red contour marks the evaluation region used to extract the
significance of the X-Boson signal.
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Figure 8.10: Expected significance of the X-Boson excess as function of the run time.

fit is shown. A clear excess can be seen around 17 MeV invariant mass and 140° relative angle,
corresponding to the signature of the 4.6 % admixed X-Boson events. The red contour marks the
evaluation region for the extraction of the significance.

Using the number of hypothetically reconstructed IPC-events used in the resampling process
and the detection efficiency for these events, the total number of IPC events generated can be
estimated and turned into a runtime approximation using an estimated rate for IPC events. The
IPC rate is estimated by M. Meucci to be around 28.9 Hz when running the CW accelerator at
a proton beam current of 1 µA [105]. Previous experiments with the same accelerator and very
similar targets however showed, that the event rate appears to be by a factor 3 lower than expected
for unknown reasons [106]. To be on the save side, an IPC rate of 10 Hz is assumed when turning
event numbers into runtime estimates.

The look-elsewhere-effect is considered by turning the significance obtained from the 1D his-
tograms into a probability to observe an excess as large as the one observed or larger at this given
point. Based on this probability, the probability to observe at least one excess as large as this
anywhere in the distribution is estimated and then turned back into a significance. No such step
is taken for the correlated search, as the evaluation region was set beforehand based on different
resampled datasets and it was just checked, if at that given position an excess can be found.

The significance in dependence of the run time is shown in Figure 8.10. Note that the run time is
given in µA h, corresponding to a measurement time while running at a given proton beam current
delivered by the local CW accelerator. Independent of the analysed distribution, the estimated
measuring time is around 50 h while running the CW accelerator at 1 µA. This time refers to the
measuring time of physics runs only and does not include calibration runs and time to set the
experiment up.

Accounting for these tasks, the time estimate increases to a time of the order of a week or two.
This is still much less than the three months maintenance scheduled for the high intensity proton
accelerator facility at PSI in the beginning of 2022. Thus providing an independent measurement
of the observed beryllium anomaly is feasible at the beginning of next year.



Chapter 9

The Search for the Majoron

9.1 Implementation of Theoretical Models

This section describes the input provided by the theorists, its implementation in
the MEG II simulation code and the subsequent validation of the generator.

In order to estimate the potential of the MEG II apparatus for Majoron searches, proper the-
oretical models are required. For this reason, a close cooperation with the PSI theory group was
formed. Eventually, they performed the calculations and provided tables for the fully differential
cross-section for the Michel decay at Leading Order (LO), Next to Leading Order (NLO), Next
to Next to Leading Order (NNLO) and NNLO plus leading logarithms (NNLOLL) as well as the-
oretical models for the positron spectrum of the µ → eX decay under different mX hypotheses
[66].

These tables contain the functions F (E) and G(E) representing the isotropic respectively the
anisotropic part of the probability density function proportional to

p(E, cos θ) ∝ F (E) + PG(E) cos θ (9.1)

where θ refers to the MEG II polar angle and P = −0.85 is the polarisation of the incoming muon
beam [107].

The predicted energy spectra for Michel positrons are shown in Figure 9.1. Differences become
most obvious towards the kinematic endpoint. While the difference between LO and NLO is clearly
visible, it requires a closer look at the kinematic endpoint as shown on the right in Figure 9.1b to
see the differences between NLO and the more precise predictions. This is the region of highest
interest to search for low mass X candidates. As shown further below, fake signals can easily be
generated if the theoretical predictions are insufficient in this region.
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Figure 9.1: Theoretical energy spectrum for Michel positrons. Predictions for Leading Order (LO),
Next to Leading Order (NLO), Next to Next to Leading Order (NNLO) and NNLO plus leading
logarithms (NNLOLL) are shown.
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Figure 9.2: Theoretical energy distribution and distribution obtained from event generator.

The generator takes care of reading these functions from the corresponding file and taking
appropriate adjustments for bin sizes as well as the desired energy and angular ranges the particles
should be generated in. The energy distribution for the Michel NNLOLL events as well as Majoron
events with mX = 1 MeV obtained by the event generator is shown in Figure 9.2 together with
the theoretical predictions as validation. As can be seen easily, the generator output matches the
theoretical input perfectly well up to statistical uncertainties.

9.2 Characterisation of the Detector Response

The detector response is characterised, discussed and validated that self-
consistent results are obtained. Based on the response an appropriate mass
range is highlighted, where a reasonable Majoron search is feasible. Moreover,
the responses to the Majoron model, the NLO Michel model and the NNLOLL
Michel model are compared. Last, potential systematic effects are discussed.

