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Abstract

Using the Andrade-derived Sundberg–Cooper rheology, we apply several improvements to the secular tidal evolution
of TRAPPIST-1e and the early history of Pluto–Charon under the simplifying assumption of homogeneous bodies.
By including higher-order eccentricity terms (up to and including e20), we find divergences from the traditionally
used e2 truncation starting around e=0.1. Order-of-magnitude differences begin to occur for e>0.6. Critically,
higher-order eccentricity terms activate additional spin–orbit resonances. Worlds experiencing nonsynchronous
rotation can fall into and out of these resonances, altering their long-term evolution. Nonzero obliquity generally does
not generate significantly higher heating; however, it can considerably alter orbital and rotational evolution. Much
like eccentricity, obliquity can activate new tidal modes and resonances. Tracking the dual-body dissipation within
Pluto and Charon leads to faster evolution and dramatically different orbital outcomes. Based on our findings, we
recommend future tidal studies on worlds with e�0.3 to take into account additional eccentricity terms beyond e2.
This threshold should be lowered to e>0.1 if nonsynchronous rotation or nonzero obliquity is under consideration.
Due to the poor convergence of the eccentricity functions, studies on worlds that may experience very high
eccentricity (e�0.6) should include terms with high powers of eccentricity. We provide these equations up to e10 for
arbitrary obliquity and nonsynchronous rotation. Finally, the assumption that short-period, solid-body exoplanets
with e0.1 are tidally locked in their 1:1 spin–orbit resonance should be reconsidered. Higher-order spin–orbit
resonances can exist even at these relatively modest eccentricities, while previous studies have found such resonances
can significantly alter stellar-driven climate.

Unified Astronomy Thesaurus concepts: Tidal friction (1698); Orbital theory (1182); Exoplanet tides (497);
Exoplanet evolution (491); Trans-Neptunian objects (1705)

1. Introduction

New observations of extrasolar planets and solar system
objects are motivating a resurgence in improved modeling of
tidal dissipation. Fundamental questions remain for both local
and extrasolar settings. For instance, how does a system of two
worlds (be it a star and an exoplanet, or a solar system planet
and its moon), each with distinct internal structures, tidally
evolve on long timescales? New advancements in tidal theory
(Boué & Efroimsky 2019) as well as improved material
modeling (Jackson & Faul 2010; Sundberg & Cooper 2010;
McCarthy & Castillo-Rogez 2013) set the stage to reexamine
this and other questions with new fidelity. In this study, we
couple the latest tidal evolution framework to advanced
rheological modeling that describes a world’s ability to
dissipate tidal energy. We then apply this model to two
systems that may experience strong repercussions from these
changes, assuming either a homogeneous interior or (for
Section 3.2only) a simple multilayer model (both described in
Section 2.1).

Tides provide a conduit to extract the energy stored in a
celestial body’s orbit or rotation, then transform it into internal

heat via friction. This couples the thermal evolution of a world
undergoing tidal friction to changes in its orbit and rotation
(Murray & Dermott 2000). The efficiency at which energy is
converted is dependent upon the object’s physical bulk
properties, such as viscosity and rigidity (e.g., Kaula 1964).
These properties are strong functions of temperature, further
intensifying the link between the orbital, rotational, and thermal
evolution. In systems of two or more worlds, the general
practice in tidal theory is to first quantify which body, if any,
dominates the overall rate of dissipation, and thus will govern
the orbital evolution. The assumption that one body is
dominating the dissipation can greatly simplify analysis, such
as by reducing the number of terms in governing equations by
half. However, for many real systems, both worlds may
dissipate strongly enough to affect the system’s evolution, as is
the case for Io and Jupiter (Hussmann & Spohn 2004). In such
cases, a dual-body dissipation model is required. Binary
systems, where two co-orbiting bodies have very similar mass,
naturally lack one clear dominant source of dissipation. In
cases such as Pluto and Charon (Farinella et al. 1979;
Dobrovolskis et al. 1997; Cheng et al. 2014; Barr &
Collins 2015), or the early Earth and Moon (Touma &
Wisdom 1998; Canup & Asphaug 2001; Ćuk & Stewart 2012;
Zahnle et al. 2015; Rufu & Canup 2020), the threshold for
when a dual-dissipation model is required is not always clear.
However, without starting from a dual-dissipation model in
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such circumstances, it is impossible to know if any approx-
imation is valid. Therefore, the development and testing of the
best theoretical set of governing equations available is a critical
starting point.

Prior studies have investigated the long-term tidal evolution
of planets experiencing nonsynchronous rotation (NSR; Ferraz-
Mello et al. 2008; Barnes 2017) as well as dual-body
dissipation (Barnes et al. 2008; Jackson et al. 2008a;
Correia 2009; Heller et al. 2011). Yet, these and similar
investigations estimate the efficiency of a world’s tidal
dissipation by using the Constant Time Lag (CTL) or Constant
Phase Lag (CPL) models. The former assumes the efficiency
can be modeled by the inverse of a single scalar tidal quality
factor, Q−1. The latter generally assumes there is a linear
relationship between dissipation efficiency and forcing fre-
quency. This is often denoted with a frequency-dependent
quality factor, Q−1( f ). Studies have shown that the CPL and
CTL models can describe the dissipation within giant gaseous
planets and stars with reasonable accuracy for the frequency
bands of primary interest (e.g., Ferraz-Mello et al. 2020).
However, experiments on solids and semisolids (e.g., rocks,
partially melted rocks, and ices) have found that their response
to shear forces (such as tidal forces) are far more complicated,
requiring additional dependencies on temperature and fre-
quency (Henning et al. 2009 and references therein) than can be
described by the CPL and CTL models. Recent studies have
begun to replace the CPL and CTL methods with more realistic
rheological responses (Henning et al. 2009; Castillo-Rogez
et al. 2011; Makarov & Efroimsky 2013; Běhounková &
Čadek 2014; Harada et al. 2014; Shoji & Kurita 2014; Bierson
& Nimmo 2016; Khan et al. 2018; Renaud & Henning 2018;
Bagheri et al. 2019a; Samuel et al. 2019). Even more recently,
such realistic rheologies have been combined with the latest
advances in spin–orbit evolution modeling and applied to the
dual dissipation of Mars and its moons to determine their
genesis (Bagheri et al. 2019b, 2020), as well as to the Kepler-
21 exoplanet system (Luna et al. 2020). The stability of higher-
order spin–orbit resonances (SORs) has also been recently
explored as a function of rheological parameters (Walterová &
Běhounková 2020). Here, we build upon and extend this and
other prior work to explore dual dissipation in the context of
icy worlds and exoplanets. We also explore the impact of
higher-order eccentricity terms at arbitrary obliquity.

The model and formulae provided in this work are designed
for general use. We therefore showcase the impacts of dual-body
dissipation and higher-order eccentricity corrections in a general
sense without focusing on a particular system’s expected
evolution. However, to place these results in context, we examine
two scenarios that these improvements impact considerably:
highly eccentric, short-period exoplanets (Section 3.1) and the
early evolution of binary trans-Neptunian and Kuiper Belt objects
(Section 3.2). The latter scenario is motivated by the concept of
collisionally formed planet–moon systems (Canup & Asphaug
2001; Canup 2005, 2011; Pahlevan & Stevenson 2007; Ćuk &
Stewart 2012). Collisional formation naturally generates systems
that tend to have postcollision spin rates that are highly
nonsynchronous with their orbital motion, as well as high initial
eccentricities (e�0.1).

For exoplanets, there is a strong interest in characterizing
their environment from the perspectives of energy balance and
chemical composition, particularly in the context of habitability
(Henning et al. 2018; Unterborn et al. 2020). It is commonly

assumed that worlds with short orbital periods (P50 days)
rotate synchronously with their orbital motion (e.g., Jackson
et al. 2008b; Barnes 2017; Pierrehumbert & Hammond 2019).
However, many phenomena may cause individual short-period
exoplanets to not reside in the 1:1 SOR. First, orbital scattering
(e.g., Matsumura et al. 2008; Thommes et al. 2008) and capture
events (Agnor & Hamilton 2006; Dos Santos et al. 2012;
Woolfson 2013) may result in quickly changing orbital
frequencies that are unlikely to coincide with the prior rotation
rate (Vinson & Hansen 2017; Leconte 2018). More impor-
tantly, high eccentricity can also accelerate the spin rate of the
exoplanet (or the host star; see Carone 2012) out of
synchronicity into higher-order SORs. Mercury presently
resides in such a higher-order SOR, as it rotates three times
for every two orbits. Even very short-period exoplanets may
possess nonnegligible eccentricity (Bourrier et al. 2018).
Because population demographics for unseen outer perturber
planets are still poorly known for many systems with short-
period worlds (Payne et al. 2010; Becker & Adams 2017), the
magnitude of perturbed equilibrium eccentricities remains
difficult to predict, and many systems with reported e=0
arrive at these values simply from assumption. Significant
nonzero eccentricities can lead to similar higher-order SOR
trapping as occurred for Mercury. Nonzero obliquity may also
be stimulated by several phenomena, including collisions,
satellites, Cassini state evolution, and secular SOR theory
(Winn & Holman 2005; Brunini 2006; Atobe & Ida 2007;
Miguel & Brunini 2010; Rogoszinski & Hamilton 2016). Tidal
dissipation plays an important role in determining whether or
not an object may become trapped in such higher, non 1:1
SORs. Makarov (2012) found that both the inclusion of higher-
order eccentricity terms in the governing equations and the
utilization of advanced rheological models are critical to
determining if a given world is captured in a higher-order SOR
or dissipates to its synchronous state. The influence of torques
acting on a world’s permanent triaxiality (generated through
nontidal effects) can also be critical in determining if a higher-
order SOR is reached. We chose to focus only on the impact of
tidal torques in this study but point the interested reader to the
works of Rodríguez et al. (2012) and Margot et al. (2018) for a
review of the influence of triaxiality in SOR capture. We also
note throughout this work instances where our results may be
altered by such further considerations. One reason it is
important to constrain an exoplanet’s likely spin state,
especially what circumstances lead to non 1:1 SORs, is that
an exoplanet’s climate is dramatically altered if its rotation rate
falls on a higher-order resonance (e.g., Dobrovolskis 2007;
Wordsworth 2015; Turbet et al. 2016; Del Genio et al. 2019).
Several trans-Neptunian and Kuiper Belt objects (which we

will collectively refer to as TNOs) have recently been found
with relatively massive satellite(s). Besides Pluto and Charon,
which we discuss in detail, some examples include Eris and
Dysnomia (Brown et al. 2005, 2006); Haumea, Hi‘iaka, and
Namaka (Bouchez et al. 2005); Orcus and Vanth (Brown &
Suer 2007); Makemake and MK2 (Parker et al. 2016);
Gonggong and Xiangliu (Kiss et al. 2017); and potentially a
newly discovered satellite of Varuna (Fernández-Valenzuela
et al. 2019). The compactness of these binary systems
substantially increases their tidal susceptibility and in some
cases has distinctly slowed their rotation rates (e.g., Kiss et al.
2017). While in this work we focus on the Pluto–Charon
system, the concepts explored are equally applicable to other
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TNO binaries. However, because formation hypotheses for
these binaries vary widely, as do their compositions and
masses, we leave their discussion to a future dedicated study.
As for Pluto–Charon, the leading origin theory is that the
binary formed via an impact between two bodies of roughly
similar size. Details of this scenario (such as whether Charon
accreted from a post-impact disk surrounding Pluto or instead
remained mostly intact) remain uncertain (Canup 2005, 2011;
Kenyon & Bromley 2019). The other commonly considered
binary formation hypotheses are co-accretion (Nesvorný et al.
2019), capture (Goldreich et al. 2002), and possibly fission of a
fast-spinning object (Ortiz et al. 2012). Each of these scenarios
variously affects compositions and interior structures (Desch &
Neveu 2017; Bierson & Nimmo 2019). For this study, we are
primarily concerned with orbital and spin states. For Pluto–
Charon, it is theorized that the post-impact mutual orbit would
be highly eccentric (e>0.1), with both Pluto and Charon in
NSR. Modern observations of Pluto–Charon show them to be
in a dual-synchronous state with a very low (effectively zero)
eccentricity (Stern et al. 2018). However, evolution from NSR
and high eccentricity to their modern state relies at least in part
on both bodies experiencing an epoch of significant tidal
dissipation (Robuchon & Nimmo 2011; Cheng et al. 2014; Barr
& Collins 2015; Hammond et al. 2016; Desch & Neveu 2017).
It is generally thought that this evolution is quick; for example,
Cheng et al. (2014) found the full evolution took ∼1Myr using
the CTL model and close to 10Myr for CPL. However, Saxena
et al. (2018) showed that by considering NSR, the evolution
can be slowed if the objects enter higher-order SORs, but this
work did not track the dissipation within both bodies
simultaneously. We reexamine this problem by considering
dual-body dissipation, as well as including higher-order
eccentricity corrections which are necessary for the initial
eccentricity values suggested by formation scenarios. Concepts
that this study considers and improves upon, as well as areas
that are left for future work, are visualized in Figure 1.

