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1 Introduction

A significant share of world trade in goods happens within national borders, via national roads. In 2007,
80 percent of U.S. manufacturing production was traded domestically (Egger et al., 2019) and 44 percent of
it using the national road network (U.S. Bureau of Transportation Statistics).1 Thus, integration into the
national transport system is key for any city’s economic prosperity. Cities, however, are heterogeneous. One
important, yet understudied, dimension in which cities differ is their political status. Investigating whether
city heterogeneity, such as political status, affects a city’s access to the transport network is important for
local economic prosperity, and, therefore, for both researchers and policy makers.

This paper links the political status of U.S. urban areas to their integration in the national road network,
in order to understand whether there is a capital premium – i.e., a premium to being a state capital city in
terms of road infrastructure provision. Road network integration is defined using a class of measurements that
evaluate how well a location is connected to other locations through the National Highway System (NHS).
The main empirical result suggests that, indeed, U.S. state capitals have on average 14 percent larger levels of
(population-weighted) road network integration compared to non-capital cities of similar characteristics.

The paper contributes to the literature in the following two ways. First, this is the first paper that quantifies
the causal effect of political status on road network integration and applies the analysis to 920 U.S. Core Based
Statistical Areas (CBSAs). The U.S. offer a unique variation to answer the question at hand. There is a
large variation of state capital characteristics, which allow me to differentiate political status from size effects.
Moreover, it is the only country in the world where such a large number of states, capital cities and urban
areas are connected by a common national road network under the same institutional and cultural framework.

The second dimension in which the paper contributes to the literature is its instrumentation strategy. The
location choice for most state capitals was closely related to the westward expansion of the U.S. along historical
exploration roads, which are correlated with nowadays’ transport network (see Duranton and Turner, 2012).
To tackle this concern, I construct an instrument which captures the fact that state centrality – independent
of the transport network – is a key feature of U.S. capital cities.2 Formally, I employ a k-means clustering
algorithm – a concept that is widely applied in Machine Learning literature – that predicts the boundaries of
48 U.S. states and defines their geographical center as a hypothetical capital location. Then, capital status is
predicted by the rank in distance to the respective hypothetical capital location.

For each CBSA, I determine the integration in the NHS by four different measures of road network inte-
gration: connectivity and market access, which are based on absolute distances between locations, and relative
connectivity and relative market access, which are based on relative distances between locations. All measures
have in common that their value for a given CBSA is the sum over connections to all other places. While
connectivity and market access define a connection as inverse (absolute) distance on the network, relative con-
nectivity and relative market access evaluate the distance on the network relative to the great-circle distance.
Overall, I find a positive and significant effect of capital status on relative distance measures. This is evidence
for a more direct integration of capital cities in the National Highway System. The effect is driven by capital
cities in large states and those with an above-median rate of urbanization (defined at the national level).

There are two reasons why U.S. state capitals are expected to be better integrated in the federal road
network than comparably large non-capital cities. First, (most) state capitals embody their role of political

1Egger et al. (2019) report country-level information on own consumption in total production of manufacturing
goods in US dollars. The U.S. Bureau of Transportation Statistics provides information on shipments by travel mode
in U.S. ton-miles of freight.

2Campante and Do (2014) and Rossitti (2020) also used the state centrality argument for the instrumentation of
capital location. However, my instrumentation approach assumes endogenous state borders, whereas Campante and
Do (2014) and Rossitti (2020) take the location of state borders as given.
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power by being centrally located and easily accessible from other urban centers around them. This makes
U.S. capital cities a natural candidate for a direct integration in the transport network, following Christaller’s
(1933) Central Place Theory (CPT). The transport principle in the CPT suggests that the most efficient and
cost minimizing transport network is one that radially connects the most central place in the hierarchy to all
other places in the jurisdiction.

Another reason why capital cities may have been favored in the provision of road network infrastructure
is that the decision on new road locations is a highly political one. Highway spending, in particular, responds
to strong interest groups, ’pork barrel’ projects being an obvious example (see Evans, 1994). In the case of
the Interstate Highway System (as part of the NHS), states were asked to submit proposals for their portion
of the federal highway network in response to the recommended national plan (see Baum-Snow, 2007). The
final proposal was quite certainly an outcome of inter-governmental lobbying, both from private and public
sector interest groups. Of course, whenever the capital city was also the largest economic center, better road
infrastructure provision has a straight-forward economic implication. However, for capital cities with little
economic relevance this argument does not hold. In those cases, the political status itself could have been the
main driver to attracting better access to road infrastructure.

State capital centrality and the political interest to have state capitals well connected to major urban centers
are the main mechanisms that motivate the empirical analysis in this paper. In the discussion, I provide further
evidence for both mechanisms that underline an existing capital premium in direct road network integration.

This paper relates to several strands of the literature. It first relates to the political economy literature
that analyzes the importance of political status for local public policies. For example, two recent studies have
emphasized the role of capitals for corruption in U.S. states (Campante and Do, 2014) and for sorting of
legislators (Rossitti, 2020). There are several other contributions that concentrate on comparative analyses of
national capitals in terms of locational policy agendas (see, i.e., Nagel, 2013, for capital cities of federations;
Mayer et al., 2017, for capitals that are not the primary economic city of their nations; Rossman, 2018, for
newly established capital cities).

The paper also relates to the new economic geography literature that has emphasized the importance of
market access in explaining the spatial distribution of economic activity (starting with Krugman, 1991). Apart
from theoretical contributions on market access (e.g., Helpman, 1998; Redding and Sturm, 2008), there is a
vast empirical literature that focuses on the relationship between access to markets and economic development
(e.g., Davis and Weinstein, 2003; Hanson and Xiang, 2004; Redding and Venables, 2004; Hanson, 2005). Most
empirical contributions that specifically estimate the importance of transport infrastructure on urban devel-
opment (e.g., Banerjee et al., 2012; Baum-Snow, 2007; Michaels, 2008; Donaldson, 2018) face an econometric
challenge as changes in the transport infrastructure have both direct and indirect (i.e., general equilibrium
induced) effects on the observed location. Donaldson and Hornbeck (2016) provide a methodology for mea-
suring the aggregate impact of transport infrastructure changes using a reduced-form market access approach
that is derived from general equilibrium trade theory. This paper builds on the insights from Donaldson and
Hornbeck (2016) in creating the road network integration measures.

When analyzing the link between transport infrastructure and urban development, most studies differenti-
ate cities according to economic characteristics such as city size, productivity or sector composition. Political
status as an additional source of heterogeneity, however, has gained only recently more attention. In particular,
there are a few contributions that exploit the economic consequences of relocating or constructing national
capitals. For instance, Becker et al. (2018) evaluate the impact of a public employment shock on private sector
employment due to the relocation of the German capital from Berlin to Bonn and vice versa. Morten and
Oliviera (2018) quantify the effect of an exogenous shock in transport infrastructure on trade and migration,
succeeding the construction of Brazil’s new capital Brasilia. Bai and Jia (2020) exploit the historical variation
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in changing provincial capitals to analyze the importance of administrative hierarchy on local development in
China. They find evidence that Chinese regimes readjusted the transportation network in favor of prefectures
that had capital status.

