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A B S T R A C T

One of the goals of artificial intelligence is to create machines that
can think like humans. Deep learning has been at the core of the
remarkable progress made towards this goal. Large artificial neu-
ral networks trained on massive datasets can master tasks across
vastly different domains. Despite the progress on i.i.d. generaliza-
tion — i.e., when the training and test data are independently
and identically distributed — these models struggle when tested
outside of the support of the training data. But can we even ex-
pect to generalize out of the training distribution? In certain con-
texts, yes, and one of the hallmarks of human intelligence is to
use our causal understanding of the data generating process to
correctly make inference out of distribution (o.o.d.). This thesis
investigates four different assumptions and techniques to support
o.o.d. generalization with deep learning. (i) o.o.d. generalization
via composition. By relying on the assumption of independence of
mechanisms from the literature on causality, we learn a set of mod-
ular, reusable neural networks via competition of experts. These
modules specialize and can be applied sequentially to account
for novel combinations of transformations at test time; (ii) o.o.d.
generalization via invariances, where the training data has a mix-
ture of invariant and spurious features, and only the invariances
support generalization at test time. We show that training neu-
ral networks with the arithmetic mean of gradients may lead to
memorization and spurious features to emerge, while the geomet-
ric mean of the gradients suppresses them in favor of invariances;
(iii) o.o.d. generalization via symbolic expressions: where identify-
ing the correct underlying symbolic equation, as commonly done
in the sciences, allows making accurate predictions far from the
training distribution. We leverage large-scale pre-training to make
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a neural network learn to predict symbolic equations from a set of
input-output observations, vastly outperforming state-of-the-art
hand-designed approaches; (iv) o.o.d. generalization via planning,
a classic technique to reduce uncertainty by investing additional
time and compute at test time to solve more complex instances of
problems seen during training. We present a divide-and-conquer
algorithm that builds on top of Monte Carlo Tree Search with neu-
ral policy and value functions. By recursively splitting the prob-
lem in half, horizons and their uncertainties get exponentially
shorter as a function of planning depth, allowing the model to
plan over much longer periods.
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S O M M A R I O

Uno degli obiettivi dell’intelligenza artificiale è quello di creare
macchine che possano pensare come gli esseri umani. L’appren-
dimento profondo (deep learning) è stato al centro degli incredibili
progressi fatti finora verso questo obiettivo. Grandi reti neurali ar-
tificiali addestrate su vasti insiemi di dati, possono padroneggiare
compiti in domini molto diversi tra loro. Nonostante i progressi
sulla generalizzazione i.i.d. — cioè quando i dati di allenamento e
di test sono distribuiti in modo indipendente e identico — questi
modelli faticano quando vengono testati al di fuori del supporto
dei dati di allenamento. Ma è plausibile aspettarsi di generaliz-
zare al di fuori della distribuzione dei dati di allenamento (o.o.d.,
per ‘out of distribution’)? In certi contesti sì, e uno dei tratti distin-
tivi dell’intelligenza umana è quello di usare la nostra compren-
sione causale dei processi di generazione dei dati per fare inferen-
za correttamente anche al di fuori della distribuzione. In questa
tesi, indaghiamo quattro diverse ipotesi e tecniche per supporta-
re la generalizzazione o.o.d. con l’apprendimento profondo: (i)
generalizzazione o.o.d. tramite composizione, dove basandosi sul-
l’ipotesi di indipendenza dei meccanismi dalla letteratura sulla
causalità, alleniamo un insieme di reti neurali modulari e riutiliz-
zabili tramite la competizione di esperti. Questi moduli si spe-
cializzano durante l’addestramento e possono essere applicati in
modo sequenziale per tenere conto di nuove combinazioni di tra-
sformazioni al tempo di test; (ii) generalizzazione o.o.d. tramite
invarianze, dove i dati di allenamento hanno un misto di carat-
teristiche invarianti e spurie, e solo le invarianze supportano la
generalizzazione al momento del test. Mostriamo che l’addestra-
mento delle reti neurali con la media aritmetica dei gradienti può
portare alla memorizzazione e all’emergere di caratteristiche spu-
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rie, mentre la media geometrica dei gradienti le riduce a favore
delle invarianze; (iii) la generalizzazione o.o.d. tramite espressioni
simboliche, dove l’identificazione della corretta equazione simbo-
lica sottostante, come comunemente fatto nelle scienze, permette
di fare previsioni accurate lontano dalla distribuzione di allena-
mento. Sfruttiamo il pre-addestramento su larga scala per far sì
che una rete neurale impari a predire equazioni simboliche da un
insieme di osservazioni input-output, superando di gran lunga lo
stato dell’arte degli approcci progettati a mano; (iv) la generalizza-
zione o.o.d. tramite la pianificazione, una tecnica classica per ridur-
re l’incertezza investendo ulteriore tempo e calcolo al momento
del test per risolvere istanze più complesse di problemi visti du-
rante l’allenamento. Presentiamo un algoritmo divide-et-impera
che si basa sulla Ricerca ad albero Monte Carlo con policy e funzio-
ni di valore neurali. Suddividendo ricorsivamente il problema a
metà, gli orizzonti diventano esponenzialmente più brevi in fun-
zione della profondità di pianificazione, permettendo al modello
di pianificare su tempi molto più lunghi.
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P R O L O G U E

As Dante descends into the 8th Circle of the Inferno, he meets
Ulysses. After the war, on his way back home, Ulysses had to
fight against a six-headed monster, the Sirens, a Cyclops, and a
goddess-witch, before reaching the shores of his kingdom ten
long years later. Dante asks him what had happened next: did
Ulysses stay in Ithaca, rejoined with his family, after reconquer-
ing his kingdom? Not for long, says Ulysses:

né dolcezza di figlio, né la pièta
del vecchio padre, né ’l debito amore
lo qual dovea Penelopè far lieta,

vincer potero dentro a me l’ardore
ch’i’ ebbi a divenir del mondo esperto
e de li vizi umani e del valore;

ma misi me per l’alto mare aperto
sol con un legno e con quella compagna
picciola da la qual non fui diserto.

L’un lito e l’altro vidi infin la Spagna,
fin nel Morrocco, e l’isola d’i Sardi,
e l’altre che quel mare intorno bagna.

Io e’ compagni eravam vecchi e tardi
quando venimmo a quella foce stretta
dov’Ercule segnò li suoi riguardi

acciò che l’uom più oltre non si metta;
da la man destra mi lasciai Sibilia,
da l’altra già m’avea lasciata Setta.

"O frati," dissi, "che per cento milia
perigli siete giunti a l’occidente,

not tenderness for a son, nor filial duty
toward my aged father, nor the love I owed
Penelope that would have made her glad,

could overcome the fervor that was mine
to gain experience of the world
and learn about man’s vices, and his worth.

And so I set forth upon the open deep
with but a single ship and that small band
of shipmates who had not deserted me.

One shore and the other I saw as far as Spain,
Morocco, the island of Sardegna,
and other islands set into that sea.

I and my shipmates had grown old and slow
before we reached the narrow strait
where Hercules marked off the limits,

warning all men to go no farther.
On the right-hand side I left Seville behind,
on the other I had left Ceüta.

“O brothers,” I said, “who, in the course
of a hundred thousand perils, at last
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a questa tanto picciola vigilia

d’i nostri sensi ch’è del rimanente
non vogliate negar l’esperïenza,
di retro al sol, del mondo sanza gente.

Considerate la vostra semenza:
fatti non foste a viver come bruti,
ma per seguir virtute e canoscenza"

have reached the west, to such brief wakefulness

of our senses as remains to us,
do not deny yourselves the chance to know—
following the sun—the world where no one lives.

Consider how your souls were sown:
you were not made to live like brutes or beasts,
but to pursue virtue and knowledge.”

Dante Alighieri, La Divina Commedia – Inferno, Canto XXVI vv 94-120 1

Restless, with an unquenchable thirst for knowledge, Ulysses
had taken a little ship, a few companions, and set off to the Pillars
of Hercules, the edge of the known world on the Strait of Gibral-
tar. The Pillars of Hercules in the classical and pre-modern era
were not only a geographical concept, but also metaphorically ex-
pressed the limits of knowledge and of what could be known.2

Our minds allow us to go vastly beyond the distribution of our
experiences: we discovered the laws governing stars and atoms,
inventing and mastering tools to expand our reach and explain
the world around us. Ulysses embodies the desire and capacity to
go beyond the limits of our direct experience, which (in his words) is
ultimately what makes us human. This is the type of generalization
that is still out of reach for artificial intelligence.

In the next pages we will embark on our own short voyage
accompanied by a loyal crew of artificial neural networks. We
will set sails beyond the known lands of what can be observed in
training, and crossing the support of the training distribution —
the Pillars of Hercules of learning — we will explore the mysterious
ocean out of the distribution.

1 The English translation is by R. Hollander and J. Hollander.
2 The Pillars of Hercules appear on the title page of Francis Bacon’s Novum Organum,

where he advocated for empirical investigation as the foundation for science, to
open up new frontiers of knowledge.
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1
I N T R O D U C T I O N A N D O V E RV I E W

1.1 generalization and deep learning

One of the goals in the field of artificial intelligence is to create ma-
chines that can think like humans. In the past ten years we have
witnessed an incredible progress towards this goal, as machine
learning research has focused heavily on artificial neural networks,
also called deep learning (LeCun et al., 2015). Deep learning mod-
els are computer programs that implement networks of simple
interconnected units inspired by biological neurons. The connec-
tions between these units (also called neurons) determine how
signals propagate and interact, and what outputs and behaviors
are eventually expressed by the network. Similarly to what hap-
pens in a biological brain, in an artificial neural network learning
amounts to adjusting the connections between the neurons in re-
sponse to experience, with the objective of improving its behavior
on a given task.1

One of the most impressive aspects about deep learning is that,
akin to biological brains, these artificial neural networks can mas-
ter tasks across a very diverse set of domains, in some cases
reaching human level or super-human level performance. The list
of domains goes from computer vision (Krizhevsky et al., 2012;
Ramesh et al., 2021; Radford et al., 2021) to natural language pro-
cessing (NLP) (Brown et al., 2020), audio processing (Oord et al.,
2018b), game playing (Silver et al., 2016; Silver et al., 2017), to
robotics and continuous control (Akkaya et al., 2019), all the way
to protein folding (Jumper et al., 2021) and more.

1 For a thorough technical background on deep learning see Goodfellow et al., 2016.
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2 introduction and overview

Artificial neural networks have a large expressive power that
has also been quantified theoretically. Multi Layer Perceptrons
(MLPs) are universal approximators, i.e., given enough hidden
units and non-linear activations, they can approximate any well-
behaved function to desired precision on a bounded domain (Cy-
benko, 1989).2. Recurrent Neural Networks (RNNs) are even more
expressive (Siegelmann and Sontag, 1995), as they can compute
any computable function (i.e. implement any algorithm) by simu-
lating a pushdown automaton with two stacks, which in turn can
implement any Turing machine.

Trained with very large amounts of data, these powerful mod-
els can learn to solve complex tasks, as long as we test them on
inputs that are not ‘too far’ from what they observed in training.
Technically, we talk about a training distribution Ptrain, from which
the training data Dtrain is sampled, and a test distribution Ptest, that
may or may not coincide with Ptrain. If they do coincide we call
the problem of generalizing to novel test examples i.i.d. generaliza-
tion (for independently and identically distributed), or often in the
literature simply generalization. This is the most well known, stud-
ied and formalized type of generalization, and for which statistical
learning theory provides a rigorous foundation under a small set
of assumptions (Bishop, 1995; Vapnik, 1999). However, the test
distribution Ptest does not always coincide with Ptrain in practice.
The term covariate shift (Shimodaira, 2000) is often used to de-
scribe the setting where Ptrain(X) 6= Ptest(X), but P(Y|X) stays
the same. In this context, the ratio Ptest(x)/Ptrain(x) (sometimes re-
ferred to as importance) is assumed to be finite (Shimodaira, 2000)
for all x, i.e., the support of the test distribution is assumed to be
fully contained within the support of the training distribution; in
this setting, the importance can be used as a re-weighting factor
(Shimodaira, 2000).

2 In Appendix B.1.1 we review in detail a classic technique to construct such an
approximation.



1.2 outline 3

In this work we will look at the more extreme case, where the
supports of Ptrain(X) and Ptest(X) are disjoint, and therefore im-
portance weighting is not an option. This is a challenging set-
ting, where even the the notion of ‘P(Y|X) stays the same’ might
sound vacuous under these conditions. Moreover, how can we
expect to make meaningful predictions outside of the support
of the datapoints we observed during training? If anything can
happen beyond the support of the training distribution, out-of-
distribution generalization (o.o.d.) should more fittingly be called
wishful thinking. The literature on causal inference (Peters et al.,
2017b) provides a foundation with the necessary assumptions to
ask these questions, by invoking the underlying causal generat-
ing process of the data (for example expressed by a structural
equation model (Pearl, 2000)).

The use of causal reasoning to support o.o.d. generalization in
novel situations is regarded as one of the hallmarks of human in-
telligence. While the progress of deep learning on i.i.d. generaliza-
tion has been outstanding — even for domains where the training
distribution is extremely wide and complex — o.o.d. generalization
is still a very open research problem. This is the general setting
investigated in this thesis. In particular, we examine four differ-
ent kinds of out-of-distribution generalization in deep learning
under different assumptions: for each one of them, we analyze
where the traditional approaches fall short and contribute novel
learning algorithms that can improve them.

1.2 outline

This thesis consists of four main chapters, with each chapter in-
vestigating a different aspect of out-of-distribution generalization
with neural networks. A final chapter presents conclusions and
perspectives on the future. Each chapter is based on a paper that
I worked on during my PhD with my co-authors, and will cover



4 introduction and overview

different learning modalities including unsupervised learning, su-
pervised learning, and reinforcement learning. Each chapter dis-
cusses the technical background required to understand the algo-
rithms, theory, and experiments presented within.

Chapter 2 – o.o.d. generalization via composition

In Chapter 2 the main assumption is that the data observed is
generated by a set of independent causal mechanisms (Schölkopf et
al., 2012; Peters et al., 2017b) and that these mechanisms can be
composed in novel combinations at test time. We present an al-
gorithm centered around a competition of experts to leverage the
independence of the causal mechanisms that generated the data.
The algorithm allows to train, without label supervision, a set of
modules that specialize in inverting one mechanism at the time. By
applying these trained modules one after the other, we show that
they can generalize out of distribution to novel combinations of
transformations. One of the objectives of this work is to not only
disentangle the factors of variations, but to go one step further
and disentangle the mechanisms such that they can be re-arranged
at test time as needed. Chapter 2 is based on Parascandolo et al.,
2018

“Learning Independent Causal Mechanisms”
Giambattista Parascandolo, Niki Kilbertus, Mateo Rojas-Carulla,
Bernhard Schölkopf
ICML 2018: International Conference on Machine Learning

Chapter 3 – o.o.d. generalization via invariance

The main assumption for Chapter 3 is that the o.o.d. test data
can be correctly classified if the model learns to rely on the in-
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variant features. At training time the model observes datapoints
that come from a set of different environments that share a com-
mon mechanism. We show that standard training using gradient
descent on the loss encourages fast convergence at the cost of
potentially relying on spurious patterns, as a pattern will be rein-
forced even if it produces gradients only in a single environment.
This can result in a ‘patchwork’ solution, a logical OR between
patterns that appear in some environments, but not necessarily in
all of them. Inspired by David Deutsch’s principle that ‘good expla-
nations should be hard to vary’, we investigate how to learn a repre-
sentation that focuses on the invariant patterns. We show that the
geometric mean of the gradients can act as a logical AND, preserv-
ing patterns that occur in a substantial number of environments.
We derive a simple algorithm — that we call the AND-mask —
that has the same linear time complexity as standard training with
empirical risk minimization using the arithmetic mean of the gra-
dients. We test the AND-mask against state-of-the-art baselines
for learning invariant representations, and evaluate it on a set of
supervised learning tasks and an imitation learning task via be-
havioral cloning. Chapter 3 is based on Parascandolo et al., 2021a

“Learning explanations that are hard to vary”
Giambattista Parascandolo?, Alexander Neitz?,
Antonio Orvieto, Luigi Gresele, Bernhard Schölkopf
ICLR 2021: International Conference on Learning Representations

Chapter 4 – o.o.d. generalization via symbolic expressions

Symbolic representations of physical phenomena are ubiquitous
in the sciences, and usually take the form of equations. The most
appealing property of symbolic equations is that they describe
complex phenomena in a very compressed and interpretable rep-
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resentation. From the point of view of o.o.d. generalization, sym-
bolic equations are incredible tools. Take for example general rel-
ativity: it was discovered by making a small number of obser-
vations, and yet it can successfully predict physical phenomena
light-years apart across the universe. Despite the appealing prop-
erties of symbolic representations, the process of discovering an
equation from observations is a challenging task. State-of-the-art
approaches are typically complex hand-designed symbolic meth-
ods like Genetic Programming. Deep learning models are not
typically used in this setting given (i) their poor o.o.d. general-
ization if the network is used to fit y = fθ(x), (ii) the solution
is not interpretable, and (iii) that they need large quantities of
training data. To combine the strengths of symbolic representa-
tions and deep neural networks, we investigate an approach that
learns end-to-end to discover equations from observations. We
large-scale pre-train on billions of equations a neural network
that takes as input a set of observations {(xi , yi)}, and outputs
autoregressively a symbolic equation, symbol by symbol, just like
a language model. The pre-training data can be generated quickly
on the fly by any standard computer, from a pre-defined and con-
trollable distribution over equations, which provides a simple and
interpretable way to tune the inductive bias of the model. Across
several datasets, our method that scales with experience and com-
pute outperforms state-of-the-art baselines by a factor of 100x in
time, even while running on CPU. Chapter 4 is based on Biggio
et al., 2021

“Neural Symbolic Regression that Scales”
Luca Biggio? , Tommaso Bendinelli? , Alexander Neitz, Aurelien
Lucchi, Giambattista Parascandolo
ICML 2021: International Conference on Machine Learning
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Chapter 5 – o.o.d. generalization via planning

Achieving goals that are far in the future is a challenging task.
Planning is a classic technique used to reduce uncertainty: by in-
vesting additional time and compute at test time, we can general-
ize o.o.d. to problem instances that are more complex than those
seen at training time. Most planning algorithms are sequential in
nature (like Monte Carlo Tree Search, Model Predictive Control,
etc.); for example AlphaGo (Silver et al., 2016) explores a sequence
of moves from the current position. However, for goals far in the
future, planning sequentially cannot significantly reduce the long-
term uncertainty, as the planning resources reduce it only near the
current state and the goal is far off. Human intelligence, instead,
can plan by mentally traveling back and forth in time, iteratively
reducing uncertainty across the entire plan: e.g., to plan a trip
from Rome to Tokyo, we would start by looking for flights, then
go forward and book a hotel, then go backwards and schedule
a visa appointment, etc., and not by thinking about the eleva-
tor to leave the building we are currently in, then calling a taxi,
and so on. In Chapter 5, we study planning over long horizons
with goal-directed reinforcement learning that follows a divide-
and-conquer approach. The algorithm we present — Divide-and-
Conquer Monte Carlo Tree Search (DC-MCTS) — trains a policy
and a value network to solve long horizon problems by learning
to recursively subdividing them where necessary to reduce un-
certainty, jumping back and forth in time. Chapter 5 is based on
Parascandolo et al., 2021b

“Divide-and-Conquer Monte Carlo Tree Search”
Giambattista Parascandolo?, Lars Buesing?, Josh Merel, Leonard
Hasenclever, John Aslanides, Jessica Hamrick, Nicolas Heess,
Alexander Neitz, Theophane Weber
under submission
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M E C H A N I S M S

chapter abstract Statistical learning relies upon data sam-
pled from a distribution, and we usually do not care what ac-
tually generated it in the first place. From the point of view of
causal modeling, the structure of each distribution is induced by
physical mechanisms that give rise to dependences between ob-
servables. Mechanisms, however, can be meaningful autonomous
modules of generative models that make sense beyond a partic-
ular entailed data distribution, lending themselves to transfer be-
tween problems. We develop an algorithm to recover a set of in-
dependent (inverse) mechanisms from a set of transformed data
points. The approach is unsupervised and based on a set of ex-
perts that compete for data generated by the mechanisms, driv-
ing specialization. We analyze the proposed method in a series
of experiments on image data. Each expert learns to map a sub-
set of the transformed data back to a reference distribution. The
learned mechanisms generalize to novel domains. We discuss im-
plications for transfer learning and links to recent trends in gen-
erative modeling.

This chapter is based on the paper “Learning Independent Causal Mecha-
nisms”, Giambattista Parascandolo, Niki Kilbertus, Mateo Rojas-Carulla, Bernhard
Schölkopf (Parascandolo et al., 2018)

9
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2.1 introduction

Humans are able to recognize objects such as handwritten digits
based on distorted inputs. They can correctly label translated, cor-
rupted, or inverted digits, without having to re-learn them from
scratch. The same applies for new objects, essentially after having
seen them once. Arguably, human intelligence utilizes mechanisms
(such as translation) that are independent from an input domain
and thus generalize across object classes. These mechanisms are
modular, re-usable and broadly applicable, and the problem of learn-
ing them from data is fundamental for the study of transfer and
domain adaptation.

In the field of causality, the concept of independent mecha-
nisms plays a central role both on the conceptual level and, more
recently, in applications to inference. The independent mechanisms
(IM) assumption states that the causal generative process of a sys-
tem’s variables is composed of autonomous modules that do not
inform or influence each other (Schölkopf et al., 2012; Peters et al.,
2017a).

If a joint density is Markovian with respect to a directed graph
G, we can write it as

p(x) = p(x1, . . . , xd) =
d

∏
j=1

p(xj|paj
G), (1)

where paj
G denotes the parents of variable xj in the graph. For a

given joint density, there are usually many decompositions of the
form equation 1, with respect to different graphs. If G is a causal
graph, i.e., if its edges denote direct causation (Pearl, 2000), then
the conditional p(xj|paG

j) can be thought of as physical mecha-
nism generating xj from its parents, and we refer to it as a causal
conditional. In this case, we consider the factorization equation 1

a generative model where the term “generative” truly refers to a
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Figure 1: An overview of the problem setup. Given a sample from a
canonical distribution P, and one from a mixture of trans-
formed distributions Qi obtained by mechanisms Mi on P,
we want to learn inverse mechanisms Ei as independent mod-
ules. Modules (or experts) compete amongst each other for data
points, encouraging specialization.

physical generative process. As an aside, we note that in the alter-
native view of causal models as structural equation models, each
of the causal conditionals corresponds to a functional mapping
and a noise variable (Pearl, 2000).

By the IM assumption, the causal conditionals are autonomous
modules that do not influence or inform each other. This has mul-
tiple consequences. First, knowledge of one mechanism does not
contain information about another one (Appendix A.4). Second,
if one mechanism changes (e.g., due to distribution shift), there
is no reason that other mechanisms should also change, i.e., they
tend to remain invariant. As a special case, it is (in principle) possi-
ble to locally intervene on one mechanism (for instance, by setting
it to a constant) without affecting any of the other modules. In all
these cases, most of equation 1 will remain unchanged. However,
since the overall density will change, most generic (non-causal)
conditionals would change.
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The IM assumption can be exploited when performing causal
structure inference (Peters et al., 2017a). However, it also has im-
plications for machine learning more broadly. A model which
is expressed in terms of causal conditionals (rather than condi-
tionals with respect to some other factorization) is likely to have
components that better transfer or generalize to other settings
(Schölkopf et al., 2012), and its modules are better suited for build-
ing complex models from simpler ones. Independent mechanisms
as sub-components can be trained independently, from multiple
domains, and are more likely to be re-usable. They may also be
easier to interpret and provide more insight since they correspond
to physical mechanisms.

Animate intelligence cannot afford to learn new models from
scratch for every new task. Rather, it is likely to rely on robust
local components that can flexibly be re-used and re-purposed.
It also requires local mechanisms for adapting and training mod-
ules rather than re-training the whole brain every time a new task
is learned. Currently, machine learning excels at optimizing well-
defined tasks from large i.i.d. datasets. However, if we want to
move towards life-long learning and generalization across tasks,
then we need to understand how modules can be learnt from data
and shared between tasks.

In this chapter, we focus on a class of such modules, and on
algorithms to learn them from data. We describe an architecture
using competing experts that automatically specialize on differ-
ent image transformations. The resulting model is attractive for
lifelong learning, with the possibility of easily adding, removing,
retraining, and re-purposing its components independently. It is
unsupervised in the sense that the images are not labelled by the
transformations they have undergone. We only need a sample
from a reference distribution and a set of transformed images.
The transformed images are based on another sample, and no
pairing or information about the transformations is available.
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We test our approach on MNIST digits which have undergone
various transformations such as contrast inversion, noise addition
and translation. Information about the nature and number of such
transformations is not known at the beginning of training. We
identify the independent mechanisms linking the reference dis-
tribution to a distribution of modified digits, and learn to invert
them without supervision.

The inverse mechanisms can be re-purposed as preprocessors,
to transform modified digits which are subsequently classified
using a standard MNIST classifier. The trained experts also gen-
eralize to Omniglot characters, none of which were seen during
training. These are promising results pointing towards a form of
robustness that animate intelligence excels at.

2.2 related work

Our work mainly draws from mixtures of experts, domain adap-
tation, and causality.

Early works on mixture of experts date back to the early nineties
(Jacobs et al., 1991; Jordan and Jacobs, 1994), and since then the
topic has been subject of extensive research. Recent work includes
that of Shazeer et al., 2017, successfully training a mixture of 1000

experts using a gating mechanism that selects only a fraction of
experts for each example. Aljundi et al., 2017 train a network of
experts on multiple tasks, with a focus on lifelong learning; au-
toencoders are trained for each task and used as gating mecha-
nisms. Lee et al., 2016b propose Stochastic Multiple Choice Learn-
ing, an algorithm which resembles the one we describe in Section
2.3, aimed at training mixture of experts to propose a diverse set
of outputs. The main differences are that our model is trained
jointly with a learned selection system which is valid also at test
time, that our trained experts learn independent mechanisms and
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can be combined (cf. Figure 8), and in the way experts are initial-
ized.

Another research direction that is relevant to our work is unsu-
pervised domain adaptation (Bousmalis et al., 2017). These meth-
ods often use some supervision from labeled data and/or match
the two distributions in a learned feature space (e.g. Tzeng et al.,
2017).

The novelty of our work lies in the following aspects: (1) we
automatically identify and invert a set of independent (inverse)
causal mechanisms; (2) we do so using only data from an original
distribution and from the mixture of transformed data, without
labels; (3) the architecture is modular, can be easily expanded, and
its trained modules can be reused; and (4) the method relies on
competition of experts.

Ideas from the field of causal inference inspire this work. Un-
derstanding the data generating mechanisms plays a key role in
causal inference, and goes beyond the statistical assumptions usu-
ally exploited in machine learning. Causality provides a frame-
work for understanding how a system responds to interventions,
and causal graphical models as well as structural equation mod-
els (SEM) are common ways of describing causal systems (Pearl,
2000; Peters et al., 2017a). The IM assumption discussed in the in-
troduction can be used for identification of causal models (Daniu-
sis et al., 2010; Zhang et al., 2015), but causality has also proven
a useful tool for discussing and understanding machine learn-
ing in the non-i.i.d. regime. Recent applications include semi-
supervised learning (Schölkopf et al., 2012) and transfer learn-
ing (Rojas-Carulla et al., 2015), in which the authors focus only
on linear regression models. We seek to extend applications of
causal inference to more complex settings and aim to learn causal
mechanisms and ultimately causal SEMs without supervision.

On the conceptual level, our setting is related to recent work on
deep learning for disentangling factors of variation (Chen et al.,
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2016; Higgins et al., 2017) as well as non-linear ICA (Hyvärinen
and Morioka, 2016). In our work, causal mechanisms play the
role of factors of variation. The main difference is that we recover
mechanisms as independent modules.

2.3 learning causal mechanisms as independent mod-
ules

The aim of this section is twofold. First, we describe the generative
process of our data. We start with a distribution P that we will
call “canonical” and an a priori unknown number of independent
mechanisms which act on (examples drawn from) P. At training
time, a sample from the canonical distribution is available, as well
as a dataset obtained by applying the mechanisms to (unseen)
examples drawn from P. Second, we propose an algorithm which
recovers and learns to invert the mechanisms in an unsupervised
fashion.

2.3.1 Formal setting

Consider a canonical distribution P on Rd, e.g., the empirical
distribution defined by MNIST digits on pixel space. We further
consider N measurable functions M1, . . . , MN : Rd → Rd, called
mechanisms. We think of these as independent causal mechanisms
in nature, and their number is a priori unknown. A more for-
mal definition of independence between mechanisms is relegated
to Appendix A.4. The mechanisms give rise to N distributions
Q1, . . . , QN where Qj = Mj(P).1 This setup is illustrated in Fig-
ure 1. In the MNIST example, we consider translations or adding
noise as mechanisms, i.e., the corresponding Q distributions are
translated and noisy MNIST digits.

1 Each distribution Qj is defined as the pushforward measure of P induced by Mj.
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At training time, we receive a dataset DQ = (xi)
n
i=1 drawn i.i.d.

from a mixture of Q1, . . . , QN , and a dataset DP sampled indepen-
dently from the canonical distribution P. Our goal is to identify
the underlying mechanisms M1, . . . , MN and learn approximate
inverse mappings which allow us to map the examples from DQ
back to their counterpart in P.

If we were given distinct datasets DQj each drawn from Qj,
we could individually learn each mechanism, resulting in inde-
pendent (approximations of the) mechanisms regardless of the
properties of the training procedure. This is due to the fact that
the datasets are drawn from independent mechanisms in the first
place, and the separate training procedure cannot generate a de-
pendence between them. This statement does not require that
the procedure is successful, i.e., that the obtained mechanisms
approximate the true Mj in some metric.

In contrast, we do not require access to the distinct datasets.
Instead we construct a larger set DQ by first taking the union
of the sets DQj , and then applying a random permutation. This
corresponds to a dataset where each element has been generated
by one of the (independent) mechanisms, but we do not know
by which one. Clearly, it should be harder to identify and learn
independent mechanisms from such a dataset. We next describe
an approach to handle this setting.

2.3.2 Competitive learning of independent mechanisms

The training machine is composed of N′ parametric functions
E1, . . . , EN′ with distinct trainable parameters θ1, . . . , θN′ . We re-
fer to these functions as the experts. Note that we do not require
N′ = N, since the real number of mechanisms is unknown a pri-
ori. The goal is to maximize an objective function c : Rd → R

with the key property that c takes high values on the support
of the canonical distribution P, and low values outside. Note
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that c could be a parametric function, and its parameters could
be jointly optimized with the experts during training. Below, we
specify the details of this rather general definition.