To characterise the detector response, there are two main quantities of interest. First, there is
the detection efficiency. Second, there is the resolution. In order to estimate both quantities for
further analyses, the full detector simulation of the MEG II experiment was used. Given the detector
geometry, only what is known as the MEG II interest region (70° < θ < 110°, −60° < φ < 60°) is
considered in the following simulations. Unless stated otherwise, simulations associated with the
NNLOLL calculations for the Michel decay are used.

As this search will only make use of single positron tracks, the timing requirements are not
nearly as crucial as for the µ→ eγ search. Thus a well reconstructed track for this search requires
a reasonably reconstructed vector momentum and a cluster in the timing counter. The timing
counter cluster is crucial as it is required for triggering purposes. At this stage a proper matching
between CDCH track and pTC cluster is not necessary.

By comparing the number of events that match the above reconstruction criteria with the total
number of events that was simulated for a certain positron energy, the efficiency is extracted as the
ratio of the two numbers. The efficiency as function of the positron energy is drawn in Figure 9.3.

One can observe an excellent efficiency towards the kinematic endpoint above 48 MeV. The
detection efficiency for positrons below 42 MeV is poor by design. This behaviour is beneficial to
the µ → eγ search as it rejects background Michel positrons on a detector level and thus reduces
pileup in the detectors and the occupancy of the electronics.

If aiming for dedicated measurements in a different positron energy range, this region of high effi-
ciency can be adjusted by tuning the COBRA magnetic field accordingly. For this proof of principle
analysis, only the default magnetic field and positron energies above 42 MeV are considered.

In addition, the Majoron mass mX corresponding to a given positron energy Ee is shown in
Figure 9.3. Comparing this curve to the efficiency, on can already see that the MEG II experiment is
more susceptible to lower masses in the range between 0 MeV/c2 to 30 MeV/c2. The sensitivity will
degrade from 30 MeV/c2 to 50 MeV/c2 and searches for even higher mX will be basically impossible.



9.2. CHARACTERISATION OF THE DETECTOR RESPONSE 107

40 42 44 46 48 50 52
 (in MeV)eE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1∈

40 42 44 46 48 50 52
0

10

20

30

40

50

60 )
2

 (
in

 M
eV

/c
X

m

Efficiency

Xm

Detection Efficiency
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Figure 9.5: NNLOLL spectrum obtained by full detector simulation compared to the convolution
of the theoretical function with the detector response functions.

To estimate the positron energy resolution, the difference between generated positron energy
Esim and reconstructed positron energy Erec is calculated for each well-reconstructed event. This
analysis was performed on the whole energy range as well as three subsets with energies below
48 MeV, from 48 MeV to 51 MeV and above 51 MeV. These cuts were selected to obtain a roughly
similar amount of data in each subset.

The resulting distributions are shown in Figure 9.4. Each of the four histogram is fitted inde-
pendently with the sum of three Gaussians. The black curve (labelled Universal) is obtained by
averaging over the individually fitted results. While the central part containing the vast majority
of the events is rather well fitted, the tails are not described well by the third gaussian.

To ascertain the validity of the estimated efficiencies as well as the fitted detector resolution
functions, these detector response functions were convoluted with the theoretical NNLOLL predic-
tions for the Michel positron energies. The results are presented in Figure 9.5. The convoluted
function was scaled such that the corresponding integrals sum up to the same number of events.

The two distributions match to a large extend. Even the tail at the kinematic endpoint to-
wards the unphysical region above 53 MeV is decently reproduced by the convolution. The only
real shortcoming can be found at the kinematical endpoint itself. For these two bins a potential
underpopulation can be observed for the convoluted function. Thus, sensitivity estimates based on
these bins should be considered only very carefully.

Given the fact that the analysis software for the MEG II apparatus is still in its final phase of
development and the details of the implemented response functions for each subdetector with the
final electronics set up will only be measured later this year in the engineering run, this is deemed
as sufficient to get a preliminary estimate of the order of magnitude of the sensitivity.

In a further step, the detector responses of the NLO Michel model used as default and of the
predicted 1 MeV/c2 Majoron signature are compared. By far the most crucial observation is made,
when the obtained NNLOLL response is fitted with the NLO response and the residuals are then
compared to the Majoron response. This is shown in Figure 9.6.

