ETH zürich

Methanol Synthesis by Hydrogenation of Hybrid CO2–CO Feeds

Journal Article

Author(s):

Pinheiro Araújo, Thaylan; Hergesell, Adrian H.; Faust Akl, Dario (); Büchele, Simon; Stewart, Joseph A.; Mondelli, Cecilia; Pérez-Ramírez, Javier

Publication date: 2021-07-22

Permanent link: https://doi.org/10.3929/ethz-b-000514286

Rights / license: In Copyright - Non-Commercial Use Permitted

Originally published in: ChemSusChem 14(14), <u>https://doi.org/10.1002/cssc.202100859</u>

Supporting Information

Methanol Synthesis via Hydrogenation of Hybrid CO₂-CO Feeds

T.P. Araújo^a, A.H. Hergesell^a, D. Faust-Akl^a, S. Büchele^a, J.A. Stewart^b, C. Mondelli^{a*}, and J. Pérez-Ramírez^a*

^aInstitute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland.

^b Total Research & Technology Feluy, Zone Industrielle Feluy C, 7181 Seneffe, (Belgium)

*Corresponding authors: Cecilia Mondelli: cecilia.mondelli@chem.ethz.ch Javier Pérez-Ramírez: jpr@chem.ethz.ch

Tables

Catalyst		Content (wt.%)				$\frac{S_{\rm Cu}{}^{\rm c}}{({\rm m}^2~{\rm g_{cat}}^{-1})}$	D _{Cu} ^d (%)	$d_{CuO,XRD}^{e}$ (nm)	
	Nominal Measured ^b				-				
	Cu	Zn	M^{a}	Cu	Zn	M^{a}	-		
CuZnAl-JM	50.7	19.8	5.3	44.9	17.8	4.2	24	8	5
CuZnAl-M700	49.5	22.5	5.3	40.9	18.6	3.9	26	10	4
CuZnAl-ox	49.4	25.4	3.5	48.3	24.3	1.7	23	7	8
Cu-ZnO-ZrO ₂	45.1	23.2	10.8	44.5	24.1	10.1	11	4	6

 Table S1. Bulk characterization of fresh copper-containing catalysts.

 ${}^{a}M$ = A1 or Zr. ${}^{b}ICP$ -OES. ${}^{c,d}Copper$ surface area and dispersion (*D*) measured by N₂O pulsed chemisorption. ${}^{c}CuO$ crystallite size determined using the Scherrer equation, averaging over the characteristic CuO double reflections ((002)/(11-1) and (111)/(200)) in the XRD patterns (Figure 1).

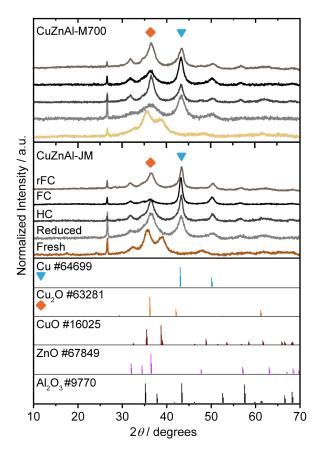
Catalyst	Content				
	(wt.%)				
	Nominal	Measured ^a			
ZnO-ZrO ₂	7.2 ^b	7.1 ^b			
In_2O_3/m - ZrO_2	10 ^c	8.58°			

Table S2. Bulk composition of ZnO- ZrO_2 and In_2O_3 -based catalysts.

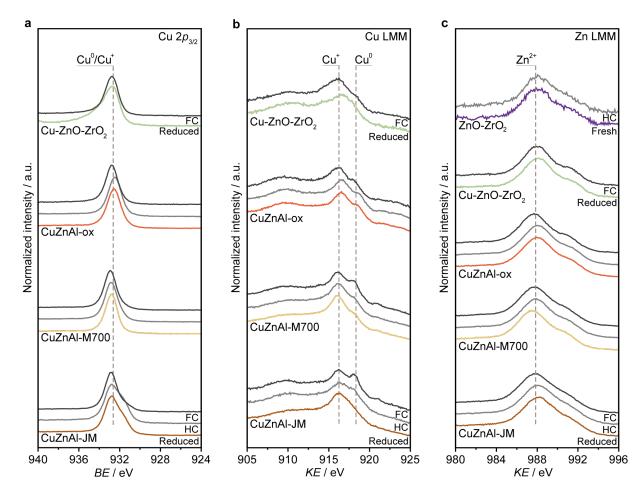
^aICP-OES. ^bZn and ^cIn.

Catalyst	Status ^a	Surface metal content ^b (at.%)		Cu/Zn (-)
		Cu	Zn	
CuZnAl-JM	Reduced	59.7	40.3	1.48
	HC	50.4	49.6	1.02
	FC	47.2	52.8	0.89
CuZnAl-M700	Reduced	59.9	40.1	1.49
	HC	57.2	42.8	1.34
	FC	51.4	48.6	1.06
CuZnAl-ox	Reduced	43.2	56.8	0.76
	HC	42.7	57.3	0.75
	FC	44.5	55.5	0.80
Cu-ZnO-ZrO ₂	Reduced	47.9	52.1	0.92
	FC	59.2	40.8	1.45

 Table S3. Surface composition of copper-containing catalysts.


^aData relative to catalysts in reduced form and after use in full cycles (FC) and half-cycles (HC). ^bXPS.

Catalyst	Status ^a	Oxygen relative contributions ^b (%)			Surface metal content ^b (at.%)	
		Olattice	O_{defect}	OH	In or Zn	Zr
ZnO-ZrO ₂	Fresh	77	14	9	1.6	53.1
	HC	69	21	10	1.8	53.3
In_2O_3/m -ZrO ₂	Fresh	76	14	10	5.1	24.1
	HC	70	22	8	5.5	31.8
In ₂ O ₃	Fresh	64	23	13	48.9	-
	HC	66	22	12	47.9	-


Table S4. Surface composition of ZnO-ZrO₂ and In₂O₃-based catalysts.

^aData relative to catalysts in fresh form and after use in half-cycles (HC). ^bXPS, oxygen relative contributions are determined by peak fitting.

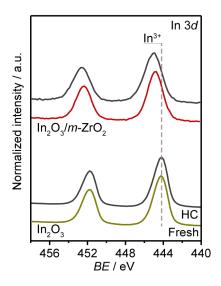

Figures

Figure S1. XRD patterns of commercial Cu-ZnO-Al₂O₃ catalysts in fresh and reduced forms and after use in full cycles (FC), half-cycles (HC), and reverse full cycles (rFC). Reference diffractograms of pure phases are shown with vertical lines. The diffractograms indicate the presence of metallic Cu and Cu₂O phases in all reduced and used samples.

Figure S2. (a) Cu 2*p* core-level XPS (b) Cu LMM, and (c) Zn LMM Auger spectra of Cu-ZnO-Al₂O₃ catalysts, Cu-ZnO-ZrO₂, and ZnO-ZrO₂ in reduced or fresh, and used forms. Spectra in (a) and (b) indicate the presence of metallic Cu and Cu⁺ and the absence of Cu²⁺ species, while those in (c) evidence zinc solely as Zn^{2+} cations.

Figure S3. In 3*d* core-level XPS spectra of bulk In_2O_3 and In_2O_3/m -ZrO₂ in fresh from and used in halfcycles (HC). The shift of the signal for In_2O_3/m -ZrO₂ towards higher binding energies indicates a more oxidic character of indium species due to their interaction with the support.