Finally, this paper relates to a new strand of the economic geography literature that has applied algorithmic
approaches in instrumentation strategies (i.e., Faber, 2014; Alder and Kondo, 2018; Egger et al., 2020; Arribas-
Bel et al., 2019; de Bellefon et al., 2019). These studies typically use mathematical tools, including machine
learning algorithms, to replicate key observed institutional features. In particular, they focus on modeling the
main determinant that guides the institutional design. For example, transport networks are constructed along
the least cost path (Faber, 2014; Alder and Kondo, 2018; Egger et al., 2020) or urban statistical areas unite
locations with similar urban context (Arribas-Bel et al., 2019; de Bellefon et al., 2019). As long as the key
determinant is well identified, these approaches will provide powerful instruments. The present paper adopts
a similar approach and predicts hypothetical capital locations using the k-means clustering algorithm that
is based on geographical and topological data. By minimizing the distance from the hypothetical capital to
all points within a cluster, the k-means clustering algorithm exploits the fact that state capital cities occupy
central locations within their jurisdictions.3 As compared to the instrumentation strategy in Campante and
Do (2014) or Rossitti (2020), this paper additionally accounts for endogenous state borders.

The structure of the paper is as follows. Section 2 provides a historical background on U.S. American
state capitals and the U.S. National Highway System that motivates the empirical analysis. Section 3 presents
the data and introduces the measurements of road network integration. Section 4 outlines the identification
strategy and the instrumental variable design, and presents the main empirical result. Section 5 discusses
drivers and possible mechanisms behind the results. Finally, Section 6 concludes.

2 Historical Background

2.1 U.S. American State Capitals

The historical geography of American state capitals is complex and diverse. This section attempts to sum-
marize their spatial and historical evolution in five major patterns, which will inform the empirical analysis
of this paper. The summarized facts build heavily on Christian Montès’ (2014) comprehensive contribution
on American Capitals: A Historical Geography. I start with a brief overview of the U.S. settlement and the
evolution of urban centers in the 19th century.

After the creation of the United States of America in 1776, the U.S. territory expanded gradually toward
the West, with its first great expansion being the Louisiana Purchase of 1803. The territorial expansion was
followed by a substantial shift of population and economic activity from the coast to the center of the territory.
U.S. population increased by a factor of eight between 1790 and 1860 and new cities formed, which led to a
rapid urbanization during the 19th century. Two-thirds of the increase in urbanization can be attributed to
new cities forming (predominantly) in the South and the Midwest (see Nagy, 2017, for a review on U.S. urban
history in the 19th century).

The land was organized into territories and then states. Once established, states have generally retained
their initial borders.4 Capitals had an important role in territorial structuring as they are places of political
power and decision making. Local elites tried to win state capital status not only for economic advantage but
also for the political stability that such a status might provide. Most of the time, however, stability did not

3A formal analysis of the performance of the algorithm is provided in Section 4.
4The exception are four states that have been created from land claimed by another state (Maine, Kentucky,

Vermont, West Virginia) and four states (Louisiana, Missouri, Nevada and Pennsylvania) that expanded significantly
after acquiring additional federal territory (Zandt, 1976).
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Figure 1: Spatial Patterns of Capital Movement
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last, and state capitals migrated – on average 3.8 times (Fact 1). The spatial patterns of capital movements
were highly heterogeneous (Fact 2). Some states relocated their capitals following the general trends of the U.S.
settlements, others experienced a rotation system of capital cities, and again others readjusted their capital
location to balance economic and political forces. Eventually, all but eleven of the (present) state capitals were
established in the 19th century, 35 of them before the American Civil War in 1860 (Fact 3). The final decision
on capital selection in every state was as heterogeneous as the path that led toward it. However, one striking
factor of capital selection was predominant: most states decided against the largest city of the time in the
interest of economic and political balance (Fact 4). Some capitals have remained small, others evolved into
bustling metropolises. While investigating the reasons for these different development paths might warrant a
deeper analysis, it is clearly beyond the scope of this paper. One important aspect that distinguished state
capitals at the time, though, is whether or not they were strategically located at important trading routes
(Fact 5).

In what follows, I explain the mentioned facts in more detail.

Fact 1: Migration of State Capitals

Most first chosen capitals marked the entry point in the New World or strategic defense spots that were built
to “protect” the pioneers. However, political stability did not last long and capitals migrated – often westward,
following the territorial conquest. Only eight states – Hawaii, Massachusetts, Minnesota, Nevada, New Mexico,
Utah, Washington and Wyoming – never changed their capital. On average, American states have had 3.84
successive capitals. California, for instance, changed its capital seven times between 1849-1854. How often
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states have moved their capital does not follow a clear geographical pattern.

Fact 2: Heterogeneous Spatial Patterns of Capital Movements

There are three major spatial patterns of capital movement that amount to 80 percent of all cases.5

Westward/Centrality By far the most common reason to relocate the capital (44% of all cases) was
due to the western pull factor that initiated the movement inland from the coast to the center of a territory.
The process first occurred in the East, where coastal capitals had to yield to more centrally located cities, due
to the westward expansion inside the state. For instance, New Jersey’s first capital Elizabethtown – the port
of entry – was relocated 50-miles south-westward and Trenton became the new capital in 1790.

Readjustment Six states (14%) – Alaska, Colorado, Kentucky, Maryland, Montana, Oklahoma, Oregon
– relocated their capital in a readjustment process to alter economic and political balance. The readjustment
process typically implied a small relocation not far from the first capital choice towards the center of the state.

Rotation Five states (10%) – mostly small ones – experienced a complex system of wandering capitals:
Delaware, New Hampshire, North Carolina, Rhode Island and Vermont. This was often an outcome of political
rivalries. Apart from Rhode Island, all other states that experienced a capital rotating system chose their
permanent capital around the turn to the 19th century. Anecdotal evidence suggests that as the abrupt ending
of rotation happened within two decades, the ultimate capital choice was a quasi-random outcome among all
geographically central alternatives (Montès, 2014, p.71).

All three major spatial patterns for capital migration are somehow linked to state centrality. Nowadays,
U.S. state capitals are on average located in a radius of 70 miles from the state centroid. Figure 1 summarizes
the spatial patterns of capital change and shows a map of all states indicating the reason for capital relocation.

Fact 3: Timing of Capital Selection

The majority of state capitals (79%) were selected during the 19th century. With New Mexico being the
exception (Santa Fe was chosen already in 1610), the first states to select their permanent capital are –
not surprisingly – those along the east coast: Massachusetts (1692), Maryland (1694), Delaware (1781), and
Virginia (1779). In total, 35 states had made the decision for their permanent capital before 1860 – just when
the American Civil War hit the country and created a large and long-lasting impact on the U.S. economy.
With this timing in mind, one could argue that for those 35 states, the reconstruction and subsequent economic
development after the Civil War happened with the capital city location as given. Table 8 in the Appendix
summarizes the timing of capital selection for all states and adds additional information, including income and
population statistics as well as the rank (by population) of each capital city now and then.

Fact 4: Rejection of the Largest City

Even though states and their selection process for capital cities were highly heterogeneous, there is one striking
pattern: the majority of states (70%) decided against the largest city (at the time) as their capital. The basic
facts in Table 8 in the Appendix compare the population rank of all capital cities at the year of selection
to the rank in 2010. Some capitals have remained small (e.g., Frankfort, Kentucky; Annapolis, Maryland;
Carson City, Nevada), while others have evolved into the largest cities of their state (e.g., Jackson, Mississippi;
Phoenix, Arizona; Atlanta, Georgia). Nowadays, most capitals are de facto large and economically important
in their state, though, in 42 percent of the cases they are not the largest city.

