
diss . eth no . 27926

I M P R O V I N G N E T W O R K U N D E R S TA N D I N G

A dissertation submitted to attain the degree of

doctor of sciences of eth zŸrich
(Dr. sc. ETH ZŸrich)

presented by

rŸdiger jan birkner
MSc ETH EEIT

ETH ZŸrich

born on December 10th, 1989
citizen of ZŸrich ZH, Switzerland and Germany

accepted on the recommendation of

Prof. Dr. Laurent Vanbever (Advisor)
Prof. Dr. Martin Vechev (Co-Advisor)

Prof. Dr. Aaron Gember-Jacobson
Prof. Dr. David Walker

2021

RŸdiger Jan Birkner: Improving Network Understanding,© 2021

Diss. ETH No. 27926
TIK-Schriftenreihe-Nr. 193

A B S T R A C T

One cannot imagine the world today without the Internet, as it has be-
come an integral part of our daily lives. However, with all the beneÞts
and opportunities it brings also come enormous availability and reliability
requirements, which put immense pressure on the operators running the
individual networks of the Internet. They need to avoid disruptions at all
costs and resolve outages as fast as possible. Unfortunately, this is a highly
challenging task due to the sheer complexity of these networks.

This dissertation focuses on assisting network operators in one aspect
of their daily work: network understanding. To this end, we built three
systems that automate and improve network understanding to allow the
network operators to direct their full attention to the mission-critical tasks
requiring their expert insights.

First, we developed Net2Text, a system which assists network operators
in understanding their networkÕs forwarding behavior. Based on the op-
eratorsÕ queries, it automatically produces succinct summaries of the raw
forwarding state. The key insight behind Net2Text is to pose the problem of
summarizing the network-wide forwarding state as an optimization prob-
lem that aims to balance coverage, by explaining as many paths as possible,
and explainability, by maximizing the provided information.

Second, we developed ConÞg2Spec, a system which assists network op-
erators in understanding their networkÕs conÞguration. It automatically
mines the networkÕs speciÞcation, which consists of all the policies that the
conÞguration enforces. The key insight behind ConÞg2Specis to combine
two well-known techniques: data-plane analysis and control-plane veriÞca-
tion. This combination allows to prune the large space of candidate policies
efÞciently and then validate the remaining ones.

And third, we developed Metha, a system which helps network operators
understand the capabilities of their network validation tools. It Þnds inac-
curacies in the underlying network models using differential testing. The
key insight behind Metha is to leverage grammar-based fuzzing together
with combinatorial testing to ensure thorough coverage of the search space
using syntactically- and semantically-valid conÞgurations.

iii

Z U S A M M E N FA S S U N G

Das Internet ist aus der heutigen Zeit nicht mehr wegzudenken, da es zu ei-
nem festen Bestandteil unseres Alltags geworden ist. Mit all den Vorteilen
und Mšglichkeiten, die es mit sich bringt, gehen auch enorm hohe Anfor-
derung an seine VerfŸgbarkeit und ZuverlŠssigkeit einher, die die Betreiber
der einzelnen Netzwerke des Internets unter einen immensen Druck set-
zen. Sie mŸssen AusfŠlle um jeden Preis verhindern und UnterbrŸche so
schnell wie mšglich beheben. Leider ist dies aufgrund der grossen Kom-
plexitŠt dieser Netze eine Šusserst schwierige Aufgabe.

Das Hauptaugenmerk dieser Dissertation liegt auf der UnterstŸtzung
der Netzwerkbetreiber in einem wichtigen Bereich ihrer tŠglichen Arbeit:
dem VerstŠndnis ihres Netzwerkes. Zu diesem Zweck haben wir drei ver-
schiedene Systeme entwickelt, die das Netzwerk-VerstŠndnis automatisie-
ren und verbessern, damit sich die Betreiber voll und ganz den zentralen
Aufgaben widmen kšnnen, die ihre gesamte Sachkenntnis erfordern.

Als erstes haben wir Net2Text entwickelt, ein System, das Netzwerkbe-
treiber darin unterstŸtzt, zu verstehen, wie die Daten durch ihr Netzwerk
geleitet werden. Basierend auf den Anfragen der Betreiber, erstellt Net2Text
automatisch kurze und bŸndige Zusammenfassungen des Netzwerkver-
haltens. Der Kerngedanke hinter Net2Text ist, das Zusammenfassen des
kompletten Netzwerksverhaltens als Optimierungsproblem zu betrachten,
welches darauf abzielt, ein Gleichgewicht zwischen dem Umfang und der
Detailliertheit der Zusammenfassungen herzustellen.

Als zweites haben wir ConÞg2Specentwickelt, ein System, welches Netz-
werkbetreibern dabei hilft, die KonÞgurationen ihrer Netzwerke besser
zu verstehen. Ausgehend von der NetzwerkkonÞguration, lernt es auto-
matisch alle Regeln und Richtlinien, die die KonÞguration im Netzwerk
umsetzt. Die SchlŸsselerkenntnis hinter ConÞg2Specbesteht aus der Kom-
bination zweier bekannter und erprobter Methoden: der Datenschichtana-
lyse und der KontrollschichtveriÞkation. Diese einzigartige Kombination
ermšglicht es, den riesigen Suchraum aller mšglichen Netzwerkrichtlinien
schnell und efÞzient einzugrenzen und dann die verbleibenden Richtlinien
nach und nach zu ŸberprŸfen.

v

Als drittes haben wir Methaentwickelt, ein System, welches Netzwerkbe-
treiber darin unterstŸtzt, die StŠrken und SchwŠchen ihrer Netzwerkanalyse-
Werkzeuge besser zu erkennen und zu verstehen. Mittels differentiellem
Testen Þndet Metha automatisch Fehler und Ungenauigkeiten in den Mo-
dellen, die diesen Werkzeugen zugrunde liegen. Die wichtigste Erkenntnis
hinter Metha ist das zufŠllige Generieren von KonÞgurationen basierend
auf einer Grammatik zusammen mit kombinatorischem Testen. Dies stellt
sicher, dass der ganze Suchraum mittels syntaktisch und semantisch kor-
rekten KonÞgurationen grŸndlich abgedeckt wird.

vi

P U B L I C AT I O N S

This thesis is based on previously published conference proceedings. The
list of accepted and submitted publications is presented hereafter.

Net2Text: Query-Guided Summarization of
Network Forwarding Behaviors

RŸdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever,
and Martin Vechev.
In USENIX NSDI, Renton, WA, USA, 2018.

ConÞg2Spec: Mining Network SpeciÞcations
from Network ConÞgurations

RŸdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever,
and Martin Vechev.
In USENIX NSDI, Santa Clara, CA, USA,2020.

Metha: Network VeriÞers Need To Be Correct Too!

RŸdiger Birkner ! , Tobias Brodmann! , Petar Tsankov,
Laurent Vanbever, and Martin Vechev.
In USENIX NSDI, Online, 2021.
! These authors contributed equally to this work.

The remaining publications were part of my PhD research, but are not
covered in this thesis. The topics of these publications are outside of the
scope of the material covered here.

Network Monitoring as a Streaming Analytics Problem

Arpit Gupta, RŸdiger Birkner, Marco Canini, Nick Feamster,
Chris Mac-Stoker, and Walter Willinger.
In ACM HotNets, Atlanta, GA, USA, 2016.

Concise Encoding of Flow Attributes in SDN Switches

Robert MacDavid, RŸdiger Birkner, Ori Rottenstreich, Arpit Gupta,
Nick Feamster, and Jennifer Rexford.
In ACM SOSR, Santa Clara, CA, USA,2017.

vii

SDX-Based Flexibility or Internet Correctness? Pick Two!

RŸdiger Birkner, Arpit Gupta, Nick Feamster,
and Laurent Vanbever.
In ACM SOSR, Santa Clara, CA, USA,2017.

Snowcap: Synthesizing Network-Wide ConÞguration Updates

Tibor Schneider, RŸdiger Birkner, and Laurent Vanbever.
In ACM SIGCOMM , Online, 2021.

viii

A C K N O W L E D G M E N T S

This dissertation is the result of my research journey over the last couple of
years, which would not have been possible without the help and support
of many people along the way. I would like to dedicate this section to all
these people and mention those that deserve a special thank you.

First and foremost, I would like to thank my two advisors, Professor
Laurent Vanbever and Professor Martin Vechev, for their support, trust,
and guidance throughout my doctorate. I highly appreciate LaurentÕs lead-
ership and supervision, which were instrumental to the success of this
thesis. Especially, LaurentÕs emphasis on clear and comprehensive commu-
nication helped me develop my presentation and writing skills. I am also
grateful to my second advisor, Martin, for introducing me to programming
languages and formal methods and providing me with a lot of freedom.

I sincerely thank Aaron Gember-Jacobson and David Walker for devot-
ing the time to be on my dissertation committee and reading this thesis.

I owe a special thanks to Dana Drachsler Cohen, whom I have worked
with during large parts of my doctorate. It was always great to discuss and
develop ideas together and proÞt from her research experience.

I would also like to thank all my colleagues and friends at the Net-
worked Systems Group (NSG), who have not only supported me in my re-
search, but have also made this time enjoyable: Maria Apostolaki, Thomas
Holterbach, Roland Meier, Alexander DietmŸller, Albert Gran Alcoz, Ege
Cem Kirci, Roland Schmid, Rui Yang, and Tibor Schneider. I have very
fond memories of our board game nights, hikes, lunches, and retreats.
Especially, I would like to thank Ahmed El-Hassany, who has been my
long-time ofÞce mate and mentor. I beneÞted a lot from his expertise and
experience from all his previous gigs. I am also very grateful to Edgar
Costa Molero, my ÒotherÓ ofÞce mate, for all the discussions about work
and everything else. Edgar has been a great support for me during the
last two years of my doctorate. Finally, I would like to thank Tobias BŸhler
with whom I have worked on many, many things during the doctorate and
before. It was always great to know that we have each otherÕs back.

ix

In addition, I would like to acknowledge the members of my ÒsecondÓ
group: the Secure, Reliable, Intelligent Systems Lab (SRI). In particular,
I would like to thank Benjamin Bichsel, Dimitar Dimitrov, Marc Fischer,
Samuel Steffen, and Petar Tsankov for the discussions and collaborations.

I would also like to thank Beat Futterknecht, our administrator, who
supported me in all administrative and logistic matters. No request was
too complicated: he always managed to help me and work something out.

Over the course of my doctorate, I also got the opportunity to advise and
work with several students. I am very grateful to them for their dedication
and patience with me. SpeciÞcally, I would like to thank Tobias Brodmann,
Yu Chen, Philipp Mao, and Tibor Schneider.

Finally, I would like to thank my family and friends who supported me
throughout all the years of my doctorate outside of ETH. I highly appre-
ciate that they were always open to talk and distract me from my work
and never got angry when I cancelled on them because of some deadline.
Special thanks go to my parents and my sisters, Bettina and Dorothea.

RŸdiger Birkner
October 2021

x

C O N T E N T S

Publications vii

Acknowledgments ix

1 introduction 1

2 background 5

2.1 Internet Routing . 5

2.2 Network ConÞguration . 9

3 understanding the network Õs forwarding behavior 15

3.1 Overview .16

3.2 Preliminaries .20

3.3 Problem DeÞnition . 21

3.4 Exact Solution .24

3.5 Approximate Optimization . 27

3.6 The ComPass Algorithm . 32

3.7 From SpeciÞcations to Summaries35

3.8 Parsing Queries .36

3.9 Evaluation .38

3.10 Discussion .45

3.11 Related Work .46

3.12 Conclusion .48

4 understanding the network Õs configuration 49

4.1 Problem DeÞnition . 50

4.2 Overview .54

4.3 ConÞg2SpecÕs Predictors .59

4.4 Data-Plane Analysis .61

4.5 Control-Plane VeriÞcation . 64

xi

xii contents

4.6 Topology-based Trimming . 65

4.7 Experimental Evaluation . 66

4.8 Related Work .75

4.9 Conclusion .77

5 understanding the capabil it ies of network valida -
tors 79

5.1 Motivation . 80

5.2 Overview .84

5.3 Search Space .88

5.4 Effective Search Space Exploration91

5.5 Fault Localization . 93

5.6 System .97

5.7 Evaluation .99

5.8 Discussion .105

5.9 Related Work .106

5.10 Conclusion .108

6 conclusion and outlook 109

6.1 Open Problems .110

bibliography 113

1
I N T R O D U C T I O N

The Internet has become such an integral part of todayÕs world that it is
almost impossible to imagine life without it. We rely so many times on
the Internet throughout a typical day: It starts with the Þrst glance at the
smartphone in the morning to check the emails and the weather forecast.
Then, it continues with all the tools at work that enable collaboration with
colleagues around the world through Þle sharing and video conferencing.
Finally, the day ends with a dinner ordered through a food delivery plat-
form and a movie streamed to the television.

We take it for granted that the Internet Òjust worksÓ and one often does
not even notice all the places we rely on it. This, however, completely
changes when a failure happens and an outage occurs. Suddenly, airplanes
cannot take off anymore [1], shopping with cashless payments becomes
impossible [2, 3], and emergency numbers are unreachable [4]. It feels like
life comes to a standstill and it does not take long until the Þrst customers
complain and companies start to lose millions in revenue [5].

Hence, network operators are under immense pressure as they need to
ensure high availability and reliability of their networks and have to re-
solve disruptions as fast as possible during hopefully rare cases of failures.

Operating one of the networks in the Internet is a challenging task. It
all starts with the high-level business, reliability, and security objectives,
which the network operators aim to enforce in their network through a
corresponding conÞguration. However, such a network is not a monolith
that network operators can centrally conÞgure, but rather a distributed sys-
tem consisting of many routers and switches that all need to be individu-
ally conÞgured. Hence, the operators need to translate their network-wide
objectives into device-level conÞgurations.

Because of this distributed nature and the, to large parts still manual,
conÞguration process, it comes as no surprise that misconÞgurations oc-
cur and, unfortunately, more often than one would hope for. A recent study
from Alibaba, for example, shows that the majority of their network inci-
dents (56%) in 2016and 2017were caused by conÞguration updates [6].

1

2 introduction

Over the years, researchers and industry alike have developed several
tools to prevent (or minimize) these human-induced mistakes: ConÞgura-
tion synthesizers automatically come up with provably correct conÞgura-
tions for the network and conÞguration validators allow to check conÞgu-
rations for correct behavior before deploying them in the network.

Unfortunately, the use of these tools is not yet as widespread as one
would hope for, especially among the ÒaverageÓ and small networks [7].
The reasons for that are manifold, but two stand out: (i) the need for a
formal network speciÞcation and (ii) the accuracy of these tools:

Need for a speciÞcation:Both conÞguration synthesizers and validators
need to know the intended behavior of a network Otherwise, they cannot
create a corresponding conÞguration or validate its behavior. To that end,
network operators need to provide a formal speciÞcation of their objectives
as input, which usually does not exist. Traditionally, the speciÞcation is
deÞned informally and, in the best case, documented to large parts in
network design and architecture documents.

Network model accuracy:All these tools rely on an underlying network
model that reproduces the networkÕs behavior. To be helpful, that model
does not only need to support the exact combination of routing protocols
and conÞguration features used in the network, but it also has to do that
faithfully. This means the model needs to behave exactly like the network,
which is extremely difÞcult to achieve due to the many different vendors,
device models, and software versions.

Even with the use of conÞguration synthesis and validation tools, net-
work outages can still occur. Hence, preventing conÞguration errors is just
one aspect of running a reliable network. Another aspect is resolving these
outages and recovering the network rapidly. To this end, network operators
aim to pinpoint the root cause as quickly as possible and gather various
information about the networkÕs behavior. Unfortunately, this is difÞcult
for two reasons: (i) the data is hard to access and(ii) there is an overload
of low-level data.

Data access:The common debugging tools (e.g., ping and traceroute) and
data sources (e.g., routing tables and trafÞc statistics) provide rudimentary
interfaces for the network operators. In addition, due to the distributed
nature of the traditional networks, there is often no central entity collecting
the data, instead, the operators have to gather it across the entire network.

Data overload:Networks handle trafÞc for almost 900 000destinations [8]
and carry trafÞc at ever-increasing speeds. Network operators can only

introduction 3

extract the low-level data, such as device-speciÞc routing tables and trafÞc
statistics, from the network and then have to search through the data to
identify the relevant pieces manually.

The underlying problem is the lack of network understanding. In this
dissertation, we aim to change that. The overarching goal is to help and as-
sist network operators in managing a safe and reliable network and not to
replace them. To this end, we present three systems that each focus on one
aspect of network understanding: (i) Net2Text, which helps operators bet-
ter understand a networkÕs current forwarding behavior; (ii) ConÞg2Spec,
which helps operators better understand a networkÕs conÞguration and
the underlying policies; and (iii) Metha, which helps operators better un-
derstand the capabilities and accuracy of network validation tools.

Net2Text assists the operator in reasoning about the network-wide for-
warding behavior. It automatically gathers the relevant low-level forward-
ing state and extracts the high-level insights based on the operatorÕs query,
provided in natural language. As a result, Net2Text produces succinct sum-
maries, which efÞciently capture network-wide semantics.

ConÞg2Spechelps the operator understand a network conÞgurationÕs un-
derlying policies. It automatically extracts the networkÕs speciÞcation from
its conÞguration and a failure model. Thus, ConÞg2Specbridges the gap
between low-level conÞgurations and high-level network policies.

Metha helps network operators (and developers) better understand the
capabilities of their network validation tools in terms of feature coverage
and accuracy. It automatically tests these tools and reports any inaccuracies
in their network models. Thus, Methahelps the operators gain trust in their
validation tools and helps developers build more accurate tools.

The rest of the dissertation is organized as follows: First, we provide the
necessary background in Chapter 2. In Chapter 3, we present Net2Text, an
interactive system which assists the network operator in reasoning about
the network-wide forwarding state. In Chapter 4, we present ConÞg2Spec,
a system that automatically mines a networkÕs speciÞcation from its con-
Þguration and a failure model. In Chapter 5, we present Metha, a system
that thoroughly tests network analysis and veriÞcation tools to Þnd subtle
bugs in their network models. Finally, in Chapter 6, we conclude, identify
remaining open problems and suggest future research directions.

2
B A C K G R O U N D

In this chapter, we provide the necessary background on how the Inter-
net and the networks it is made up of work. In the Þrst part (Section 2.1),
we describe the most important aspects of Internet routing and forward-
ing. In the second part (Section 2.2), we introduce the process of network
conÞguration and validation.

2.1 internet routing

For the end-users the Internet often seems like one comprehensive unit
they connect to through their Internet Service Provider (ISP). In reality,
however, the Internet is a complex, heterogeneous structure. It is made up
of over 70 000independently managed networks [8], so-called autonomous
systems (ASes) that interconnect and exchange trafÞc to enable full con-
nectivity. Each AS, in turn, consists of many devices, namely routers and
switches that interconnect the end-hosts and provide them with access to
the rest of the Internet.

In the following, we describe the fundamentals of how these networks
and, ultimately, the Internet work. To this end, we take a bottom-up ap-
proach and start with the basic building block of the Internet and any net-
work: IP routers (Section 2.1.1). Next, we continue explaining how routers
compute the paths inside a network and then, across the networks to for-
ward trafÞc from source to destination (Section 2.1.2).

2.1.1 IP Router

At a high level, an IP router is made up of two parts: (i) the control plane,
which computes the network paths, and (ii) the data plane, which forwards
the trafÞc along those paths. Figure 2.1 shows a simpliÞed schematic of the
inner life of a router.

5

6 background

RIB updates

Static OSPF BGP

RIB

Routing process

Control plane

Data plane
FIB updates

in
IF #1

IF #2

IF #3

Switching
Fabric

FIB
dst 1 " IF #3

dst 2 " IF #1
... out

IF #1

IF #2

IF #3

Network interface

Figure 2 .1: The high-level architecture of an IP Router, which consists of a con-
trol plane and a data plane that computes the routes and forwards
the trafÞc, respectively.

The control plane is in charge of the routing processes, maintains the re-
spective routing tables called routing information bases (RIBs), and selects
the best routes among all routing processes. The routes are then passed
to the data plane in the form of a forwarding information base (FIB) up-
date. In addition, the control plane maintains the routerÕs conÞguration,
allows the network operators to modify the conÞguration and inspect the
routerÕs state. Typically, network operators monitor the routing tables and
trafÞc statistics to troubleshoot the network.

The data plane is in charge of handling the network trafÞc. It installs
the routes selected by the control plane in its forwarding information base.
When it receives IP trafÞc on one of its interfaces, it consults the forwarding
table and then sends the trafÞc out on the correct interface according to the
best matching forwarding entry.

2.1.2 IP Routing

In order to compute the paths in the network and populate the forward-
ing tables, IP routers run one or more distributed routing protocols. The
routers, which belong to the same routing domain, run in their control
plane an instance of the protocol, exchange information about the network
with each other and then separately compute their local state.

2.1 internet routing 7

The computation of the paths through the entire Internet can broadly be
divided into two parts: Þrst, intradomain routing, which is the computation
of the paths within a network; and second, interdomain routing, which is the
computation of the paths across the different networks of the Internet.

Intradomain Routing

Intradomain routing is used to compute the best paths within a network,
within one routing domain. The best path, which is also called the short-
est path, aims to minimize the sum of the link costs from one endpoint to
another. These costs are often assigned by the operator such that the com-
puted paths satisfy management objectives: for example, operators might
prefer to take the paths with the lowest delay or the highest bandwidth
to optimally forward the trafÞc. Many intradomain routing protocols also
allow to use multiple, equal-cost paths at the same time to share the load
across several paths and better utilize the available resources.

Many different intradomain routing protocols exist with their respective
advantages and disadvantages. These protocols can mainly be divided into
two groups based on how they disseminate the routing information and
how they compute the route. The two groups are link-stateprotocols and
distance-vectorprotocols.

l ink -state protocols In link-state protocols, all routers Þrst build
their own global view of the network by exchanging their local views
and then they all independently compute the shortest paths based on this
global view. To build the global view, each router ßoods the network with
special messages, so-called Link-State Advertisements (LSAs), containing
their adjacencies (to which other routers they are directly connected) and
reachability information (to which IP preÞxes they are attached). Based on
this information, each router builds its own global view of the network
locally. Then, the routers use DijkstraÕs shortest path algorithm [9] to com-
pute the shortest paths to all destinations in the network. This process
continues such that in case of changes in the network due to, for example,
failures or conÞguration updates, the paths are always updated. Typical ex-
amples of link-state protocols include Open Shortest Path First (OSPF) [10]
and Intermediate System to Intermediate System (IS-IS) [11].

distance -vector protocols In distance-vector protocols, informa-
tion dissemination and route computation is combined. The routers con-
tinuously exchange distance vectors, which are lists of destinations and

8 background

their corresponding distance, the costs to reach them. A vector contains
all destinations the sending router can reach. Whenever a router receives
such a distance vector from one of its neighbors, it consults its own rout-
ing table and checks if there is any destination, which it could reach with a
lower cost through that neighbor. If so, it will update its routing table entry.
Then, that router sends an updated distance vector to all of its neighbors.
In that way, routes propagate router-by-router through the network until
all routers converge to a Þxpoint. Similar to link-state protocols, distance-
vector protocols will recompute the routes upon changes in the network.
This process usually starts with the router closest to the change and then
propagates. A typical distance vector protocol is the Routing Information
Protocol (RIP) [12].

Interdomain Routing

Interdomain routing is used to compute the best paths for destinations that
lie outside of oneÕs network. Here the best path is not anymore the short-
est path but depends on the different business policies and agreements
across the different networks. It can very well happen that a longer path is
preferred over a shorter one just because of the monetary cost.

Today, there is only a single interdomain routing protocol: the Border
Gateway Protocol (BGP) [13]. BGP is a path vector protocol, meaning that
each router, similar to the distance vector protocols, locally computes the
best routes and passes them on to its neighbors. The difference to distance
vector protocols is that the routers not only exchange destinations and the
distances to reach them but also the path that the trafÞc will take following
this route. The path represents the sequence of ASes which the route passes
through. It is included to avoid routing loops as every router can check if
the identiÞer of its own routing domain (AS number) is already on the
path and reject it in that case.

Additionally, BGP differs from distance-vector protocols as it allows each
operator to adapt the route selection process by specifying custom criteria.
For example, by setting different local preferences for incoming routes, an
operator can instruct the router to pick one or the other route.

2.2 network configuration 9

2.2 network configuration

In the previous section, we described the internals of the Internet and its
many networks. In the following, we explain how one can conÞgure a net-
work such that it behaves as desired. First, we introduce common network
policies, which allow operators to express the intended network behavior
(Section2.2.1). Then, we describe how one translates these intents into net-
work conÞgurations (Section 2.2.2). Finally, we highlight tools that help
operators correctly conÞgure and debug their network (Section 2.2.3).

2.2.1 Network Policies

When running a network, the operators have a clear set of requirements
in mind which their network has to fulÞll. These requirements are usu-
ally derived from business, reliability, and security objectives. A typical
business objective, for example, is to require that the trafÞc is always for-
warded along the cheapest path to maximize proÞts. Reliability objectives
are often based on Service-Level Agreements (SLAs) with the networkÕs
customers, which guarantee a certain availability. Finally, security objec-
tives might require that critical data and services are completely isolated
from parts of the network and cannot be reached from the Internet.

We refer to these requirements as network policies and the set of all
policies as the networkÕs speciÞcation. The policies making up a networkÕs
speciÞcation can be coarsely divided into two main categories of policies:
data-planeand control-planepolicies.

The data-plane policies specify how trafÞc in the network has to be for-
warded or when it has to be dropped. There are four typical data-plane
policies in the literature [14, 15, 16, 17]: reachability, isolation, waypointing,
and loadbalancing. Reachability simply requires that two endpoints can
reach each other, while isolation requires the opposite as the two endpoints
must not be able to reach each other. Waypointing requires trafÞc from one
endpoint to another to pass through a given waypoint. Loadbalancing re-
quires trafÞc between two endpoints to be spread across two or more paths
to balance the load on the links.

The control-plane policies govern route dissemination and exchange. Ex-
amples of control-plane policies are transit, route-preference, and featurepoli-
cies. A transit policy, for example, requires exporting routes to a neighbor-

10 background

ing network such that it can send trafÞc through it and reach remote desti-
nations. Route-preference policies often implement business objectives as
they allow to prefer routes with certain attributes over others. Preferences
are usually used to prefer the routes advertised by a cheaper provider over
those of other providers. Finally, a feature policy requires using or refrain-
ing from using certain conÞguration features in the network (e.g., route
redistribution).

Over the years, several formal languages have been designed to capture
network speciÞcations [15, 18, 19, 20, 21, 22], which vary in their expres-
sivity, both in the granularity at which the trafÞc can be controlled and
in the policies supported. In theory, network operators should use these
languages to unambiguously deÞne their networkÕs behavior both in the
control plane and data plane. In practice, however, network operators of-
ten do not have a formal, well-deÞned network speciÞcation at hand but
rather a collection of partially documented policies and objectives spread
across many different design and network architecture documents.

2.2.2 Network ConÞguration Process

One of the main tasks of a network operator is to enforce the given net-
work policies such that the network behaves accordingly. However, there
is a gap between the network policies and the networkÕs behavior. Ideally,
one would simply be able to provide the network policies to the network
directly. Basically, one would directly tell the network what to do. This is
the vision of intent-based networking (IBN). Today, we are unfortunately
still far from this vision. Instead of being able to tell the network what to
do, operators have to tell the network how to do it, which is done through
the networkÕs conÞguration.

As an illustration, consider the network in Figure 2.2a running a link-
state protocol internally. For security reasons, the operator intends to pass
all incoming trafÞc through a Þrewall (rFW) before delivering it in the net-
work. To this end, the operator needs to enforce a waypointing policy. In-
stead of simply providing a policy, such as policy(src: external, dst:

internal; waypoint: rFW) to the network, the operator needs to Þnd link
weights and conÞgure them in each router (Figure 2.2b), such that the re-
sulting shortest paths go through the Þrewall (Figure 2.2c).

At a high level, a network operator takes the network policies and maps
them to a corresponding network-wide conÞguration to achieve the de-

2.2 network configuration 11

Internet

r1

rFW r2

r3 r4

(a) Network topology.

conÞg of r1
...

interface to _rFW
ip ospf cost 1

interface to _r2
ip ospf cost 10

...

conÞg of rFW
...

interface to _r1
ip ospf cost 1

interface to _r2
ip ospf cost 5

interface to _r3
ip ospf cost 1

...

(b) ConÞg excerpts.

1 10
5

1 10

1

(c) Network behavior.

Figure 2 .2: To make trafÞc from the Internet pass through the Þrewall (rFW) be-
fore reaching any internal destination, the operator has to conÞgure
the link weights such that the shortest paths include the Þrewall.

sired network behavior. This ÒindirectÓ process from policy to behavior is
complex and makes it difÞcult for operators to write a correct conÞgura-
tion for two reasons:

1. There are many different ways to enforce a policy and achieve the in-
tended behavior. Routers run multiple routing protocols at the same
time and in many cases, one can achieve the same behavior using any
of these routing protocols or combinations thereof. Additionally, the
routing protocols have attributes and features that ultimately have
similar effects.

2. Networks consist of tens to hundreds of routers running distributed
routing protocols, which have to be individually conÞgured such that
all the routers behave correctly together. Ultimately, conÞguring a
network is similar to programming a distributed system.

In addition, there are also operational aspects: A network is rarely run by
one person. Hence, network operators have to coordinate the conÞguration
process and the objectives of the different operators may interfere. Also,
most of the time, operators have to work with existing conÞgurations. In
these cases, it is of utmost importance to ensure that existing requirements
are not violated in the process of reconÞguring the network.