During training, the experts compete for the data points. Each
example x′ from DQ is fed to all experts independently and in
parallel. Comparing the outputs of all experts cj = c(Ej(x′)), we
select the winning expert Ej∗ , where j∗ = arg maxj(cj). Its param-
eters θj∗ are updated such as to maximize c(Ej∗(x′)), while the
other experts remain unchanged. The motivation behind compet-
itively updating only the winning expert is to enforce specializa-
tion; the best performing expert becomes even better at mapping
x′ back to the corresponding example from the canonical distri-
bution. We will describe below that alongside with the expert’s
parameters, we train parameters of c (which in our experiments
will be carried in an adversarial fashion). Figure 2 depicts this
procedure. Overall, our optimization problem reads:

θ∗1 , . . . , θ∗N′ = arg max
θ1 ,...,θN′

Ex′∼Q [ max
j∈{1,...,N′}

c(Eθj (x′ ))]. (2)

The training described above raises a number of questions, which
we address next.

1 . selecting the appropriate number of experts . Gen-
erally, the number of mechanisms N which generated the dataset
DQ is not available a priori. Therefore, we require an adaptive
procedure to choose the number of experts N′. This is one of
the challenges shared with most clustering techniques. Given the
modular behavior of the procedure, experts may be added or re-
moved during or after training, making the framework very flex-
ible. Assuming however that the number of experts is fixed, the
following behaviors could occur.

If N′ > N (too many experts): a) some of the experts do not
specialize and do not win any example in the dataset; or b) some
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Figure 2: We show how a transformed example, here a noisy digit, is
processed by a competition of experts. Only Expert 3 is special-
izing on denoising, it wins the example and gets trained on it,
whereas the others perform translations and are not updated.

tasks are divided between experts (for instance, each expert can
specialize in a mode of the distribution of the same task). In a),
the inactive experts can be removed, and in b) experts sharing the
same task can be merged into a wider expert.2

If N′ < N (too few experts): a) some of the experts specialize
in multiple tasks or b) some of the tasks are not learned by the
experts, so that data points from such tasks lead to a poor score

2 However, note that in order to do this, it is necessary to first acknowledge that
the two experts have learned part of the same task, which would require extra
information or visual inspection.
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across all experts. We provide experiments substantiating these
claims in A.1.1.

2 . convergence criterion. Since the problem is unsuper-
vised, there is no straightforward way of measuring convergence,
which raises the question of how to choose a stopping time for the
competitive procedure. As an example, one may act according
to one of the following: a) fix a maximum number of iterations
or b) stop if each example is assigned to the same experts for
a pre-defined number of iterations (i.e., each expert consistently
wins the same data points).

3 . time and space complexity. Each example has to be
evaluated by all experts in order to assign it to the winning ex-
pert. While this results in a computational cost that depends lin-
early on the number of experts, these evaluations can be done in
parallel and therefore the time complexity of a single iteration can
be bounded by the complexity to compute the output of a single
expert. Moreover, as each expert will in principle have a smaller
architecture than a single large network, the committee of experts
will typically be faster to execute.

concrete protocol for neural networks . One possi-
ble model class for the experts are deep neural networks. Train-
ing using backpropagation is particularly well suited for the on-
line nature of the training proposed: after an expert wins a data
point x′, its parameters are updated by backpropagation, while
the other experts remain untouched. Moreover, recent advances
in generative modeling give rise to natural choices for the loss
function c. For instance, through adversarial training (Goodfel-
low et al., 2014), one can use as objective function the output
of a discriminator network trained on the canonical sample DP
and against the outputs of the experts. In the next section we
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introduce a formal description of a training procedure based on
adversarial training in Algorithm 1, and empirically evaluate its
performance.

While in this work we focus on adversarial training, prelimi-
nary experiments have shown that similar results can be achieved
for example with variational autoencoders (VAE) (Kingma and
Welling, 2014). Given a VAE trained on the canonical distribution
P, one may define c(x′) as the opposite of the VAE loss.

2.4 experiments

In this set of experiments we test the method presented in Sec-
tion 2.3 on the MNIST dataset transformed with the set of mecha-
nisms described in detail in the Appendix A.3, i.e. eight directions
of translations by 4 pixels (up, down, left, right, and the four diag-
onals), contrast inversion, addition of noise, for a total of 10 trans-
formations. We split the training partition of MNIST in half, and
transform all and only the examples in the first half; this ensures
that there is no matching ground truth in the dataset, and that
learning is unsupervised. As a preprocessing step, the digits are
zero-padded so that they have size 32 × 32 pixels, and the pixel
intensities are scaled between 0 and 1. This is done even before
any mechanism is applied. We use neural networks for both the
experts and the selection mechanism, and employ an adversarial
training scheme.

Each expert Ei can be seen as a generator from a GAN condi-
tioned on an input image rather than (as usually) a noise vector.
A discriminator D provides gradients for training the experts and
acts also as a selection mechanism c: only the expert whose out-
put obtains the higher score from D wins the example, and is
trained on it to maximize the output of D. We describe the exact
algorithm used to train the networks in these experiments in Al-
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Algorithm 1 Learning independent mechanisms using competi-
tion of experts and adversarial training

Precondition: X: data sampled from P; X′: data sampled from DQ; D
discriminator; N′: number of experts; T: maximum number of itera-
tions;
every step can be run in parallel across experts

1 {Ei ← TrainAsIdentityOn(X′)}N′
j=1 . Init experts as ∼ identity

2 for t← 1 to T do
3 x, x′ ← Sample(X), Sample(X′) . Sample minibatches
4 {cj ← D(Ej(x′))}N′

j=1 . Scores from D for each expert

5 θt+1
D ← Adam

(
θt

D ,∇ log D(x) . Update D

+∇(1/N′ ∑N′
j=1 log(1− cj))

)
6 {θt+1

Ej
← Adam(θt

Ej
,∇maxj∈1,...,N′ log(cj))}N′

j=1 . Update experts

gorithm 1. The discriminator is trained to maximize the following
cross-entropy loss:

max
θD

(
Ex∼Plog(DθD (x))

+
1

N′
N′

∑
j=1

Ex′∼Q
(
log(1−DθD (Eθj (x′ )))

)) (3)

For simplicity, we assume for the rest of this section that the
number of experts N′ equals the number of true mechanisms N.
Results where N 6= N′ are relegated to Appendix A.1.1.

neural nets details . Each expert is a CNN with five con-
volutional layers, 32 filters per layer of size 3 × 3, ELU (Clev-
ert et al., 2016) as activation function, batch normalization (Ioffe
and Szegedy, 2015), and zero padding. The discriminator is also a
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CNN, with average pooling every two convolutional layers, grow-
ing number of filters, and a fully connected layer with 1024 neu-
rons as last hidden layer. Both networks are trained using Adam
as optimizer (Kingma and Ba, 2015), with the default hyperpa-
rameters.3

Unless specified otherwise, after a random weight initialization
we first train the experts to approximate the identity mapping
on our data, by pretraining them on predicting identical input-
output pairs randomly selected from the transformed dataset. This
makes the experts start from similar grounds, and we found that
this improved the speed and robustness of convergence. We will
refer to this as approximate identity initialization for the rest of the
chapter.

A minibatch of 32 transformed MNIST digits, each transformed
by a randomly chosen mechanism, is fed to all experts Ei. The out-
puts are fed to the discriminator D, which computes a score for
each of them. For each example the cross entropy loss in Equa-
tion equation 3 and the resulting gradients are computed only
for the output of the highest scoring expert, and they are used to
update both the discriminator (when 0 is the target in the cross
entropy) and the winning expert (when using 1 as the target). In
order to further support the winning expert, we punish the los-
ing experts by training the discriminator against their outputs as
well. Then, a minibatch of canonical MNIST digit is used in order
to update the discriminator with ‘real’ data. We refer to the above
procedure as one iteration.

We ran the experiments 10 times with different random seeds
for the initializations. Each experiment is run for 2000 iterations.

3 For the exact experimental parameters and architectures see the Appendix A.2
or the PyTorch implementation at https://drive.google.com/drive/
folders/1cEUpQbCctoc7locRc81RJwjK3fKRPmIw?usp=sharing.

https://drive.google.com/drive/folders/1cEUpQbCctoc7locRc81RJwjK3fKRPmIw?usp=sharing
https://drive.google.com/drive/folders/1cEUpQbCctoc7locRc81RJwjK3fKRPmIw?usp=sharing
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Figure 3: The top row contains 16 random inputs to the networks, and
the bottom row the corresponding outputs from the highest
scoring experts against the discriminator after 1000 iterations.

2.5 results

The experts correctly specialized on inverting exactly one mech-
anism each in 7 out of the 10 runs; in the remaining 3 runs the
results were only slightly suboptimal: one expert specialized on
two tasks, one expert did not specialize on any, and the remain-
ing experts still specialized on one task each, thus still covering
all the existing tasks. In Figure 3 we show a randomly selected
batch of inputs and corresponding outputs from the model. Each
independent mechanism was inverted by a different expert.

We first discuss our three main findings, and then move on to
additional experiments.

1. The experts specialize w.r.t. c . In Figure 4, we plot the scores
assigned by the discriminator for each expert on each task in a
typical successful run. Each expert is represented with the same
color and linestyle across all tasks. The figure shows that after an
initial phase of heavy competition, the experts exhibit the desired
behavior and obtain a high score on D on one mechanism each.
Note how the green expert tries to learn two similar tasks until it-
eration 750 (left and left-down translation), at which point the red
expert takes over one of the tasks. Subsequently, both specialize
rapidly. Figure 5 provides further evidence, by visualizing that the
assignments of data points to experts induced by c are meaning-
ful. We report the proportion of examples from each task assigned
to each expert at the beginning and at the end of training: at first,
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Figure 4: Experts’ performance, measured by discriminator scores. Each
line color/style represents one expert. For each of ten different
mechanisms (top left to bottom right), the experts are being fed
transformed digits. Each expert learns to specialize on a dif-
ferent mechanism, as shown by the score approaching 1. Each
curve is smoothed with a moving average of 50 iterations.

the assignment of experts to tasks by the discriminator is almost
uniform; by the end of the training, each expert wins almost all
examples coming from one transformation, and no others.

2. The transformed outputs improve a classifier. In order to
test if the committee of experts can recover a good approximation
of the original digits, we test the output of our experts against
a pretrained standard MNIST classifier. For this, we use the test
partition of the data. We compare the accuracy for three inputs:
a) the test digits transformed by the mechanisms, b) the trans-
formed digits after being processed by the highest scoring experts
(which tries to invert the mechanisms), c) the original test digits.
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(a) Before training

(b) After 1000 iterations

Figure 5: The proportion of data won by each expert for each transforma-
tion on the digits from the test set.
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The latter can be seen as an upper bound to the accuracy that can
be achieved.

As shown by the two dashed horizontal lines in Figure 6, the
transformed test digits achieve a 40% accuracy when tested di-
rectly on the classifier, while the untransformed digits would
achieve ≈ 99% accuracy. The accuracy for the output digits starts
at 40% — due to the identity initialization of the experts — but
it subsequently quickly approaches the performance on the origi-
nal digits as it is trained. Note that after about 600 iterations, i.e.,
once the networks have seen about one third of the whole dataset
once, the accuracy has almost reached the upper bound.

3. The experts learn mechanisms that generalize. Given that
towards the end of training, each expert Ei is updated only on
data points from Qi, one could imagine that they will not per-
form well on data points from other distributions. In fact this is
not the case. Not only do all experts Ei generalize to all other
transformed distributions Qj, but also to different datasets all to-
gether. To show this, we use the Omniglot dataset of letters from
different alphabets (Lake et al., 2015) and rescale them to 46× 46
pixels (instead of 32× 32 of MNIST, which is not an issue since
the experts are fully convolutional). We transform a random sam-
ple with all mechanisms Mi and test each on all experts Ei, which
have only been trained on MNIST. As shown in Figure 7, each
network consistently applies the same transformation also on in-
puts outside of the domain they have specialized on. They indeed
learn a mechanism that is independent of the input.

Having made our main points, we continue with a few more
observations.

The learned inverse mechanisms can be combined. We test
whether the trained experts could in principle be used to undo
several transformations applied at once, even though the training
set consisted only of images transformed by a single mechanism.
For simplicity, we assume we know which transformations were
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Figure 6: Accuracy of a pretrained CNN MNIST classifier on trans-
formed test digits DQ, on the same digits after going through
our model, and on the original digits. Our system manages to
invert the transformations, with the classifier accuracy quickly
approaching the optimum. Note that 600 iterations correspond
to having seen about a third of the dataset.

used. In Figure 8, we test on Omniglot letters transformed with
three consecutive transformations (noise, up left translation, con-
trast inversion) by applying the corresponding experts previously
trained on MNIST, and correctly recover the original letters.

effect of the approx . identity initialization. For the
same experiments but without the approximate identity initializa-
tion, several experts fail to specialize. Out of 10 new runs with
random initialization, only one experiment had arguably good re-
sults, with eight experts specializing on one task each, one on two
tasks, and the last one on none. The performance was worse in
the remaining runs. The problem was not that the algorithm takes
longer to converge following a random initialization, as with an
additional experiment for 10 000 iterations the results did not im-
prove. Instead, the random initialization can lead to one expert
winning examples from many tasks at the beginning of training,
in which case it is hard for the others to catch up.
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Figure 7: Each column shows how each expert transforms the input pre-
sented on top. We arrange the tasks such that the diagonal con-
tains the highest scoring expert for the input given at the top of
the column. The experts have learned the inverse mechanisms,
consistently applying them to previously unseen symbols.

a simple single-net baseline . Training a single network
instead of a committee of experts makes the problem more diffi-
cult to solve. Using identical training settings, we trained a single
network once with 32, once with 64, and once with 128 filters per
layer, and none of them managed to correctly learn more than
one inverse mechanism.4 Note that a single network with 128 fil-
ters per layer has about twice as many parameters overall as the
committee of 10 experts with 32 filters per layer each. We also
tried a) random initialization instead of the approximate identity,

4 Specifically, the network performs well on the contrast inversion task, and poorly
on all others.
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Figure 8: First row: input Omniglot letters that were transformed with
noise, contrast inversion and translation up left. Second to
fourth row: application of denoising, contrast inverting and
right down translating experts. Last row: ground truth. Al-
though the experts were not trained on a combination of mech-
anisms nor on Omniglot letters, they can be used to recover the
original digits.

b) reducing the learning rate of the discriminator by a factor of
10, and c) increasing the receptive field by adding two pooling
and two upsampling layers, without any improvement. While we
do not exclude that careful hyperparameter tuning may enable
a single net to learn multiple mechanisms, it certainly was not
straightforward in our experiments.

specialization occurs also with higher capacity ex-
perts . While in principle with infinite capacity and data, a sin-
gle expert could solve all tasks simultaneously, in practice limited
resources and the proposed training procedure favor specializa-
tion in independent modules. Increasing the size of the experts
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from 32 filters per layer to 64 or 128 filters,5 or enlarging the over-
all receptive field by using two pooling and two upsampling lay-
ers, still resulted in good specialization of the experts, with no
more than two experts specializing on two tasks at once.

fewer examples from the canonical distribution. In
some applications, we might only have a small sample from the
original distribution. Interestingly, if we reduce the number of
examples from the original distribution from 30 000 down to 64,
we find that all experts still specialize and recover good approxi-
mations of the inverse mechanisms, using the exact same training
protocol. Although the output digits turn out less clean and sharp,
we still achieve 96% accuracy on the pretrained MNIST classifier.

2.6 conclusions

We have developed a method to identify and learn a set of inde-
pendent causal mechanisms. Here these are inverse mechanisms,
but an extension to forward mechanisms appears feasible and
worthwhile. We reported promising results in experiments using
image transformations; future work could study more complex
settings and diverse domains. The method does not explicitly
minimize a measure of dependence of mechanisms, but works if
the data generating process contains independent mechanisms in
the first place: As the different tasks (mechanisms) do not contain
information about each other, improving on one of them does not
improve performance on another, which is exactly what encour-
ages specialization.

A natural extension of our work is to consider independent
mechanisms that simultaneously affect the data (e.g. lighting and
position in a portrait), and to allow multiple passes through our

5 Equivalent to an increase of parameters from ∼27K to ∼110K or ∼440K parame-
ters respectively.
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committee of experts to identify local mechanisms (akin to Lie
derivatives) from more complex datasets — for instance, using
recurrent neural networks that allow the application of multi-
ple mechanisms by iteration. With many experts, the computa-
tional cost (or parallel processing) might become unnecessarily
high. This could be mitigated by hybrid approaches incorporating
gated mixture of experts or a hierarchical selection of competing
experts.

We believe our work constitutes a promising connection be-
tween causal modeling and deep learning. As discussed in the
introduction, causality has a lot to offer for crucial machine learn-
ing problems such as transfer or compositional modeling. Our
systems sheds light on these issues. Independent modules as sub-
components could be learned using multiple domains or tasks,
added subsequently, and transferred to other problems. This may
constitute a step towards causally motivated life-long learning.
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L E A R N I N G E X P L A N AT I O N S T H AT A R E H A R D
T O VA RY

The quest for good explanations does the job: inventing falsehoods is
easy, and therefore they are easy to vary once found; discovering good
explanations is hard, but the harder they are to find, the harder they are
to vary once found.

David Deutsch

chapter abstract In this chapter, we investigate the prin-
ciple that good explanations are hard to vary in the context of
deep learning. We show that averaging gradients across exam-
ples – akin to a logical OR of patterns – can favor memorization
and ‘patchwork’ solutions that sew together different strategies,
instead of identifying invariances. To inspect this, we first formal-
ize a notion of consistency for minima of the loss surface, which
measures to what extent a minimum appears only when exam-
ples are pooled. We then propose and experimentally validate a
simple alternative algorithm based on a logical AND, that focuses
on invariances and prevents memorization in a set of real-world
tasks. Finally, using a synthetic dataset with a clear distinction
between invariant and spurious mechanisms, we dissect learning
signals and compare this approach to well-established regulariz-
ers.

This chapter is based on the paper “Learning explanations that are hard to vary”,
Giambattista Parascandolo?, Alexander Neitz?, Antonio Orvieto, Luigi Gresele,
Bernhard Schölkopf (Parascandolo et al., 2021a)
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Figure 9: Loss landscapes of a two-parameter model. Averaging gra-
dients forgoes information that can identify patterns shared
across different environments.

3.1 introduction

Consider the top of Figure 9, which shows a view from above of
the loss surface obtained as we vary a two dimensional parameter
vector θθθ = (θ1, θ2), for a fictional dataset containing two observa-
tions xA and xB. Note the two global minima on the top-right
and bottom-left. Depending on the initial values of θ — marked
as white circles — gradient descent converges to one of the two
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minima. Judging solely by the value of the loss function, which is
zero in both cases, the two minima look equally good.

However, looking at the loss surfaces for xA and xB separately,
as shown below, a crucial difference between those two minima
appears: Starting from the same initial parameter configurations
and following the gradient of the loss, ∇θL(θ, xi), the probability
of finding the same minimum on the top-right in either case is
zero. In contrast, the minimum in the lower-left corner has a sig-
nificant overlap across the two loss surfaces, so gradient descent
can converge to it even if training on xA (or xB) only. Note that
after averaging there is no way to tell what the two loss surfaces
looked like: Are we destroying information that is potentially impor-
tant?

In this chapter, we argue that the answer is yes. In particular,
we hypothesize that if the goal is to find invariant mechanisms
in the data, these can be identified by finding explanations (e.g.
model parameters) that are hard to vary across examples. A no-
tion of invariance implies something that stays the same, as some-
thing else changes. We assume that data comes from different
environments: An invariant mechanism is shared across all, gen-
eralizes out of distribution (o.o.d.), but might be hard to model;
each environment also has spurious explanations that are easy to
spot (‘shortcuts’), but do not generalize o.o.d. From the point of
view of causal modeling, such invariant mechanisms can be in-
terpreted as conditional distributions of the targets given causal
features of the inputs; invariance of such conditionals is expected
if they represent causal mechanisms, that is — stable properties
of the physical world (see e.g. Hoover, 1990). Generalizing o.o.d.
means therefore that the predictor should perform equally well
on data coming from different settings, as long as they share the
causal mechanisms.

We formalize a notion of consistency, which characterizes to
what extent a minimum of the loss surface appears only when
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data from different environments are pooled. Minima with low
consistency are ‘patchwork’ solutions, which (we hypothesize)
sew together different strategies and should not be expected to
generalize to new environments. An intuitive description of this
principle was proposed by physicist David Deutsch: “good expla-
nations are hard to vary” (Deutsch, 2011).

Using the notion of consistency, we define Invariant Learning
Consistency (ILC), a measure of the expected consistency of the so-
lution found by a learning algorithm on a given hypothesis class.
The ILC can be improved by changing the hypothesis class or the
learning algorithm, and in the last part of the chapter we focus
on the latter. We then analyse why current practices in deep learn-
ing provide little incentive for networks to learn invariances, and
show that standard training is instead set up with the explicit
objective of greedily maximizing speed of learning, i.e., progress
on the training loss. When learning “as fast as possible” is not
the main objective, we show we can trade-off some “learning
speed” for prioritizing learning the invariances. A practical in-
stantiation of ILC leads to o.o.d. generalization on a challenging
synthetic task where several established regularizers fail to gen-
eralize; moreover, following the memorization task from Zhang
et al., 2017, ILC prevents convergence on CIFAR-10 with random
labels, as no shared mechanism is present, and similarly when
a portion of training labels is incorrect. Lastly, we set up a be-
havioural cloning task based on the game CoinRun (Cobbe et al.,
2019), and observe better generalization on new unseen levels.
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Figure 10: Two second-hand books of chess puzzles.

an example . Take the two second-hand books of chess
puzzles in 10. We can learn the two independent shortcuts
(blue arrows for the left book OR hand-written solutions on
the right), or actually learn to play chess (the invariant mech-
anism). While both strategies solve other problems from the
same books (i.i.d.), only the latter generalises to new chess puz-
zle books (o.o.d.). How to distinguish the two? We would not
have learned about the red arrows had we trained on the book
on the right, and vice versa with the hand-written notes.

3.2 explanations that are hard to vary

We consider datasets {De}e∈E , with |E | = d, and De = (xe
i , ye

i ),
ie = 1, . . . , ne. Here xe

i ∈ X ⊆ Rm is the vector containing the
observed inputs, and ye

i ∈ Y ⊆ Rp the targets. The superscript
e ∈ E indexes some aspect of the data collection process, and can
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be interpreted as an environment label. Our objective is to infer
a function f : X → Y — which we call mechanism — assigning
a target ye

i to each input xe
i ; as explained in the introduction, we

assume that such function is shared across all environments. For
estimation purposes, f may be parametrized by a neural network
with continuous activations; for weights θ ∈ Θ ⊆ Rn, we denote
the neural network output at x ∈ X as fθ(x).

gradient-based optimization. To find a good model fθ ,
standard optimizers rely on gradients from a pooled loss function
L : Rn → R. This function measures the average performance of
the neural network when predicting data labels, across all envi-
ronments: L(θ) := 1

|E | ∑e∈E Le(θ), with Le(θ) := 1
|De | ∑(xe

i ,ye
i )∈De

`( f (xe
i ; θ), ye

i ); where ` : Rp × Rp → [0,+∞) is usually chosen
to be the L2 loss or the cross-entropy loss. The parameter up-
dates according to gradient descent (GD) are given by θk+1

GD =

θk
GD − η∇L(θk

GD), where η > 0 is the learning rate. Under some
standard assumptions (Lee et al., 2016a), (θk

GD)k≥0 converges to a
local minimizer of L, with probability one.

when do we not learn invariances? We start by describ-
ing what might prevent learning invariances in standard gradient-
based optimization.

(i) Training stops once the loss is low enough. If optimization learned
spurious patterns by the time it converged, invariances will not
be learned anymore. This depends on the rate at which different
patterns are learned. The rates at which invariant patterns emerge
(and vice-versa, the spurious patterns do not) can be improved by
e.g.: (a) careful architecture design, e.g. as done by hardcoding
spatial equivariance in convolutional networks; (b) fine-tuning
models pre-trained on large amounts of data, where strong fea-
tures already emerged and can be readily selected.
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(ii) Learning signals: everything looks relevant for a dataset of size 1.
Due to the summation in the definition of the pooled loss L, gra-
dients for each example are computed independently. Informally,
each signal is identical to the one for an equivalent dataset of size
1, where every pattern appears relevant to the task. To find invari-
ant patterns across examples, if we compute our training signals
on each of them independently, we have to rely on the way these
are aggregated.1

(iii) Aggregating gradients: averaging maximizes learning speed. The
default method to pool gradients is the arithmetic mean. GD ap-
plied to L is designed to minimize the pooled loss by prioritiz-
ing descent speed.2 Indeed, a step of GD is equivalent to finding
a tight3 quadratic upper bound L̂ to L, and then jumping to
the minimizer of this approximation (Nocedal and Wright, 2006).
While speed is often desirable, by construction GD ignores one
potentially crucial piece of information: The gradient ∇L is the
result of averaging signals ∇Le, which correspond to the patterns
visible from each environment at this stage of optimization. In
other words, GD with average gradients greedily maximizes for
learning speed, but in some situations we would like to trade
some convergence speed for invariance. For instance, instead of
performing an arithmetic mean between gradients (logical OR),
we might want to look towards a logical AND, which can be char-
acterized as a geometric mean. Fig. 9 shows how a sum can be
seen as a logical OR: the two orthogonal gradients from data A

1 After computing the gradients for a dataset of n − 1 examples, if an n-th exam-
ple appeared, we would just compute one more vector of gradients and add it
to the sum. A Gaussian Process (Rasmussen, 2003) for example would require
recomputing the entire solution from scratch, as all interactions are considered.

2 The same reasoning holds for SGD in the finite-sum optimization case L =
1
m ∑m

i=1 Li , where gradients from a mini-batch are seen as unbiased estimators
of gradients from the pooled loss. (Bottou et al., 2018).

3 Assume that L has L-Lipschitz gradients (i.e. curvature bounded from above by
L). Then, at any point θ̃, we can construct the upper bound L̂θ̃(θ) = L(θ̃) +
∇L(θ̃)>(θ − θ̃) + L‖θ − θ̃‖2/2.
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θk
GD

θk+1
GD

Figure 11: Inconsistency in gradient directions.

and data B at (0.5,0.5) point to different directions, yet both are
kept in the combined gradient.4 In Sec. 3.2.3 we elaborate on this
idea and on implementing a logical AND between gradients. Be-
fore presenting this discussion, we take some time to better moti-
vate the need for invariant learning consistency and to construct
a precise mathematical definition of consistency.

3.2.1 Formal definition of ILC

Let Θ∗A be the set of convergence points of algorithm A when
trained using all environments (pooled data): that is, Θ∗A = {θ∗ ∈
Θ | ∃ θ0 ∈ Rn s.t. A∞(θ0, E) = θ∗}. For instance, if A is gradient
descent, the result of Lee et al., 2016a implies that Θ∗A is the set of
local minimizers of the pooled loss L. To each θ∗ ∈ Θ∗A, we want
to associate a consistency score, quantifying the concept “good
θ∗ are hard to vary”. In other words, we would like the score to
capture the consistency of the loss landscape around θ∗ across the
different environments. For example, in Fig. 9 the loss landscape
near the bottom-left minimizer is consistent across environments,
while the top-right minimizer is not.

4 Loosely speaking, a sum is large if any of the summands is large, a product is
large if all factors are large.
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Loss surface for data A Loss surface for data B
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Figure 12: The minimum on θ∗ is easy to vary without affecting the loss
on environment A while increasing the loss significantly on
environment B. As such, it is inconsistent under equation 4

Let us characterize the landscape around θ∗ from the perspec-
tive of a fixed environment e ∈ E . We define the set Nε

e,θ∗ to be the
largest path-connected region of space containing both θ∗ and the
set {θ ∈ Θ s.t.|Le(θ)−Le(θ∗)| ≤ ε }, with ε > 0. In other words,
if θ ∈ Nε

e,θ∗ then there exist a path-connected region in parameter
space including θ∗ and θ where each parameter also is in Nε

e,θ∗
and its loss on environment e is comparable. From the perspec-
tive of environment e, all these points are equivalent to θ∗. We
would like to evaluate the elements of this set with respect to a
different environment e′ 6= e (see Figure 12). We will say that e′ is
consistent with e in θ∗ if maxθ∈Nε

e,θ∗
|Le′(θ)− Le(θ)

∣∣ is small. Re-
peating this reasoning for all environment pairs, we arrive at the
following inconsistency score:

Iε(θ∗) := max
(e,e′)∈E2

max
θ∈Nε

e,θ∗
|Le′(θ)−Le(θ

∗)|. (4)
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This consistency is our formalization of the principle “good expla-
nations are hard to vary”. Finally, we can write down an invariant
learning consistency score for A:

ILC(A, pθ0) := −Eθ0∼p(θ0)

[
Iε(A∞(θ0, E)

]
. (5)

That is, the learning consistency of an algorithm measures the ex-
pected consistency across environments of the minimizer it con-
verges to on the pooled data.

example : low consistency of a classic patchwork so-
lution. One-hidden-layer networks with sigmoid activations
and enough neurons can approximate any function f ∗ : [0, 1] →
R (Cybenko, 1989). In appendix B.1.1 we show how the construc-
tion used to obtain the weights leads to a maximally inconsistent
solution according to Iε(θ∗), which would not be expected to
generalize o.o.d.