5For more details regarding the spatial patterns of capital movement, see Montès (2014)
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Table 1: Descriptive Statistics

Capitals Non-Capitals Top 50 Non-Capitals*

Av. Population (2010) 1,100,626 267,133 2,777,541

Av. Annual Wage (2018) 50,949 45,874 51,556

Av. Area (CBSA) 6,305 2,824 8,113

Av. Population Rank within State 2.75 15.06 2.40

Av. Annual Wage Rank within State 2.16 7.21 4.70

Av. Area within State 3.88 15.00 4.22

Observations 48 872 50

*: by population in 2010. Data Source: Wage estimates (2018) for 376 CBSAs are taken from U.S. Bureau
of Labor Statistics. Population records in 2010 and area in km2 in 2017 by CBSA are provided by the U.S.
Census Bureau. Notes: The average population rank within states ranges between 1-12 for capitals, 1-69 for
non-capitals, and 1-9 for top 50 non-capitals. The average wage rank within states ranges between 1-7 for
capitals, 1-26 for non-capitals, and 1-24 for top 50 non-capitals. The average area rank within state ranges
between 1-18 for capitals, 1-69 for non-capitals, and 1-29 for top 50 non-capitals.

Table 1 presents further descriptive statistics regarding recent population, wages and area for three cate-
gories: (present) capital cities, non-capital cities and the top 50 non-capitals cities (by population). It suggests
that capital cities are half the size of the largest non-capital cities in terms of population, but four times larger
than the average non-capital metropolitan area. Average annual wages in capital cities are similar to wages
in the largest non-capital cities, however, capital cities are about 25% smaller in area than large non-capital
agglomerations. Within their respective state, capital cities occupy an higher rank in population (i.e., they are
relatively smaller in population), but a lower rank in wages and area relative to large non-capital cities.6

Fact 5: Capitals as Mercantile Gateways

Capital cities were of primary importance to the developing trading network. Almost all first capitals in the
newly settled West were founded at important trading posts (Montès, 2014, p.119). In the 19th century, inland
transportation relied heavily on trails and streams, and consequently, the importance of the road network
declined drastically with technological change. However, intra-state and short-distance transportation still
depended on the existing road network. In particular, centrally located capitals served as re-distribution hubs
to all other populated places within their state.

2.2 The U.S. National Highway System

The National Highway System (NHS) constitutes the major federal road network, which strategically connects
all states across the U.S. The first federal involvement in developing a national highway system came with the
Federal Aid Highway Act of 1944 and the subsequent construction of the Interstate Highway System. By 2011,
about 164,000 miles of national highways were completed, of which 47,000 miles compromise the Interstate
Highway System. According to the U.S. Department of Transportation, all urban centers with a population of
over 50,000 are within five miles of the network.

Figure 2 portrays the National Highway System as of 2017 and highlights the location of state capitals. It
shows that the network is more dense in the Northeast – i.e., in proximity of a larger number of high-density
urban areas – and less dense in the Midwest and West of the U.S. (except for California).7 Moreover, the

6The wage rank in Table 1 has to be interpreted with caution as data on wage estimates in metropolitan and
non-metropolitan areas provided by the U.S. Bureau of Labor Statistics is only available for 376 out of 920 CBSAs.

7The larger number of high-density urban areas in the Northeast is also a result of an average smaller state size in
north-eastern U.S.
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Figure 2: State Capitals and National Highway System
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map suggests that in the present network capital cities are well connected. Especially in those states where
capitals are centrally located within their state, the federal road network extends radially in all directions,
suggesting a direct integration of capital cities (i.e., Arizona, Iowa, Indiana). Additionally, the involvement of
local politicians in the design of the national road network may have favored the network integration of capital
cities – even in those states where capitals are not centrally located (i.e., Nevada, Oregon).

3 Data Construction

A country like the U.S. is a prime example to analyze the importance of capital status on road network
integration for at least two reasons. First, it offers a unique variation of state capital characteristics. This
proves particularly useful as it allows me to differentiate political status from size effects. Second, the U.S. is
the only country in the world where such a large number of states, capital cities and urban areas are connected
by a common national road network under the same institutional and cultural framework. This allows for a
uniform measurement of road network integration and the respective covariates and gives enough variation in
the empirical analysis.

The units of analysis are Core Based Statistical Areas (CBSA) in the U.S. CBSAs include Metropolitan
and Micropolitan Statistical Areas and consist of the county, counties or equivalent entities associated with at
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least one urban core of at least 10,000 people.8 After excluding non-contiguous jurisdictions (i.e. Alaska) and
off-shore territories (i.e., Hawaii and Puerto Rico) the subsequent analysis includes a total of 920 CBSAs.

Geographical Boundaries and Population The U.S. Census Bureau provides information on geographi-
cal boundaries in 2015 and total population estimates between 2010 and 2017 for each CBSA. The geographical
extent of a CBSA can be extracted using ArcGIS Software. CBSAs that belong to several U.S. states are at-
tributed to the state in which the main urban center is located (i.e., New York-Newark-Jersey City is assigned
to the state of New York even though it extends into New Jersey and Pennsylvania). Historical population
records and county boundaries for each decade between 1790-1900 are provided by the National Historical
Geographic Information System (NHGIS) Database at the University of Minnesota.9

State Capitals The data include a binary indicator for capital status that is unity if a CBSA is a state
capital, and zero otherwise. Note that neither the capital of Vermont (Montpelier), nor the capital of Maryland
(Annapolis) have an official CBSA definition. I add both to the data and use population levels of 2010 that
correspond to the municipal population of Montpelier and Annapolis, respectively.

Road Network Geographical information on the U.S. road network in 2017 is provided by the Natural Earth
database.10 The road network includes major highways, secondary highways, minor roads and ferry routes.
In the analysis, I concentrate on major and secondary highways, which broadly define the National Highway
System (NHS). Quantifying distances between CBSAs requires a mapping of the geographical division to a
single departure or destination point. In the economic geography literature, it is customary to simply assume
the centroid of an area. However, given that the connection between CBSAs is of major interest to the analysis
in this paper, I create a point measurement that represents the largest concentration of population in a CBSA
(i.e., maximum density point) using ArcGIS. In comparison to the centroid of a CBSA, the maximum den-
sity point has the advantage that it represents the point from which most people (in expectation) commute or
migrate from. This reduces a potential measurement error in establishing the distance between each CBSA pair.

Measuring Road Network Integration
Road network integration is defined using a class of measurements that evaluate how well a location is integrated
in the National Highway System. In total, I consider four different measures: connectivity and market access,
which are based on absolute distances between locations, and relative connectivity and relative market access,
which are based on relative distances between locations. All measures have in common that their value for a
given CBSA is the sum over connections to all other locations. While connectivity and market access define
a connection as inverse (absolute) distance on the network, relative connectivity and relative market access
evaluate the distance on the network relative to the great-circle distance. Hence, relative distances measure
network integration in terms of how directly a CBSA is connected to all other locations.