12 background

2.2.3 Network Management Tools

Due to the difÞcult conÞguration process, misconÞgurations and mistakes
are common. Therefore, a wide range of tools and systems has been de-
veloped to help operators safely manage their networks. These tools fall
primarily into two categories: proactiveand reactivetools. Proactive tools
assist operators in creating correct conÞgurations before they are deployed
in the production network. Reactive tools help operators understand the
behavior of their deployed conÞgurations and debug mistakes once they
have happened.

Proactive Tools

Proactive tools support network operators before applying the new or
changed conÞguration. They allow to ensure that the conÞguration cor-
rectly implements a networkÕs speciÞcation. This is done either through
conÞguration synthesis or validation. Hence, misconÞgurations and out-
ages can be prevented before they even make their way into the production
network.

configuration synthesis Synthesis tools [14, 15, 17, 23, 24, 25] au-
tomatically generate provably correct, network-wide conÞgurations based
on the provided network speciÞcation. The existing tools vary in the sup-
ported routing protocols and the quality of the synthesized conÞgurations.
While all conÞgurations satisfy the given speciÞcation, they differ in their
size and understandability. This can make it especially difÞcult for opera-
tors to debug problems and apply Þxes later on manually.

network analysis and verif ication Network validation tools [16,
26, 27, 28, 29, 30, 31, 32, 33, 34] allow to detect policy violations by analyz-
ing a conÞgurationÕs induced behavior in a Òdigital twinÓ of the network.
These tools usually take the network-wide conÞguration and the policies
as input and report any violations. The existing tools differ in the Þdelity
and type of their models. Some tools use their custom model of speciÞc
routing protocols and their features, while others rely on simulating the
network with real router images [35].

HSA [36] and NetPlumber [37] rely on a geometric model to verify data
plane policies. ddNF [38] proposes to compute header space equivalence
classes as it is more efÞcient to Þrst Þnd the small subset of equivalence
classes and then perform the analyses. Anteater [39] uses a SAT solver to

2.2 network configuration 13

verify invariants in the data plane. BatÞsh [26] relies on a custom Datalog
model to derive the data plane given the networkÕs conÞguration.

Both Bagpipe [40] and Minesweeper [16] rely on an SMT model to ver-
ify different network properties. While Bagpipe focuses only on BGP as a
single protocol, Minesweeper is more general and supports a range of pro-
tocols. NV [41] is an intermediate language that allows to build network
models, which can be used both to verify and simulate network control
planes. ARC [27] relies on a graph representation of the control plane.

Reactive Tools

Reactive tools help operators observe and understand the current behavior
of a network. There are three types of tools: Þrst, tools that allow to observe
the networkÕs forwarding behavior; second, tools that help obtain network
state (e.g., routing tables); and third, tools that allow to analyze the traf-
Þc handled by the network. The information that these tools provide is
low-level. Therefore, operators themselves have to extract the important
information and come up with the high-level insights.

network diagnosis uti l i t ies ping and traceroute help understand-
ing the forwarding behavior of a network. These two arcane tools allow
network operators to inject trafÞc into the network and observe whether a
particular address is reachable and the path the trafÞc follows. A downside
of these tools is that the injected packets do not necessarily represent real
trafÞc and can therefore only act as a proxy to understand how network
trafÞc is handled.

routing information Looking glasses provide a snapshot of a routerÕs
routing table. Based on that, operators can understand the routes that are
being advertised, chosen, and disseminated.

traffic statistics TrafÞc statistics collected at different vantage points
in the network help understanding how actual trafÞc is handled. Famous
examples are Netßow [42] and sFlow [43]. Both rely on sampling to deal
with the huge amount of trafÞc and report mostly aggregated statistics.
The advantage of trafÞc statistics is that they actually represent the behav-
ior that ÒrealÓ trafÞc observes in the network.

3
U N D E R S TA N D I N G T H E N E T W O R K Õ S F O RWA R D I N G
B E H AV I O R

In this chapter, we introduce Net2Text, an interactive system which assists
network operators in reasoning about their networkÕs forwarding behavior.

Today, network operators spend a signiÞcant amount of their time strug-
gling to understand how their network forwards trafÞc. The main difÞculty
lies not in the availability of the data but in the large semantic gap that
separates the low-level forwarding rules from the actionable high-level in-
sights. To understand how the network behaves, network operators need to
access the networkÕs forwarding rules, which are distributed across many
different devices, and they need to correlate them with the collected trafÞc
statistics. Bridging this gap manually (the default nowadays) is cumber-
some and slow. And this is exactly where Net2Texthelps network operators:
it takes as input the operatorÕs query expressed in natural language and
the low-level network data, and automatically produces succinct natural
language summaries, which efÞciently capture network-wide semantics.

The main challenge behind Net2Text is to generate concise summaries
which ÒexplainÓ all the relevant behaviors, while maximizing the provided
information. The key insight is to approach this as an optimization prob-
lem that aims to balance coverageand explainability. While the problem is
NP-hard, we show that the skewness of the network forwarding state (i.e.,
its inherent redundancy) makes it, fortunately, well-amenable to summa-
rization in practice. This motivates us to focus on a subspace in which
every search path is of polynomial size, enabling us to design an approxi-
mation algorithm that traverses the space efÞciently.

Next, we summarize our main contributions in this chapter:

¥ We formulate the network-wide summarization problem as an opti-
mization problem (Section 3.3);

¥ we present an efÞcient approximation algorithm for generating high-
quality summaries (Sections 3.5 and 3.6);

¥ and we provide an end-to-end implementation of Net2Text, along
with a comprehensive evaluation (Section 3.9).

15

16 understanding the network Õs forwarding behavior

This chapter is organized as follows. Section 3.1 provides an overview of
Net2Text from input to output. Section 3.2 introduces the key concepts used
in this chapter. Section 3.3 formally deÞnes the network-wide summariza-
tion problem. Section 3.4 illustrates that an exact solution to the problem
does not scale. Section3.5 presents the search space and a way to reduce it.
Section3.6 proposes ComPass, an approximation algorithm to Þnd a good
solution in the reduced search space. Section3.7 explains the generation
of the natural language summaries. Section 3.8 shows how Net2Text parses
the operatorsÕ natural language queries. Section3.9 evaluates our imple-
mentation of Net2Text and presents our Þndings from Þve interviews with
network operators. Section 3.10discusses our design choices and the exten-
sibility of Net2Text. Section 3.11 reviews related work in the area. Finally,
Section 3.12 concludes the chapter.

3.1 overview

Consider a network operator wondering how the network is forwarding
trafÞc towards Google:

ÒHow is Google trafÞc being handled?Ó

Net2Textautomatically parses the question expressed in natural language
and produces a concise description (also in natural language) of the cur-
rent forwarding behavior observed for Google:

ÒGoogle trafÞc experiences hot-potato routing. It exits in New York
(60%) and Los Angeles (40%). 66.7% of the trafÞc exiting in New
York follows the shortest path and crosses Atlanta.Ó

Producing such a summary is challenging: the system has to understand
what the operator is interested in, extract the relevant information, summa-
rize it, and then translate it to natural language. Extracting this informa-
tion goes beyond simply querying a database: it requires processing the
data to identify common path features (e.g., the New York and Los An-
geles egresses) as well as high-level features pertaining to different paths
(e.g., hot-potato routing, shared waypoints). In addition, the entire process
should be quick (even if the network is large) to guarantee interactivity
and deal with trafÞc dynamics.

In the following, we give a high-level overview of how Net2Textmanages
to solve these challenges and go from the above query to the Þnal summary
using a three-stage process (see Figure3.1).

3.1 overview 17

Parsing Operator Queries in Natural Language (Section3.8)

Net2Text starts by parsing the operator query in natural language using a
context-free grammar. This grammar deÞnes a natural language fragment
consisting of multiple network features (e.g., ingress, egress, organization,
load-balancing) and possible feature values (e.g., New York, Google), al-
lowing a network operator to express a wide range of queries. Our gram-
mar consists of # 150 derivation rules which are extended with semantic
inference rules to infer implicit information. In the above example, our
grammar infers that the operator refers to trafÞc destined to the organiza-
tion Google. In addition to such summarization queries, Net2Text supports,
at the moment, three other types of queries: (i) yes/no queries, ÒDoesall
trafÞc to New York go through Atlanta?Ó; (ii) counting queries, ÒHow many
egresses does trafÞc to Facebook have?Ó; and(iii) data retrieval queries,
ÒWheredoes trafÞc to New York enter?Ó. Furthermore, our grammar is ex-
tendable with new features, keywords, and names.

Net2Text maps the parsed query to an internal query language, similar
to SQL. Here, the query is mapped to:

SELECT * FROM paths WHERE org=GOOGLE

This query is then run over a network database that stores the entire
forwarding state of the network. Afterward, the results are passed to the
core part of Net2Text: the summarization module.

Summarizing Forwarding States (Sections3.3, 3.5 and3.6)

Most queries (including the one above) can and will return a plethora
of low-level forwarding entries. Net2Text assists the operator in reasoning
about the forwarding state by automatically generating high-quality inter-
pretable summaries out of low-level forwarding entries.

Summarizing network-wide forwarding states requires overcoming a
fundamental tradeoff between explainability (how much detail a summary
provides) and coverage(how many paths a summary describes). By deÞn-
ing a score function capturing both concepts analytically, we show that
we can formally phrase this problem as an NP-hard optimization prob-
lem (Section 3.3). This renders both exhaustive techniques along with tech-
niques based on Integer Linear Programming impractical.

18 understanding the network Õs forwarding behavior

To scale, we leverage the insight that trafÞc is skewed (heavy-tailed)
across multiple levels: in the trafÞc distribution itself (few preÞxes are typi-
cally responsible for most of the trafÞc [44]) or at the routing level (network
topologies are usually built following guidelines, leading to repetitive for-
warding patterns, e.g., edge/aggregation/core). This insight enables us
to design an approximate summarization algorithm, called ComPass (Sec-
tion 3.6), which explores a reduced search space that we can prove contains
good summaries (Section3.5). In addition, we show that ComPass can only
summarize a sample of the forwarding entries instead of all of them with
only a marginal loss in summarization quality.

Taken together, the reduced space and sampling optimization enable
Net2Text to generate high-quality interpretable summaries for large net-
works (with hundreds of routers) running with full routing tables in less
than 2 seconds(Section 3.9).

Converting Path SpeciÞcations to Text (Section3.7)

Given a set of path speciÞcations, Net2Text Þnally produces a summary
expressed in natural language in two steps. It Þrst extends the set with
additional properties inferred by examining the speciÞcations as a whole.
For example, if the speciÞcations imply that there are multiple paths be-
tween the egress and ingress,Net2Text infers that the trafÞc is load bal-
anced. Net2Text then maps the extended speciÞcations to sentences in nat-
ural language.

3.1
o

v
e

rv
ie

w
19

How is GoogleÕs
trafÞc handled?

High-level query
in natural language

Parser

¤3.8

Summarization

¤3.3, ¤3.5, ¤3.6

Translation

¤3.7

TextNet 2

Network database

SELECT ! FROM paths

WHERE org=GOOGLE

low-level query

egress=NEWY egress!=NEWY

lb=T
included in
summary

{paths}

egress=NEWY egress!=NEWY

lb=T
included in
summary

{paths}

egress=NEWY egress!=NEWY

lb=T
included in
summary

{paths}

set of abstract explanations

optimal explanation
maximize information

Collected statistics

trafÞc vol. forwarding paths

Google

Yahoo!

Live network
path 1

path 2

...

path n

egress

NEWY

BOST

...

SFO

lb?

true

false

...

true

...

...

...

avg. bw

98.4 Mbps

25.0 Mbps

...

0.4 Mbps

Google trafÞc experiences
hot-potato routing.

It exits in New York (60%)
and Los Angeles (40%).

66.7% of the trafÞc
exiting in New York
follows the shortest path
and crosses Atlanta.

Generated answer
in natural language

Figure 3 .1: Net2Text: Workßow and key components.

20 understanding the network Õs forwarding behavior

3.2 preliminaries

In the following, we introduce the key terms we use in this section. We
begin with the most basic building block of Net2Text: routing paths, which
describe the trafÞc ßows and their paths through the network. Then, we
present feature functions, which simply map routing paths to a set of fea-
tures. Finally, we introduce path speciÞcations, which describe a set of
routing paths and ultimately represent a summary.

routing paths We model the network as a graph and deÞne a net-
work path P as a Þnite sequence of links. A routing path (d, P) is a pair
of an IP preÞx and a path, which describes that trafÞc to preÞx d can be
routed on P (a preÞx can be routed on multiple paths). We denote the set
of all routing paths in the network by R .

feature functions Routing paths have different higher-level features
associated to them. For example, a routing path can follow a shortest path
or can originate in a speciÞc geographical location. Feature functions map
routing paths to these higher-level features. Formally, a feature function
q: R " Uq maps routing paths R to feature valuesfrom Uq. We denote by
vq a value in Uq. We focus on the following feature functions. Organization
O: R " UO maps every (d, P) to the organization owning d. For example,
the set of organizations UO could consist of Google, Facebook, and Swiss-
com. EgressE: R " UE maps every (d, P) to the egress of P, and ingress
I : R " UI maps to PÕs ingress. Shortest pathSP: R " { 0, 1} maps to 1 if
P is a shortest path between its ingress and egress, and 0 otherwise. We use
the subscripts e, i, o, and sp to denote feature values of the egress, ingress,
organization, and shortest path feature functions, e.g., New York e $ UE
and 1sp $ USP.

path specifications To explain the behavior of the network and
its routing paths, we deÞne the concept of sets of feature values called
path speciÞcations. Given a set of l feature functions with disjoint ranges
U1, ...,Ul

1 and a bound t (for t % l), a path speciÞcation is a (non-empty)
set of feature values where the size of the set is at most t and each feature
value describes a different feature function. Formally, a path speciÞcation
is an element in:

St
U1,...,Ul

=
!

1%m%t

!

1%j1< ...< jm%l

Uj1 & ...& Ujm

1 This is not a limitation, because values can be uniquely annotated.

3.3 problem definit ion 21

Since the order of the feature values is not important for our needs, we treat
path speciÞcations as sets. For example,SG,NY = { Googleo, New York e} is
a path speciÞcation that contains two feature values: organization Google
and egress New York.

We say a routing path (d, P) meets a path speciÞcation S, denoted as
(d, P) |= S, if for everyfeature value in the speciÞcation v $ S, the corre-
sponding feature function q maps the routing path to that value q(d, P) = v
if v $ Uq. For example, all routing paths (d, P) that are destined to a preÞx
d which is owned by Google and leave the network in New York, meet the
speciÞcation from above.

Finally, we deÞne a speciÞcation set S as a set of path speciÞcations,
i.e., S ' S t

U1,...,Ul
. A routing path (d, P) meets a speciÞcation setS, if there

exists a path speciÞcation S $ S such that the routing path meets that
path speciÞcation, (d, P) |= S. For example, the following speciÞcation set
S = {{ Googleo, New York e} , { Seattlei }} captures all the routing paths that
are either destined to Google and exit the network through New York or
that enter in Seattle. Note that the path speciÞcations within a speciÞcation
set can overlap, which means that routing paths can meet multiple path
speciÞcations. Routing paths that enter in Seattle, are destined to Google
and exit in New York, for example, meet both path speciÞcations in the
speciÞcation set above.

3.3 problem definit ion

In this section, we formally phrase the problem of explaining a networkÕs
forwarding behavior as an optimization problem. To explain the forward-
ing behavior, we aim to Þnd a speciÞcation set that summarizes the net-
workÕs routing paths. The main challenge then is to Þnd a speciÞcation set
that describes as many routing paths as possible while providing a maxi-
mal amount of information about them. To this end, we start by deÞning
score functions that allow us to assess the quality of different speciÞca-
tion sets. Intuitively speaking, these score functions represent the Òamount
of informationÓ provided by a speciÞcation set. Given the score functions,
we then formulate the problem of network summarization as a constraint
optimization problem.

We phrase our optimization problem as a MAP inference task [45], in
which the goal is to Þnd an assignment that maximizes a score while satis-
fying a set of constraints. In our context, an assignment consists of (up to)

22 understanding the network Õs forwarding behavior

k path speciÞcations, each with at most t feature values and over the fea-
ture functions q1, ...,ql . The score of an assignment is the weighted sum of
the routing paths in R and their features described by the speciÞcation set.
We deÞne the score in two steps: Þrst, we introduce the score of a single
feature function q $ { q1, ...,ql } , and then, we explain how we obtain the
score of all feature functions in combination.

feature score A score function of a feature function q maps sets of
up to k speciÞcations to a real number score:

! q :
"

St
U1,...,Ul

({ " }
#k

" R

The domain consists of speciÞcation sets, which are k-ary tuples, whose
elements consist of path speciÞcations and the empty set. The empty set"
denotes Òno speciÞcationÓ, and it enables us to cleanly capture speciÞca-
tion sets with less than k speciÞcations. To simplify deÞnitions, we assume:
(d, P))|= " for all (d, P). For a setS, the score ! q(S) is the weighted sum
of routing paths in R for which q is described by a speciÞcation in S. A
path (d, P) is part of the sum if there is a speciÞcation S $ S containing a
feature value of q that (d, P) satisÞes. The weight of a pathwd,P is a positive
number (e.g., the trafÞc size). Formally:

! q(S) = #
(d,P)$R

wd,P á[
$

S$S : q(d,P)$S(d, P) |= S] (3.1)

In this deÞnition, [á] denotes the Iverson bracket that returns 1 if the for-
mula is satisÞed or 0 otherwise.

SpeciÞcation set ! E ! SP ! E,SP

{{ NYe}} 1 0 1

{{ LA e}} 2 0 2

{{ 1sp}} 0 3 3

{{ NYe} , { LA e, 1sp}} 3 2 5

Table 3 .1: Score functions for R = { (d1, P1), (d2, P2)} , where wd1,P1
= 1 and

wd2,P2
= 2, E(d1, P1) = NYe and E(d2, P2) = LA e, and SP(d1, P1) =

SP(d2, P2) = 1sp.

Example 3.1. Consider two routing pathsR = { (d1, P1), (d2, P2)} with a traf-
Þc size of wd1,P1

= 1 and wd2,P2
= 2, respectively. The Þrst routing path exits the

3.3 problem definit ion 23

network in New York (E(d1, P1) = NYe), while the second one exits it in Los An-
geles (E(d2, P2) = LAe). Both routing paths follow the shortest path from ingress
to egress (SP(d1, P1) = SP(d2, P2) = 1sp). To compute, for example, the egress
feature score of the speciÞcation set{{ NYe}} , we sum up the trafÞc size of all rout-
ing paths that meet this speciÞcation set when only considering the egress feature
values:! E({{ NYe}}) = 1 á1 + 2 á0 = 1. Similarly, we can compute the short-
est path feature score of that speciÞcation set:! SP({{ NYe}}) = 1 á0 + 2 á0 = 0.
On the other hand, the shortest path feature score for the speciÞcation set{{ 1sp}}
is simply the sum of the two trafÞc size as both routing paths follow the shortest
path: ! SP({{ 1sp}}) = 1 á1 + 2 á2 = 3. Table3.1 summarizes the results of this
example and provides scores for two additional speciÞcation sets:{{ LAe}} and
{{ NYe} , { LAe, 1sp}} .

feature set score A score function of a set of feature functions q1, ...,ql
maps k speciÞcations of size at mostt to a score:

! q1,...,ql :
"

St
U1,...,Ul

({ " }
#k

" R

The score is the sum of all the featuresÕ scores:

! q1,...,ql (S) = #
j : [1,l]

! qj (S)

The last column of Table 3.1 shows the feature set score of the previous
example. We can now deÞne the optimization problem.

DeÞnition 3.1 (Optimization Problem) . Given a set of routing pathsR , weights
wd,P for each(d, P) $ R , a set of feature functions q1, ...,ql , a constant k limit-
ing the number of path speciÞcations, and a constant t limiting the size of path
speciÞcations, we formulate the network summarization problem as:

arg max
S$(St

U1,...,Ul
({ " })k

! (S)

Intuitively speaking, the problem is to Þnd a speciÞcation set S given a
set of routing paths R such that the feature set score! (S) is maximized.
The speciÞcation set can consist of at mostk path speciÞcations, which are
of size t or smaller.

Example 3.2. Consider100 routing paths that are all destined to GoogleR =
{ (Google, Pi)} 100

i= 1 and each routing path has a weight of1. The Þrst60 routing

24 understanding the network Õs forwarding behavior

paths all have New York as their egress (i% 60, E(Google, Pi) = NYe), whereas
the remaining routing paths leave the network in Los Angeles (E(Google, Pi) =
LAe). In addition, the Þrst40 routing paths follow the shortest path (i% 40,
SP(Google, Pi) = 1sp), while the others do not. Finally, all other feature values
are unique for every single routing path.

For k = t = 3, an optimal solution is{{ NYe} , { 0sp} , { NYe, 1sp}} , and its
score is! E + ! SP = 60+ 100= 160. The speciÞcation set{{ NYe} , { 0sp} , { 1sp}}
is another optimal solution. Even though, the scores are identical, the operator is
likely to prefer the former speciÞcation set as it provides additional information
(e.g., all trafÞc following the shortest path exits in New York). We leverage this
insight in Section3.5.

While this problem can be considered as a general summarization prob-
lem suitable for other contexts, the skewed nature of network trafÞc makes
our context a better instantiation to this problem: the heavy trafÞc is likely
to share many feature values, which can lead to solutions that are clearly
better than others. At the same time, these properties are precisely the kind
of information that an operator needs in order to understand the behavior
of the main part of the network trafÞc.

3.4 exact solution

In this section, we show that an exact solution to the NP-hard inference
problem (DeÞnition 3.1) is (expectedly) too expensive for practical use
when summarizing a large number of paths. To this end, we Þrst show
in Section 3.4.1 how to formulate the problem as an integer linear program
(ILP) where the objective encodes the score function ! and the constraints
encode the path speciÞcation search spaceSt

U1,...,Ul
. Then in Section 3.4.2,

we evaluate the scalability of solving this ILP using an off-the-shelf solver
and show the need for an efÞcient, approximate algorithm, which we de-
scribe in the upcoming sections.

3.4.1 ILP Formulation

In the following, we explain in detail how to formulate the summariza-
tion problem as an ILP. We start by introducing all variables which en-
code the speciÞcation set and the features of the routing paths. Then, we
explain how we encode the feature set function from before as objective

3.4 exact solution 25

max #
(d,P)$R

#
1%i%k

#
v$U1(...(Ul

wd,P áyd,P,i,v

#
v$Uj

xi,v % 1 (1)

#
v$U1(...(Ul

xi,v % t (2)

yd,P,i * yd,P,v + xi,v % 1 (3)

yd,P,i + xi,v * yd,P,i,v % 1 (4.1)

yd,P,i,v * yd,P,i % 0 (4.2)

yd,P,i,v * xi,v % 0 (4.3)

#
1%i%k

yd,P,i % 1 (5)

xi+ 1,v * xi,v + 0 (6)

yd,P,i , xi,v, yd,P,i,v $ { 0, 1}

Figure 3 .2: An integer linear program for computing a speciÞcation set to ex-
plain the routing paths, where i $ { 1, ...,k} , j $ { 1, ...,l } , (d, P) $ R ,
and v $ { U1 (... (Ul } .

function. Finally, we describe the different constraints among the variables.
Figure 3.2 shows the full formulation of the ILP.

variables In our ILP formulation of the summarization problem, we
have two types of variables: Þrst, the x-variables, which encode the spec-
iÞcation sets, and second, they-variables, which encode the features and
speciÞcations that the routing paths meet.

For each path speciÞcation, we introduce a set of variables, one for every
feature value that may be part of any path speciÞcation. Formally, we have
a variable xi,v for every 1 % i % k and v $ U1 (... (Ul . These variables
are indicator functions and range over xi,v $ { 0, 1} . That is, if xi,v = 1, it
means that v is part of the ith path speciÞcation (v $ Si), otherwise v is
excluded. Thus, an assignment to the x-variables uniquely deÞnes a set of
path speciÞcations.

The y-variables encode whether a routing path meets the path speciÞca-
tions and which of the routing pathÕs features are described by these path
speciÞcations. Concretely, for every routing path (d, P) $ R , we maintain
multiple binary variables:

26 understanding the network Õs forwarding behavior

yd,P,i encodes whether (d, P) meets the ith speciÞcation.

yd,P,v indicates whether (d, P) contains a feature value of v. Note that the
values yd,P,v are known a-priori and need not be computed during
optimization.

yd,P,i,v encodes whether the feature v of P is described by the ith speciÞ-
cation.

These variables allow us to capture precisely in what detail a path is
being described by a speciÞcation that it meets. Note that yd,P,i,v can be 1
only if (d, P) meets the ith speciÞcation and the ith speciÞcation has feature
v (i.e., yd,P,i = xi,v = 1). This requirement is encoded as part of the general
constraints.

objective function We encode the objective function of DeÞnition 3.1
as the weighted sum of yd,P,i,v variables as shown in Figure 3.2.

constraints The space of all path speciÞcations is expressed as a set
of constraints which states that each path speciÞcation can have at most
one feature value for the same feature (constraint set (1)) and at most t
features in total (constraint set (2)).

The next constraint sets encode the score function. Constraint set (3)
encodes whether the routing path (d, P) meets the ith speciÞcation. Intu-
itively, the constraints can be presented as yd,P,i % 1+ (yd,P,v * xi,v), which
means that yd,P,i can be 1 (to indicate that (d, P) meets the ith speciÞcation)
only if yd,P,v + xi,v for all v, which indicate that the routing path meets all
features in the ith speciÞcation. Constraint set (4) encodes whether the fea-
ture value v of a routing path (d, P) is described, which may only be true
if (d, P) meets the speciÞcation and the speciÞcation containsv. Lastly,
the constraint set (5) guarantees that each feature value v met by (d, P)
is counted only once. The total number of variables and constraints is
O(k á |R| á |U1 (... (Ul |).

Constraint set (6) in Figure 3.2 encodes an optional requirement, which
requires that every speciÞcation extends its former by at least one feature.
As we have seen in Example 3.2, it can be desirable to impose such a
relation between the path speciÞcations in order to convey additional in-
formation in the summary.

3.5 approximate optimization 27

0 20 40 60 80 100
0

5k

10k

15k

20k

25k

30k

Number of PreÞxes

Ti
m

e
[s

]

Figure 3 .3: Running time using the ILP (optimal, but slow).

3.4.2 ILP Scalability

In the following, we show that an exact solution for the summarization
problem is not feasible by evaluating the scalability of the ILP formulation.

We test the ILP formulation (including (6)) on the ATT NA network,
which consists of 25 nodes. We generate forwarding state encompassing
between 10 to 100 preÞxes as described in Section3.9.1. Figure 3.3 shows
the running time for an increasing number of preÞxes. The results clearly
show that the running time exponentially increases. To summarize a net-
workÕs forwarding state for only 100preÞxes, the ILP already requires more
than 25 000seconds (~7h) to complete.

3.5 approximate optimization

An exact solution is not feasible as we have seen in Section 3.4. There-
fore, we need to come up with a scalable, approximate inference algorithm
for the NP-hard summarization problem. A key challenge when designing
such an algorithm is dealing with the size of the search space that is at least
exponential. In our setting, we show that the search space is exponential
in both t and k, making the search very challenging (Section 3.5.1). Intu-
itively, this stems from the fact that we need to explore two dimensions:
path coverage and path explainability. To address the issue with the large
search space, we leverage the fact that trafÞc is skewed and focus on parts

28 understanding the network Õs forwarding behavior

of it, enabling us to trade-off expressivity of the speciÞcation set with the
size of the search space. We show that the optimal solution for this part of
the search space:(i) has at leastmin{ 1/ k, 1/ t} of the score of the optimal
solution for the full search space, (ii) the length of every search path is
polynomial in t, and (iii) the number of children of every node is polyno-
mial in the number of feature values (Section 3.5.2). We further identify an
equivalence relation over the path speciÞcations and leverage it to deÞne a
search space with solutions of higher quality (Section 3.5.3).

3.5.1 An Exponential Search Space

In this section, we analyze the size of the search space, organize the solu-
tions in a graph, and discuss the challenges of traversing it.

size of search space We begin with showing that the size of the
search space is exponential in t and k. The search space is the set of all
speciÞcations, that is (St

U1,...,Ul
({ " })k. Thus, it immediately follows that

its size is exponential in k. To conclude that the size is exponential in k and
t, we show that the size of St

U1,...,Ul
is exponential in t. To prove this, we

reduce this computation to the combinatorial problem of choosing without
replacement up to t feature functions from l feature functions (we assume
l + t) and then for each, picking a feature value (we assume |Ui | + 2 for
all i). Then, using a combinatorial identity [46, Vol. 2, (1.37)] we get:

t

$
m= 0

%
l
m

&
á2m +

t

$
m= 0

%
t
m

&
á

2m

m + 1
=

3t+ 1 * 1
2(t + 1)

search space as a graph We organize the solutions in a directed
graph G. The nodes of G are the solutions: (St

U1,...,Ul
({ " })k. There is an

edge (u, v) if v extends one of uÕs speciÞcations with one feature value (Fig-
ure 3.4). We distinguish between two kinds of edges: edges that extend an
empty speciÞcation (colored blue) and those that extend an existing speci-
Þcation (colored red). Intuitively, the blue edges try to increase coverageby
including more path speciÞcations. This increases the number of routing
paths for which the overall speciÞcation set holds. The red edges aim to
increase the amount of detail captured in a path speciÞcation, resulting in
better explainability. However, they can reduce the number of routing paths
that satisfy the speciÞcation set (and thus, have the opposite effect of blue
edges). We have two extreme cases in this coverage versus explainability ex-
ploration: (i) speciÞcation sets that maximize explainability (speciÞcations

3.5 approximate optimization 29

G'

...

...

...

...