3.2.2 ILC as a logical AND between landscapes

Here we draw a connection between our definition of inconsis-
tency and the local geometric properties of the loss landscapes.
For the sake of clarity, we consider two environments (A and B)
and assume θ∗ to be a local minimizer (with zero loss) for both en-
vironments. Using a Taylor approximation5, we get L(θ) ≈ 1

2 (θ−
θ∗)>HA+B(θ− θ∗) for ‖θ− θ∗‖ ≈ 0, where HA+B = (HA + HB) /2
is the arithmetic mean of the Hessians HA := ∇2LA(θ

∗) and HB :=
∇2LA(θ

∗). HA+B does not capture the possibly conflicting ge-
ometries of landscape A or B: It performs a “logical OR” on
the dominant eigendirections. In contrast, the geometric mean, or

5 This provides a useful simplified perspective. Indeed, this quadratic model is heav-
ily used in the optimization community (see e.g. Jastrzębski et al., 2017; Zhang
et al., 2019a; Mandt et al., 2017.)
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Karcher mean, HA∧B (Ando et al., 2004) is affected by the incon-
sistencies between landscapes: It performs a “logical AND”. In
appendix B.1.2, we give a formal definition of HA∧B, and show
that for diagonal Hessians, Iε(θ∗) ≤ 2ε(

det(HA+B)
det(HA∧B)

)2. As for the ge-
ometric mean of positive numbers, 0 ≤ det(HA∧B) ≤ det(HA+B);
thus, inconsistency is lowest when shapes of A and B are similar –
exactly as in the bottom-left minimizer of Fig. 9.

from hessians to gradients . We just saw that the con-
sistency of θ∗ is linked to the geometric mean of the Hessians
{He(θ∗)}e∈E . Under the simplifying assumption that each He is di-
agonal6 and all eigenvalues λe

i are positive, their geometric mean
is H∧ := diag((∏e∈E λe

1)
1/|E |, . . . , (∏e∈E λe

n)
1/|E |). The curvature of

the corresponding loss in the i-th eigendirection depends on how
consistent the curvatures of each environment are in that direc-
tion. Consider now optimizing from a point θk; gradient descent
reads θk+1 = θk − ηH+(θk − θ∗), where H+ := diag( 1

|E | ∑e∈E λe
1,

. . . , 1
|E | ∑e∈E λe

n). For η small enough7, we have |θk+1
i − θ∗i | = (1−

η 1
|E | ∑e∈E λe

i )|θk
i − θ∗i |. As noted, this choice maximises the speed

of convergence to θ∗, but does not take into account whether
this minimizer is consistent. We can reduce the speed of con-
vergence on directions where landscapes have different curva-
tures – which would lead to a high inconsistency – by follow-
ing the gradients from the geometric mean of the landscapes, as
opposed to the arithmetic mean. I.e, we substitute the full gra-
dient ∇L(θ) = H+(θk − θ∗) with ∇L∧(θ) = H∧(θk − θ∗). Also,
we have that8 ∇L∧(θ) = (∏e∈E ∇Le(θ))

1/|E |: to reduce the speed

6 It was shown in (Becker and Le Cun, 1988) and recently in (Adolphs et al., 2019;
Singh and Alistarh, 2020) that neural networks have a strong diagonal dominance
of the Hessian matrix at the end of training.

7 Smaller than 1/λmax, λmax is the maximum eigenvalue of Hessians from different
environments,

8 This holds if θ − θ∗ is positive, otherwise ∇L∧(θ) = − (∏e∈E |∇Le(θ)|)1/|E |.
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Figure 13: Contour lines θ>H−1θ = 1 for HA = diag(0.05, 1) and
HB = diag(1, 0.05). HA∧B retains the original volumes, while
for HA+B it is 5× bigger. This magnification shows inconsis-
tency of A and B.

of convergence in directions with inconsistency, we can take the
element-wise geometric mean of gradients from different environ-
ments (see also Fig. 35 in the appendix).

3.2.3 Masking gradients with a logical AND

The element-wise geometric mean of gradients, instead of the
arithmetic mean, increases consistency in the convex quadratic
case. However, there are a few practical limitations:

(i) The geometric mean is only defined when all the signs are
consistent. It is still to be defined how sign inconsistencies,
which can occur in non-convex settings, should be dealt with.

(ii) It provides little flexibility for ‘partial’ agreement: Even a sin-
gle zero gradient component in one environment stops opti-
mization in that direction.

(iii) For numerical stability, it needs to be computed in log domain
(more computationally expensive).

(iv) Adaptive step-size schemes (e.g. Adam (Kingma and Ba, 2015))
rescale the signal component-wise for local curvature adapta-
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tion. The exact magnitude of the geometric mean would be
ignored and most of the difference from arithmetic averaging
will come from the zero-ed components.

(i) can be overcome by treating different signs as zeros, result-
ing in a geometric mean of 0 if there is any sign disagreement
across environments for a gradient component. For (ii) we can al-
low for some disagreement (with a hyperparameter), by not mask-
ing out if there is a large percentage of environments with gra-
dients in that direction. (iii) and (iv) can be addressed together:
Since the final magnitude will be rescaled except for masked com-
ponents, i.e. where the geometric mean is 0, we can use the aver-
age gradients (fast to compute) and mask out the components
based on the sign agreement (computable avoiding the log do-
main).

the and-mask . We translate the reasoning we just presented
to a practical algorithm that we will refer to as the AND-mask.
In its most simple implementation, we zero out those gradient
components with respect to weights that have inconsistent signs
across environments. Formally, the masked gradients at iteration
k are mt(θk) � ∇L(θk), where mt(θk) vanishes for any compo-
nent where there are less than t ∈ {d/2, d/2 + 1, . . . , d} agreeing
gradient signs across environments (d is the number of environ-
ments in the batch), and is equal to one otherwise. For conve-
nience, our implementation of the AND-mask uses a threshold
τ ∈ [0, 1] as hyper-parameter instead of t, such that t = d

2 (τ +
1). Mathematically, for every component [mτ ]j of mτ , [mτ ]j =
1
[
τd ≤ |∑e sign([∇Le]j)|

]
.

Computing the AND-mask has the same time and space com-
plexity of standard gradient descent, i.e., linear in the number
of examples that we average. Due to its simplicity and computa-
tional efficiency, this is the algorithm that we will use in the exper-
iment section. As a first result, we show that following the AND-
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Figure 14: Magnitude of gradient (average or masked) on random data
(|θ| = 3000, t = 0.8d).

masked gradient leads to convergence in the directions made vis-
ible by the AND-mask. The proof is presented in appendix B.1.3.

Proposition 1. Let L have L-Lipschitz gradients and consider a
learning rate η ≤ 1/L. After k iterations, AND-masked GD visits
at least once a point θ where ‖mt(θ)�∇L(θ)‖2 ≤ O(1/k).

behaviour in the face of randomness . Here we put the
AND mask through a theoretical test: For gradients coming from
different environments that are inconsistent (or even random),
how fast does the AND mask reduce the magnitude of the step
taken in parameter space, compared to standard GD? In case of
inconsistency, the AND mask should quickly make the gradient steps
more conservative.

To assess this property, we consider a fixed set of n parameters
θ and gradients ∇Le drawn independently from a multivariate
Gaussian with zero mean and unit covariance.
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Proposition 2. Consider the setting we just outlined, with L =
(1/d)∑d

e=1 Le. While E‖∇L(θ)‖2 = O(n/d), we have that ∀t ∈
{d/2+ 1, . . . , d}, ∃c ∈ (1, 2] such that E‖mt(θ)�∇L(θ)‖2 ≤ O(n/cd).

The proof is presented in Appendix B.1.4, and an illustration
with numerical verification in Fig. 14 (the magnitudes of masked
gradients (•) for more than 100 examples were always zero in
the numerical verification). Intuitively, in the presence of purely
random patterns, the AND-mask has a desirable property: it de-
creases the strength of these signals exponentially fast, as op-
posed to linearly.

3.3 experiments

Real-world datasets are generated by (causal) generative processes
which share mechanisms (Pearl, 2009). However, mechanisms and
spurious signals are often entangled, making it hard to assess
what part of the learning signal is due to either. As the goal of
this chapter is to dissect these two components to understand
how they ultimately contribute to the learning process, we create
a simple synthetic dataset that allows us to control the complex-
ity, intensity, and number of shortcuts in the data. After that, we
evaluate whether spurious signals can be detected even in high-
dimensional networks and datasets by testing the AND-mask on
a memorization task similar to the one proposed in Zhang et al.,
2017, and on a behavioral cloning task using the game CoinRun
(Cobbe et al., 2019).

3.3.1 The synthetic memorization dataset

We introduce a binary classification task. The input dimensional-
ity is d = dM + dS. While p(y|xdM ) is the same across all envi-
ronments (i.e. the mechanism), p(y|xdS , e) is not the same across all
environments (the shortcuts). While the mechanism is shared, it
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needs a highly non-linear decision boundary to classify the data.
The shortcuts are not shared across environments, but provide
a simple way to classify the data, even when pooling all the en-
vironments together. See Figure 15 for a concrete example with
dM and dS equal to 2, and two environments (A and B). The spi-
rals (on dM) are invariant but hard to model. The shortcuts (on
dS) are simple blobs but different in every environment: in A, lin-
early separable through a vertical decision boundary, in B with
a horizontal one. If the two environments are pooled, a new di-
agonal decision boundary emerges on the shortcut dimensions
as the most ‘natural’ one. While this perfectly classifies data in
both environments A and B, critically it would have not been found
by training on either partition A or B alone. The out-of-distribution
(o.o.d.) test data has the same mechanism but random shortcuts.
Therefore, any method relying exclusively on the shortcuts will
have chance-level o.o.d. performance. Details about the dataset,
baselines, and training curves are reported in appendix B.2.

Despite the apparent simplicity of this dataset, note that it is
challenging to find the invariant mechanism. In high dimensions,
even with tens of pooled environments, the shortcuts allow for a
simple classification rule under almost every classical definition of
‘simple’: the boundary is linear, it has a large margin, it can be ex-
pressed with small weights, it is fast to learn, robust to input noise,
and has perfect accuracy and no i.i.d. generalization gap. Finding the
complex decision boundary of the spirals, instead, is a fiddly pro-
cess and arguably a much slower path towards small loss.

baselines . We evaluate several domain-agnostic baselines (all
multilayer perceptrons) with some of the most common regular-
izers used in deep learning — Dropout, L1, L2, Batch normal-
ization. We also consider methods that explicitly make use of
the environment labels, namely: (i) Domain Adversarial Neural
Networks (DANN) (Ganin et al., 2016), a method specifically de-
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Environment A Environment B Pooled A & B Test o.o.d.
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<latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit><latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit><latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit><latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit>

dM
<latexit sha1_base64="J0iXxF81mAuEgtAgVuQW5AxLU34=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBg16EitYW2lA2m0m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gF18Z1v53Syura+kZ5s7K1vbO7V90/eNRJphi2WCIS1QmoRsEltgw3AjupQhoHAtvB6Grqt59QaZ7IBzNO0Y/pQPKIM2qsdB/2b/vVmlt3ZyDLxCtIDQo0+9WvXpiwLEZpmKBadz03NX5OleFM4KTSyzSmlI3oALuWShqj9vPZqRNyYpWQRImyJQ2Zqb8nchprPY4D2xlTM9SL3lT8z+tmJrr0cy7TzKBk80VRJohJyPRvEnKFzIixJZQpbm8lbEgVZcamU7EheIsvL5PHs7rn1r2781rjuoijDEdwDKfgwQU04Aaa0AIGA3iGV3hzhPPivDsf89aSU8wcwh84nz8ZKY2t</latexit><latexit sha1_base64="J0iXxF81mAuEgtAgVuQW5AxLU34=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBg16EitYW2lA2m0m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gF18Z1v53Syura+kZ5s7K1vbO7V90/eNRJphi2WCIS1QmoRsEltgw3AjupQhoHAtvB6Grqt59QaZ7IBzNO0Y/pQPKIM2qsdB/2b/vVmlt3ZyDLxCtIDQo0+9WvXpiwLEZpmKBadz03NX5OleFM4KTSyzSmlI3oALuWShqj9vPZqRNyYpWQRImyJQ2Zqb8nchprPY4D2xlTM9SL3lT8z+tmJrr0cy7TzKBk80VRJohJyPRvEnKFzIixJZQpbm8lbEgVZcamU7EheIsvL5PHs7rn1r2781rjuoijDEdwDKfgwQU04Aaa0AIGA3iGV3hzhPPivDsf89aSU8wcwh84nz8ZKY2t</latexit><latexit sha1_base64="J0iXxF81mAuEgtAgVuQW5AxLU34=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBg16EitYW2lA2m0m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gF18Z1v53Syura+kZ5s7K1vbO7V90/eNRJphi2WCIS1QmoRsEltgw3AjupQhoHAtvB6Grqt59QaZ7IBzNO0Y/pQPKIM2qsdB/2b/vVmlt3ZyDLxCtIDQo0+9WvXpiwLEZpmKBadz03NX5OleFM4KTSyzSmlI3oALuWShqj9vPZqRNyYpWQRImyJQ2Zqb8nchprPY4D2xlTM9SL3lT8z+tmJrr0cy7TzKBk80VRJohJyPRvEnKFzIixJZQpbm8lbEgVZcamU7EheIsvL5PHs7rn1r2781rjuoijDEdwDKfgwQU04Aaa0AIGA3iGV3hzhPPivDsf89aSU8wcwh84nz8ZKY2t</latexit><latexit sha1_base64="J0iXxF81mAuEgtAgVuQW5AxLU34=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBg16EitYW2lA2m0m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gF18Z1v53Syura+kZ5s7K1vbO7V90/eNRJphi2WCIS1QmoRsEltgw3AjupQhoHAtvB6Grqt59QaZ7IBzNO0Y/pQPKIM2qsdB/2b/vVmlt3ZyDLxCtIDQo0+9WvXpiwLEZpmKBadz03NX5OleFM4KTSyzSmlI3oALuWShqj9vPZqRNyYpWQRImyJQ2Zqb8nchprPY4D2xlTM9SL3lT8z+tmJrr0cy7TzKBk80VRJohJyPRvEnKFzIixJZQpbm8lbEgVZcamU7EheIsvL5PHs7rn1r2781rjuoijDEdwDKfgwQU04Aaa0AIGA3iGV3hzhPPivDsf89aSU8wcwh84nz8ZKY2t</latexit>

dS
<latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit><latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit><latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit><latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit>

dM
<latexit sha1_base64="J0iXxF81mAuEgtAgVuQW5AxLU34=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBg16EitYW2lA2m0m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gF18Z1v53Syura+kZ5s7K1vbO7V90/eNRJphi2WCIS1QmoRsEltgw3AjupQhoHAtvB6Grqt59QaZ7IBzNO0Y/pQPKIM2qsdB/2b/vVmlt3ZyDLxCtIDQo0+9WvXpiwLEZpmKBadz03NX5OleFM4KTSyzSmlI3oALuWShqj9vPZqRNyYpWQRImyJQ2Zqb8nchprPY4D2xlTM9SL3lT8z+tmJrr0cy7TzKBk80VRJohJyPRvEnKFzIixJZQpbm8lbEgVZcamU7EheIsvL5PHs7rn1r2781rjuoijDEdwDKfgwQU04Aaa0AIGA3iGV3hzhPPivDsf89aSU8wcwh84nz8ZKY2t</latexit><latexit sha1_base64="J0iXxF81mAuEgtAgVuQW5AxLU34=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBg16EitYW2lA2m0m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gF18Z1v53Syura+kZ5s7K1vbO7V90/eNRJphi2WCIS1QmoRsEltgw3AjupQhoHAtvB6Grqt59QaZ7IBzNO0Y/pQPKIM2qsdB/2b/vVmlt3ZyDLxCtIDQo0+9WvXpiwLEZpmKBadz03NX5OleFM4KTSyzSmlI3oALuWShqj9vPZqRNyYpWQRImyJQ2Zqb8nchprPY4D2xlTM9SL3lT8z+tmJrr0cy7TzKBk80VRJohJyPRvEnKFzIixJZQpbm8lbEgVZcamU7EheIsvL5PHs7rn1r2781rjuoijDEdwDKfgwQU04Aaa0AIGA3iGV3hzhPPivDsf89aSU8wcwh84nz8ZKY2t</latexit><latexit sha1_base64="J0iXxF81mAuEgtAgVuQW5AxLU34=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBg16EitYW2lA2m0m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gF18Z1v53Syura+kZ5s7K1vbO7V90/eNRJphi2WCIS1QmoRsEltgw3AjupQhoHAtvB6Grqt59QaZ7IBzNO0Y/pQPKIM2qsdB/2b/vVmlt3ZyDLxCtIDQo0+9WvXpiwLEZpmKBadz03NX5OleFM4KTSyzSmlI3oALuWShqj9vPZqRNyYpWQRImyJQ2Zqb8nchprPY4D2xlTM9SL3lT8z+tmJrr0cy7TzKBk80VRJohJyPRvEnKFzIixJZQpbm8lbEgVZcamU7EheIsvL5PHs7rn1r2781rjuoijDEdwDKfgwQU04Aaa0AIGA3iGV3hzhPPivDsf89aSU8wcwh84nz8ZKY2t</latexit><latexit sha1_base64="J0iXxF81mAuEgtAgVuQW5AxLU34=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBg16EitYW2lA2m0m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gF18Z1v53Syura+kZ5s7K1vbO7V90/eNRJphi2WCIS1QmoRsEltgw3AjupQhoHAtvB6Grqt59QaZ7IBzNO0Y/pQPKIM2qsdB/2b/vVmlt3ZyDLxCtIDQo0+9WvXpiwLEZpmKBadz03NX5OleFM4KTSyzSmlI3oALuWShqj9vPZqRNyYpWQRImyJQ2Zqb8nchprPY4D2xlTM9SL3lT8z+tmJrr0cy7TzKBk80VRJohJyPRvEnKFzIixJZQpbm8lbEgVZcamU7EheIsvL5PHs7rn1r2781rjuoijDEdwDKfgwQU04Aaa0AIGA3iGV3hzhPPivDsf89aSU8wcwh84nz8ZKY2t</latexit>

dS
<latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit><latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit><latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit><latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit>

dM
<latexit sha1_base64="J0iXxF81mAuEgtAgVuQW5AxLU34=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBg16EitYW2lA2m0m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gF18Z1v53Syura+kZ5s7K1vbO7V90/eNRJphi2WCIS1QmoRsEltgw3AjupQhoHAtvB6Grqt59QaZ7IBzNO0Y/pQPKIM2qsdB/2b/vVmlt3ZyDLxCtIDQo0+9WvXpiwLEZpmKBadz03NX5OleFM4KTSyzSmlI3oALuWShqj9vPZqRNyYpWQRImyJQ2Zqb8nchprPY4D2xlTM9SL3lT8z+tmJrr0cy7TzKBk80VRJohJyPRvEnKFzIixJZQpbm8lbEgVZcamU7EheIsvL5PHs7rn1r2781rjuoijDEdwDKfgwQU04Aaa0AIGA3iGV3hzhPPivDsf89aSU8wcwh84nz8ZKY2t</latexit><latexit sha1_base64="J0iXxF81mAuEgtAgVuQW5AxLU34=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBg16EitYW2lA2m0m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gF18Z1v53Syura+kZ5s7K1vbO7V90/eNRJphi2WCIS1QmoRsEltgw3AjupQhoHAtvB6Grqt59QaZ7IBzNO0Y/pQPKIM2qsdB/2b/vVmlt3ZyDLxCtIDQo0+9WvXpiwLEZpmKBadz03NX5OleFM4KTSyzSmlI3oALuWShqj9vPZqRNyYpWQRImyJQ2Zqb8nchprPY4D2xlTM9SL3lT8z+tmJrr0cy7TzKBk80VRJohJyPRvEnKFzIixJZQpbm8lbEgVZcamU7EheIsvL5PHs7rn1r2781rjuoijDEdwDKfgwQU04Aaa0AIGA3iGV3hzhPPivDsf89aSU8wcwh84nz8ZKY2t</latexit><latexit sha1_base64="J0iXxF81mAuEgtAgVuQW5AxLU34=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBg16EitYW2lA2m0m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gF18Z1v53Syura+kZ5s7K1vbO7V90/eNRJphi2WCIS1QmoRsEltgw3AjupQhoHAtvB6Grqt59QaZ7IBzNO0Y/pQPKIM2qsdB/2b/vVmlt3ZyDLxCtIDQo0+9WvXpiwLEZpmKBadz03NX5OleFM4KTSyzSmlI3oALuWShqj9vPZqRNyYpWQRImyJQ2Zqb8nchprPY4D2xlTM9SL3lT8z+tmJrr0cy7TzKBk80VRJohJyPRvEnKFzIixJZQpbm8lbEgVZcamU7EheIsvL5PHs7rn1r2781rjuoijDEdwDKfgwQU04Aaa0AIGA3iGV3hzhPPivDsf89aSU8wcwh84nz8ZKY2t</latexit><latexit sha1_base64="J0iXxF81mAuEgtAgVuQW5AxLU34=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBg16EitYW2lA2m0m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gF18Z1v53Syura+kZ5s7K1vbO7V90/eNRJphi2WCIS1QmoRsEltgw3AjupQhoHAtvB6Grqt59QaZ7IBzNO0Y/pQPKIM2qsdB/2b/vVmlt3ZyDLxCtIDQo0+9WvXpiwLEZpmKBadz03NX5OleFM4KTSyzSmlI3oALuWShqj9vPZqRNyYpWQRImyJQ2Zqb8nchprPY4D2xlTM9SL3lT8z+tmJrr0cy7TzKBk80VRJohJyPRvEnKFzIixJZQpbm8lbEgVZcamU7EheIsvL5PHs7rn1r2781rjuoijDEdwDKfgwQU04Aaa0AIGA3iGV3hzhPPivDsf89aSU8wcwh84nz8ZKY2t</latexit>

Environment A Environment B Pooled A & B Test o.o.d.

dS
<latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit><latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit><latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit><latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit>

dM
<latexit sha1_base64="J0iXxF81mAuEgtAgVuQW5AxLU34=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBg16EitYW2lA2m0m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gF18Z1v53Syura+kZ5s7K1vbO7V90/eNRJphi2WCIS1QmoRsEltgw3AjupQhoHAtvB6Grqt59QaZ7IBzNO0Y/pQPKIM2qsdB/2b/vVmlt3ZyDLxCtIDQo0+9WvXpiwLEZpmKBadz03NX5OleFM4KTSyzSmlI3oALuWShqj9vPZqRNyYpWQRImyJQ2Zqb8nchprPY4D2xlTM9SL3lT8z+tmJrr0cy7TzKBk80VRJohJyPRvEnKFzIixJZQpbm8lbEgVZcamU7EheIsvL5PHs7rn1r2781rjuoijDEdwDKfgwQU04Aaa0AIGA3iGV3hzhPPivDsf89aSU8wcwh84nz8ZKY2t</latexit><latexit sha1_base64="J0iXxF81mAuEgtAgVuQW5AxLU34=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBg16EitYW2lA2m0m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gF18Z1v53Syura+kZ5s7K1vbO7V90/eNRJphi2WCIS1QmoRsEltgw3AjupQhoHAtvB6Grqt59QaZ7IBzNO0Y/pQPKIM2qsdB/2b/vVmlt3ZyDLxCtIDQo0+9WvXpiwLEZpmKBadz03NX5OleFM4KTSyzSmlI3oALuWShqj9vPZqRNyYpWQRImyJQ2Zqb8nchprPY4D2xlTM9SL3lT8z+tmJrr0cy7TzKBk80VRJohJyPRvEnKFzIixJZQpbm8lbEgVZcamU7EheIsvL5PHs7rn1r2781rjuoijDEdwDKfgwQU04Aaa0AIGA3iGV3hzhPPivDsf89aSU8wcwh84nz8ZKY2t</latexit><latexit sha1_base64="J0iXxF81mAuEgtAgVuQW5AxLU34=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBg16EitYW2lA2m0m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gF18Z1v53Syura+kZ5s7K1vbO7V90/eNRJphi2WCIS1QmoRsEltgw3AjupQhoHAtvB6Grqt59QaZ7IBzNO0Y/pQPKIM2qsdB/2b/vVmlt3ZyDLxCtIDQo0+9WvXpiwLEZpmKBadz03NX5OleFM4KTSyzSmlI3oALuWShqj9vPZqRNyYpWQRImyJQ2Zqb8nchprPY4D2xlTM9SL3lT8z+tmJrr0cy7TzKBk80VRJohJyPRvEnKFzIixJZQpbm8lbEgVZcamU7EheIsvL5PHs7rn1r2781rjuoijDEdwDKfgwQU04Aaa0AIGA3iGV3hzhPPivDsf89aSU8wcwh84nz8ZKY2t</latexit><latexit sha1_base64="J0iXxF81mAuEgtAgVuQW5AxLU34=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBg16EitYW2lA2m0m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gF18Z1v53Syura+kZ5s7K1vbO7V90/eNRJphi2WCIS1QmoRsEltgw3AjupQhoHAtvB6Grqt59QaZ7IBzNO0Y/pQPKIM2qsdB/2b/vVmlt3ZyDLxCtIDQo0+9WvXpiwLEZpmKBadz03NX5OleFM4KTSyzSmlI3oALuWShqj9vPZqRNyYpWQRImyJQ2Zqb8nchprPY4D2xlTM9SL3lT8z+tmJrr0cy7TzKBk80VRJohJyPRvEnKFzIixJZQpbm8lbEgVZcamU7EheIsvL5PHs7rn1r2781rjuoijDEdwDKfgwQU04Aaa0AIGA3iGV3hzhPPivDsf89aSU8wcwh84nz8ZKY2t</latexit>

dS
<latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit><latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit><latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit><latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit>

dM
<latexit sha1_base64="J0iXxF81mAuEgtAgVuQW5AxLU34=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBg16EitYW2lA2m0m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gF18Z1v53Syura+kZ5s7K1vbO7V90/eNRJphi2WCIS1QmoRsEltgw3AjupQhoHAtvB6Grqt59QaZ7IBzNO0Y/pQPKIM2qsdB/2b/vVmlt3ZyDLxCtIDQo0+9WvXpiwLEZpmKBadz03NX5OleFM4KTSyzSmlI3oALuWShqj9vPZqRNyYpWQRImyJQ2Zqb8nchprPY4D2xlTM9SL3lT8z+tmJrr0cy7TzKBk80VRJohJyPRvEnKFzIixJZQpbm8lbEgVZcamU7EheIsvL5PHs7rn1r2781rjuoijDEdwDKfgwQU04Aaa0AIGA3iGV3hzhPPivDsf89aSU8wcwh84nz8ZKY2t</latexit><latexit sha1_base64="J0iXxF81mAuEgtAgVuQW5AxLU34=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBg16EitYW2lA2m0m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gF18Z1v53Syura+kZ5s7K1vbO7V90/eNRJphi2WCIS1QmoRsEltgw3AjupQhoHAtvB6Grqt59QaZ7IBzNO0Y/pQPKIM2qsdB/2b/vVmlt3ZyDLxCtIDQo0+9WvXpiwLEZpmKBadz03NX5OleFM4KTSyzSmlI3oALuWShqj9vPZqRNyYpWQRImyJQ2Zqb8nchprPY4D2xlTM9SL3lT8z+tmJrr0cy7TzKBk80VRJohJyPRvEnKFzIixJZQpbm8lbEgVZcamU7EheIsvL5PHs7rn1r2781rjuoijDEdwDKfgwQU04Aaa0AIGA3iGV3hzhPPivDsf89aSU8wcwh84nz8ZKY2t</latexit><latexit sha1_base64="J0iXxF81mAuEgtAgVuQW5AxLU34=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBg16EitYW2lA2m0m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gF18Z1v53Syura+kZ5s7K1vbO7V90/eNRJphi2WCIS1QmoRsEltgw3AjupQhoHAtvB6Grqt59QaZ7IBzNO0Y/pQPKIM2qsdB/2b/vVmlt3ZyDLxCtIDQo0+9WvXpiwLEZpmKBadz03NX5OleFM4KTSyzSmlI3oALuWShqj9vPZqRNyYpWQRImyJQ2Zqb8nchprPY4D2xlTM9SL3lT8z+tmJrr0cy7TzKBk80VRJohJyPRvEnKFzIixJZQpbm8lbEgVZcamU7EheIsvL5PHs7rn1r2781rjuoijDEdwDKfgwQU04Aaa0AIGA3iGV3hzhPPivDsf89aSU8wcwh84nz8ZKY2t</latexit><latexit sha1_base64="J0iXxF81mAuEgtAgVuQW5AxLU34=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBg16EitYW2lA2m0m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0gF18Z1v53Syura+kZ5s7K1vbO7V90/eNRJphi2WCIS1QmoRsEltgw3AjupQhoHAtvB6Grqt59QaZ7IBzNO0Y/pQPKIM2qsdB/2b/vVmlt3ZyDLxCtIDQo0+9WvXpiwLEZpmKBadz03NX5OleFM4KTSyzSmlI3oALuWShqj9vPZqRNyYpWQRImyJQ2Zqb8nchprPY4D2xlTM9SL3lT8z+tmJrr0cy7TzKBk80VRJohJyPRvEnKFzIixJZQpbm8lbEgVZcamU7EheIsvL5PHs7rn1r2781rjuoijDEdwDKfgwQU04Aaa0AIGA3iGV3hzhPPivDsf89aSU8wcwh84nz8ZKY2t</latexit>

dS
<latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit><latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit><latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit><latexit sha1_base64="ZGdevuGtb+DGYShaxNFHLH7aCAQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPBgx4rtR/QhrLZbNqlm03YnQgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJXCoOt+OaW19Y3NrfJ2ZWd3b/+genjUMUmmGW+zRCa6F1DDpVC8jQIl76Wa0ziQvBtMbuZ+95FrIxL1gNOU+zEdKREJRtFKrXDYGlZrbt1dgPwlXkFqUKA5rH4OwoRlMVfIJDWm77kp+jnVKJjks8ogMzylbEJHvG+pojE3fr44dUbOrBKSKNG2FJKF+nMip7Ex0ziwnTHFsVn15uJ/Xj/D6NrPhUoz5IotF0WZJJiQ+d8kFJozlFNLKNPC3krYmGrK0KZTsSF4qy//JZ2LuufWvfvLWuO2iKMMJ3AK5+DBFTTgDprQBgYjeIIXeHWk8+y8Oe/L1pJTzBzDLzgf3yJBjbM=</latexit>

dM
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Figure 15: A 4-dimensional instantiation of the synthetic memorization
dataset for visualization. Every example is a dot in both cir-
cles, and it can be classified by finding either of the “oracle”
decision boundaries shown.

signed to address domain adaptation by obfuscating domain in-
formation with an adversarial classifier; (ii) Invariant Risk Mini-
mization (IRM) (Arjovsky et al., 2019), discussed in detail in ap-
pendix B.2. The AND-mask is trained with the same configura-
tions in Table 3.

results . Fig. 16 shows training and test accuracy. DANN fails
because it can align the representation-layer distributions from
different environments using only shortcuts, such that they be-
come indistinguishable to the domain-discriminating classifier. The
AND-mask was the only method to achieve perfect test accuracy,
by fitting the spirals instead of the shortcuts. In particular, the
combination of the AND-mask with L1 or L2 regularization gave
the most robust results overall, as they help suppress neurons that
at initialization are tuned towards the shortcuts.
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Figure 16: Results on the synthetic dataset.

correlations between average , memorization and gen-
eralization gradients . Due to the synthetic nature of the
dataset, we can intervene on its data-generating process in order
to examine the learning signals coming from the mechanisms and
from the shortcuts. We isolate the two and measure their contribu-
tion to the average gradients, as we vary the agreement threshold
of the mask. More precisely, we look at the gradients computed
with respect to the weights of a randomly initialized network for
different sets of data: (i) The original data, with mechanisms and
shortcuts. (ii) Randomly permuting the dataset over the mech-
anisms dimensions, thus leaving the “memorization” signal of
the shortcuts. (iii) Randomly permuting over the shortcuts di-
mensions, isolating the “generalization” signal of the mechanisms
alone. Figure 17 shows the correlation between the components
of the original average gradient (i) and the shortcut gradients
((ii), dashed line), and between the original average gradients and
the mechanism gradients ((iii), solid line). While the signal from
the mechanisms is present in the original average gradients (i.e.
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Figure 17: Gradient correlations.