2. Methods

2.1. Tidal Efficiency

The efficiency of tidal dissipation is dependent upon the ability
of a planet or moon’s bulk to deform under tidal forcing and
convert that deformation into frictional heat. Different materials,
such as rock and ice, will respond to tidal forces in distinct ways.
Even in a planet modeled as having a homogeneous chemical
composition, contrasting temperatures, pressures, and phase
states will affect which frictional processes are dominating at
the microscopic scale and thus change what forcing frequencies
lead to maximum local dissipation. The CPL method treats total
tidal efficiency as a constant, regardless of any temperature or
frequency dependence. This is generally approximated by the
value k2/Q, where k2 is the second-order static tidal potential
Love number. Love numbers quantify the response of a planet
(e.g., maximum surface height change per cycle) to an external
gravitational perturbation, while including both the deforming
body’s internal material strength and its own self-gravity
(Love 1909). They may be either real values (elastic planetary
response) or, in the Fourier approach to viscoelastic tides,
represented by a complex-valued number (utilizing the corre-
spondence principle; see Caputo & Mainardi 1971). Q is a
constant, real-valued scalar known as the Quality Factor, which is
small for highly dissipative worlds and large otherwise. The CTL

method imparts a dependence on a frequency, f, by defining
( ) d=-Q f f1 (depending upon the circumstances, this forcing

frequency may be the orbital motion, rotational frequency, or a
linear combination of the two) and a constant,6 d . However,
neither of these methods, CPL and CTL, match laboratory
experiments on solid materials, whose response is tied to
temperature and forcing frequency in more complex ways (Raj
& Ashby 1971; Karato & Spetzler 1990; Jackson & Faul 2010;
Sundberg & Cooper 2010; McCarthy & Cooper 2016). A more
accurate technique is to model the tidal efficiency as the
imaginary portion of the complex Love number, [ ( )]- kIm ...l
(Segatz et al. 1988). The functional form of this multiplier is
dependent upon the choice of rheology (Efroimsky 2012).
The rheological response captured by the Love number is

dependent upon the strength of the material, generally expressed
through its rigidity and viscosity, as well as the forcing frequency.
Efroimsky & Williams (2009) showed7 that the Darwin–Kaula
tidal expansion leads to a different frequency dependence on
the complex Love number for each tidal mode, ωlmpq. In the
equations below, the subscripts l and m emerge from the tidal
potential being described as a spherical harmonic across the
surface of a world (Darwin 1880). The two other integers p and
q arise from transforming the viscoelastic tidal dissipation from
spherical coordinates into more traditional Keplerian elements
(Kaula 1961, 1964). This leads to series expansions that depend
upon both eccentricity and relative obliquity. If we assume that
there is no precession of the pericenter or orbital node and that
the change in the mean anomaly can be approximated by n, the
mean orbital motion, then we can write down the tidal mode for
the jth body ωlmpq,j as

( ) ( )w q» - + -l p q n m2 , 1lmpq j j,

where qj is the spin rate of the body. The response of a body’s
bulk is dependent upon the forcing frequency (via the complex
Love number, k ), which is defined as the absolute value of the
tidal mode, ∣ ∣c wºlmpq j lmpq j, , (Efroimsky 2012). For simplicity
of notation, we define

[ ( )] ( )cº -K kIm , 2lmpq i l lmpq,

which is strictly positive for all forcing frequencies. However,
the sign of the mode does determine the direction of tidal
torques imparted on both the host and satellite. Therefore, we
also define a version that carries each mode’s sign,

˜ ( ) [ ( )] ( )w cº -K kSgn Im . 3lmpq i lmpq l lmpq,

The impact of different rheological models has been studied
in both rocky (Henning et al. 2009; Bolmont et al. 2014;
Padovan et al. 2014; Shoji & Kurita 2014; Bierson &
Nimmo 2016; Dumoulin et al. 2017; Khan et al. 2018;
Makarov et al. 2018; Margot et al. 2018; Bagheri et al. 2019a;
Lau & Faul 2019; Luna et al. 2020) and icy (Castillo-Rogez
et al. 2011; McCarthy & Castillo-Rogez 2013; Saxena et al.
2018) worlds. The differences can be extreme depending upon
the specific circumstances. Using a realistic rheological model

6 The CTL method as presented by Wisdom (2008) assumes that dissipation
is linear with frequency. This assumption is built into the equations before the
relationship between Q−1 and frequency f is defined. Therefore, it is incorrect
to use the CTL equations of Wisdom (2008) with a Q−1( f ) that is defined to be
anything other than linear with frequency.
7 This theory was expanded in subsequent studies; see the work by Efroimsky
& Makarov (2014) and Boué & Efroimsky (2019).
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rather than the CPL and CTL assumptions can have a major
impact (e.g., tidal dissipation rates vary by over six orders of
magnitude, based on uncertainties in internal material proper-
ties alone) as we will discuss in Section 3.2. However, the
specific choice of which rheological model to use will depend
upon the composition and physical state of the material in
question. To simplify the comparison, we choose to only use
what we have found to be the most versatile model presently
available, the Sundberg–Cooper rheology. This model has been
found to fit the experimental rheological response of both rocks
and ices (Sundberg & Cooper 2010; Caswell et al. 2015;
Caswell & Cooper 2016) uniquely well, as it describes two key
phenomena in one composite model. First, it includes the
“response broadening” behavior of models such as the Andrade
rheology (Jackson 1993). Second, it includes an experimentally
observed secondary peak in dissipation as is modeled by the
Burgers rheology (Sabadini et al. 1987; Cooper 2002). Many
other rheological models exist but are often either specific to
unique materials or conditions, or cumbersome to mathemati-
cally generalize. The Sundberg–Cooper model is optimal for all
of these considerations. The implementation details of this
model can be found in Renaud & Henning (2018).

Using methods to estimate the dissipation for a specific body
(such as solutions to equations describing the elastic deforma-
tion of layered spherical bodies; see Henning & Hurford 2014
and Tobie et al. 2019) is beyond the scope of this work wherein
we simply want to perform a direct comparison of the impact of
orbital corrections and dual-body dissipation when using robust
rheological modeling. For the same reason, we generally do
not model the coupling between thermal and orbital models;
however, we do discuss the thermal-orbital evolution of
Pluto–Charon briefly in Section 3.2. For that analysis, we
follow the interior and thermal modeling that Hussmann &
Spohn (2004) applied to Europa’s evolution. Otherwise,
outside of Section 3.2, we assume homogeneous planets with
constant dissipation throughout. For rocky worlds, we set the
dissipating portion of the mantle to be modestly viscous with
minimal partial melt, at a static viscosity of η=1022 Pa s,
which is typical of observed values for Earth’s midmantle
(Mitrovica & Forte 2004), and a shear modulus (or its inverse,
compliance, J) of μ=J−1=50 GPa (e.g., Dziewonski &
Anderson 1981). Such observed values are appropriate for
rocky materials at temperatures near ∼1300 K, with activation
energies in the range 300–400 kJ mol−1 (Turcotte & Schu-
bert 2002). For icy worlds, we assume the dissipation
predominantly occurs in a convecting, viscoelastic ice layer
experiencing temperatures just below the melting point at
standard pressure, near 260–270 K (assuming a low presence of
antifreeze chemicals such as ammonia). We select a baseline
ice viscosity of η=1014 Pa s and shear modulus of
μ=J−1=3.3 GPa, both of which are typical “medium-
strength” choices in many icy world investigations (Nimmo
&Manga 2009; Quick & Marsh 2015; Kamata & Nimmo 2017;
Rhoden et al. 2017; Spencer et al. 2020). Dissipation in the
rocky core of icy solar system moons has been found to be
negligible in comparison to ice-shell dissipation (e.g., Ojakan-
gas & Stevenson 1989). However, the slope of viscosity versus
temperature for low-pressure water ice is very steep and may
lead to an ice shell that is less dissipative than a rocky core.
This will be particularly true for a warm core that is well
insulated from the overlying ice shell (perhaps, as may be the
case for Ganymede, by a layer of high-pressure ice), or else for

a core that contains a significant fraction of water or is porous,
leading to a lower effective viscosity (Roberts 2015; Choblet
et al. 2017). For this reason, the thermal evolution discussed in
Section 3.2.3 tracks the dissipation in both the icy and rocky
layers; however, we do not consider possible effects due to
porosity in this work.
Additional, equally critical but less familiar, material parameters

for the Sundberg–Cooper rheology include the Andrade exponent,
α, and timescale ratio, ζ. More experimental work is needed to
determine these parameters at planetary temperatures and
pressures, particularly for ices. However, several studies have
constrained the Andrade exponent for silicate material to the range
0.2<α<0.5, with the majority of the findings converging to
αavg≈0.30 (Tan et al. 2001; Jackson et al. 2002, 2004; Webb &
Jackson 2003); we use this value throughout this study. The
Andrade timescale ratio is less constrained, and there is some
preliminary evidence that its value may depend upon temperature
(Bunton 2001; Sundberg & Cooper 2010), forcing frequency
(Karato & Spetzler 1990), and melt fraction (Jackson et al. 2004).
For this study, we invoke a commonly used estimate that the
Andrade timescale, τAn, is equal to the Maxwell timescale, τMax,
leading to ζ≡τAn/τMax=1. Renaud & Henning (2018) found
that variations in ζ do not tend to change tidal outcomes until the
value is several orders of magnitude away from unity. Such large
variations do not appear to be supported by laboratory
experiments. The inverse of these timescales represents the
frequency that a material experiences its peak dissipation
(analogous to the resonant frequency in a harmonic oscillator).
The Sundberg–Cooper rheology exhibits two dissipation peaks;
the first occurs at the inverse Maxwell time, ( )t h=- -JMax

1 1. The
location of its second, smaller peak is set by the inverse Voigt–
Kelvin time, ( )t d h=- -JVK

1
p

1. We set δJ=0.2J and ηp=0.02η,
which mimics the medium-strength material used by Henning et al.
(2009) for comparison purposes. We note that Sundberg & Cooper
(2010) found the ratio δJ/J to be as large as 1.91. Like the
Andrade parameters, these properties are currently understudied at
planetary conditions and may themselves be dependent upon
temperature and frequency. However, we have found that
variations in the Voigt–Kelvin properties result in relatively minor
changes in tidal outcomes compared with variations in other
parameters such as the baseline viscosity η. We choose to keep
both the Andrade and Voigt–Kelvin properties the same for ices
and silicates so that more direct comparisons can be made between
the objects examined.
The homogeneous assumption will, in general, overestimate

the amount of dissipation within a planet because its entire
volume, in reality, will not be uniform in its dissipation (e.g.,
Tobie et al. 2019). This will be particularly true for thin
viscoelastic ice shells, which, under a homogeneous ice model,
will appear to dissipate a large amount of energy compared to a
layered model. To account for this in Pluto–Charon, we
multiply the global Love number by a tidal volume fraction,
fTVF=VTidal/VPlanet. Here, Vtidal is equal to the volume of
material that is participating in dissipation within the planet
(equivalent to the Vconv used by Hussmann & Spohn 2004). For
the time evolution of Pluto–Charon (Section 3.2.3), there are
two volume fractions: one equal to the rocky core’s volume
(which remains static) and one for the dynamic, viscoelastic icy
shell that can grow or shrink depending on the energy budget
(Hussmann & Spohn 2004). These tidal volume fractions scale
their respective Love numbers calculated for the high-viscosity
core and the low-viscosity ice. For Sections 3.2.1 and 3.2.2 we
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present results that are snapshots in time and thus do not rely on
a dynamic volume fraction for the icy shell. Instead, we use a
constant value of fTVF=10% which is the maximum
viscoelastic volume we find in our time studies. Therefore,
results in those sections should be considered upper bounds on
the possible solid-body dissipation.

An important caveat to the above discussion is the possibility of
tides in fluid layers (be it gaseous envelopes, or oceans/pockets of
liquid water or magma). Indeed, for the modern Earth, tidal motion
in our ocean, including baroclinic waves, as well as flow through
straits, bays, and across sea-floor topography, leads to much more
dissipation than the tidal deformation of the Earth’s solid interior
(e.g., Egbert & Ray 2000). The tidal response of fluid layers has a
complex and nonlinear dependence upon ocean depth, density,
composition, and the nature of interfaces with solid features. All of
these influence mechanical wave velocities, with frequencies that
can be resonant with tidal forcing (Tyler 2014, 2020; Tyler et al.
2015; Hay & Matsuyama 2017, 2019; Auclair-Desrotour et al.
2019; Green et al. 2019). Incorporating such models with the
orbital improvements we present here is beyond the scope of this
work. Instead, we will assume negligible liquid ocean tidal
dissipation on the objects discussed. For exoplanets, this is akin to
assuming no ocean exists. Pluto and Charon, on the other hand,
certainly had substantial liquid oceans in their past, and at least for
Pluto, may still have them today (Nimmo et al. 2016). For these
worlds, we do not model the dissipation of any subsurface ocean,
so our work should be considered a lower bound on total tidal
heating and an upper bound on evolution timescales.

