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Abstract

With increasing intermittent distributed power generation, emergency situations in the power
system are more likely to occur. Current emergency operation in power systems is mostly based
on manual remedial actions. The growing number of distributed generation devices add com-
plexity to emergency operation and make decisions on remedial actions harder. In this thesis, a
feedback optimization (FO) controller for emergency power system operation is implemented. To
reflect the fast timescales and model inaccuracies in emergency operation, FO is pushed beyond
the limit of current stability and robustness methods. As a benchmark for the FO controller, a
controller based on the optimal power flow (OPF) approach is used. Both controllers are tested
using the dynamic power system simulator DynPSSimPy. In contrast to the OPF controller, the
FO controller meets all the posed operational constraints, even in the presence of imperfect model
information. In terms of optimality, imperfect model information can cause both controllers to
converge to a suboptimal operating point. Based on timescale separation, two methods of esti-
mating the step size limit and thus guarantee convergence of the FO controller are applied. No
practical relevant certificates for the stability and robustness of the FO controller can be made,
since the step size limit estimations yield either too high, or too conservative limits. However,
the simulations show evidence, that FO is applicable to emergency power system operation by
controlling the system stably even in the presence of imperfect model information. With that,
FO is capable of supporting power system operators in handling complex emergency situations.
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Chapter 1

Introduction

Decarbonizing the electric power generation leads to increasing penetration of fluctuating and
distributed renewable energy generation [1]. This poses new challenges to the electric power
system. On transmission level, the intermittent and traditionally uncontrolled distributed power
generation leads to distortions of the consumption patterns and hence increases the risk of un-
predicted power flows, which can lead to highly loaded transmission elements (see [2] for an
example). On distribution level, distributed energy generation leads to significant changes in
the power flow direction. Traditional distribution systems are designed to supply consumers
uni-directionally with electrical energy. Because of this approach, often no control of the system
and therefore no accurate system models were needed [3]. With distributed energy sources, it is
more necessary to control distributed generation devices in an ideally model-free way, because
of the lack of accurate system models.

The power system state is categorized in four operation modes [4]. Normal operation mode
is achieved when no contingency is causing any overload or other operating limit violation. Alert
mode is reached, when either contingencies are causing the violation of operating limits, or certain
operating limits are violated already slightly. Emergency operation mode requires the system
operator to take immediate actions in order to prevent the shutdown of equipment and partial or
complete blackouts. Restoration mode means that equipment that has been shutdown or parts
of the power system that were disconnected are brought back online or connected to the power
system.

Recent power system blackouts were mainly caused by network transmission equipment trip-
ping [5]. Disconnecting these elements is often triggered by faults introduced by weather condi-
tions or overloading of the equipment. The tripping of a highly loaded network element can result
in cascading effects such as tripping of further transmission equipment or generators, frequency
deviations, voltage collapse, and/or low-frequency oscillations [5]. These incidences can lead to
partial or complete blackouts. Emergency operation tries to prevent the unintended shutdown
of any power system element and the disconnection of any load.

Partially current emergency operation is done by automated controllers. The last attempt to
stabilize the power system is when special protection schemes (SPS) are triggered. SPS are local
controllers designed to prevent or minimize the impact of a power system collapse by recognizing
specific network events (e.g., tripping of one specific line or generation unit) and taking predefined
actions [6]. Examples for SPS are under frequency load shedding (UFLS), which disconnects loads
in the power system in case of low frequency in order to restore the system frequency, or schemes,
which reduce the generation power at specific generation units in case of a line disconnection.
Although these protection schemes are an important part of the current power system emergency
operation control, they are not of primary interest in this thesis, since they act as supplement
to emergency operation in situations, that require a specific predefined action.

To prevent more general events like for instance tripping of transmission equipment or the
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system voltage from collapsing, active and reactive power generation need to be adjusted. Sim-
ilarly, severe frequency deviations can be corrected by activating tertiary frequency control [7].
These actions currently are taken manually by system operators. As in these examples, current
emergency operation often requires manual actions. Due to the fast timescales of cascading ef-
fects, these actions are highly time-sensitive. Operators need to analyze the situation quickly and
decide on appropriate actions to stabilize the power system. Usually, power system operators
have tools such as power system simulators to support their decision. However, human operators
often decide on remedial actions based on their experience. Possible reasons for this could be
situations, where fast actions are required and there is no sufficient time to run simulations, or
power system models of the simulation not representing the current emergency situation, leading
to inappropriate simulation results. With the added complexity due to an increasing number of
distributed generation and thus possibly controllable devices, manual and experience based deci-
sions will become harder. A controller, which is robust against model uncertainties and capable
of acting fast enough on the power system, clearly would be superior to the current emergency
operation procedures.