In defining the four measures, I denote dod as the shortest distance between an origin (o) and a destination
(d) on the road network. Given that most CBSAs are not directly located on the road network, dod is further

8Metropolitan Statistical Areas (MSAs) are based on urbanized areas of 50,000 people or more. Micropolitan
Statistical Areas (µSAs) are based on urban clusters of at least 10,000 but less than 50,000 people. Adjacent counties
become part of a larger urban entity if they have a high degree of social and economic integration with the core as
measured by commuting ties.

9Historical population records report information of any settlement above 2,500 inhabitants.
10Natural Earth is a public domain supported by the North American Cartographic Information Society. I use version

4.0.0. of the database, which got released in 2017.
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defined as
dod ≡ ϕ(doNo

+ ddNd
) + dNoNd

, (1)

where doNo (and ddNd
) indicate the straight-line distance from the maximum density point of a location o

(and d) to the road network No (and Nd). Distances to the road network are adjusted by a common factor
of ϕ = 1.4, adding an over-proportional cost if a location is far away from the road network (as in Donaldson
and Hornbeck, 2016). The shortest distance between origin and destination on the road network is denoted as
dNoNd

.
In the following, I discuss the theoretical foundation as well as the mathematical definition of each mea-

surement.

Absolute Distance Measures Absolute distances between locations matter for trade and migration. A
first attempt to formally define how well a CBSA is integrated in the road network is to aggregate the inverse
of all bilateral distances. Denote connectivity as Connecto, then,

Connecto =
∑
d6=o

(1/dod). (2)

Higher values of Connecto indicate smaller aggregate distances to all locations and, hence a better road
network integration. A potential concern with the connectivity measure is that it is entirely dependent on
the geographical position of a location in space. That is to say, connectivity is naturally larger for those
CBSAs that are more centrally located in the road network, as compared to CBSAs at the border of the U.S.
territory. To add another (important) dimension to the measure of network integration, one could account
for the fact that some connections are economically more valuable than others. For instance, trade theory
predicts that proximity to larger markets increases the probability to trade, and hence fosters economic growth.
Consequently, considering a measure of market access addresses the economic value of transport connections.

Figure 3: Absolute Distance Measures

Connectivity
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∑

d 6=o
(1/dod) and reported in logs. Market access by CSBA is

measured as MAo =
∑

d6=o
(Ld/dod) and reported in logs.

In the new economic geography literature, market access plays a major role in explaining the spatial
distribution of economic activity (starting with Krugman, 1991). Donaldson and Hornbeck (2016) derive
a first-order approximation for market access from general equilibrium trade theory, which offers an easy
application in reduced form analyses. In particular, their approximation defines market access as the sum over
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the cost of trading with each other location and the other location’s population. I follow them and define trade
costs as the shortest distance on the network (dod), assuming the elasticity of distance to trade costs to be
unity. Then market access, MAo can be formulated as

MAo =
∑
d6=o

(Ld/dod), (3)

where Ld is the population level at destination d.
Figure 3 shows maps of both absolute distance measures at the CBSA level. As expected, connectivity lev-

els are highest in central north-eastern CBSAs and gradually decrease as one moves towards the U.S. national
border. The map on market access shows a similar pattern, however, the highest levels are shifted towards
highly-populated CBSAs at the north-eastern coast (around Boston and New York). Also, market access levels
are high along the south-western coast, due to a large number of high-density places in California.

Relative Distance Measures Contrary to absolute distance measures, relative distance measures evaluate
a road network connection relative to the great-circle distance. Essentially, the relative distance captures how
direct a connection is between a location pair. Figure 4 gives an example of a direct connection and an indirect
connection. While the connection from Jamestown to Fargo is almost following a straight line, the connection
from Jamestown to Grand Folks requires a detour via Fargo.

Figure 4: Direct vs. Indirect Connection

!

!

! Fargo, ND-MNJamestown, ND

Grand Forks, ND-MN

MinnesotaNorth Dakota

Notes: The figure portrays the road network between Jamestown (ND), Fargo (ND-MN) and Grand Forks (ND-MN). While
Jamestown and Fargo are connected by an almost straight line (direct connection), Jamestown and Grand Forks are connected

only via Fargo (indirect connection).

The more a location is directly connected to others the better is its relative connectivity. Formally, relative
connectivity is denoted as ConnectRo and defined as

ConnectRo =
∑
d 6=o

(dGCod /dod), (4)

where dGCod describes the great-circle distance between origin o and destination d. The ratio of great-circle
distance to network distance, (dGCod /dod), ranges between 0 and 1 for all origin-destination pairs. A ratio
close to unity implies that the network distance follows closely the straight-line between the connected places.
Weighting the relative connection between two locations by size of the destination market adds an economic
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value to the relative connection. Hence, the fourth measurement combines market size with the relative distance
and formally defines relative market access, MARo , as

MARo =
∑
d6=o

Ld(dGCod /dod). (5)

Figure 5 shows maps of relative distance measures at the CBSA level. Two things stand out. First,
relative distance measures are less dependent on the geographical position of a CBSA. While there is still a
concentration of high levels along the north-eastern coast, relative distance measures show a more significant
within-state variation across all U.S. states. Second, both relative connectivity and relative market access
clearly identify road network transportation hubs within states. For instance, the centrally located CBSAs in
Texas and Alabama are relatively better integrated in the federal road network as those closer to the state
border.

Figure 5: Relative Distance Measures
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∑
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od /dod) and reported in logs.

A potential concern with relative distance measures is that a direct connection between location pairs may
be crucially dependent on natural features surrounding them. In other words, connecting CBSAs that are
located in, say, the Rocky Mountains may require a large deviation from the great-circle distance solely due
to terrain ruggedness. To show that this concern does not systematically affect the relative distance measures,
I run a simple OLS estimation that relates relative distance measures with elevation levels and present the
results Table 9 in the Appendix. Furthermore, I calculate the average relative connectivity and average relative
market access by state and plot the outcome in Figure 6.11 For a better comparison, I add an elevation heat
map in the lower panel of Figure 6.

The maps in Figure 6 suggest that terrain ruggedness is not a strong determinant of (average) relative
distance measures.12 Neither states in the Rocky Mountains (e.g., Idaho, Montana, Wyoming, Colorado, New

11An alternative approach would be to use Dijkstra’s (1959) optimal route (algorithm) instead of the great-circle
distance. The advantage of using Dijkstra’s algorithm would be that topological features enter as inputs into the design
of the optimal route. However, the performance of the algorithm relies heavily on how building costs are specified, which
is the topic of a large body of literature in engineering and transport design. The possibility to build tunnels, bridges,
bypass segments, etc. typically complicates the choice of the appropriate specification. In comparison, the great-circle
distance is a simple and intuitive measure. This modeling choice is further supported by the fact that that terrain
ruggedness is indeed not a strong determinant of relative distance measures in the present application, as revealed by
Figure 6.

12This result is further supported by OLS results in Table 9 in the Appendix. The level of elevation in a CBSA is
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Figure 6: Relative Distance Measures (Average by State)
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(b) Relative Market Access
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(c) Elevation Heat Map

Note: State averages of relative connectivity and relative market access levels are reported in logs, respectively.

Mexico), nor those located along the Appalachian Mountains (e.g., Maine, New Hampshire, Pennsylvania,
Virginia) have systematically lower levels in relative distance measures than neighboring states that are not
located in the mountains. Instead, there is a clear north-south divide in relative distance measures. To some
extent, this captures the higher density of the National Highway System in the Northeast and the South, as
compared to the Northwest (compare Figure 2).