2.2. Orbital and Rotational Evolution Due to Tidal Forces

We follow the methods of Boué & Efroimsky (2019) to
calculate changes in semimajor axis, eccentricity, and spin rate.
Below we provide a summary of that work. We do not presume
the ratio of relative masses of the bodies to be in a certain
range, but for ease of explanation, we will assume that the host
object will always be the object with the higher mass of the pair
—we prescribe its properties with the subscript h. We give the
properties of the orbiting satellite the subscript s. When
discussing an arbitrary object, we use the subscript j and for its
opposite tidal partner, k.

The orbital evolution equations utilize a frame of reference
that is coprecessing with the primary body.8 By this
nomenclature, “primary” refers to whichever object is dissipating
tidal energy. In the dual-dissipation model, we assume both objects
are dissipating, thus there will be two frames of reference, one
coprecessing with each object. Two separate computations of the
system’s tidal potential, U, are then performed, once in each
object’s frame of reference. As we ignore relativistic corrections,
frame choices are based on what is most useful for mathematically
describing the geometry of tidal deformation for each body. The
tidal potential contains both rapidly and slowly oscillating terms in
addition to secular terms. As we are only concerned with the long-
term evolution of these systems, we use a tidal potential that has
been averaged over both an orbital cycle (eliminating short-period
oscillations) and apsidal precession (eliminating long-period
oscillations; Efroimsky & Makarov 2014). To avoid confusion,
we prescribe all variables that are orbit-averaged in this way with
angle brackets, á ñX .

The semimajor axis, a (and through it, the orbital mean
motion, n), and eccentricity, e, will change depending upon the
dissipation exhibited by both the host and satellite. Utilizing the
conservation of energy and of angular momentum, while
assuming a closed system, we can write down the orbital
derivatives as
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where is the mean anomaly of the satellite’s orbit and vj is
the jth body’s argument of pericenter. M represents the mass of
either the host or the satellite.
Each body’s change in spin rate can be found by utilizing its

polar moment of inertia Cj and the partial derivative of the tidal
potential with respect to the orbital line of nodes as reckoned
from the object’s equator, Ωj,

̈ ( )qá ñ =
¶á ñ

¶W
M

C

U
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k

j
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True spin synchronization, such as into 1:1 SOR, generally
occurs for planetary bodies with nonzero triaxiality (also
referred to as possessing a permanent quadrupole moment,
such as is severely established by the lunar dichotomy on
Earth’s Moon). Otherwise, as found by Hut (1981), objects
with triaxiality below a certain threshold, to the limit of a
perfect sphere, will evolve to equilibrium rotation states known
variously as pseudo- or quasi-synchronous rotation (see also
Murray & Dermott 2000; Heller et al. 2011; Makarov &
Efroimsky 2013). The degree to which pseudo-synchronous-
rotation rates are offset from perfect resonance is a function of
eccentricity (Hut 1981) and viscoelastic response (Correia et al.
2014). Permanent quadrupole terms may also lead to the
induction and maintenance of physical librations, which further
complicate SOR capture (e.g., Rodríguez et al. 2012; Margot
et al. 2018). Although we here invoke a constant polar moment
of inertia for both host and satellite, this does not also imply
assuming each object is a perfect sphere. What we do assume is
that nontidal triaxiality is in a generally low range, so that
equilibrium rotation rates can still be near-exact SOR states, yet
physical librations are not of high magnitude. Pluto and Charon
are both good candidates to possess such nonzero, yet low-to-
moderate triaxiality (McKinnon & Singer 2014), to help
achieve near-exact SORs (including non 1:1 states). Although
no polar flattening was detected for either body to the detection
limit of ≈0.5% in New Horizons images (Nimmo et al. 2017),
the Sputnik Planitia region of the anti-Charon hemisphere of
Pluto has been interpreted as having a higher density than the
rest of Pluto’s crust, implying a nonspherically symmetric mass
distribution (Keane et al. 2016; Nimmo et al. 2016).
TRAPPIST-1e, with a putative solid surface (able to not relax
rapidly to hydrostatic equilibrium), is similarly a reasonable
candidate for the same assumptions.

8 As discussed in Boué & Efroimsky (2019), this is a modification to the
frame of reference used by Kaula (1964), which was fixed to the primary’s
equator at a specific time. The difference between these two frames of reference
will be important when considering the change in obliquity (or inclination).
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While we do consider the effects of tidal dissipation due to
nonzero obliquity, we do not calculate or track the change of
obliquity over time. An interested reader can reference
Equation (118) and Appendix F of Boué & Efroimsky (2019)
and the work by Luna et al. (2020).

For each body, we calculate the tidal potential derivatives
and the tidal heating as9
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where  is Newton’s gravitational constant, R and I represent,
respectively, the radius and relative obliquity of either world,
and δ0m is the Kronecker delta function, which is equal to 1 for
m=0 and 0 otherwise. Here, F and G are the inclination and
eccentricity functions (see, e.g., Kaula 1964) whose definitions
can be found in Appendix C.

It is important to note that the eccentricity functions G(e)
cannot, in general, be written down exactly. They require a
truncation at the desired power of e, which in turn leaves the
tidal heating and tidal potential derivatives reliant on the same
approximation. Historically, the eccentricity functions have
been found to converge very poorly,10 requiring high-order
truncations to adequately account for tidal effects at high
eccentricities (Bagheri et al. 2019b). This motivates us to
quantify the effects of loosening the truncation restrictions on
the eccentricity functions. We provide the tidal heating and
potential derivative equations up to and including e10 terms in
Appendix A for NSR tides and in Appendix B for tidally
locked worlds. This truncation level matches that presented by
Wisdom (2008), who utilized a CTL dissipation model (as we
discuss in the following section). Utilizing the e10 truncation,
under NSR, leads to 44 unique tidal modes and 37 unique
forcing frequencies (ignoring both frequencies which are zero
and modes corresponding to F and G functions that vanish). As
we will show in Section 3.1, for worlds experiencing NSR tides
at very high eccentricity (e>0.6), we find that the e10

truncation level is insufficient to fully capture the orbital and
rotational evolution. We therefore also explore the impacts of
eccentricity terms up to and including e20. This quite high
truncation is important for the early evolution of Pluto and
Charon, which can spend a significant amount of time in NSR
while simultaneously experiencing eccentricities greater than
around 0.6 (see Section 3.2.3). For the e20 truncation level,

there are 74 unique frequencies. Presenting this many terms in
a tabular format, as we do for e10 (see Table 2), becomes quite
cumbersome. However, the above formula, and F(I) and G(e)
presented in Appendix C, allows one to calculate the
dissipation equations to a desired truncation level, even beyond
e20. Including terms beyond e20 may be important for worlds
experiencing eccentricities greater than 0.8, especially if they
are also in NSR. For example, this may have been the case for
the early evolution of Triton (e.g., Rufu & Canup 2017) as well
as for asteroids and comets. However, increasing the truncation
level also increases the number of tidal modes, leading to
greater computational time. For this reason, we recommend
future studies to determine the minimum truncation level
required for a particular problem. We have found that terms
beyond e20 (terms up to and including e22 were tested) do not
produce a significant difference for the systems examined in
this work.
The complex Love number must be calculated at each

frequency for both worlds before Equations (7) can be
calculated. Even after a world has reached synchronous
rotation, it will still be subjected to multiple tidal modes of
the form ±1n, ±2n, ±3n, and so on (see Appendix B). As long
as sign conventions are carefully followed, these formulae are
equally valid for negative (retrograde) spin rates and orbital
motions.

2.2.1. Comparison to Other Formulations

The orbital and rotational evolution of a dual-body system
has been studied by others using assumptions different from the
ones we use here. In this section, we highlight differences
between our formulation and the often-used equations of
Goldreich & Soter (1966) and Wisdom (2008).
Comparison to Goldreich & Soter (1966). Goldreich & Soter

(1966) wrote down the change in eccentricity as (see their
Equations (22)–(25); we have modified these equations to
match our notation)
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Combining Equations 8(b) and (c) with Equation 8(a) results
in a popular formulation for dual-body eccentricity changes
(e.g., Barnes et al. 2008; Shoji & Kurita 2014),11
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The derivation of this equation is described by Goldreich
(1963). It is based on a theory of tides that considers four
different tidal modes that correspond to the following forcing
frequencies:

( )q - n2 2 2 , 10a0

9 These formulae make the following assumptions: there is no precession of
the node ( W » 0), only the secular evolution is considered (equations are
averaged over the orbital and apsidal precession cycles), and we are including
neither the role of either body’s triaxiality nor relativistic effects.
10 In part because coefficients that precede higher-order terms grow in
magnitude and can balance the additional powers of eccentricity.

11 Note that these and other authors have replaced the host body’s contribution
coefficient of 19/4 with −19/4. Using Equations (23) and (24) in Goldreich &
Soter (1966), this replacement is only valid when the host’s spin rate is
q < n3 2h . We drop the sign dependence in Equation (9) and set the satellite
and host’s contribution to e to be opposite, which is valid for q > n3 2h as is
the case for the Earth–Moon system. However, for studies where long-term
spin rate changes are considered, the sign dependence should be left in place.
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( )q - n2 2 3 , 10b1

( )q - n2 2 , 10c2

( ) n2
3

2
. 10d3

To arrive at Equation (9), Goldreich assumes that the satellite
is in synchronous rotation, which sets ò0=0 and ò1=−ò2.
After those simplifications are made, they then use a CPL
model to equate ò2=ò3. This is in contrast to the tidal host,
which that author assumes is not in synchronous rotation (this
was done to mimic the Earth–Moon system). Instead, the CPL
model is applied right away, equating all the tidal lags to one
another: ò0=ò1=ò2=ò3. This results in the host and satellite
contributions to e having different coefficients. Furthermore,
each of these tidal modes will, in general, carry a unique sign.
These signs are lost once the CPL model is applied.

The orbital evolution model developed by Goldreich & Soter
(1966) requires the satellite’s rotation rate to be synchronized
with the orbital motion. It also uses a CPL method to estimate
the material response of the world. Finally, it truncates the
dissipation equations to only include e2 terms (and only
considers the quadrupole terms). For these reasons, we do not
find it suitable for the scenarios we explore in this work.

For completeness, we note that the above equations of
Goldreich and Soter can be retrieved from Equation (5) and
Appendix A (or Appendix B for the spin-synchronous satellite
term), by setting l=2 and ignoring powers of eccentricity
above e2. In Appendix A, the above four modes considered by
Goldreich (1963, their Equation (7)) correspond to (l, m, p,
q)=(2, 2, 0, 0) for ò0, (2, 2, 0, 1) for ò1, (2, 2, 0, −1) for ò2,
and (2, 0, 1, −1 and 1) for ò3, respectively, in the limits of e2

truncation and Mh?Ms:
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The first coefficient of 7 in Equation (9) results from the
satellite being synchronous with the orbital motion, for which
Goldreich (1963) set ò0=0 and ò1=−ò2 in Equations (10) to
obtain [25/2 ò2+3/2 ò3] for the term in brackets, and only
then making the CPL assumption that ò2=ò3 to obtain a
coefficient of 14, which corresponds to the coefficient of 7
when accounting for the factor of 2 difference between
Goldreichʼs (1963) tidal lags and the definition of Klmpq i, in
Equation (2).

The second coefficient of 19/4 in Equation (9) results from
immediately applying the CPL assumption to Equation (11),
setting ò0=ò1=ò2=ò3 to obtain a coefficient of 19/2, which
corresponds to the 19/4 term, again accounting for the above
factor of 2 difference.