" , " , "

{ SFe} , " , " { LAi } , " , "

{ SFe, LAi } , " , " { LAi } , { NYe} , "

{ SFe} , { SFe, LAi } , "

{ SFe} , { SFe, LAi } , { SFe, LAi ,Yo}

{ LAi } , { NYe} , { Yo}

{ SFe, LAi , Go, 1sp}
{ SFe, NYi,Yo, 1sp}
{ LVe, LAi ,Yo, 0sp}

Maximal coverage

Coverage and explainabilityMaximal explainability

Figure 3 .4: Part of the search space fork= 3 speciÞcations,t= 4 feature values per
speciÞcation using the features egress(e), ingress (i), organization (o)
and shortest path (sp).

are of size t) and (ii) speciÞcation sets that maximize coverage (all speci-
Þcations are of size 1). Depending on the weights and number of routing
paths, the optimal solution sits in-between these two extremes.

Example 3.3. {{ New Yorke}} maximizes coverage, as it is very general by only
Þxing a single feature and its value, while{{ New Yorke, Dallasi , Googleo, 1sp}}
maximizes explainability, as it is more speciÞc by Þxing four features and their
values.

search challenge An important ingredient in any search strategy
is the solution scoring function, which guides the search towards the opti-
mal result, while effectively pruning subspaces. In our setting, such a score
function is even more critical as the size of the search space is exponential
in k and t. An immediate candidate for a score function is ! , as in DeÞ-
nition 3.1. However, ! can guide us towards a good solution only if we
restrict our traversal to nodes reachable through the blue edges. This is
due to a monotonicity property guaranteeing that if v is reachable from u
only through blue edges, then ! (v) > ! (u) (since v includes all feature
values described by u). However, the red edges do not have this property
for ! (as it trades off path coverage with explainability). Even if we con-
sider a different scoring function, pruning is unlikely to be effective and
the traversal may end up exploring an exponential number of nodes. In-
stead, we consider a reduced subspace that has shorter paths and satisÞes
the monotonicity property for every type of edge.

30 understanding the network Õs forwarding behavior

3.5.2 A Reduced Search Space

In this section, we deÞne a reduced spaceG' , which is a subspace of G.
Our reduced space leverages the fact that trafÞc is skewed, and thus the
heavy part of the trafÞc shares many feature values. This means that spec-
iÞcations consisting of these common feature values have higher scores
than other speciÞcations and that these higher-scored speciÞcations inter-
sect. This motivates us to focus only on solutions whose speciÞcations are
contained in one another. Such an approach guarantees that the solutions
balance path coverage (provided by the shorter speciÞcations) and explain-
ability (provided by the larger speciÞcations). We show that G' contains
solutions which are not signiÞcantly worse than an optimal solution in G.
SpeciÞcally, we show that G' contains a solution whose score is at least
min{ 1

k, 1
t } of an optimal solution in G, in the worst case. In G' , the size of

the search paths is t (instead of t ák as in G), and every node has at most
$ l

i= 1 |Ui | children (instead of k á$ l
i= 1 |Ui |).

The nodes of G' are all speciÞcation sets whose path speciÞcations are
extensions of one another. More formally, a node has the property that its
(non-empty) speciÞcations can be ordered to S1, ...,Sm such that: (i) the
path speciÞcations are subsets of each other,S1 , ... , Sm; and (ii) the
size of them continuously increases, for all 1 % i % m, |Si | = i. For ex-
ample, {{ New York e} , { New York e, 1sp}} is a node in G' , as the second
path speciÞcation extends the Þrst one with 1sp, while the speciÞcation set
{{ New York e} , { Los Angelese}} is not part of G' .

The edges of G' combine both kinds of edges of G. Concretely, there is
an edge (u, v) if v contains all speciÞcations ofu and alsocontains a speciÞ-
cation that extends the largest speciÞcation of u with an additional feature
value. More formally, if the (non-empty) speciÞcations of u are ordered
as deÞned before toS1, ...,Sm, then v has the speciÞcationsS1, ...,Sm, Sm+ 1
such that Sm , Sm+ 1 and |Sm+ 1| = m + 1. Figure 3.4 highlights the nodes
of G' with a green background and shows the edges of G' (which are
different from the edges of G) in green.

optimality We now discuss how solution optimality in G' relates to
that in G. Intuitively, there are two Òworst case scenariosÓ. First, if the op-
timal speciÞcation set consists only of path speciÞcations that are of size
t, a solution of G' that contains any such speciÞcation contains subsets of
this speciÞcation as well, which Òtake the spotÓ of the other speciÞcations,
without necessarily contributing to the score. To illustrate this, consider the

3.5 approximate optimization 31

scenario where k = 3, t = 4 and there are 3 paths, p1, p2, p3 with weight
1 whose feature values are{ e1, i1, o1, sp1} , { e2, i2, o2, sp2} ,{ e3, i3, o3, sp3} , re-
spectively (where en is an egress,in is an ingress,on is an organization, and
spn is an indicator for shortest path). An optimal solution is to pick exactly
these three combinations of feature values as path speciÞcations resulting
in an overall score of 12. However, in G' , a solution that includes one of
these path speciÞcations contains also its subsets, making the score of the
optimal solution only 3. The other Òworst case scenarioÓ is if all optimal
solutions are of size 1. In this case, path speciÞcations of size greater than 1
may only slightly increase the score. To illustrate this, consider the scenario
where k = 3, t = 4 and there are 12 paths,p1, . . . ,p12 with weight 1 such
that p1, . . . ,p4 have property e1, p5, . . . ,p8 have property e2 and p9, . . . ,p12
have property e3 (besides this, there are no common feature values). An
optimal solution is { e1} , { e2} , { e3} whose score is 12. However, because of
the structure of our space, the optimal solution has a score of 6.

The following lemma states that the maximum gap between the scores
of the optimal solution in G' and G is at most a factor of min{ 1

t , 1
k } .

Lemma 3.1. Let OPTG,OPTG' be the optimal solutions inG and G' . Then,
min { 1

t , 1
k } á! (OPTG) % ! (OPTG').

proof sketch Denote the optimal solution as the following speciÞ-
cation set: { x1

1, , ...,x1
t1

} , . . . ,{ xk
1, ...,xk

tk
} . By the score deÞnition and since

ti % t, - i, j. j
t ! ({ xi

1, , ...,xi
ti
}) % ! ({ xi

1, ...,xi
j }). Without loss of generality,

assume that { x1
1, , ...,x1

t1
} has the highest score. Then,! ({ x1

1, , ...,x1
t1

}) >
OPT/ k. We distinguish two cases.

1. If k % t1, then the score of { x1
1} , { x1

1, x1
2} , ...,{ x1

1, ...,x1
k} is at least

k/ t á(OPT/ k). Since{{ x1
1} , ...,{ x1

1, ...,xk
1}} is a node in G' , the claim

follows.

2. Otherwise, if t1 < k, then {{ x1
1} , ...,{ x1

1, , ...,x1
t1

}} is a node in G' and

since ! ({ x1
1, , ...,x1

t1
}) > OPT/ k, the claim follows.

3.5.3 A Path Equivalent Space

In this section, we deÞne a search space which is similar to G' but may
contain solutions with higher score. Intuitively, this is obtained by Òmerg-
ingÓ nodes in G' that are equivalent with respect to the routing paths

32 understanding the network Õs forwarding behavior

which are covered by the nodes. In other words, for every two nodes in
this space, there is at least one path satisfying one but not the other. Path
equivalence does not imply the same score. For example, if { e1} , { i1} are
path equivalent, then { e1, i1} is also path equivalent to them, but with a
score that is twice as high as them. This is because each path contributes
its weight twice, once per feature. By considering only nodes that are not
path equivalent, we can potentially obtain better solutions, without sacri-
Þcing the lower bound of Lemma 3.1.

We use this observation to modify G to a space G= whose solutions
consist of speciÞcations that are(i) contained in one another (like G') and
(ii) maximal with respect to path equivalence. In our example, this means
that { e1} , { i1} are not part of any solution in G= , but { e1, i1} might be if
its extensions are not equivalent to it. In G= , there is an edge (u, v) if, for
u whose speciÞcations areS1 ' ... ' Sm, we have (i) the speciÞcations of
v are S1, ...,Sm, Sm+ 1, (ii) Sm , Sm+ 1, and (iii) for any subset S such that
Sm , S , Sm+ 1, Sm+ 1 and S are path equivalent. By construction, G= has
solutions which are at least as good as those in G' , which gives us:

Lemma 3.2. Let OG' and OG= be optimal solutions inG' andG= , respectively.
Then,! (OG=) + ! (OG').

By traversing G= , algorithms can return solutions with larger path spec-
iÞcations than the ones obtained by traversing G' . This follows since the
maximal size of a speciÞcation in G' is k, while the size of speciÞcations
in G= is up to t.

3.6 the compass algorithm

We now introduce ComPass, an algorithm to compute path speciÞcations
by traversing the search spaceG= .

ComPass (Algorithm 3.1) lazily computes nodes in G= and continues to
the node with the highest increase in score. It takes as input a set of routing
paths R , a set of feature functions q1, . . . ,ql , and constantsk and t denoting
the maximal number of speciÞcations and the maximal size of each path
speciÞcation. ComPass starts by initializing the set of solutions S and the
current speciÞcation L to the empty set, and Q to the set of all candidate
feature functions (Lines 1Ð3). In up to k iterations, the best feature value is
selected to extend LÐnamely, the feature value that maximizes the score of

3.6 the compass algorithm 33

Algorithm 3.1: ComPass (R , q1, . . . ,ql , k, t)
Input : R : a set of routing paths.

q1, . . . ,ql : a set of feature functions.
k: limit on the number of speciÞcations.
t: limit on the size of speciÞcations.

Output : A set of speciÞcations S.
1 S = " // The specification set

2 L = " // The last computed specification

3 Q = { q1, ...,ql } // Candidate features

4 while |S| < k do
5 q, v = arg maxqQ ,vqUq

#
(d,P)$R

wd,P á[q(d, P) = vq]

6 L = L ({ v}
7 Q = Q \ { q}
8 R = R \ { (d, P) | q(d, P))= v}
9 if |L| = t then S = S ({ L} ; break

10 while . v $ UQ.(L ({ v} / L) do
11 L = L ({ v}
12 if |L| = t then S = S ({ L} ; break
13 Q = Q \ { q}

14 S = S ({ L}

15 return S

S as deÞned by the score function (Eq. (3.1)) when adding it to L. This can
be formalized as maximizing the function on Line 5.

Let v be this feature value and q its feature. Then, L is extended with v
and q is dropped as L cannot contain another feature value from Uq. The
paths in R not meeting v are dropped as well, as these will not be de-
scribed by the next speciÞcations (Lines6Ð8). Then, if the size of L reaches
the bound t, the loop breaks as it is impossible to extend L further (Line 9).
Otherwise, ComPass computes the maximal speciÞcation that is equiva-
lent to L by checking whether it can be extended with other feature values
(Lines 10Ð13). Finally, L is added to S (Line 14), and the next iteration be-
gins. To ensure the limit of t is not exceeded, onceL has reached this bound,
ComPass completes and returns the current speciÞcation sets. This means
that ComPass may return fewer than k speciÞcations. It can be shown that
this solution has a higher score than a solution with k speciÞcations that
are not representative. Intuitively, this follows since the paths described by
the descendants are subsumed by the paths described by their ancestors.

34 understanding the network Õs forwarding behavior

Example 3.4. ConsiderR = { (Google, Pi)} 100
i= 1, each with weight1, and k =

t = 2. As before, we assume that(i) if i % 60, E(Google, Pi) = NYe, and
E(Google, Pi) = LAe otherwise,(ii) for i % 40, SP(Google, Pi) = 1sp, and(iii) all
other feature values are unique for every path. We now show how ComPass com-
putes the optimal solution{{ NYe} , { NYe, 1sp}} . In its Þrst iteration, ComPass
discovers that the feature value NYe maximizes the score. It thus extends L to
{ NYe} , prunes the egress feature E fromQ, and removes fromR all paths whose
egress is not New York. Since{ NYe} is the representative of its equivalence class,
it is added toS. In the second iteration, the feature value1sp maximizes the score.
Hence, ComPass extends L with1sp. Since the limit t= 2 has been reached, the
loop breaks (Line7), and the speciÞcation set{{ NYe} , { NYe, 1sp}} is returned.

finding the best feature value To avoid iterating every feature
value separately in Line 5 (which can incur high overhead), we Þnd the
best feature value by iterating over the feature functions in Q and the
routing paths in R and storing the score of each feature value in a hash
table. Then, with a single pass over the hash table, we Þnd the feature
value with the highest score.

guarantees Our next theorem states that ComPass computes a solu-

tion whose score is at least 1* f
1* f min { t,k} of the optimal solution in G= , where

f $ (0, 1) is the maximal portion of paths that a child of a node can have.
Note that since ComPass exploresG= , whose nodes are not path equiva-
lent, f cannot be 1.

Theorem 3.1. Given that there is f$ (0, 1) such that for every pair of path
speciÞcations A, A0 if A , A0, then ! ({ A}) % f á! ({ A0}). Then, if O is the

solution returned by ComPass, we have1* f
1* f min { t,k} áOPTG= % O.

proof sketch Let the optimal solution of the inference problem be
OPT = {{ a} , { a, b} , ...,{ a, b, ...,m}} and the speciÞcation set that ComPass
returned be the speciÞcation setSComPass= {{ a0} , { a0, b0} , ...,{ a0, b0, ...,m0}} .
By the assumption, ! ({ a, b}) % f á! ({ a}) % f á! ({ a0}). By induction,
! ({ a, b, ...,j}) % f |{ a,...,j}| á! ({ a0}). Since the length of the largest speciÞ-
cation in OPT is min { k, t} , the length of the optimal solution is at most

1%j%min { k,t} f j á! ({ a}) = 1* f min { t,k}

1* f á! ({ a}). By the greedy operation, we

have ! ({ a}) % ! ({ a0}). Since ! ({ a0}) % ! (SComPass), we get ! ({ a}) %

! (SComPass) % 1* f min { t,k}

1* f á! ({ a}), which means that ComPass is a 1* f
1* f min { t,k} -

approximation algorithm.

3.7 from specifications to summaries 35

Example 3.5. The factor f is determined by the pair of nodes A, A0 whose
scores are the closest. In the previous example with k= t = 2, A = {{ NYe} , " } ,
A0 = {{ NYe} , { NYe, 1sp}} . Since! (A) = 60 and ! (A0) = 100, we get that
f = 0.6. By the theorem, ComPass returns a solution whose score is at least62.5%
of the optimal solution inG.

speeding up compass by sampling To compute the best feature
value, ComPass iterates in Line 5 over all routing paths. This step is very
expensive, especially if the number of routing paths and feature functions
is large. To mitigate this problem, we leverage two observations that allow
ComPass to uniformly sample the routing paths instead of considering
all routing paths. First, Internet trafÞc is heavily skewed, which means
that most trafÞc is directed towards a few organizations (e.g., CDNs), and
egresses see different trafÞc volumes depending on the peering. This means
that sampling is likely to pick representative routing paths. Second, by
the score function deÞnition, optimal solutions consist of speciÞcations
describing the main part of the trafÞc. This means that speciÞcations repre-
senting little trafÞc have little effect on the decisions ComPass makes. This
implies that sampling will perform well as it is more likely to ignore the
speciÞcations with few routing paths than the ones with many.

3.7 from specifications to summaries

In this section, we describe how Net2Textproduces a natural language sum-
mary given a speciÞcation set S (generated by ComPass). It begins by aug-
menting S with additional information in three steps. It then transforms
the path speciÞcations in S to natural language sentences using templates.
In the Þrst two steps, Net2Text augments S with information computed as
a byproduct by ComPass (i.e., additional speciÞcation sets and the amount
of trafÞc). In the third step, Net2Text extends S with high-level features,
which cannot be directly computed by ComPass. We next describe these
steps and illustrate them on our example, S = {{ NYe} , { NYe, 1sp}} .

step 1: adding path specifications Net2Text extends every S $
S with the next m (a parameter) best path speciÞcations that have the
same parent in G= and are values of the same feature function. These
path speciÞcations can be extracted from the computation of ComPass (in
Line 5). In our example, for m = 1, this step results in adding { LA e} to S
as NYe and LA e have the same parent and same feature function (egress).

36 understanding the network Õs forwarding behavior

This will eventually be translated to a single sentence: Google trafÞc exits in
New York and Los Angeles.

step 2: adding traffic size Then, Net2Text extends every S $ S
with the total weight of the paths it describes to let the operator under-
stand how much trafÞc the summary covers. In our example, this gives
{ (60%,{ NYe}), (40%,{ LA e}), (40%,{ NYe, 1sp})} .

step 3: computing high -level features Next, we extend S with
high-level features (e.g., load-balancing, waypointing, or hot-potato rout-
ing) that are not properties of single paths but rather of sets of paths, i.e.,
entire speciÞcations. Thus, these features can only be identiÞed after Com-
Pass computed the best speciÞcation set. Each of these high-level feature
comes with a set of criteria that the routing paths in a speciÞcation have
to meet for the high-level feature to hold. For example, for load-balancing,
the ingress and egress of a speciÞcation have to be Þxed and the paths
described by it need to be disjoint. In our example, Net2Text inferred that a
common waypoint for (40%,{ New York e, 1sp}) is Atlanta as all the paths
in this speciÞcation go through Atlanta, and thus this speciÞcation is ex-
tended to (40%,{ New York e, 1sp, Atlanta w}). In addition, Net2Text inferred
that the trafÞc to Google experiences hot-potato routing as it has multiple
egresses and all the trafÞc is forwarded to the closest one.

step 4: translation to natural language Finally, S is trans-
lated to natural language sentences. The sentences are a composition of
multiple basic templates. To create ßuency in the summary, Net2Text con-
nects related sentences by building upon the previous one. In addition, it
does not repeat information. For example, the second sentence in our ex-
ample summary in Section 3.1 does not repeat that it refers to Google traf-
Þc, and the percentage shown is relative (i.e., 40%/60%= 66.7%). Namely,
{ (40%, NYe, 1sp, Atlanta w)} is mapped to: 66.7% of the trafÞc exiting in New
York follows the shortest path and crosses Atlanta.

3.8 parsing queries

To leverage Net2TextÕs summarization capabilities, the operator needs to
provide the feature functions Q, t, k, and the routing paths R . Typically,
once Q, t and k are speciÞed, the operator queries the network database to
obtain R . To simplify this, Net2Text allows the operator to submit queries
in natural language which it then translates to SQL-like queries for the

3.8 parsing queries 37

network database. In the following, we describe how Net2Text parses these
queries expressed in natural language.

network grammar The grammar consists of rules specifying how
constituents of the queries (e.g., clauses, words) can be composed. The
rules also specify the semantics of the constituents (e.g., the network terms
such as ÒingressÓ), which enables the parser to construct the SQL-like
query. The grammar consists of two parts: (i) a structural part (# 70 rules),
which deÞnes the allowed constituent compositions; and (ii) a domain-
speciÞc part consisting of mapping rules (# 80 rules), which capture the
network speciÞc features (e.g., egress, organization) as well as keywords
(e.g., router and location names). This split enables the operator to easily
extend the grammar with new features and keywords without having to
deal with the structure of the queries.

structural grammar This grammar deÞnes the query structure and
its building blocks. We identify two main building blocks: query type
and trafÞc identiÞer. Depending on the query type, there may be addi-
tional building blocks. There are four query types: yes/no (ÒIs/Does...Ó),
counting (ÒHow many...Ó), data retrieval (ÒWhat is/are...Ó), and explana-
tion (ÒHow is/does trafÞc...Ó). The query type determines whether the
answer is yes/no, a count, a list, or a summary (obtained using ComPass).
The trafÞc identiÞer deÞnes the WHERE clause of the SQL-like query. The
attributes selected by the query are either determined by the query (in data
retrieval queries) or are simply a wildcard (i.e., !).

Figure 3.5 illustrates the structural parsing. ÒHowÓdeÞnes the desired
behavior of Net2Text (summarize the data with ComPass), while ÒGoogle
trafÞc to New YorkÓ is the trafÞc identiÞer. The black rules (1-3) are part
of the structural grammar, while the blue rules (4 & 5) are part of the
domain-speciÞc grammar, which we discuss next.

domain -specific grammar This grammar deÞnes a mapping be-
tween keywords and names to features and their values. For example, the
grammar deÞnes the rules (i) ÒtoN " egress=NÓ indicating that the natu-
ral language phrase ÒtoNÓ means thatN is a name of an egress, whereN
is a non-terminal and (ii) N " NY, LA, ..., lists the possible egress names.
Using these rules, Òto NYÓ is parsed toegress=NY in the SQL-like query.

38 understanding the network Õs forwarding behavior

SELECT * FROM paths

WHERE egress=New York

AND org=Google

Query Type Traffic Identifier

Organization

Org. Terminal

Egress

Router

How is Google trafÞc to New York handled ?

Q[SEM=(
SELECT * FROM

paths WHERE ?ti
)] -> How TI[SEM=?ti] (1)

TI[SEM=(?pc)] -> PC[SEM=?pc] (2)

PC[SEM=(?pc1 and ?pc2)] -> PC[SEM=?pc1] PC[SEM=?pc2] (3)

PC[SEM=(egress=?n)] -> To N[SEM=?n] (4)

N[SEM=(NY)] -> New York (5)

Figure 3 .5: A parse tree and rules in the network grammar.

3.9 evaluation

In this section, we evaluate Net2TextÕs scalability and usability by address-
ing the following research questions:

RQ1 How does Net2Textscale to different networks when summarizing all
routing paths? We show that Net2Text can summarize large forward-
ing state in few seconds only (Section 3.9.2).

RQ2 How does sampling affect the quality of Net2TextÕs summaries? We
show that Net2Text generates high-quality summaries whose scores
are within 5% of the unsampled summary (Section 3.9.3).

RQ3 How useful is Net2Text for network operators? Several network oper-
ators conÞrmed in interviews that virtual assistants like Net2Text are
indeed useful (Section 3.9.4).

RQ4 Is Net2Textpractical? We show Net2TextÕs end-to-end implementation
in a case study using a live, virtual network (Section 3.9.5).

3.9 evaluation 39

3.9.1 Methodology

We run our Python-based prototype (# 3k lines of code) on a machine with
24 cores at 2.3 GHz and 256 GB of RAM. For the experiments, we imple-
mented an ISP-like forwarding state generator, which we use to produce
realistic forwarding state for various Topology Zoo [47] topologies ranging
from 25 to 197 nodes (Table 3.2). The generator enables us to control how
ÒsummarizableÓ a state is by varying how skewed it is.

forwarding state generation Our generator synthesizes network-
wide forwarding states (i.e., the set of routing paths R) for a given num-
ber of IP preÞxes and a given network topology in Þve consecutive steps.
First, it randomly chooses a set of egress nodes (see Table3.2). Second, it
creates a preÞx-to-organization mapping by relying on the CAIDA AS-to-
organization dataset [48]) and a full IPv 4 RIB [49]. Third, for each organiza-
tion, it chooses the number of egresses using an exponential distribution
Þtted according to real measurements [50], after which the actual egresses
are uniformly chosen from the set of egress nodes. Fourth, for each node, it
computes its forwarding state by picking for each preÞx the closest egress.
Fifth, each routing path (d, P) is Þnally associated with an amount of traf-
Þc sampled from an exponential distribution. This leads to few organiza-
tions owning many preÞxes, carrying relatively more trafÞc than others
(as shown in [44]). The generator can also generate extra features whose
values are arbitrarily picked.

generality While we generate the input forwarding state, we stress
that our results are representative because: (i) the scalability of ComPass
does not depend on the actual feature values but only on the number of
features (see Section3.6); and (ii) the quality analysis does not depend on
the actual score but rather on the ratio compared to other scores under the
same setting.

3.9.2 Scalability Analysis

We evaluate Net2TextÕs scalability by measuring the time it takes to sum-
marize all routing paths (worst-case) while varying the number of key
dimensions: preÞxes, nodes, and feature functions. To evaluate the sam-
pling optimization of ComPass, we run ComPass four times: without path
sampling and with a sampling rate of 1/10, 1/100, 1/1 000. We repeat each
experiment 10 times and report median results.

40 understanding the network Õs forwarding behavior

1k 10k 100k 625k
10* 5

10* 1

103

Number of PreÞxes

Ti
m

e
[s

]

1/ 1 1/ 10 1/ 100 1/ 1 000

Figure 3 .6: Time as a function of the number of preÞxes and sampling rate.

3 6 9 12
10* 3

100

103

Number of Features

Ti
m

e
[s

]

1/ 1 1/ 10 1/ 100 1/ 1 000

Figure 3 .7: Time as a function of the number of features and sampling rate.

Figure 3.6 shows the results when varying the number of preÞxes from
103 to 105 and the full RIB for the ATT NA topology using 3 feature func-
tions. The results indicate that Net2Text scales linearly in the number of
preÞxes. The running time decreases proportionally to the sampling rate.
Without sampling, summarizing forwarding states with 625k preÞxes takes
about 100seconds andless than one secondwith a sampling rate of 1/ 1 000.
Figure 3.7 shows a similar trend when varying the number of features from
3 to 12 and using a full RIB.

Table 3.2 shows the runtime of Net2Text when considering different
topology sizes, with full routing tables (625k preÞxes) and 3 feature func-
tions. The table reports the runtime both with (rate of 1/ 1 000) and without
sampling. We see that the runtime is roughly linear in the number of nodes
in the network. More importantly, our results indicate that Net2Text scales
to large networks with hundreds of nodes thanks to sampling: it takes less

3.9 evaluation 41

Topology Nodes Egresses No sampling 1/ 1 000

ATT NA 25 10 94.07s 0.26s

Switch 42 15 128.12s 0.24s

Sinet 74 30 223.91s 0.50s

GTS CE 149 40 611.81s 1.18s

Cogent 197 50 766.61s 1.84s

Table 3 .2: With sampling (Section 3.6), Net2Text summarizes large network for-
warding states (> 600k preÞxes), within 2 seconds, for networks with
close to 200nodes.

than 2 seconds for Net2Text to summarize the entire forwarding state of
the Cogent topology.

3.9.3 Quality Analysis

We now evaluate the effect of sampling the input data (i.e., the forwarding
paths) and show that doing so only marginally impacts the quality of the
summary. In addition, we show that ComPass compares well against two
baselines both in terms of quality and running time.

We measure the quality of a summary using the score function presented
in Section 3.3. Intuitively, the score represents the trafÞc volume of the
paths covered by the resulting summary, rewarding more detailed sum-
maries by multiplying the volume of each path by the level of details (i.e.,
number of feature values) present in the summary. When computing the
score, we always account for all entries that match the resulting summary
and not just for the sampled entries. As in Section 3.9.2, we consider the
problem of summarizing every single entry in the network database.

For the experiment, we generate forwarding state for the ATT NA topol-
ogy with a full routing table (> 600k preÞxes) and vary the sampling rate
from 1 to 1/ 5 000 000. Note that we have more entries in the network
database than the total number of preÞxes in the routing table as there
is at least one path from every node to every preÞx. Hence, even with
sampling rates higher than the number of preÞxes, we still have paths to
summarize. For this setup, we have more than 15 million entries in the
network database.

42 understanding the network Õs forwarding behavior

1 100 10k 1M
0

0.5

1

Sampling Rate

Q
ua

lit
y

uniform
skewed

Figure 3 .8: Summary quality as a function of sampling rate.

0 20 40 60 80 100 120
0

0.5

1

Time [s]

Q
ua

lit
y

1/ 1
1/ 10
1/ 100
1/ 1 000

Aggregate

Entry

ComPass

Figure 3 .9: Net2Textproduces summaries of higher quality than two simple base-
lines.

Figure 3.8 shows the score of the summary for different sampling rates
normalized to the score without sampling. We ran the experiment for two
different scenarios: (i) highly skewed trafÞc distributions among the fea-
ture values, where the size difference between the feature values is high;
and (ii) uniform distributions, where the difference between them is low.
Our results show that the sampling rate at which the score of the sum-
mary drops signiÞcantly is very high. Even with sampling rates of 1/ 1 000,
ComPass still creates summaries whose qualities are within 5% of the un-
sampled summary.

To further illustrate the quality of the summaries obtained using Com-
Pass, we compare it against two baselines. Both baselines iterate once over
the relevant routing paths and pick the most detailed speciÞcation (e.g.,
{ New York e, Philadelphia i , Googleo}). From this speciÞcation, we build the
full speciÞcation set by randomly removing one feature value after the

3.9 evaluation 43

other to obtain, for example, the following speciÞcation set: {{ New York e} ,
{ New York e, Googleo} , { New York e, Philadelphia i , Googleo}} . The base-
lines differ in how they choose the most detailed speciÞcation: Entry, takes
the routing path with the highest weight and uses it as the most detailed
speciÞcation; andAggregate, aggregates all routing paths with the same fea-
ture values and uses the largest aggregate. When computing the quality of
the summaries, we consider all routing paths matching the resulting sum-
mary. Thanks to sampling, ComPass produces higher quality summaries
in the same amount of time as the two baselines (see Figure 3.9). If we
also consider the information added to the summary by extending it as
described in Section 3.7, we see that ComPass outperforms the baselines
by almost 5 times.