4 Empirical Strategy

This section outlines the empirical strategy with a particular emphasis on the Instrumental Variable (IV)
design, which allows – given its validity – a causal interpretation of capital status on road network integration.

4.1 Identification

I model the effect of capital status on road network integration using a log-linear specification, that is

log Yo = β Capitalo + Xoγ + εo, (6)

not a significant predictor for relative distance measures, especially, when controlling for additional covariats such as,
e.g., population levels and longitude/latitude values.
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where Yo is one of the road network integration outcomes at location o, Capitalo describes a binary indicator
that is one if a location is a state capital and zero otherwise, Xo is a vector of covariates of interest, and εo is the
error term.13 Retrieving an unbiased estimate for β using Ordinary Least Squares (OLS) requires that capital
status was randomly assigned. However, given the historical background of capital selection this assumption
would be strong. Even though some capital locations could be defended as (quasi-) random, the location choice
for most capitals was closely related to the westward expansion of the U.S. The main concern of endogeneity
is that historical routes, such as exploration routes, were a strong determinant for both capital location and
today’s transport network, which affects in turn the measures of road network integration. Duranton and
Turner (2012) provide empirical evidence that historical exploration routes in the U.S. (between 1528-1850)
are a strong predictor for nowadays’ transport connections. Montès (2014) provides anecdotal evidence that
capitals were often located at mercantile gateways (Fact 5) along which the historical road network expanded.
Following this argument, OLS would overestimate the true capital effect. On the contrary, there is a possibility
that OLS underestimates the true capital effect as most capital cities were not the largest cities in the state
(Fact 4) and hence, comparatively less well connected through the (at the time). In any case, the error term
εo is likely correlated with capital status, Capitalo, leading to a biased estimate for β.

4.2 Instrumental Variable Design

To address the endogeneity concern, I construct an instrument for capital status. The instrument exploits
the fact that (most) state capitals were chosen for their geographically central and easily accessible location
relative to other population clusters in their jurisdiction.14 I replicate this pattern by employing a heuristic
algorithm that predicts the boundaries of 48 U.S. states based on historical U.S. county information and define
the geographic center of each predicted U.S. state as the hypothetical capital location.

In Campante and Do (2014) and Rossitti (2020), the location of the state capital is instrumented by the
state centroid and therefore follows the same geographical centrality argument as in this paper. However, the
main difference here is that U.S. state borders are assumed endogenous, whereas Campante and Do (2014)
and Rossitti (2020) take them as given. Historical evidence has shown that U.S. state borders have often been
simultaneously chosen with the state capital – at least in those states where the capital location did not (or
only marginally) change over time (see Montès, 2014). Consequently, the location of state borders addresses
the same endogenity concern as the one for capital location and, thus, needs to be taken into account.

Formally, the construction of the instrument proceeds in three steps.

Step 1: Predicting Geography-based Population Density In order to inform the heuristic
algorithm, I predict geography-based population density in 1900 at the county level.15 I use the population
distribution that is determined by geographical features because it addresses a potential endogeneity concern,
in which the population distribution of 1900 was partially determined by the location of the historical road
network. As geographical features I employ three measures: (i) the average gradient of a county c (Gc), (ii)
the distance to the first arrival (Fc), and (iii) the distance to a river (Rc). The average gradient of a county
is based on gridded elevation data from the U.S. Geological Survey. It addresses the feasibility of settlement

13The vector of covariates includes log population levels in 2010 (logL2010
o ), log area size (logAo), absolute values

of longitude and latitude (|lato|, |lono|), and binary indicators for the four large U.S. regions (Northeasto, Southo,
Midwesto, Westo). The mapping of each CBSA to one of the four large U.S. regions follows Caselli and Coleman
(2001). For reasons of collinearity, only three out of four U.S. region indicators are included in the estimation.

14In the empirical analysis, I abstract from changes in capital city location prior to choosing the permanent capital.
15Historical population records are only available at the county level. In some cases historical counties were signifi-

cantly larger than nowadays CBSAs. To avoid measurement error, I refrain from aggregating the historical county level
information to the CBSA level.
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given topographical constraints. The distance to first arrival is a (straight-line) distance between the county’s
centroid and the nearest first arrival point of European settlers on the eastern coast and on the western coast,
respectively.16 It accounts for the gradual evolution of U.S. settlement from the coast to the center of the
territory. The distance to the closest river is a (straight-line) distance between a county’s centroid and the
nearest river based on Natural Earth data. It reflects the importance of population clusters close to good
trading opportunities. To predict geography-based population density in 1900, I define the following log-linear
specification:

log L̄1900
c = α1r logGc + α2r logFc + α3r logRc + εc with Gc, Fc, Rc > 0, (7)

where the subscript r on either coefficient {α1r, α2r, α3r} stands for region. It describes one of the four large
U.S. regions: the Northeast, the South, the Midwest and the West and thereby follows a well-established
regional classification according to the U.S. Census Bureau.17 I estimate (7) for each region separately by OLS
and present the estimation outcome in Table 2. As expected, all geography distance measures are negatively
related to population density in 1900. Moreover, all measures are highly relevant for counties located in the
Northeast, the South and the Midwest. For counties in the West, only the distance to the first arrival is
statistically significant.

Table 2: Geography-based Population Density
in 1900

(1) (2) (3) (4)
log L̄1900

c Northeast South Midwest West

log Gc -0.471∗∗∗ -0.147∗∗∗ -0.475∗∗∗ -0.128
(0.090) (0.041) (0.063) (0.144)

log Fc -0.449∗∗∗ -1.595∗∗∗ -2.163∗∗∗ -0.699∗∗∗

(0.114) (0.115) (0.107) (0.121)
log Rc -0.136∗∗ -0.262∗∗∗ -0.225∗∗∗ -0.086

(0.055) (0.038) (0.035) (0.066)
Obs. 243 1253 1023 315
Adj R2 0.164 0.196 0.277 0.139

Notes: Robust standard errors in parentheses. * p < 0.10, **
p < 0.05, *** p < 0.01.

Figure 7: Predicted vs. Observed Population
Density
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Figure 7 plots the predicted log population density against the observed log population density and high-
lights the fitted values as a red line. It suggests that the three geography measures replicate a large share of
the variation in observed population density. The correlation coefficient between both is 0.64 (p=.000).

Step 2: k-means Clustering Algorithm I use the predicted (log) population density from Step 1
as weights in a k-means clustering algorithm. In my specific application, the k-means clustering provides an
answer to the following question: If a central planner had to draw the borders of 48 U.S. states according to the
(population-weighted) location of U.S. counties in 1900, where would she draw them? Mathematically, k-means
clustering partitions observed counties c ∈ C into k = 48 sets (with k ≤ C) based on (population-weighted)
county coordinate information. The objective is to choose 48 clusters so as to minimize the within-cluster
variance. Thereby, I assume the number of clusters as exogenously given, knowing that continental U.S. is

16The first arrival point on the east coast is Jamestown, Virginia. The first arrival point on the west coast is San
Francisco, California.