Computational optimization is a common solution to finding the best option w.r.t. some
criterion in complex systems. It has been a topic in power system operation since the 1960s (see
review in [8]). Classical approaches try to minimize a cost function (e.g., power generation cost,
losses, etc.) by finding the minimizing operating point of a power system offline. Therefore,
an optimization problem with constraints given by a power system model is solved. Once the
optimal operating point is known, the set points of the controllable devices in the power system
are set according to the optimizing argument of the optimization problem to try to reach the
optimal operating point of the power system in a feed-forward way. This approach is known
as optimal power flow (OPF) [4]. Recently, feedback optimization (FO) has been applied to
optimize power system operations [9–11]. Instead of using a model of the power system, FO uses
measurements and iteratively drives the system to an operating point minimizing the considered
cost function. In contrast to OPF, no model of the power system is needed. The sensitivities
of how the system variables change after changing the set point of a controllable device are
enough to steer the system to the optimal operating point. Additionally, the feedback used
in the FO approach has the advantages of making it more robust against inaccurate power
system models and disturbances. These two properties reduce the model-dependence of FO.
Furthermore, computational effort is reduced, because the power system equations do not need
to be included in the optimization problem, since they are evaluated implicitly by the physical
system [10, 12]. Previous works on FO have proved the convergence of the iterative solution
method to the set of local optima under certain conditions [10–12] and provide stability [13] and
robustness [14] certificates for FO.

This work focuses on emergency power system operation. Emergency operation is charac-
terized by events happening on fast timescales which lead to transients in the power system
(e.g., cascading outages) [5]. To control the power system in this mode, a controller needs to act
fast enough and needs to be robust against model inaccuracies, because cascading outages can
cause the power system in emergency mode to change rapidly. Therefore, in this work, FO is
operated beyond current stability constraints by firstly pushing the principle of FO acting on a
different timescale from the remaining dynamics of the power system to the limit and secondly
operating FO with inaccurate model information. Because of the timescales and the transients of
emergency operation, the simulations in this project take into account power system dynamics.

The remainder of this thesis is structured as follows: In chapter 2 the used static and dynamic
power system models are presented, before chapter 3 describes the implemented FO controller and
an approach to guarantee convergence thereof. Chapter 4 presents and discusses the simulation
set-up and the obtained simulation results. Finally, the thesis is concluded in chapter 5.
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Chapter 2

Power System Modelling

This chapter describes the power system models used in this project. Section 2.1 presents the
admittance matrix used to model the network of the power system. The static power flow
solution is reviewed in section 2.2, before introducing the dynamic power system model in the
subsequent section 2.3. To simulate power systems and their dynamics, multiple simulation
environments were tested. They are reviewed shortly in section 2.4. After testing different
simulation environments, the software package DynPSSimPy is used during this project.

2.1 Power System Admittance Matrix

The nodal admittance matrix of a power system contains the information of the topology of
the power system (i.e., the admittances between the nodes). During this report, two types
of admittance matrices are used: the admittance matrix for the dynamic system Y and the
admittance matrix for the static system YPF . They are both complex valued square matrices
Y ,YPF ∈ Cb×b, where b is the number of buses in the power system. However, some entries of
Y and YPF differ slightly, which will be explained in the following. For the sake of simplicity,
transmission lines and transformers are referred to as branches in this report.

The off-diagonal elements of the static admittance matrix YPF are given by

YPF,ij = −t̄ijtjiyij . (2.1)

Thereby yij = 1/(rij+jxij) ∈ C is the admittance between bus i and j given by the transmission
line or transformer resistance rij and reactance xij , that connect the two buses, and tij = aije

jφij

is the voltage ration of the connection between the two buses. For a transmission line tij = 1,
while for a transformer aij ∈ R and φij ∈ R are the voltage magnitude ratio and the induced
phase shift, respectively. The diagonal entries of the static admittance matrix YPF are computed
as follows

YPF,ii = yshi +
∑
j∈Ωi

a2
ij

(
yshij
2

+ yij

)
, (2.2)

where yshi and yshij are the complex valued shunt admittances at the bus i and of the branch
connecting bus i to bus j, and Ωi is the set of buses adjacent to bus i.