ρ ≈ 0.4 for τ = 0), its magnitude is smaller and it is ‘drowned’ by
the memorization signal. Instead, increasing the threshold of the
AND-mask (right side) suppresses memorization gradients due
to the shortcuts, and for τ ≈ 1 most of the gradient components
remaining contain signal from the mechanism. On the left side,
we test the other side of our hypothesis: An XOR-mask zeroes
out consistent gradients, preserves those with different signs, and
results in a sharper decrease of the correlation with the mecha-
nism gradients.

3.3.2 Experiments on CIFAR-10

memorization in a vision task . Zhang et al., 2017 showed
that neural networks trained with standard regularizers — like L2

and Dropout — can still memorize large training datasets with
shuffled labels, i.e. reaching ≈100% training accuracy. Their ex-
periments raised significant questions about the generalization
properties of neural networks and the role of regularizers in con-
straining the hypothesis class. Our hypothesis is that ILC — for
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example implemented as the AND-mask — should prevent mem-
orization on a similar task with the shuffled labels, as gradients
will tend to largely ‘disagree’ in the absence of a shared mecha-
nism. However, when the labels are not shuffled, ILC should have
a much weaker effect, as real shared mechanisms are still present
in the data.

To test our hypothesis, we ran an experiment that closely re-
sembles the one in (Zhang et al., 2017) on CIFAR-10. We trained
a ResNet on CIFAR-10 with random labels, with and without the
AND-mask. In all experiments we used batch size 80, and treated
each example as its own “environment”. Recall that standard gra-
dient averaging is equivalent to an AND-mask with threshold 0.
As shown in Figure 18, the ResNet with standard average gradi-
ents memorized the data, while slightly increasing the threshold
for the AND-mask quickly prevented memorization (dark blue
line). In contrast, training the same networks on the dataset with
the original labels resulted in both of them converging and general-
izing to the test set, confirming that the mask did not significantly
affect the generalization error with a general underlying mecha-
nism in the data.

Note that there is no standard notion of environments in CIFAR-
10, which is why we treated every example as coming from its
own environment. This assumption is not unreasonable, as every
image in the dataset was literally collected in a different physical
environment. If anything, it is the standard i.i.d. assumption that
hides this variety behind a notion of a single distribution encom-
passing all environments. The results of this experiment further
support this interpretation, and can serve as evidence that — in
some cases — we might be able to identify invariances even with-
out an explicit partition into environments, as this can be already
identified at the level of individual examples.
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Figure 18: As the AND-mask threshold increases, memorization on
CIFAR-10 with random labels is quickly hindered.

label noise . Following up on this experiment, we test how
the AND-mask performs in the presence of label noise, i.e. when
a portion of the labels in the training set are randomly shuffled
(25% here). According to our hypothesis, gradients computed on
examples with random labels should disagree and get masked
out by the AND-mask, while signal from correctly labeled data
should contribute to update the model. As shown in Figure 19,
the performance on the incorrectly labeled portion of the dataset
is well below chance for the AND-mask (as it predicts correctly
despite the wrong labels), while the baseline again memorizes
the incorrect labels. On the test set (with untouched labels), the
baseline peaks early then decreases as the model overfits, while
the AND-mask slowly but steadily improves.

3.3.3 Behavioral Cloning on CoinRun

CoinRun (Cobbe et al., 2019) is a game introduced to test how RL
agents generalize to novel situations. The agent needs to collect
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Figure 19: The AND-mask prevents overfitting to the incorrectly labeled
portion of the training set (left) without hurting the test accu-
racy (right).

coins, jumping on top of walls and boxes and avoiding enemies.9

Each level is procedurally generated — i.e. it has a different com-
bination of sprites, background, and layout — but the physics
and goals are invariant. Cobbe et al., 2019 showed that state-of-
the-art RL algorithms fail to model these invariant mechanisms,
performing poorly on new levels unless trained on thousands
of them. To test our hypothesis, we set up a behavioral cloning
task using CoinRun.10 We start by pre-training a strong policy π∗

using standard PPO (Schulman et al., 2017) for 400M steps on
the full distribution of levels. We then generate a dataset of pairs
(s, π∗(a|s)) from the on-policy distribution. The training data con-
sists of 1000 states from each of 64 levels, while test data comes
from 2000 levels. A ResNet-18 π̂θ is then trained to minimize the

9 See Figure 41 in appendix B.2.6 for a visualization of the game.
10 To obtain a robust evaluation, we preferred to approach behavioral cloning in-

stead of the full RL problem, as it is a standard supervised learning task and has
substantially fewer moving parts than most deep RL algorithms.
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Figure 20: Results on CoinRun with and without the temporal variation
of the AND-mask

loss DKL(π
∗||π̂θ) on the training set. We compare the general-

ization performance of regular Adam to a version that uses the
AND-mask. For each method we ran an automatic hyperparam-
eter optimization study using Tree-structured Parzen Estimation
(Bergstra et al., 2013) of 1024 trials. Despite the theoretical com-
putational efficiency of computing the AND-mask as presented
in Section 3.2.3 (i.e., linear time and memory in the size of the
mini-batch, just like classic SGD), current deep learning frame-
works like PyTorch (Paszke et al., 2017) have optimized routines
that sum gradients across examples in a mini-batch before it is
possible to efficiently compute the AND-mask. We therefore test
the AND-mask in a slightly different way. In training, in each iter-
ation we sample a batch of data from a randomly chosen level out
of the 64 available (and cycle through them all once per epoch).
We then apply the AND-mask ‘temporally’, only allowing gradi-
ents that are consistent across time (and therefore across levels).
See Algorithm 4 in appendix B.2.6 for a detailed description of
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this alternative formulation of the AND-mask. The figure shows
the minimum test loss for the 10 best runs, supporting the hy-
pothesis that the AND-mask helps identify invariant mechanisms
across different levels.

3.4 related work

Generalization and covariate shift. The classic formulation of statis-
tical learning theory (Vapnik, 1999) concerns learning from in-
dependent and identically distributed samples. The case where
the distribution of the covariates at test time differs from the one
observed during training is termed covariate shift (Sugiyama et
al., 2007; Quionero-Candela et al., 2009; Sugiyama and Kawan-
abe, 2012). Standard solutions involve re-weighting of the training
examples, but require the additional assumption of overlapping
supports for train and test distributions.
Causal models and invariances. As we mentioned in the introduc-
tion, causality provides a strong motivation for our work, based
on the notion that statistical dependencies are epiphenomena of
an underlying causal model (Pearl, 2009; Peters et al., 2017a). The
causal description identifies stable elements – e.g. physical mech-
anisms – connecting causes and effects, which are expected to
remain invariant under interventions or changing external con-
ditions (Haavelmo, 1943; Schölkopf et al., 2012)). This motivates
our notion of invariant mechanisms, and inspired related notions
which have been proposed for robust regression (Rojas-Carulla et
al., 2018; Heinze-Deml et al., 2018; Arjovsky et al., 2019; Hermann
and Lampinen, 2020; Ahuja et al., 2020; Krueger et al., 2020). We
discuss this in more detail in appendix B.3.1.
Domain generalization. ILC can be used in a setting of domain gen-
eralization (Muandet et al., 2013), but it is not limited to it: as
demonstrated in the experiments in Section 3.3.2, the AND-mask
can be applied even if domain labels are not available. In contrast,
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by treating every example as a single domain, methods relying
on domain classifiers (like DANN Ganin et al., 2016 or Balaji et al.
(2018)) would require as many output units as there are training
examples (i.e. 50’000 for CIFAR-10).
Gradient agreement. Looking at gradient agreement to learn mean-
ingful representations in neural networks has been explored in (Du
et al., 2018; Eshratifar et al., 2018; Fort et al., 2019; Zhang et al.,
2019b). These approaches mainly rely on a measure of cosine sim-
ilarity between gradients, which we did not consider here for two
main reasons: (i) It is a ‘global’ property of the gradients, and it
would not allow us to extract precise information about different
patterns in the network; (ii) It is unclear how to extend it beyond
pairs of vectors, and for pairwise interactions its computational
cost scales quadratic in the number of examples used.

3.5 conclusions

Generalizing out of distribution is one of the most significant
open challenges in machine learning, and relying on invariances
across environments or examples may be key in certain contexts.
In this chapter we analyzed how neural networks trained by av-
eraging gradients across examples might converge to solutions
that ignore the invariances, especially if these are harder to learn
than spurious patterns. We argued that if learning signals are col-
lected on one example at the time — as it is the case for gradients,
e.g., computed with backpropagation — the way these signals are
aggregated can play a significant role in the patterns that will ul-
timately be expressed: Averaging gradients in particular can be
too permissive, acting as a logical OR of a collection of distinct
patterns, and lead to a ‘patchwork’ solution. We introduced and
formalized the concept of Invariant Learning Consistency, and
showed how to learn invariances even in the face of alternative
explanations that — although spurious — fulfill most character-
istics of a good solution. The AND-mask is but one of multiple
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possible ways to improve consistency, and it is unlikely to be a
practical algorithm for all applications. However, we believe this
should not distract from the general idea which we are trying to
put forward — namely, that it is worthwhile to study learning
of explanations that are hard to vary, with the longer term goal
of advancing our understanding of learning, memorization and
generalization.
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N E U R A L S Y M B O L I C R E G R E S S I O N T H AT
S C A L E S

A picture may be worth a thousand words, a formula is worth a
thousand pictures.

Edsger Dijkstra

chapter abstract Symbolic equations are at the core of sci-
entific discovery. The task of discovering the underlying equation
from a set of input-output pairs is called symbolic regression. Tra-
ditionally, symbolic regression methods use hand-designed strate-
gies that do not improve with experience. In this chapter, we in-
troduce the first symbolic regression method that leverages large
scale pre-training. We procedurally generate an unbounded set of
equations, and simultaneously pre-train a Transformer to predict
the symbolic equation from a corresponding set of input-output-
pairs. At test time, we query the model on a new set of points
and use its output to guide the search for the equation. We show
empirically that this approach can re-discover a set of well-known
physical equations, and that it improves over time with more data
and compute.

This chapter is based on the paper “Neural Symbolic Regression that Scales”, Luca
Biggio? , Tommaso Bendinelli? , Alexander Neitz, Aurelien Lucchi, Giambattista
Parascandolo (Biggio et al., 2021)
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4.1 introduction

Since the early ages of Natural Sciences in the sixteenth century,
the process of scientific discovery has rooted in the formalization
of novel insights and intuitions about the natural world into com-
pact symbolic representations of such new acquired knowledge,
namely, mathematical equations.

Mathematical equations encode both objective descriptions of
experimental data and our inductive biases about the regularity
we attribute to natural phenomena. When seen under the per-
spective of modern machine learning, they present a number of
appealing properties: (i) They provide compressed and explainable
representations of complex phenomena. (ii) They allow to easily
incorporate prior knowledge. (iii) When relevant aspects about
the data generating process are captured, they often generalize
well beyond the distribution of the observations from which they
were derived.

The process of discovering symbolic expressions from experi-
mental data is hard and has traditionally been one of the hall-
marks of human intelligence. Symbolic regression is a branch of
regression analysis that tries to emulate such a process. More for-
mally, given a set of n input-output pairs {(xi , yi)}n

i=1 ∼ X × Y ,
the goal is to find a symbolic equation e and corresponding func-
tion fe such that y ≈ fe(x) for all (x, y) ∈ X × Y . In other words,
the goal of symbolic regression is to infer both model structure
and model parameters in a data-driven fashion. Even assuming
that the vocabulary of primitives — e.g. {sin, exp,+, ...} — is suf-
ficient to express the correct equation behind the observed data,
symbolic regression is a hard problem to tackle. The number of
functions associated with a string of symbols grows exponentially
with the string length, and the presence of numeric constants fur-
ther exacerbates its difficulty.
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Due to its challenging combinatorial nature, existing approaches
to symbolic regression are mainly based on search-techniques
whose goal is typically to minimize a pre-specified fitness func-
tion measuring the distance between the predicted expression
and the available data. The two main drawbacks of such methods
are that: (i) They do not improve with experience. As every equation
is regressed from scratch, the system does not improve if access
to more data from different equations is given. (ii) The inductive
bias is opaque. It is difficult for the user to steer the prior towards a
specific class of equations (e.g. polynomials, etc.). In other words,
even though most symbolic regression algorithms generate their
prediction starting from a fixed set of primitives reflecting the
user’s prior knowledge, such elementary building blocks can be
combined in many arbitrary ways, providing little control over
the equation distribution. To overcome both drawbacks, in this
chapter we take a step back, and let the model learn the task of
symbolic regression over time, on a user-defined prior over equa-
tions.

Building on the recent successes of large models trained on
large datasets Brown et al., 2020; Devlin et al., 2019; Chen et al.,
2020b; Chen et al., 2020c, we show that a strong symbolic regres-
sor can be purely learned from data. The key factor behind our
approach is that computers can generate unbounded amounts of
data with perfect accuracy and at virtually no cost. The distribu-
tion over equations used during pre-training strongly influences
the prior over equations of the final system. Such a prior thus
becomes easy to understand and control.

The main contributions of this chapter are the following:

• We introduce a simple, flexible, and powerful framework for
symbolic regression, the first approach (to the best of our
knowledge) to improve over time with data and compute.
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• We demonstrate that learning the task of symbolic regression
from data is sufficient to significantly outperform state-of-
the-art approaches relying on hand-designed strategies.

• We release our code and largest pre-trained model 1

In Section 5.4, we detail related work in the literature. In Section
4.3, we present our algorithm for neural symbolic regression that
scales. We evaluate the method in the experiments described in
Section 5.5 and 4.5 and compare it to state-of-the-art baselines. In
Section 4.6 we discuss results, limitations, and potential for future
work.

4.2 related work

genetic programming for symbolic regression Tra-
ditional approaches to symbolic regression are based on genetic
algorithms Forrest, 1993 and, in particular, genetic programming
(GP) Koza, 1994. GP methods used for symbolic regression itera-
tively «evolve» a population of candidate mathematical expres-
sions via mutation and recombination. The most popular GP-
based technique applied to symbolic regression is undoubtedly
the commercial software Eureqa Dubčáková, 2011 which is based
on the approach proposed by Schmidt and Lipson (2009). Despite
having shown for the first time the potential of data-driven ap-
proaches to the problem of function discovery, GP-based tech-
niques do not scale well to high dimensional problems and are
highly sensitive to hyperparameters Petersen, 2021.

neural networks for symbolic regression A more re-
cent line of research explores the potential of deep neural net-
works to tackle the combinatorial challenge of symbolic regres-
sion. Martius and Lampert (2016) propose a simple fully-connected

1 https://github.com/SymposiumOrganization/NeuralSymbolicRegressionThatScales

https://github.com/SymposiumOrganization/NeuralSymbolicRegressionThatScales
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neural network where standard activation functions are replaced
with symbolic building blocks (e.g. «sin(·)», «cos(·)», «+», «Id(·)»).
Once the model is trained, a symbolic formula can be automati-
cally read off from the network architecture and weights. This
method inherits the ability of neural networks to deal with high-
dimensional data and scales well with the number of input-output
pairs. However, it requires specific extensions Sahoo et al., 2018

to deal with functions involving divisions between elementary
building blocks (e.g. sin(x)

x2 ) and the inclusion of exponential and
logarithmic activations result in exploding gradients and numeri-
cal issues.

A different approach to circumvent the discrete combinatorial
search inherent in the symbolic regression framework is proposed
in Kusner et al., 2017. Here, a variational autoencoder Kingma
and Welling, 2014 is first trained to reconstruct symbolic expres-
sions and the search for the best fitting function is then performed
over the latent space in a subsequent step. While the idea of mov-
ing the search for the best expression from a discrete space to a
continuous one is interesting and has been exploited by other ap-
proaches (e.g. Alaa and Schaar, 2019), the method does not prove
to be effective in recovering relatively simple symbolic formulas.
More recently, Petersen (2021) developed a new technique where
a recurrent neural network (RNN) is used to model a probability
distribution over the space of mathematical expressions. Output
expressions contain symbolic placeholders to indicate the pres-
ence of numerical constants. Such constants are then fit in a sec-
ond stage by an out-of-the-box nonlinear optimizer. The RNN is
trained by minimizing a risk-seeking RL objective that assigns a
larger reward to the top-epsilon samples from the output distribu-
tion. The method represents a significant step forward in the ap-
plication of deep learning to symbolic regression. While showing
promising results, the network has to be retrained from scratch
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for each new equation and the RNN is never directly conditioned
on the data it is trained to model.

Finally, neural networks can also be used in combination with
existing techniques or hand-designed rules to perform symbolic
regression. Notable examples are Udrescu and Tegmark, 2020;
Udrescu et al., 2020, where neural networks are employed to
identify simplifying properties in the data such as additive sep-
arability and compositionality. These properties are exploited to
recursively simplify the original dataset into less challenging sub-
problems that can be tackled by a symbolic regression technique
of choice. A similar rationale is followed in Cranmer et al., 2020,
where different components of a trained Graph Neural Network
(GNN) are independently fit by a symbolic regression algorithm.
By joining the so-found expressions, a final algebraic formula
describing the network can be obtained. The aforementioned ap-
proaches might provide very good performances when it is known
a priori whether the data are characterized by specific structural
properties, such as symmetries or invariances. However, when
such information is not accessible, more domain-agnostic meth-
ods are required.

large scale pre-training Our approach builds upon a
large body of work emphasizing the benefits of pre-training large
models on large datasets Kaplan et al., 2020; Devlin et al., 2019;
Brown et al., 2020; Chen et al., 2020b; Chen et al., 2020c; Belkin
et al., 2019. Examples of such models can be found in Computer
Vision Radford et al., 2021; Chen et al., 2020b; Chen et al., 2020c;
Kolesnikov et al., 2020; Oord et al., 2018a and Natural Language
Processing Devlin et al., 2019; Brown et al., 2020. There have also
been recent applications of Transformers Vaswani et al., 2017 to
tasks involving symbolic mathematics manipulations Lample and
Charton, 2020; Saxton et al., 2019 and automated theorem proving
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Polu and Sutskever, 2020. Our work builds on the results from
Lample and Charton (2020), where Transformers are trained to
successfully perform challenging mathematical tasks such as sym-
bolic integration and solving differential equations. However, our
setting presents the additional challenge of mapping numerical
values to the corresponding symbolic formula, instead of working
exclusively within the symbolic domain.

4.3 neural symbolic regression that scales

A symbolic regressor S is an algorithm which takes a set of n
input-output pairs {(xi , yi)}n

i=1 ∼ X × Y as input and returns
a symbolic equation e representing a function fe such that: y ≈
fe(x), ∀(x, y) ∈ X × Y . In this section, we describe our frame-
work to learn a parametrized symbolic regressor Sθ from a large
number of training data.

4.3.1 Pre-training

We pre-train a Transformer on hundreds of millions of equations
which are procedurally generated for every minibatch. As equa-
tions and datapoints can be generated quickly and in any amount
using a computer and standard math libraries, we can train the
network end-to-end to predict the equations on a dataset that is
potentially unbounded. We describe the exact process we use to
generate the dataset in Section 5.5.
An illustration of the main steps involved in the pre-training
phase is shown in Fig. 21.

data During the pre-training phase, each training example con-
sists of a symbolic equation e which represents a function fe :
Rdx → Rdy , a set of n input points X = {xi}n

i=1 and correspond-
ing outputs Y = { fe(xi)}n

i=1. The distribution, Pe,X , from which e
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Figure 21: (Above) The data generator produces the input for the Trans-
former and its target expression. It does so by randomly sam-
pling (i) an equation skeleton (including placeholders for the
constants), (ii) numerical constants used to replace the place-
holders and (iii) a set of support points {xi}i to evaluate
the previously generated equation and get the corresponding
{yi}i. The {(xi , yi)}i pairs are fed into the Transformer, which
is trained to minimize the cross-entropy loss with the ground-
truth skeleton without numerical constants. Both the model
output and the targets are expressed in prefix notation. (Be-
low) At test time, given new input data, we sample candidate
symbolic skeletons from the model using beam-search. The fi-
nal candidate equations are obtained by fitting the constants
with BFGS.
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and the inputs X are sampled will determine the inductive bias of
the trained symbolic regressor and should be chosen to resemble
the application domain. In particular, X can vary in size (i.e. n is
not fixed), and the individual inputs xi do not have to to be i.i.d
– neither within X nor across examples or batches. For example,
Pe,X could be polynomials of degree up to 6, and input sets of up
to 100 points sampled uniformly from the range [0, 1]. In our ex-
periments, an equation e is represented by a sequence of symbols
in prefix notation. An equation e can contain numerical constants
that are re-sampled at each batch to increase the diversity of the
data seen by the model. In Section 5.5, we describe the details of
the data generation process we used in our experiments.

pre-training We train a parametric set-to-sequence model
Sθ to predict the equation e from the set of input-output points
X, Y. In our implementation, Sθ consists of an encoder and a de-
coder. The encoder maps the (x, y) sequence pairs for each equa-
tion into a latent space, resulting in a fixed-size latent represen-
tation z. A decoder generates a sequence ē given z: it produces
a probability distribution P(ēk+1|ē1:k , z) over each symbol, given
the previous symbols and z. The alphabet of ē is identical to the
one used for the original equations e, with one exception: unlike
e, ē does not contain any numerical constants. Instead, it con-
tains a special placeholder symbol ‘�’ which denotes the presence
of a constant which will be fit at a later stage. For example, if
e = 4.2 sin(0.3x1) + x2, then ē = � sin(�x1) + x2. We refer to the
equation where numerical constants are replaced by placeholders
as the “skeleton” of the equation, and use the notation ē to refer
to the symbolic equation that replaces numerical constants with
‘�’. The model is trained to reduce the average loss between the
predicted ê and skeleton(e), i.e. the skeleton of the original equa-
tion. Training is performed with mini-batches of B equations each.
The overall pre-training algorithm is reported in Algorithm 2.
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Algorithm 2 Neural Symbolic Regression pre-training

Precondition: Sθ , batch size B, training distribution Pe,X
while not timeout do

L← 0
for i in {1..B} do

e, X ← sample an equation and input set from Pe,X
Y ← { fe(x)| x ∈ X}
ē← skeleton(e)
L← L−∑k log PSθ

(ēk+1|ē1:k , X, Y)

Compute the gradient ∇θ L and use it to update θ.

4.3.2 Test time

At test time, given a set of input-output pairs {(xi , yi)}i we en-
code them using the encoder into a latent vector z. From z we
iteratively sample candidates skeletons of symbolic equations ˆ̄e
from the decoder. Finally, for each candidate, we fit the numer-
ical constants � by treating each occurrence as an independent
parameter. This can be achieved using a non-linear optimizer, ei-
ther gradient-based or black-box, by minimizing a loss between
the resulting equation applied to the inputs and the targets Y. In
our experiments, we used beam-search to sample high-likelihood
equation candidates from the decoder, and, like Petersen (2021),
BFGS Fletcher, 1987 on the mean squared error to fit the con-
stants.

4.4 experimental set-up

Here, we present the instantiation of the framework described in
Section 4.3 that we evaluate empirically, and detail the baselines
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and datasets used to test it. For the rest of the chapter, we will
refer to our implementation as NeSymReS2.

4.4.1 The Model Sθ

For the encoder we opted for the Set Transformer architecture
from Lee et al. (2019), using the original publicly available im-
plementation.3 We preferred this to the standard Transformer en-
coder, as the number n of input-output pairs can grow to large
values, and the computation in Set Transformers scales as O(nm)
instead of O(n2), where m � n is a set of learnable inducing
points Snelson and Ghahramani, 2005; Titsias, 2009 we keep con-
stant at m = 50. For the decoder we opted for a regular Trans-
former decoder Vaswani et al., 2017, using the default PyTorch
implementation. Encoder and decoder have 11 and 13 million pa-
rameters respectively. The hyperparameters chosen for both net-
works — detailed in Section C.1 — were not fine-tuned for maxi-
mum performance.

4.4.2 Pre-training Data Generator

We sample expressions following the framework introduced in
Lample and Charton, 2020. A mathematical expression is regarded
as a unary-binary tree where nodes are operators and leaves are
independent variables or constants. Once an expression is sam-
pled, it is simplified using the rules built in the symbolic manip-
ulation library SymPy Meurer et al., 2017. This sampling method
allows us to precisely constrain the search space by controlling
the depth of the trees and the set of admissible operators, along
with their prior probability of occurring in the generated expres-
sion. We opted for scalar functions of up to three independent

2 For Neural Symbolic Regression that Scales
3 https://github.com/juho-lee/set_transformer

https://github.com/juho-lee/set_transformer
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input variables (i.e. dx = 3 and dy = 1). For convenience, we pre-
sampled 10 million skeletons of equations with up to three nu-
merical constants each. At training time, we sample mini-batches
of size B = 150 of the following elements:

Equation skeletons with constant placeholders placed randomly
inside the expressions.

Constants values C1, C2, C3, each independently sampled from a
uniform distribution U (1, 5).

Support extrema S1,j, S2,j, with S1,j < S2,j uniformly sampled from
U (−10, 10) independently for each dimension j = 1, . . . , dx.

Input points for each input dimension j = 1, . . . , dx. A set of
n input points, Xj = {xi,j}n

i=1, is uniformly sampled from
U (S1,j, S2,j, n) .

We then evaluate the equations on the input points X = {xi}n
i=1

to obtain the corresponding outputs Y.

As Y can take very large or very small values, this can result in
numerical instabilities and exploding or vanishing gradients dur-
ing training. Therefore, we convert every xi and yi from float to a
multi-hot bit representation according to the half-precision IEEE-
754 standard. Furthermore, in order to avoid invalid operations
(i.e dividing by zero, or taking the logarithm of negative values),
we drop out input-output pairs containing NaNs.

We train the encoder and decoder jointly to minimize the cross-
entropy loss between the ground truth skeleton and the skele-
ton predicted by the decoder as a regular language model. We
use Adam with a learning rate of 10−4, no schedules, and train
for 1.5M steps. Overall, this results in about 225M distinct equa-
tions seen during pre-training. See Appendix C.2 for more details
about training and resulting training curves.
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4.4.3 Symbolic Regression at Test Time

Given a set of input-output pairs from an unknown equation e, we
feed the points into the encoder and use beam-search to sample
candidate skeletons from the decoder. We then use BFGS to re-
cover the values of the constants, by minimizing the squared loss
between the original outputs and the output from the predicted
equations. Our default parameters at test time are beam-size 32,
with 4 restarts of BFGS per equation. We select the best equation
from the set of resulting candidates based on the in-sample loss
with a small penalty of 1e-14 per token of the skeleton.4

4.4.4 Evaluation

We evaluate our trained model on five datasets. Unless otherwise
specified, for all equations we sample 128 points at test time.

ai-feynman (aif) First, we consider all the equations with
up to 3 independent variables from the AI-Feynman (AIF) database
Udrescu and Tegmark, 2020

5. The resulting dataset consists of 52

equations extracted from the popular Feynman Lectures on Physics
series. We checked our pre-training dataset, and amongst the 10

million equation skeletons, all equations from AIF appear. How-
ever, as mentioned in the previous subsection, the support on
which they are evaluated, along with the constants and number
of points per equation, is continuously sampled at every training
iteration, making it impossible to exactly see any of the test data
at training time.

4 While we found this strategy to work well in practice, a validation set for model
selection might offer better performances with noisy data.

5 https://space.mit.edu/home/tegmark/aifeynman.html

https://space.mit.edu/home/tegmark/aifeynman.html
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unseen skeletons (soose) This dataset of 200 equations is
specifically constructed to have zero overlap with the pre-training
set, meaning that its equations are all symbolically and numer-
ically different from those included in the pre-training set. We
call it SOOSE, for strictly out-of-sample equations. Compared to
AIF, these equations are on average significantly longer and more
complex (see Table 11). The sampling distribution for the skele-
tons is the same as the pre-training distribution, but we instanti-
ate three different versions: with up to three constants (same as
pre-training distribution, SOOSE-WC); no constants (SOOSE-NC);
constants everywhere (SOOSE-FC, for full constants), i.e. one con-
stant term for each term in the equation. The latter is extremely
challenging, and since NeSymReS was only pre-trained with up
to three constants, it is far from its pre-training distribution.

nguyen dataset This dataset consists of 12 simple equations
without constants beyond the scalars 1 and 2, each with up to 2

independent variables. Nguyen was the main benchmark used
in Petersen, 2021. There are terms that appear in three ground
truth equations that are not included in the set of equations that
our model can fit, specifically x6, and xy, which therefore caps
the maximum accuracy that can be reached by our model on this
dataset.

4.4.5 Baselines

We compare the performance of our method with the following
baselines:

deep symbolic regression (dsr) Petersen, 2021 Recently pro-
posed RNN-based reinforcement learning search strategy
for symbolic regression. We use the open-source implemen-
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Figure 22: Accuracy as a function of the size of the pre-training dataset,
for a fixed computational budget (∼100 s) at test time. We re-
port reference values for the baselines to emphasize that these
approaches do not improve with experience over time.

tation provided by the authors6, with the setting that in-
cludes the estimation of numerical constants in the final pre-
dicted equation.

genetic programming Koza, 1994 Standard GP-based sym-
bolic regression based on the open-source Python library
gplearn 7.

6 https://github.com/brendenpetersen/deep-symbolic-regression
7 https://gplearn.readthedocs.io/en/stable/

https://github.com/brendenpetersen/deep-symbolic-regression
https://gplearn.readthedocs.io/en/stable/
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gaussian processes Rasmussen, 2003 Standard Gaussian Pro-
cess regression with RBF and constant kernel. We use the
open source sklearn implementation8.

All details about baselines are reported in Appendix C.1.
Two notable exclusions are AIF Udrescu and Tegmark, 2020

and EQL Martius and Lampert, 2016. As also noted by Petersen
(2021), in cases where real numerical constants are present or
the equations are not separable, the former still requires a com-
plementary symbolic regression method to cope with the dis-
crete search. The latter lacks too many basis functions that appear
in the datasets we consider, preventing it from recovering most
of the equations. Moreover, its average runtime and number of
points required to solve the equations indicated in Martius and
Lampert, 2016; Sahoo et al., 2018 are three orders of magnitudes
higher than the standards reported by the aforementioned base-
lines.