17I assign each county to one of the four large U.S. regions (the Northeast, the South, the Midwest and the West)
following the mapping of Caselli and Coleman (2001).
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Figure 8: Predicted U.S. States and Hypothetical Capital Locations
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composed of 48 contiguous states.18 Formally, the algorithm solves the following optimization problem:

argminS
k∑
i=1

∑
xc∈Si

||xc − xµi
||2, (8)

where xc denotes the coordinate point of an observed county c, and xµi
denotes the k-mean coordinate point

of any set S = {S1, S2, ..., Sk}, over which the algorithm optimizes. K-means clustering is a non-deterministic
polynomial-time problem, which implies that it is computationally difficult (if not impossible) to determine
a global optimum. In the present context, however, reaching a global optimum is not a necessary condition
because all that matters is that the instrumental variable meets the validity criteria. By applying an efficient
heuristic algorithm the algorithm converges quickly to a local optimum. Ultimately, the hypothetical capital
locations are defined as the resulting cluster centers (i.e., k-mean coordinates). Figure 8 shows a cluster plot,
which identifies the 48 U.S. states in different colors and marks the hypothetical capital location as the cluster
centers in black dots.

Step 3: Construction of the Final Instrument I spatially assign each CBSA in the data to the
predicted U.S. state in which the CBSA lies.19 Once each CBSA is mapped to a predicted U.S. state (k-
cluster), I calculate the (straight-line) distance between the CBSA maximum density point and the respective
hypothetical capital. I then rank all CBSAs within a predicted U.S. state according to their (straight-line)
distance to the hypothetical capital location; and denote this variable as Ranko. In the first stage regression,

18By construction, the k-means clustering algorithm improves within-cluster variance as the number of clusters k
increases. Taking it to the extreme, the within-cluster variance is optimal if each data point is assigned to its own
cluster. While this is not a desirable outcome, the data science literature has developed various methods to identify the
appropriate number of clusters (see Kaufman and Rousseeuw, 1990). The most common methods (i.e., the elbow method
or the silhouette method) are based on the idea that adding another cluster is only appropriate if the marginal gain in
variance minimization is significantly large enough. In my data, the most appropriate number of clusters according to
the silhouette method is k = 2.

19The exact location of the CBSA is determined by its maximum density point (see Section 3).
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Ranko serves as an instrument that predicts the binary indicator Capitalo. Formally, I estimate the following
first stage specification:

Capitalo = ρRanko + Xoγ + εFirsto . (9)

Table 3 presents the first stage results. The instrument is highly relevant and, as expected, it shows a
negative sign, which implies that capital cities are in fact nearer located to hypothetical capital locations. The
Kleinbergen-Paap F-Statistic for a weak instrument test can be rejected at the 5% significance level.20 The
strength of the instrument is further supported by Figure 9. It plots the probability of being a capital against
its rank in distance to the hypothetical capital location and shows a clear negative correlation between the
two.

Table 3: First Stage Results

Capitalo

Ranko -0.003∗∗∗

(0.001)

Number of k 48
Observations 920
Adj. R2 0.12
F-Stat Weak Inst 17.75

Notes: State clustered and robust standard
errors in parentheses. ∗ p < 0.10, ∗∗ p <
0.05, ∗∗∗ p < 0.01. The regression includes
the list of covariates stated in Section 4.1.

Figure 9: Predicted Capital Status vs. Rank
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Note: The graph shows the average probabilty of capital status by rank.

4.3 Results

Table 4 reports the second stage results from estimating (6) for all network integration outcomes. For each
outcome, I compare the results of the IV specification to the simple OLS estimate.21

When estimating the model with OLS, the effect of capital status on road network integration outcomes
is small in magnitude relative to the IV specification. This first finding is surprising. If the capital selection
process did, as expected, favor cities that were already well connected, OLS should over-estimate the true
capital effect. The small magnitude of the OLS estimates is actually more in line with the historical balance-
of-power hypothesis. This hypothesis stipulates that capital status was intentionally attributed to smaller,
(initially) less well connected cities in order to spatially separate political and economic centers of power.
Once the endogenous binary indicator Capitalo is instrumented, the effect gets larger in magnitude for all
outcomes and highly significant for relative distance measures. Relative distance measures include relative

20Stock and Yogo (2005) report critical values at which the weak instrumentation test can be rejected. The critical
value is a function of the number of included endogenous regressors, the number of instrumental variables, and the
desired maximum bias relative to OLS. In my case, for one endogenous regressor, one instrumental variable and a
maximum relative bias of 5%, the critical value is 16.38.

21For the sake of brevity, coefficients of all included covariates are suppressed in the main table. The interested reader
can find the full table in the Appendix (see Table 10).
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Table 4: Second Stage Results

Absolute Distances Relative Distances
log Connecto log MAo log ConnectR

o log MAR
o

(1) (2) (3) (4) (5) (6) (7) (8)
OLS IV OLS IV OLS IV OLS IV

Capitalo 0.022 0.298 -0.017 0.470 0.005∗∗ 0.151∗∗∗ 0.008∗∗∗ 0.152∗∗∗

(0.025) (0.652) (0.026) (0.484) (0.002) (0.047) (0.002) (0.056)
Observations 920 920 920 920 920 920 920 920
Adj. R2 0.91 0.61 0.29 0.17 0.87 0.80 0.40 0.34

Notes: State clustered and robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
All regressions include the list of covariates stated in Section 4.1.

connectivity and relative market access. The effect of capital status on both is very similar in terms of
magnitude and significance. Hence, weighting each relative distance connection by size of the destination
market does not change the capital effect overall. In particular, the IV regression result suggests that capital
cities have on average about 14 percent larger levels of relative connectivity and relative market access as
compared to non-capital cities of similar characteristics.22 While this result does not have a straight-forward
economic interpretation, it confirms that capitals are on average more directly integrated in the road network
than non-capital cities.

Absolute distance measures, on the other hand, have a straight-forward economic interpretation. Trade
theory suggests that larger levels of connectivity and – even more so of market access – imply better trading
opportunities and hence economic prosperity. In the main empirical result, I find a positive though insignificant
effect of capital status on connectivity and market access. A possible explanation for why the effect is insignif-
icant could be due to the definition of the absolute distance measures. Both measures are very concentrated
in some regions of the U.S. and their magnitude is heavily dependent on how centrally located the CBSA is
in the overall National Highway System (see Figure 3). State capitals, however, are naturally very spread out
across the entire country. Consequently, the spatial variation in capital city locations is not captured enough
by the concentrated measures of connectivity and market access.

5 Discussion

The estimated effect of capital status on road network integration measures is an outcome of a pooled re-
gression, which combines CBSAs of heterogeneous states and capital cities that have been selected for many
different reasons. This section sheds further light on the drivers of the effect and provides evidence for plau-
sible mechanisms behind the results. The subsequent analysis concentrates on relative market access as main
outcome variable.

Drivers To understand the drivers of the capital effect on relative market access, I construct a number of
state-level binary indicators that classify the sample according to general and historical characteristics.

The general characteristics include information on the state urbanization rate, state size and the size of
the capital city. Regarding the urbanization rate and state size, I calculate the 50th percentile of the entire
distribution and define each binary indicator as unity if a CBSA is located in a state with below median
urbanization rate and state size, respectively. Regarding size of the capital city, I define the binary indicator

22Halvorsen and Palmquist (1980) provide a review on the interpretation of dummy variables in semilogarithmic
equations. The effect is calculated as g = 100× (exp(b−V (b)/2)−1), where g is the effect in percent, b is the coefficient
on the dummy variable and V (b) is the variance of the coefficient of the dummy variable.
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as unity if a CBSA is located in a state in which the capital city is not the largest city.
The historical characteristics include information on the spatial patterns of capital migration (see historical

background, Section 2). I define four binary indicators for either type of spatial pattern: Westward/Centrality,
Rotation, Readjustment and Other.23 Each indicator is unity if a CBSA is located in a state in which the
respective spatial pattern was not prevalent.