The admittance matrix of the dynamic system Y is based on the admittance matrix of the
static system YPF . The difference is that additional terms, corresponding to the generators and
the loads in the network, are added to the diagonal entries of the dynamic system admittance
matrix Y .

When comparing the power flow equations of the dynamic simulation, that will be presented in
equation (2.20), with the power flow equations of the static power flow, which will be introduced
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in equations (2.7) and (2.14), one can observe, that the loads are included only on the right-
hand side of the static power flow equations. The dynamic power flow equations are based on
the currents, which makes it easier to incorporate the generators as equivalent current sources.
As a consequence, loads are modelled as impedances in the dynamic system. Therefore their
admittance yi,l is added to the diagonal elements of the dynamic admittance matrix Y as shown
in equation (2.4). The load admittance yi,l is determined from the known active and reactive
power injections at the loads pset,i and qset,i, respectively, and the bus voltage ui

yi,l =
−s̄i
||ui||2

=
−pset,i + jqset,i

||ui||2
. (2.3)

The simulated power systems are assumed to comprise multiple generators. Since each gen-
erator under interest has a much smaller power rating compared to the other generators in the
system, the remaining power system is modelled as an infinite bus, connected to the generator
by an equivalent system [7]. The equivalent system thereby is represented by the transmission
system and the remaining generators in the power system. Therefore, the Norton equivalent
reactance of the generators yi,g = 1

jX′′
d
, where X ′′d is given by the synchronous machine (see

section 2.3.1), is added to the static admittance matrix YPF to obtain the dynamic admittance
matrix Y as shown in equation (2.4).

Yii = YPF,ii + yi,l + yi,g (2.4)

2.2 Static Power Flow Solution

The static power flow equations will be used for two reasons during this thesis. To initialize the
states of the dynamic power system models, and to derive the sensitivities for the FO controller.
This section presents the classical power flow solution, before an extension to it to model a
distributed slack is introduced in section 2.2.1. These final power flow equations are used during
this project.

Static power flow solutions are based on the following set of complex valued power flow
equations [7]

diag(u)YPFu− s = 0, (2.5)

where s ∈ Cb is a vector of the complex power injections at each bus, given by the generation and
load at that bus. The static system admittance matrix YPF is given by the network topology, as
described in the previous section. By splitting up the complex voltages u and power injections
s into voltage magnitudes v and angles θ and active and reactive power injections p and q,
respectively, using the following identities

u = vejθ (2.6a)
s = p+ jq, (2.6b)

the power flow equations (2.5) can be separated in their real and imaginary part as follows

F ′(u,p, q) =

[
<
(
diag(u)YPFu

)
− p

=
(
diag(u)YPFu

)
− q

]
= 0. (2.7)

As can be seen in equations (2.6), the power flow problem has a total number of 4b variables
(v, θ, p, and q for each bus), while equation (2.7) provides 2b equations. Therefore, for each bus
two more equations are needed and given by already known properties dependent on the type of
bus:
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PV bus Generators are assumed to control their bus voltage magnitude to a preset value vset,i
and produce the scheduled amount of active power pset,i. Therefore, each bus i connected
to a generator has fixed bus voltage magnitude vi and active power injection pi

vi = vset,i (2.8a)
pi = pset,i. (2.8b)

The voltage angle θi and reactive power injection qi remain as free variables.

PQ bus Each bus i without a generator is assumed to have active and reactive power injections
pset,i and qset,i, respectively, independent of the system variables. Therefore the active and
reactive power injections at this bus pi and qi, respectively, are fixed as follows

pi = pset,i (2.9a)
qi = qset,i. (2.9b)

The power injections can be derived from the power withdrawals of the loads connected
to the bus or set to zero if no power is injected or withdrawn at this bus. The voltage
magnitude vi and voltage angle θi remain as free variables.