3.9.4 Usefulness

To better assess the usefulness of virtual assistants in the network setting
in general and Net2Text in particular, we conducted Þve interviews with
network operators of different ISP networks (research, Tier 1 and Tier 2)
and one enterprise network. We discussed with them four aspects: (i) the
need for virtual assistants, (ii) the usefulness of an natural language inter-
face, (iii) the value of natural language output, and (iv) the usefulness of
Net2Text and the queries it supports.

aspect 1 : need for virtual assistants All operators see oppor-
tunities for virtual assistants in all tasks that require to process a lot of
data. They can imagine to ofßoad and automate the identiÞcation and ex-
traction of the relevant information, which they can then use to draw their
conclusions for further action. A virtual assistant allows them to focus on
remedying, rather than identifying and analyzing the event.

aspect 2 : relevance of the natural language input The pos-
sibility to write queries in natural language was well-perceived. One op-
erator mentioned that a natural language interface could simplify the on-
boarding of new employees. Some operators, however, do not mind a Þxed
query language or writing their own scripts.

aspect 3 : relevance of the natural language output Most
operators see value in natural language summaries as they are concise and
simple to understand, especially for less technical persons. Depending on
the query, some operators mentioned that they would like to see visualiza-
tions of the summary (e.g., a graph) in addition to text.

44 understanding the network Õs forwarding behavior

aspect 4 : usefulness of net2text queries All of the operators
conÞrmed that the queries currently supported by Net2Text are relevant.
In particular, they appreciated the ability to query about incoming trafÞc.
In addition, most operators testiÞed interest in service-oriented queries, in-
stead of purely destination-oriented ones (e.g., trafÞc to the Gmail-service
instead of Google trafÞc in general).

In the discussions, we saw a clear difference between the queries of ISP
and enterprise network operators. While the ISP operators were mostly
concerned about where trafÞc was entering and leaving the network, the
enterprise operator was more interested in the status of the different ap-
plications running in the network and their policies (e.g., is there always a
Þrewall on the path).

3.9.5 Case Study

We showcase our end-to-end implementation of Net2Text by running it
in a virtual network using the Internet 2 topology (Figure 3.10a). For the
routers, we use the popular Quagga software routing suite [51]. Routers in
Seattle, Sunnyvale, New York and Washington are connected to external
peers. The router in New York receives routes to both Google and Face-
book, while the router in Washington only receives routes to Google. All
external routes have the same local-preference. We generate transit trafÞc
entering via Seattle and Sunnyvale towards both destinations. The ßows
are highlighted in Figure 3.10a and the measured throughput is depicted
in Figure 3.10b. Every ten seconds, Net2Text collects the entire forward-
ing state and the trafÞc statistics to summarize the current network-wide
forwarding behavior as indicated by the four labels.

Figure 3.10c shows the 4 summaries produced by Net2Text. We see that
Net2Text is able to explain the current forwarding behavior at different lev-
els of detail and automatically zooms in on the largest part of the trafÞc. At
the time of the second summary, for example, trafÞc for Google has spiked
(green and blue) and is now three times larger than Facebook. We see that
Net2Text automatically focuses on the trafÞc to Google and provides more
details about it, yet it still mentions trafÞc to Facebook. In the third sum-
mary, we see how Net2Text captures higher-level constructs that are not
directly present in the database such as Òhot-potato routingÓ (Section3.7).

3.10 discussion 45

G

G

FB

(a) Internet 2 Topology.

0 20 40
0

20

40

60 1 2 3 4

Throughput [Mbps]

Ti
m

e
[s

]

(b) Network Throughput.

1 ÒTrafÞc has a single egress (New York), and goes to a single des-
tination (Facebook). It enters at the following ingresses: Sunny-
vale (76%) and Seattle (24%).Ó

2 ÒTrafÞc goes to the following destinations: Google and Face-
book. TrafÞc for Google exits through Washington (50%) and
New York (50%).Ó

3 ÒTrafÞc is destined to Google. It experiences hot-potato routing.
It exits through the following egresses: New York (50%) and
Washington (50%).Ó

4 ÒTrafÞc leaves through Washington, has a single ingress (Sun-
nyvale), and goes to Google.Ó

(c) Resulting summaries.

Figure 3 .10: We ran our Net2Text implementation in a live network emulating
Internet 2 (a) and vary the network throughput according to (b).
The resulting summaries at the different points in time accurately
capture the networkÕs forwarding behavior.

3.10 discussion

In this section, we discuss our decision to use a natural language interface,
possibilities to extend Net2Text and ways to obtain and build the underly-
ing network database.

why natural language ? We believe that a chat-like interface pro-
vides a familiar and intuitive way for operators to interact with their net-

46 understanding the network Õs forwarding behavior

work. That said, our summarization contribution is useful in its own right,
independently of the NLP interface. For example, as an illustration, we
could easily translate Net2Text summaries to a graph-based representation
(e.g., using PGA [21]) rather than natural language.

what about new feature functions ? While we only deal with a
limited set of features in this chapter, we stress that ComPass is ßexible and
can deal with any features deÞned over routing paths. Additional features
(e.g., the TCP port number) can easily be added by adding a new Þeld
to the database. For the translation, the singular and plural of the feature
name also have to be added to the rules. The operator can also add a
mapping of feature values to some string, e.g., TCP port 80 to HTTP.

what about the network database ? The problem of building the
network database is orthogonal to the problem of explaining the network-
wide forwarding behavior. Therefore, we assume that the network database
is fed with high-quality and consistent data and focus on the problem of
summarizing it. This is a strong assumption. However, gathering high-
quality state consistently is challenging and the quality of our summaries
will inevitably suffer should the data be incomplete, outdated, or inconsis-
tent. Fortunately, multiple works have looked at the problem of extracting
network data in a fast and consistent manner, which Net2Text can directly
leverage. In particular, Libra [29] tackles the problem of capturing consis-
tent snapshots of the network forwarding state. Similarly, FlowRadar [52]
and Stroboscope [53, 54] tackle the problem of quickly gathering Þne-
grained trafÞc statistics.

3.11 related work

In this section, we describe related work in the area of network prove-
nance, which aims to explain why a network state occurs, and in the area
of network management using natural language, which allows network
operators to manage their network through a natural language interface.

network provenance Net2TextÔs high-level objectives ofexplaining
how networks behavebear similarities with many works on Network Prove-
nance (e.g., [55, 56, 57, 58, 59, 60, 61]). The main difference between these
works and Net2Text is that Net2Text does not aim at explaining why a par-
ticular state is observed (by following the derivation history), but rather
summarizing what is the current state being observed to make it under-
standable to human operators. Net2Text can therefore be seen as comple-

3.11 related work 47

mentary to these frameworks. Once network operators understand what
the network behavior is, they can then ask questions about why. We also
believe that Net2TextÔs summarizing capabilities can be applied to summa-
rize provenance explanations which often tend to be large.

connecting natural languages and networks The idea of us-
ing natural language to manage networks has been around for quite some
time. Most work in this area provides a natural language interface in order
to control the network and its behavior, while Net2Text focuses on monitor-
ing the network and explaining its behavior. A general problem of using
natural language is intent disambiguation. In contrast to query languages,
network operators can specify the same intent in many different ways or
specify different intents using very similar natural language utterances.
Therefore, it is important to correctly infer the intents, especially when
changing a networkÕs state based on that intent.

Alsudais et al. [62] introduce NLP techniques to control and query the
state of SDN networks. However, unlike Net2Text, their work does not pro-
vide any abstraction capability and is limited to simple yes/no questions
and answers along with simple control tasks such as rate limiting a ßow.
Similarly, Esposito et al. [63] design a natural-language interface to man-
age Software-DeÞned Infrastructures (SDIs). The intents are speciÞed in
the Gherkin language, a restricted language that is easy for operators to
understand but structured enough such that the commands can unambigu-
ously be parsed.

Lumi [64] is a system that allows network operators to conÞgure their
network using natural language. From the operatorsÕ natural language in-
structions, Lumi extracts the important information and assembles an in-
tent in their own speciÞcation language, which is called Nile (Network
Intent LanguagE) [65]. Finally, the intent is compiled into network conÞg-
uration commands expressed in Merlin [20]. To successfully disambiguate
the operatorÕs intents, Lumi always conÞrms with the operators that it
understood their intent correctly before proceeding.

inferring network intents from the forwarding state The
Anime framework [66] also addresses the problem of extracting high-level
insights from a networkÕs forwarding state. It differs from Net2Text in
several ways. First, Anime does not aim to be a virtual assistant for the
network operator and does not provide a natural language interface like
Net2Text. Second, Anime introduces two objective measures to assess the
quality of an inferred intent: (i) precision, which measures whether the in-

48 understanding the network Õs forwarding behavior

tent covers any unobserved paths; and (ii) recall, which measures whether
the intent covers all observed paths. While Anime aims to Þnd intents with
a recall of 100% that maximize the precision, Net2Text does the opposite
by Þnding intents with a precision of 100% that maximize the recall. Third,
AnimeÕs speciÞcation language is more expressive as it allows for multiple
feature types, such as hierarchical features. And fourth, due to the richer
speciÞcations, Anime is signiÞcantly slower than Net2Text.

3.12 conclusion

In this chapter, we introduced Net2Text, a system to assist network oper-
ators in understanding their networkÕs forwarding behavior. Net2Text is
based on efÞcient summarization techniques which generate interpretable
summaries (in natural language) out of the low-level forwarding state
and trafÞc statistics. Net2Text makes several key contributions: (i) a pre-
cise formulation of the network-wide summarization problem as an op-
timization problem; (ii) ComPass, an approximate algorithm for generat-
ing high-quality summaries, which scales to large data sets; (iii) a thor-
ough experimental evaluation illustrating that Net2Text can summarize the
network-wide forwarding behavior of hundreds of routers carrying full
routing tables within 2 seconds.

4
U N D E R S TA N D I N G T H E N E T W O R K Õ S C O N F I G U R AT I O N

In this chapter, we introduce ConÞg2Spec, a system which helps network
operators understand their networkÕs conÞguration by automatically min-
ing all the policies the conÞguration enforces.

Today, network operators have a range of network validation and con-
Þguration synthesis tools at their disposal. These tools help them prevent
human-induced downtimes caused by misconÞgurations. While useful in
theory, these tools have, unfortunately, not yet been widely deployed in
practice [7]. A reason for that is the requirement to provide a full speciÞ-
cation of the correct intended network behavior. Writing down the precise
speciÞcation is a daunting task. Surely, network operators can try to man-
ually work their way through the networkÕs conÞguration. However, this
is challenging and error-prone: the conÞgurations have been written over
years and years by a team of network engineers (some of which do not
even work there anymore), and they have been ÒpollutedÓ by short-term
Þxes to problems that needed immediate attention (e.g., congestion and
hardware problems) and have not been removed ever since. ConÞg2Spec
supports network operators in this task by automatically mining the net-
workÕs speciÞcation. It takes the network-wide conÞguration and a failure
model (e.g., up to k failures) as input and returns the precise speciÞcation:
all policies that hold under the failure model and only those.

The main challenge behind ConÞg2Speclies in exploring two exponen-
tial search spaces:(i) the space of all possible policies, and (ii) the space
of all possible network-wide forwarding states. The key insight is to ad-
dress speciÞcation mining with a combination of data-plane analysis and
control-plane veriÞcation. ConÞg2Spec, Þrst, prunes the large space of poli-
cies by analyzing a few forwarding states using data-plane analysis and
then validates the remaining policies with control-plane veriÞcation.

Next, we summarize our main contributions in this chapter:

¥ We present a novel approach to automatically mine a networkÕs speci-
Þcation using a combination of data-plane analysis and control-plane
veriÞcation (Section 4.3);

49

50 understanding the network Õs configuration

¥ we present three domain-speciÞc techniques to improve ConÞg2SpecÕs
effectiveness: policy-aware sampling, policy grouping and topology-
based trimming (Sections 4.4Ð4.6);

¥ and we provide an end-to-end implementation of ConÞg2Spec, along
with an extensive evaluation across different topologies and baselines
(Section 4.7).

The rest of this chapter is structured as follows. Section 4.1 deÞnes the
speciÞcation mining problem and presents two baseline approaches. Sec-
tion 4.2 provides an overview of the entire system. Section 4.3 presents the
predictor which dynamically switches between data-plane analysis and
control-plane veriÞcation. Section 4.4 introduces data-plane analysis and
policy-aware sampling. Section 4.5 introduces control-plane veriÞcation
and policy grouping. Section 4.6 presents topology-based trimming. Sec-
tion 4.7 evaluates our implementation of ConÞg2Spec. Section 4.8 reviews
related work in the area. Finally, Section 4.9 concludes the chapter.

4.1 problem definit ion

In this section, we deÞne the problem of mining a network speciÞcation.
To this end, we Þrst introduce the two key concepts used throughout this
chapter: network speciÞcations, which are composed of a set of policies, and
failure models, which specify under which failures the network speciÞca-
tion should hold. Then, we introduce the network speciÞcation mining
problem and discuss two baseline approaches together with their short-
comings, thus motivating our solution.

running example Throughout this chapter, we refer to the example
shown in Figure 4.1. Here, we have a network that consists of Þve routers
and seven links. There are two host networks, p1 and p2, attached to routers
1 and 2. All routers are in the same OSPF area, and the OSPF weights are
depicted on the links. An IP access control list (ACL) on the interface from
router 5 to 2 drops all packets destined to preÞx p1.

failure models A failure model consists of a symbolic environmentand
a number k. The symbolic environment deÞnes which links are up or down,
and which links may fail. Technically, a symbolic environment is a partition
of the network links L into three subsets Lup, Ldown, and Lsymbolic(i.e., given
Lup and Ldown, we can derive Lsymbolic = L \ (Lup (Ldown)). The number
k is a bound on the total number of links which can be simultaneously

4.1 problem definit ion 51

R1
R2

R3
R4

R5

1

15
2 3

1

5
2

p1
p2

access-list 10 deny p1

Figure 4 .1: An OSPF network with Þve routers and two destinations. An ACL
at router 5 blocks trafÞc destined to preÞx p1, attached to router 1.

down. A concrete environmentis a partition of the network links L into two
subsets Lup and Ldown. Namely, all links are Þxed to a concrete state: up
or down. We say that a failure model with a symbolic environment LSE

up,

LSE
down, LSE

symbolicand a bound k, captures a concrete environment with LCE
up

and LCE
down if LSE

up ' LCE
up , LSE

down ' LCE
down, and |LCE

down| % k. Intuitively, a
failure model captures all concrete environments for which the links in
LSE

up are up, the links in LSE
down are down, and there are at most k links

which are down.

Example 4.1. Consider the following failure model for our running example:
Lsymbolic = L (i.e., Lup and Ldown are the empty sets) and k= 1. This model
describes any concrete environment with at most one link failure. There are eight
concrete environments which meet this failure model: one where no link is down,
and seven in which each of the links fails once. Another failure model is Lup = { 2-
4} , Ldown = { 2-5} , Lsymbolic = L \ (Lup (Ldown), and k = 2. This model
describes any concrete environment whose link between routers2 and4 is up, the
link between2 and5 is down, and the rest may be up or down. Since k= 2, another
failed link is allowed in addition to2-5. There are six concrete environments that
meet this failure model.

network specification and policies A network speciÞcationcon-
sists of a set of policies. A policy captures a speciÞc behavior in the net-
work (e.g., reachability of two routers). It is modeled with a predicate (a
constraint) which, given a concrete environment, evaluates to true if the
policy holds for that concrete environment, and false otherwise. For our
running example, the reachability(5, p2) policy evaluates to true for the

52 understanding the network Õs configuration

Policy Meaning

reachability(r, p) TrafÞc from r can reachp.

isolation(r, p) TrafÞc from r is isolated from p.

waypoint(r, w, p) TrafÞc from r to p passes through w.

loadbalancing(r, p) TrafÞc from r to p is load balanced on at least two paths.

Table 4 .1: Network policies (r and w are routers, p is a preÞx).

concrete environment in which all links are up, and to false for the con-
crete environment where all links are down. We say a policy holds for
a failure model if it holds for all concrete environments captured by the
failure model. For example, the policy reachability(5, p2) holds for the
failure model Lsymbolic= L and k = 1, but not for k = 3 asp2 is not reach-
able for 5 anymore when both the links between 2 and 5, and between 4

and 5 fail.

In our work, we focus on reachability, isolation, waypointing, and load
balancing policies (summarized in Table 4.1). The reachability, isolation,
and load balancing policies are deÞned as predicates over a router r and
a subnet in the network p. These evaluate to true if, for the given concrete
environment, trafÞc from router r can reach the preÞx p, is isolated from
p, or load balanced on at least two paths to p, respectively. The waypoint
policy is deÞned over two routers r and w, and evaluates to true if, for
the given concrete environment, trafÞc from r destined to preÞx p passes
through w. We note that our approach is extensible to any policy that is
deÞned over the forwarding state (e.g., equal length paths).

problem definit ion We now deÞne the problem of mining a network
speciÞcation:

Given a network conÞguration and a failure model, mine the network
speciÞcation, i.e., the set of all policies which hold under the failure model.

For our running example and the failure model Lsymbolic= L and k = 1
(modeling up to one link failure), the network speciÞcation consists of the
following ten policies:

4.1 problem definit ion 53

Data-Plane Analysis

Initial Candidates Sample #1 Sample #2

...

SpeciÞcation

Control-Plane VeriÞcation

Initial Candidates Query #1

!

"

Result #1

...

SpeciÞcation

Figure 4 .2: Illustration of the baseline approaches.

reachability(1, p1) , reachability(1, p2) ,

reachability(2, p1) , reachability(2, p2) ,

reachability(3, p1) , reachability(3, p2) ,

reachability(4, p1) , reachability(4, p2) ,

reachability(5, p2) , loadbalancing(4, p2) .

baseline solutions To address the above problem, one may consider
two baseline approaches: (i) data-plane analysis and (ii) control-plane veri-
Þcation.

data -plane analysis Data-plane analysis tools (e.g., BatÞsh [26]) en-
able reasoning of policies that hold for a speciÞc concrete environment.
Today, such tools are scalable enough to reason about all of our considered
policies within seconds or minutes (mostly depending on the size of the
network). Thus, one could use such tools to mine a speciÞcation by iter-
ating over all concrete environments captured by the failure model, com-
puting a data plane for each (from the conÞguration), and analyzing them
to infer the set of policies that hold for each concrete environment. The
solution is then the intersection of all obtained policy sets. Figure 4.2 (top)
visualizes this approach. Initially, every policy is a candidate which can
be part of the network speciÞcation (blue area). Then, with every sampled
data plane, the set of policies that hold for it are computed (shown in the

54 understanding the network Õs configuration

circle). These are then intersected with the policies of the previous samples
(dashed circles). In the end, the remaining candidate policies are those that
hold for all samples and thus form the network speciÞcation (green area).
Unfortunately, for large topologies or failure models with many concrete
environments, this approach does not scale (see Section4.7.2).

control -plane verif ication Control-plane veriÞcation tools (e.g.,
Minesweeper [16]) enable checking individual policies for a given failure
model. Technically, this can be accomplished by symbolically encoding the
network, its conÞguration, the failure model and a policy into a formula,
and then checking the satisÞability of this formula. Figure 4.2 (bottom) vi-
sualizes this approach. Initially, all policies are part of the set of candidates
of the speciÞcation. At every step, one policy (circle) is picked and posed
as a query to the veriÞer. The veriÞer either returns that the policy holds
(green) or shows a counterexample to disprove it (gray). In the end, ev-
ery policy has either been veriÞed or disproved. As in data-plane analysis,
while control-plane veriÞcation tools scale to the policies that we consider,
enumerating all possible policies and checking them one by one in the
above manner is prohibitive (see Section 4.7.2).

4.2 overview

In this section, we Þrst present our key insight of combining the two base-
line approaches from Section 4.1 and explain the reasoning behind it. Then,
we provide an overview of the entire system.

4.2.1 Key Insight

We address the problem of mining a network speciÞcation by combining
the baseline approaches and leveraging their respective strengths: data-
plane analysis is efÞcient at pruning policies, while control-plane veriÞca-
tion is efÞcient at validating policies. The key idea of our combination is
to reduce the space of policies by sampling forwarding states and pruning
policies using data-plane analysis, and then running control-plane veriÞca-
tion to verify a small set of remaining policies.

This combination works well because many policies which do not hold
are dense violations. That is, they are violated for many of the concrete
environments captured by the failure model. For example, in our running

4.2 overview 55

example and the failure model Lsymbolic= L with k = 1 (up to one failure),
the policy waypoint(3, 1, p2) only holds for the concrete environment in
which all links are up, but the one from router 3 to 4. Thus, by sampling
any other concrete environment (e.g., Ldown = { 2-5} , Lup = L \ Ldown), and
computing all policies that hold for it, we can prune waypoint(3, 1, p2) .

On the other hand, there are sparse violations, which are policies that do
not hold for the failure model, but are violated only by very few concrete
environments. For example, in our running example and the same fail-
ure model, the policy isolation(5, p1) is violated only by two concrete
environments: (i) Ldown = { 2-5} , Lup = L \ Ldown and (ii) L down = { 1-
2} , Lup = L \ Ldown. Unless we check these particular environments, this
policy cannot be pruned by data-plane analysis. Thus, we prune sparse
violations during the step of control-plane veriÞcation. Since the overall
number of true policies and sparse violations is often signiÞcantly smaller
than the number of concrete environments, control-plane veriÞcation is an
efÞcient solution for this.

4.2.2 TheConÞg2SpecSystem

We build on this insight to design ConÞg2Spec(Figure 4.3), which takes as
input the network conÞguration (of all devices) and a failure model and
outputs the network speciÞcation.

ConÞg2Specruns in a loop which dynamically switches between the two
approaches until the speciÞcation is mined. To achieve this, ConÞg2Specre-
lies on three main components: (i) predictors, (ii) data-plane analysis, and
(iii) control-plane veriÞcation. In addition, ConÞg2Specmaintains two sets
of policies, cands which overapproximates the speciÞcation, and verified

which underapproximates it. We next explain these sets, the algorithm ßow
and the three components. We show the full algorithm of ConÞg2Specin Al-
gorithm 4.1.

56
u

n
d

e
rs

ta
n

d
in

g
th

e
n

e
tw

o
rk

Õs
c

o
n

fig
u

ra
tio

n

Network

ConÞguration

Failure Model

k = 1

ConÞg2Spec

Predictors

¤4.3

Data Plane Analysis
¤4.4

PickCE DPCompute

p1p2

InferPol

waypoint(3, 1, p2)

loadbalancing(4, p2)

reachability(1, p1)
...

Control Plane VeriÞcation

¤4.5, ¤4.6

TopoTrim

waypoint(5, 3, p1)

waypoint(3, 5, p2)

PickPolicies

reachability(1, p1)

reachability(2, p1)

reachability(3, p1)

CPVeriÞcation

!
"

cands verified

cands == verified?
Mined Network

SpeciÞcation

loadbalancing(4, p2)

reachability(1, p1)

reachability(1, p2)

...

reachability(4, p2)

reachability(5, p2)

Figure 4 .3: ConÞg2Specmines the speciÞcation from the network conÞguration and the failure model. It relies on three
components: predictors, data-plane analysis, and control-plane veriÞcation. It maintains two sets: cands , con-
sisting of the current candidate policies, and verified , consisting of the veriÞed policies. During the execution,
policies are removed from cands or added to verified . When cands equals verified , both equal the network
speciÞcation, and then verified is returned.

4.2 overview 57

Algorithm 4.1: ConÞg2Spec(conf, F)

Input : conf: The network conÞguration.
F : the failure model (i.e., Lup, Ldown, Lsymbolic, k).

Output : veriÞed: the set of all policies that hold for the given conÞguration
and failure model.

1 cands 1 allPolicies()
2 veriÞed, prevEnvs, lastFwds 1 " , " , "
3 TTP

veri f y, TRT
veri f y 1 initVeriÞcationTimes()

4 TTP
analysis, TRT

analysis1 0, 0

5 totalEnvs 1 $ k
j= 0 (|Lsymbolic|

j)

6 while cands)= veriÞeddo
7 DP-RT 1 TRT

analysisá(totalEnvs * | prevEnvs|)

8 CP-RT 1 TRT
veri f y á |cands\ veriÞed|

9 if TTP
analysis< TTP

veri f y or DP-RT < CP-RT then

10 env 1 PickCE(F , cands\ veriÞed, prevEnvs, lastFwds)
11 lastFwds, TRT

analysis1 DPCompute(env, conf)

12 pols = InferPol(lastFwds)

13 TTP
analysis1 (cands\ pols = ") ? % :

TRT
analysis

|cands\ pols|

14 cands 1 cands2 pols
15 prevEnvs 1 prevEnvs ({ env}
16 if |prevEnvs| = totalEnvsthen veriÞed 1 cands

17 else
18 pols 1 PickPolicies(cands, veriÞed)
19 cex, TRT

veri f y 1 CPVeriÞcation(pols, conf,F)

20 if cex= 3 then
21 veriÞed 1 veriÞed (pols

22 TTP
veri f y 1

TRT
veri f y

|pols|

23 else
24 cands 1 cands\ { p $ pols| cex violating p}

25 TTP
veri f y 1

TRT
veri f y

{ p$ pols| cex violating p}

26 return veriÞed

58 understanding the network Õs configuration

cands and verif ied ConÞg2Speckeeps two sets: (i) cands , containing
the current candidate policies, i.e., the policies that are known to hold or
have not been pruned yet, and (ii) verified , containing the policies that
are known to hold. cands initially contains all possible policies (blue area
in Figure 4.3), while verified is initially empty (green area in Figure 4.3).
We note that in practice, to avoid storing all policies in cands , only to prune
many of them upon the Þrst iteration of data-plane analysis, ConÞg2Spec
directly initializes cands to the set of policies that holds for some concrete
environment.

An invariant of the execution is that cands is a superset of the net-
work speciÞcation, i.e., it contains at least all the policies that hold, while
verified is a subset of it, i.e., it contains only policies that hold. Con-
Þg2Specterminates when these sets are equal Ð implying both equal the
network speciÞcation Ð and then returns verified . Precision is ensured as
ConÞg2Specdoes not miss any policy thanks to the invariant that verified

contains only true policies (no false positives), while cands cannot miss a
true policy (no false negatives).

flow At each iteration, ConÞg2Specchecks if cands equals verified . If
so, it terminates. Otherwise, it checks two predictors to decide which ap-
proach is the more promising one to pursue: data-plane analysis or control-
plane veriÞcation.

predictors (Section 4 .3) We design two predictors to heuristically
estimate which approach is likely to be more effective and dynamically
transition between them. The predictors consider the execution times and
the number of pruned and veriÞed policies. The Þrst predictor checks the
effectiveness of each approach in classifying policies by measuring the time
it needs to classify a single policy. The second predictor estimates the re-
maining time to mine the full speciÞcation.

data -plane analysis (Section 4 .4) In every iteration of data-plane
analysis, ConÞg2Specsamples a concrete environment, computes the poli-
cies that hold for it, and removes from cands any other policy. To sample
a concrete environment, it executes PickCE , which employs a novel policy-
aware sampler to Þnd a concrete environment likely to prune more policies.
Then, ConÞg2Speccomputes the data plane of that sample via DPCompute,
which relies on existing analysis tools (e.g., BatÞsh [26]). Next, it executes
InferPol to compute all policies which hold for this data plane, and up-
dates cands accordingly. Finally, ConÞg2Specchecks whether all data planes

4.3 config2spec Õs predictors 59

have been analyzed. If so, it sets verified to cands , as the entire failure
model has been covered and the full speciÞcation has been mined.

control -plane verif ication (Section 4 .5) In each iteration of
control-plane veriÞcation, ConÞg2SpecveriÞes a set of policies. For this,
ConÞg2SpecÞrst executesPickPolicies to pick the next set of policies to
verify. It then calls CPVerification , which relies on existing veriÞcation
tools (e.g., Minesweeper [16]). The veriÞer either determines that all poli-
cies hold or returns a counterexample. In the former case, ConÞg2Specadds
all the policies to verified , while in the latter case ConÞg2Specremoves the
ones violated by the counterexample from cands . Before the Þrst iteration
of control-plane veriÞcation, ConÞg2Specinvokes TopoTrim to reduce the
veriÞcation overhead.

topology -based trimming (Section 4 .6) TopoTrim analyzes the
topology and the failure model to trim (i.e., prune) policies which can-
not hold regardless of the conÞguration (e.g., due to a lack of connectiv-
ity). It relies on graph algorithms to prune reachability , waypoint , and
loadbalancing policies.

4.3 config2spec Õs predictors

In this section, we describe how ConÞg2Specdynamically decides whether
to run the data-plane analyzer or the control-plane veriÞer. This decision
relies on two predictors that capture the effectiveness of the approaches
and the expected time remaining. Accordingly, ConÞg2Specinfers which
approach is more likely to make better progress. The predictors are: (i) the
Time-per-policy (TP) predictor, favoring the approach more likely to classify
more policies in a single execution, and (ii) the Remaining-time (RT) predic-
tor, favoring the approach more likely to complete faster. If the predictors
disagree on the approach, ConÞg2Specruns the data-plane analyzer, we
explain the reason for this choice shortly.

high -level behavior The predictors dynamically identify the differ-
ent stages of the algorithm. In the beginning, sampling concrete environ-
ments is likely to provide the fastest progress, as at this stage the dense
policies have not been pruned yet. Therefore, the TP predictor prefers
data-plane analysis initially. After most of the dense policies have been
pruned, sampling environments may not signiÞcantly decrease the num-
ber of candidate policies anymore. At this point, the TP predictor starts
to prefer control-plane veriÞcation. Thus, the choice is then up to the RT

60 understanding the network Õs configuration

predictor. It determines whether ConÞg2Specswitches to control-plane veri-
Þcation. If running data-plane analysis for the remaining concrete environ-
ments is likely to be faster than running control-plane veriÞcation on the
remaining unclassiÞed policies, the RT predictor prefers data-plane anal-
ysis. Otherwise, it prefers control-plane veriÞcation. This choice depends
on the failure model: if it captures a small number of concrete environ-
ments, enumerating all of them can be faster than verifying the remaining
set of candidate policies. In our running example and the failure model
Lsymbolic= L and k = 1, this is the case. To conclude, the joint behavior of
the predictors is to prefer control-plane veriÞcation whenever (i) there is
a large number of concrete environments and (ii) most remaining policies
are true policies (i.e., part of the speciÞcation) or sparse violations.

computation The predictors rely on statistics of the previous runs.
The TP predictor is implemented by tracking two times: TTP

analysisand TTP
veri f y,

which record the average time to classify a single policy through analysis
or veriÞcation (respectively). For TTP

analysis, this time is computed by taking
the ratio of the execution time of the last run of the data-plane analysis and
the number of policies which were pruned as a result of this analysis. For
TTP

veri f y, this time is computed similarly by taking the ratio of the execution
time of the last run of the veriÞer and the number of policies which were
classiÞed by the veriÞer. The latter number is one of the following. If the
veriÞer proved all policies hold, it equals the number of policies. Other-
wise, if the veriÞer returned a counterexample, this number equals to the
number of policies which were discovered as violations (i.e., the counterex-
ample violated them). The TP predictor prefers the data-plane analyzer if
TTP

analysis< TTP
veri f y.