For easier comparison, both histograms are scaled to the same amplitude. It is obvious that the
residuals obtained by fitting the NNLOLL response with the NLO response look quite similar to a
potential Majoron signal. This underlines the importance of the improved NNLOLL calculations,
which are expected to model the Michel spectrum more accurately than the NLO model. Not
having the NNLOLL model and fitting the measurement with the expected NLO response could
easily create a fake signal if theoretical errors are not considered properly in the analysis. If
considered properly, the sensitivity would be degraded drastically.
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Another issue to be carefully considered are potential systematic effects. Two possible sources
are on the one hand the detailed magnetic field map and on the other hand the material budget
along the positron track. Deviations in the magnetic field map will cause an accordingly deviating
momentum that would match the observed curvature of the track under the assumption of the offset
magnetic field. The material along the positron track causes them to loose some of their energy
and thus the positron as observed in the CDCH has lower momentum compared to the momentum
when it was emitted.

The effect of a 10 keV shift in both directions is shown in Figure 9.7. The histograms are
obtained by using the convolution of the theoretical NNLOLL predictions convoluted with the
detector response which was modified to accommodate the appropriate shift. For most of the
spectrum, there are no clear deviations visible.

However, at the kinematic endpoint, deviations in three bins are observable. Hence the sensitiv-
ity to the existence of the µ→ eX decay over most of the spectrum should be largely unaffected by
a systematic shift. The estimation of the mass mX of the Majoron is however affected in the usual
way. The deviations at the endpoint suggest that the sensitivity for massless or almost massless
Majorons is worsened in case of systematic shifts.

9.3 Estimation of the Sensitivity

The procedures to estimate the sensitivity are discussed. Finally the sensitivity
to the BR(µ → eX) is estimated considering a similar angular distribution as
for Michel positrons. Eventually, the effects of a systematic shift of the absolute
energy scale of the detector are discussed and their impact on the sensitivity
estimated.

To estimate the sensitivity of the MEG II apparatus to the potential µ → eX decay, the
convoluted functions for the detector response are used in order to get a smoother result that
avoids amplifying fluctuations that occurred during the full detector simulation. Moreover, based
on the expected width of the Majoron peak, the data is binned with a bin width of 125 keV.

As a first and proper approach, the Feldman-Cousins (FC) method has been used to estimate
the sensitivity [108]. In a more detailed way, the ROOT [100] Class TFeldmanCousins was used
to estimate an upper limit for a given number of events under an expected number of background.
The sensitivity is then estimated following the approach described by Feldman and Cousins through
calculating the average upper limit to be expected from an ensemble of hypothetical experiments.

Given that the number of events in each bin will be large, their distribution is approximated
by a Gaussian. To keep the computational effort within limits, the upper limits were evaluated
for eleven discrete points evenly distributed within three standard deviations from the expectation
value of no Majoron signal.

A first set assuming no systematic effects and a total of 106 reconstructed events is shown in
Figure 9.8. As it soon became obvious that the computational power required for the full blown
FC analysis is immense, the approximation

N̄ i
U.L. ≈ 1.76

√
N i

BG (9.2)

was used to estimate the average upper limit on the number N̄ i
U.L. of signal events in bin i given an

expected number N i
BG in that bin. The number 1.76 was obtained by fitting. A direct comparison

shows, that the approximation appears to be accurate on the order of 1 %. This is deemed more
than sufficient as the goal is an order of magnitude estimate of the sensitivity to estimate if MEG
II can provide a competitive result on BR(µ→ eX).

Using this approximation, the expected sensitivity is estimated for up to 109 events. The results
are shown in Figure 9.9. Note that these sensitivities do not yet consider any kind of systematic
effects, i.e. they assume a perfectly well calibrated and understood detector. As expected, the
sensitivity worsens for higher Majoron masses mX corresponding to lower positron energies below
45 MeV.

Moreover, the bin width increases towards lower mass mX . This is due to the function converting
positron energies to Majoron masses. Each bin corresponds to the uniform 125 keV bin width in
terms of positron momentum. This also implies that the estimated sensitivities below 8 MeV/c2
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Figure 9.10: Estimated sensitivities without systematic effects and assuming systematic effects up
to 10 keV. A number of 108 reconstructed events are assumed.

should be considered really carefully as these points correspond to bins at the kinematic endpoint
where modelling uncertainties are largest and a systematic shift of the energy reconstruction has
the largest impact. Nonetheless, this simulation shows that for about 107 to 108 reconstructed
Michel events a competitive sensitivity for BR(µ→ eX) can be achieved.