Slack bus Since the active power losses in the power system are a function of the network volt-
ages u, a possible imbalance resulting from losses and imbalanced active power injections of
the power system is unknown a priori. Therefore, one generator-bus in the system needs to
be defined to compensate for the system imbalance ψ and needs pi as a free variable. The
voltage magnitude of the bus vi still is controlled to a preset value vset,i by the generator.
Furthermore, a reference point for the voltage angles θ is necessary to obtain a unique
solution to the power flow equations. This reference point is set to be the same bus, that
compensates the system losses. Defining a different bus as angle reference would shift the
voltage angles in the power system, but not change the load flow. Hence, the following
additional equations for the slack bus yield:

vi = vset,i (2.10a)
θi = 0. (2.10b)

With that, the active and reactive power injections pi and qi, respectively, remain free
variables.

For completeness and later use, the free variables are referred to as power flow output variables
zPF , and the fixed variables as power flow input variables wPF . With the above described
equations additional to the power flow equations (2.7), all variables v,θ,p and q of the static
power system can be determined. Based on these variables, all properties of the static power
system can be computed. The current on a branch iij connecting two buses i and j, for instance,
is given by

iij = a2
ij

(
yshij
2

+ yij

)
ui − aij ājiyijuj . (2.11)

2.2.1 Modelling of Distributed Slack

As mentioned above, the active power losses in the power system ploss are unknown as long as
the state of the power system is not determined. Furthermore, there could be an imbalance in
active power injections

∆p =
∑
i∈[1,b]

pi, (2.12)
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which adds to the total system imbalance ψ ∈ R as follows

ψ = ploss −∆p. (2.13)

Since the power system is assumed to be in steady state in the static power flow solution, the
imbalance ψ needs to be compensated.

In practice, an AGC as described in section 2.3.2 acts on the system to balance the active
power generation. The AGC estimates the imbalance ψ and distributes it according to the AGC
participation factors α to the generators. Thereby the system imbalance ψ is compensated by
multiple generators at different buses.

This contrasts the above described classical approach of solving the power flow equations.
Therefore, the power flow equations are extended by a distributed slack approach as described
in [15], which leads to the following new power flow equations

F (u,p, q, ψ) =

[
<
(
diag(u)YPFu

)
− p− πψ

=
(
diag(u)YPFu

)
− q

]
= 0, (2.14)

where π ∈ Rb is a vector of the sum of the AGC participation factors per generator, α, per bus,
i.e.,

πi =
∑

Generator j at bus i

αj . (2.15)

As the AGC participation factors per generator αi sum up to 1 (see section 2.3.2), the sum of
the participation factors per bus πi will sum to 1 as well

∑
i∈[1,b] πj = 1.

Since an additional variable ψ modelling the total system imbalance is added to the system
of equations, we require an additional equation compared to the above classical approach. By
distributing the imbalance ψ over multiple generators, there is no single slack bus as in the
classical approach anymore. Instead, an angle reference bus is introduced. The former slack bus
is treated as a PV bus with fixed active power injection, which yields the required additional
equation:

PV bus All generator buses have fixed bus voltage magnitude vi and scheduled active power
injection pi as described in equations (2.8). See remark 1 regarding the meaning of the
variable pi in the distributed slack case.

PQ bus All the remaining buses are assumed to have fixed active and reactive power injections
pi and qi, respectively, as shown in equations (2.9).

Angle reference bus In order to obtain a unique solution to the power flow equations, a refer-
ence point for the voltage angles θ is still necessary. This leads to the following additional
equation for the angle reference bus i

θi = 0. (2.16)

Note, that the power flow equations for the distributed slack are equivalent to the classical
power flow equations for π being a one-hot vector as follows

πi =

{
1 if i is the slack bus
0 otherwise

. (2.17)

Remark 1. Since in the distributed slack version of the power flow equations, the right-hand
side of the active power balance in equation (2.7), is replaced by p + πψ in equation (2.14),
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the variables p do not represent the active power injections per bus anymore, as in the classical
approach. The active power injections in the case of the distributed slack pdist are given by

pdist = p+ πψ. (2.18)

The variable p can be interpreted as scheduled active power injections in this case, while the
term πψ represents the unscheduled active power injections.

2.3 Dynamic Power System Model

This section presents the dynamic power system simulation with the used power flow equations
and models of the components. The equations are based mostly on [7, 16, 17] and completed by
inquires with the authors of [16].