4.4.6 Metrics

Evaluating whether two equations are equivalent is a challenging
task in the presence of real valued constants.

We distinguish between accuracy within the training support
(Aiid), and outside of the training support (Aood). Aiid is com-
puted with 10k points sampled uniformly in the training support.
Aood is computed with 10k points in an extended support as de-
tailed in Appendix C.2, and it will be the main metric of interest.

We further distinguish between two metrics, accuracy A1 and
accuracy A2, each of which can be either computed iid or ood.
Accuracy A1 is computed as follows: for every point (x, y) and
prediction f ê(x) = ŷ, the point is correctly classified if the func-
tion numpy.isclose(y, ŷ) returns True.9 Then, an equation

8 https://scikit-learn.org/stable/modules/gaussian_process.html
9 With parameters atol 1e-3 and rtol 0.05.

https://scikit-learn.org/stable/modules/gaussian_process.html
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is correctly predicted if > 95% of points are correctly classified.
For this metric we can keep all outputs, including NaNs and ±∞,
which are still representative of whether the symbolic equation
was identified correctly. Accuracy A2 is computed by measuring
the coefficient of determination R2 between y and ŷ, excluding
NaNs and ±∞. An equation is correctly identified according to
A2 if the R2 > 0.95. We found the two metrics to correlate signif-
icantly, and in the interest of clarity we will use only A1 in the
main text, and show results with A2 in the Appendix C.3.

4.5 results

We test three different aspects of the proposed approach: (i) To
what extent does performance improve as we increase the size
of the pre-training data? (ii) How does our approach compare to
state-of-the-art methods in symbolic regression? (iii) What is the
impact of the number of input-output pairs available at test time?

(i) Accuracy as a Function of Pre-training Data

In order to test the effect of pre-training data on test performance,
we trained our NeSymReS model on increasingly larger datasets.
More specifically, we consider datasets consisting of 10K, 100K,
1M and 10M equation skeletons. Every aspect of training is the
same as described in Section 5.5. We train all models for the same
number of iterations, but use early stopping on a held-out valida-
tion set to prevent overfitting.

In Figure 43 we report the accuracy on the 5 test sets using
a beam size of 32 for NeSymReS, and for all baselines whatever
hyperparameter configuration that used comparable (but strictly
no less) amount of computing time. In all datasets, increasing
the size of the pre-training data results in higher accuracy for
NeSymReS. Note that the baselines do not make use of the avail-
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Figure 23: Accuracy in distribution as a function of time for all methods
ran on a single CPU per equation.

able pre-training data, and as such it does not have any effect on
the performance at test time. From here onwards, we will always
use the model pre-trained on 10M equation skeletons.

Conclusion: The performance of NeSymReS steadily improves
as the size of the pre-training dataset increases, exploiting the fea-
ture that symbolic equations can be generated and evaluated ex-
tremely quickly and reliably with computers. The trend observed
appears to continue for even larger datasets, in accordance to Ka-
plan et al., 2020, which leaves open interesting avenues for ex-
tremely large scale experiments.
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Figure 24: Accuracy out of distribution as a function of time for all meth-
ods ran on a single CPU per equation.

(ii) Accuracy as a Function of Test-time Compute.

For every method (including baselines), we vary the correspond-
ing hyper-parameter that increases how much time and compute
is invested at test time to recover an equation from observing a
fixed set of input-output pairs. We report the hyper-parameters
and ranges in Table 1.

Making a fair comparison of run-times between different meth-
ods is another challenging task. To make the comparison as fair as
possible, we decided to run every method on a single CPU at the
time. Note that this is clearly a sub-optimal hardware setting for
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our 26-million parameters Transformer, which would be highly
parallelizable on GPU.

The results on all five datasets are shown in Figure 23 and Fig-
ure 24. On all datasets, our method outperforms all baselines both
in time and accuracy by a large margin on most budgets of com-
pute. On AIF our NeSymRes is more than three orders of mag-
nitudes faster at reaching the same maximum accuracy as the
second-best method, i.e. Genetic Programming, despite running
on CPU only. We attribute the low accuracy achieved by Petersen,
2021 to the presence of constants, to the fact that their model does
not directly observe the input-output pairs, and the use of REIN-
FORCE Williams, 2004. The Gaussian Process baseline performs
extremely well in distribution, reaching high accuracy in a very
short amount of time, but poorly out of distribution. This is ex-
pected as it does not try to regress the symbolic equation. On
Nguyen, NeSymReS achieves relatively high scores more rapidly
than the other baselines. For large computation times (≈ 103 sec-
onds) NeSymReS performs comparably with DSR despite the lat-
ter being fine-tuned on two equations of the benchmark (Nguyen-
7 and Nguyen-10). The relatively lower performance of NeSym-
ReS on SOOSE-NC can be explained by the fact that both datasets
do not have any constants in the equations, while NeSymReS is
trained with a large prior on the presence of constants.

Table 1: Hyper-parameters that vary to increase the amount of compute
invested by every method.

Method Hyper-param Range

Gaussian Proc. (Rasmussen, 2003) Opt. restarts {8, 16, 32}
Genetic Programming (Koza, 1994) Pop. size {210, ..., 217}
DSR (Petersen, 2021) Epochs {22, ..., 27}
NeSymReS (ours) Beam size {20, ..., 28}
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Conclusion: By amortizing the computation performed at pre-
training time, NeSymReS is extremely accurate and efficient at
test time, even running on CPU.

(iii) Performance Improves with more Points p

In practice, depending on the context, a variable number of input-
output pairs might be available at test time. In Figure 25, we re-
port the accuracy achieved for a number of input-output points
that varies in the range from 1 to 1024. Even though NeSymReS
was pre-trained with no more than 500 points, it still performs
reliably with fewer points.

Conclusion: NeSymReS is a flexible method and its performance
is robust to different numbers of test data, even when such num-
bers differ significantly from those usually seen during pre-training.
Furthermore, its accuracy levels grow with the number of points
observed at test time.
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Figure 25: Accuracy as a function of number of input-output pairs ob-
served at test time.
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4.6 discussion

Building on the recent successes of large scale pre-training, we
have proposed the first method that learns the task of symbolic
regression. This approach deviates from the majority of existing
techniques in the literature which need to be retrained from scratch
on each new equation and does not improve over time with access
to data and compute Sutton, 2019. We showed empirically that by
pre-training on a large distribution of millions of equations, this
simple approach outperforms several strong baselines, and that
its performance can be improved by merely increasing the size of
the dataset. The key feature that enables this approach is that —
unlike for computer vision and natural language — high-quality
training data can be generated efficiently and indefinitely using
any standard math library and a computer.

In pre-training, the data generation plays a crucial role within
our framework. By changing this distribution over equations (in-
cluding support, constants, number of terms and their interac-
tions), it is possible for the user to finely tune the inductive bias
of the model, adapting it to specific applications. In light of its
favourable scaling properties and its powerful prior over sym-
bolic expression, we believe that our model could find applica-
tions in several domains in the Natural Sciences and engineering,
control, and model-based Reinforcement Learning. The scale of
our experiments is still relatively small compared to the largest
large-scale experiments run to date Brown et al., 2020; Devlin et
al., 2019; Chen et al., 2020c, both in terms of dataset and model
sizes. Nonetheless, the results we showed already seem to indi-
cate that NeSymReS could improve significantly with access to
extremely large scale compute.

time and space complexities The approach we presented
scales favorably over several dimensions: computation scales lin-
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early in the number of input-output points due to the Set Trans-
former Lee et al., 2019, and linearly in the number of input di-
mensions. For future work, it would be interesting to train even
larger models on larger datasets with more than three indepen-
dent variables.

limitations Even though our approach can scale to an arbi-
trary number of input and output dimensions, there are limita-
tions that should be considered. Fitting the constants using a non-
linear optimizers like BFGS can prove to be hard if the function
to be optimized has several local minima. In this case, other op-
timization strategies that can deal with non-convex loss surfaces
might be beneficial, such as CMA-ES (Hansen, 2016). One more
limitation of our approach is that the pre-trained model as pre-
sented cannot be used at test time if the number of input variables
is larger than the maximum number of variables seen during pre-
training. Finally, one more limitation of the neural network we
adopt is that it does not directly interact with the function eval-
uator available in the math libraries of most computers. If, for
example, the first candidate sampled from the network is com-
pletely wrong, our current approach cannot adjust its posterior
over equations based on this new evidence, but simply sample
again.

conclusions What are the desirable properties of a strong
symbolic regressor? It should:

• scale favourably with the number of datapoints observed at
test time and with the number of input variables;

• improve over time with experience;

• be targetable to specific distributions of symbolic equations;

• be flexible to accommodate very large or very small values.
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In this chapter, we showed that all of these properties can be ob-
tained, and provided a simple algorithm to achieve them in the
context of symbolic regression. Our largest pre-trained model can
be accessed on our repository.



5
D I V I D E - A N D - C O N Q U E R M O N T E C A R L O T R E E
S E A R C H

chapter abstract Standard planners for sequential decision
making (including Monte Carlo planning, tree search, dynamic
programming, etc.) are constrained by an implicit sequential plan-
ning assumption: The order in which a plan is constructed is the
same in which it is executed. We consider alternatives to this as-
sumption for the class of goal-directed Reinforcement Learning
(RL) problems. Instead of an environment transition model, we
assume an imperfect, goal-directed policy. This low-level policy
can be improved by a plan, consisting of an appropriate sequence
of sub-goals that guide it from the start to the goal state. We
propose a planning algorithm, Divide-and-Conquer Monte Carlo
Tree Search (DC-MCTS), for approximating the optimal plan by
means of proposing intermediate sub-goals which hierarchically
partition the initial tasks into simpler ones that are then solved in-
dependently and recursively. The algorithm critically makes use
of a learned sub-goal proposal for finding appropriate partitions
trees of new tasks based on prior experience. Different strategies
for learning sub-goal proposals give rise to different planning
strategies that strictly generalize sequential planning. We show
that this algorithmic flexibility over planning order leads to im-
proved results in navigation tasks in grid-worlds as well as in
challenging continuous control environments.

This chapter is based on the paper “Divide-and-Conquer Monte Carlo Tree Search”, Gi-
ambattista Parascandolo?, Lars Buesing?, Josh Merel, Leonard Hasenclever, John
Aslanides, Jessica Hamrick, Nicolas Heess, Alexander Neitz, Theophane Weber
(Parascandolo et al., 2021b)
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5.1 introduction

This is the first sentence of this chapter, but it was not the first
one that was written. In fact, the entire introduction section was
actually one of the last sections to be added to this chapter. The
discrepancy between the order of inception of ideas and the or-
der of their presentation in this chapter probably does not come
as a surprise to the reader. Nonetheless, it serves as a point for
reflection that is central to the rest of this work, and that can be
summarized as “the order in which we construct a plan does not have
to coincide with the order in which we execute it”.

Most standard planners for sequential decision making prob-
lems — including Monte Carlo planning, Monte Carlo Tree Search
(MCTS) and dynamic programming — have a baked-in sequential
planning assumption (Bertsekas et al., 1995; Browne et al., 2012).
These methods begin at either the initial or final state and then
plan actions sequentially forward or backwards in time. However,
this sequential approach faces two main challenges. (i) The transi-
tion model used for planning needs to be reliable over long hori-
zons, which is often difficult to achieve when it has to be inferred
from data. (ii) Credit assignment to each individual action is dif-
ficult: In a planning problem spanning a horizon of 100 steps, to
assign credit to the first action, we have to compute the optimal
cost-to-go for the remaining problem with a horizon of 99 steps,
which is only slightly easier than solving the original problem.

To overcome these two fundamental challenges, here we con-
sider alternatives to the basic assumptions of sequential planners.
We focus on goal-directed decision making problems where an
agent should reach a goal state from a start state. Instead of a
transition and reward model of the environment, we assume a
given goal-directed policy (the “low-level” policy) and the associ-
ated value oracle that returns its success probability on any given
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Figure 26: Divide-and-Conquer Monte Carlo Tree Search (DC-MCTS).

task.1 In general, a low-level policy will not be optimal, e. g.it
might be too “myopic” to reliably reach goal states that are far
away from its current state. We now seek to improve the low-
level policy via a suitable sequence of sub-goals that guide it from
the start to the final goal, thus maximizing the overall task suc-
cess probability. This formulation of planning as finding good
sub-goal sequences, makes learning of explicit environment mod-
els unnecessary, as they are replaced by low-level policies and
their value functions.

The sub-goal planning problem can still be solved by a conven-
tional sequential planner that begins by searching for the first sub-
goal to reach from the start state, then planning the next sub-goal
in sequence, and so on. Indeed, this is the approach taken in most
hierarchical RL settings based on options or sub-goals e.g. Dayan
and Hinton, 1993; Sutton et al., 1999; Vezhnevets et al., 2017. How-
ever, the credit assignment problem mentioned above persists, as
assessing if the first sub-goal is useful still requires evaluating the
success probability of the remaining plan. Instead, it could be sub-
stantially easier to reason about the utility of a sub-goal “in the
middle” of the plan, as this breaks the long-horizon problem into
two sub-problems with much shorter horizons: how to get to the

1 As we will observe in Section 5.5, in practice both the low-level policy and value
can be learned. Approximating the value oracle with a learned value function was
sufficient for DC-MCTS to plan successfully.



86 divide-and-conquer monte carlo tree search

sub-goal and how to get from there to the final goal. Based on
this intuition, we propose the Divide-and-Conquer MCTS (DC-
MCTS) planner that searches for sub-goals to split the original
task into two independent sub-tasks of comparable complexity
and then recursively solves these, thereby drastically facilitating
credit assignment. To search the space of intermediate sub-goals
efficiently, DC-MCTS uses a heuristic for proposing promising
sub-goals that is learned from previous search results and agent
experience.

Humans can plan efficiently over long horizons to solve com-
plex tasks, such as theorem proving or navigation, and some
plans even span over decades (e.g. economic measures): In these
situations, planning sequentially in terms of next steps – such as
what arm to move, or what phone call to make – will cover a
tiny proportion of the horizon, neglecting the long uncertainty
beyond the last planned step. The algorithm put forward in this
chapter is a step in the direction of efficient planners that tackle
long horizons by recursively and parallelly splitting them into
many smaller and smaller sub-problems. In Section 5.2, we formu-
late planning in terms of sub-goals instead of primitive actions.
In Section 5.3, as our main contribution, we propose the novel
Divide-and-Conquer Monte Carlo Tree Search algorithm for this
planning problem. In Section 5.4 we position DC-MCTS within
the literature of related work. In Section 5.5, we show that it out-
performs sequential planners both on grid world and continuous
control navigation tasks, demonstrating the utility of constructing
plans in a flexible order that can be different from their execution
order.

5.2 improving goal-directed policies with planning

Let S and A be finite sets of states and actions. We consider a
multi-task setting, where for each episode the agent has to solve
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a new task consisting of a new Markov Decision Process (MDP)
M over S and A. EachM has a single start state s0 and a special
absorbing state s∞, also termed the goal state. If the agent transi-
tions into s∞ at any time it receives a reward of 1 and the episode
terminates; otherwise the reward is 0. We assume that the agent
observes the start and goal states (s0, s∞) at the beginning of each
episode, as well as an encoding vector cM ∈ Rd. This vector pro-
vides the agent with additional information about the MDP M
of the current episode and will be key to transfer learning across
tasks in the multi-task setting. A stochastic, goal-directed policy
π is a mapping from S ×S ×Rd into distributions over A, where
π(a|s, s∞, cM) denotes the probability of taking action a in state
s in order to get to goal s∞. For a fixed goal s∞, we can interpret
π as a regular policy, here denoted as πs∞ , mapping states to ac-
tion probabilities. We denote the value of π in state s for goal
s∞ as vπ(s, s∞|cM); we assume no discounting γ = 1. Under the
above definition of the reward, the value is equal to the success
probability of π on the task, i. e.the absorption probability of the
stochastic process starting in s0 defined by running πs∞ :

vπ(s0, s∞|cM) = P(s∞ ∈ τ
πs∞
s0 |cM),

where τ
πs∞
s0 is the trajectory generated by running πs∞ from state

s0
2. To keep the notation compact, we will omit the explicit

dependence on cM and abbreviate tasks with pairs of states in
S × S .

5.2.1 Planning over Sub-Goal Sequences

Assume a given goal-directed policy π, which we also refer to
as the low-level policy. If π is not already optimal, we can poten-

2 We assume MDPs with multiple absorbing states such that this probability is not
trivially equal to 1 for most policies, e. g.uniform policy. In experiments, we used
a finite episode length.
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tially improve it by planning: If π has a low probability of directly
reaching s∞ from the initial state s0, i. e.vπ(s0, s∞) ≈ 0, we will try
to find a plan consisting of a sequence of intermediate sub-goals
such that they guide π from the start s0 to the goal state s∞.

Concretely, let S∗ = ∪∞
n=0Sn be the set of sequences over S ,

and let |σ| be the length of a sequence σ ∈ S∗. We define for
convenience S̄ := S ∪ {∅}, where ∅ is the empty sequence rep-
resenting no sub-goal. We refer to σ as a plan for task (s0, s∞) if
σ1 = s0 and σ|σ| = s∞, i. e.if the first and last elements of σ are
equal to s0 and s∞, respectively. s0S∗s∞ denotes the set of plans
for this task.

To execute a plan σ, we construct a policy πσ by conditioning
the low-level policy π on each of the sub-goals in order: Starting
with n = 1, we feed sub-goal σn+1 to π, i. e.we run πσn+1 ; if σn+1
is reached, we will execute πσn+2 and so on. We now wish to do
open-loop planning, i. e.find the plan with the highest success prob-
ability P(s∞ ∈ τπσ

s0 ) of reaching s∞. However, this success proba-
bility depends on the transition kernels of the underlying MDPs,
which might not be known. We can instead define planning as
maximizing the following lower bound of the success probability,
that can be expressed in terms of the low-level value vπ .

Proposition 3 (Lower bound of success probability). The success
probability P(s∞ ∈ τπσ

s0 ) ≥ L(σ) of a plan σ is bounded from be-

low by L(σ) := ∏
|σ|−1
i=1 vπ(σi , σi+1), i. e.the product of the success

probabilities of π on the sub-tasks defined by (σi , σi+1).

The straight-forward proof is given in Appendix D.1.1. Intu-
itively, L(σ) is a lower bound for the success of πσ, as it neglects
the probability of “accidentally” (due to stochasticity of the pol-
icy or transitions) running into the goal s∞ before having executed
the full plan. We summarize:

Definition 1 (Open-Loop Goal-Directed Planning). Given a goal-
directed policy π and its corresponding value oracle vπ , we define
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planning as maximizing L(σ) over σ ∈ s0S∗s∞, i. e.the set of plans
for task (s0, s∞). We define the high-level (HL) value v∗(s0, s∞) :=
maxσ L(σ) as the maximum value of the planning objective.

Note the difference between the low-level value vπ and the
high-level v∗. vπ(s, s′) is the probability of the agent directly reach-
ing s′ from s following π, whereas v∗(s, s′) the probability reach-
ing s′ from s under the optimal plan, which likely includes interme-
diate sub-goals. In particular, v∗ ≥ vπ .

5.2.2 AND/OR Search Tree Representation

In the following we cast the planning problem into a representa-
tion amenable to efficient search. To this end, we use the natural
compositionality of plans: We can concatenate a plan σ for the
task (s, s′) and a plan σ̂ for the task (s′, s′′) into a plan σ ◦ σ̂ for the
task (s, s′′). Conversely, we can decompose any given plan σ for
task (s0, s∞) by splitting it at any sub-goal s ∈ σ into σ = σl ◦ σr,
where σl is the “left” sub-plan for task (s0, s), and σr is the “right”
sub-plan for task (s, s∞). Trivially, the planning objective and the
optimal high-level value factorize wrt. to this decomposition:

L(σl ◦ σr) = L(σl)L(σr)

v∗(s0, s∞) = max
s∈S̄

v∗(s0, s) · v∗(s, s∞).

This allows us to recursively reformulate planning as:

arg max
s∈S̄

(
arg max
σl∈s0S∗s

L(σl)

)
·
(

arg max
σr∈sS∗s∞

L(σr)

)
. (6)

The above equations are the Bellman equations and the Bellman
optimality equations for the classical single pair shortest path
problem in graphs, where edge weights are given by− log vπ(s, s′).
We can represent this planning problem by an AND/OR search
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tree (Nilsson, N. J., 1980) with alternating levels of OR and AND
nodes. An OR node, also termed an action node, is labeled by a
task (s, s′′) ∈ S × S ; the root of the search tree is an OR node la-
beled by the original task (s0, s∞). A terminal OR node (s, s′′) has
a value vπ(s, s′′) attached to it, which reflects the success probabil-
ity of πs′′ for completing the sub-task (s, s′′). Each non-terminal
OR node has |S| + 1 AND nodes as children. Each of these is
labeled by a triple (s, s′, s′′) for s′ ∈ S̄ , which correspond to in-
serting a sub-goal s′ into the overall plan, or not inserting one in
case of s = ∅. Every AND node (s, s′, s′′), or conjunction node, has
two OR children, the “left” sub-task (s, s′) and the “right” sub-
task (s′, s′′).

In this representation, plans are induced by solution trees. A so-
lution tree Tσ is a sub-tree of the complete AND/OR search tree,
with the properties that (i) the root (s0, s∞) ∈ Tσ, (ii) each OR
node in Tσ has at most one child in Tσ and (iii) each AND node
in Tσ as two children in Tσ. The plan σ and its objective L(σ)
can be computed from Tσ by a depth-first traversal of Tσ. The
correspondence of sub-trees to plans is many-to-one, as Tσ, in ad-
dition to the plan itself, contains the order in which the plan was
constructed. Figure 32 in Section 5.5.3 shows an example for a
search and solution tree. Below we will discuss how to construct
a favourable search order heuristic.

5.3 best-first and/or planning

The planning problem from Definition 1 can be solved exactly
by formulating it as shortest path problem from s0 to s∞ on a
fully connected graph with vertex set S with non-negative edge
weights given by − log vπ and applying a classical Single Source
or All Pairs Shortest Path (SSSP / APSP) planner. This approach is
appropriate if one wants to solve all goal-directed tasks in a single
MDP. Here, we focus however on the multi-task setting described
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Algorithm 3 Divide-and-Conquer MCTS

Global low-level value oracle vπ

Global high-level value function v
Global policy prior p
Global search tree T

1 procedure Traverse(OR node (s, s′′))
2 if (s, s′′) 6∈ T then
3 T ← Expand(T , (s, s′′))
4 return max(vπ(s, s′′), v(s, s′′)) . bootstrap
5 s′ ← Select(s, s′′) . OR node
6 if s′ = ∅ or max-depth reached then
7 G ← vπ(s, s′′)
8 else . AND node
9 Gleft ← Traverse(s, s′)

10 Gright ← Traverse(s′ , s′′)
11 // Backup

12 G ← Gleft · Gright

13 G ← max(G, vπ(s, s′′)) . threshold the return
14 // Update

15 V(s, s′′)← (V(s, s′′)N(s, s′′)+G)/(N(s, s′′)+1)
16 N(s, s′′)← N(s, s′′) + 1
17 return G

above, where the agent is given a new MDP with a single task
(s0, s∞) every episode. In this case, solving the SSSP / APSP prob-
lem is not feasible: Tabulating all graphs weights − log vπ(s, s′)
would require |S|2 evaluations of vπ(s, s′) for all pairs (s, s′). In
practice, approximate evaluations of vπ could be implemented
by e. g.actually running the policy π, or by calls to a powerful
function approximator, both of which are often too costly to ex-
haustively evaluate for large state-spaces S . Instead, we tailor an
algorithm for approximate planning to the multi-task setting, which
we call Divide-and-Conquer MCTS (DC-MCTS). To evaluate vπ

as sparsely as possible, DC-MCTS critically makes use of two
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learned search heuristics that transfer knowledge from previously
encountered MDPs / tasks to new problem instance: (i) a distri-
bution p(s′|s, s′′), called the policy prior, for proposing promising
intermediate sub-goals s′ for a task (s, s′′); and (ii) a learned ap-
proximation v to the high-level value v∗ for bootstrap evaluation
of partial plans. In the following we present DC-MCTS and dis-
cuss design choices and training for the two search heuristics.

5.3.1 Divide-and-Conquer Monte Carlo Tree Search

The input to the DC-MCTS planner is an MDP encoding cM, a
task (s0, s∞) as well as a planning budget, i. e.a maximum num-
ber B ∈ N of vπ oracle evaluations. At each stage, DC-MCTS
maintains a (partial) AND/OR search tree T whose root is the
OR node (s0, s∞) corresponding to the original task. Every OR
node (s, s′′) ∈ T maintains an estimate V(s, s′′) ≈ v∗(s, s′′) of
its high-level value. DC-MCTS searches for a plan by iteratively
constructing the search tree T with Traverse until the budget is
exhausted, see Algorithm 3. During each traversal, if a leaf node
of T is reached, it is expanded, followed by a recursive bottom-up
backup to update the value estimates V of all OR nodes visited
in this traversal. After this search phase, the currently best plan is
extracted from T by ExtractPlan (essentially depth-first traver-
sal, see Algorithm 5 in the Appendix). In the following we briefly
describe the main methods of the search. We illustrate DC-MCTS
in Figure 26.

traverse and select T is traversed from the root (s0, s∞) to
find a promising node to expand. At an OR node (s, s′′), Select

chooses one of its children s′ ∈ S̄ to traverse into, including s = ∅
for not inserting any further sub-goals into this branch. We imple-
mented Select by the pUCT (Rosin, 2011) rule, which consists of
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picking the next node s′ ∈ S̄ based on maximizing the following
score:

V(s, s′) ·V(s′, s′′) + c · p(s′|s, s′′) ·
√

N(s, s′′)
1 + N(s, s′, s′′)

, (7)

where N(s, s′), N(s, s′, s′′) are the visit counts of the OR node
(s, s′), AND node (s, s′, s′′) respectively. The first term is the ex-
ploitation component, guiding the search to sub-goals that cur-
rently look promising, i. e.have high estimated value. The second
term is the exploration term favoring nodes with low visit counts.
Crucially, it is explicitly scaled by the policy prior p(s′|s, s′′) to
guide exploration. At an AND node (s, s′, s′′), Traverse traverses
into both the left (s, s′) and right child (s′, s′′).3 As the two sub-
problems are solved independently, computation from there on
can be carried out in parallel. All nodes visited in a single traver-
sal form a solution tree Tσ with plan σ.

expand If a leaf OR node (s, s′′) is reached during the traver-
sal and its depth is smaller than a given maximum depth, it is
expanded by evaluating the high- and low-level values v(s, s′′),
vπ(s, s′′). The initial value of the node is defined as max of both
values, as by definition v∗ ≥ vπ , i. e.further planning should only
increase the success probability on a sub-task. We also evaluate
the policy prior p(s′|s, s′′) for all s′, yielding the proposal distribu-
tion over sub-goals used in SELECT. Each node expansion costs
one unit of budget B.

backup and update We define the return Gσ of the traversal
tree Tσ as follows. Let a refinement T +

σ of Tσ be a solution tree
such that Tσ ⊆ T +

σ , thus representing a plan σ+ that has all sub-
goals of σ with additional inserted sub-goals. Gσ is now defined

3 It is possible to traverse into a single node at the time, we describe several heuris-
tics in Appendix D.1.3
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as the value of the objective L(σ+) of the optimal refinement of Tσ,
i. e.it reflects how well one could do on task (s0, s∞) by starting
from the plan σ and refining it. It can be computed by a simple
back-up on the tree Tσ that uses the bootstrap value v ≈ v∗ at
the leafs. As v∗(s0, s∞) ≥ Gσ ≥ L(σ) and Gσ∗ = v∗(s0, s∞) for
the optimal plan σ∗, we can use Gσ to update the value estimate
V. Like in other MCTS variants, we employ a running average
operation (line 15-16 in Traverse).

5.3.2 Designing and Training Search Heuristics

Search results and experience from previous tasks can improve
DC-MCTS on new problems via adapting the search heuristics,
i. e.the policy prior p and the approximate value function v as
follows.

bootstrap value function We parametrize v(s, s′|cM) ≈
v∗(s, s′|cM) as a neural network that takes as inputs the current
task consisting of (s, s′) and the MDP encoding cM. A straight-
forward approach to train v is to regress it towards the non-
parametric value estimates V computed by DC-MCTS on previ-
ous problem instances. However, initial results indicated that this
leads to v being overly optimistic, an observation also made in
Kaelbling, 1993. We therefore used more conservative training tar-
gets, that are computed by backing the low-level values vπ up the
solution tree Tσ of the plan σ return by DC-MCTS. Details can be
found in Appendix D.2.1.

policy prior Best-first search guided by a policy prior p can
be understood as policy improvement of p as described in Silver
et al., 2016. Therefore, a straight-forward way of training p is to
distill the search results back into into the policy prior, e. g.by be-
havioral cloning. When applying this to DC-MCTS in our setting,
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we found empirically that this yielded very slow improvement
when starting from an untrained, uniform prior p. This is due to
plans with non-zero success probability L > 0 being very sparse
in S∗, equivalent to the sparse reward setting in regular MDPs. To
address this issue, we propose to apply Hindsight Experience Re-
play (HER, Andrychowicz et al., 2017): Instead of training p exclu-
sively on search results, we additionally execute plans σ in the en-
vironment and collect the resulting trajectories, i. e.the sequence
of visited states, τπσ

s0 = (s0, s1, . . . , sT). HER then proceeds with
hindsight relabeling, i. e.taking τπσ

s0 as an approximately optimal
plan for the “fictional” task (s0, sT) that is likely different from
the actual task (s0, s∞). In standard HER, these fictitious expert
demonstrations are used for imitation learning of goal-directed
policies, thereby circumventing the sparse reward problem. We
can apply HER to train p in our setting by extracting any ordered
triplet (st1 , st2 , st3) from τπσ

s0 and use it as supervised learning tar-
gets for p. This is a sensible procedure, as p would then learn
to predict optimal sub-goals s∗t2

for sub-tasks (s∗t1
, s∗t3

) under the
assumption that the data was generated by an oracle producing
optimal plans τπσ

s0 = σ∗. We have considerable freedom in choos-
ing which triplets to extract from data and use as supervision
with HER. In our experiments we use a temporally balanced pars-
ing, which creates triplets (st, st+∆/2, st+∆) such that the resulting
policy prior should then preferentially propose sub-goals “in the
middle” of the task. In Appendix D.1.4 we discuss this aspect in
more detail, and present alternative parsers.

5.3.3 Algorithmic Complexity of DC-MCTS

Denoting an optimal plan as σ∗, the complexity of DC-MCTS with
optimal search policy prior p = p∗ is O(|σ∗| · |S|). This could
potentially be reduced to O(log(|σ∗|)) when using progressive
widening Coulom, 2007; «Progressive strategies for monte-carlo
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tree search» for fewer evaluations of p and perfect paralleliza-
tion of tree traversals across multiple workers; for details see Ap-
pendix D.1.5.