In separate analyses, I use one binary indicator at the time as an interaction term with capital status, to
single out its importance in the overall effect. The empirical specification is as follows

logMARo = β̃ Capitalo + δ1Indicatoro + δ2Capitalo × Indicatoro + Xoγ + εo, (10)

where Indicatoro describes one of the previously mentioned binary indicators. Then, the coefficient β̃ is the
effect of capital status on relative market access conditional on Indicatoro being zero. For this reason, I have
defined each indicator in its reverse sense, implying that they are zero for the attribute they are analyzed for.

Table 5: Estimation Results – Drivers

Panel A: General Characteristics
Dep. Var. log(MAR

o ) (1) (2) (3)
Capital is Above Median Above Median

Largest City State Size Urbanization Rate
Capitalo (β̃) 0.297∗∗ 0.454∗ 0.189∗∗∗

(0.134) (0.236) (0.0701)
Panel B: Historical Characteristics

Dep. Var. log(MAR
o ) (1) (2) (3) (4)

Westward/Centrality Rotation Readjustment Other
Capitalo (β̃) 0.255** 5.230 2.008 1.105

(0.102) (10.98) (1.761) (0.864)
Observations 920 920 920 920

Notes: State clustered and robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
All regressions include the list of covariates stated in Section 4.1. Capitalo and Capitalo × Indicatoro are
instrumented with Ranko and Ranko × Indicatoro.

Table 5 presents the results from estimating (10) as IV regression. The table is divided in two panels
and each column in a panel is named after the indicator that is analyzed.24 When looking at general state
characteristics, the results in panel A suggest that the capital effect is driven by large, urbanized states in
which the capital is the largest city. Moreover, panel B suggests that the historical decision on state capital
centrality within the state is a driver of the capital effect, while other spatial patterns are not.

Centrality Throughout the paper, centrality has played an important role in characterizing U.S. state
capitals. By far the most common spatial pattern that decided on the capital location was (geographical)
centrality. The employed instrument, that is highly relevant in predicting capital status, is fundamentally based
on the idea of (demographic) centrality. The effect of capital status on relative market access is (partially)
driven by large U.S. states, where centrality is key to governing the political jurisdiction. In short, centrality
matters.

Additional evidence that underlines the centrality argument could be to rerun the analysis with an alter-
native instrument that is based on geographical centrality within the actual state borders (as in Campante

23The category Other includes all states that have never changed capital, and those that had other reasons for capital
migration than westward/centrality, rotation or readjustment.

24For brevity, Table 5 shows only the estimate of interest, β̃ (see Table 11 in the Appendix, for full information).
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and Do, 2014; Rossitti, 2020). To do so, I rank each CBSA by its distance to the state centroid and denote
this instrument as R̃anko. Table 6 contrasts the main estimation result in column (1) to the estimation result
with the alternative instrument in column (2). The results suggest that state centrality – based on actual
U.S. state borders – is as relevant to predicting the capital location and the capital effect remains positive and
significant, though smaller in magnitude.

Table 6: Estimation Results – Alternative Instrument

First Stage

(1) (2)

Instrument Ranko -0.003*** R̃anko -0.003***

(0.001) (0.001)

Dep. Var. log(MAR
o ) Second Stage

Capitalo 0.152*** 0.039*

(0.056) (0.020)

Observations 920 920

F-Stat Weak Inst 17.75 11.94

Notes: Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
All regressions include the list of covariates stated in Section 4.1. For one
endogenous regressor, one instrumental variable and a maximum relative bias
of 5%, the critical value for the weak instrumentation F-Statistic is 16.38
(Stock and Yogo, 2005).

Even though U.S. states and their capital cities are highly heterogeneous, their common feature of state
capital centrality is the main mechanism that explains a better – and effectively more direct – road network
integration. On the one hand, the Christaller’s (1933) Central Place Theory suggests that an efficient road
network radially expands around the most central place on top of the hierarchy. On the other hand, even if the
capital city is not the largest, most important urban center, its central location favors a better road network
integration. This is because, a network that connects places across the entire jurisdiction passes on average
more often by the geographic center. Along these lines, Faber (2014) provides evidence that some peripheral
places in China have been comparatively well integrated in the National Trunk Highway System due to an
on-the-way treatment between targeted metropolitan areas.

Connection to Major Urban Centers The second mechanism that may explain the capital effect on
(direct) road network integration is related to political interest representation. Conceptually, this mechanism
is hard to test for as political influence in road network provision is very difficult to measure. However, there
is one plausible argument that interest groups could have defended. As capitals are places of power and
decision making, it may be of interest to integrate capital cities well with economically important urban areas
around. To test this hypothesis, I construct an alternative measurement of relative market access, M̃ARo , which
considers only connections to the 50 largest CBSAs – i.e., those with more than one million inhabitants.
Table 7 compares the main estimation result in column (1) with the effect on the alternative measurement
of relative market access in column (2). The comparison shows that the capital effect still holds when only
considering connections to the main urban centers, even though the coefficient is slightly smaller in magnitude.
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Table 7: Estimation Results – Alternative Measure
of Relative Market Access

(1) (2)

logMAR
o log M̃AR

o

Capitalo 0.152*** 0.147**

(0.056) (0.060)

Observations 920 920

Notes: Standard errors in parentheses. ∗ p < 0.10, ∗∗
p < 0.05, ∗∗∗ p < 0.01. All regressions include the list of
covariates stated in Section 4.1.

6 Conclusion

This paper links the political status of U.S. urban areas to their integration in the National Highway System
(NHS) in order to understand whether there is a capital premium in road network provision. I document
historical patterns of U.S. state capital selection and use the common feature of geographical centrality to
construct an instrument for the endogenous capital location. In particular, the IV design is based on a k-
means clustering algorithm that predicts the boundaries of 48 U.S. states and defines the geographical center
as a hypothetical capital location. I then estimate the causal effect of capital status on four outcomes of
road network integration. Two outcome measures (connectivity and market access) evaluate the strength
of integration based on the aggregate proximity to all other locations. The other two outcomes (relative
connectivity and relative market access) measure how directly connected a location is to all others. I find
significant and robust evidence that capital cities are more directly integrated in the NHS compared to non-
capital cities of similar characteristics. The reason for this finding is a combination of two aspects. First,
(most) capital cities have a favorable geographical position within their state. This makes them a natural
candidate for a direct road network integration according to the Central Place Theory. And second, as capital
cities are places of political power and decision-making, there is a governmental interest in establishing direct
connections to other major urban areas. Given that the decision on the location of the federal highway network
was subject to inter-governmental negotiations, this interest likely played in favor of capital cities.
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Table 9: OLS Results on Relative Distance Measures and Terrain Ruggedness

Relative Connectivity Relative Market Access
(1) (2) (3) (4) (5) (6)

log(Elevo) -0.003** -0.004** -0.002 -0.004*** -0.002 0.001
(0.001) (0.002) (0.001) (0.001) (0.001) (0.002)

log(StateElevo) 0.002 0.004 -0.002 0.004
(0.003) (0.003) (0.004) (0.003)