The model of the dynamic power system can be written as a system of differential algebraic
equations (DAE) depending on the states x ∈ Rn of the dynamic power system model, the
complex bus voltages u ∈ Cb and some parameters w

ẋ = f ′(x,u,w) (2.19a)
0 = σ(x,u), (2.19b)

where f ′ and σ represent the state evolution and network equation of the power system and n and
b are the number of states and buses in the dynamic power system, respectively. Note, that the
bus voltages u are no state variables of the dynamic power system, because they result from the
states of the dynamic power system model through the current injections, as will be introduced
below. The parameters w represent the control inputs and will be described in section 3.2.

The algebraic network equation σ can be expressed as follows

σ(x,u) = Y u− iinj(x), (2.20)

using the dynamic system admittance matrix Y and a function iinj(x) representing the currents
injected at each bus by the generators dependent on the system state x. Since σ(x,u) is linear in
u, the bus voltages u can be eliminated in the system of DAE (2.19). This leads to the following
system of ordinary differential equations (ODE)

ẋ = f ′(x,u(x),w) = f(x,w), (2.21)

with u(x) = Y −1iinj(x). The function f ′(x,u,w), which describes the state evolution, and the
current injections iinj(x) depend on the used models for the simulated power system components
and will be described in the following paragraphs.

The state evolution x(t) is obtained by integrating the ODE system (2.21) starting from an
initial state x0 ∈ Rn. The initial state x0 of the power system is chosen such that the system is
in equilibrium and determined by solving the following algebraic equation for x0

0 = f ′(x0,u0,w0), (2.22)

where u0 are the initial system voltages determined by running a static power flow computation
on the power system, as described in the previous section, and w0 is the initial control input.

2.3.1 Synchronous Machine

This section presents the dynamic models of the synchronous machine and its governor, excitation
system and power system stabilizer (PSS). A sixth-order-model of the synchronous machine [7,
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16] is used in this project. The states are given by the speed deviation of the rotor speed from
the nominal frequency ∆ω, the rotor angle δ and the internal voltages E′q, E′d, E

′′
q and E′′d . The

state space representation of the synchronous machine is shown in equations (2.23). Equation
(2.23a) is extended compared to the model given in [7] by adding the influence of the damping
of the synchronous machine via the damping coefficient D [18] and not neglecting the difference
between the speed of synchronous machine ω and the synchronous speed (which equals 1 p.u.).
This leads to an implemented synchronous machine model consistent with professional dynamic
power system simulators such as PowerFactory by DIgSILENT [19].

∆ω̇ =
1

2H

(pm
ω
− pe −Dω

)
(2.23a)

δ̇ = ∆ω (2.23b)

Ė′q =
Ef − E′q − Id(Xd −X ′d)

T ′d0

(2.23c)

Ė′d =
−E′d + Iq(Xq −X ′q)

T ′q0
(2.23d)

Ė′′q =
E′q − E′′q − Id(X ′d −X ′′d )

T ′′d0

(2.23e)

Ė′′d =
E′d − E′′d + Iq(X

′
q −X ′′q )

T ′′q0
(2.23f)

(2.23g)

The variables H, D, Xd, X ′d, X
′′
d , Xq, X ′q, X ′′q , T ′d0, T

′
q0, T ′′d0, and T

′′
q0 are positive, real valued

parameters of the synchronous machine and described in table 2.1. The mechanical power pm
and field voltage Ef are given by the outputs of the governor and excitation system models cor-
responding to this synchronous machine, respectively (see following paragraphs). The electrical
power output pe of the synchronous machine is given by

pe = E′′dId + E′′q Iq, (2.24)

where X ′′d ≈ X ′′q is assumed, i.e., subtransient saliency is neglected, which is reasonable for a syn-
chronous machine having a damper winding in the direct-axis and quadrature-axis direction1 [7].
The direct-axis and quadrature-axis currents Id and Iq, respectively, used in equations (2.23)
and (2.24) are given by the following equation [7, 16][

R X ′′d
−X ′′d R

] [
Id
Iq

]
=

[
E′′d
E′′q

]
−
[
vd
vq

]
, (2.25)

where R is the armature winding resistance and vd and vq are the real and imaginary part of the
bus voltage, respectively [16]

vd = Re(ui) (2.26a)
vq = Im(ui). (2.26b)