5.4 related work

Goal-directed multi-task learning is an important special case of
general RL and has been extensively studied. Universal value
functions (Schaul et al., 2015) have been established as compact
representation for this setting (Kulkarni et al., 2016; Andrychow-
icz et al., 2017; Ghosh et al., 2019; Dhiman et al., 2018). This al-
lows to use sub-goals as means for planning, as done in several
works such as Kaelbling and Lozano-Pérez, 2017; Gao et al., 2017;
Savinov et al., 2018; Stein et al., 2018; Nasiriany et al., 2019, all
of which rely on forward sequential planning. Gabor et al., 2019

use MCTS for traditional sequential planning based on heuris-
tics, sub-goals and macro-actions. Zhang et al., 2018 apply tra-
ditional graph planners to find abstract sub-goal sequences. We
extend this line of work by showing that the abstraction of sub-
goals affords more general search strategies than sequential plan-
ning. Work concurrent to ours has independently investigated
non-sequential sub-goals planning: Jurgenson et al., 2019 propose
a top-down policy gradient approach that learns to predict sub-
goals in a hierarchical way. Nasiriany et al., 2019 propose gradient-
based search jointly over a fixed number of sub-goals for contin-
uous goal spaces. In contrast, DC-MCTS is able to dynamically
determine the complexity of the optimal plan.

The proposed DC-MCTS planner is a MCTS (Browne et al.,
2012) variant, inspired by recent advances in best-first or guided
search, such as AlphaZero (Silver et al., 2018). It can also be under-
stood as a heuristic, guided version of the classic Floyd-Warshall
algorithm which exhaustively computes all shortest paths. In the
special case of planar graphs, small sub-goal sets, also known as



5.4 related work 97

vertex separators, can be constructed that favourably partition the
remaining graph, leading to linear time ASAP algorithms (Hen-
zinger et al., 1997). The heuristic sub-goal proposer p that guides
DC-MCTS can be loosely understood as a probabilistic version of
a vertex separator. Nowak et al., 2018 also consider neural net-
works that mimic divide-and-conquer algorithms similar to the
sub-goal proposals used here. However, while we do policy im-
provement for the proposals using search and HER, the networks
in Nowak et al., 2018 are purely trained by policy gradient meth-
ods.

Decomposing tasks into sub-problems has been formalized as
pseudo trees (Freuder and Quinn, 1985) and AND/OR graphs
(Nilsson, N. J., 1980). The latter have been used especially in
the context of optimization (Larrosa et al., 2002; Jégou and Ter-
rioux, 2003; Dechter and Mateescu, 2004; Marinescu and Dechter,
2004). Our approach is related to work on using AND/OR trees
for sub-goal ordering in the context of logic inference (Ledeniov
and Markovitch, 1998). While DC-MCTS is closely related to the
AO∗ algorithm (Nilsson, N. J., 1980), which is the generalization
of the heuristic A∗ search to AND/OR search graphs, interest-
ing differences exist: AO∗ assumes a fixed search heuristic, which
is required to be lower bound on the cost-to-go. In contrast, we
employ learned value functions and policy priors that are not re-
quired to be exact bounds. Relaxing this assumption, thereby vi-
olating the principle of “optimism in the face of uncertainty”, ne-
cessitates explicit exploration incentives in the Select method. Al-
ternatives for searching AND/OR spaces include proof-number
search, recently applied to chemical synthesis planning (Kishi-
moto et al., 2019). Very recent work concurrent to ours has fo-
cused on relevant research directions: Wang et al., 2020 introduce
LA-MCTS as a ‘meta-algorithm’ for black-box optimization, and
Chen et al., 2020a propose Retro*, a neural-based A*-like algo-
rithm for molecule synthesis that is also based on AND/OR trees.
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5.5 experiments

We evaluate the proposed DC-MCTS algorithm on navigation in
grid-world mazes as well as on a challenging continuous control
version of the same problem, comparing it to standard sequen-
tial MCTS (in sub-goal space) based on the fraction of “solved”
mazes by executing their plans. The MCTS baseline was imple-
mented by restricting the DC-MCTS algorithm to only expand
the “right” sub-problem in line 10 of Algorithm 3; the value Gleft
for the “left” sub-problem is computed as in line 7, i.e. using the
low-level value vπ . This forces MCTS to plan forward and sequen-
tially, as each next step needs to be reachable from the previous
state, as evaluated by vπ . All remaining parameters and design
choice were the same for both planners except where explicitly
mentioned otherwise.

5.5.1 Grid-World Mazes

Each task consists of a new, procedurally generated maze on a
21 × 21 grid with start and goal locations (s0, s∞) ∈ {1, . . . , 21}2,
see Figure 27 and Figure 28. Task difficulty was controlled by the
density of walls d (under connectedness constraint), where the
easiest setting d = 0.0 corresponds to no walls and the most dif-
ficult one d = 1.0 implies so-called perfect or singly-connected
mazes. The task embedding cM was given as the maze layout
and (s0, s∞) encoded together as a feature map of 21 × 21 cat-
egorical variables with 4 categories each (empty, wall, start and
goal location). The underlying MDPs have 5 primitive actions: up,
down, left, right and NOOP. For sake of simplicity, we first tested
our proposed approach by hard-coding a low-level policy π0 as
well as its value oracle vπ0

in the following way. If in state s and
conditioned on a goal s′, and if s is adjacent to s′, π0

s′ success-
fully reaches s′ with probability 1 in one step, i. e.vπ0

(s, s′) = 1;
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= s0/start = s∞/goal = wall = empty = p(s′′ |s, s′) = sub-goals

Figure 27: A grid-world maze examples for wall density 0.75. Top-left:
In light blue, the distribution over sub-goals induced by the
policy prior p that guides the DC-MCTS planner. Top-right →
Bottom-left → Bottom-right: The first sub-goal, i.e. at depth 0

of the solution tree, approximately splits the problem in half.
Next, the two sub-goals at depth 1. Last, the final plan with the
depth of each sub-goal shown. See supplementary material for
full animations.
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= s0/start = s∞/goal = wall = empty = p(s′′ |s, s′) = sub-goals

Figure 28: A grid-world maze examples for wall density 0.95. Top-left:
In light blue, the distribution over sub-goals induced by the
policy prior p that guides the DC-MCTS planner. Top-right →
Bottom-left → Bottom-right: The first sub-goal, i.e. at depth 0

of the solution tree, approximately splits the problem in half.
Next, the two sub-goals at depth 1. Last, the final plan with the
depth of each sub-goal shown. See supplementary material for
full animations.
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otherwise vπ0
(s, s′) = 0. If π0

s′ is nevertheless executed, the agent
moves to a random empty tile adjacent to s. Therefore, π0 is the
“most myopic” goal-directed policy that can still navigate every-
where.

For each maze, MCTS and DC-MCTS were given a search bud-
get of 200 calls to the low-level value oracle vπ0

. We implemented
the search heuristics, i. e.policy prior p and high-level value func-
tion v, as convolutional neural networks (CNNs) which operate
on input cM; details for the network architectures are given in
Appendix D.2.3. With untrained networks, both planners were
unable to solve the task (<2% success probability), as shown in
Figure 29. This illustrates that a search budget of 200 evaluations
of vπ0

is insufficient for unguided planners to find a feasible path
in most mazes. This is consistent with standard exhaustive SSSP /
APSP graph planners requiring 214 > 105 � 200 evaluations for
optimal planning in the worst case on these tasks.

Next, we trained both search heuristics v and p as detailed
in Section 5.3.2. In particular, the sub-goal proposal p was also
trained on hindsight-relabeled experience data, where for DC-
MCTS we used the temporally balanced parser and for MCTS the
corresponding left-first parser (see Appendix D.1.4). Training of
the heuristics greatly improved the performance of both plan-
ners. Figure 29 shows learning curves for mazes with wall density
d = 0.75, as mean and std over 20 different hyperparameters. DC-
MCTS exhibits substantially improved performance compared to
MCTS, and when compared at equal performance levels, DC-
MCTS requires 5 to 10-times fewer training episodes than MCTS.
An example of a learned sub-goal proposal p for DC-MCTS is vi-
sualized in Figure 27 and Figure 28 (further examples are given
in the Appendix in Figure 48). Probability mass concentrates on
promising sub-goals that are far from both start and goal, approx-
imately partitioning the task into equally hard sub-tasks.
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Figure 29: Accuracy on grid-world mazes.

Next, we investigated the performance of both MCTS and DC-
MCTS in challenging continuous control environments with non-
trivial low-level policies. We embedded the grid-world mazes into
a physical 3D environment simulated by MuJoCo (Todorov et al.,
2012), rendering each grid-world cell as 4m×4m cell in physical
space. The agent is embodied by a quadruped “ant” body; for
illustration see Figure 30. For the low-level policy πm, we pre-
trained a goal-directed neural network controller that gets as in-
puts proprioceptive features (e. g.some joint angles and velocities)
of the ant body as well as a 3D-vector pointing from its current
position to a target position. πm was trained to navigate to targets
randomly placed less than 1.5 m away in an open area (no walls),
using MPO (Abdolmaleki et al., 2018). See Appendix D.2.4 for
more details. If unobstructed, πm can walk in a straight line to-
wards its current goal. However, this policy receives no visual in-
put and thus can only avoid walls when guided with appropriate
sub-goals. To establish an interface between the low-level πm and
the planners, we used another CNN to approximate the low-level
value oracle vπm

(s0, s∞|cM): It was trained to predict whether πm
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Figure 30: The ‘ant’, i.e. the agent, should navigate to the green target.

will succeed in solving the navigation tasks (s0, s∞), cM. Its input
is the corresponding discrete grid-world representation cM of the
maze (21× 21 feature map of categoricals as described above, de-
tails in Appendix). Note that this setting is still challenging: In
initial experiments we verified that a model-free baseline (also
based on MPO, without HER) with access to state abstraction and
low-level controller, only solved about 10% of the mazes after 100

million episodes due to the extremely sparse rewards.

5.5.2 Continuous Control Mazes

We applied MCTS and DC-MCTS to this problem to find sym-
bolic plans consisting of sub-goals in {1, . . . , 21}2. The high-level
heuristics p and v were trained for 65k episodes, exactly as in
Section 5.5.1, except using vπm

instead of vπ0
. We again observed

that DC-MCTS outperforms by a wide margin the MCTS planner:
Figure 31 shows performance of both (with fully trained search
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Figure 31: Fraction of solved mazes vs. planning budget.

heuristics) as a function of the search budget for the most diffi-
cult mazes with wall density d = 1.0. Performance of DC-MCTS
with the MuJoCo low-level controller was comparable to that with
the hard-coded low-level policy from the grid-world experiment
(with same wall density), showing that the abstraction of plan-
ning over low-level sub-goals successfully isolates high-level plan-
ning from low-level execution. We did not manage to successfully
train the MCTS planner on MuJoCo navigation.

This was likely due to HER, which we found — in ablation
studies — essential for training DC-MCTS on both settings and
MCTS on the grid-world problem, but not appropriate for MCTS
on MuJoCo navigation: Left-first parsing for HER consistently
biased the MCTS search prior p to propose next sub-goals too
close to the previous sub-goal. This lead the MCTS planner to
“micro-manage” the low-level policy, in particular in long corri-
dors that πm can solve by itself. DC-MCTS, by recursively parti-
tioning, found an appropriate length scale of sub-goals, leading
to drastically improved performance.
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5.5.3 Visualizing MCTS and DC-MCTS

To further illustrate the difference between DC-MCTS and MCTS
planning we can look at an example search tree from each method
in Figure 32. Light blue nodes are part of the final plan: note how
in the case of DC-MCTS, the plan is distributed across a sub-tree
within the search tree, while for the standard MCTS the plan is a
chain. The first ‘actionable’ sub-goal, i.e. the first sub-goal for the
low-level policy, is the left-most leaf in DC-MCTS and the first
dark node from the root for MCTS.

Figure 32: Only colored nodes are part of the final plan: a sub-tree for
DC-MCTS, a chain for MCTS.
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5.6 discussion

To enable guided, divide-and-conquer style planning, we made
a few strong assumptions. Sub-goal based planning requires a
universal value function oracle of the low-level policy, which of-
ten will have to be approximated from data. Overly optimistic
approximations can be exploited by the planner, leading to “delu-
sional” plans (Little and Thiébaux, 2007). Joint learning of the
high and low-level components can potentially address this issue.
In sub-goal planning, at least in its current naive implementation,
the “action space” for the planner is the whole state space of the
underlying MDPs. Therefore, the search space will have a large
branching factor in large state spaces. A solution to this problem
likely lies in using learned state abstractions for sub-goal specifi-
cations, which is a fundamental open research questions.We also
implicitly assumed that low-level skills afforded by the low-level
policy need to be “universal”, i. e.if there are states that it can-
not reach, no amount of high level search will lead to successful
planning outcomes.

In spite of these assumptions and open challenges, we showed
that non-sequential sub-goal planning has fundamental advan-
tages over the standard approach of search over primitive actions:
(i) Abstraction and dynamic allocation: Sub-goals automatically sup-
port temporal abstraction as the high-level planner does not need
to specify the exact time horizon required to achieve a sub-goal.
Plans are generated from coarse to fine, and additional planning
is dynamically allocated to those parts of the plan that require
more compute. (ii) Closed & open-loop: The approach combines ad-
vantages of both open- and closed loop planning: The closed-loop
low-level policies can recover from failures or unexpected transi-
tions in stochastic environments, while at the same time the high-
-level planner can avoid costly closed-loop planning. (iii) Long
horizon credit assignment: Sub-goal abstractions open up new al-
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gorithmic possibilities for planning — as exemplified by DC-M-
CTS — that can facilitate credit assignment and therefore reduce
planning complexity. (iv) Parallelization: Like other divide-and–
conquer algorithms, DC-MCTS lends itself to parallel execution
by leveraging problem decomposition made explicit by the in-
dependence of the "left" and "right" sub-problems of an AND
node. (v) Reuse of cached search: DC-MCTS is highly amenable to
transposition tables, by caching and reusing values for sub-prob-
lems solved in other branches of the search tree. (vi) Generality:
DC-MCTS is strictly more general than both forward and back-
ward goal-directed planning, both of which can be seen as special
cases.





6
C O N C L U S I O N

6.1 recap

Out-of-distribution generalization is one of the main open chal-
lenges for artificial intelligence, and in particular for deep learn-
ing (Bengio et al., 2019; Schölkopf et al., 2021). As discussed in
the introduction, for o.o.d. generalization to be a meaningful ob-
jective, we need to make assumptions. In this thesis, we investi-
gated four different aspects of out-of-distribution generalization
with deep learning, contributing novel algorithms and insights to
approach this setting.

The first chapter relied on the notion of compositionality. We
built on the concept of independence of mechanisms from the lit-
erature on causality (Schölkopf et al., 2012; Peters et al., 2017b).
Under this assumption of independence, we introduced an algo-
rithm based on a competition of experts, which results in a set of
independent, reusable modules. We showed in a simple experi-
ment on a standard image dataset, how these modules can then
be re-composed at test time, and generalize to novel combination
of mechanisms unobserved during training.

The second assumption focused on invariances. Assuming that
some of the features represent stable mechanisms in the data, a
model can generalize out-of-distribution if it learns to rely solely
on such invariant features. We showed that training based on em-
pirical risk minimization with gradient descent, using the arith-
metic mean of gradients, may lead neural networks to rely on
spurious features by minimizing the loss based on every pattern
detected. Using the geometric mean of gradients instead, one can
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trade off convergence time for invariances, and we derived a sim-
ple algorithm called AND-mask that builds on this principle. This
allows the models to generalize out-of-distribution, and helps pre-
vent memorization in networks with a large capacity.

The third aspect investigated symbolic equations as a means to
generalize o.o.d., as symbolic equations are at the core of scien-
tific discovery. Instead of hand-designing a symbolic regression
algorithm, we aimed at learning one, end-to-end, by building on
recent successes of large-scale pre-training. We showed that our
proposed approach significantly outperforms state-of-the-art al-
gorithms, and most importantly improves over time with experi-
ence.

The last chapter focused on planning, i.e. o.o.d. generalization
by investing additional compute at test time. We presented an al-
gorithm to train an agent capable of goal-directed planning over
long horizons. By incorporating a divide-and-conquer approach
into Monte Carlo Tree Search (DC-MCTS), our agent learns to
solve increasingly more complex problems over long horizons
by recursively subdividing them where the uncertainty is higher.
Jumping back and forth in time, each additional level of planning
depth allows for an exponential decrease of the horizon lengths,
trading off for a larger number of (progressively shorter) intervals
to estimate.

6.2 other axes of o.o.d. generalization

There are other axes of o.o.d. generalization that we did not look
into. The four different assumptions we investigated all belong
to the same overall family of o.o.d. generalization, i.e. where the
input data distribution Ptrain(X) 6= Ptest(X), and even more, the
supp(Ptrain(X)) ∩ supp(Ptest(X)) = ∅, but crucially the mecha-
nism P(Y|X) stays the same (Peters et al., 2017b).
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Another possibility, sometimes referred to as concept drift, is
that P(Y|X) changes from training to test. This can occur e.g. as a
certain dynamic evolves over time, due to physical or normative
changes. In this setting zero-shot o.o.d. generalization cannot be
expected without additional knowledge regarding the change in
the mechanism, or additional training data that allows to iden-
tify it. For a comprehensive overview of the intersection between
causality and learning for out-of-distribution generalization I rec-
ommend the recent work by Schölkopf et al., 2021.

6.3 i .i .d. or o.o.d.? a distinction blurred by scale .

In Chapter 4 our neural symbolic regressor NeSymReS was pre-
trained on hundreds of millions of equations from a massive dis-
tribution. The pre-training distribution is in fact so wide and
generic, that almost every well-formed equation has a non-zero
probability under the training distribution. When the model cor-
rectly recovers an equation that was not in the training set (but
inevitably in the training distribution, given how wide that is), it
is technically an instance of i.i.d. generalization. But is there even
any potential for o.o.d. generalization left? If the training distri-
bution already contains all test examples we might ever be inter-
ested in, the distinction between i.i.d. and o.o.d. becomes perhaps
redundant.

Two more examples from the recent literature on large-scale
pre-training are GPT-3 (Brown et al., 2020) and DALL-E (Ramesh
et al., 2021). GPT-3 is a language model trained to predict the next
token (i.e. roughly a syllable) conditioned on previous tokens, on
a corpus of ≈500 billion tokens. DALL-E is a generative model
that produces images conditioned on a text prompt, and it was
pre-trained on 250 million image-text pairs. Both models showed
impressive generalization capabilities, generating examples with
novel combinations that did not appear in their respective train-
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ing sets. It is also remarkable that a model like GPT-3 is a pow-
erful zero- or few-shot learner, despite having no explicit meta-
learning objective during training. Again, the line between i.i.d.
and o.o.d. is blurred: on the one hand, everything could be now
seen as interpolation; on the other hand, it becomes challenging
to even find meaningful tasks within these domains that could
unambiguously count as extrapolation.

The reason why it is important to ask this question, is that we
started this thesis by emphasizing that one of the (currently) un-
matched features of human intelligence is its o.o.d. generalization
capability. We should not forget, however, that there exists a distri-
bution of tasks we are interested in solving, which is admittedly
a very large one. If all we ultimately care about is the model per-
formance on this distribution, how we get to such a general agent
should not matter, even if it might turn out to be by training
on that very same distribution. If the scale of models and data
is going to keep increasing, to the point where any relevant test
task will be within the training distribution, the focus might shift
from questions of i.i.d. vs o.o.d. generalization, to generalization.
At this point in time, it is of course unclear whether the current
methods simply applied at larger scales will be sufficient to solve
any meaningful task. Time (and compute) will tell.

6.4 on sample-(in)efficiency of human and machine

intelligence

Finally, I want to take the chance to present a perspective on
sample efficiency in deep learning and human intelligence. Large
scale training has certainly proven to be a powerful tool, but it has
also been the target of skepticism within part of the research com-
munity, in particular in the context of deep neural networks as
models of human intelligence. The argument that is often made
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against these models is that they are too sample-inefficient com-
pared to human intelligence. I believe this argument is incorrect.

We often think about learning across multiple timescales. For
humans we typically think at least of two: evolution (acting on the
DNA) and learning during a lifetime (mostly acting on synaptic
plasticity). Two corresponding mechanisms are sometimes seen
in artificial neural nets: the iterations that researchers do on ar-
chitectures roughly play the role of evolution (e.g. Perceptron →
AlexNet → ResNets → ...), while the training of neural nets on
datasets corresponds to the learning that happens in a lifetime.
This analogy for gradient descent is further supported by the com-
mon interpretation of back-propagation and gradient descent as
learning by slowly adjusting synaptic weights as biological neu-
rons do. If we embraced this classic view of synaptic plasticity,
we would have to conclude that neural networks are indeed very
sample inefficient compared to human brains within a lifetime.1

But an alternative view is possible: pre-training via gradient de-
scent on network weights is not always analogous to the learning that
occurs within the lifetime of the individual (i.e. synaptic plasticity), but
acts at the same level as evolution. Note that we are not saying here
that gradient descent and evolution are mechanisms that act in a
similar way, in fact, they are almost as different as it gets when
it comes to how they work. Here we are saying that the role of
training with gradient descent could be seen as equivalent to the
role evolution had for us: distilling the right inductive biases such
that we can then learn in a sample-efficient way. Evolution was a
costly and incredibly sample-inefficient process that led to us, and
pre-training can be a fast-forward and streamlined alternative to
evolution.

For example, while it is true that GPT-3 has been trained on
more text than any human could process in a lifetime, a human

1 For example, current state-of-the-art vision models are pre-trained on up to 3

billion images (Zhai et al., 2021).
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of today has implicitly read, heard, and spoken, billions of words
through the eyes, ears, and mouths of their ancestors. And in-
deed, GPT-3 at test time can learn very efficiently without any
fine-tuning of the weights. We could look at GPT-3 massive pre-
training as serving a similar role to the role evolution had for hu-
mans in the development of structures for language in our brain.

Sample efficiency on ‘meaningful’ tasks is one of the main axes
to measure general intelligence, but the process that gets to sample-
efficient agents does not need to be sample efficient itself, just as evo-
lution was not sample-efficient in getting to us.



A
A P P E N D I X L I C M

a.1 additional results .

a.1.1 Too many or too few experts.

too many experts When there are too many experts, for
most tasks only one wins all the examples, as shown in Figure 33

where the model has 16 experts for 10 tasks. In this case the re-
maining experts do not specialize at all and therefore can be re-
moved from the architecture. Had several experts specialized on
the same task, they could be combined after determining that they
perform the same task. Since the accuracy on the transformed
data tested on the pretrained classifier reaches again the upper-
bound of the untransformed data, and since the progress is very
similar to that illustrated in Figure 6, we omit this plot.

too few experts For a committee of 6 experts, the networks
do not reconstruct properly most of the digits, which is reflected
by an overall low objective function value on the data. Also, the
accuracy achieved by the pretrained MNIST classifier does not
exceed 72%. A few experts are inevitably assigned to multiple
tasks, and by looking at Figure 33 it is interesting to see that the
clustering result is still meaningful (e.g. expert 5 is assigned to
left, down-left, and up-left translation).

115



116 appendix licm

Figure 33: The proportion of data won by each expert for each transfor-
mation on the digits from the test set, for the case of 10 mecha-
nisms and more experts (16 on left) or too few (6 on the right).
Note how on the left experts 0, 1, 7, 11, 12, 13, do not win any
data points, and can therefore be discarded.

a.2 details of neural networks

In Table 2 we report the configuration of the neural networks used
in these experiments.

For the approximate identity initialization we train each net-
work for a maximum of 500 iterations, or until the mean squared
error of the reconstructed images is below 0.002.

a.3 transformations

In our experiments we use the following transformations

• Translations: the image is shifted by 4 pixels in one of the
eight directions up, down, left, right and the four diagonals.

• Contrast (or color) inversion: the value of each pixel — orig-
inally in the range [0, 1] — is recomputed as 1− the original
value.
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Table 2: Architectures of the neural networks used in the experiment sec-
tion. BN stands for Batch normalization, FC for fully connected.
All convolutions are preceded by a 1 pixel zero padding.

Expert

Layers

3× 3, 32, BN, ELU

3× 3, 32, BN, ELU

3× 3, 32, BN, ELU

3× 3, 32, BN, ELU

3× 3, 1, sigmoid

Discriminator

Layers

3× 3, 16, ELU

3× 3, 16, ELU

3× 3, 16, ELU

2× 2, avg pooling

3× 3, 32, ELU

3× 3, 32, ELU

2× 2, avg pooling

3× 3, 64, ELU

3× 3, 64, ELU

2× 2, avg pooling

1024, FC, ELU

1, FC, sigmoid

• Noise addition: random Gaussian noise with zero mean and
variance 0.25 is added to the original image, which is then
clamped again to the [0, 1] interval.

a.4 notes on the formalization of independence of

mechanisms

In this section we briefly discuss the notion of independence of
mechanisms as in Janzing and Schölkopf, 2010, where the inde-
pendence principle is formalized in terms of algorithmic complex-
ity (also known as Kolmogorov complexity). We summarize the
main points needed in the present context. We parametrize each
mechanism by a bit string x. The Kolmogorov complexity K(x) of
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x is the length of the shortest program generating x on an a priori
chosen universal Turing machine. The algorithmic mutual infor-
mation can be defined as I(x : y) := K(x) + K(y)− K(x, y), and
it can be shown to equal

I(x : y) = K(y)− K(y|x∗), (8)

where for technical reasons we need to work with x∗, the short-
est description of x (which is in general uncomputable). Here,
the conditional Kolmogorov complexity K(y|x) is defined as the
length of the shortest program that generates y from x. The al-
gorithmic mutual information measures the algorithmic informa-
tion two objects have in common. We define two mechanisms
to be (algorithmically) independent whenever the length of the
shortest description of the two bit strings together is not shorter
than the sum of the shortest individual descriptions (note it can-
not be longer), i.e., if their algorithmic mutual information van-
ishes.1 In view of equation 8, this means that

K(y) = K(y|x∗). (9)

We will say that two mechanisms x and y are independent
whenever the complexity of the conditional mechanism y|x is
comparable to the complexity of the unconditional one y. If, in
contrast, the two mechanisms were closely related, then we would
expect that we can mimic one of the mechanisms by applying the
other one followed by a low complexity conditional mechanism.

1 All statements are valid up to additive constants, linked to the choice of a Turing
machine which produces the object (bit string) when given its compression as an
input. For details, see Janzing and Schölkopf (2010).
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b.1 appendix to section 3 .2

b.1.1 A classic example of a patchwork solution

Consider a neural network with one hidden layer consisting of
two neurons and sigmoidal activations:

fθ(x) = θ5σ(θ1x + θ2) + θ6σ(θ3x + θ4), σ(z) := 1/(1 + e−z).
(10)

We want to learn the continuous function f ∗ : [0, 1] → [0, 2] de-
fined as

f ∗(x) =



0 x ∈ [0, 0.4);

10(x− 0.4) x ∈ [0.4, 0.5);

1 x ∈ [0.5, 0.7);

10(x− 0.7) + 1 x ∈ [0.7, 0.8);

2 x ∈ [0.8, 1].

To perform this task, we have access to (noiseless) data from two
environments:

A : {(x, f (x)) | x ∈ [0, 0.5)}, B : {(x, f (x)) | x ∈ [0.5, 1]}.

119



120 appendix ilc

There is a simple constructive way, provided by the universal func-
tion approximation theorem Cybenko, 1989 to fit this function1

using fθ up to an arbitrarily small mean squared error LA+B(θ
∗).

Leaving out the details of such a construction (Cybenko, 1989 for
details), the reader can check on the left panel of Figure 34 that
θ∗ = (100,−50, 100,−75, 1, 1) provides a good fit for both environ-
ments A and B — both LA(θ

∗) and LB(θ
∗) are small.
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Figure 34: Performance of the neural network in Equation 10 for two dif-
ferent parameters. Any reasonable modification on θ6 (say ±1)
leaves the performance on environment A unchanged, while
the performance on environment B quickly degrades.

However, it is easy to realize that θ∗ — while being a solution
which can be returned by gradient descent using the pooled data
A+B — is not consistent (formal definition given in the main pa-
per in Section 3.2). Indeed, it is possible to modify θ̃∗ such that
the loss in environment A remains almost unchanged, while the
loss in environment B gets larger. In particular, on the right panel
of Figure 34, we show that θ̃∗ = (100,−50, 100,−75, 1,−0.5) is
such that LA(θ

∗) ≤ LA(θ̃
∗) + ε (with ε very small) but LB(θ

∗)�
1 For a graphical description, the reader can check http://
neuralnetworksanddeeplearning.com/chap4.html

http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
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LB(θ̃
∗). According to our definition in Equation 4 (see main pa-

per), we have Iε(θ∗) ≤ |LB(θ
∗)−LB(θ̃

∗)| — that is a large num-
ber (low consistency).

Remark 1 (Connection to out of distribution generalization). The
main point of this analysis was to show an example of where our
measure of consistency behaves according to expectations: A typ-
ical implementation of the universal approximation theorem —
which one would not expect to generalize out of distribution, due
to its ‘patchwork’ behavior — leads indeed to a very low consis-
tency score.

b.1.2 Section 3.2.2: Consistency as arithmetic/geometric mean of land-
scapes

geometric mean of matrices . Given an n-tuple of d ×
d positive definite matrices (Aj)

n
j=1, the geometric (also called

Karcher) mean Ando et al., 2004 is the unique positive definite so-
lution X to the equation ∑m

i=1 log(A−1
i X) = 0, where log is the ma-

trix logarithm. This matrix average has many desirable properties,
which make it relevant to signal processing and medical imaging.
The Karcher mean can also be written as arg minX∈S++(d) f (X) =

1
2m ∑m

i=1 d(Ai , X)2, where d is the Riemannian distance in the man-
ifold of SPD matrices S++(d).

link between consistency and geometric means . Here
we show how the consistency score introduced in Equation 4 can
be linked (in a simplified setting) to a comparison between the
arithmetic and geometric means of the Hessians approximating
the landscapes of two separate environments A and B.