Comparison to Wisdom (2008). Wisdom (2008) derived the
tidal heating of a satellite subjected to an arbitrary eccentricity
and obliquity. The resulting dissipation equations rely on Hansen
coefficients, as does the model we use in this work. However,
there are two limitations with the model of Wisdom (2008). First,
it was derived assuming a CTL method, which assumes the
dissipation efficiency is linear with frequency (via [ ¯ ( )]w- kIm l ).
While this is an improvement over the CPL method, it has still
been found to not match the real response of planetary materials
across the frequency domain. Second, it assumes the satellite is
either in synchronous rotation or equilibrium rotation (sometimes

referred to as “pseudo-synchronous” rotation). This equilibrium
rotation rate varies with eccentricity and obliquity, and may
depend upon the tidal potential when dissipation is strong
(Correia et al. 2014; Makarov 2015). This is in contrast to our
method, which calculates the change in spin rate with time; see
Equation (6). While the tidal potential will vary with eccentricity
and obliquity, their values do not immediately change the
“instantaneous” (yet still orbit-averaged) spin rate as they would
under an equilibrium model. Further discussion surrounding the
CTL method and the applicability of pseudo-synchronous
rotation can be found in Makarov & Efroimsky (2013).
The equations we use also reproduce the model used by

Wisdom (2008) if we apply the same key assumption that tidal
dissipation varies linearly with frequency. The spin-synchro-
nous tidal heating rate (truncated to e10 and computed at zero
obliquity) found by Wisdom (2008; see their Equations (21)
and (26)) can be compared to Equation (B2) if one sets

( ∣ ∣) =K a n ak Qj 2 for aä{1, 2, 3, 4, 5}. For example, the
coefficient of the e4 term in Equation (B2) matches the one
presented in Equations (21) and (26) of Wisdom (2008) by
setting (∣ ∣) =K n k Qj 2 and ( ∣ ∣) =K n k Q2 2j 2 and noting that
Wisdom (2008) has factored out an overall multiple of 7 that
we do not in Equation (B2).

2.3. Implementation Details

The tidal heating, orbital, and rotational changes are
calculated by summing up the contribution of each tidal mode
in the tidal potential and heating equations (see Appendix A).
The coefficients of the eccentricity and inclination functions are
precalculated using the equations presented in Appendix C (see
also the Appendix of Veras et al. 2019). Calculations are
performed using the NumPy software package (van der Walt
et al. 2011). The time integration discussed in Section 3.2.3
was performed using a third-order Bogacki–Shampine method
provided by the Julia language’s differential equation package
(Rackauckas & Nie 2017).
Much of the work discussed in this study requires only the

mass, radius, and orbital separation of the planets under
consideration. We provide these key properties in Table 1. The
thermal evolution model used for Pluto–Charon necessitates
knowledge of these worlds’ ice-layer thickness. For this, we
use an ice-shell thickness of 337 km and 197 km for Pluto and
Charon, respectively (Nimmo et al. 2017).

Table 1
Properties of the TRAPPIST-1 and Pluto–Charon Systems to which the Present

Tidal Model is Applied in this Study

Parameter TRAPPIST-1 TRAPPIST-1e Pluto Charon

Radius (106 m) 81.4 (d) 5.995
(a), (b)

1.1883 (e) 0.606 (e)

Mass (1024 kg) 1.6×105 (d) 4.6 (c) 0.01328
(e), (f)

0.001603
(e), (f)

Semimajor Axis
(106 m)

L 4380.7 (c) L 19.596 (f)

References. (a) Delrez et al. (2018), (b) Kane (2018), (c) Grimm et al. (2018),
(d) Gillon et al. (2017), (e) Nimmo et al. (2017), and (f) Brozović et al. (2015).
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3. Results and Discussion

3.1. Tidal Dynamics of an Eccentric TRAPPIST-1e

There are a growing number of detections of super-Earth or
smaller, short-period (P50 day) exoplanets that have large
eccentricities (e�0.1). Many of these worlds are part of
multiplanet systems, such as L98-59, Kepler-444, K2-136,
and TOI-700 (Campante et al. 2015; Mann et al. 2018; Kostov
et al. 2019; Gilbert et al. 2020; Rodriguez et al. 2020). In these
cases, in a manner analogous to the Galilean satellites, near-
mean-motion resonances (MMRs), secular resonances, and
secular perturbations may all be driving nonzero eccentricities,
which will further drive tidal dissipation (Van Eylen et al.
2019).

3.1.1. Dissipation at Zero Obliquity and Synchronous Rotation

Here we investigate the impact that using higher-order
eccentricity terms have on tidal dissipation. To provide context
to the results, we choose to look at the exoplanet TRAPPIST-1e
(Gillon et al. 2017) as it mimics a scaled-up version of the
tidally active moon Io (Luger et al. 2017; Barr et al. 2018;
Turbet et al. 2018) including MMR perturbations (planetary
properties can be found in Table 1).12 In Figure 2, we calculate
tidal heating and e using different truncation levels in the
dissipation equations. In this figure the planet is assumed to be

spin-synchronous with the observed orbital period of 6.099
days (Delrez et al. 2018). Differences between truncation levels
appear around e=0.1 and can lead to order-of-magnitude
changes in both heating and orbital evolution once e>0.3. A
striking finding is that the commonly used e2 truncation
predicts the sign of the eccentricity derivative to flip (noted by
the change in color from blue to orange in Figure 2) just below
e=0.8. This feature is completely rectified at truncation level
e10 and higher. Figure 2 shows the tidal heating and change in
eccentricity as snapshots in time. As tidal heating is only a
function of even powers of e and not e, and since its value is
always positive, it does not experience the same dramatic
changes seen at very high eccentricity (e>0.6) that e does.

3.1.2. Heating Rates from Obliquity Tides at Synchronous Rotation

The obliquity of exoplanets is currently unknown. Heller
et al. (2011) found that any nonzero obliquity in a short-period
exoplanet, with no moons, would likely align perpendicular to
its orbital plane quickly (as a point of comparison, Venus is
presently misaligned from retrograde-perpendicular by 2°.64).
We leave a detailed discussion regarding obliquity alignment
timescales, as well as stable Cassini states with dissipation
(Peale 2006; Fabrycky et al. 2007), for future study. However,
before alignment, or following collisional perturbation, obli-
quity will affect both the orbital and rotational evolution, as
well as provide additional interior heating. In Saxena et al.
(2018) it was demonstrated that, for trans-Neptunian objects,
tides due to obliquity or an inclined orbit generate significantly
less dissipation than those due to NSR or eccentricity. Heller
et al. (2011) also found that obliquity tides require low

Figure 1. Schematic representation of the modeling scheme used in this study. Yellow and green boxes represent, respectively, orbital and planetary properties.
Arrows indicate dependencies between different concepts. Red lines are areas that this study improves upon. Dashed lines are not considered or are greatly simplified
in this work and are left for future study.

12 TRAPPIST-1e is much farther away from its star than Io is from Jupiter, but
because the star is nearly 100 times more massive than Jupiter, the planet has
an orbital period of the same order as Io. TRAPPIST-1e’s larger radius, and
therefore larger volume, contributes to dissipation, which also partially makes
up for its slower orbital period.
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Table 2
Tidal Heating and Potential Derivative Terms Calculated Using Equation (7) Assuming Arbitrary Obliquity and Truncating Eccentricity Terms Up to

and Including e10

Mode Signature Coefficients, CY Inclination Function Eccentricity Function
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Table 2
(Continued)

Mode Signature Coefficients, CY Inclination Function Eccentricity Function

ωj l, m, p, q
¶á ñ

¶
Uj

v
¶á ñ

¶

Uj

j

¶á ñ

¶W

Uj

j á ñEj F2(Ij) G2(e)

−n 2, 0, 2, 1 - 2

3
- 4

3
0 2

3
Same as above + + - +

e e e e e2639

491520

113

18432

13

768 16 4

10 8 6 4 2

n 2, 0, 2, 3 2

3
- 4

3
0 2

3
Same as above + +

e e e619

983040

11

18432 2304

10 8 6

2n 2, 0, 2, 4 4

3
- 4

3
0 2

3
Same as above +

e e7

2880 576

10 8

3n 2, 0, 2, 5 2 - 4

3
0 2

3
Same as above e6561

1638400

10

q- - n3j 2, 1, 0, −5 - 2

3

4

9

2

9

2

9
( ) ( )I I9 sin 2 cos 2j j

2 6 e6561

1638400

10

q- - n2j 2, 1, 0, −4 - 4

9

4

9

2

9

2

9
Same as above +

e e7

2880 576

10 8

q- - nj 2, 1, 0, −3 - 2

9

4

9

2

9

2

9
Same as above + +

e e e619

983040

11

18432 2304

10 8 6

q- + nj 2, 1, 0, −1 2

9

4

9

2

9

2

9
Same as above + + - +

e e e e e2639

491520

113

18432

13

768 16 4

10 8 6 4 2

q- + n2j 2, 1, 0, 0 4

9

4

9

2

9

2

9
Same as above - + - + - +

e e e e
e

3481

19200

2881

2304

155

36

63

8
5 1

10 8 6 4
2

q- + n3j 2, 1, 0, 1 2

3

4

9

2

9

2

9
Same as above - + - +

e e e e e4654389

163840

132635

2048

21975

256

861

16

49

4

10 8 6 4 2

q- + n4j 2, 1, 0, 2 8

9

4

9

2

9

2

9
Same as above - + - +

e e e e43773

80

83551

144

1955

6

289

4

10 8 6 4

q- + n5j 2, 1, 0, 3 10

9

4

9

2

9

2

9
Same as above - +

e e e587225375

196608

27483625

18432

714025

2304

10 8 6

q- + n6j 2, 1, 0, 4 4

3

4

9

2

9

2

9
Same as above - +

e e7369791

1280

284089

256

10 8

q- + n7j 2, 1, 0, 5 14

9

4

9

2

9

2

9
Same as above e52142352409

14745600

10

q- - n5j 2, 1, 1, −5 -10

9
0 2

9

2

9
( )I9 sin 2

16
j

2 e3143529

65536

10

q- - n4j 2, 1, 1, −4 - 8

9
0 2

9

2

9
Same as above +

e e9933

1280

5929

256

10 8

q- - n3j 2, 1, 1, −3 - 2

3
0 2

9

2

9
Same as above + +

e e e6019881

327680

20829

2048

2809

256

10 8 6

q- - n2j 2, 1, 1, −2 - 4

9
0 2

9

2

9
Same as above + + +

e e e e12027

640

1661

128

63

8

81

16

10 8 6 4

q- - nj 2, 1, 1, −1 - 2

9
0 2

9

2

9
Same as above + + + +

e e e e e3240741

163840

28403

2048

2295

256

81

16

9

4

10 8 6 4 2

q- j 2,1,1,0 0 0 2

9

2

9
Same as above

( )
-

-e

1

12 3

q- + nj 2,1,1,1 2

9
0 2

9

2

9
Same as above + + + +

e e e e e3240741

163840

28403

2048

2295

256

81

16

9

4

10 8 6 4 2

q- + n2j 2,1,1,2 4

9
0 2

9

2

9
Same as above + + +

e e e e12027

640

1661

128

63

8

81

16

10 8 6 4

q- + n3j 2, 1, 1, 3 2

3
0 2

9

2

9
Same as above + +

e e e6019881

327680

20829

2048

2809

256

10 8 6

q- + n4j 2, 1, 1, 4 8

9
0 2

9

2

9
Same as above +

e e9933

1280

5929

256

10 8

q- + n5j 2, 1, 1, 5 10

9
0 2

9

2

9
Same as above e3143529

65536

10

q- - n7j 2, 1, 2, −5 -14

9
- 4

9

2

9

2

9
( ) ( )I I9 sin 2 cos 2j j

6 2 e52142352409

14745600

10

10

The Planetary Science Journal, 2:4 (26pp), 2021 February Renaud et al.



Table 2
(Continued)

Mode Signature Coefficients, CY Inclination Function Eccentricity Function
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1
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eccentricity (e<0.3) before they have significant impact. Both
of these works estimated tidal heating due to obliquity to be13

proportionate to ( )Isin2 . This estimate is valid for low-
obliquity, spin-synchronous worlds in a highly circular orbit.
However, for large obliquity, or a world in NSR, then higher-
order obliquity terms are required. Adding these corrections
may be required even for low obliquity due to cross-terms
between the inclination and eccentricity functions. For
example, the tidal mode corresponding to l, m, p, q=2, 0,
0, −1 in Table 2 has its lowest-order term proportionate to

( )e Isin2 4 , which grows quickly with eccentricity as long as
{ }pÏI 0, . Conversely, while eccentricity can enhance obli-

quity tides, it is not a requirement: the mode corresponding to
l, m, p, q=2, 0, 0, 0 has a term proportionate to ( )Isin4 ,
independent of eccentricity (Table 2). Unlike the eccentricity
functions G, the inclination functions F do not contain any
infinite summations (assuming a fixed maximum tidal harmo-
nic order, l). Therefore, it is possible to write down an exact F
formula. Because an exoplanet’s obliquity is unknown, we do

not make any assumptions on its magnitude and therefore leave
the inclination functions general (see Table 2).
In Figure 3, we calculate tidal heating for TRAPPIST-1e across

the obliquity domain. A constant eccentricity of e=0.3 provides
the planet with a considerable amount of internal heating even
when obliquity is zero. At this large eccentricity, the importance
of higher-order eccentricity terms remains. Without these higher-
order corrections, the amount of heat the planet experiences is
underestimated by between a factor of 1.25 and 1.65 depending
upon the obliquity. As obliquity increases (up to 180°), its impact
on tidal heating tends to lower this enhancement factor that higher
eccentricity truncations provide. At their peak, obliquity tides can
increase the planet’s heating by about a factor of 3. This peak in
heating occurs on either side of 180°, which indicates a near-total
flip in the planet’s rotation axis. By definition, this is equivalent to
a world with a near-zero obliquity and a retrograde spin rate
(q = -n). This equivalence suggests that obliquity tides, after a
certain angle, effectively become NSR tides. This may be
important if the rotation rate is found to evolve faster than
obliquity damping. In this case, if a short-period planet were to
reach an obliquity greater than about 90°, our results show the
following would happen: obliquity would evolve to 180°,
representing effective retrograde rotation. This is still highly

Table 2
(Continued)
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Note. These terms can be collapsed into a single value for the potential derivatives and tidal heating using Equations (A1) and (A2), respectively. The squares of the
eccentricity and inclination functions were calculated using the formulae discussed in Appendix C.