In the interconnection of the synchronous machine with the transmission network, the syn-
chronous machine is modelled with its Norton equivalent circuit [16]. The injected current is
given by

iinj = −
(
E′′d
X ′′d

+ j
E′′q
X ′′q

)
ejδ. (2.27)

1The direct- and quadrature-axis are the two axis of the rotor of a synchronous machine. The direct axis
points into the direction of the magnetic field of the field windings. The quadrature-axis is shifted by π/2 radians
behind the direct-axis. [7]
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Parameter Description
H Inertia constant
D Damping coefficient
Xd Direct-axis synchronous reactance
X ′d Direct-axis transient reactance
X ′′d Direct-axis subtransient reactance
Xq Quadrature-axis synchronous reactance
X ′q Quadrature-axis transient reactance
X ′′q Quadrature-axis subtransient reactance
R Armature winding resistance
T ′d0 Direct-axis transient open-circuit time constant
T ′q0 Quadrature-axis transient open-circuit time constant
T ′′d0 Direct-axis subtransient open-circuit time constant
T ′′q0 Quadrature-axis subtransient open-circuit time constant

Table 2.1: Parameters of the synchronous machine model [7].

Governor

The governor used to control the mechanical power pm fed to the synchronous machine is modelled
with the standard model TGOV1 [16, 20]. The state-space representation of the governor is given
in equations (2.28). x1 and x2 are states of the governor representing the valve position and the
turbine power, respectively. Due to saturation effects, the state x1 is constraint to stay in the
range [Vmin, Vmax]. Furthermore, xbias = Rpm0, with pm0 being the steady state active power fed
into the network by the corresponding synchronous machine, is added to the frequency deviation
∆ω in order to eliminate a steady state error of the proportional controller at the initial state
of the power system. T1, T2, T3, R, Dt, Vmin and Vmax are parameters of the governor and
described in table 2.2.

ẋ1 =

{
0 for x1 = Vmin ∧ ẋ1 < 0 or x1 = Vmax ∧ ẋ1 > 0

1
T1R

(∆ω + xbias)− x1
T1

otherwise
(2.28a)

ẋ2 =

(
T2

T3
− 1

)
x1 −

1

T3
x2 (2.28b)

The mechanical power output pGOV of the governor model is given by

pGOV =
T2

T3
x1 −

1

T3
x2 −Dt∆ω. (2.29)

It is used, besides other components, as part of the mechanical power input pm of the synchronous
generator in equation (2.23a). The governor model’s input-output relation is displayed as block
diagram in figure 2.1.

Parameter Description
T1 Governor time constant
T2, T3 Turbine time constants
R Turbine governor droop
Dt Frictional losses factor
Vmin, Vmax Valve limits

Table 2.2: Parameters of the governor model [20].
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xbias + 1
R

1
1+sT1

Vmin

Vmax

1+sT2
1+sT1

∆ω −Dt

+ pGOV

Figure 2.1: Block diagram of governor model TGOV1.

Excitation System

The field voltage Ef of the synchronous machine is controlled by the excitation system. Therefore
the standard model SEXS (simple excitation system) is applied [16, 20]. To enhance small- and
large-signal stability of the excitation system, a power system stabilizer of the type STAB1
controls the input of the excitation system [7, 16].

The excitation system has the two states x1 and ef , where ef is the unsaturated field volt-
age. The state evolution is given in its state space representation in equations (2.30) and the
parameters of the excitation system are described in table 2.3.

ẋ1 = − 1

Tb
x1 +

(
Ta
Tb
− 1

)
u (2.30a)

ėf = − K

TeTb
x1 −

1

Te
ef +

KTa
TeTb

u (2.30b)

The output of the excitation system is the field voltage Ef after saturation of the internal voltage
ef as follows

Ef =


Emax for ef > Emax

ef for ef ∈ [Emin, Emax]

Emin for ef < Emin

, (2.31)

where Emin and Emax are the lower and upper field voltage limits, respectively.
The input u to the excitation system model shown in equations (2.30) is given by adding the

deviation of the bus voltage magnitude v from the voltage set point vset, the output of the PSS
vpss and a constant bias xbias

u = ∆v + vpss + xbias = vset − v + vpss + xbias. (2.32)

Similar as in the governor model, the constant bias xbias =
Ef0

K is added to ensure error-free
tracking at the initial state. The block diagram of the excitation system model is pictured in
figure 2.2.

xbias

∆v

vpss

+ 1+sTa
1+sTb

K
1+sTe

Emin

Emax

Ef

Figure 2.2: Block diagram of the excitation system model SEXS.
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Parameter Description
K Controller gain
Ta, Tb Filter time constants
Te Exciter time constant
Emin, Emax Field voltage limits

Table 2.3: Parameters of the excitation system model [20].