Additional covariats NO NO YES NO NO YES
Obs. 920 920 920 920 920 920
Adj R2 0.030 0.032 0.358 0.049 0.053 0.383

Notes: State-clustered and robust standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. log(Elevo) is log average
elevation in a CBSA o. log(StateElevo) is log average elevation in the respective state of CBSA o. Data on elevation levels comes
from the North America Elevation 1-Kilometer Resolution GRID. Additional covariats include the regressors of interest from the main
empirical specification: log population in 2010, log area size, log absolute values of longitude and latitude, binary indicators for the
main U.S. regions including, Northeast, the South and the Midwest.
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Table 10: Second Stage Results - Full Table

Absolute Distances Relative Distances
logConnecto logMAo logConnectRo logMAR

o

(1) (2) (3) (4) (5) (6) (7) (8)
OLS IV OLS IV OLS IV OLS IV

Capitalo 0.022 0.298 -0.017 0.470 0.005** 0.151*** 0.008*** 0.152∗∗∗

(0.025) (0.652) (0.026) (0.484) (0.002) (0.047) (0.002) (0.056)
log(L2010

o ) 0.027∗∗ 0.014 0.079∗∗∗ 0.055∗ 0.004∗∗∗ -0.003 0.002∗∗∗ -0.005∗

(0.011) (0.035) (0.014) (0.030) (0.001) (0.002) (0.001) (0.003)

log(Ao) -0.091∗∗∗ -0.098∗∗∗ -0.154∗∗∗ -0.166∗∗∗ -0.000 -0.004 -0.003∗ -0.007∗

(0.019) (0.026) (0.019) (0.027) (0.002) (0.003) (0.001) (0.003)

|lono| -0.014∗∗∗ -0.014∗∗∗ -0.014∗∗∗ -0.014∗∗∗ 0.000 0.000 0.000 0.000
(0.003) (0.003) (0.003) (0.003) (0.000) (0.000) (0.000) (0.000)

|lato| -0.003 -0.004 -0.011∗ -0.013∗∗ -0.002∗∗∗ -0.003∗∗∗ -0.003∗∗∗ -0.003∗∗∗

(0.008) (0.006) (0.007) (0.005) (0.000) (0.000) (0.000) (0.000)

Northeast -0.132 -0.142 -0.021 -0.040 0.023∗∗ 0.018 0.016∗ 0.010
(0.147) (0.147) (0.099) (0.101) (0.011) (0.012) (0.009) (0.008)

South 0.161 0.152∗ -0.096 -0.112 -0.002 -0.007 0.005 -0.000
(0.104) (0.092) (0.074) (0.071) (0.009) (0.009) (0.007) (0.006)

Midwest 0.250∗∗∗ 0.246∗∗∗ 0.007 -0.001 0.008 0.005 0.011∗∗ 0.009∗∗

(0.080) (0.076) (0.057) (0.059) (0.006) (0.007) (0.004) (0.004)

Cons. 1.712∗∗∗ 1.949∗∗∗ 14.682∗∗∗ 15.102∗∗∗ 6.687∗∗∗ 6.813∗∗∗ 19.378∗∗∗ 19.503∗∗∗

(0.534) (0.498) (0.381) (0.332) (0.032) (0.052) (0.031) (0.046)
Observations 920 920 920 920 920 920 920 920

Notes: State clustered and robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. log(L2010
o )

is log population in 2010, log(Ao) is log area size, log(|lono|) and log(|lato|) are log absolute values of longitude and
latitude, respectively. Northeasto, Southo and Midwesto are binary indicators that are unity if a CBSA is located
in a state that belongs to the Northeast, the South and the Midwest, respectively.

28



Table 11: Estimation Results - Drivers (Full Table)

Panel A: General Characteristics
Dep.Var. log(MAR

o ) (1) (2) (3)
Capital is Above Median Above Median

Largest City State Size Urbanization Rate
Capitalo (β̃) 0.297∗∗ 0.454∗ 0.189∗∗∗

(0.134) (0.236) (0.070)
Indicatoro 0.018∗ 0.022∗∗ 0.008

(0.010) (0.010) (0.005)
Capitalo × Indicatoro -0.274∗∗ -0.420∗ -0.174∗∗∗

(0.129) (0.226) (0.067)
log(L2010

o ) -0.007∗ -0.010 -0.004
(0.004) (0.006) (0.003)

log(Ao) -0.007∗∗ -0.004 -0.001
(0.003) (0.007) (0.003)

|lono| 0.000 0.000 0.000
(0.000) (0.000) (0.000)

|lato| -0.003∗∗∗ -0.004∗∗∗ -0.003∗∗∗

(0.000) (0.001) (0.000)
Northeasto 0.001 0.030∗∗ 0.014

(0.011) (0.013) (0.009)

Southo 0.000 0.006 0.005
(0.006) (0.012) (0.007)

Midwesto 0.006 0.015 0.013∗∗∗

(0.006) (0.010) (0.005)

Cons. 19.514∗∗∗ 19.530∗∗∗ 19.452∗∗∗

(0.058) (0.108) (0.035)
Continued.
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Table 10: Continued.

Panel B: Historical Characteristics
Dep.Var. log(MAR

o ) (1) (2) (3) (4)
Westward/Centrality Rotation Readjustment Other

Capitalo (β̃) 0.255∗∗ 5.230 2.008 1.105
(0.102) (10.982) (1.761) (0.864)

Indicatoro 0.015∗∗∗ 0.538 0.127 0.048
(0.005) (1.136) (0.103) (0.042)

Capitalo × Indicatoro -0.240∗∗ -5.186 -1.965 -1.065
(0.098) (10.920) (1.739) (0.842)

log(L2010
o ) -0.001 -0.012 -0.015 -0.012

(0.002) (0.024) (0.016) (0.010)

log(Ao) -0.010∗∗ -0.003 -0.008 -0.015
(0.004) (0.012) (0.008) (0.011)

|lono| 0.000 -0.003 0.000 0.001
(0.000) (0.006) (0.000) (0.001)

|lato| -0.003∗∗∗ 0.000 -0.003∗∗∗ -0.004∗∗∗

(0.000) (0.006) (0.001) (0.001)

Northeasto 0.007 -0.250 0.011 0.035∗

(0.008) (0.543) (0.019) (0.019)

Southo -0.007 -0.020 -0.002 0.009
(0.006) (0.051) (0.012) (0.016)

Midwesto 0.005 -0.076 0.003 0.014
(0.005) (0.170) (0.014) (0.012)

Cons. 19.487∗∗∗ 19.258∗∗∗ 19.517∗∗∗ 19.556∗∗∗

(0.044) (0.571) (0.153) (0.150)

Observations 920 920 920 920

Notes: State clustered and robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
All regressions include the list of covariates stated in Section 4.1. Capitalo and Capitalo × Indicatoro are
instrumented with Ranko and Ranko × Indicatoro. log(L2010

o ) is log population in 2010, log(Ao) is log
area size, |lono| and |lato| are absolute values of longitude and latitude, respectively. Northeasto, Southo

and Midwesto are binary indicators that are unity if a CBSA is located in a state that belongs to the
Northeast, the South and the Midwest, respectively.
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