In a final step of this feasibility study, the effect of a systematic shift as introduced in the
previous section is investigated. To do so for each bin, the maximum of the estimated number of
Michel events amongst the original and the two shifted histograms is considered. Then the full FC
analysis is performed using the unperturbed background assumption. For this analysis a number
of 108 reconstructed events is assumed in consistency with the previous observation. The results
are shown in Figure 9.10.

As expected, a clear degradation in terms of sensitivity is observed for bins with mX < 8 MeV/c2

which are associated with the kinematic endpoint of the Michel spectrum. This underlines the
importance of a proper detector characterisation and calibration of the absolute energy scale as this
is the most effective way to increase the sensitivity in this region.

Moreover, for larger mX , a degradation can be observed as well. Although this was expected,
it is not nearly as bad as for the mX < 8 MeV/c2 region. This can be explained with the shape
of the Michel spectrum in combination with the detector response, specifically with the detection
efficiency. For the region in between, a decent performance and a competitive sensitivity is still
expected.

Note that this study is incomplete, since it considers only the V −A hypotheses, that the µ→ eX
decay follows the same angular distribution as the ordinary Michel decay. This however does not
need to be true and the coupling could be different. Assuming a hypothetical V + A coupling,
one could improve the signal to noise ratio by selecting an appropriate θ range to be analysed.
Investigation in this direction were already initiated inside the collaboration.
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Chapter 10

Concluding Remarks

10.1 The MEG II Experiment

The SM is the most sophisticated and advanced theoretical description of particle physics available
today. It withstood most experimental tests so far and no significant deviation from its predictions
is experimentally observed apart from neutrino oscillations. However, there is cosmological evidence
such as the matter-antimatter asymmetry in the universe and the existence of dark matter as well
as the observations of some anomalies suggesting that the SM is not the final and ultimate theory
of everything. Thus the search for physics beyond the SM continues.

MEG II is the latest experiment searching for the cLFV µ→ eγ decay with a sensitivity down
to BR(µ→ eγ) = 6× 10−14. While measuring this decay provides immediate proof of the existence
of physics beyond the SM, a new upper limit provides constraints on theories thereof.

10.2 Temperature Control in the Detector Hut

In order to achieve this goal, the experiment requires stable running conditions and careful calibra-
tions. In order to stabilise the experimental environment, a PID control based on a Raspberry Pi
was implemented to maintain the detector hut temperature stable. While it performed exception-
ally well during the pre-engineering runs, the true test follows in the engineering run later this year
when the experiment runs with the complete electronic set up.

10.3 Calibrations using Mott Scattered Positrons

The upgrade from MEG to MEG II included significant changes for the spectrometer. As part
of this work, the calibration methods based on Mott scattered positrons was adapted to the new
experiment and improved. While only minimal changes to the simulation code were required, large
parts of the analysis code were changed.

Using a positron beam of 53 MeV, positrons impinging on the muon stopping target will result
in scattered positrons of about the desired signal energy in the spectrometer. Selecting tracks that
take at least two turns inside the CDCH, one can perform the double-turn analysis: analysing both
turns of the same track individually and comparing the results of the separate fits.

Comparing the momentum differences results in a distribution that can be fitted reasonably
well by two Gaussians. For the inner core function, a standard deviation of about 130 keV is
obtained. This value is to be compared to the standard deviation of about 80 keV obtained from
fitting differences between MC truth and reconstructed values. Similar observations are made for
the angular positron variables.

This deviation can be explained by the combination of two factors. First, the double-turn
analysis relies on two fitted parameters instead of one. Second, the double-turn method cuts a
track in half and thus reduces the statistics in both parts. Especially the first turn usually contains
fewer hits than the average fully reconstructed track.

A very similar concept is applied to the pTC, the so called double-cluster method. It searches
for two pTC clusters which are matched to a track connecting them. After correcting for the time
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of flight, the time difference between the measurements of these two individual clusters exhibit
a width with a standard deviation of approximately 50 ps. This is very well consistent with the
previously estimated time resolution below 40 ps for a single cluster.

For both methods, simulations suggest that the performance using Mott scattered positrons
is closer to the expected performance for µ → eγ signal positrons compared to ordinary Michel
positrons. This proves the benefit of the effort to switch the main PiE5 beam from surface muons
to 53 MeV positrons.

Additionally, the possibility to use beam positrons to calibrate the RDC was evaluated. While
it is shown that this would be possible, the benefits of this method do not justify the efforts. This
is due to the fact that a dedicated beam setting would be required for this method.