At the local minimizer θ∗ = 0, we assume that LA = LB = 0
and consider the local quadratic approximations LA(θ) =

1
2 θ>HAθ

and LB(θ) =
1
2 θ>HBθ. Here, we make the additional simplifying

assumption that HA and HB are diagonal (or, more broadly, co-
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Figure 35: While the arithmetic mean of the two loss surfaces on the
left is identical in all three cases (third column), the geomet-
ric mean has weaker and weaker gradients (black arrow) the
more inconsistent the two loss surfaces become.

diagonalizable): HA = diag(λA
1 , · · · , λA

n ), HB = diag(λB
1 , · · · , λB

n ),
with λA

i ≥ 0 and λB
i ≥ 0 for all i = 1, . . . , n. The arithmetic and

geometric means (noted as HA+B and HA∧B) of these matrices are
defined in this simplified setting as follows:

HA+B = diag
(

1
2
(λA

1 + λB
1 ), · · · ,

1
2
(λA

n + λB
n )

)
,

HA∧B = diag
(√

λA
1 λB

1 , · · · ,
√

λA
n λB

n

)
.

(11)
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As motivated in the main paper and in Figure 36, one can link
the consistency of two landscapes to a comparison between the
geometric and arithmetic means of the corresponding Hessians.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Figure 36: Plotted are contour lines θ>H−1θ = 1 for HA = diag(0.01, 1)
and HB = diag(1, 0.01). It is convenient to provide this vi-
sualization because it is linked to the matrix determinant:
Vol({θ>H−1θ = 1}) = π

√
det(H). The geometric average

retains the volume of the original ellipses, while the volume
of HA+B is 25 times bigger. This magnification indicates that
landscape A is not consistent with landscape B.

Proposition 4. In the setting we just described, the consistency
score in Equation 4 can be estimated as follows:

Iε(θ∗) ≤ 2ε

(
det(HA+B)

det(HA∧B)

)2

.

Before showing the proof, we note that the proposition gives
a lower bound on the consistency. That is, it provides a pessimistic
estimate. Yet, as we motivated, this estimate has a nice geometric
interpretation. However, as we outline in a remark after the proof,
this estimate is tight in two important limit cases.

Proof. In this setting, Equation 4 gives

Iε(θ∗) := max
{

max
LA(θ)≤ε

LB(θ), max
LB(θ)≤ε

LA(θ)

}
.
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Recall that
LA(θ) =

1
2

θ>HAθ =
1
2 ∑

i
λA

i θ2
i .

Hence, this is a simple quadratic program with quadratic con-
straints, and

max
LA(θ)≤ε

LB(θ) = max
1
2 ∑i λA

i θ2
i ≤ε

1
2 ∑

i
λB

i θ2
i .

Further, we can change variables and introduce θ̃i = θi

√
λA

i /2.
The problem gets even simpler:

max
LA(θ)≤ε

LB(θ) = max
‖θ̃‖2≤ε

∑
i

λB
i

λA
i

θ̃2
i = ε ·max

i

λB
i

λA
i

.

All in all, we get

Iε(θ∗) = ε max

{
max

i

λB
i

λA
i

, max
i

λA
i

λB
i

}

= ε ·max
i

max

{
λB

i
λA

i
,

λA
i

λB
i

}

≤ ε ·max
i

(
λB

i
λA

i
+

λA
i

λB
i

)

= ε ·max
i

{
(λB

i )
2 + (λA

i )
2

λB
i λA

i

}

≤ ε ·max
i

{
(λB

i + λA
i )

2

λB
i λA

i

}
.
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This means√
Iε(θ∗) ≤ ε max

i

λB
i + λA

i√
λB

i λA
i

= 2ε max
i

(λB
i + λA

i )/2√
λB

i λA
i

≤

≤ 2ε
∏i(λ

B
i + λA

i )/2

∏i

√
λB

i λA
i

= 2ε
det(HA+B)

det(HA∧B)
,

where the first inequality comes from the monotonicity of the
square root function, and the second inequality comes from the
fact that (i) the geometric mean is always smaller or equal than
the arithmetic mean and (ii) for any sequence of numbers αi > 1,
maxi αi ≤ ∏i αi.

Remark 2 (Sanity check). There are two important cases where
we can test the bound above. First, if HA = HB, then Iε(θ∗) =
ε, and the bound returns Iε(θ∗) ≤ 2ε, since the geometric and
arithmetic mean are the same. Next, say λA

i = 0 but λB
i > 0;

then, both the bound and the inconsistency score are ∞ (highest
possible inconsistency).

b.1.3 Proof of Proposition 1

In this appendix section we consider the AND-masked GD al-
gorithm, introduced at the end of Section 3.2. We recall that the
masked gradients at iteration k are mt(θk)�∇L(θk), where mt(θk)
vanishes for any component where there are less than t ∈ {d/2 +
1, . . . , d} agreeing gradient signs across environments, and is equal
to one otherwise. In a full-batch setting, the algorithm is

θk+1 = θk − η mt(θ
k)�∇L(θk), (AND-masked GD)

where η > 0 is the learning rate.
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Proposition 1. Let L have L-Lipschitz gradients and consider a
learning rate η ≤ 1/L. After k iterations, AND-masked GD visits
at least once a point θ where ‖mt(θ)�∇L(θ)‖2 ≤ O(1/k).

Proof. Thanks to the component-wise L-smoothness and using a
Taylor expansion around θi we have

L(θi+1) ≤ L(θi)− η〈∇L(θi), mt(θ
i)�∇L(θi)〉+ Lη2

2
‖mt(θ

i)�∇L(θi)‖2

= L(θi)−
(

η − Lη2

2

)
‖mt(θ

i)�∇L(θi)‖2.

If we seek η − Lη2/2 ≥ η/2, then η ≤ 1
L , as we assumed in the

proposition statement. Therefore, L(θi+1) ≤ L(θi)− (η/2)‖mt(θi)�
∇L(θi)‖2, for all i ≥ 0. Summing over i from 0 to a desired itera-
tion k, we get

k−1

∑
i=0

(η/2)‖mt(θ
i)�∇L(θi)‖2 ≤ L(θ0)−L(θk) ≤ L(θ0).

Therefore,

min
i=0,...,k

‖mt(θ
i)�∇L(θi)‖2 ≤ 1

k

k−1

∑
i=0

(η/2)‖mt(θ
i)�∇L(θi)‖2 ≤ 2L(θ0)

ηk
.

Hence, there exist an iteration i∗ ∈ {0, . . . , k} such that ‖mt(θi∗)�
∇L(θi∗)‖2 ≤ O(1/k).

b.1.4 Proof of Proposition 2

Here we fix parameters θ ∈ Rn and assume gradients ∇Le(θ) ∈
Rn coming from environments e ∈ E are drawn independently
from a multivariate Gaussian with zero mean and σ2 I covariance.
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We want to show that, in this random setting, the AND-mask in-
troduced in Section 3.2.3 decreases the magnitude of the gradient
step.

Proposition 2. Consider the setting we just outlined, with L =
(1/d)∑d

e=1 Le. While E‖∇L(θ)‖2 = O(n/d), we have that ∀t ∈
{d/2+ 1, . . . , d}, ∃c ∈ (1, 2] such that E‖mt(θ)�∇L(θ)‖2 ≤ O(n/cd).

Proof. Let us drop the argument θ for ease of notation. First, let
us consider ∇L (no gradient AND-mask):

E

∥∥∥∥∥1
d

d

∑
i=1
∇Lei

∥∥∥∥∥
2

=
1
d2

d

∑
i=1

E‖∇Lei‖2 =
nσ2

d
,

where in the first equality we used the fact that the ∇Lei are
uncorrelated and in the second the fact that E[‖∇Lei‖2] is the
trace of the covariance of ∇Lei .

Next, assume we apply the element-wise AND-mask mt to the
gradients, which puts to zero the components (dimensions) where
there are less than t ∈ {d/2, . . . , d} equal signs. Since Gaussians
are symmetric around zero, the probability of having exactly u
positive j-th gradient component among d environments is Pr(pj =

u) =
(

1
2

)d
(d

u). Hence, the probability to keep the j-th gradient di-
rection (considering also negative consistency) is

Pr[[mt]j = 1] =
d

∑
u=t

Pr(pj = u) +
d−t

∑
u=0

Pr(pj = u)

=

(
1
2

)d d

∑
k=t

(
d
k

)
+

(
1
2

)d d−t

∑
k=0

(
d
k

)

= 2
(

1
2

)d d

∑
k=t

(
d
k

)
. (12)
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We would now like to compute E

∥∥∥mt �
(

1
d ∑d

i=1∇Lei

)∥∥∥2
. The

difficulty lies in the fact that the event mt = 1 makes gradients
conditionally dependent. Indeed, conditioning on both mt = 1 and
[∇Le]j > 0 changes the distribution of [∇Le′ ]j: this gradient entry
is going to be more likely to be positive or negative, depending
on the value of [∇Le]j and on the details of the gradient mask.
To solve the issue, we our strategy is to reduce the discussion
(without loss in generality and with no additional assumption) to
the case where gradient entries have all the same sign and hence
conditional independence is restored.

We consider the following writing for the quantity we are inter-
ested in:

E

∥∥∥∥∥mt �
(

1
d

d

∑
i=1
∇Lei

)∥∥∥∥∥
2

=
n

∑
j=1

E

[mt]j

(
1
d

d

∑
i=1

[∇Lei ]j

)2


=
n

∑
j=1

d

∑
p̂j=0

E

[mt]j

(
1
d

d

∑
i=1

[∇Lei ]j

)2 ∣∣∣∣pj = p̂j

Pr[pj = p̂j]

=
n

∑
j=1

(d−t)

∑
p̂j=0

d

∑
p̂j=t

E

( 1
d

d

∑
i=1

[∇Lei ]j

)2 ∣∣∣∣pj = p̂j

Pr[pj = p̂j]

= 2
n

∑
j=1

d

∑
p̂j=t

E

( 1
d

d

∑
i=1

[∇Lei ]j

)2 ∣∣∣∣pj = p̂j

( 1
2

)d ( d
p̂j

)
,

where we used the definition of 2-norm, the law of total expecta-
tion, and the symmetry of the problem with respect to positive
and negative numbers. Finally, since the gradient components
within the same environment are conditionally independent, for
any j ∈ {1, . . . , n} we can write

E

∥∥∥∥∥mt �
(

1
d

d

∑
i=1
∇Lei

)∥∥∥∥∥
2

= 2n
d

∑
p̂j=t

E

( 1
d

d

∑
i=1

[∇Lei ]j

)2 ∣∣∣∣pj = p̂j

(1
2

)d ( d
p̂j

)
.
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Finally, we note that the following bound holds:

E

(1
d

d

∑
i=1

[∇Lei ]j

)2 ∣∣∣∣pj = p̂j ≤ d

 ≤ E

(1
d

d

∑
i=1

[∇Lei ]j

)2 ∣∣∣∣pj = d

 .

Indeed, if all environments lead to positive (or, symmetrically,
negative) and non-interacting gradients in the j-th direction, the
average will be the biggest in norm. Moreover — crucially — con-
ditioned on the event pj = d, gradients coming from different
environments are distributed as a positive half-normal distribu-
tions. Moreover, they are conditionally independent; this because,
since they are all positive, the value of a gradient in one environ-
ment cannot influence the value of the gradient in another one.
We remark that conditional independence on the right-hand side
is therefore not an assumption, but is intrinsic to the upper bound.

Putting it all together, we have

E

∥∥∥∥∥mt �
(

1
d

d

∑
i=1
∇Lei

)∥∥∥∥∥
2

≤ 2n
d

∑
p̂j=t

E

( 1
d

d

∑
i=1

[∇Lei ]j

)2 ∣∣∣∣pj = d

(1
2

)d ( d
p̂j

)

≤ 2n
d

∑
p̂j=t

σ2
(

1
2

)d ( d
p̂j

)

≤ σ2n(d− t)
(

d
t

)(
1
2

)d−1
,

where in the second line we bounded the squared average of a
sum of half normal distributions: let {Xi}d

i=1 be a family of uncor-
related positive half-normal distributions derived from a Gaus-
sians with mean zero and variance σ2, we have2 that E[Xi] =

2 https://en.wikipedia.org/wiki/Half-normal_distribution

https://en.wikipedia.org/wiki/Half-normal_distribution


130 appendix ilc

σ
√

2/π and E[X2
i ] = σ2. Also, E[XiXj] = E[Xi]E[Xj] ≤ σ2. There-

fore,

E

(1
d

d

∑
i=1

Xi

)2
 =

1
d2

d

∑
i,j=1

E[XiXj] ≤ σ2.

Finally, if we set r = t/d ∈ (0.5, 1], we have3

(
d
t

)
∼
(

1
rr(1− r)1−r

)d

as d → ∞ (discarding all polynomial terms). Hence (d
t) is of the

form qd, with 1 ≤ q < 2. So, the quantity σ2n(d − t)(d
t)
(

1
2

)d−1

will be exponentially decreasing at a rate O(n/(2− q)d). Notably,
if t = d/2, then we lose the exponential rate and get back to
O(n/d).

b.2 appendix to section 3 .3

We used Pytorch Paszke et al., 2017 to implement all experiments
in this paper. Our codebase is publicly available at github.com/
gibipara92/learning-explanations-hard-to-vary.

b.2.1 Section 3.3.1

b.2.2 Dataset

Here we report more technical details about the synthetic dataset
described in Section 3.3. Each example is constructed as follows:
we first choose the label randomly to be either +1 or −1, with

3 Theorem 1 in Burić, Tomislav, and Neven Elezović. “Asymptotic expansions of
the binomial coefficients.” Journal of applied mathematics and computing 46.1-2
(2014): 135-145.

github.com/gibipara92/learning-explanations-hard-to-vary
github.com/gibipara92/learning-explanations-hard-to-vary
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Table 3: Hyperparameter ranges for synthetic data experiments. The reg-
ularizers L1 and L2 are never combined; instead, one weight
regularization type out of L1, L2 and none is selected and we
sample from the respective range afterwards.

Hyperparameter Ranges

No. hidden units {256, 512}
No. hidden layers {3, 5}
Batch-size {64, 128, 256}
Optimizer {Adamβ1=0.9,β2=0.999, SGD + mom0.9}
Learning rate {1e-3, 1e-2, 1e-1}
Batch-normalization {Yes, No}
Dropout {0.0, 0.5}
L2 regularization {1e-5, 1e-4, 1e-3}
L1 regularization {1e-6, 1e-5, 1e-4}

equal probability. The example is a vector with dS + dM entries,
consisting of the shortcut and the mechanism. In our experiments,
dM = 2 and dS = 32.

The Gaussian shortcuts are obtained by first sampling one ran-
dom vector xs ∈ RdS per environment. Its components xs,i are
sampled independently from a Normal distribution: xs,i ∼ N (0, 0.1).
We use xs for class 1, and −xs for class -1. In the test set, all
shortcut components are sampled i.i.d. from the same Normal
distribution. Effectively, each example of the test set belongs to
a different domain. The mechanism is implemented as the two in-
terconnected spirals shown in Figure 37 by sampling the radius
r ∼ Unif(0.08, 1.0) and then computing the angle as α = 2πnr
where n is the number of revolutions of the spiral. We add uni-
form noise in the range [−0.02, 0.02] to the radii afterwards.

The training dataset consists of 1280 examples per environment
and we use D = 32 environments unless otherwise mentioned.
The training datasets consists of 2000 examples.
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x1

x 2

Figure 37: The spirals used as the mechanism in the synthetic memoriza-
tion dataset.

b.2.3 Experiment

We train all networks for b3000/Dc epochs, dropping the learning
rate by a factor 10 halfway through, and again at three-quarters
of training. For computational reason, we stop each trial before
completion if the training accuracy exceeds 97% and the test ac-
curacy is below 60%. All networks are MLPs with LeakyReLU
activation functions and a cross-entropy loss on the output. We
run a hyperparameter search over the ranges shown in Table 3.
For IRM and the AND-mask, we select the best-performing run
and re-run it 50 times with different random seeds. For DANN
and the standard baselines nothing produced results significantly
better than chance.

b.2.3.1 Standard regularizers and AND-mask

The networks with the L1, L2, Dropout and Batch-normalization
regularizers, have hyperparameters that were randomly selected
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from Table 3. For the AND-mask we used the very same ranges.
The regularizers L1 and L2 are never combined; instead, one weight
regularization type out of L1, L2 and none is selected and we sam-
ple from the respective range afterwards. The parameters found
to work best from the grid search were: agreement threshold of
1, 256 hidden units, 3 hidden layers, batch size 128, Adam with
learning rate 1e-2, no batch norm, no dropout, L2-regularization
with a coefficient of 1e-4, no L1-regularization. In practice, we
often found it helpful to rescale the gradients after masking to
compensate for the decreasing overall magnitude. We add the op-
tion for gradient rescaling as an additional hyperparameter, as we
found it to help in several experiments. It rescales gradient com-
ponents layer-wise after masking, by multiplying the remaining
gradient components by c, where c is the ratio of the number of
components in that layer over the number of non-masked com-
ponents in that layer (i.e. the sum of the binary elements in the
mask).4. We speculate that for very large layers, a less extreme
normalization scheme or the additional use of gradient clipping
might be appropriate.

b.2.3.2 Domain Adversarial Neural Networks

The experiments using DANN follow a similar pattern. The model
consists of an embedding network, a classification network, and
a “domain discrimination” network. All three modules are two-
layer multi-layer perceptrons (MLP). The number of hidden units
of all MLPs are sampled from the range specified in Table 3, and
we trained 100 models. Both label classifier and domain discrim-
inator are applied to the output of the embedding network. The
label classifier is trained to minimize the cross-entropy-loss be-
tween the predicted and the true label. Similarly, the domain dis-
criminator is trained to minimize the loss between predicted and

4 Therefore, c is 1 if the AND-mask has only 1s, and infinite if all components are
masked out (which we then keep as 0.)
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Table 4: Hyperparameter ranges for IRM.

Hyperparameter Ranges

No. hidden units {256, 512}
No. hidden layers {3, 5}
Batch-size {64, 128, 256}
Optimizer {Adam, SGD + momentum0.9}
Batch-normalization {Yes, No}
Penalty weight {10.0, 100.0, 1000.0}
Number of annealing iterations {0, 1, 2, 4, 8}
Learning rate {1e-3, 1e-2, 1e-1, 1}

true domain-label. The embedding network is trained to mini-
mize the regular task classification loss and at the same time to
maximize the the domain-loss achieved by the domain discrimi-
nator.

b.2.3.3 Invariant Risk Minimization

For the experiments using IRM we used the authors’ PyTorch im-
plementation from https://github.com/facebookresearch/
InvariantRiskMinimization. We perform a random hyper-
parameter search over with the ranges shown in Table 4

b.2.3.4 Curves for all experiments

In Figure 38 we show the learning curves of training and test
accuracy for the different methods.

b.2.3.5 Correlation plots

For the correlation plots in Figure 17 we used a randomly initial-
ized MLP with the following configuration: 3 hidden layers, 256

https://github.com/facebookresearch/InvariantRiskMinimization
https://github.com/facebookresearch/InvariantRiskMinimization
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Figure 38: Learning curves for the evaluated methods. The top row
shows the accuracy on the training set, the bottom row shows
the accuracy on the test set.

hidden units. The dataset was using 16 environments and batches
of size 1024. The lines in Figure 17 are linear least-squares regres-
sions to the gradient data shown as scatter plots. We repeat the
experiment 10 times with different network weight seeds, result-
ing in the 10 regression lines. Zero gradients are excluded from
the regression computation, as most gradients are masked out by
the product mask in both cases.

b.2.4 Further visualizations and experiments

In Figure 39 we show how many environments need to be present
for the baseline without AND-mask to switch the decision bound-
ary from the shortcuts to the mechanism. Under the same experi-
mental condition as in the main paper, the baseline first succeeds
at 1024 environments.
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Figure 39: Relationship between number of training environments and
test accuracy for the AND-mask method compared to the base-
line. We show the best performance out of five runs using the
settings that were used for the experiment in the main text.
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Figure 40: Dashed lines show test acc, solid lines show training acc.

b.2.5 Section 3.3.2: CIFAR-10 memorization and label noise experi-
ments

memorization experiment In Figure 40, we report the test
performance (dashed lines) corresponding to the curves presented
in the main paper for the CIFAR-10 memorization experiment.
The test performance with standard labels decreases slower than
the training performance as the threshold increases, and they
eventually reach the same value. This is consistent with the hy-
pothesis that by training on the consistent directions, the AND-
mask selects the invariant patterns and prunes out the signals
that are not invariant.
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network architecture and training details Each trial
trains the ResNet “FastResNet” from the PyTorch-Ignite exam-
ple5 for 80 epochs on the full CIFAR-10 training set. We use the
Adam optimizer with a learning rate of 5× 10−4, and a 0.1 learn-
ing rate decay at epoch 40 and 60. We fix the batch size to 80. We
set up 14 trials by evaluating each of the AND-mask-thresholds
{0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8} for two datasets: (a) unchanged CIFAR-
10, (b) CIFAR-10 with the training labels replaced by random la-
bels. Note that a threshold of 0 corresponds to not using the AND-
mask. Each trial is run twice with separate random seeds.

label noise experiment We trained the same ResNet as
for the experiment above, once with and once without the AND-
mask. We ran each experiment with three different starting learn-
ing rates {5× 10−4, 1× 10−3, 5× 10−3} and a learning rate decay
at epoch 60. The baseline worked best with a learning rate of
1× 10−3, while the AND-mask with 5× 10−3, likely to compen-
sate for the masked out gradients. The AND-mask threshold that
worked best was 0.2, which is consistent with the results obtain
in the experiment above.

b.2.6 Section 3.3.3: Behavioral Cloning on CoinRun

The target policy π∗ is obtained by training PPO (Schulman et al.,
2017) for 400M time steps using the code6 for the paper Cobbe et
al., 2020. This policy is trained on the full distribution of levels in
order to maximize its generality. We use π∗ to generate a behav-
ioral cloning (BC) dataset, consisting of pairs (s, π∗(a|s)), where
s are the input-images (64× 64 RGB) and π∗(a|s) is the discrete
probability distribution over actions output by π∗.

5 https://github.com/pytorch/ignite/blob/master/examples/
contrib/cifar10/fastresnet.py

6 https://github.com/openai/train-procgen

https://github.com/pytorch/ignite/blob/master/examples/contrib/cifar10/fastresnet.py
https://github.com/pytorch/ignite/blob/master/examples/contrib/cifar10/fastresnet.py
https://github.com/openai/train-procgen
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Figure 41: Screenshots of 6 levels of CoinRun (from OpenAI).

Algorithm 4 Temporal AND-mask Adam

1 m← β1 ·m + (1− β1) · g
2 v← β2 · v + (1− β2) · (g ◦ g)
3 a← β3 · a + (1− β3) · elemwise_sign(g)
4 b← 1[|a| ≥ τ]
5 θθθ ← θθθ − α(m ◦ b)�√v + ε

The states are sampled randomly from trajectories generated
by π∗. In order to test for generalization performance, the BC
training dataset is restricted to 64 distinct levels. We generate 1000
examples per training level. The test set consists of 2000 examples,
each from a different level which does not appear in the training
set.

A ResNet-18 π̂θ is trained to minimize the loss DKL(π
∗||π̂θ).

We ran two automatic hyperparameter optimization studies using
Tree-structured Parzen Estimation (TPE) (Bergstra et al., 2013) of
1024 trials each, with and without the AND-mask. The learning
rate was decayed by a factor of 10 half-way at at 3/4 of the training
epochs.

The “temporal” version of the AND-mask used for this experi-
ment is reported in Algorithm 4.

In blue we highlight the additional lines compared to tradi-
tional Adam. The threshold τ and β3 are hyperparameters that
we included in the 1’024 trials of the search using Tree-structured
Parsen Estimators. For the top 10 runs, hyperparameter values
that were selected via the TPE search for the AND-mask are the
following.
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Table 5: Hyperparameters for the 5 best runs using the AND-mask, from
the TPE search.

Test KL div lr β1 β3 τ weight decay

1.652e-2 0.0078 0.21 0.79 0.36 0.057

1.656e-2 0.0072 0.26 0.86 0.40 0.041

1.662e-2 0.0080 0.23 0.84 0.41 0.045

1.665e-2 0.0068 0.33 0.72 0.47 0.077

1.672e-2 0.0063 0.67 0.65 0.47 0.080

We found that applying weight decay as a second independent
update after the AND-mask routine improved performance. To
keep the comparison fair, we added this as a switch in the hyper-
parameter search for the Adam baseline as well, and it improved
performance there as well.
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Figure 42: Learning curves for the behavioral cloning experiment on
CoinRun. Training loss is shown on the left, test loss is shown
on the right. We show the mean over the top-10 runs for each
method. The shaded regions correspond to the 95% confidence
interval of the mean based on bootstrapping.
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b.3 appendix to section 3 .4

b.3.1 Related work in causal inference

causal graphs and causal factorizations The formal-
ization of causality through directed acyclic graphs (Pearl, 2009)
is a key element informing our exposition. According to such for-
malization, a causal model gives rise to each observed distribu-
tion. It is thereby possible to exploit properties of the causal fac-
torization of the joint probability distribution over the observed
variables. Clearly, there are many ways to factorize a joint distri-
bution into conditionals; a distinguishing feature of the causal fac-
torization is that many of the conditionals, which we can think of
as physical mechanisms underlying the statistical dependencies
represented, are expected to remain invariant under interventions
or changing external conditions. This postulate has appeared in
various forms in the literature (Haavelmo, 1943; Simon, 1953; Hur-
wicz, 1962; Pearl, 2009; Schölkopf et al., 2012).7

causal models and robust regression Based on this in-
sight, it was proposed that regression based on causal features
should presents desirable invariance and robustness properties
(Mooij et al., 2009; Schölkopf et al., 2012; Peters et al., 2016; Rojas-
Carulla et al., 2018; Heinze-Deml et al., 2018; Kügelgen et al.,
2019; Parascandolo et al., 2018). In this view, the mechanisms can
be considered as features of the patterns such that they support
stable conditional probabilities. Thus learning the mechanisms
may help achieve a stable performance across a number of con-
ditions. Other works connecting causality and learning through
invariances are (Subbaswamy et al., 2019; Heinze-Deml and Mein-
shausen, 2017), and perhaps – most related to our work – (Ar-

7 This would be different for a non-causal factorization of the joint distribution,
see Schölkopf, 2019
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jovsky et al., 2019): we presented a comparison with this method
in the following section.

causal regularization Recently (Janzing, 2019) showed
that biasing learning towards models of lower complexity might
in some cases be beneficial for a notion of generalization from
observational to interventional regimes. Our proposed solution is
however different, in that we only indirectly deal with penalizing
model complexity, and rather focus on our proposed notion of
consistency.

b.3.2 Learning invariances in the data

Here we are going to compare ILC to other approaches for learn-
ing invariances in the data with neural networks, and in particular
to Invariant Risk Minimization (IRM) Arjovsky et al., 2019. The
authors of IRM analyze a set up where minimizing training er-
ror might lead to models which absorb all the correlations found
within the training data, thus failing to recover the relevant causal
explanation. They consider a multi-environment setting and focus
on the objective of extracting data representations that lead to in-
variant prediction across environments.

While the high level objective is close to the one we focused on,
the differences become clear when considering the definition of
invariant predictors presented in Arjovsky et al., 2019:

Definition 2. A data representation Φ : X → H elicits an invariant
predictor w ◦ Φ across environments E if there is a classifier w :
H → Y simultaneously optimal for all environments, i.e., w ∈
arg minw̄:H→y Re(w̄ ◦Φ) ∀e ∈ E .

In particular, the objective minimized by IRM is:

min
Φ:X→Y ∑

e∈Etr

Re(Φ) + λ ·
∥∥∥∇w|w=1.0Re(w ·Φ)

∥∥∥2
(13)
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where Φ are the logits predicted by the neural network and w is
a dummy scaling variable (see Arjovsky et al., 2019). The relevant

part is the penalty term λ ·
∥∥∥∇w|w=1.0Re(w ·Φ)

∥∥∥2
: One way to in-

terpret it, is that the penalty is large on every environment where
the distribution outputted by Φ could be made ‘closer’ to the dis-
tribution of the labels by either sharpening (w > 1) or softening
it (i.e., closer to uniform w < 1).

Let us consider the example from IRM, where the authors de-
scribe two datasets of images that each contain either a cow or a
camel: In one of the datasets, there is grass on 80% of the images
with cows, while in the other dataset there is grass on 90% of
them. IRM then makes the point that we can learn to ignore grass
as a feature, because its correlation with the label cow is inconsis-
tent (80% vs 90%). The setting we consider in this paper is slightly
different: take our example from the CIFAR-10 experiments. Un-
der our concept of invariance, we expect that (depending on the
data generating process) even a single dataset where we treat ev-
ery image as coming from its own ‘environment’ should be suffi-
cient to discover invariances. Drawing a connection to the setting
from IRM, we would argue that the second dataset should not
be necessary to learn that ‘grass’ is not ‘cow’. If one treats every
example as coming from its own environment, there is already
sufficient information in the first dataset to realize that cows are
not grass: Grass is predictive of cows only in 80% of the data, so
grass cannot be ‘cow’. The actual cow on the other hand, should
be present in 100% of the images, and as such it is the invariance
we are looking for. Note that this is of course a much more strict
definition of invariance: If our dataset contains images labeled
as ’cows’ but that have no cows within them, we might start to
discard the features of cows as well.
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c.1 model details

c.1.1 NeSymReS Transformer Details

The model consists of an encoder and a decoder. The encoder
takes as input numerical data, X ∈ R(dx+dy)×n, where dx is the
number of independent variables, dy the number of dependent
variables and n the number of support points. In order to pre-
vent exploding gradient and numerical instabilities, we convert
each entry of X into a multi-hot bit representation according to
the half precision IEEE-754 standard. This operation yields a new
input tensor, X̃ ∈ R(dx+dy)×b×n where b = 16 is the dimension
of the bit representation. The output of the encoder is a latent
vector z ∈ Rdz , providing a compressed representation of the
equation to be modelled. Such latent vector is then used to condi-
tion the decoder via a standard Transformer multi-head attention
mechanism. During the pre-training phase, the input of the de-
coder is given by the sequence of tokens representing the ground
truth-equation expressed in prefix notation. Such sequence is op-
portunely masked in order to prevent information leakage in the
decoder forward step. The output is then given by a string of sym-
bols, representing the predicted equation, again in prefix notation.
During inference, the decoder is only provided with the informa-
tion from the latent vector z and generates a prediction autore-
gressively. We use beam search to obtain candidate solutions. After
removing potentially invalid equations, the remaining equations
are modified to include constant placeholders with the procedure

143
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described in Appendix C.2. Using BFGS, we fit these constants.
We select the best equation among the so-found candidates, based
on the validation loss, with an added regularization penalty of
10−14 for each token in the skeleton. Note that BFGS is currently
the most time-consuming step of our pipeline. While in all our
experiments we run the optimization procedure serially (i.e., one
candidate equation at the time), the procedure can be easily par-
allelized across equations.