The RT predictor is implemented by tracking two, different times: TRT
analysis

and TRT
veri f y, which record the execution time of a single run of the analyzer

and veriÞer (respectively). The RT predictor prefers the data-plane ana-
lyzer if the remaining time of the analyzer, obtained by multiplying TRT

analysis
with the number of non-analyzed concrete environments is smaller than
the remaining time of the veriÞer, given by multiplying TRT

veri f ier with the
remaining number of unclassiÞed policies.

init ialization To initialize TTP
veri f y and TRT

veri f y, ConÞg2Specexecutes
the veriÞer on M policy sets (in our implementation, M = 10). It then
sets TRT

veri f y to the average execution time of the veriÞer, and TTP
veri f y to the

average ratio of execution time and policies veriÞed or pruned. The esti-

4.4 data -plane analysis 61

mates TTP
analysis, TRT

analysisare initially 0, to guide ConÞg2Specto begin by data-
plane analysis. This captures our premise that initially data-plane analysis
is likely to classify more policies (the dense violations, which are the vast
majority of the policies).

windows To smoothen the behavior of the predictors, the times are
averaged over the last N runs of the analyzer or veriÞer (in our implemen-
tation, we use N = 10).

4.4 data -plane analysis

In this section, we present the key ingredients of running the data-plane
analysis in ConÞg2Spec: the selection of the next concrete environment to
analyze (PickCE), the computation of the data plane for that environment
(DPCompute) and the inference of the policies from the data plane (InferPol).

4.4.1 Selection of Concrete Environments

At every iteration, one concrete environment is analyzed. The choice of this
environment has a great impact on the overall runtime of the system. Thus,
we design a sampling technique to pick the next concrete environment to
prune a large number of policies from the set of candidates (cands). We
call this technique policy-aware samplingas the next environment is picked
based on the policy graph, a concept reßecting the current set of candidate
policies, which we describe next.

policy graph The policy graphfor a given concrete environment is a
copy of the network topology, in which each link is augmented with the
number of policies that forward trafÞc along this link. We say, for example,
that a reachability policy between r and p forwards trafÞc along a link, if
that link is part of a path in the forwarding graph of p from r to p. We
deÞne it similarly for the other policies. The policy graph allows us to
identify the links on which large numbers of policies depend. Thus, we
can pick a concrete environment in which these links are down. If the
policies indeed hold only thanks to these links, they will be discovered as
violations when analyzing this concrete environment.

We next deÞne the policy graph. Given a network topology, a conÞgu-
ration, and a concrete environment, the policy graph extends the network
topology with a mapping of links to weights (integers). The weight of a link

62 understanding the network Õs configuration

1 2

3
4

5

(a) Previous environment.

p1
1 2

3
4

5

p2
1 2

3
4

5

(b) Previous forwarding graphs.

1 2

3
4

5

4

1 2 2
3

0 2

(c) Policy graph.

1 2

3
4

5

(d) Next environment.

Figure 4 .4: The policy graph is computed from the forwarding graphs of a pre-
viously analyzed concrete environment and guides us to an environ-
ment likely to prune more policies.

represents the number of unclassiÞed policies whose trafÞc is forwarded
along that link. The weight is computed from the forwarding graphsof the
concrete environment.

Example 4.2. Figure 4.4 illustrates the concept of the policy graph using our
running example (Figure4.1). Here, we are given an (already analyzed) con-
crete environment where all links are up, but the one between routers3 and 4

(Figure 4.4a). In this example, there are two destinations (p1 and p2) and hence
two forwarding graphs (Figure4.4b). For simplicityÕs sake, consider the follow-
ing unclassiÞed policies for destinationp2: reachability(i, p2) , wherei ranges
over all Þve routers, andloadbalancing(4, p2) , which holds since router4 has
three paths to router2 in the forwarding graph ofp2. In this setting, the policy
graph (Figure4.4c) maps, for example, the link between1 and 3 to 1 as only
a single policy (reachability(3, p2)) depends on this link. Similarly, the link
between2 and 5 gets assigned a weight of3 as three policies (reachability(4,

p2) , reachability(5, p2) and loadbalancing(4, p2)) use this link. The link
between1 and 2 is assigned a weight of4 because of the three reachability poli-
cies (reachability(1, p2) , reachability(3, p2) , reachability(4, p2)) and
loadbalancing(4, p2) . The link between3 and4 has a weight of0 as it is down
and therefore is not used by any policy.

4.4 data -plane analysis 63

policy -aware sampling Based on the idea of the policy graph, we
design a policy-aware sampler for PickCE . The policy-aware sampler picks
the next concrete environment to analyze based on the policy graph of the
previously analyzed concrete environment and the current set of unclassi-
Þed policies (cands \ verified). This is done by selecting the links to add to
Ldown based on a probability distribution, which is proportional to the linksÕ
weights in the policy graph. The linksÕ weights are computed by iterating
over all unclassiÞed policies (cands \ verified) and counting, for each link,
the number of policies that are forwarded along it. The probability distribu-
tion is needed to avoid getting stuck: a deterministic approach which adds
the heaviest links to Ldown can result in an oscillation between two con-
crete environments which already have been analyzed (we observed this
phenomenon in practice). Adding non-determinism mitigates this issue,
and in case it cannot, PickCE resorts to returning a random concrete envi-
ronment which has not yet been analyzed. In the beginning, ConÞg2Spec
analyzes the concrete environment in which all symbolic links are up.

Example 4.3. For our running example and the policy graph in Figure4.4c, it
assigns the link1-3 to the probability 1

14, 2-5 to 3
14, and1-2 to 4

14. Assuming the
usual failure model (Lsymbolic = L and k = 1), it then picks the next concrete
environment by choosing one link that is down based on the distribution. For
example, it picks the link1-2 (Figure4.4d).

4.4.2 Analysis of a Concrete Environment

We now explain DPCompute and InferPol , which together compute all poli-
cies that hold for a given concrete environment and conÞguration.

The DPCompute algorithm executes two steps. First, for each router in
the network, it computes the routerÕs forwarding state. The forwarding
state of a router is a list of destination preÞx and next hop pairs. A pair
(p, w) in the forwarding state of router r indicates that trafÞc reaching r

for destination p is sent to router w. Computing the forwarding state of the
routers is not trivial, however, there are solutions to efÞciently compute
them (e.g., BatÞsh [26]).

In the second step, DPCompute builds from the routersÕ forwarding states
the forwarding graphs. It builds one forwarding graph for each equiva-
lence class of destination preÞxes (i.e., preÞxes which have the same for-
warding graph). The forwarding graph of a preÞx p is a directed graph

64 understanding the network Õs configuration

in which we have a link from router r to w if, according to r Õs forwarding
state, trafÞc for p is sent to w.

From the forwarding graphs, InferPol computes the policies by leverag-
ing graph algorithms. For reachability and waypoint policies, it builds the
dominator treeof all forwarding graphs. A dominator tree is a tree rooted
at the destination of the forwarding graph. Its nodes are all routers that
have at least one path to the destination. A router a is a child of a router
b if (i) trafÞc from router a to the destination must pass through router b

and (ii) for any other router c such that trafÞc from a must pass through it,
trafÞc from b must also pass through it. InferPol infers a reachability(r,

p) policy for every node r in the dominator tree of p. It further infers
waypoint(r,w,p) for all routers r which are dominated by a waypoint w in
the dominator tree of p. For loadbalancing , it computes the shortest paths
in the network and infers loadbalancing(r,p) for routers r with multiple
paths of the same cost available to reach destination p. For isolation , it
infers isolation(r,p) for every router r and preÞx p for which it has not
inferred reachability(r,p) .

4.5 control -plane verif ication

In this section, we present the two ingredients of the control-plane veriÞca-
tion in ConÞg2Spec: the selection of the next policies to verify (PickPolicies)
and their veriÞcation (CPVerification).

cpverif ication We begin with CPVerification , which takes as input
a set of policies, the network conÞguration and the failure model. It checks
whether all policies hold for any concrete environment meeting the failure
model (for the given network conÞguration), or returns a counterexample.

Technically, the veriÞer symbolically encodes the conÞguration and the
failure model as logical constraints: ! net and ! f model. The set of policies
is encoded as a conjunction over formulas encoding the policies: ! pols =
'

pl$ pols ! pl . The veriÞer checks the satisÞability of ! net 4 ! f model4 Â ! pols. If
it is unsatisÞable, then all policies in polshold. If the formula is satisÞable,
then there is a counterexample, i.e., a concrete environment captured by
the failure model, which under the given conÞguration violates ! pols (i.e.,
at least one policy is violated). While the challenge of verifying network
policies is not trivial, there are effective solutions (e.g., Minesweeper [16]).

4.6 topology -based trimming 65

pickpolicies This procedure takes the set of candidate policies (cands)
and veriÞed policies (verified) and returns the next set of policies to verify
(from cands \ verified). Since verifying is computationally expensive, the
goal is to minimize the overall execution time of the veriÞer. By choosing
a set of policies which have a dependency, the overall execution time of
verifying them can be smaller than if they were veriÞed one by one. To-
wards this goal, PickPolicies returns a maximal set of policies with the
same destination preÞx p.

We pick p arbitrarily, as once ConÞg2Specchooses to run the veriÞer,
usually most policies are true policies.

Our grouping approach is always at least as good as verifying the poli-
cies one by one. The reason is that with each query to the veriÞer, at least
one policy is classiÞed. In the worst case, only one policy is classiÞed as
violation (if the veriÞer returned a counterexample which satisÞes all poli-
cies but one). In a better case, several policies are classiÞed as violation. In
either of these cases, the violated policies are removed from cands , while
the other policies in the set remain in cands (and will be veriÞed in a later
execution of CPVerfication). In the best case, all policies are classiÞed as
true policies. Namely, we can only gain from verifying multiple policies
in the same execution of the veriÞer. Further, our grouping is maximal Ð
grouping of policies with different preÞxes is not helpful, as each preÞx
has a different forwarding graph, and so the veriÞer does not gain from
grouping such policies.

4.6 topology -based trimming

In this section, we describe TopoTrim , a technique which reduces the load
on the control-plane veriÞcation by analyzing the failure model and the
network topology. TopoTrim classiÞes policies as violations if their minimal
connectivity requirements are not met under the given failure model.

TopoTrim is executed the Þrst time ConÞg2Specchooses to run the veriÞer.
It relies on the insight that some policies can be classiÞed as violations
directly from the network topology and failure model. For example, con-
sider the network in Figure 4.1 and the failure model with Lsymbolic = L
and k = 2 (i.e., up to two link failures). We can infer that reachability(3,

p1) cannot hold as 3 can become disconnected from the rest of the net-
work if both links connected to it fail. For the same reason, any waypoint

or loadbalancing policy where 3 is involved can be classiÞed as violation.

66 understanding the network Õs configuration

To prune such policies, TopoTrim computes the (k + 1)-edge-connected
components of the topology for a failure model with k permitted failures.
A (k + 1)-edge-connected component is a set of nodes which remain con-
nected even after removing any k edges. For example, for the network in
Figure 4.1 and the same failure model (where k = 2), the following routers
are in a 3-edge-connected component:{ 1, 2, 4} .

There are efÞcient algorithms to compute (k+ 1)-edge-connected compo-
nents, however they do not support links that must be up or down (Lup or
Ldown). To take these into account,TopoTrim Þrst removes from the topology
all links in Ldown, updates k to k * | Ldown|, and then, for each link in Lup, it
adds k additional links between the routers to simulate that these routers
are (k + 1)-edge-connected. For example, for Lup = { (1, 3)} , Ldown = "
and k = 2, it adds two more edges between 1 and 3, so they are considered
3-edge-connected.

Based on this, TopoTrim classiÞes the following policies as violations
(which are thus removed from cands). The policies reachability(r,p) and
loadbalancing(r,p) , for any router r and preÞx p such that (r , r p) is not in
a (k + 1)-edge-component, where r p is the router attached to p. The policy
waypoint(r,w,p) is classiÞed as violation for any routers r and w and a pre-
Þx p such that (i) (r , w) is not in a (k + 1)-edge-component or (ii) (w, r p) is
not in a (k + 1)-edge-component, where r p is the router attached to p.

4.7 experimental evaluation

In this section, we evaluate ConÞg2Specon multiple topologies to address
the following research questions:

RQ1 How does ConÞg2Specscale to realistic topologies? We show that even
for large networks with 158routers and 189links, it completes within
2.7 hours for OSPF conÞgurations and 13.7 hours for BGP conÞgura-
tions (Section 4.7.1).

RQ2 How does ConÞg2Speccompare to the baselines? We show it improves
the best one by up to a factor of 8.3 (Section 4.7.2).

RQ3 How do the domain-speciÞc techniques contribute to ConÞg2Spec?
We show that (i) the Policy-Aware sampler leads to smaller candi-
date sets by up to a factor of 2 compared to a random sampler, and
obtains them with fewer samples, and (ii) topology-based trimming

4.7 experimental evaluation 67

and policy grouping reduce the queries by up to a factor of 2 500
(Section 4.7.3).

RQ4 Can ConÞg2Specbe run on a real network conÞguration? We illustrate
this on the Internet 2 conÞguration (Section 4.7.4).

implementation ConÞg2Specis implemented in 5k lines of Python
and Java code.1 It computes the routersÕ forwarding states (Section4.4.2)
using BatÞsh [26], and veriÞes policies using Minesweeper [16]. We ex-
tended Minesweeper with the waypoint and loadbalancing policies. We
note that while our implementation supports only conÞgurations and fea-
tures supported by these two third-party tools, our approach is not limited
to speciÞc conÞguration types or features.

ConÞg2Spectakes as input the routersÕ conÞgurations and a failure model.
It outputs all policies that hold for the provided input. For large networks,
we assume the network operator provides a list of devices that act as way-
points (e.g., middleboxes). In our experiments, we simulate it by randomly
picking 20% of the routers to serve as waypoints.

experiment setup To study how ConÞg2Specscales as a function of
the topology size, we picked three topologies (small, medium, and large)
from the Topology Zoo collection [47]: BICS with 33 routers connected
by 48 links, Columbus with 70 routers and 85 links, and US Carrier with
158 routers and 189 links. We used NetComplete [23] to synthesize OSPF
and BGP conÞgurations using its path-ordering speciÞcations for 2, 4, 8
and 16 preÞxes. For each conÞguration type and topology, we generated 5
conÞguration sets.

For each set of router conÞgurations, ConÞg2Speccomputes all policies
which hold, for all four policy types in Table 4.1. We consider three failure
models, where k is 1, 2, or 3, and we ÞxLup = Ldown = " and Lsymbolic= L
(i.e., any link can be up or down). The reported results are averaged over
these runs and the two conÞguration types (i.e., OSPF and BGP). We ran
all experiments in virtual machines with 32 GB of RAM and 12 virtual
cores running at 2.3GHz.

4.7.1 Scalability ofConÞg2Spec

We begin by studying how ConÞg2Specscales to realistic topologies. To
this end, we ran experiments on all three topologies and three failure mod-

1 Code is available at https://github.com/nsg-ethz/conÞg 2spec.

68 understanding the network Õs configuration

Topology k ConÞg Overall DPA CPV

BICS

1
OSPF 38.8 s 100% 0%

BGP 68.3 s 100% 0%

2
OSPF 228.8 s 30% 70%

BGP 1 341.2 s 85% 15%

3
OSPF 117.4 s 27% 73%

BGP 319.7 s 14% 86%

Columbus

1
OSPF 398.0 s 100% 0%

BGP 457.2 s 100% 0%

2
OSPF 1 328.1 s 18% 82%

BGP 6 772.0 s 17% 83%

3
OSPF 907.0 s 27% 73%

BGP 2 074.1 s 18% 82%

US Carrier

1
OSPF 6 386.2 s 100% 0%

BGP 6 813.4 s 100% 0%

2
OSPF 10 528.4 s 15% 85%

BGP 49 151.0 s 6% 94%

3
OSPF 2 542.5 s 59% 41%

BGP 5 873.3 s 34% 66%

Table 4 .2: Execution time of ConÞg2Specas a function of the network topology,
number of failures and conÞguration type.

els, and measured the time ConÞg2Specspent on the data-plane analysis
part Ð including PickCE , DPCompute (which invoked BatÞsh), and InferPol

Ð and the time spent on the control-plane veriÞcation part Ð including
PickPolicies and CPVerification (which invoked Minesweeper). We ig-
nored the other parts as they completed in negligible times (e.g., TopoTrim

completed in Þve seconds for US Carrier and less than a second for BICS).

Table 4.2 shows the overall execution time (Overall) and how it is split
between data-plane analysis (DPA) and control-plane veriÞcation (CPV) as
a function of the topology, the number of failures (k), and the conÞguration
type (ConÞg). For example, for the US Carrier topology with k = 3 and

4.7 experimental evaluation 69

Topology k Candidates SpeciÞcation Percent

BICS

1 2 526.9 1 008.1 40%

2 2 504.4 304.0 12%

3 2 482.1 57.6 2%

Columbus

1 13 290.2 4 517.1 34%

2 13 150.4 350.4 3%

3 13 271.0 27.2 0.2%

US Carrier

1 93 416.2 17 908.3 18%

2 85 021.0 702.8 0.8%

3 98 837.6 6.8 0.01%

Table 4 .3: The initial number of candidate policies and the Þnal number of poli-
cies that are part of the speciÞcation which ConÞg2Specreturns. Per-
cent shows the fraction of the policies of all candidate policies.

OSPF conÞgurations,ConÞg2Speccompleted within 43minutes, where 59%
of that time was spent on data-plane analysis.

The results show that even for the US Carrier topology with its 158
routers and 189 links, ConÞg2Specmined the speciÞcation in a reasonable
time (within 2.7 hours, for OSPF, and13.7 hours, for BGP). The results also
demonstrate that the runtime mainly depends on the network size, sec-
ondly on the failure model, and lastly on the conÞguration type. This is ex-
pected: the larger the network, the larger the set of candidate policies and
the set of concrete environments (whose size also depends on the failure
model). In contrast to the effect of the network size on the execution times,
the permissiveness of the failure model shows a different trend: execution
times increase from k = 1 and k = 2, but drop for k = 3. This is thanks to
the topology-based trimming (Section 4.6), which becomes very signiÞcant
for k = 3 (or higher values of k). For the evaluated topologies, most router
pairs are not 4-edge-connected, thus many policies are pruned. We provide
more details on trimming in Section 4.7.3. The results show also that for
k = 1, ConÞg2Speconly performs data-plane analysis. This is because the
number of concrete environments is signiÞcantly smaller than the number
of candidate policies throughout the execution, leading the RT predictor
to favor data-plane analysis. Finally, the results show that for BGP conÞg-
urations, the execution time is higher than for OSPF conÞgurations. This

70 understanding the network Õs configuration

is mainly due to Minesweeper, for which we observe a Þve to ten times
increase in the veriÞcation time for BGP compared to OSPF.

Table 4.3 reports the number of candidate policies and the number of
policies in the speciÞcation, for each topology and failure model, aver-
aged across the different conÞguration sets and conÞguration types. The
reported number of candidate policies is the number of policies that hold
for the Þrst concrete environment (ConÞg2Specalways begins with data-
plane analysis). We consider this set as the initial set of candidates, rather
than all instantiations of the four policy types (Table 4.1), as the latter con-
tains many policies which no concrete environment satisÞes.

The results indicate that as the network size increases, the number of
candidate policies increases, while the speciÞcation size (i.e., the number
of policies that hold for all concrete environments) signiÞcantly drops. This
demonstrates the challenge of ConÞg2Specto search in the large space of
candidate policies for the small set of policies that hold.

4.7.2 Comparison to Baselines

We compare ConÞg2Specto the two baselines in Section 4.1: (i) a data-plane
analysis approach, which enumerates all data planes to infer the speciÞca-
tion, and (ii) a control-plane veriÞcation approach, which veriÞes the can-
didate policies one by one. As neither of the baselines scales to the larger
networks considered in the last section, in this experiment, we use three
grid topologies of sizes: 4 by 5, 5 by 5 and 6 by 5. We generated Þve sets of
OSPF conÞgurations per topology and used the failure model Lsymbolic= L
with k ranging from 1 to 3.

Figure 4.5 shows the execution time of each approach as a function of
the topology and failure model. For k = 2 and k = 3, ConÞg2Specout-
performs both baselines: the data-plane analysis by 10.2x on average and
up to 41.0x, and the control-plane veriÞcation by 3.8x on average and up
to 8.3x. For k = 1, data-plane analysis is faster than ConÞg2Specbecause
of ConÞg2SpecÕs initialization time (i.e., in the beginning, ConÞg2Specveri-
Þes a few policies when initializing the predictorsÕ times, see Section4.3).
Still, the overhead of ConÞg2Specis small (data-plane analysis was faster
on average by 24 seconds and by up to 37 seconds).

The results also show that both baselines have beneÞts. For less per-
missive failure models, data-plane analysis performs better than control-

4.7 experimental evaluation 71

1 2 3
0

5

10

15

20
43.3

4 by 5

Ti
m

e
[m

in
]

1 2 3
0

10

20

30

40
148.7

5 by 5

ConÞg2Spec DPAnalysis CPVeriÞcation

1 2 3
0

25

50

75

100
409.6

6 by 5

Figure 4 .5: ConÞg2Speccompared to the baselines of data-plane analysis and
control-plane veriÞcation on grid topologies and different failure
models. The bars of DPAnalysis and k = 3 are cut, and their maxi-
mum value is denoted next to them.

plane veriÞcation, whereas for permissive failure models it is the other way
around. This demonstrates the advantage of the dynamic combination of
ConÞg2Spec.

4.7.3 Domain-speciÞc Techniques

We next study how the domain-speciÞc techniques improve ConÞg2SpecÕs
performance. We study the following aspects: (i) how the Policy-Aware
sampler (Section 4.4.1) helps reducing the number of concrete environ-
ments ConÞg2Specanalyzes, and (ii) how topology-based trimming (Sec-
tion 4.6) and policy grouping (Section 4.5) decrease the number of queries
posed to the veriÞer.

Policy-aware Sampler

We compare the policy-aware sampler (called Policy-Aware) to a base-
line which randomly picks a new concrete environment (called Random).
We compare them by instantiating PickCE with each approach and run-
ning ConÞg2Specon the Topology Zoo topologies with the failure model
Lsymbolic= L and k = 3, and with Þve sets of OSPF conÞgurations and Þve
sets of BGP conÞgurations.

72 understanding the network Õs configuration

Policy-Aware Random

Topology Samples Candidates Samples Candidates

BICS 36.4 36.5% 42.1 39.5%

Columbus 71.0 16.6% 79.0 26.4%

US Carrier 113.8 9.6% 122.1 18.6%

Table 4 .4: Comparison of the number of samples and the remaining candidate
policies before ConÞg2Specswitched to the veriÞer when using a
Policy-Aware sampler and a random baseline.

Table 4.4 shows for each approach, the number of concrete environments
which were analyzed before ConÞg2Spectransitioned to the veriÞer, and it
shows the percentage of policies that remained in the candidate set left
to verify (i.e., the percentage of remaining policies out of the policies that
hold for the Þrst sample). For example, for BICS, Policy-Aware sampling
required on average 36.4 samples before ConÞg2Specswitched to veriÞca-
tion, and at this point the size of the candidate policy set was reduced to
36.5% of the initial policy set (i.e., the set of policies which hold for the
Þrst sample).

Generally, the smaller the set of remaining policies (i.e., the closer the
candidate set to the network speciÞcation is), the better. As a secondary
goal, the number of analyzed concrete environments should be relatively
small. The results indicate that Policy-Aware sampling always obtains a
better reduction in the size of the candidate set compared to Random sam-
pling. They also show that on average Policy-Aware sampling typically
required fewer samples than Random sampling. However, we note that
in 6 out of the 30 experiments, Random sampling switched to veriÞcation
before Policy-Aware sampling did. This is not because Random sampling
made better progress. In contrary, the TP predictor decided to switch, as
it observed that the concrete environments picked by Random sampling
were not effectively pruning policies anymore.

Table 4.5 shows. for each experiment, the relative size of the candidate
sets for both approaches when ConÞg2Specwith Policy-Aware sampling
transitioned to veriÞcation. For example, in one experiment using BICS,
Policy-Aware sampling transitioned to veriÞcation after 32 samples, and
at that point the number of candidate policies was 970, while for Random
sampling, after 32 samples, there were 1 124 candidate policies, making

4.7 experimental evaluation 73

Topology Candidates Ratio Additional Samples

BICS 89.7% 45.7

Columbus 60.5% 109.0

US Carrier 51.6% > 500.0

Table 4 .5: The ratio between the candidate sets of the two sampling approaches
when Policy-Aware sampling transitions to veriÞcation and the num-
ber of additional samples required for Random sampling to achieve
the same reduction in the candidate set.

Policy-Aware Random

Topology PickCE DPAnalysis PickCE DPAnalysis

BICS 22.1ms 1.4s 0.5ms 1.3s

Columbus 63.1ms 8.3s 0.7ms 7.7s

US Carrier 358.2ms 57.8s 1.4ms 51.6s

Table 4 .6: Comparison of the runtime with Policy-Aware sampling and Random
sampling.

the ratio 86.3%. In Table 4.5, Candidates Ratio shows the average over
the ten runs. We also checked how many additional samples Random
sampling required to reduce the candidate policies to (at most) the size
obtained with Policy-Aware sampling. For example, in that experiment
for BICS, Policy-Aware sampling required 32 samples to reduce the candi-
dates to 970policies, while Random sampling required 43. Hence, Random
sampling needed 11 additional samples. In Table 4.5, Additional Samples
shows the average of this number. The results indicate that Policy-Aware
sampling not only obtains a smaller candidate set, but reaches it signiÞ-
cantly faster.

Table 4.6 shows the execution times: PickCE shows the execution time of
the sampler, while DPAnalysis shows the overall execution time of a single
data-plane analysis (i.e., DPCompute and InferPol). The results show that
while Policy-Aware sampling takes (as expected) more time than Random
sampling, the overhead is negligible compared to the overall execution
time of the data-plane analysis.

74 understanding the network Õs configuration

Topology-based Trimming and Policy Grouping

We next evaluate the topology-based trimming and policy grouping in re-
ducing the number of queries to the veriÞer. We ran the experiments for the
three topologies and the failure model with k = 2 and k = 3 (for k = 1, Con-
Þg2Speconly performs data-plane analysis as explained in Section 4.7.1).
We measured how many queries to the veriÞer each technique saved. In
every experiment, we recorded the number of policies ConÞg2Spechad the
Þrst time it transitioned to the veriÞcation. This number, denoted B (for
baseline), provides the number of queries to the veriÞer if we did not use
either technique. We also recorded how many policies were pruned thanks
to topology-based trimming. We count each policy that has been pruned
as one saved query for the veriÞer, and denote the overall saved queries
by T (for trimming). Also, we recorded how many queries were posed to
the veriÞer (when employing policy grouping), and denote the number of
queries by G (for grouping).

Figure 4.6 shows the percentage of remaining queries after each opti-
mization: B* T

B % for trimming and G
B % for policy grouping. For example,

for BICS and k = 2, trimming pruned 51.1% of the policies. Policy group-
ing saved 41.5% and reduced the overall queries to the veriÞer to 9.6%.
Overall, the reduction was 90.3%. The results show that the combination
of trimming and policy grouping can reduce the number of queries to as
little as 0.04%. Trimming is especially powerful for the larger topologies
and for more permissive failure models (k = 3). The policy grouping also
signiÞcantly reduces the number of queries to the veriÞer. The best case
is for the largest network, where trimming reduced the number of queries
to 1.15% and then policy grouping reduced it to 0.04%, compared to the
baseline.

4.7.4 Running ConÞg2Specon Internet2

Finally, we demonstrate that ConÞg2Speccan handle real conÞgurations.
For this, we took a publicly available conÞguration of the Internet 2 network
from May 2015[67]. For BatÞsh to be able to parse this conÞguration, we
had to remove multiple lines from it. Mostly, these lines concerned logging
statements (e.g., system dump-on-panic;), left-overs from the anonymiza-
tion (e.g., Firewall Stanza Removed) and other (for our purposes) irrelevant
parts (e.g., bfd-liveness-detection no-adaptation;). For Minesweeper to

4.8 related work 75

2 3
0

10
20

30
40
50

BICS

Q
ue

rie
s

[%
]

2 3
0

5

10

15

20

Columbus

Trimming Grouping

2 3
0

1

2

3

4

US Carrier

Figure 4 .6: Reduction in the number of queries to the veriÞer thanks to topology-
based trimming and policy grouping.

be able to verify our queries, we had to remove parts of the BGP route-
maps (community-matches and empty preÞx-list matches). This does not
affect the output, as we only mine the speciÞcation for internal preÞxes,
since no external peers are connected. In total, we had more than 90k lines
of conÞguration. The topology consisted of 10 routers and 18 links. For a
failure model with Lsymbolic= L and k from 1 to 3, ConÞg2Specrequired 32,
314, and 1 805seconds to infer the speciÞcation. It consisted of3 962, 3 405,
and 3 339policies. The high number of policies, even for k = 3, stems from
the fact that the Þve routers on the East Coast form a clique.