13 Heller et al. (2011) looked at both the CPL and CTL models, the latter
of which defines heating due to obliquity tides to be proportionate to

( ) ( ( ))+I Icos 1 cos2 2 rather than ( )Isin2 .

12

The Planetary Science Journal, 2:4 (26pp), 2021 February Renaud et al.



dissipative and not stable; however, further axis-angle change
would not resolve the condition. Instead, the rate of spin would
evolve via NSR terms, declining through zero, and returning to
prograde rotation without axis reorientation. This may be one
mechanism where slow-rotator planets, temporarily below 1:1
SOR, could exist. Torques leading to such outcomes will always
compete with other torques, such as from atmospheric flow or
nontidal triaxiality.

We find that tides at low obliquities (I<45°) can provide
exoplanets with a modest enhancement of heating (<2×). This
is in contrast to the orders of magnitude higher heating that can
result from increases in eccentricity or for a mismatch of spin
and orbital frequency. It therefore may be feasible to ignore
heating due to obliquity tides when the planet has even a large
obliquity (I�45°). However, even though the impact on
heating may be modest, the impact of obliquity tides on the
derivatives of the tidal potential can be quite dramatic as we
will discuss in Section 3.1.4.

3.1.3. Nonsynchronous Rotation at High Eccentricity

In the previous section, we examined the dissipation for
TRAPPIST-1e with its spin rate locked to its orbital motion.
Loosening this restriction enables NSR dissipation, which
can both generate a large amount of heat and create a further
coupling between the material response and orbital evolution
via the rheological dependence on many tidal modes
(see Equation (1)). An additional coupling occurs between
eccentricity (and obliquity) and spin rate (e.g., Makarov
2012): a high eccentricity can lead to higher-order SOR
trapping and can even accelerate a planet’s spin rate out of
the 1:1 resonance.14 For example, Mercury’s high eccentricity

is key to maintaining the planet’s 3:2 SOR (e.g., Correia &
Laskar 2009; Makarov & Efroimsky 2014; Noyelles et al.
2014).

Figure 3. Tidal heating is calculated for TRAPPIST-1e as a function of
obliquity. As in Figure 2, four different eccentricity truncation levels are
shown, and we assume the exoplanet is in its 1:1 spin–orbit resonance. The
value of eccentricity is fixed to 0.3. At zero obliquity, I=0°, this constant
eccentricity imparts ≈27 PW of heating when only using the e2 terms and ≈44
PW when using terms up to and including e20. Obliquity tides reach a peak
enhancement of heating on either side of 180°. For the e20 truncation, obliquity
tides provide approximately three times the heating as the baseline eccentricity
tides (indicated by the blue arrow and annotation). At I=180°, the planet is
flipped relative to its orbital plane. Mathematically, this is equivalent to a world
that has zero obliquity but is in a negative (retrograde) rotation rate. This
retrograde motion will quickly synchronize with the orbital motion, leading to
large rotational torques and, therefore, NSR heating.

Figure 2. Tidal heating (left) and the time derivative of eccentricity (right) are plotted as functions of eccentricity for four different eccentricity truncation levels. The
sign of the eccentricity derivative is denoted by the change in color: orange indicates positive (growing) eccentricity while blue is negative (circularizing). Differences
between the commonly used e2 truncation and higher orders start near an eccentricity of 0.1 with significant (nearly an order-of-magnitude) divergences at e>0.3.
Interestingly, restricting e to e2 results in a flip in sign at an eccentricity just below 0.8; this feature is rectified once higher-order terms are included. This suggests that
the use of lower truncation levels at high eccentricities can change both magnitude and direction of long-term orbital evolution. Calculations were made using rock-
like material parameters, as well as the planetary and orbital parameters for TRAPPIST-1e.

14 Even notwithstanding the further issue of possible pseudo-synchronous
rotation for worlds with triaxial moments of inertia.
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In Figure 4, we explore the role of higher-order eccentricity
truncations, again using parameters that match TRAPPIST-1e
for context. The contours show the acceleration (red) and
deceleration (blue) of the planet’s spin rate. Where the two
colors meet are regions of potentially constant spin rate. A clear
convergence can be seen at the 1:1 SOR at low eccentricity.
This tidally locked spin rate is the ultimate end state (assuming
low triaxiality and no external perturbations) of tidal evolution
and is often assumed for short-period exoplanets. Higher-order
SORs can be seen as ledges, where a planet can be trapped if
the eccentricity is high enough. The present-day position of
Mercury (in its 3:2 SOR) is shown in the third subpanel (but
applies to all subpanels equally).

In the absence of MMRs or other eccentricity-pumping
mechanisms, dissipation inside a planet trapped in a higher-
order SOR may continue to circularize its orbit. Eventually, the
eccentricity will be low enough that the planet’s spin rate will
fall off any ledge and quickly reach the ledge below. Arrows in
the first subplot of Figure 4 show notional trajectories in the
time evolution of a hypothetical planetary body through this
phase space, as described above, if eccentricity is free to
circularize under the influence of tidal dissipation in the
satellite alone, without significant external perturbations.
Initially vertical trajectories imply the spin rate evolution is
more rapid in these regions than the eccentricity evolution.
Once an SOR ledge is reached, the trajectory becomes
temporarily horizontal under the influence of free eccentricity
circularizing, but spin rate in a stable steady state (again
notwithstanding complications not included here due to
possible high or low triaxiality; Hut 1981; Rodríguez et al.
2012). Once eccentricity falls below a critical value for each
ledge, rapid spin rate evolution again occurs, until the next
ledge is reached. The critical eccentricity value is a function of
the planet’s tidal efficiency (viscoelastic properties and internal
structure) and obliquity as seen in Figures 5 and 6.

However, the complete absence of external perturbers may
be a somewhat rare condition, as evidenced by satellite
multiplicity in our solar system (including the Pluto system)
and in exoplanet systems (Limbach & Turner 2015; Sandford
et al. 2019). The eccentricity of Mercury itself evolves in a
chaotic manner influenced by both the Sun and the multitude of
other solar system bodies external to its orbit (e.g., Ward et al.
1976; Burns 1979; Correia & Laskar 2009; Lithwick &
Wu 2011; Boué et al. 2012). This helps explain why Mercury
remains in 3:2 SOR today, as its eccentricity is not free to
evolve to zero under the influence of tides alone. Therefore,
objects in similar settings, with eccentricity forced by external
perturbations (such as MMRs, secular perturbations, or secular
resonances), may not follow the horizontal component of the
trajectory in Figure 4, but may instead experience a left–right
oscillatory motion. Consider a world trapped on an SOR ledge
subject to such oscillatory eccentricity evolution. If e falls
below the critical lower threshold value for that ledge, the
world’s spin rate will begin to evolve rapidly down to the next
lower ledge. If, however, e oscillates to a high value, it may
move underneath the ledge of a higher-order SOR. Note that
(for these rheological parameter values) each shelf has some
degree of overhang, as seen in Figure 4. If e oscillation moves
sufficiently far under any overhang to cross from a zone bound
by both blue above and red below (convergent evolution to an
SOR ledge), then into a zone with all red (SOR ledge
instability, and spin rate acceleration), then the system will
begin to spin up the object again, possibly long enough to
return it to a higher-order ledge. Such behavior may cycle
numerous times, if supported by the range of forced
eccentricity values of a given multibody planetary system.
Ledge progression is therefore not uniformly downward, in the
same way that e evolution in complex systems is not uniformly
decreasing. This evolution will be further complicated by
including the effects of triaxiality (Margot et al. 2018).

Figure 4. TRAPPIST-1e’s spin rate derivative (in log scale) is shown via contours over a phase space of the ratio of spin rate, q, to orbital motion, n, and eccentricity.
Spin rate acceleration and deceleration are denoted by red and blue regions, respectively. Darker regions indicate faster changes. Areas where the two colors meet are
possible spin–orbit resonances. For example, the 1:1 resonance exists at very low eccentricity (including e=0), whereas the 3:2 resonance requires e�0.1. Moving
from left to right, in each subplot we loosen the truncation on eccentricity as noted by the subplot title. Ignoring higher-order eccentricity terms results in spuriously
missing higher-order spin–orbit resonances and in determining the wrong sign for the spin rate derivative at e>0.5. In real systems, eccentricity will evolve
simultaneously with changes in spin rate (though at different rates and, possibly, signs). Excluding any external perturbations, tidal dissipation tends to drive a planet
to the left of each subplot (low eccentricity) and toward the 1:1 spin–orbit resonance line. The black arrows in the first subplot show two of the many trajectories time
evolution may follow, for a world that starts with a super-synchronous (top-down arrow) or sub-synchronous (bottom-up arrow) spin rate. If however, e is externally
perturbed, such as by mean motion resonances, then overall leftward migration may be replaced by left–right oscillatory motion. This may cause an object to
periodically both fall off and rise back onto any given SOR ledge (see text for details).
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Accounting for additional eccentricity terms (for e�0.1)
and associated tidal modes allows for trapping in higher-order
SOR’s (shown in subplots 2–4 of Figure 4). Additionally, an
inadequately low truncation level for a given eccentricity can
spuriously predict the wrong sign in rotation-rate acceleration,
as can be seen by comparing the region between the 2:1 and 3:2
SORs across subplots 2 and 4 of Figure 4.

The importance of these differences is debatable because spin
rate changes are generally much faster than the evolution of other
orbital elements (Correia 2009). A planet may only experience
some of these regions, which can lead to stark climate differences,
for relatively short time periods. However, whether or not a planet
becomes trapped at a higher-order SOR can be critical for its long-
term thermal-orbital evolution. For high eccentricities, these
regimes described by higher-order truncations suggest that an
initially slow-rotator planet’s spin rate will tend to always increase
until it reaches the lowest-order resonance associated with its
(changing) eccentricity. By ignoring higher-order terms, this
evolution would stop at a much lower resonance, greatly changing
the outcome of its long-term evolution. Even temporary high tidal
heating on such a ledge may dramatically alter later events, such
as by mediating the onset of plate tectonics, ocean condensation,
mantle outgassing, and secondary atmosphere formation (Barnes
et al. 2013; Airapetian et al. 2020). Temporary high-order SOR
capture can be thermally akin to a prolonged, or late-stage, epoch
of short-lived radioisotope (e.g., 26Al) decay.

3.1.4. Impacts of Nonzero Obliquity on NSR

In Section 3.1.1, we found that obliquity tides typically cause
only modest (rather than order-of-magnitude) increases in tidal
heating, even when considering equations that do not approximate
the obliquity dependence. The discussion around Figure 3 hinted
that the addition of obliquity-activated tidal modes may impact the
orbital and rotational evolution of a body. To explore this further,

we calculate the tidal polar torque (which governs the change in
rotation rate) across an arbitrary obliquity domain in Figure 5. We
find that obliquity can alter the change in spin rate by orders of
magnitude. At high obliquities (I>45°), the rotation axis reaches
a critical point where the spin rate is no longer considered
prograde to the orbital motion (denoted by the sharp spikes and
change in line color in Figure 5). A high eccentricity produces a
large baseline torque, which necessitates larger obliquities to cause
this flip in definition. There is an asymptotic relationship between
eccentricity and the critical obliquity at which this flip occurs,
as   e I1, 90crit .
To show the impact that obliquity has on higher-order SORs, in

Figure 6 we reproduce the contours of Figure 4 but with
TRAPPIST-1e’s obliquity constant at 0° (left subplot) and 35°
(right subplot). First, we find obliquity tides have a slight damping
effect on the underlying spin rate derivative contours, leading to
an overall decrease in dissipation across the phase space. For most
of the SORs, this results in a very minor change in the minimum
eccentricity required for planet spin-trapping (indicated by vertical
dotted lines). However, a dramatic transformation occurs for the
2:1 SOR. Obliquity tides counteract the regular NSR tides in this
region and create a resonance ledge that extends all the way
toe=0. A planet that either initially has a very high spin rate, or
has a very large eccentricity that induces a high spin rate, will
become trapped on this ledge until its obliquity is dissipated.
Depending on the relative rates of eccentricity and obliquity
damping, a planet may transition from the 2:1 to 1:1 SOR,
completely bypassing the 3:2 resonance.
The presence of the 2:1 SOR at low eccentricity raises the

question of what is the minimum obliquity to induce such a
feature. In Figure 7, we again calculate the change in spin rate as
contours except now across the obliquity domain, rather than the
eccentricity domain (one may imagine such plots as differing
slices through a three-dimensional cube of ledge structures). As
discussed in the previous section, ledges of SOR trapping can be
found in both subplots of Figure 7. These ledges drop off at the
same critical obliquities near I=90° as found in Figure 5. In the
left subplot, where eccentricity is set to zero, the 2:1 SOR has a
ledge between I=23° and 113°. This is the same feature that
leads to the 2:1 SOR ledge found at low eccentricity for I=35°
in Figure 6. This indicates that the minimum obliquity to induce
the low-e 2:1 SOR is around I=23°. By increasing the
eccentricity (right subplot), this ledge extends leftward to low
obliquity, including I=0°, implying that a large eccentricity can
allow for the 2:1 SOR trapping regardless of obliquity, as was
found in the previous section.