Encoder and decoder use the same hidden dimension H and
number of heads, h for their multi-head attention modules. In
the following, we provide further details about the architectural
design choices, hyper-parameters and library of functions used
by our model. We trained our model on a single GeForce RTX
2080 GPU for 3 days.

encoder For the encoder, we opted for the Set Transformer ar-
chitecture from Lee et al. (2019). Our choice is motivated in light
of the better scaling properties of this method when it comes to
input lenght n, i.e. O(nm) compared to the standard transformer
encoder, O(n2), where m is a set of trainable inducing points. Re-
ferring to the notation of the original paper, our encoder is formed
by ne Induced Set Attention Blocks (ISABs) and one final compo-
nent performing Pooling by Multihead Attention (PMA). ISABs
differ from the multi-head self attention blocks present in the orig-
inal Transformer architecture, since they introduce m < n learn-
able inducing points that reduce the computation burden associ-
ated with the self-attention operation. PMA allows us to aggre-
gate the output of the encoder into dz trainable abstract features
representing a compressed representation of the input equation.
Overall, the encoder consists of 11M trainable parameters. All the
hyper-parameters of the encoder are listed in Table 6.
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decoder The decoder is a standard Transformer decoder. It
has nd layers, hidden dimension H, h attention heads. Input sym-
bols are encoded into the corresponding token embeddings and
information about relative and absolute positions of the tokens in
the sequence is injected by adding learnable positional encodings
to the input embeddings. Two different masks are used to avoid
information leakage during the forward step and to make the
padding token hidden to the attention modules. Overall, the de-
coder consists of 15M trainable parameters. All the hyper-parameters
of the decoder are listed in Table 7.

Table 6: Encoder hyper-params.

Parameter name Symbol Value

Num. of ISABs ne 5

Hidden dimension H 512

Num. of heads h 8

Num. of PMA features dz 10

Num. of ind. points m 50

Table 7: Decoder hyper-params.

Parameter name Symbol Value

Num. of layers nd 5

Hidden dimension H 512

Num. of heads h 8

Embedding dim. s 32

c.1.2 Baselines

deep symbolic regression (dsr) For DSR, we use the stan-
dard hyper-parameters provided in the open-source implementa-
tion of the method, with the setting that includes the estimation of
numerical constants in the final predicted equation. DSR depends
on two main hyper-parameters, namely the entropy coefficient λH
and the risk factor ε. The first is used to weight a bonus propor-
tional to the entropy of the sampled expression which is added
to the main objective. The second intervenes in the definition of
the final objective with depends on the (1− ε) quantile of the dis-
tribution of rewards under the current policy. According with the
open-source implementation and the results reported in Petersen,
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2021, we choose ε = 0.05 and λH = 0.005. The set of symbols
available to the algorithm to form mathematical expressions is
given by L = {+,−,×,÷, sin, cos, exp, ln, c}, where c stands for
the constant placeholder.

genetic programming For Genetic Programming, we opt
for the open-source Python library gplearn. Our choices for the
hyper-parameters are listed in Table 8 and mostly reflect the de-
fault values indicated in the library documentation. The set of
symbols available to the algorithm to form mathematical expres-
sions is the default one and is given by L = {+,−,×,÷,√, ln, exp,
neg, inv, sin, cos}, where neg and inv stand for «negation» (x 7→
−x), and inversion (x 7→ x−1), respectively.

Table 8: Genetic Programming hyper-parameters. The parameter Popula-
tion size is varied within the range indicated during the experi-
ments reported in Section 4.5.

Parameter name Value

Population size {210, ..., 215}
Selection type Tournament

Tournament size (k) 20

Mutation probability 0.01

Crossover probability 0.9

Constants range (−4π, 4π)

gaussian processes This is the only baseline that is not a
symbolic regression method per se, as it learns a mapping from
x to y directly. The appealing property of Gaussian Processes is
that they are very accurate in distribution, and are very fast to
fit in the regime we considered. We opted for the open-source
sklearn implementation of Gaussian Process regression with
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default hyper-parameters. The covariance is given by the prod-
uct of a constant kernel and an RBF kernel. Diagonal Gaussian
noise of variance 10−10 is added to ensure positive-definitness of
the covariance matrix. L-BGFS-B is used for the optimization of
the marginal likelihood with the number of restarts varied as in-
dicated in Table 1.

a note about function sets Unfortunately, not all meth-
ods support all primitive functions that appear in a given dataset.
For example, NeSymReS could support x6, and xy — that appear
in the Nguyen dataset described in Appendix C.3 — but as we
did not include these primitives in the pre-training phase, the
version we use in our experiments will not be able to correctly
recover these equations. DSR and the implementation of Genetic
Programming that we adopted are both lacking arcsin in their
function set.

While missing primitives lowers the upper bound in perfor-
mance that a method can reach for a given dataset, it also makes
it easier to fit the other equations that do not contain those primi-
tives, as the function set to search is effectively smaller.

c.2 experimental details

c.2.1 Training

Operators + × − ÷ √ Pow ln exp sin cos tan arcsin

Freq. 10 10 5 5 4 4 4 4 4 4 4 1

Table 9: Operators and their corresponding un-normalized probabilities
of being sampled as parent node.
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training dataset generation For generating skeletons,
we built on top of the method and code proposed in Lample and
Charton, 2020, which samples expression trees. For our experi-
ments, each randomly-generated expression tree has 5 or fewer
non-leaf nodes. We sample each non-leaf node following the un-
normalized weighted distribution shown in Table 9. Each leaf
node has a probability of 0.8 of being an independent variable
and 0.2 of being an integer. Trees that contain the independent
variable x2 must also have the independent variable x1. Those
containing the independent variable x3 must also include the in-
dependent variables x1 and x2. We then traverse the tree in pre-
order and obtain a semantically equivalent string of the expres-
sion tree in a prefix notation. We convert the string from prefix
to infix notation and simplify the mathematical expression using
the Sympy library. The resulting expression is then modified to
include constant placeholders as explained in the following para-
graph. This expression is what we refer to as a skeleton, as the
value of constants has not been determined yet.

For our experiments, we repeat the procedure described above
to obtain a pre-compiled dataset of 10M equations. To compile
the symbolic equation into a function that can be evaluated by
the computer on a given set of input points, we relied on the
function lambidfy from the library Sympy. We store the equations
as functions, in order to allow for the support points and values
of the constants to be resampled at mini-batch time during pre-
training. We opted for a partially pre-generated dataset instead of
sampling new equations for every batch in order to speed up the
generation of training data for the mini-batches.

training details As described in Section, 4.4.2, during train-
ing we sampled mini-batches of size B = 150 from the generated
dataset. For each equation, we first choose the number of con-
stants, nc, that differ from one. nc is randomly sampled within
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the interval ranging from 0 to min(3, Nc) where Nc is the maxi-
mum number of constants than can be placed in the expression.
Then, we sample the constants’ values from the uniform distri-
bution U (1, 5). We randomly select nc among the available place-
holders and replace them with the previously obtained numerical
values. The remaining constants are set to one. We then generate
up to 500 support points by sampling- independently for each
dimension - from uniform distributions with varying extrema as
described in Section 5.5. If the equation does not contain a given
independent variable, such variable is set to 0 for all the support
points. For convenience, we drop input-output pairs containing
NaNs and entries with an absolute value of y above 1000. Finally
we take the equation in the mini-batch with the minimum num-
ber of points, and drop valid points from the other equations so
that the batch tensor has a consistent length across equations.

training dataset distribution The dataset does not con-
sist of unique mathematical expressions. Indeed, some skeletons
are repeated, and some skeletons are mathematically equivalent.
Overall, within the 10M dataset, we have ∼ 1.2M unique skele-
tons. Since longer expressions tend to be simplified into shorter
expressions during the dataset generation, shorter expressions are
the most frequent ones. Of these 1.2M unique skeletons, at least
96.3% represents unique (numerically distinct) mathematical ex-
pressions. The counting procedure is described in the next para-
graph. The average length of an expression in infix notation is
8.2 tokens. The minimum and the maximum are 1 and 23 respec-
tively, which corresponds in infix notation to the expressions x

and x2 asin2 (x)
−x2

1 asin2 (x)+1
.

addition of numerical constants During dataset gen-
eration and inference, we introduce constant placeholders by at-
taching them to the generated or predicted skeletons. This step
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is carried out by multiplying all unary operators in the expres-
sions by constant placeholders (except for the «pow» operator).
The same procedure is repeated with independent variables for
which also additive constants are introduced. Longer expressions
tend to have more placeholders in comparison to shorter ones.

c.2.2 Evaluation details

All results reported, i.e. for all methods and datasets, are accura-
cies over all equations in the dataset. Error bars in all plots denote
the standard error of the mean estimate.

metrics details As detailed in 4.4.6 we evaluate performances
both within the training support (Aiid) and outside of the train-
ing support (Aood). More specifically, for the latter the support is
created as follows: given an equation with in-sample support of
(lo, hi), we extend the support of each side by (hi− lo) for every
variable present in the equation.

creating the soobe dataset The SOOBE (stricly out-of-
sample equations) dataset contains entirely different skeletons
from the pre-training dataset, which do not overlap numerically
nor symbolically. To create it, we list all the different expressions
in the training dataset and then randomly sample from this set,
excluding the sampled expressions from the training set. We first
sample a random support of 500 points from the uniform distribu-
tion U (−10, 10), for each independent variable. Two expressions
are different if their images, given the support points, are differ-
ent. Note that this is a conservative criterion, as two expressions
may have the same image in the sampled support (relatively to a
fixed tolerance), yet being distinct.
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benchmarks As explained in 4.4.4 we evalutate our trained
model on five datasets: AI-Feynman, SOOBE-WC, SOOBE-NC,
SOOBE-FC, Nguyen. All the equations of AI-Feynman used in
our evaluation are listed in table 10. 50 randomly sampled equa-
tions out of 200 from the SOOBE dataset, are listed in table 11.
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Expression Support x1 Support x2 Support x3 Expression Support x1 Support x2 Support x3

√
2e−

x2
1
2

2
√

π
(1, 3) None None x1x2

3√
− x2

2
x2

3
+1

(1, 5) (1, 2) (3, 10)

√
2e
− x2

2
2x2

1

2
√

πx1
(1, 3) (1, 3) None x1

4πx2
2

(1, 5) (1, 5) None

√
2e
− (x2−x3)

2

2x2
1

2
√

πx1
(1, 3) (1, 3) (1, 3) x1

4πx2x3
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x1√
− x2

2
x2
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20πx2x3
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2
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x1
4πx2x2

3
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1
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x1
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2πx3

(1, 5) (1, 5) (1, 5)

x1
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(
2πx1x2

x3
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x1 + x2 + 2
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x1x2 cos (x3) (1, 5) (1, 5) (1, 5) x1x2
2π (1, 5) (1, 5) None

3x1x2
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x2x3
x1−1 (2, 5) (1, 5) (1, 5) x2

1
8π2x2x2

3
(1, 5) (1, 5) (1, 5)
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x2x3

(1, 5) (1, 5) (1, 5)

√
x1x2

x3
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Table 10: AI-Feynman equation with less than 4 independent variables
and the supports as indicated in Udrescu and Tegmark, 2020
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Expression Expression

4.931x1 − x2 + 4.023 tan
(
x2

1 − 4.027x3
)

x1
√
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√
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(1.261x1 + 3.29 cos (1)) log (4.169x2) 1 +
0.221 tan (3.972x2)
x2(−3.549x1+x2)

x2
x2+cos (x1 x3)

1− sin (x1 (x1 + sin (x1)))
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(
x2

1 + x2
)

cos (x1)−
√

cos (x2)

3.196 tan (cos (4.459x1)− tan (1))− 1 −2.586x2 +
0.693 cos (x2−1)

x1√
x2

2 − x2 − e2.103x1 −8.802x1 + 3.379 log
(
x1 + x4

2

)
−x2 + log

(
x1
(
−x2 +

1.513
e

))
sin
(

2.696x2
−x1+2.364x2

)
+ 1.097

Table 11: 36 random equations extracted from the SOOBE dataset (ver-
sion with constants).
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c.3 additional results

c.3.1 Additional Metrics on all Benchmarks

In this section, we show that the conclusions drawn in Section 4.5
with the A2 metric are consistent when the A1 metric is consid-
ered instead.
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Figure 43: Accuracy as a function of the size of the pre-training dataset,
for a fixed computational budget (∼100 s) at test time.
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Figure 44: Accuracy in distribution as a function of time for all methods
ran on a single CPU per equation.
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Figure 46: Accuracy as a function of number of input-output pairs ob-
served at test time.
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Figure 45: Accuracy out of distribution as a function of time for all meth-
ods ran on a single CPU per equation.
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d.1 additional details for dc-mcts

d.1.1 Proof of Proposition 1

Proof. The performance of πσ on the task (s0, s∞) is defined as
the probability that its trajectory τπσ

s0 from initial state s0 gets ab-
sorbed in the state s∞, i. e.P(s∞ ∈ τπσ

s0 ). We can bound the lat-
ter from below in the following way. Let σ = (σ0, . . . , σm), with
σ0 = s0 and σm = s∞. With (σ0, . . . , σi) ⊆ τπσ

s0 we denote the event
that πσ visits all states σ0, . . . , σi in order:

P((σ0, . . . , σi) ⊆ τπσ
s0

) = P

(
i∧

i′=1

(σi′ ∈ τπσ
s0

) ∧ (ti′−1 < ti′)

)
,

where ti is the arrival time of πσ at σi, and we define t0 = 0.
Obviously, the event (σ0, . . . , σm) ⊆ τπσ

s0 is a subset of the event
s∞ ∈ τπσ

s0 , and therefore

P((σ0, . . . , σm) ⊆ τπσ
s0

) ≤ P(s∞ ∈ τπσ
s0

). (14)

Using the chain rule of probability we can write the lhs as:

P((σ0, . . . , σm) ⊆ τπσ
s0

) =
m

∏
i=1

P
(
(σi ∈ τπσ

s0
) ∧ (ti−1 < ti) | (σ0, . . . , σi−i) ⊆ τπσ

s0

)
.
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We now use the definition of πσ: After reaching σi−1 and before
reaching σi, πσ is defined by just executing πσi starting from the
state σi−1:

P((σ0, . . . , σm) ⊆ τπσ
s0

) =
m

∏
i=1

P
(

σi ∈ τ
πσi
σi−1 | (σ0, . . . , σi−i) ⊆ τπσ

s0

)
.

We now make use of the fact that the σi ∈ S are states of the
underlying MDP that make the future independent from the past:
Having reached σi−1 at ti−1, all events from there on (e. g.reaching
σj for j ≥ i) are independent from all event before ti−1. We can
therefore write:

P((σ0, . . . , σm) ⊆ τπσ
s0

) =
m

∏
i=1

P
(

σi ∈ τ
πσi
σi−1

)
=

m

∏
i=1

vπ (σi−1, σi) . (15)

Putting together equation 14 and equation 15 yields the proposi-
tion.

d.1.2 Additional algorithmic details

After the search phase, in which DC-MCTS builds the search tree
T , it returns its estimate of the best plan σ̂∗ and the corresponding
lower bound L(σ̂∗) by calling the ExtractPlan procedure on the
root node (s0, s∞). Algorithm 5 gives details on this procedure.

d.1.3 Descending into one node at the time during search

Instead of descending into both nodes during the Traverse step
of Algorithm 3, it is possible to choose only one of the two sub-
problems to expand further. This can be especially useful if par-
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Algorithm 5 additional Divide-And-Conquer MCTS procedures

Global low-level value oracle vπ

Global high-level value function v
Global policy prior p
Global search tree T

1 procedure ExtractPlan(OR node (s, s′′))
2 s′ ← arg maxŝ V(s, ŝ) ·V(ŝ, s′′) . choose best sub-goal
3 if s = ∅ then . no more splitting
4 return ∅, vπ(s, s′′)
5 else
6 σl , Gl ← ExtractPlan(s, s′) . extract "left" sub-plan
7 σr , Gr ← ExtractPlan(s′, s′′) . extract "right"

sub-plan
8 return σl ◦ σr, Gl · Gr

allel computation is not an option, or if there are specific needs
e. g.as illustrated by the following three heuristics. These can be
used to decide when to traverse into the left sub-problem (s, s′) or
the right sub-problem (s′, s′′). Note that both nodes have a corre-
sponding current estimate for their value V, coming either from
the bootstrap evaluation of v or further refined from previous
traversals.

• Preferentially descend into the left node encourages a more ac-
curate evaluation of the near future, which is more relevant
to the current choices of the agent. This makes sense when
the right node can be further examined later, or there is
uncertainty about the future that makes it sub-optimal to
design a detailed plan at the moment.

• Preferentially descend into the node with a lower value, follow-
ing the principle that a chain (plan) is only as good as its
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weakest link (sub-problem). This heuristic effectively greed-
ily optimizes for the overall value of the plan.

• Use 2-way UCT on the values of the nodes, which acts similarly
to the previous greedy heuristic, but also takes into account
the confidence over the value estimates given by the visit
counts.

Forward planning is equivalent to 
expanding only the right sub-problem 

Backward planning is equivalent to 
expanding only the left sub-problem 

Divide and Conquer Tree Search
can do both, and also start from the 
middle, jump back and forth, etc.

Forward planning is equivalent to 
expanding only the right sub-problem 

Backward planning is equivalent to 
expanding only the left sub-problem 

Divide and Conquer Tree Search
can do both, and also start from the 
middle, jump back and forth, etc.

Forward planning is equivalent to 
expanding only the right sub-problem 

Backward planning is equivalent to 
expanding only the left sub-problem 

Divide and Conquer Tree Search
can do both, and also start from the 
middle, jump back and forth, etc.

Figure 47: Divide and Conquer Tree Search is strictly more general than
both forward and backward search.
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The rest of the algorithm can remain unchanged, and during
the Backup phase the current value estimate V of the sibling sub-
problem can be used.

d.1.4 Parsers for Hindsight Experience Replay

Given a task (s0, s∞), the policy prior p defines a distribution over
binary partition trees of the task via recursive application (until
the terminal symbol ∅ closes a branch). A sample Tσ from this
distribution implies a plan σ as described above; but furthermore
it also contains the order in which the task was partitioned. There-
fore, p not only implies a distribution over plans, but also a search
order: Trees with high probability under p will be discovered ear-
lier in the search with DC-MCTS. For generating training targets
for supervised training of p, we need to parse a given sequence
τπσ

s0 = (s0, s1, . . . , sT) into a binary tree. Therefore, when apply-
ing HER we are free to choose any deterministic or probabilistic
parser that generates a solution tree Tτπσ

s0
from re-labeled HER

data τπσ
s0 . As mentioned in the main text, the particular choice of

HER-parser will shape the search strategy defined by p. Possible
choices for the parsers include:

1. Left-first parsing creates triplets (st, st+1, sT). The resulting
policy prior will then preferentially propose sub-goals close
to the start state, mimicking standard forward planning. Anal-
ogously right-first parsing results in approximate backward
planning;

2. Temporally balanced parsing creates triplets (st, st+∆/2, st+∆).
The resulting policy prior will then preferentially propose
sub-goals “in the middle” of the task. This is the one we
used in our experiments;

3. Weight-balanced parsing creates triplets (s, s′, s′′) such that
v(s, s′) ≈ v(s′s,′′ ) or vπ(s, s′) ≈ vπ(s′s,′′ ). The resulting
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policy prior will attempt to propose sub-goals such that the
resulting sub-tasks are equally difficult.

d.1.5 Details on Algorithmic Complexity

Let cvπ denote the cost of evaluating the low-level value vπ on any
sub-problem (s, s′). We assume cvπ to be independent of (s, s′)
which holds if e. g.vπ is a fixed size neural network. Denote the
cost of evaluating the policy prior p on a sub-goal (s, s′, s′′) with
cp. Expanding a new OR node in the search tree incurs a cost
of |S|cp for evaluating p for all children. Assuming the compu-
tational cost of tree traversals is negligible, the total cost of run-
ning DC-MCTS for N node expansions is thus N ·

(
|S|cp + 2cvπ

)
.

The number of expansions to find the optimal (or a sufficiently
good) plan strongly depends on the quality of the policy prior
(similar to A∗ search), making an analysis of the complexity of
DC-MCTS challenging for arbitrary p. However, if p = p∗ is the
optimal policy prior – i. e.p∗(s′|s, s′′) = 1 if s′ ∈ σ∗ is in the opti-
mal plan σ∗ for(s, s′′) and 0 otherwise – DC-MCTS will construct
σ∗ in the minimal number of step N = |σ∗|, therefore incurring a
cost of |σ∗| · (|S|cp + 2cvπ ). The dependency on |S| for the policy
prior can be further reduced — in principle down to a constant
— using techniques from the literature on MCTS for continuous
or large discrete action spaces (e. g.progressive widening Coulom,
2007; «Progressive strategies for monte-carlo tree search»). We
can compare this to the cost of unguided, standard SSSP plan-
ners, which is |S|2cvπ as they need to query the low-level value
function for all pairs of states (s, s′). Therefore, DC-MCTS can be
significantly more cost efficient than conventional SSSP planners
if a good policy prior can be learned and the cost of evaluating
cp / cvπ is at least comparable to that of evaluating vπ . Under the
assumption p = p∗, MCTS and DC-MCTS have the same sample
complexity. However MCTS represents the solution as one path
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of length |σ∗| in the search tree, whereas DC-MCTS presents it as
a sub-tree with |σ∗| nodes. Therefore, if computation can be car-
ried out in parallel (e. g.by batching independent sub-problems
at the same level of the sub-tree), the time complexity of DC-
MCTS could be drastically reduced compared to MCTS, in the
best case (perfect parallelism and balanced binary solution tree)
from O(|σ∗|) to O(log(|σ∗|)).

d.2 training details

d.2.1 Details for training the value function

In order to train the value network v, that is used for bootstrap-
ping in DC-MCTS, we can regress it towards targets computed
from previous search results or environment experiences. A first
obvious option is to use as regression target the Monte Carlo re-
turn (i.e. 0 if the goal was reached, and 1 if it was not) from execut-
ing the DC-MCTS plans in the environment. This appears to be a
sensible target, as the return is an unbiased estimator of the suc-
cess probability P(s∞ ∈ τπσ

s0 ) of the plan. Although this approach
was used in Silver et al., 2016, its downside is that gathering en-
vironment experience is often very costly and only yields little
information, i. e.one binary variable per episode. Furthermore no
other information from the generated search tree T except for the
best plan is used. Therefore, a lot of valuable information might
be discarded, in particular in situations where a good sub-plan
for a particular sub-problem was found, but the overall plan nev-
ertheless failed.

This shortcoming could be remedied by using as regression
targets the non-parametric value estimates V(s, s′′) for all OR
nodes (s, s′′) in the DC-MCTS tree at the end of the search. With
this approach, a learning signal could still be obtained from suc-
cessful sub-plans of an overall failed plan. However, we empiri-
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cally found in our experiments that this lead to drastically over-
optimistic value estimates, for the following reason. By standard
policy improvement arguments, regressing toward V leads to a
bootstrap value function that converges to v∗. In the definition of
the optimal value v∗(s, s′′) = maxs′ v∗(s, s′) · v∗(s′, s′′), we implic-
itly allow for infinite recursion depth for solving sub-problems.
However, in practice, we often used quite shallow trees (depth <
10), so that bootstrapping with approximations of v∗ is too opti-
mistic, as this assumes unbounded planning budget. A principled
solution for this could be to condition the value function for boot-
strapping on the amount of remaining search budget, either in
terms of remaining tree depth or node expansions.

Instead of the cumbersome, explicitly resource-aware value func-
tion, we found the following to work well. After planning with
DC-MCTS, we extract the plan σ̂∗ with ExtractPlan from the
search tree T . As can be seen from Algorithm 5, the procedure
computes the return Gσ̂∗ for all OR nodes in the solution tree Tσ̂∗ .
For training v we chose these returns Gσ̂∗ for all OR nodes in the
solution tree as regression targets. This combines the favourable
aspects of both methods described above. In particular, this value
estimate contains no bootstrapping and therefore did not lead to
overly-optimistic bootstraps. Furthermore, all successfully solved
sub-problems given a learning signal. As regression loss we chose
cross-entropy.

d.2.2 Details for training the policy prior

The prior network is trained to match the distribution of the val-
ues of the AND nodes, also with a cross-entropy loss. Note that
we did not use visit counts as targets for the prior network — as
done in AlphaGo and AlphaZero for example (Silver et al., 2016;
Silver et al., 2018)— since for small search budgets visit counts
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tend to be noisy and require significant fine-tuning to avoid col-
lapse (Hamrick et al., 2020).

d.2.3 Neural networks architectures for grid-world experiments

The shared torso of the prior and value network used in the ex-
periments is a 6-layer CNN with kernels of size 3, 64 filters per
layer, Layer Normalization after every convolutional layer, swish
(cit) as activation function, zero-padding of 1, and strides [1, 1, 2,
1, 1, 2] to increase the size of the receptive field.

The two heads for the prior and value networks follow the pat-
tern described above, but with three layers only instead of six,
and fixed strides of 1. The prior head ends with a linear layer and
a softmax, in order to obtain a distribution over sub-goals. The
value head ends with a linear layer and a sigmoid that predicts
a single value, i.e. the probability of reaching the goal from the
start state if we further split the problem into sub-problems.

We did not heavily optimize networks hyper-parameters. After
running a random search over hyper-parameters for the fixed ar-
chitecture described above, the following were chosen to run the
experiments in Figure 29. The replay buffer has a maximum size
of 2048. The prior and value networks are trained on batches of
size 128 as new experiences are collected. Networks are trained
using Adam with a learning rate of 1e-3, the boltzmann tempera-
ture of the softmax for the prior network set to 0.003. For simplic-
ity, we used HER with the time-based rebalancing (i.e. turning
experiences into temporal binary search trees). UCB constants are
sampled uniformly between 3 and 7, as these values were ob-
served to give more robust results.



166 appendix dc-mcts

Table 12: Architectures of the neural networks used in the experiment
section for the high-level value and prior. For each convolu-
tional layer we report kernel size, number of filters and stride.
LN stands for Layer normalization, FC for fully connected,. All
convolutions are preceded by a 1 pixel zero padding.

Value head

3× 3, 64, stride: 1

swish, LN

3× 3, 64, stride: 1

swish, LN

3× 3, 64, stride: 1

swish, LN

Flatten

FC Nh : 1

sigmoid

Torso

3× 3, 64, stride: 1

swish, LN

3× 3, 64, stride: 1

swish, LN

3× 3, 64, stride: 2

swish, LN

3× 3, 64, stride: 1

swish, LN

3× 3, 64, stride: 1

swish, LN

3× 3, 64, stride: 2

swish, LN

Policy head

3× 3, 64, stride: 1

swish, LN

3× 3, 64, stride: 1

swish, LN

3× 3, 64, stride: 1

swish, LN

Flatten

FC Nh: #classes

softmax

d.2.4 Low-level controller training details

For physics-based experiments using MuJoCo (Todorov et al., 2012),
we trained a low-level policy first and then trained the planning
agent to reuse the low-level motor skills afforded by this body
and pretrained policy. The low-level policy, was trained to control
the quadruped (“ant”) body to go to a randomly placed target
in an open area (a “go-to-target” task, essentially the same as the
task used to train the humanoid in Merel et al., 2019, which is
available at https://github.com/deepmind/dm_control/

https://github.com/deepmind/dm_control/tree/master/dm_control/locomotion
https://github.com/deepmind/dm_control/tree/master/dm_control/locomotion
https://github.com/deepmind/dm_control/tree/master/dm_control/locomotion
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tree/master/dm_control/locomotion). The task amounts
to the environment providing an instruction corresponding to a
target position that the agent is is rewarded for moving to (i.e,
a sparse reward when within a region of the target). When the
target is obtained, a new target is generated that is a short dis-
tance away (<1.5m). What this means is that a policy trained
on this task should be capable of producing short, direct, goal-
directed locomotion behaviors in an open field. And at test time,
the presence of obstacles will catastrophically confuse the trained
low-level policy. The policy architecture, consisting of a shallow
MLP for the actor and critic, was trained to solve this task using
MPO Abdolmaleki et al., 2018. More specifically, the actor and
critic had respectively 2 and 3 hidden layers, 256 units each and
elu activation function. The policy was trained to a high level of
performance using a distributed, replay-based, off-policy training
setup involving 64 actors. In order to reuse the low-level policy in
the context of mazes, we can replace the environment-provided
instruction with a message sent by a high-level policy (i.e., the
planning agent). For the planning agent that interfaces with the
low-level policy, the action space of the high-level policy will, by
construction, correspond to the instruction to the low-level policy.

d.2.5 Pseudocode

We summarize the training procedure for DC-MCTS in the fol-
lowing pseudo-code.

def train_DCMCTS():

replay_buffer = []

for episode in n_episodes:
start, goal = env.reset()
sub_goals = dc_mcts_plan(start, goal) # list of sub

-goals
replay_buffer.add(sub_goals)

https://github.com/deepmind/dm_control/tree/master/dm_control/locomotion
https://github.com/deepmind/dm_control/tree/master/dm_control/locomotion
https://github.com/deepmind/dm_control/tree/master/dm_control/locomotion
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state = start
while episode.not_over() & len(sub_goals) > 0:

action = low_level_policy(state, sub_goals[0])
state = env.step(action)
visited_states.append(state)

if state == sub_goals[0]:
sub_goals.pop(0)

# Rebalance list of visited states to a binary
search tree

bst_states = bst_from_states(visited_states)
replay_buffer.add(bst_states) # Hindsight

Experience Replay

if replay_buffer.can_sample():
neural_nets.train(replay_buffer.sample())

d.3 more solved mazes

In Figure 48 we show more mazes as solved by the trained Divide
and Conquer MCTS.

d.3.1 Supplementary material and videos

Additional material, including videos of several grid-world mazes
as solved by the algorithm and of MuJoCo low-level policy solv-
ing mazes by following DC-MCTS plans, can be found on https:
//sites.google.com/view/dc-mcts/home .

https://sites.google.com/view/dc-mcts/home
https://sites.google.com/view/dc-mcts/home
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C More solved mazes663

In Figure 8 we show more mazes as solved by the trained Divide and Conquer MCTS.664

C.1 Supplementary material and videos665

Additional material, including videos of several grid-world mazes as solved by the algorithm and666

of MuJoCo low-level policy solving mazes by following DC-MCTS plans, can be found at https:667

//sites.google.com/view/dc-mcts/home .668

Figure 8: Solved mazes with Divide and Conquer MCTS. = start, = goal, = wall, =
walkable. Overlapping numbers are due to the agent back-tracking while refining finer sub-goals.
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Figure 48: Solved mazes with Divide and Conquer MCTS.
= start, = goal, = wall, = walkable. Overlapping

numbers are due to the agent back-tracking while refining
finer sub-goals.
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