4.8 related work

In this section, we survey related work across three dimensions: speciÞca-
tion mining (in general and in the context of computer networks), network
speciÞcation languages, and counterexample-guided inductive synthesis.

specification mining Akin to software speciÞcations, formal spec-
iÞcations are hard to write (as hard as writing the program in the Þrst
place [68]), debug, and modify [69, 70].

Our work is inspired by works on speciÞcation mining [71], where high-
level speciÞcations are automatically inferred from low-level execution of
programs. One example is Daikon [72], which dynamically detects pro-
gram invariants (e.g., x)= 0) by running the program and observing the
values the program computes.

76 understanding the network Õs configuration

Several previous works [73, 74, 75] have looked into mining a networkÕs
speciÞcation by observing the content of the data plane. These works are
mostly limited to reachability policies, and unlike ConÞg2Spec, they either
approximate the speciÞcation or do not consider the impact of failures
on the speciÞcation. Concretely, they only produce the networkÕs policies
which hold when all links and routers are up. In contrast, ConÞg2Specis
able to mine precise network speciÞcations for a given failure model.

Xie et al. [73] show how to compute the reachability speciÞcation for
a given failure model based on the networkÕs conÞguration. They com-
pute the reachability upper bound Ð all policies that hold for at least one
concrete environment Ð and lower bound Ð all policies that hold for all con-
crete environments. To scale, only an approximation of the bounds is com-
puted. In contrast, ConÞg2Speccomputes the exact lower bound of reacha-
bility, as well as other policies, and thereby obtains a precise speciÞcation.
Benson et al. [74] show how to mine reachability policy units, a high-level
abstraction of pair-wise reachability, from network conÞgurations for a sin-
gle concrete environment. Like ConÞg2Spec, it relies on data-plane analy-
sis. However, unlike ConÞg2Spec, failure models are not supported. Other
works [75, 76] assess the management complexity of the network and its
overall health, i.e., the frequency of performance and availability problems,
by analyzing its conÞgurations.

Wang et al. [77] introduce a comparative synthesis framework to learn
high-level network design objectives (e.g., minimize convergence time).
The operators are repeatedly presented with different scenarios, which
they have to rank. Then, based on the preferences, the synthesizer is able
to learn the operatorsÕ network-design ÒobjectiveÓ function.

Anime [66] is a tool that infers a networkÕs intent (speciÞcation) directly
from its forwarding state. Anime leverages hierarchies among the features
in the network (e.g., endpoints) to summarize the observed paths and pro-
vide intents of Þxed size. This summarization allows it to include unob-
served behavior in its intents. Thus, while Anime learns a speciÞcation
that Þts within a given size, ConÞg2Speclearns the exact speciÞcation that
the conÞguration enforces.

network specifications Many works introduce different network
speciÞcation languages, varying in their expressiveness. For example, some
allow to capture trafÞc classes at the path-level [15, 20, 78], while others use
a higher-level abstraction describing trafÞc classes and high-level policies
such as reachability and waypointing [21]. Despite the differences, Con-

4.9 conclusion 77

Þg2SpecÕs output can be used by other tools, such as NetKAT [78], whose
language can accommodate the policies we consider.

counterexample -guided inductive synthesis (cegis) CEGIS
is a technique in program synthesis in which examples guide the search
for the target program [79, 80]. Technically, from an initial set of examples
(which may be empty), the synthesizer proposes a candidate program con-
sistent with the examples and introduces it to a validator. The validator
either conÞrms the candidate is the target program or returns a counterex-
ample. The counterexample is added to the set of examples, guiding the
synthesizer to look for a different candidate. ConÞg2Speccan be seen as a
synthesizer looking for (all) policies that hold for a given network conÞg-
uration and failure model. Like CEGIS, it is guided by examples (the data
planes) and a validator (the veriÞer). However, unlike CEGIS, ConÞg2Spec
looks for all valid policies (and not a single one). This poses a greater
challenge, both in terms of the search space and the burden on the val-
idator. To cope, ConÞg2Speccleverly samples examples to prune the search
space (without the help of the validator), trims and groups policies to save
queries to the validator and dynamically switches between sampling and
verifying to expedite the search.

4.9 conclusion

In this chapter, we introduced ConÞg2Spec, a system to help network oper-
ators better understand their conÞgurations and, at the same time, speed
up the adoption of network validation and conÞguration synthesis tools.
Based on the networkÕs conÞguration and a failure model, ConÞg2Spec
automatically mines the corresponding network speciÞcation. The key in-
sight is to dynamically switch between data-plane analysis and control-
plane veriÞcation. To scale further, we integrated three domain-speciÞc
techniques: (i) policy-aware sampling to pick concrete environments which
are more promising for policy pruning, (ii) policy grouping to group queries
and thereby reduce veriÞcation overhead, and (iii) topology-based trim-
ming to prune policies, which are infeasible for the given topology and fail-
ure model. We evaluated ConÞg2Specon different topologies and against
two baselines. The results show that ConÞg2Specscales to large networks,
unlike the baselines, and that our domain-speciÞc techniques signiÞcantly
contribute to the scalability.

5
U N D E R S TA N D I N G T H E C A PA B I L I T I E S O F N E T W O R K
VA L I D AT O R S

In this chapter, we introduce Metha, a system which helps network opera-
tors understand the capabilities of their network validation tools and helps
their developers make them more accurate.

Network validation tools can be of great help to network operators as
long as they faithfully capture the networkÕs behavior. As with any com-
plex software, though, these tools can (and often do) have bugs that com-
promise their accuracy. This is not surprising: building an accurate and
faithful network analysis tool is extremely difÞcult. Among others, one
not only has to precisely capture all the different protocolsÕ behaviors but
also all of the quirks of their speciÞc implementations. Unfortunately, every
vendor, every OS, and every device can exhibit slightly different behaviors
under certain conditions. Hence, it is not a question of whether these tools
faithfully model the networkÕs behavior, but rather a question of when
network operators can rely on the analyses of these tools and when they
cannot. Metha helps network operators understand exactly that: it system-
atically tests network validation tools and automatically Þnds inaccuracies
in their underlying network models. Methais useful for users and develop-
ers of these tools alike. For every bug it Þnds, MethaidentiÞes the involved
conÞguration statements and provides a minimal conÞguration example
that can be used to reproduce the bug. Metha relies on black-box differen-
tial testing: it generates input conÞgurations and compares the output of
the tool under test with the output produced by the actual router software.

The main challenge behind Metha lies in efÞciently and thoroughly cov-
ering the gigantic search space of all possible conÞgurations. On the one
hand, there are hundreds of conÞguration statements, each of which can
take many possible parameters. And yet, as our analysis reveals, most of
the bugs only manifest themselves when speciÞc conÞguration statements
and values are present. On the other hand, not all conÞgurations are use-
ful for testing. One needs to make sure to only generate syntactically- and
semantically-valid conÞgurations that allow for meaningful control-plane
computations and fully exercise the network model. Metha addresses this

79

80 understanding the capabil it ies of network validators

challenge by Þrst reducing the search space through restricting the param-
eters to their boundary values and then phrasing the search as a combi-
natorial testing problem. To ensure syntactically- and semantically-valid
conÞgurations, Metharelies on a hierarchical grammar-based approach.

Next, we summarize our main contributions in this chapter:

¥ We present a testing system capable of Þnding bugs in the network
models of state-of-the-art network validation tools (Section 5.2);

¥ we present a precise localization procedure relying on delta debug-
ging to isolate bugs and the conÞguration statements causing them
(Section 5.5);

¥ and we provide an end-to-end implementation of Metha and show
that it Þnds real (and unknown) bugs in all the tested tools (Sec-
tion 5.7).

This chapter is organized as follows. Section 5.1 demonstrates the con-
sequences of inaccuracies in a network model on the example of a state-
of-the-art network validator. Section 5.2 provides an overview of the entire
system. Section5.3 deÞnes the space of all possible network conÞgurations.
Section5.4 presentsMethaÕs approach to thoroughly cover the search space.
Section 5.5 shows iterative delta debugging to isolate the bug-inducing
conÞguration statements. Section5.6 highlights the key points of MethaÕs
implementation. Section 5.7 evaluates Metha on state-of-the-art network
validation tools. Section 5.8 discussesMethaÕs testbed and the scope of the
tests. Section 5.9 reviews related work in the area. Finally, Section 5.10
concludes the chapter.

5.1 motivation

We now illustrate how subtle bugs in the network model of network val-
idators can lead operators to deploy erroneous conÞguration changes. We
start with two case studies on common conÞguration features known for
easily causing forwarding anomalies: route aggregation and redistribution.
In these situations, validating the change with a network validation tool
is of utmost importance, provided the analysis is correct. Finally, we end
with a collection of Cisco IOS conÞguration statements whose semantics
were not correctly captured by BatÞsh [81]. All the bugs we report in this
section were discovered by Metha.

5.1 motivation 81

Backbone

Z 1
Z 10

Z 51

conÞg of Z 1Õs border router
...
ip access-list ISOLATE _Z51

deny ip any 200.51.0.0/24
permit ip any any

...

conÞg of Z 10Õs border router
...
router bgp 10

aggregate-address 128.0.0.0/1
...

Figure 5 .1: Zone 51 has to be isolated from all the other zones. This is achieved
through access-lists at the border routers with the exception of zone
10 where it was forgotten.

5.1.1 Example1: Excess Null Route

Consider the network in Figure 5.1. It consists of a backbone with multiple
zones attached to it. The backbone and the zones are interconnected using
BGP. Each zone receives a default-route from the backbone. Zone 51 hosts
critical infrastructure in the preÞx 200.51.0.0/24 , which should not be ac-
cessible from any other zone. To enforce this, the routers connecting the
zones to the backbone have an access-list (ACL) in place to Þlter that trafÞc.
However, in zone 10, this ACL was forgotten and, instead, there happens to
be a left-over statement from a previous conÞguration: Òaggregate-address

128.0.0.0 128.0.0.0 Ó. This statement directs the router to advertise the
speciÞed aggregate route if any more-speciÞc BGP routes in that range
exist in the routing table.

property violation Due to the lack of an ACL on the border router,
the requirement that mandates to keep zone 51 isolated is violated: trafÞc
from zone 10 can reach zone 51.

analyzer mishap When used on the network above, BatÞsh, a recent
network validation tool, will falsely assert that zone 51 is fully isolated.
The problem is due to the semantics of the left-over aggregate-address

statement. BatÞsh wrongly activates the aggregate because of a non-BGP
route in the routing table and installs the corresponding null route. Be-
cause of this null route, BatÞsh wrongly assumes that all trafÞc in zone 10
falling within the aggregate range will be dropped. In practice, the routers
only install a null route if a BGP route within the aggregate is present,
which is not the case here.

82 understanding the capabil it ies of network validators

R1

R2

conÞg of Z10Õs border router
...
ip route 200.0.0.0/20 Null
...
router ospf 1

redistribute static
...

Figure 5 .2: All routers should be able to reach the Internet. The static route at
R2 creates a blackhole and violates that.

5.1.2 Example2: Incomplete Redistribution

Consider the small company network depicted in Figure 5.2. It consists of
a single OSPF area. R1 acts as Internet gateway and announces a default-
route internally. A static route on R 2 drops all the trafÞc for 200.0.0.0/20

by directing it to the null interface. This is intended. What is not intended,
however, is the redistribute static command at R2.

property violation The following reachability property must always
hold: all routers, with the exception of R 2, are able to reach the entire In-
ternet. However, this property is violated since R 2 redistributes the static
route in the network and, in turn, creates a blackhole for 200.0.0.0/20 .

analyzer mishap When run on this network, BatÞsh will falsely at-
test that all routers, with the exception of R 2 can reach the entire Inter-
net. The problem is the redistribution command. By default, Cisco routers
only redistribute classful networks [82] and only by specifying the subnets

keyword, they also redistribute any subnets of them. Less-speciÞc net-
works, however, are always redistributed regardless of the subnets key-
word (e.g., 200.0.0.0/20 is less speciÞc than the corresponding class C
network 200.0.0.0/24). BatÞshÕs network model does not incorporate that
as it only redistributes classful networks and not less-speciÞc networks.

5.1.3 Selection of Bugs

In addition to the two bugs illustrated in the previous examples, we found
several other conÞguration statements that trigger bugs. We present a se-
lection of them in Table 5.1 alongside a short description of the observed
behavior and possible consequences. All of the presented bugs concern
Cisco IOS conÞguration statements. In our tests, we also used Juniper con-
Þgurations and found that, in many cases, the same bugs occur. Hence,
some of these bugs are not due to vendor-speciÞc behaviors but due to
general inaccuracies of the network model.

5.1
m

o
tiva

tio
n

83

Feature Description Possible Consequence

max-metric router-lsa The model sets maximum metric not only for
point-to-point links, but also for stub links.
This should only be done when the keyword
include-stub is used.

A router might appear to be
free of trafÞc and safe to re-
boot, even though it is not.

default-information originate The OSPF routing process should only generate a
default-route if the route table has a default-route
from another protocol. The model, however, also
announces a default-route if there is one in the
routing table of different OSPF type, i.e., E1 type.

Additional default-routes
might appear in the routing
tables.

distance XX The model does not consider any changes to the
administrative distance.

The forwarding state could
be completely wrong.

area X range A.B.C.D/Y When summarizing routes between OSPF areas,
the model does not insert a null route for the sum-
mary to prevent routing loops.

A routing loop could be
falsely detected.

set community no-export When redistributing a static route into BGP and
setting the no-export community, the model still
advertises the route to its eBGP neighbors.

Reachability properties
could be falsely asserted.

neighbor A.B.C.D maximum-prefix X Even when a BGP neighbor advertises more pre-
Þxes than the speciÞed threshold, the model does
not drop the peering to the neighbor.

Reachability properties
could be falsely asserted.

Table 5 .1: A selection of Cisco IOS conÞguration features that are incorrectly modeled by BatÞsh [81] as found by Metha.

84 understanding the capabil it ies of network validators

5.2 overview

In this section, we Þrst present the key insights enabling Metha to efÞ-
ciently uncover bugs in network analyzers. Then, we provide a high-level
overview of Metha.

5.2.1 Key Insights

The main challenge in testing network analyzers is that bugs may occur
rarely and only for very speciÞc conÞgurations, which we address with a
combination of Þve insights:

generating valid inputs using a grammar -based approach
When testing network analyzers, it is crucial to use syntactically- and
semantically-valid conÞgurations, meaning the conÞgurations need to be
parseable and constraints have to be met such that actual computation
takes place in the network. Our key insight is to use a hierarchical grammar-
based approach. Approaching it in multiple steps allows to Þrst build a ba-
sic structure by resolving the intra- and inter-device constraints, ensuring
semantical validity. Then, this basic structure is completed using grammar-
based conÞguration generation ensuring, syntactical validity.

reducing the search space through boundary values The
search space of all possible conÞgurations is prohibitively large. Even a
single parameter, such as an OSPF cost, for example, already has 216 pos-
sible values to test. By focusing the testing on the boundary values (the
minimum, maximum, and a ÒnormalÓ value in between), we are able to
reduce the search space signiÞcantly.

exploring the space with combinatorial testing Network de-
vices support a wide variety of conÞguration features that all need to be
tested not just by themselves but also their interactions. Hence, we use
combinatorial testing to design a test suite that systematically covers all
pairwise interactions of conÞguration features.

comparing the tested tool Õs output to ground truth De-
tecting crash bugs is straightforward as the tool will just fail or report an
error. Silent bugs, on the other hand, can only be detected by comparing
the output to a ground truth, which is hard to come by. We address this by
leveraging a testbed running real router images as an oracle.

5.2 overview 85

isolating bugs with delta debugging Finally, once one identiÞes
a network conÞguration that triggers a bug, one needs to identify the exact
conÞguration statements causing it, to provide any useful insights to the
toolÕs developer. Therefore, we use iterative delta debugging to obtain a
minimal conÞguration example, which reproduces the bug and can even
be used as a future test case.

5.2.2 Metha

Metha operates in two phases as shown in Figure 5.3: First, it aims to Þnd
network conÞgurations exhibiting discrepancies between the tool under
test and the oracle. To that end, the test coordination determines all the
tests that should be run. Second, it identiÞes the conÞguration statements
responsible for the observed discrepancies through fault localization.

Input and Output

Metha takes two inputs: (i) a physical topology, i.e., an undirected graph;
and (ii) a set of conÞguration features to be tested, such as, route-maps, and
route-summarization. For every discovered bug, Metha creates a report,
which consists of the identiÞed discrepancy between the routing tables of
the tool and those of the oracle, the conÞguration statements causing it
and a conÞguration set to reproduce it.

Phase I: Test Coordination (Sections5.3 and5.4)

The conÞguration features and the topology provided as input deÞne the
search space ofMethaÕs testing efforts which consists of all possible conÞg-
urations that can be built using these features.

This search space of network conÞgurations is prohibitively large. There-
fore, MethaÞrst reduces the values of all parameters to their boundary val-
ues, which means it only uses the two extreme values (i.e., the minimum
and the maximum) and one ÒnormalÓ value. Even with this reduction, it is
difÞcult to systematically cover the entire search space. Hence, Metha cre-
ates a test suite relying on combinatorial testing, which allows it to cover
all pairs of feature and parameter combinations while requiring a minimal
number of tests. Each test in the test suite consists of a set of conÞguration
statements that should be active.

86 understanding the capabil it ies of network validators

Phase I: Testbed (Section5.6)

For every single test, Metha generates the device conÞgurations based on
the statements that are provided by the test suite. Then, it runs these con-
Þgurations in the tool and the oracle. Once both have converged, Metha
analyzes the routing tables of the two tools and reports any discrepancies.

Phase II: Fault Localization (Section5.5)

A discovered discrepancy can be caused by multiple bugs in the network
analyzer. Therefore, Methaapplies delta debugging to identify every single
bug and the conÞguration statements causing it. It does so by iteratively
testing subsets of the active conÞguration statements until the entire dis-
crepancy is resolved.

5.2
o

v
e

rv
ie

w
87

Input

Topology

ConÞguration Features

redistribute static

max-metric router-lsa

distance

...

aggregate-address

Phase I

Test Coordination

Combinatorial Testing

Test Suite

Test #1

...

Testbed

ConÞguration
Generation

Device
ConÞgurations

Test Runner

Tool Oracle

Phase II

Fault Localization

Delta Debugging

Detected Discrepancy

"
"

!

Report

Violating Feature

redistribute static

Minimal ConÞguration

Figure 5 .3: Metha generates a test suite based on the test topology and supplied conÞguration features. The testbed runs
one test after another and compares the computed routing tables of the tool under test to those of an oracle. It
then analyzes every discrepancy to localize all the bugs and creates a report for each one of them.

88 understanding the capabil it ies of network validators

BGPProcess" router bgp Integer16 [Options]

Options " Option | Options Option

Option " Redistribute| Neighbor| Network | á á á

Redistribute " redistribute Source

Source " direct | static | á á á

Neighbor " neighbor Address Property

Property " RemoteAS| RouteMap| á á á

RemoteAS " remote-as Integer16

RouteMap " route-map String Direction

Direction " in | out

Figure 5 .4: Partial BNF grammar for device conÞgurations.

5.3 search space

In this section, we deÞne the search space of all possible conÞgurations.
We also show how we reduce the search space by restricting the parameter
values used in conÞguration statements to their boundaryvalues.

5.3.1 Network ConÞgurations

The search space is given by all possible conÞgurations that one can deploy
at the networkÕs routers.

configurations A device conÞguration deÞnes the enabled features
along with their parameter values. Formally, the set of all possible conÞg-
urations is deÞned by a context-free grammar whose terminals consist of
feature names and parameter values. To illustrate this, in Figure 5.4 we
show a subset of the production rules in Backus-Naur form (BNF). An
example conÞguration derived from this grammar is:

1 router bgp 100

2 redistribute static

3 neighbor 1.1.1.2 remote-as 50

4 neighbor 1.1.1.2 route-map map10 out

5.3 search space 89

This conÞguration deÞnes the AS identiÞer, the session with a BGP neigh-
bor, the properties of this session, and route redistribution associated with
the BGP routing process 100 . Here, router bgp , redistribute , neighbor

A.B.C.D remote-as , and neighbor A.B.C.D route-map are conÞguration state-
ments, while the values to their right deÞne their parameter values. We
distinguish three types of parameter values:

keywords are used in conÞguration statements parameterized by a value
drawn from a Þxed set of options. For example, the conÞguration
statement neighbor A.B.C.D route-map is parameterized by a direc-
tion, which is set to either in or out . For some statements, one can
also omit the parameter value altogether, which we model with the
designated value ! . The statement redistribute connected , for ex-
ample, is parametrized by a value drawn from the set { ! ,subnets } ,
and so both the statementsredistribute connected and redistribute

connected subnets are valid conÞguration statements.

integers are used to deÞne 16- and 32-bit numbers. For example, the
conÞguration statement router bgp is parameterized by a 16-bit inte-
ger deÞning the AS number.

strings are used in conÞguration statements parameterized by custom
names. For example, neighbor A.B.C.D route-map is parameterized
by the route-mapÕs name.

semantic constraints Besides conforming to the syntax shown in
Figure 5.4, conÞgurations must also comply with semantic constraints. For
example, consider the following conÞgurations:

1 interface FastEthernet0/0

2 ip address 1.1.1.1 255.255.255.0

3 !

4 router bgp 100

5 neighbor 1.1.1.2 remote-as 50

6 neighbor 1.1.1.2 route-map map10 out

7 !

8 route-map map10 permit 10

9 match ip address prefixList

1 interface FastEthernet0/0

2 ip address 1.1.1.2 255.255.255.0

3 !

4 router bgp 50

5 neighbor 1.1.1.1 remote-as 100

90 understanding the capabil it ies of network validators

The top conÞguration (C1) deÞnes a BGP process with AS number 100

(Line 4), and declares that announcements sent to its BGP neighbor with IP
1.1.1.2 (Line 5) are processed using route-map map10 (Line 6). The bottom
conÞguration (C2) deÞnes a BGP process with AS number 50 (Line4), and
declares1.1.1.1 in AS 100 as a neighbor (Line 5). These two conÞgurations
illustrate two kinds of semantic constraints:

intra -device constraints , which stipulate conditions that must hold
on any (individual) conÞguration. For example, the route-map map10

used at Line 6 must be deÞned within the conÞguration C1. This
constraint holds as map10 is deÞned at Line 8.

inter -device constraints , which stipulate conditions across multi-
ple conÞgurations. For example, the AS number assigned to neighbor
1.1.1.2 in C1 at Line 5 must match the AS number declared in C2 at
Line 4. This constraint holds as at both lines the AS number is 50.

Finally, we note that we specify the semantic constraints separately from
the syntactic production rules as some are not context-free and thus cannot
be encoded in the grammar.

search space The search space used byMetha is deÞned by the set of
conÞgurations that one can deploy at the networkÕs routers. As the set of
conÞgurations derived from the grammar is, in general, inÞnite, we restrict
all recursive rules so that its language consists of Þnitely many conÞgura-
tions. For instance, for the grammar given in Figure 5.4, we Þx the set of
BGP options (such as route redistribution) that can appear when deÞning
a BGP routing process. Finally, the search space ofMetha is deÞned asCR,
where C is the set of all conÞgurations and R is the set of routers. Note
that each element of CR deÞnes anetwork-wide conÞguration, assigning a
conÞguration from C to each router in R.

5.3.2 Boundary Values

The search space is extremely large due to the enormous number of con-
Þgurations and the exponentially many combinations in which they can
be deployed at the routers. To cope with the large set of conÞgurations,
we apply a boundary valuesreduction by restricting the parameters to a
small set of representative values. The intuition behind this reduction is
that most parameter values lead to the same behavior such that testing
them individually provides no additional insights.

5.4 effective search space exploration 91

The reduction to boundary values ensures that various behaviors of a fea-
ture are exercised. For example, the Cisco BGP featureneighbor X.X.X.X

maximum-prefix n terminates the session when the neighbor announces
more than n preÞxes. When randomly choosing n, the feature will most
likely not come into action. However, with the boundary values, both the
minimum and maximum value are tested, ensuring that the feature is at
least once active and once not.

For integer parameters, the values are restricted to: the maximum value,
the minimum value, and a non-boundary value. For example, for 16-bit
integers, which contain all integers in the range [0, 65535], our boundary
value reduction selects three values: 0, 65535, and a valuex such that 0 <
x < 65535. Similarly, we reduce the values assigned to string parameters
by predeÞning a Þxed set of strings.

5.4 effective search space exploration

Metha must cover a wide variety of different network conÞgurations to
thoroughly test the tool, including many combinations of device features
and parameter values. The key challenge is that it is impossible to iterate
through every single combination of features and their respective param-
eter values, even after considering our reduction to boundary values. To
address this, Metha relies on combinatorial testing[83, 84], which is able to
uncover all bugs involving a small number of interacting features. In the
following, we Þrst provide the relevant background on combinatorial test-
ing, and then we show how Methauses it to effectively test network tools.

5.4.1 Combinatorial Testing

Combinatorial testing is a black-box test generation technique which is
effective at uncovering interaction bugs, i.e., bugs that occur because of mul-
tiple interacting features and their parameter values. The main assumption
behind combinatorial testing is that interaction bugs are revealed by con-
sidering a small number of features and parameter values. In this case, one
can generate a test suite, calledcombinatorialtest suite, that uncovers all of
these bugs.

To use combinatorial testing, one needs to deÞne a speciÞcation of the
systemÕs parameters and their values:

92 understanding the capabil it ies of network validators

DeÞnition 5.1 (Combinatorial speciÞcation) . A combinatorial speciÞcationS
is a tuple (P, V, &), where P is a set of parameters, V is a set of values, and
& : P " 2V deÞnes the domain of values&(x) ' V for any parameter x$ P.

For example, the combinatorial speciÞcation for a program that accepts
three boolean ßags as input has parametersP = { a, b, c} , values V = { 0, 1} ,
and domains &(a) = &(b) = &(c) = { 0, 1} . A test caseis a total function
tc: P " V mapping parameters to values from their respective domains,
i.e., with P(x) $ &(x) for any x. An example test case for our program is
tc = { a 5" 0,b 5" 0,c 5" 1} . In contrast to test cases, at-wise combination
maps only some parameters to values:

DeÞnition 5.2 (t-wise combination) . Given a combinatorial speciÞcationS =
(P, V, &), a t-wise combination forS is a function c: Q " V such that Q' P
with |Q| = t and c(x) $ &(x) for any x $ P.

An example pairwise combination (i.e., t = 2) for our example is c =
{ a 5" 0,b 5" 1} . We write CS

t to denote the set of all t-wise combinations
for a given combinatorial speciÞcation S. Note that a test case can cover
multiple t-wise combinations:

combt(tc) = { c ' tc | |c| = t}

For instance, our example test case above covers the following three pair-
wise combinations: { a 5" 0,b 5" 0} , { a 5" 0,c 5" 1} , and { b 5" 0,c 5" 1} .

DeÞnition 5.3 (t-wise combinatorial coverage). Given a combinatorial speci-
ÞcationS, we deÞne the t-wise combinatorial coverage of a test suite T as:

covt (T) =
|
(

tc$ T combt(tc)|
|CS

t |
.

A test suite T is called a t-combinatorial test suiteif covt (T) = 1. If the
assumption that interaction faults are caused by up to t-wise interactions
holds, then T Þnds all bugs. The goal of combinatorial testing is to generate
the smallest t-wise combinatorial test suite.

5.4.2 Combinatorial Testing of ConÞgurations

In Metha, we apply pairwise combinatorial testing to the generation of net-
work conÞgurations. Concretely, we phrase the search space deÞned in

5.5 fault localization 93

Section 5.3 as a combinatorial speciÞcation S = (P, V, &) as follows. First,
each statement that can appear in the conÞguration, such as route redis-
tribution or route-map as deÞned in Section 5.3, deÞnes a conÞguration
feature. We set F to be the set of all conÞguration features. The set of pa-
rameters P is then given by R & F, where R is the set of routers. Namely,
the parameters consist of all conÞguration features one can deÞne in the
device conÞgurations.

Second, the domains of values for each conÞguration feature contain the
boundary values that can be used in the given conÞguration statement,
along with the designated value 3 , which indicates whether the conÞgura-
tion feature is enabled or not. That is, 3 results in omitting the conÞgura-
tion statement altogether. We note that for conÞguration statements with
multiple parameters, we take the product as the domain of possible values.
The Cisco OSPF conÞguration featuredefault-information-originate , for
example, has three optional parameters: always , metric combined with an
integer value, and metric-type combined with 1 or 2. After reduction to
boundary values this leads to the following three parameters:

A = { ! , always }

B = { ! , metric 1,metric 100,metric 1677214}

C = { ! , metric-type 1,metric-type 2}

The domain of values for this conÞguration feature is then given by {3} (
(A & B & C).

Finally, Methauses the above combinatorial speciÞcation to derive a test
suite of conÞgurations that covers all pairwise combinations.

5.5 fault localization

A discovered discrepancy between the network model and the oracle is
only of limited use as the developer still needs to isolate its cause. Often
understanding the bug is the most time-consuming part of the debugging
process, and Þxing it can be done relatively quickly. To help with this,
Metha pinpoints the conÞguration features that cause a discrepancy and
Þnds a minimal conÞguration, i.e., a conÞguration with as few conÞgu-
ration features enabled as possible. To do this, Metha uses iterative delta
debugging, an extended version of classic delta debugging, which lifts the
assumption that a single fault causes failures. This extension is important
as network conÞgurations are large and complex, and discrepancies are

94 understanding the capabil it ies of network validators

often caused by multiple faults. In the following, we Þrst introduce classic
delta debugging and then present its iterative extension.