3.1.5. Viscosity Variations

Up until now, we have assumed TRAPPIST-1e’s bulk was
rocky and responded to tidal forces with a modest viscosity of
η=1022 Pa s and shear modulus of 50 GPa. Tidal dissipation,
and therefore the shape of the spin rate acceleration contours, is
highly sensitive to viscosity. For example, Walterová &
Běhounková (2020) showed that the stability of higher-order
SORs is a complicated function of rheological properties (such
as viscosity) and eccentricity. We also find this in Figure 8,
where we present the same NSR calculations except for a much
lower viscosity of η=1014 Pa s and a shear rigidity of 1 GPa.
These low values may be appropriate for a tidally dominating
upper mantle that is partially melted (e.g., at a ∼3% volume
fraction; Shankland et al. 1981; Berckhemer et al. 1982;
Sato 1991) induced by tidal or other endogenic heat sources, or

Figure 5. Tidal polar torque ( ̈t qá ñ = á ñ = ¶á ñ ¶WC M Uz ) is calculated for
TRAPPIST-1e across the obliquity domain. Four different eccentricities are
shown in various line styles (all calculations use the e20 truncation level). Red
and blue colored lines indicate, respectively, positive and negative torques
(relative to the orbital motion). A flip in the torque’s direction (indicated by the
spikes of ∣ ∣t  0z and the change in line color) marks a transition in spin rate
evolution. At low obliquity, the positive rotation rate is defined as prograde to
the orbital motion. As obliquity increases, a flip occurs where the still-positive
rotation rate is now considered retrograde to the orbital motion. This flip of
signs occurs between 0°±(45°–90°), depending on eccentricity. It marks the
critical obliquity angle where the planet is considered flipped relative to the
orbital plane (from a spin-dynamics perspective).
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else a super-Earth with a high-pressure ice mantle of thickness
1000 km (Fu et al. 2009; Noack et al. 2016). This lower
viscosity smooths out the spin–orbit ledges seen in the previous
figure, making SOR trapping much less likely. Instead, if a
planet is imparted with a large eccentricity, then the initially
high rotation rate will continuously decrease, slowing but not
stopping at higher-order SORs. If circularization is halted due
to, for instance, MMR with another planet, then the spin rate
could still become held at a value outside of the 1:1 SOR.
However, unlike the high-viscosity case, any change in e will
always result in a direct change to q. This outcome is somewhat
analogous to the phenomenon discussed in Makarov &
Efroimsky (2013), whereby a sufficiently partially molten state

for a planet may also interrupt the conditions for pseudo-
synchronous rotation.
The homogeneous model used in this study does not capture

the effect of multiple layers of material, each with a different (by
orders of magnitude) viscosity and rigidity (e.g., Tobie et al.
2019). These layers will each have a unique resonant forcing
frequency (or multiple ones depending upon the rheology), which
will result in a peak for that layer’s tidal response. It is expected
that this will alter the figures and analysis presented in this section.
However, any additional frequency peaks will result in a more
complex picture rather than a simpler one. Henning & Hurford
(2014) found that analyzing the frequency response of the most-
dissipative layer (e.g., any asthenosphere), somewhat regardless of

Figure 7. Rotation-rate derivatives are calculated in a phase space of spin rate divided by orbital motion vs. obliquity. Left: the eccentricity is set to zero. The 1:1
resonance ledge falls off at very high obliquity as the spin rate is no longer considered prograde to the orbit, thereby breaking the 1:1 resonance. The 2:1 spin–orbit
resonance ledge appears between 23° and 113°, indicating that this resonance is possible for zero or near-zero eccentricity as was found in Figure 6. Right: the
eccentricity is set to 0.3. The 2:1 and 3:2 spin–orbit resonance ledges are now present for all obliquities less than around 90°.

Figure 6. As in Figure 4, we calculate TRAPPIST-1e’s change in rotation over a phase space of eccentricity and the ratio of spin rate to orbital motion. Eccentricity
terms are truncated at e20. The left subplot assumes no obliquity and matches the rightmost plot of Figure 4. In the right plot, an obliquity of 35° is imparted on the
exoplanet. The vertical dotted lines mark, approximately, the minimum eccentricity required for a higher-order spin–orbit resonance. A nonzero obliquity acts to
slightly lower the minimum eccentricity required for the higher-order resonances. More importantly, an obliquity of 35° enables the 2:1 resonance to occur at very low
eccentricity e=0.
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its volume fraction, is generally key to obtaining the true full
orbital behavior; however, this might be overturned by the
profound differences between Figures 4, 6, and 8. The
improvements discussed here still serve as a foundation for future
studies.

3.2. Dual-body Dissipation Applied to Pluto–Charon

Several TNOs have been found with large satellites. Some
theories suggest that these systems formed through a collisional
process. Such an origin can initialize these worlds with high
eccentricity and spin rates. Any high-energy initial state for Pluto–
Charon has tidally dissipated to the low-eccentricity, dual-
synchronous state observed today. This damping process has
largely erased initial orbital and rotation conditions of such
systems. However, we can deduce some information from
observations of other, nonbinary TNOs, as well as the formation
process itself (Kenyon & Bromley 2019 and references therein):

1. The initial spin rates of both objects in a binary system
are unlikely to have been equal to one another or to their
initial orbital motion.

2. The initial eccentricity could be large and the initial
relative obliquity of the bodies would be semirandom.

For these reasons, the tidal evolution of TNO binaries must
be reexamined using insights found in the previous section
regarding NSR and the inclusion of higher-order eccentricity
terms. Furthermore, while a simple tidal response assumption
such as CPL may be acceptable for estimating dissipation
within a star or a gas giant, it does not accurately describe the
better-known rheological response to tidal forcing of solid
materials (e.g., ice and rock) inside both objects in a TNO
system like Pluto–Charon. Because dissipation of both binary
members affects the long-term dynamical evolution (e.g.,
changes in a and e) of the system (Section 2.2), we must
consider dissipation inside both worlds simultaneously (dual
dissipation).

3.2.1. Effect of Dual Dissipation on the Time Derivative of
Eccentricity

On the surface, the dual-dissipation model is simply an
addition of the two individual planets’ dissipation terms into
the disturbing potential (Heller et al. 2011; Boué &
Efroimsky 2019). However, as the change in the orbital motion
is now dependent upon the dissipation of both solid worlds, a
further level of coupling occurs when using a frequency-
dependent rheology due to the complex Love number’s
dependence on the orbital motion via the tidal modes
(Efroimsky 2012). Such coupling can be seen in Figure 9,
which shows the dependence of Pluto–Charon’s mutual e on
the orbit’s period. When dissipation inside both Pluto and
Charon is accounted for (bottom subplot), the resulting e is a
superposition of the effects found when dissipation is restricted
to Pluto and Charon (top subplots).
In Figure 9, the spin periods of Pluto and Charon were fixed

arbitrarily to create a phase space cross section for illustration.
In practice (Section 3.2.3), they evolve at different rates,
potentially stalling temporarily as one or both worlds encounter
higher-order SORs depending on their e, I, and interior state
(Section 3.1). It is therefore important to capture all peaks and
troughs in e as seen in Figure 9. In general, lower-fidelity
methods (CPL or CTL models, dissipation in a single body)
tend to underpredict dissipation (depending on the choice of Q)
and decrease the range of eccentricity values which lead to
spin–orbit trapping.

3.2.2. Additional Effects Due to Nonzero Obliquity

Just as Pluto’s other moons are observed to have high
obliquity relative to the Pluto–Charon orbital plane (Weaver
et al. 2016), it is also likely that Pluto and/or Charon’s obliquity
was initially nonzero.15 As discussed in Sections 3.1.2 and
3.1.4, nonzero obliquity can lead to modest increases in tidal
heating and potentially dramatic changes in rotational and
orbital evolution. To explore the impact of obliquity tides on
the Pluto–Charon system, we calculate e at a possible snapshot
in time of Pluto and Charon’s early evolution (Figure 10).
Because Charon’s q likely evolved more quickly than Pluto’s,
or their mutual n, we choose it as a free parameter across the x-
axis. The eccentricity is fixed to 0.3, therefore numerous tidal
modes exist even for the I=0° case (left subplot). By setting
Charon’s obliquity to 35° (right subplot), we find several new
modes that increase the number of potential spin–orbit
couplings as well as altering the ones present for no obliquity.

3.2.3. Time Evolution of Pluto–Charon Using a Dual-dissipation
Model

The discussion so far has focused on static snapshots to show
complexity changes when additional tidal modes become active. In
reality, all system parameters (orbital motion, eccentricity, spin
rates, etc.) evolve in time. They also strongly depend on the
viscosity and rigidity of both worlds, which, in turn depend upon
the interior structure and thermal state. Several recent studies have
looked at this coupled thermal-orbital evolution for Pluto–Charon

Figure 8. Spin rate derivative (relative to orbital motion) as a function of
eccentricity for the same system as in Figure 4, but with a viscosity of 1014 Pa s
(previously 1022 Pa s) and a shear modulus of 1 GPa (previously 50 GPa). This
mimics either a planet with severe partial melting within silicate layers, or an H2O-
rich world with a significant amount of dissipative ice. The sharp ledges seen in the
previous figure are smoothed out. Rather than experiencing long-term capture into
3:2 or another higher-order spin–orbit resonance, a planet is more likely to
continuously transition to lower spin rates unless the eccentricity is held constant or
semiconstant (due to perhaps a mean motion resonance with other bodies).

15 Pluto’s smaller satellites most likely have large modern-day obliquities due
to their much weaker tidal dissipation owing to their small size and therefore
cold internal temperatures. They also orbit at least twice as far from Pluto as
Charon does, thereby decreasing their tidal susceptibility by a factor of >64.
An interested reader may review the work of Correia et al. (2015) and Quillen
et al. (2017) for more information on these moons’ evolution.
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(Robuchon & Nimmo 2011; Cheng et al. 2014; Barr &
Collins 2015; Hammond et al. 2016; Quillen et al. 2017; Saxena
et al. 2018; Arakawa et al. 2019), but these generally do not
consider the dual-body dissipation for a highly eccentric and
nonsynchronously rotating system.16 The range of likely initial
conditions and possible interior configurations and composi-
tions creates a large parameter space that deserves a dedicated
study. However, to show how some of the concepts discussed
here can change the long-term evolution, we show one example
evolution scenario for Pluto–Charon. The interior and thermal
evolution of Pluto and Charon follows the methods discussed
by Hussmann & Spohn (2004) in the context of Europa. This
thermal model is coupled with the orbital evolution described
in Section 2.2. For this particular example, we assume Pluto

and Charon both start at a spin rate higher than their initial
orbital mean motion, which in turn is faster than the modern-
day value, indicative of a closer-in Charon (aInitial=6RPluto).
To approximate a possible postcollision state, Charon’s initial
orbital eccentricity is set to e=0.5. We do not, however,
model the impact of obliquity tides in this example
(IPluto=ICharon=0°). Evidence is beginning to show that
Pluto may have initially been warm (Bierson et al. 2020), so we
start both Pluto and Charon with relatively warm interiors.
Primordial concentrations of radioactive isotopes in their rocky
cores help sustain this warm state regardless of tidal
dissipation.
In Figure 11, we compare the dual-body dissipation model

(bottom row) to models where only one body is dissipating tidal
energy. Not accounting for the simultaneous dissipation within
both bodies can lead to significantly different orbital and rotational
outcomes. As seen in the dual-dissipation model, Pluto and Charon
reach their dual-synchronous end state in just over 5 million years.
The system experiences two phases during dynamical

evolution. First, Charon’s spin rate evolves toward the 1:1

Figure 9. Time derivative of Pluto–Charon’s mutual eccentricity is shown as a function of the orbit’s period. Blue indicates a shrinking e (negative derivative),
whereas orange shows a growing e (positive derivative). Pluto and Charon’s spin periods are arbitrarily set to 1 day and 2.5 days, respectively (indicated by the vertical
green and magenta dashed lines), as a possible state in their early evolution before they reached their current spin-synchronous value of 6.39 days. Either world is in
NSR for orbital periods outside of these vertical lines. In the top two subplots, tidal dissipation is restricted to Pluto (left subplot) and Charon (right subplot). The dual-
dissipation model (where tides are calculated for both worlds) is shown in the bottom subplot, where, in addition to the canonical Sundberg–Cooper model, CTL and
CPL models with dual dissipation are shown for comparison. For these models, a fixed Q of 100 was used for both Pluto and Charon. A value of e=0.3 is assumed
along with no obliquity in either body. The derivatives calculated with a multimode rheological model capture a far more robust picture of spin–orbit resonances
compared to CTL or CPL assumptions.