The excitation system is stabilized by adding the extra term vpss from the PSS to the excita-
tion system input. The PSS model STAB1 is considered in this project. It takes the generator’s
speed deviation ∆ω as input and returns vpss as output. The state space representation is
displayed in equations (2.33).

ẋ1 = − 1

T
x1 +

1

T
∆ω (2.33a)

ẋ2 = −
(
T1

T3
− 1

)
x1 −

1

T3
x2 +

(
T1

T3
− 1

)
K

T
∆ω (2.33b)

ẋ3 = −
(
T2

T4
− 1

)
T1

T3

1

T
x1 −

(
T2

T4
− 1

)
1

T3
x2 −

1

T4
x3 +

(
T2

T4
− 1

)
T1

T3

1

T
∆ω (2.33c)

The states x1, x2 and x3 are not connected a physical quantity, but represent the state of the PSS
after the washout-filter (x1) and after the two lead-lag compensators (x1 and x2, respectively).
vpss, which is the output of the PSS, is computed based on those states as follows:

vpss =


Hlim for y > Hlim

y for y ∈ [−Hlim, Hlim]

−Hlim for y < −Hlim

, (2.34a)

y = −T2

T4

T1

T3

1

T
x1 −

T2

T4

T1

T3
x2 −

1

T4
x3 +

T2

T4

T1

T3

K

T
∆ω. (2.34b)

The parameters of the PSS are described in table 2.4 and the block diagram of the PSS is
shown in figure 2.3.

∆ω sK
1+sT

1+sT1
1+sT3

1+sT2
1+sT4

vpss

−Hlim

Hlim

Figure 2.3: Block diagram of the power system stabilizer STAB1.

Parameter Description
K Controller gain
T Washout-filter time constant
T1, T3 Time constants of first lead-lag compensation
T2, T4 Time constants of second lead-lag compensation
Hlim Output limit

Table 2.4: Parameters of the power system stabilizer model.
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2.3.2 Automated Generation Control

To balance the active power generation and consumption in the power system, an automated
generation control (AGC) is needed. The used AGC is acting only on frequency deviations and
ignores unscheduled tie line flows. Therefore, the area control error ACE is computed as follows

ACE = −λ∆ω̄, (2.35)

where λ is the frequency bias factor and ∆ω̄ is the average frequency deviation over all g gen-
erators in the simulated power system weighted by their inertia constant H and power rating
S

∆ω̄ =

∑
i∈[1,g] ∆ωiHiSi∑
i∈[1,g]HiSi

. (2.36)

The AGC integrates the area control error ACE in the state xi and returns the vector
pAGC ∈ Rg according to equations (2.37). The ith entry in pAGC represents the control signal
for generator i in the power system and is added to the mechanical power input pm of the
corresponding synchronous generator in equation (2.23a).

ẋi = ACE (2.37a)
pAGC = α(KpACE +Kixi) (2.37b)

The parameters λ, Kp, andKi are described in table 2.5 and figure 2.4 displays the block diagram
of the AGC. The vector α ∈ Rg contains the participation factor of each generator and is used to
distribute the control signal of the AGC to the participating generators. The sum of all entries
αi of α equals one:

∑
i∈[1,g] αi = 1. A deviation of this sum from 1 would be compensated by

the integral part of the AGC, however, it would slow down convergences of the frequency.

∆ω̄ −λ Ki+SKp

s
α pAGC

Figure 2.4: Block diagram of the automated generation control.

Parameter Description
λ Frequency bias factor
Kp Proportional gain
Ki Integral gain

Table 2.5: Parameters of the automated generation control model [7].