5.5.1 Delta Debugging

Delta debugging [85] is a well-established fault localization technique, which
Þnds minimal failure-inducing inputs from failing test cases. Below, we
present delta debugging in our context, and then deÞne its assumptions
and algorithmic steps.

terminology As deÞned in Section 5.4, a test casetc assigns conÞgu-
ration features F to either parameter values or 3 , where 3 indicates that a
given feature is disabled (i.e., it is omitted from the conÞguration). Given
a test casetc and features Q ' F, we write tc|Q for the test case obtained
by disabling all features in tc that are not contained in Q:

tc|Q(f) =

)
tc(f) if f $ Q

3 otherwise

Given a failing test case tc, the goal of delta debugging is to Þnd the mini-
mal set Q of features such that tc|Q fails. We denote the complement of Q
by øQ = F \ Q.

assumptions Delta debugging relies on three assumptions: (i) test cases
are monotone, i.e., if tc|Q fails, then for any superset Q0 6 Q of features tcQ0

also fails; (ii) test cases areunambiguous, meaning that for a failing test case
tc there is a unique minimal set Q that causes the failure; and (iii) every
subset of features isconsistent, meaning that for any Q ' F, tc|Q terminates
with a deÞnite fail or success result.

algorithm Given a test casetc, delta debugging Þnds a minimal set
of features Q that causes a failure. Initially, Q contains all enabled features
in tc, i.e., Q = { f $ F | tc(f))= 3} . Then it applies the following steps:

1. Split: Split Q into n partitions Q1, . . . ,Qn, where n is the current gran-
ularity. Test tc|Q1

, . . . ,tc|Qn for failures. If some tc|Qi
fails, then use Qi

as the new current set of features and continue with step 1.

2. Complement:If none of the new tests tc|Q1
, . . . ,tc|Qn fail, check the

complement of each partition by testing tc| øQ1
, . . . ,tc| øQn

. If some tc| øQi

fails, then use øQi as the new current set of features and continue with
step 1.

5.5 fault localization 95

Algorithm 5.1: Iterative Delta Debugging
Input : Test casetc, initially enabled features Q in tc.
Output : A set of minimal feature subsets S = { Q1, . . . ,Qn} .

1 S = "
2 Queue= queue()

3 put(Queue, Q)

4 while Âempty(Queue) do
5 H = head(Queue)
6 if run (tc|H) = failure then
7 Q0 = minimize(H)
8 for f in Q0 do
9 put(Queue, H \ { f })

10 S = S ({ Q0}

11 return S

3. Increase Granularity:If no smaller set of features is found and n < |Q|,
then set n to min (2n, |Q|) and continue with step 1.

4. Terminate:If it is not possible to split the current set of features into a
smaller set, terminate and return Q.

5.5.2 Iterative Delta Debugging

In our setting, test cases are often ambiguous as a discrepancy often arises
due to multiple faults in the network model. To this end, we apply the
delta debugging algorithm iteratively and Þnd all minimal sets of features
that cause a given discrepancy. Intuitively, starting with a test case tc with
enabled features Q, we Þrst apply the delta debugging steps (given in
Section5.5.1) to Þnd a minimal conÞguration feature set Q0such that tc|Q0

triggers the discrepancy. Then, we generate new test casestc1, . . . ,tc|Q0|,
by disabling a feature from Q in each new test casetci , and iteratively
apply delta debugging to these. We apply this process repeatedly until no
further failing test cases are found. Once Metha identiÞes all minimal sets
of conÞguration features that trigger a given bug, Methacreates a minimal
conÞguration for the developer to reproduce it.

We present our iterative delta debugging algorithm in Algorithm 5.1.
We start from a set of initially enabled features Q in tc and return all min-
imal subsets of Q that trigger a discrepancy. We keep all sets of features

96 understanding the capabil it ies of network validators

to be checked in a queue and continue until the queue is empty (Line 2
- Line 4). For every set H of features in the queue, we check if the test
case tc|H triggers a discrepancy (Line 5, Line 6). If this is the case, then
we Þnd a minimal subset Q ' H of features that triggers the discrep-
ancy using classic delta debugging, and create new subsets that need to
be checked (Line 8, Line 9). For example, if we Þnd a minimal set of fea-
tures Q = { a, b} that triggers the discrepancy, then we check if there are
any other minimal sets of features that do not contain a or b (and are thus
non-comparable to Q). We note that we generate two new sets of features
H \ { a} and H \ { b} instead of a single one H \ { a, b} because there may
be overlapping discrepancies. For example, even though we know that b
can trigger a discrepancy with a, b might also trigger a discrepancy with
another feature c. Finally, the algorithm keeps all found minimal feature
subsets and returns them (Line 10, Line 11). We conclude by stating the
correctness of our algorithm:

Theorem 5.1. For any test case tc with enabled features Q, Algorithm5.1 Þnds
all minimal fault-inducing subsets of features.

Proof. Assume, for the sake of contradiction, that there is a minimal subset
Q0 ' Q such that tc|Q0 fails which is not returned in S. We check at least
one superset of Q0 for a failure since we will always check the initial set
Q. Assume C 6 Q0 is a smallest superset of Q0 which is checked. By the
assumption of monotonicity, tc|C must fail, therefore we will minimize C.
If C = Q0, then we must minimize to Q0 since Q0 is assumed to be min-
imal, violating the assumption that Q0 is not returned by the algorithm.
If Q0 , C, then C will either minimize to Q0 (again violating the origi-
nal assumption that Q0 is not returned by the algorithm) or to a different
minimal subset P. In this case, we generate additional sets to be tested.
However, both Q0 and P are minimal subsets of C, therefore Q0), P and
P), Q0. SinceQ0)= P, we know that there must be an element e$ P which
is not in Q0, i.e., such that Q0 ' C \ { e} . The set C \ { e} is both strictly
smaller than C and will be added to the sets to check by the algorithm in
Line 9 and therefore violates our assumption that C was a smallest super-
set of Q0 which is checked.

runtime The running time of Algorithm 5.1 is O(|Q|!). The worst-case
behavior is when the size of the set H of features is reduced by 1 element in
each step, introducing |H * 1| new features sets to the setS. To improve the
running time, we cache (not shown in Algorithm 5.1) feature sets that have

5.6 system 97

been added to the queue. This strictly reduces the algorithmÕs running
time and yields a worst-case running time complexity of O(2|Q|). We note
that the running time in practice is reasonable as the reduction of the set H
by the delta debugging minimization step (Line 7) is signiÞcant (down to
2 * 3 elements in practice).

l imitations As with classic delta debugging, there may be a fault in
the interaction between a set of parameters, say a, b, and c, as well as a
different fault in the interaction between a subset of these parameters, say
a and b. We cannot distinguish these two faults and will only identify the
latter fault. However, once the identiÞed fault is Þxed, our algorithm will
then identify the fault in the interaction among a, b, and c as well, assuming
it is still present in the network validation tool.

5.6 system

We have fully implemented Metha in 7k lines of Python code.1 This covers
the entire testing pipeline from the input, the list of conÞguration features
to be tested and the topology, to the outputs, the bug reports. In the fol-
lowing, we highlight key points of MethaÕs implementation, which consists
of a vendor- and tool-agnostic core that uses runners to interface with the
different network analysis and veriÞcation tools.

semantic constraints To run the tests, Metha uses a logical topol-
ogy, which consists of the physical topology extended with logical group-
ings. These groupings map the routers to BGP ASes and their interfaces
to OSPF areas. This trivially ensures that the base conÞguration meets all
the necessary semantic constraints (cf. Section5.3.1). In a next step, Metha
starts to randomly assign IP subnets to links and IP addresses to the router
interfaces on these links. SpeciÞcally, every router is assigned a router ID,
which is also assigned to the loopback interface of that router. Finally,
Metha generates additional resources that are needed to test speciÞc con-
Þguration features. For example, Metha adds several preÞx-lists and static
routes which can then be used in the test generation, for example, for a
match statement of a route-map and route redistribution, respectively. All
these additional resources are generated based on the predeÞned logical
topology. Hence, a preÞx-list, for example, will only consist of preÞxes that
are actually deÞned in the network, such that a route-map statement using
that list for a match will also be reachable.

1 Available at https://github.com/nsg-ethz/Metha

https://github.com/nsg-ethz/Metha

98 understanding the capabil it ies of network validators

testing coordination OnceMethalaid the groundwork, it has to de-
Þne a test strategy based on the speciÞed conÞguration features. At the mo-
ment, Metha supports conÞguration features pertaining to four categories:
static routes, OSPF, BGP and route-maps. As part of that, the system sup-
ports additional constructs such as preÞx-lists and community-lists. These
are currently not tested on their own, but added when needed to test the
main features, such as route-maps. Metha then uses all features and the
logical topology to prepare the parameters to come up with the test suite.
To do that, Metha passes all the parameters and their possible values to a
state-of-the-art combinatorial testing tool: PICT [86]. PICT devises a test
suite that consists of a set of tests ensuring complete coverage of all pair-
wise feature interactions.

configuration generation A single test from the PICT test suite
is an abstract network conÞguration. It simply speciÞes which feature and
corresponding value needs to be activated and where (i.e., on which router
and, if applicable, at which interface). Metha then translates the abstract
network conÞguration to concrete device conÞgurations using a grammar-
based approach to ensure lexical and syntactical validity.

Metha implements a large portion of both Cisco IOS and Juniper gram-
mars for which we relied on the respective ofÞcial command references.
This means Methacan generate both Cisco IOS and Juniper conÞgurations
for the tests. Methaeven supports to test hybrid networks in which devices
of both vendors are used at the same time.

testbed Metha runs the generated conÞgurations in parallel on both
the tool under test and the oracle. After both of them converged, it re-
trieves the routing tables and compares them. Metha is able to test any
tool that takes the device conÞgurations as inputs and provides direct ac-
cess to the computed routing tables out-of-the-box. Otherwise, Methauses
tool-speciÞc runners to process the inputs such that they meet the toolÕs
requirements and map the output back to MethaÕs format.Metha comes
with runners for three well-known network analysis and veriÞcation tools:
BatÞsh [81], NV [87] and C-BGP [32]. For NV, for example, MethaÞrst has
to compile the simulation program from the network conÞgurations. As
a source of ground truth, Metha uses a virtualized network running real
device images of both Cisco and Juniper routers. It connects to these de-
vices over Telnet and retrieves the routing tables (e.g., show ip route for
Cisco devices). To ensure full convergence,Metha retrieves the routing ta-
bles every 10 seconds and proceeds once the tables have not changed for
ten consecutive checks. With this setup, Methaallows to freely choose any

5.7 evaluation 99

oracle (e.g., hardware testbed) as long as it exposes the computed routing
tables.

output Finally, Metha localizes all bugs within a discovered discrep-
ancy by relying on delta debugging. For every single bug, it generates a
report highlighting the observed difference in the routing tables of the tool
under test and the oracle, such as a mismatch in a routeÕs metric or a miss-
ing route. This helps the developer understand the expected behavior. In
addition, it identiÞes the conÞguration statements required to trigger the
bug and comes up with a minimal network conÞguration to reproduce
the bug. This allows Metha to provide actionable feedback to the develop-
ers of the tool, helping them to faster locate and understand the bug. The
minimal conÞguration example can also be used as an extra test case for
traditional system testing.

5.7 evaluation

In this section, we evaluate Metha to address the following research ques-
tions:

RQ1 How does MethaÕs semantical conÞguration generation, the search
space reduction using boundary values and the test suite from com-
binatorial testing contribute to MethaÕs effectiveness? We show that
Metha Þnds 20 bugs and achieves a higher combinatorial coverage
than the random baseline, which only discovers 3 bugs with the same
number of tests (Section 5.7.1).

RQ2 How many test cases does Metha need to localize all bugs in a sin-
gle discrepancy between the tool under test and the oracle? Metha
requires on average 14.1 test cases to isolate all the bugs causing a
discrepancy (Section 5.7.2).

RQ3 Is Metha practical? We ran Metha on three different state-of-the-art
network analysis and veriÞcation tools and found a total of 62 bugs,
59 of them have been conÞrmed by the respective developers (Sec-
tion 5.7.3).

100 understanding the capabil it ies of network validators

5.7.1 Comparison to Random Baseline

We begin our evaluation by studying how the three components of Metha
contribute to its effectiveness. To this end, we compare a random baseline
to three versions of Metha: step-by-step, we enable each component starting
with semantic Metha, then we add the reduction to boundary values, and
Þnally, we use full Methausing combinatorial testing to deÞne a test suite.
The results show that the semantical conÞguration generation is the most
fundamental part of Metha. Reducing the parameters to boundary values
and applying combinatorial testing help to Þnd additional bugs as both
manage to increase the combinatorial coverage.

In the following, we introduce the four approaches:

random baseline The random baseline relies on random syntactic
test generation, which means that it uses a traditional grammar-based
fuzzing approach. Thanks to the grammar, the conÞgurations generated
by the baseline are lexically- and syntactically-valid, but they are not neces-
sarily semantically-valid: the baseline generates device conÞgurations that
are parseable and look realistic. However, the conÞgurations might not al-
ways be practical: for example, referenced route-maps and preÞx-lists do
not always exist, and IP addresses on interfaces might not match those of
their neighbors. Inter- and intra-device dependencies are not factored in.

semantic metha The initial Metha approach implements random se-
mantic test generation. Similar to the random baseline, it uses a grammar-
based fuzzing approach with the only difference that it ensures semantical
validity within the conÞguration: while, for example, interface costs are
completely random, other values are more constrained based on inter- and
intra-device dependencies. This approach ensures, for example, that only
deÞned route-maps are referenced, and that BGP sessions are conÞgured
with matching parameters.

bounded metha The bounded approach adds the reduction to bound-
ary values as introduced in Section 5.3.2 to semantic Metha. This means
instead of assigning completely random numeric values, the approach re-
duces the allowed values to three options: the minimum, the maximum,
and a ÒnormalÓ value, randomly chosen between the two extremes.

full metha Finally, we run the full testing system. We add combinato-
rial testing as introduced in Section 5.4 to deÞne a test suite that maximizes
combinatorial coverage on top of the semantic conÞguration generation
and the boundary values reduction.

5.7 evaluation 101

Approach # Discovered Bugs

Random Baseline 3

Semantic Metha 16

Bounded Metha 17

Full Metha 20

Table 5 .2: Every component of Methaallows it to Þnd more bugs with the same
number of test runs.

experiment setup We ran all four approaches for the same number
of tests and used them to test BatÞsh [81]. Whenever one of them detected
a discrepancy between BatÞsh and the oracle, we applied the full fault
localization procedure as described in Section 5.5 to detect the underlying
bugs and the features causing it. Thanks to that, we are able to detect
duplicates and count only the unique bugs that each approach discovered.

For all the tests, we used the same simple topology consisting of four
routers connected in a star topology and tested conÞguration features be-
longing to the following four categories: static routes, BGP, OSPF, and
route-maps. For the entire experiment, we used Cisco IOS conÞgurations.
For the given conÞguration features, combinatorial testing generated a test
suite consisting of 1 794tests. While the full Metha approach followed the
test suite, the other approaches randomly chose the active conÞguration
statements for every single test.

results Table 5.2 shows the number of unique bugs that every ap-
proach found within the 1 794test runs. The full Methaapproach detected
20 unique bugs, while the random baseline only found 3 bugs. The seman-
tic conÞguration generation is the most fundamental component of Metha.
It comes as no surprise as without semantical validity, many of the conÞg-
urations do not allow for any meaningful control-plane computations and
will not fully exercise the network model of the tool under test.

Boundary values and combinatorial testing allow Þnding 1 and 3 addi-
tional bugs within the 1 794test runs, respectively. This is because both ap-
proaches achieve higher combinatorial coverage and therefore test a wider
variety of features. These results show that the boundary values reduc-
tion strikes a good balance between testing different parameter values,
while keeping the search space tractable. It is important to note that the
detected bugs are inclusive, meaning that full Metha detected all 17 bugs

102 understanding the capabil it ies of network validators

0 500 1 000 1 500 1 794
0

50

100

Number of Tests

C
om

bi
na

to
ria

lC
ov

er
ag

e
[%

]
Full Metha
Bounded Metha
Semantic Metha
Random Baseline

Figure 5 .5: The achieved combinatorial coverage increases with every single
component of Metha. Full Metha achieves complete combinatorial
coverage.

that bounded Metha detected and 3 additional bugs. There is one excep-
tion: the baseline found a bug in the parser, which the other approaches
did not Þnd.

The random baseline is strong at discovering parser bugs since that is
where grammar-based fuzzing excels. Two out of its three discovered bugs
are parser bugs. In both cases, the problem was an, according to the speciÞ-
cation, unsigned 32-bit integer being parsed as a signed integer. For exam-
ple, ip ospf 100 area 3933914791 could not be parsed. Methadid not catch
this bug as it uses Þxed area numbers as part of the logical topology. By
adding the area numbers to the set of conÞguration features being tested,
Methaalso Þnds this bug.

Figure 5.5 shows the combinatorial coverage achieved by the four ap-
proaches, i.e., it shows the pairwise feature combinations covered during
testing. We focus on feature instead of code coverage for two reasons:
First, one can easily achieve high code coverage with random, semantically-
invalid conÞgurations. Second, code coverage is speciÞc to the tool under
test and makes it difÞcult to compare. To measure the combinatorial cover-
age of the random baseline and semantic Metha, we partitioned the input
space in the same manner as we did for bounded Metha, i.e., into min-
imum, maximum, and middle values. Any conÞguration which did not
speciÞcally use the minimum or maximum value for a parameter was then
considered as a middle conÞguration. Metha achieves full combinatorial
coverage by design as it is guaranteed by combinatorial testing. These re-
sults underline the importance of semantically-valid conÞgurations. While

5.7 evaluation 103

both the random baseline, which relies on syntactically-valid conÞgura-
tions, and semantic Metha achieve a similar combinatorial coverage, se-
mantic Metha Þnds many more bugs as its conÞguration actually ensures
control-plane computations.

performance Running a single test case took an average of two min-
utes. We run both the tool under test as well as the virtualized testbed in
parallel and found that most of the time is spent waiting on the testbed to
converge. The generation of a combinatorial test suite with PICT for the
baseline network with 4 routers took an average of 6 minutes. Over the
entire test suite, this time is negligible. Running the entire setup took us
several days. The runtime depends highly on the number of discrepancies
and the number of bugs causing them.

5.7.2 Fault Localization

Whenever Metha detects a discrepancy between the routing tables of the
tool under test and those of the oracle, it goes into fault localization to
isolate all independent bugs. Fault localization relies on delta debugging
(cf. Section 5.5) which creates additional test cases to identify the con-
Þguration statements causing the bugs. In the following, we evaluate its
overhead, i.e., the number of additional test cases Methahad to create.

experiment setup For this experiment, we ran Methausing the same
topology as before and tested the full set of conÞguration features. When-
ever Metha detected a discrepancy, we recorded the number of additional
test cases required to Þnd all independent bugs and the number of discov-
ered bugs.

results On average, Metha used 14.1 additional test cases to locate all
bugs within a test case. The number of additional test cases ranged from
as low as 7, to localize a single bug, up to as high as 58, to localize 5 in-
dependent bugs. The number of additional test cases mostly depends on
the number of independent bugs within a single detected discrepancy. The
number of conÞguration statements that actually cause the bug plays a mi-
nor role. Also, we have observed that the detected bugs are all caused by a
few conÞguration statements (one or two), even though multiple conÞgura-
tion statements were active during the tests. This conÞrms the observation
that bugs are often caused by the interaction of few features [83, 88] and
shows that combinatorial testing is a useful technique in this setting.

104 understanding the capabil it ies of network validators

Bugs Type

discovered conÞrmed crash silent

BatÞsh [81] 29 29 5 24

NV [87] 30 30 5 25

C-BGP [32] 3 ? 0 3

Table 5 .3: Bugs discovered by Metha for BatÞsh, NV and C-BGP and their type.

5.7.3 Real Bugs

In addition, we showcase our end-to-end implementation of Methaby test-
ing three different network analysis and veriÞcation tools: BatÞsh [81],
NV [87], and C-BGP [32]. We show that Metha Þnds real bugs and report
them in Table 5.3.

experiment setup We ran Metha for several days on all three tools
and with several different setups. BatÞsh is the most complete and ad-
vanced tool as it can handle conÞgurations of many different vendors and
supports a wide variety of conÞguration features. NV itself is an interme-
diate language for control-plane veriÞcation that allows to build models of
any routing protocols and their conÞgurations. It provides simulation and
veriÞcation abilities. We tested the simulation only, the discovered bugs,
however, most likely also exist in the veriÞcation part as both rely on the
same network model. For BatÞsh and NV, we used both Cisco IOS and
Juniper conÞgurations. C-BGP has its own conÞguration language.

results As shown in Table 5.3, Metha found a total of 62 bugs. The
developers of both BatÞsh and NV conÞrmed the discovered bugs to be
real bugs. To better understand the nature of the bugs, we classiÞed them
by their type (i.e., whether they lead to a crash or go unnoticed) and by the
conÞguration feature category itself (e.g., OSPF). Only a few of the bugs
produce a clear error. This is most likely also because these are noticed
more often and reported. The large majority of the bugs are silent semantic
bugs which are extremely difÞcult to notice. These are the sneakiest bugs
and can lead to false analyses and answers by the veriÞer.

As shown in Table 5.4, the bugs include all the conÞguration features
discussed in Section5.1 and affect the analysis of commonly used features,

5.8 discussion 105

Feature Category

OSPF BGP route-Þlter other

BatÞsh [81] 10 10 9 0

NV [87] 13 9 7 1

C-BGP [32] 1 1 1 0

Table 5 .4: ClassiÞcation of the discovered bugs by the affected feature category.

such as route redistribution and aggregation, and named communities.
The bugs are distributed quite evenly among all tested parts of the net-
work model. We did not Þnd one speciÞc protocol or conÞguration feature
that is especially error-prone.

5.8 discussion

In this section, we discuss topology requirements and the beneÞts of a
virtualized testbed, and we explain the scope of the MethaÕs test suite.

what about the testbed ? Metha detects bugs by looking for dis-
crepancies between the tool under test and an oracle. For the oracle,Metha
uses a testbed running real router Þrmwares. The testbed just needs to be
large enough to fully exercise all conÞguration features. Normally, a small
testbed of few routers sufÞces and also helps speed up the testing. In this
chapter, we rely on a virtualized testbed. To use a physical testbed instead,
one simply has to change the SSH/Telnet conÞgurations to connect to the
physical devices.

A virtualized testbed comes with several advantages. It provides more
ßexibility in terms of the settings one can test and the time needed to setup.
For example, there is no re-wiring needed to test different topologies. In
addition, it is very simple to test the same topology with a different device
category or with devices from another vendor: one simply has to exchange
the router image.

what about more targeted tests ? MethaÕs test suite can be ad-
justed to the usersÕ requirements by restricting the set of conÞguration
features, adjusting the number of values per feature, and changing the
number of interacting features. The tests required to cover the search space

106 understanding the capabil it ies of network validators

mainly depend on the number of values per feature and the number of si-
multaneous feature interactions, while the set of features is secondary. By
default Metha tests three values per feature and considers pairwise inter-
actions. This choice strikes a good balance between the number of tests
required and thorough testing, as our results conÞrm: Metha found all
bugs that the random approaches discovered with fewer tests, despite us-
ing ÒonlyÓ the boundary values; and all discovered bugs are caused by one
or two interacting conÞguration features, despite considering interactions
of more than just two features.

Methadoes not replace traditional unit and system testing, but provides
an additional way to Þnd latent bugs anywhere in the system. The advan-
tage of Methais that it requires minimal developer involvement and can be
run alongside traditional tests without any additional effort. If desired one
can run extensive tests by considering more elaborate feature interactions
and more than three values per feature. Often with fuzz testing, one just
lets the testing system run indeÞnitely and collect bug reports.

5.9 related work

In this section, we Þrst discuss current network analysis and veriÞcation
tools. Then, we survey related work on testing static analyzers and veriÞers,
the various testing initiatives in the Þeld of networking, delta debugging,
and fuzz testing.

network analyzers & verif iers Our work aims to help network
operators better understand the capabilities of network analysis and ver-
iÞcation tools and facilitates the development of such tools through thor-
ough testing. Over the years, we have seen a rise in tools that simulate
networks [32], analyze networks [26, 27, 30, 36], and verify properties of
networks and their conÞgurations [16, 34, 40, 41]. All of these tools have in
common that they rely on a network model. Any bug or inaccuracy that
exists within that network model undermines the soundness of the toolsÕ
results and analyses.

In contrast, CrystalNet [35] is a cloud-scale, high-Þdelity network emu-
lator running real network device Þrmwares instead of relying on a net-
work model. Hence, it accurately resembles the real network (e.g., vendor-
speciÞc behaviors and bugs in device Þrmwares are captured).

5.9 related work 107

testing analyzers and verif iers The problem of ensuring the cor-
rectness of analysis and veriÞcation tools is not speciÞc to networks. In
the Þeld of static analysis, several works exist that pursue the same goal.
Bugariu et al. [89] apply a unit testing approach, meaning they do not test
the entire system but components thereof which simpliÞes the test gener-
ation. Since Metha treats the tool under test as a black box, it cannot test
certain components separately. Cuoq et al. [90] randomly generate input
programs. This technique is mostly effective at testing the robustness of the
analyzers. Similar to Metha, Andreasen et al. [91] apply delta debugging to
Þnd small input programs that help developers understand the bug faster.

testing in networking Prior work on testing in networking has
mainly focused on testing the network and its forwarding state [92] and
SDN controllers [93, 94, 95].

Closest to Metha is Hoyan [96], a large-scale conÞguration veriÞer, in
which the results of the veriÞer (i.e., network model) are continuously com-
pared to the actual network for inaccuracies. It does so during operation
and only covers cases that have actually occurred in the network. Metha, in
contrast, proactively detects the bugs before deployment. This helps opera-
tors gain trust in their tools as they can assess the toolsÕ capabilities before
using them in production.

delta debugging In automated testing tools, delta debugging is a
well-established technique [85, 97] that allows to automatically reduce a
failing test case to the relevant circumstances (e.g., lines of code or input pa-
rameters). Over the years, researchers came up with several extensions to
the general delta debugging algorithm, such as a hierarchical approach [98]
that takes the structure of the inputs into account. It Þrst explores the more
important inputs allowing to prune larger parts of the input space and
hence, requiring fewer test cases.

Traditional delta debugging Þnds one bug at a time even if the test case
is ambiguous and exhibits multiple independent bugs. The developer then
Þxes one bug and reruns delta debugging to Þnd the next. Metha auto-
matically detects the causes of all independent bugs without developer
involvement.

fuzz testing Fuzz testing [99, 100] is an umbrella term for various
testing techniques relying on ÒrandomizedÓ input generation. Methauses a
form of grammar-based fuzzing. Due to the complex dependencies within
network-wide conÞgurations, MethaÞrst builds a basic conÞguration struc-

108 understanding the capabil it ies of network validators

ture to ensure semantical validity. Then, it uses fuzzing to test different
feature combinations restricted to that structure.

5.10 conclusion

In this chapter, we presented Metha, a system that helps network operators
understand when they can rely on the analyses of their network valida-
tion tools and when they cannot. At the same time, Metha helps the de-
velopers of these tools build more accurate network models by providing
them with actionable reports about all discovered inaccuracies, including
minimal conÞguration examples to reproduce them. Methadoes so by gen-
erating a wide variety of network conÞgurations according to a test suite
deÞned through combinatorial testing. We implemented Metha and evalu-
ated it on three state-of-the-art tools. In all tools, Metha discovered a total
of 62 bugs, 59 of them have been conÞrmed by the developers.

6
C O N C L U S I O N A N D O U T L O O K

In this dissertation, we developed three systems to assist network operators
in understanding and reasoning about their networks. In particular, we
focused on three aspects of network understanding: (i) understanding a
networkÕs momentary forwarding behavior; (ii) understanding a networkÕs
conÞguration and the speciÞcation it enforces; and (iii) understanding the
capabilities and the accuracy of network validation tools.

In Chapter 3, we introduced Net2Text, a system that helps network op-
erators understand their networkÕs behavior by explaining the network-
wide forwarding state. Based on the operatorsÕ natural language queries,
Net2Text extracts the relevant information from the forwarding state and
the trafÞc statistics, and produces succinct summaries. We demonstrated
that even for large networks with hundreds of routers and full routing
tables, Net2Text generates high-quality summaries in a few seconds only.

Net2Text allows network operators to focus on running a safe and reli-
able network by freeing them from the time-consuming tasks of gathering
low-level network data and extracting the relevant high-level insights.

In Chapter 4, we presented ConÞg2Spec, a system that assists network
operators in understanding their networkÕs conÞguration by automatically
mining the speciÞcation it enforces. That speciÞcation is made up of all
policies that hold under the failure model provided by the operator (e.g.,
up to k failures) and only those. ConÞg2SpecÕs approach relies on a novel
combination of data-plane analysis and control-plane veriÞcation. While
data-plane analysis allows to prune the set of candidate policies quickly,
control-plane veriÞcation is able to validate the remaining candidates ef-
Þciently. We showed in an extensive evaluation that ConÞg2Specscales to
realistic networks with more than one hundred routers.

ConÞg2Specallows network operators to understand better the policies
their conÞguration enforces. Using the mined speciÞcation, operators can
detect misconÞgurations by identifying discrepancies between the speciÞ-
cation and their intention. In addition, the mined speciÞcation can serve as
input for conÞguration veriÞcation and synthesis tools.