16 Cheng et al. (2014) did consider the dissipation within both bodies and
tracked the nonsynchronous spin rate, including the effect of Pluto’s rotational
flattening. However, this study utilized the CTL and CPL models, which do not
model the real response of these worlds’ bulk to tidal forces. In NSR situations
especially, frequency response is critical, as the forcing frequency spans many
values within a time simulation.
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Figure 10. To show how obliquity can induce additional spin–orbit resonances, Pluto and Charon’s mutual e is shown as a function of Charon’s spin period. Pluto’s
spin period is set to 1 day (vertical green dashed line), and its orbital period to half its modern value (≈3.2 days; vertical black dashed line). These are indicative of a
snapshot early in the system’s evolution. As in Figure 9, blue indicates negative e and orange marks positive. In the left subplot, both Pluto and Charon have zero
obliquity and no orbital inclination. In the right subplot, Pluto remains at zero obliquity while Charon’s is increased to 35°. Charon’s obliquity tides activate new tidal
modes which impart additional peaks and troughs in the eccentricity derivative. Thus, obliquity tides can cause order-of-magnitude differences in the orbital and
rotational evolution, even though they may not have a significant direct impact on internal heating (Figure 3).

Figure 11. Orbital (left) and rotational (right) evolution is shown for an example set of initial conditions for the Pluto–Charon system. The initial orbital parameters are
aInitial=6RPluto, eInitial=0.5, and no mutual inclinations or obliquities. The spin rates of Pluto and Charon are both set to 10×the initial orbital frequency. The orbits
and spin rates quickly evolve within the first 10 yr (not shown) to the values shown at the left of each plot. Top and middle rows: dissipation is turned off within,
respectively, Charon and Pluto. Last row: both Pluto and Charon are allowed to simultaneously dissipate tidal energy. The inset plot in the bottom right highlights
Charon’s spin rate falling from the 6:1 spin–orbit resonance onto lower-order spin–orbit resonances, a process which lasts about 200 kyr. Scales are set generally to
help comparisons between models. Exact arrival at present-day parameters is not sought, as the goal is to visualize, from among countless possible time histories, the
essential role of model fidelity.
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SOR. Its evolution is slowed by encountering higher-order
SORs. At the same time, the orbit circularizes ( e 0). As the
eccentricity decreases, Charon is no longer able to remain in
the higher-order resonances (equivalent to falling off the ledges
described in the last subplot of Figure 4). Charon’s tidal
dissipation also acts to contract the mutual orbit.

Second, after Charon has reached 1:1 SOR, the spin rate of
Pluto is next driven toward synchronization with the orbital
motion n. At this point, e=0. Therefore, Pluto does not
encounter any higher-order SORs. Angular momentum is
transferred from Pluto’s fast spin rate into the mutual orbit,
expanding the semimajor axis. This increase in orbital
separation is not seen when dissipation is restricted to Charon.
For the case where only Pluto is dissipating (top row), orbital
expansion begins immediately and is not counteracted by
Charon’s dissipation.17 After a million years, the orbital
separation is so large that tidal dissipation has dropped
significantly (recall that tidal dissipation proportionate to a−6;
see Equation (7)). For the dual-dissipation case, on the other
hand, after 250,000 yr, a remains at about 40% of its modern
value (a≈6.6RPluto) and begins to expand due to Pluto’s
super-synchronous spin rate. Unlike the Pluto-restricted case,
the orbital separation never becomes so large that dissipation
ceases. Pluto’s spin rate continues to decrease toward
synchronization until, after around 5Myr, the system has
reached the circular, dual-synchronous state that we find it in
today.

Thus, accounting for dissipation in both Pluto and Charon
results in a significantly different (and more complete) picture
of the binary’s orbital and rotational evolution. This is only one
example to illustrate how much dynamical evolution can vary
dramatically depending on a full portrait of tidal modes and
sources, as well as both initial conditions and interior states.
In particular, the effect of a heterogeneous interior (here
comprising a silicate–metal–organic-rich core, liquid ocean,
and ice-rich shell) warrants further study, including both fluid
tide dissipation and effects on dissipation in the ice shell arising
from how an ocean mechanically decouples the shell from the
core. Although we have assumed here that dissipation in such a
heterogenous interior would be decreased by the viscoelastic
volume fraction fTVF relative to that computed for a homo-
geneous interior, in reality, material temperatures, mechanical
boundary conditions, and compositions may affect tidal
dissipation in different ways (although use of the volume
fraction assumes we are focusing on whatever material layer is
most dissipative from a temperature/composition perspective).
Accurately capturing these effects requires utilizing the tracked
interior structure, in a fully multilayer tidal computation
(bottom-right box of Figure 1), along with the high-degree
multimodal aspects of this study.

4. Conclusions

We have found that using traditional tidal evolution
formulae, which truncate eccentricity functions to e2, on
planets and moons in highly eccentric orbits (e�0.1) can
lead to significant changes to spin rate evolution and modest
errors in heating rates. These errors can increase by orders of

magnitude for very high eccentricity (e�0.6). Specifically,
the time derivative of eccentricity using the e2 truncation
predicts a flip in direction (from a circularizing orbit to one
with a growing eccentricity) around e=0.8 that is not seen
when higher-order terms are included. These errors are
compounded when the world is allowed to rotate nonsynchro-
nously. NSR can lead to spin–orbit trappings that are sensitive
to eccentricities as low as e=0.1 for the cases tested here.
Higher-order eccentricity terms not only activate new SORs but
also alter the path a planet may take as it falls onto them.
Eccentricities of around e=0.4 can accelerate a planet’s spin
rate out of the 1:1 SOR to frequencies several times the orbital
motion.
A world that experiences a new-onset secular perturbation,

secular resonance, or MMR, imparting significant eccentricity,
might be knocked out of its tidally locked state from
eccentricity-induced NSR alone. This highly eccentric NSR
state can generate a large amount of tidal heating in the planet’s
interior. Any NSR state will quickly evolve to a lower
dissipative, SOR state (1:1 or higher depending upon the
specifics). There is a possible testable bias for higher-order
SORs to be found in younger star systems, which experience
greater levels of eccentricity-enhancing mechanisms, including
planet–planet mergers, migrations, secular resonance crossings,
and changing orbital resonance states. For exoplanets that
become trapped in a higher-order SOR for long periods of time,
the climate could be dramatically altered from the new solar
incidence (Turbet et al. 2016; Del Genio et al. 2019). For these
reasons, care should be taken when assuming 1:1 tidal locking
for short-period exoplanets that exhibit an eccentricity greater
than about 0.1. This assumption should be seriously reex-
amined for worlds with e�0.3. For e<0.1, we expect results
derived with the common truncation to e2 to remain reasonably
valid for most systems, although this depends upon a world’s
viscoelastic state. For instance, Walterová & Běhounková
(2020) found that the 3:2 SOR is possible for eccentricities as
low as 0.08. This also does not preclude the potential need to
consider higher-order eccentricity terms when studying the
world’s past evolution when eccentricities may have been
higher. Observing an exoplanet’s spin rate is currently a
difficult proposition. Observational evidence of spin rates has
been reported for exoplanets larger than Jupiter (e.g., Snellen
et al. 2014; Zhou et al. 2016), but probing rocky super-Earth or
smaller worlds we discuss here will require new advancements
in observing technology and techniques. However, a short-
period exoplanet observed to have both a low eccentricity and a
non 1:1 spin rate could be evidence for a dynamically young
system experiencing orbital perturbations or resonances.
Alternatively, such an exoplanet may exhibit a higher-order
SOR due to a significant triaxiality, obliquity, or due to it being
a poor dissipator of tidal energy.
The rotational and orbital model described in this work is

equally suited to the long-term evolution of stars and gaseous
planets (such as close-in hot Jupiters). Thus, our recommenda-
tions regarding eccentricity truncation levels to use are
generally extensible to such worlds. However, these worlds’
tidal dissipation mechanisms are poorly understood at present.
In general, using a CTL or CPL model for gas giants, rather
than the Sundberg–Cooper rheology we employ for rocky and
icy worlds in this study, is a reasonable approach, yet studies
such as Storch & Lai (2014) suggest viscoelastic gas giant
layers could alternatively play dominant roles in dissipation.

17 In this scenario, eccentricity increases throughout the time domain and, after
a million years, becomes very large. This level of eccentricity likely requires
even higher-order truncations than the e20 terms we use here. Therefore, the
Pluto-restricted dissipation (top row) results should be taken with some
skepticism after ≈1 Myr.
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Similar questions arise from Lainey et al. (2020) for Saturn.
Considering giant planets of decreasing size, there must be a
transition mass range at which viscoelastic layers become
important, and then dominant. This mass range may even be
near that of Neptune itself (Remus et al. 2012; Zeng &
Sasselov 2014) and vary as a planet ages. Thus, the possible
applicability of this work’s findings to ice giant planets may be
of high relevance considering the number of mini-Neptune
worlds now observed (Dressing & Charbonneau 2013). Over-
all, as the likelihood of capture into higher-order SORs is
highly dependent upon the tidal efficiency, the findings
presented throughout this work should be reexamined when
discussing gaseous planets or stars.

For very high eccentricities, like those expected in some TNO
binary formation scenarios, the use of high powers of eccentricity
in tidal dissipation equations is essential. This is due to the poor
convergence of the eccentricity functions, G(e), used in the
Darwin–Kaula tidal theory (Bagheri et al. 2019b). This poor
convergence is magnified when studying worlds experiencing
NSR. In Appendix A, we provide the tidal dissipation equations
for NSR with eccentricity terms up to and including e10 at an
arbitrary obliquity. The effects of terms up to and including e20 are
discussed throughout this study. We also provide the synchronous-
rotation equations assuming zero relative obliquity in Appendix B.

Obliquity tides can increase tidal heating (a maximum of
3×higher heating for TRAPPIST-1e assuming synchronous
rotation and rock-like material properties) but are generally still
a weaker source of heat than a high eccentricity or out-of-
resonance spin rate. However, even modest obliquities do alter
rotational geometry in a manner that can have a significant impact
on tidal torques. Therefore, orbital and rotation evolution are
highly sensitive to nonzero obliquity. Obliquity tides also activate
new tidal modes, some of which can be scaled up by any nonzero
eccentricity. If the eccentricity is large, then even a small obliquity
can lead to new and powerful tidal modes. We also find that
obliquity can greatly enhance the chance of trapping into the 2:1
SOR. The likelihood of this trapping will depend on the relative
damping rates between obliquity and eccentricity, which will be
the topic of a future study. Also left for future work is an
assessment of the impact of the common simplifying assumption
we invoke, of averaged orbital motions (i.e., equating true and
mean anomalies), on tidal dissipation at high eccentricity.

The rotational evolution of any planet will be further
complicated by effects that we do not consider in this work.
Prime among them is the influence of triaxiality, which can
induce additional torques that may allow for easier capture into
higher-order SORs at lower eccentricities (Rodríguez et al. 2012;
Makarov & Efroimsky 2014; Frouard & Efroimsky 2017).
However, the eccentricity, obliquity, and NSR effects discussed
in this work will still be present during any triaxiality-induced
evolution. Therefore, understanding the impact of these latter
effects in isolation is an important step toward building a
complete picture of the rotational and orbital evolution of planets
and moons.