10.4 Upgrade of the CEX Auxiliary Detector

The CEX calibration relies on the detection of back to back photons from the reaction π−p →
π0n, π0 → γγ. These have an energy of either 55 MeV or 83 MeV. The first of these two values is
close to the expected signal photon energy. To ascertain the back to back geometry, an auxiliary
detector is needed.

Two materials are studied for an upgraded version of this auxiliary detector. BrilLanCe offers
an outstanding light yield and extremely short decay time while LYSO is convincing due to its high
density and correspondingly short radiation length and Moliere radius.

For currently available crystals, LYSO performs better according to the simulations. Coupling
such a crystal to a double readout based on SiPMs results in a reconstruction of 55 MeV photons
with a resolution of 1.7 % in energy, 30 ps in time, and a few mm in position under the assumption
of low noise contribution. Based on these results, the decision to produce a prototype using a LYSO
crystal with a length of 10 cm and a diameter of 7.5 cm was made.

Further, the performance of larger crystals was studied. Should they become available, they
might be suitable candidates for future high precision measurements in the muon cLFV sector. It
was shown that the energy resolution can be pushed clearly below 1 % without major detrimental
effects on the reconstruction of the other variables of 55 MeV photons.

10.5 Exotic Physics Searches beyond the SM with MEG II

While the MEG II apparatus is designed for the search of the µ → eγ decay, it is capable to
search for further signatures of physics beyond the SM. As part of this work, two such candidates
are presented. First, an investigation of what is referred to as the beryllium anomaly is planned.
Second, the search for the decay µ→ eX where X refers to a yet unknown boson can be performed.

The beryllium anomaly investigation is planned for the upcoming maintenance period of the
main proton accelerator at PSI in the beginning of 2022. For this purpose, the CW beam line
usually used for XEC calibrations has to be modified by an appropriate vacuum chamber around a
new target structure holding a dedicated lithium oxide target.

Furthermore, the magnetic field has to be reduced by about a factor six to allow the emitted
electron-positron pair to reach the MEG II spectrometer. With all those adaptions, the MEG
II apparatus should be able to collect enough statistics within a few days of data acquisition to
perform measurements that are competitive with the measurements by Krasznahorkay et al. [3].

Including the time used to implement the adaptions of the MEG II apparatus, the time required
will be on the order of a few weeks. This is still much shorter than the scheduled maintenance
break and a result can hopefully be provided in 2022.

The investigation of the decay channel µ → eX will be performed on the whole Michel data
acquired over the whole running period of the MEG II experiment. Competitive results are to
be obtained once 107 to 108 events are reconstructed. In order to get an adequate sensitivity
towards low mX the absolute energy scale and the response of the detector needs to be perfectly
well understood.
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Acronyms

AIF Annihilation In Flight
BR Branching Ratio
BTS Beam Transport Solenoid
CEX Charge EXchange (referring to π−p+ → π0n)
COBRA COnstant Bending RAdius (refers to MEG and MEG II magnet)
CDCH Cylindric Drift CHamber
C.L. Confidence Level
cLFV Charged Lepton Flavour Violation (or Violating)
CRC Cosmic Ray Counter
CW Cockcroft-Walton (referring to an accelerator)
DAQ Data AcQuisition
DS DownStream
FNAL Fermi National Accelerator Laboratory
GEM, GEM4 Generator of Events for MEG (refers to MEG simulation program)
IPC Internal Pair Conversion
LO Leading Order
JPARC Japan Proton Accelerator Research Complex
LXe Liquid Xenon
LY Light Yield
LYSO Lutetium Yttrium OxyorthoSilicate
MC Monte Carlo (referring to simulations)
MPPC Multi-Pixel Photon Counter
MWPC MultiWire Proportional Chamber
NLO Next to Leading Order (referring to theory calculations)
NNLO Next to Next to Leading Order (referring to theory calculations)
NNLOLL NNLO plus Leading Logarithms (referring to theory calculations)
PDE PhotoDetection Efficiency
PMT PhotoMultiplier Tube
PSI Paul Scherrer Institut
pTC Pixelated Timing Counter
RDC Radiative Decay Counter
RMD Radiative Muon Decay (µ→ eννγ)
SIN Schweizer Institut für Nuklearforschung, merged 1988 into PSI
SiPM Silicon PhotoMultiplier
SM Standard Model (of particle physics)
US UpStream
XEC XEnon Calorimeter
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