109

110 conclusion and outlook

In Chapter 5, we introduced Metha, a system that automatically tests net-
work validation tools to assess their capabilities and identiÞes subtle bugs
and inaccuracies in their underlying network models. Metharelies on black-
box differential testing and uses a variant of delta-debugging to identify
the conÞguration features that cause the inaccuracies. We demonstrated
MethaÕs effectiveness by Þnding62 bugs across three popular network val-
idation tools, of which 59 have been conÞrmed by the toolsÕ developers.

Methahelps network operators understand the strengths and weaknesses
of their network validation tools. This allows operators to use their tools
with more conÞdence. In addition, Metha is also useful for the develop-
ers as they can directly integrate Metha in their development life cycle to
automatically identify implementation bugs.

6.1 open problems

We see open problems and opportunities for future work in a number of
areas of network understanding.

6.1.1 Dealing with Noisy Data

We built Net2Text under the assumption that we have access to the correct
and complete forwarding state of a network. However, often this is not
possible, or it comes at an unjustiÞable cost. We see an opportunity in re-
laxing this assumption and devising methods that are able to deal with
incomplete and inconsistent data. One way to approach this problem is
to use regularization. Intuitively speaking, instead of trying to incorporate
all, potentially inconsistent data points in the summary, one omits those
that do not Þt nicely with the rest. Such an approach can also help de-
tect problems in the network by identifying anomalous data points and
automatically calling the operatorÕs attention to them.

6.1.2 Devising New ÒHuman-NetworkÓ Interfaces

While the natural language interface of Net2Text found favor with network
operators and showed potential to simplify their daily work, we should not
stop there. Natural language is just one of many ways to interact with the

6.1 open problems 111

network. For example, one could also think of graphical user interfaces
in which operators select the devices they are interested in or in which
operators are able to draw the ßows they want to allow in the network. At
the same time, one also has to consider the outputs of tools like Net2Text
or ConÞg2Specand assess in which situations natural language summaries
or rather a graph are favorable.

6.1.3 Incorporating Additional Data

Currently, our two systems Net2Text and ConÞg2Spec, make use of a net-
workÕs forwarding state, trafÞc statistics, and conÞgurations. We see op-
portunities for including additional data sources such as routing tables
and control-plane logs. For example, the control-plane logs could serve as
input to a provenance tool that helps understand how the current network
state came about. In addition, we see opportunities to combine and corre-
late the insights across multiple data sources to, for example, explain that
a shift in the trafÞc was caused by a route change.

6.1.4 Supporting Richer SpeciÞcations

ConÞg2Specmines data-plane speciÞcations, which means that the policies
which it learns from the conÞgurations all concern the way trafÞc is for-
warded. While reachability, isolation, waypointing, and load balancing are
certainly of concern for network operators, they are not the only relevant
policies when managing a network. Another important class of policies
are control-plane policies, which govern how the routes in the network are
computed and disseminated. For example, operators might enforce transit
policies to specify which routes can be exported to a speciÞc neighbor. So
far, control-plane policies have been neglected by the community and we
see here the opportunity for further work by applying similar techniques
as in ConÞg2Spec.

6.1.5 Detecting ConÞguration Bugs

ConÞg2Specmines the networkÕs speciÞcation as it is enforced by the net-
workÕs conÞguration. This does not necessarily represent the speciÞcation
intended by the operators, as they could have made a mistake. MisconÞg-

112 conclusion and outlook

urations are indeed quite common due to the difÞcult and manual conÞg-
uration process, as we have mentioned in Chapter 2. In theory, network
operators could go through the mined speciÞcation policy-by-policy and
see whether it conforms to their intention. However, as network speciÞ-
cations can easily consist of thousands of policies, manually checking is
not practical. Hence, we see opportunities to build tools that automatically
detect potential bugs and present them to the operators. Hence, similar to
Self-Starter [101], one could rely on the bugs as outliersparadigm [102].

B I B L I O G R A P H Y

[1] BBC. United Airlines jets grounded by computer router glitch. https :

//www.bbc.com/news/technology-33449693 . 2015.

[2] Financial Times. VisaÕs European payment systems back up after out-
age. https : / / www . ft . com / content / d95698a2 - 65b3 - 11e8 - 90c2 -

9563a0613e56 . 2018.

[3] Tagesanzeiger.ÒHaben Sie Bargeld?Ó Schweizer konnten nicht per Karte
zahlen.
https://www.tagesanzeiger.ch/wirtschaft/standardschweizweite-

stoerung - zahlterminals - funktionieren - nicht / story / 16758089 .
2019.

[4] SWI swissinfo.ch. Swisscom boss says sorry for network failure. https:

//www.swissinfo.ch/eng/swisscom-boss-says-sorry- for-network-

failure/46784822 . 2021.

[5] Business Insider. AmazonÕs one hour of downtime on Prime Day
may have cost it up to $100 million in lost sales. https : / / www .

businessinsider . com / amazon - prime - day - website - issues - cost -

it-millions-in-lost-sales-2018-7 . 2018.

[6] Hongqiang Harry Liu, Xin Wu, Wei Zhou, Weiguo Chen, Tao Wang,
Hui Xu, Lei Zhou, Qing Ma, and Ming Zhang. ÒAutomatic Life
Cycle Management of Network ConÞgurationsÓ. In: ACM SelfDN.
Budapest, Hungary, 2018.

[7] Ryan Beckett and Ratul Mahajan. ÒPutting network veriÞcation to
good useÓ. In:ACM Hotnets. Princeton, NJ, USA, 2019.

[8] Tony Bates, Philip Smith, and Geoff Huston. CIDR REPORT for27
Jul 21. https://www.cidr-report.org/as2.0/ . 2008.

[9] Edsger W Dijkstra et al. ÒA note on two problems in connexion
with graphsÓ. In: Numerische mathematik1.1 (1959), 269.

[10] John Moy. OSPF Version2. STD 54. http: / /www.rfc- editor .org/

rfc/rfc2328.txt . RFC Editor, 1998.

[11] David Oran. OSI IS-IS Intra-domain Routing Protocol. RFC1142. http:

//www.rfc-editor.org/rfc/rfc1142.txt . RFC Editor, 1990.

113

https://www.bbc.com/news/technology-33449693
https://www.bbc.com/news/technology-33449693
https://www.ft.com/content/d95698a2-65b3-11e8-90c2-9563a0613e56
https://www.ft.com/content/d95698a2-65b3-11e8-90c2-9563a0613e56
https://www.tagesanzeiger.ch/wirtschaft/standardschweizweite-stoerung-zahlterminals-funktionieren-nicht/story/16758089
https://www.tagesanzeiger.ch/wirtschaft/standardschweizweite-stoerung-zahlterminals-funktionieren-nicht/story/16758089
https://www.swissinfo.ch/eng/swisscom-boss-says-sorry-for-network-failure/46784822
https://www.swissinfo.ch/eng/swisscom-boss-says-sorry-for-network-failure/46784822
https://www.swissinfo.ch/eng/swisscom-boss-says-sorry-for-network-failure/46784822
https://www.businessinsider.com/amazon-prime-day-website-issues-cost-it-millions-in-lost-sales-2018-7
https://www.businessinsider.com/amazon-prime-day-website-issues-cost-it-millions-in-lost-sales-2018-7
https://www.businessinsider.com/amazon-prime-day-website-issues-cost-it-millions-in-lost-sales-2018-7
https://www.cidr-report.org/as2.0/
http://www.rfc-editor.org/rfc/rfc2328.txt
http://www.rfc-editor.org/rfc/rfc2328.txt
http://www.rfc-editor.org/rfc/rfc1142.txt
http://www.rfc-editor.org/rfc/rfc1142.txt

114 Bibliography

[12] Charles Hedrick. Routing Information Protocol. RFC1058. http://www.

rfc-editor.org/rfc/rfc1058.txt . RFC Editor, 1988.

[13] Yakov Rekhter, Tony Li, and Susan Hares. A Border Gateway Protocol
4 (BGP-4). RFC 4271. http://www.rfc-editor.org/rfc/rfc4271.txt .
RFC Editor, 2006.

[14] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin
Vechev. ÒNetwork-wide ConÞguration SynthesisÓ. In:CAV. Heidel-
berg, Germany, 2017.

[15] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and
David Walker. ÒDonÕt Mind the Gap: Bridging Network-Wide Ob-
jectives and Device-Level ConÞgurationsÓ. In:ACM SIGCOMM . Flo-
rian—polis, Brasil,2016.

[16] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. ÒA
General Approach to Network ConÞguration VeriÞcationÓ. In: ACM
SIGCOMM. Los Angeles, CA, USA, 2017.

[17] Kausik Subramanian, Loris DÕAntoni, and Aditya Akella. ÒGene-
sis: Synthesizing Forwarding Tables in Multi-tenant NetworksÓ. In:
ACM POPL. Paris, France,2017.

[18] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford,
and David Walker. ÒComposing Software-DeÞned NetworksÓ. In:
USENIX NSDI. Lombard, IL, USA, 2013.

[19] Tibor Schneider, RŸdiger Birkner, and Laurent Vanbever. ÒSnow-
cap: Synthesizing Network-Wide ConÞguration UpdatesÓ. In: ACM
SIGCOMM. Virtual Event, NY, USA, 2021.

[20] Robert SoulŽ, Shrutarshi Basu, Parisa Jalili Marandi, Fernando Pe-
done, Robert Kleinberg, Emin Gun Sirer, and Nate Foster. ÒMer-
lin: A Language for Provisioning Network ResourcesÓ. In: ACM
CoNEXT. Sydney, Australia, 2014.

[21] Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung
Kang, Aditya Akella, Sujata Banerjee, Charles Clark, Yadi Ma,
Puneet Sharma, and Ying Zhang. ÒPGA: Using Graphs to Ex-
press and Automatically Reconcile Network PoliciesÓ. In: ACM
SIGCOMM. London, United Kingdom, 2015.

[22] Nate Foster, Rob Harrison, Michael J Freedman, Christopher Mon-
santo, Jennifer Rexford, Alec Story, and David Walker. ÒFrenetic:
A Network Programming LanguageÓ. In: ACM ICFP. Tokyo, Japan,
2011.

http://www.rfc-editor.org/rfc/rfc1058.txt
http://www.rfc-editor.org/rfc/rfc1058.txt
http://www.rfc-editor.org/rfc/rfc4271.txt

Bibliography 115

[23] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin
Vechev. ÒNetComplete: Practical Network-Wide ConÞguration Syn-
thesis with AutocompletionÓ. In: USENIX NSDI. Renton, WA, USA,
2018.

[24] Kausik Subramanian, Loris DÕAntoni, and Aditya Akella. ÒSynthe-
sis of Fault-Tolerant Distributed Router ConÞgurationsÓ. In: ACM
SIGMETRICS. Irvine, CA, USA, 2018.

[25] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya
Akella. ÒAED: Incrementally Synthesizing Policy-Compliant and
Manageable ConÞgurationsÓ. In:ACM CoNEXT. Barcelona, Spain,
2020.

[26] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan,
Ramesh Govindan, Ratul Mahajan, and Todd D Millstein. ÒA Gen-
eral Approach to Network ConÞguration Analysis.Ó In: USENIX
NSDI. Oakland, CA, USA, 2015.

[27] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and
Ratul Mahajan. ÒFast Control Plane Analysis using an Abstract Rep-
resentationÓ. In:ACM SIGCOMM . Florian—polis, Brasil,2016.

[28] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya
Akella. ÒTiramisu: Fast Multilayer Network VeriÞcationÓ. In: USENIX
NSDI. Santa Clara, CA, USA,2020.

[29] Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar Jeyakumar,
Mickey Ju, Junda Liu, Nick McKeown, and Amin Vahdat. ÒLibra:
Divide and Conquer to Verify Forwarding Tables in Huge Net-
works.Ó In: USENIX NSDI. Seattle, WA, USA, 2014.

[30] Nuno P Lopes, Nikolaj Bj¿rner, Patrice Godefroid, Karthick Ja-
yaraman, and George Varghese. ÒChecking Beliefs in Dynamic
Networks.Ó In: USENIX NSDI. Oakland, CA, USA, 2015.

[31] Santhosh Prabhu, Kuan Yen Chou, Ali Kheradmand, Brighten God-
frey, and Matthew Caesar. ÒPlankton: Scalable Network ConÞgu-
ration VeriÞcation through Model CheckingÓ. In: USENIX NSDI.
Santa Clara, CA, USA, 2020.

[32] Bruno Quoitin and Steve Uhlig. ÒModeling the Routing of an Au-
tonomous System with C-BGPÓ. In:IEEE Network19.6 (2005).

116 Bibliography

[33] Seyed K Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd
Millstein, Vyas Sekar, and George Varghese. ÒEfÞcient Network
Reachability Analysis Using a Succinct Control Plane Representa-
tionÓ. In: USENIX OSDI. Savannah, GA, USA,2016.

[34] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and
Brighten Godfrey. ÒVerißow: Verifying Network-Wide Invariants in
Real TimeÓ. In:USENIX NSDI. Lombard, IL, USA, 2013.

[35] Hongqiang Liu, Yibo Zhu, Jitu Padhye, Jiaxin Cao, Sri Tallapragada,
Nuno Lopes, Andrey Rybalchenko, Guohan Lu, and Lihua Yuan.
ÒCrystalNet: Faithfully Emulating Large Production NetworksÓ. In:
ACM SOSP. 2017.

[36] Peyman Kazemian, George Varghese, and Nick McKeown. ÒHeader
Space Analysis: Static Checking for NetworksÓ. In: USENIX NSDI.
San Jose, CA, USA,2012.

[37] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Vargh-
ese, Nick McKeown, and Scott Whyte. ÒReal Time Network Policy
Checking using Header Space AnalysisÓ. In:USENIX NSDI. Lom-
bard, IL, USA, 2013.

[38] Nikolaj Bj¿rner, Garvit Juniwal, Ratul Mahajan, Sanjit A Seshia, and
George Varghese. ÒddNF: An EfÞcient Data Structure for Header
SpacesÓ. In:HVC. Haifa, Israel, 2016.

[39] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar,
Brighten Godfrey, and Samuel Talmadge King. ÒDebugging the
Data Plane with AnteaterÓ. In: ACM SIGCOMM . Toronto, ON,
Canada, 2011.

[40] Konstantin Weitz, Doug Woos, Emina Torlak, Michael D. Ernst,
Arvind Krishnamurthy, and Zachary Tatlock. ÒScalable VeriÞcation
of Border Gateway Protocol ConÞgurations with an SMT SolverÓ.
In: ACM OOPSLA. Amsterdam, Netherlands, 2016.

[41] Nick Giannarakis, Devon Loehr, Ryan Beckett, and David Walker.
ÒNV: An Intermediate Language for VeriÞcation of Network Con-
trol PlanesÓ. In:ACM PLDI . London, UK, 2020.

[42] Benoit Claise. Cisco Systems NetFlow Services Export Version9. RFC
3954. http : / /www.rfc - editor .org / rfc / rfc3954. txt . RFC Editor,
2004.

http://www.rfc-editor.org/rfc/rfc3954.txt

Bibliography 117

[43] Peter Phaal, Sonia Panchen, and Neil McKee.InMon CorporationÕs
sFlow: A Method for Monitoring TrafÞc in Switched and Routed Networks.
RFC 3176. http : / / www . rfc - editor . org / rfc / rfc3176 . txt . RFC
Editor, 2001.

[44] Jennifer Rexford, Jia Wang, Zhen Xiao, and Yin Zhang. ÒBGP Rout-
ing Stability of Popular DestinationsÓ. In: ACM IMC . Marseille,
France,2002.

[45] Daphne Koller and Nir Friedman. Probabilistic Graphical Models:
Principles and Techniques - Adaptive Computation and Machine Learn-
ing. The MIT Press,2009.

[46] Henry Wadsworth Gould. Combinatorial Identities: A Standardized Set
of Tables Listing500 Binomial CoefÞcient Summations. Morgantown,
1972.

[47] Simon Knight, Hung X Nguyen, Nickolas Falkner, Rhys Bowden,
and Matthew Roughan. ÒThe Internet Topology ZooÓ. In: IEEE
JSAC29.9 (2011), 1765.

[48] CAIDA. AS Organizations Dataset,2017-04-01. http : / / www . caida .

org/data/as-organizations .

[49] CAIDA. BGPStream. https://bgpstream.caida.org/ .

[50] Jaeyoung Choi, Jong Han Park, Pei-chun Cheng, Dorian Kim, and
Lixia Zhang. ÒUnderstanding BGP Next-Hop DiversityÓ. In: IEEE
Global Internet Symposium. Shanghai, China, 2011.

[51] Quagga. Quagga Software Routing Suite. https://quagga.net/ . 2021.

[52] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. ÒFlowRadar:
A Better NetFlow for Data Centers.Ó In: USENIX NSDI. Santa Clara,
CA, USA, 2016.

[53] Olivier Tilmans, Tobias BŸhler, Ingmar Poese, Stefano Vissicchio,
and Laurent Vanbever. ÒStroboscope: Declarative Network Moni-
toring on a BudgetÓ. In: USENIX NSDI. Renton, WA, USA, 2018.

[54] Olivier Tilmans, Tobias BŸhler, Stefano Vissicchio, and Laurent Van-
bever. ÒMille-Feuille: Putting ISP TrafÞc under the scalpelÓ. In:ACM
Hotnets. Atlanta, GA, USA, 2016.

[55] Ang Chen, Yang Wu, Andreas Haeberlen, Wenchao Zhou, and
Boon Thau Loo. ÒThe Good, the Bad, and the Differences: Bet-
ter Network Diagnostics with Differential ProvenanceÓ. In: ACM
SIGCOMM. Florian—polis, Brasil,2016.

http://www.rfc-editor.org/rfc/rfc3176.txt
http://www.caida.org/data/as-organizations
http://www.caida.org/data/as-organizations
https://bgpstream.caida.org/
https://quagga.net/

118 Bibliography

[56] Yang Wu, Mingchen Zhao, Andreas Haeberlen, Wenchao Zhou, and
Boon Thau Loo. ÒDiagnosing Missing Events in Distributed Sys-
tems with Negative ProvenanceÓ. In: ACM SIGCOMMM . Chicago,
IL, USA, 2014.

[57] Wenchao Zhou, Suyog Mapara, Yiqing Ren, Yang Li, Andreas
Haeberlen, Zachary Ives, Boon Thau Loo, and Micah Sherr. ÒDis-
tributed Time-aware ProvenanceÓ. In:VLDB. Riva del Garda, Trento,
Italy, 2013.

[58] Wenchao Zhou, Micah Sherr, Tao Tao, Xiaozhou Li, Boon Thau Loo,
and Yun Mao. ÒEfÞcient Querying and Maintenance of Network
Provenance at Internet-ScaleÓ. In:ACM SIGMOD . Indianapolis, IN,
USA, 2010.

[59] Andreas Wundsam, Dan Levin, Srini Seetharaman, and Anja Feld-
mann. ÒOFRewind: Enabling Record and Replay Troubleshooting
for NetworksÓ. In: USENIX ATC. Portland, OR, USA, 2011.

[60] Colin Scott, Andreas Wundsam, Barath Raghavan, Aurojit Panda,
Andrew Or, Jefferson Lai, Eugene Huang, Zhi Liu, Ahmed El-
Hassany, Sam Whitlock, H.B. Acharya, Kyriakos ZariÞs, and Scott
Shenker. ÒTroubleshooting Blackbox SDN Control Software with
Minimal Causal SequencesÓ. In:ACM SIGCOMMM . Chicago, IL,
USA, 2014.

[61] Colin Scott, Vjekoslav Brajkovic, George Necula, Arvind Krishna-
murthy, and Scott Shenker. ÒMinimizing Faulty Executions of Dis-
tributed SystemsÓ. In:USENIX NSDI. Santa Clara, CA, USA,2016.

[62] Azzam Alsudais and Eric Keller. ÒHey Network, Can You Under-
stand Me?Ó In:IEEE INFOCOM Workshop on Software-Driven Flexible
and Agile Networking. Atlanta, GA, USA, 2017.

[63] Flavio Esposito, Jiayi Wang, Chiara Contoli, Gianluca Davoli, Wal-
ter Cerroni, and Franco Callegati. ÒA Behavior-Driven Approach
to Intent SpeciÞcation for Software-DeÞned Infrastructure Manage-
mentÓ. In:IEEE NFV-SDN. Verona, Italy, 2018.

[64] Arthur S Jacobs, Ricardo J PÞtscher, Rafael H Ribeiro, and Sanjay
G Rao. ÒHey, Lumi! Using Natural Language for Intent-Based Net-
work ManagementÓ. In: USENIX ATC. Virtual Event, USA, 2021.

Bibliography 119

[65] Arthur Selle Jacobs, Ricardo JosŽ PÞtscher, Ronaldo Alves Ferreira,
and Lisandro Zambenedetti Granville. ÒReÞning Network Intents
for Self-Driving NetworksÓ. In: ACM SelfDN. Budapest, Hungary,
2018.

[66] Ali Kheradmand. ÒAutomatic Inference of High-Level Network In-
tents by Mining Forwarding PatternsÓ. In: ACM SOSR. San Jose,
CA, USA, 2020.

[67] Min Cheng. Small. https: / /github.com/jayvischeng/Small / tree/

master/ServerData2 . 2015.

[68] Axel van Lamsweerde. ÒFormal SpeciÞcation: a RoadmapÓ. In:
ACM FOSE. Limerick, Ireland, 2000.

[69] Claire Le Goues and Westley Weimer. ÒSpeciÞcation Mining With
Few False PositivesÓ. In:TACAS. York, United Kingdom, 2009.

[70] Glenn Ammons, David Mandelin, Rastislav Bod’k, and James R
Larus. ÒDebugging Temporal SpeciÞcations with Concept Analy-
sisÓ. In:ACM PLDI . San Diego, CA, USA, 2003.

[71] Glenn Ammons, Rastislav Bod’k, and James R Larus. ÒMining Spec-
iÞcationsÓ. In:ACM POPL. Portland, OR, USA, 2002.

[72] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant,
Carlos Pacheco, Matthew S Tschantz, and Chen Xiao. ÒThe Daikon
system for dynamic detection of likely invariantsÓ. In: Elsevier Sci-
ence of Computer Programming69.1-3 (2007), 35.

[73] Geoffrey G Xie, Jibin Zhan, David A Maltz, Hui Zhang, Albert
Greenberg, Gisli Hjalmtysson, and Jennifer Rexford. ÒOn Static
Reachability Analysis of IP NetworksÓ. In: IEEE INFOCOM. Miami,
FL, USA, 2005.

[74] Theophilus Benson, Aditya Akella, and David A. Maltz. ÒMining
Policies from Enterprise Network ConÞgurationÓ. In: ACM IMC .
Chicago, IL, USA, 2009.

[75] Theophilus Benson, Aditya Akella, and David A Maltz. ÒUnravel-
ing the Complexity of Network ManagementÓ. In: USENIX NSDI.
Boston, MA, USA, 2009.

[76] Aaron Gember-Jacobson, Wenfei Wu, Xiujun Li, Aditya Akella,
and Ratul Mahajan. ÒManagement Plane AnalyticsÓ. In:ACM IMC .
Tokyo, Japan,2015.

https://github.com/jayvischeng/Small/tree/master/ServerData2
https://github.com/jayvischeng/Small/tree/master/ServerData2

120 Bibliography

[77] Yanjun Wang, Chuan Jiang, Xiaokang Qiu, and Sanjay G Rao.
ÒLearning Network Design Objectives Using a Program Synthe-
sis ApproachÓ. In:ACM Hotnets. Princeton, NJ, USA, 2019.

[78] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste
Jeannin, Dexter Kozen, Cole Schlesinger, and David Walker. ÒNetKAT:
Semantic Foundations for NetworksÓ. In: ACM POPL. San Diego,
CA, USA, 2014.

[79] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Se-
shia, and Vijay Saraswat. ÒCombinatorial Sketching for Finite Pro-
gramsÓ. In:ACM ASPLOS. San Jose, CA, USA,2006.

[80] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav
Bodik. ÒSketching Concurrent Data StructuresÓ. In:ACM PLDI .
Tucson, AZ, USA, 2008.

[81] Intentionet. BatÞsh. https://github.com/batfish/batfish . Commit:
95099bc5ad77af57d92c484e2e5634827f63e724. 2020.

[82] Inc. Cisco Systems.Redistributing Routing Protocols. https : / / www .

cisco.com/c/en/us/support/docs/ip/enhanced- interior-gateway-

routing- protocol- eigrp/8606- redist .html . Accessed:2020-09-12.
2012.

[83] D Richard Kuhn, Dolores R Wallace, and Albert M Gallo. ÒSoftware
Fault Interactions and Implications for Software TestingÓ. In: IEEE
Transactions on Software Engineering30.6 (2004).

[84] Linghuan Hu, W Eric Wong, D Richard Kuhn, and Raghu N Kacker.
ÒHow does combinatorial testing perform in the real world: an em-
pirical studyÓ. In: Empirical Software Engineering25.4 (2020).

[85] Andreas Zeller and Ralf Hildebrandt. ÒSimplifying and Isolating
Failure-Inducing InputÓ. In: IEEE Transactions on Software Engineer-
ing 28.2 (2002).

[86] Microsoft. PICT - Pairwise Independent Combinatorial Testing. https:

//github.com/microsoft/pict . 2020.

[87] Nick Giannarakis. NV - An Intermediate Language for Network Ver-
iÞcation. https : / / github . com / NetworkVerification / nv . Commit:
d058c4ce5c1549ad4e22d97cb01b8ea19d07741c. 2020.

[88] W. Eric Wong, Xuelin Li, and Philip A. Laplante. ÒBe more familiar
with our enemies and pave the way forward: A review of the roles
bugs played in software failuresÓ. In: Journal of Systems and Software
133(2017).

https://github.com/batfish/batfish
https://www.cisco.com/c/en/us/support/docs/ip/enhanced-interior-gateway-routing-protocol-eigrp/8606-redist.html
https://www.cisco.com/c/en/us/support/docs/ip/enhanced-interior-gateway-routing-protocol-eigrp/8606-redist.html
https://www.cisco.com/c/en/us/support/docs/ip/enhanced-interior-gateway-routing-protocol-eigrp/8606-redist.html
https://github.com/microsoft/pict
https://github.com/microsoft/pict
https://github.com/NetworkVerification/nv

Bibliography 121

[89] Alexandra Bugariu, Valentin WŸstholz, Maria Christakis, and Pe-
ter MŸller. ÒAutomatically Testing Implementations of Numerical
Abstract DomainsÓ. In: ACM ASE. Montpellier, France, 2018.

[90] Pascal Cuoq, Benjamin Monate, Anne Pacalet, Virgile Prevosto,
John Regehr, Boris Yakobowski, and Xuejun Yang. ÒTesting Static
Analyzers with Randomly Generated ProgramsÓ. In: NFM. Norfolk,
VA, USA, 2012.

[91] Esben Sparre Andreasen, Anders M¿ller, and Benjamin Barslev
Nielsen. ÒSystematic Approaches for Increasing Soundness and
Precision of Static AnalyzersÓ. In: ACM SOAP. Barcelona, Spain,
2017.

[92] Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McK-
eown. ÒAutomatic Test Packet GenerationÓ. In:ACM CoNEXT. Nice,
France,2012.

[93] Marco Canini, Daniele Venzano, Peter Pere!’ni, Dejan Kosti«c, and
Jennifer Rexford. ÒA NICE Way to Test OpenFlow ApplicationsÓ. In:
USENIX NSDI. San Jose, CA, USA,2012.

[94] Thomas Ball, Nikolaj Bj¿rner, Aaron Gember, Shachar Itzhaky,
Aleksandr Karbyshev, Mooly Sagiv, Michael Schapira, and Asaf
Valadarsky. ÒVeriCon: Towards Verifying Controller Programs in
Software-deÞned NetworksÓ. In: ACM PLDI . Edinburgh, United
Kingdom, 2014.

[95] Leonid Ryzhyk, Nikolaj Bj¿rner, Marco Canini, Jean-Baptiste Jean-
nin, Cole Schlesinger, Douglas B Terry, and George Varghese. ÒCor-
rect by Construction Networks Using Stepwise ReÞnement.Ó In:
USENIX NSDI. Boston, MA, USA, 2017.

[96] Fangdan Ye, Da Yu, Ennan Zhai, Hongqiang Harry Liu, Bingchuan
Tianx, Qiaobo Ye, Chunsheng Wang, Xin Wu, Tianchen Guo, Cheng
Jin, et al. ÒAccuracy, Scalability, Coverage: A Practical ConÞguration
VeriÞer on a Global WANÓ. In: ACM SIGCOMM . Virtual Event, NY,
USA, 2020.

[97] Andreas Zeller. ÒYesterday, my program worked. Today, it does not.
Why?Ó In:ACM SIGSOFT FSE-7 (1999).

[98] Ghassan Misherghi and Zhendong Su. ÒHDD: Hierarchical Delta
DebuggingÓ. In: ICSE. Shanghai, China, 2006.

122 Bibliography

[99] Andreas Zeller, Rahul Gopinath, Marcel Bšhme, Gordon Fraser,
and Christian Holler. ÒFuzzing: Breaking Things with Random In-
putsÓ. In: The Fuzzing Book. Accessed:2020-09-12. Saarland Univer-
sity, 2020.

[100] Patrice Godefroid. ÒFuzzing: Hack, Art, and ScienceÓ. In:Communi-
cations of the ACM63.2 (2020).

[101] Siva Kesava Reddy Kakarla, Alan Tang, Ryan Beckett, Karthick Ja-
yaraman, Todd Millstein, Yuval Tamir, and George Varghese. ÒFind-
ing Network MisconÞgurations by Automatic Template InferenceÓ.
In: USENIX NSDI. Santa Clara, CA, USA,2020.

[102] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and
Benjamin Chelf. ÒBugs as Deviant Behavior: A General Approach
to Inferring Errors in Systems CodeÓ. In: (2001).