All results from this study point to more complexity and
nuance in the rotational, orbital, and thermal history of worlds,
as can manifest in dynamical cascades through many high-
order SORs (as in the lower-right-hand inset of Figure 11). At
each successive SOR, tidal heating drops, suggesting (laterally
inhomogeneous) pulsations in both heat and stress. Such rapid
changes (∼0.01–0.05 Myr each in Figure 11) might act akin to
“freeze thaw cycles,” which exacerbate fracturing on Earth, or

akin to cyclic working of fractures on other icy moons. Rhoden
et al. (2020) found that fractures on Charon do not match
diurnal tidal stress patterns. That result, combined with
dynamical trends in this work, suggests fracturing still visible
on Charon could, in part, have been influenced by a complex
SOR cascade.
We have implemented a new dual-dissipation model that

simultaneously tracks tides within both the host and satellite of a
binary system using semianalytical equations and the Sundberg–
Cooper rheology. This model was applied to Pluto–Charon
based on its presumed energetic origin but is equally applicable
to any satellite orbiting a central host (such as Neptune and
Triton, the Earth and Moon, or an exoplanet around a highly
dissipative star). This dual-dissipation model creates a second-
order thermal-orbital feedback in which one planet’s spin rate
can cause orbital changes which will in turn cause thermal
variations inside the opposite planet. For Pluto–Charon, we find
that the dual-dissipation model generates faster orbital changes
than found by Saxena et al. (2018). However, the potential for
interim higher-order SOR trapping may still extend the time it
takes for the system to reach its dual-synchronous state as is
observed today. Not considering dual-body dissipation leads to
dramatically different orbital outcomes. Finally, we confirm
others’ work that the CTL and CPL methods have a very
different response to NSR tides than a rheology-based
viscoelastic model. The CTL and CPL methods, while perhaps
remaining applicable to the poorly understood dissipation
within gaseous and stellar bodies, are not accurate models of
the long-term evolution of rocky and icy worlds that experience
varying forcing frequencies.

We thank Michael Efroimsky for his guidance on imple-
menting the dual-dissipation model for NSR tides. Valeri
Makarov and Dimitri Veras assisted with the eccentricity and
inclination functions. We also thank Julien Frouard, Alyssa
Rhoden, Robert Tyler, and Eric Wolf for thought-provoking
discussions. We also thank the helpful comments and
suggestions provided by this manuscript’s anonymous
reviewers and the editors. This work was supported by the
NASA Habitable Worlds Program (NH16ZDA001N-HW) as
well as from the Sellers Exoplanet Environments Collaboration
at NASA Goddard Space Flight Center. M.N., P.S., and W.H.
acknowledge support from the CRESST-II cooperative agree-
ment between NASA Goddard Space Flight Center and the
University of Maryland, College Park. A.B. acknowledges
support by the Swiss National Science Foundation (SNSF
project 172508 “Mapping the internal structure of Mars”).
Software:NumPy (van der Walt et al. 2011), SymPy

(Meurer et al. 2017), Julia DiffEq (Rackauckas & Nie 2017),
Matplotlib (Hunter 2007), and reduced-color-perception con-
scious color maps (Crameri 2018).

Appendix A
Dissipation Formulae for Arbitrary Obliquity and
Eccentricity Terms Truncated to the 10th Power

In Table 2, we provide the tidal potential derivatives and
heating equation for arbitrary obliquity. The dissipation
equations were calculated using Equations (7). We have
dropped all terms containing powers of e12 and higher, as well
as any terms that would result in the tidal heating and potential
derivative equations equaling zero. These derivations assume
no pericenter or nodal precession and only consider the secular
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evolution. Finally, only quadrupole terms (l=2) are provided
(see Appendix D for a discussion on l>2).

Using Table 2, one can find the derivative of the tidal
potential with respect to the variable Y by (where

{ }vÎ WY , , )

( ) ( )å c
¶á ñ

¶
= ~U
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where the summation index i is over each nonzero tidal mode,
presented as individual rows in Table 2. For each mode ωi, CY,i

is the respective derivative’s coefficient (third column in
Table 2).

Tidal heating á ñEj can be found in a similar fashion (note the
additional factor of Mk),
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Tidal heating also carries an additional factor of the tidal
forcing frequency, χi, which is defined as the absolute value of
each mode, ∣ ∣wi . The Love number in Equation (A1) contains
the sign of the tidal mode (denoted by the tilde above the K ),
Sgn(ωi), whereas the Love number in Equation (A2) has no
sign dependence and is strictly greater than or equal to zero for
all modes.

The functional forms of both the potential derivatives and
tidal heating are the same if one is considering the host or
satellite; however, the subscripts j always refer to the object for
which tidal heating is being computed and k to the opposite
object. These must be swapped when moving from one world
to the other.

Appendix B
Spin-synchronous Dissipation at Zero Obliquity

Table 2 makes no assumption about the object of interest’s
rotation rate (q may or may not be equal to n or a rational
multiple of n). If, however, the object has reached its spin-
synchronous state, then the number of active modes will
dramatically decrease (many will be equal to one another or
zero). A further simplification can be made if the object is
assumed to have zero obliquity (Ij=0). This allows for much
simpler (and computationally cheaper) calculations of tidal
heating and the potential derivatives when compared to using
Equations (A1) and (A2). We provide these reduced formulae
here for completeness.18

For the following equations, we first define the tidal
susceptibility as
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Tidal heating is then
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The derivative of the tidal potential with respect to the mean
anomaly is
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For an object with no obliquity, the derivative of the tidal
potential with respect to its orbital node is equal to the
derivative with respect to the pericenter:
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An important feature of the dissipation equations is that, by
including higher orders of eccentricity, even though here we
are only considering the spin-synchronous case, we are still left

18 The same assumptions discussed in Section 2.2 apply to these equations
as well.
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with multiple tidal modes which act as inputs to the rheological
model (all are integer multiples of the absolute value of the
orbital motion). It is also important to note that the sign of the
orbital motion19 (designated by Sgn(n)) is present for the tidal
potential derivatives. Therefore, the orbital evolution formulae
depend upon the orbital direction while the interior heating
does not.

Appendix C
Eccentricity and Inclination Functions

The eccentricity and inclination functions used in
Equations (7) are presented below for reference. Please refer
to Chapter 6 of Murray & Dermott (2000) for an introductory
discussion of these functions and how they arise in the tidal
potential equation. However, the definitions of the functions in
that text lack some of the nuances that are discussed below.

Throughout this section, l, m, p, q refer to the Fourier
summation indices used in the Darwin–Kaula derivation of the
tidal potential. Eccentricity and obliquity20 are denoted by,
respectively, e and I. For a dual-dissipating system, both
objects share the same eccentricity but may have different
obliquities (Ih, Is) relative to their mutual orbital plane.

C.1. Eccentricity Functions

The eccentricity functions are related to the Hansen
coefficients (Kaula 1964),

( ) ( ) ( )= - +
- - -G e H e . C1lpq l p q

l l p
2

1, 2

The Hansen coefficients Hk
n m, can be calculated for two

different regimes (note that the integer n should not be
confused with the orbital mean motion discussed elsewhere in
this article). Exact solutions exist for k=0; otherwise, we must
rely on truncating powers of eccentricity (Hughes 1981).
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Thus, unique solutions can be found by restricting m such that
∣ ∣ m n0 . Two additional subregimes emerge based on the

value of n (see Appendix A in Laskar & Boué 2010). For
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For all other n<−1 and associated m, the coefficients can
be calculated using the terminating summation,
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where we replaced n (which is still assumed to be less than −1
at this stage) with the strictly positive n′ defined as n′=−n.
For the tidal dissipation calculations used in this work,

n=−l−1. Therefore, because l�2, n will always be less
than or equal to −3. However, for completeness, we present the
work of Laskar & Boué (2010), who showed that for n�0
(and 0�m�n),
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For nonzero values of k and all Î n , the Hansen
coefficients can be found by (Veras et al. 2019)
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where ( )= - -z e e1 1 2 and Jz(x) represents the Bessel
function of the first kind defined as (e.g., Giacaglia 1987),
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In this regime ( ¹k 0), and only this regime, the Hansen
coefficients may also be approximated via the Newcomb
operators as presented in Murray & Dermott (2000; see
Equations (6.39)–(6.42) on p. 232). Cherniack (1972) found the
Newcomb operators to be a computationally efficient way to
estimate the Hansen coefficients. However, in this work, we
precalculate the eccentricity function coefficients; therefore,
mathematical accuracy outweighs computational efficiency and
we choose to forego the Newcomb operators in favor of
Equation (C5).
In order to perform tidal calculations, the infinite summa-

tions in Equations (C5) and (C6) require us to truncate the
equations to a predetermined power of e. The implications of
different truncation levels are discussed in Section 3.1.

C.2. Inclination Functions

The inclination functions (used in Equation (7)) as written
down by Kaula (1961) required the inefficient calculation of a
triple summation. Allan (1965) rederived the functions in a

19 The sign of the orbital motion is positive for prograde orbits and negative
for retrograde ones. Here, “prograde” requires some reference direction, which
we always choose to be the host’s spin vector.
20 A slight misnomer exists with respect to the naming of the “inclination”
functions. These functions have a long tradition, which we continue in this
manuscript, of being named for inclination when, in the context of tides, they
should actually be used in conjunction with the relative obliquity of the object
in question. An inclined orbit will change the relative obliquity of the host
object. For example, Triton’s large inclination will affect Neptune’s obliquity
tides, not Triton’s. Inclination can, however, influence the satellite if the host
has a significant oblateness, which we do not consider in this work.
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simpler form, which we use here with the exception that the
author included an erroneous factor of ( )- -1 l m (this was
carried into the 2000 edition of Murray & Dermott 2000) that
was corrected in later revisions (Gooding & Wagner 2008;
Veras et al. 2019). The final, corrected, definition is given by
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where σlmp=max(0, l−m−2p) and υlmp=min(l−m,
2l−2p).

Unlike the eccentricity functions, the inclination functions do
not have infinite summations and can always be written as an

exact solution containing sines and cosines. A discussion of the
history of these functions, as well as methods to improve
computation times, can be found in Gooding & Wagner
(2008).21

Appendix D
Moving beyond the Quadrupole

Throughout this study, we have only considered the
quadrupole terms in the tidal dissipation equation (l=2).
Tidal dissipation drops off quickly at higher orders of l due to
the radius over the orbital separation scaling factor in
Equation (7): (R/a)2l+1. For this reason, many tidal studies
choose to exclude l>2. However, care should be taken
because this choice should not be made purely based on the

Figure 12. Top row: to demonstrate the role of higher nonquadrupole values of l, the absolute value of e is calculated for lmax=2 (as is used elsewhere in this study)
while varying Pluto’s rotation period (y-axis) and orbital period (x-axis). Charon’s spin rate is assumed to be synchronous with the orbital motion and therefore also
varies across the x-axis. Two different eccentricity values are used: e=0.05 for column one and e=0.6 for column two. Eccentricity changes are quickest (darker
regions) at low orbital period and near spin–orbit resonances. Second row: ratio between e calculated for lmax=3 and lmax=2 (top row). Last row: ratio between
lmax=7 and lmax=2. Differences between lmax=2 and lmax>2 appear at low orbital period and near higher-order spin–orbit resonances. Higher eccentricity
enhances these differences, particularly by the activation of new tidal modes. Utilizing higher orders of l can generate up to two orders of magnitude differences in e.
Fine-scale structure seen in these plots is real and of high complexity.

21 The inclination functions found in Gooding & Wagner (2008) Flm
k differ

slightly in definition from the Flmp used in Equation (C13). This difference is
discussed there.
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orbital separation and radius. For high values of eccentricity (or
obliquity), terms beyond the quadrupole may become impor-
tant especially for planets experiencing NSR. This reasoning
comes from the fact that eccentricity functions (and to a lesser
extent, inclination functions) calculated for l>3 can become
quite large due to the presence of large coefficients. These
functions may then act as large multipliers, potentially negating
the diminishing effect of a small radius to orbital separation
ratio.

To show this, we calculate e for lmax=3 and lmax=7 (using
the e20 truncation level).22 We then divide these results by their
respective values calculated for lmax=2 to emphasize when
the higher-order l results diverge from quadrupole (Figure 12).
For these calculations, we use the planetary properties of Pluto
and Charon (see Table 1) because they are close enough to one
another that their R/a is already quite large (Pluto’s R/a≈
0.06 compared to Io’s R/a≈0.004).

We find that using higher orders of l, particularly for high
eccentricity, can generate differences of up to two orders of
magnitude from the traditional lmax=2. These differences are
highly sensitive to the spin state of the planet. At l>2, the
dissipation equations (Equations (7)) depend on a greater
number of tidal modes. More of these modes become active at
high eccentricity. This can be seen by the increase in number of
diagonal line features in the lower-right subplot of Figure 12.
Depending on the specifics of the problem, some of these
modes may also lead to additional SOR trappings.

In conclusion, terms beyond the quadrupole should be
considered for objects that are close to their tidal host (relative
to their radius) and for objects with a large eccentricity or in NSR.
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