2.4 Review on Dynamic Power System Simulators

Only few open source or free to use dynamic power system simulators are available. Among
those, the following toolboxes, which have an interface to or are written entirely in Python
are reviewed in the following: RAMSES [21] with its python interface PyRAMSES [22], DP-
Sim [23], and DynPSSimPy [16, 17]. Table 2.6 presents the version, the programming language
and references for the considered simulators. The power system simulator RAMSES has been
developed at the University of Lieg̀e, Belgium, and DPSim, at the RWTH Aachen University,
Germany. The implementations of PyRAMSES and DPSim in FORTRAN and C++, respec-
tively, allow for fast and efficient computations. This contrasts the third dynamic power system
simulator, DynPSSimPy, which has been developed at the Norwegian university of science and
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technology and is entirely written in Python. All three simulation environments come with the
downside of poor documentation. While the simulators PyRAMSES and DPSim with their ef-
ficient implementation in different programming languages are hard to retrace, the less efficient
implementation of DynPSSimPy in Python is fully transparent, easily tractable, and extendable.
This compensates the lack in documentation and is the main reason for using DynPSSimPy in
this project.

Simulator Version Programming language Reference

PyRAMSES 0.0.22 FORTRAN,
Python interface

[21, 22]
pyramses.paristidou.info

DPSim 1.0.0 C++,
Python interface

[23]
dpsim.fein-aachen.org

DynPSSimPy 0.1.0 Python [16, 17]
github.com/hallvar-h/DynPSSimPy

Table 2.6: Comparison of dynamic power system simulators.

The simulation environment DynPSSimPy provides the models of the power system com-
ponents described in the last section. It is modulated in three aspects for the use in this
project. In order to be consistent with the dynamic simulations, the existing power flow solver
in DynPSSimPy is extended by the distributed slack approach described in section 2.2.1. Out of
the box, DynPSSimPy models loads with constant impedances, i.e., it determines the load ad-
mittances once with the initial voltages u0 and does not update them. In order to be consistent
to the static power flow simulation, the admittances are updated every iteration to model the
loads with constant power. Lastly, the AGC provided in DynPSSimPy is capable of balancing
only two control areas connected by one transmission line. It is modified slightly in order to
support multiple control areas but act only on frequency deviations.
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Chapter 3

Feedback Optimization for Emergency
Operation

To control the dynamic power system modelled as described in chapter 2 in emergency operation,
a feedback optimization (FO) controller is applied. This chapter therefore reviews FO in sec-
tion 3.1 and applies it to the problem of controlling a power system in section 3.2. In section 3.3,
the tuning of the FO controller is discussed.

3.1 Review of Feedback Optimization

Consider a stable physical system

ẋ = f(x,w) (3.1a)
z = g(x), (3.1b)

where x ∈ Rn, w ∈ Rl and z ∈ Rm are the states, inputs and outputs of the physical system,
respectively. The behavior of the system is described by the function f : Rn×l → Rn and
the output is given by the map g : Rn → Rm. The goal is to drive the system (3.1) to an
operating point (w?, z?) that solves the optimization problem (3.2). Namely, (w?, z?) minimize
the continuously differentiable objective function Φ : Rl×m → R, while applying admissible
control inputs w given by the set W ⊆ Rl and fulfilling the constraints on the output variables
z given by Z ⊆ Rm.

min
w

Φ(w, z) (3.2a)

s.t. z = h(w) (3.2b)
w ∈ W (3.2c)
z ∈ Z (3.2d)

The map h : Rl → Rm in the above equation maps the inputs w to their steady state outputs z
and results as follows. Since the system (3.1) is assumed to be stable, there exists a ĥ : Rl → Rn
that maps an input w to the corresponding steady state value of the state vector x such that

f(ĥ(w),w) = 0. (3.3)

The steady state map h is then defined as

h(w) = g(ĥ(w)). (3.4)

15



Traditional approaches to solve the above optimization problem (3.2) use a model for h(w),
solve for the optimal control input w?, and apply it to the physical system in order to drive it to
the optimal operating point (w?, z?). This feed-forward approach is computationally expensive
and requires an accurate model of the steady state map h. A controller using this approach is
implemented as a benchmark in section 4.1.2. In contrast to that, FO approaches exploit the
ability of the physical system to enforce constraint (3.2b) of the optimization problem by its own
and use measurements of the output variables z to drive the system iteratively to the optimal
operating point (w?, z?). Thereby the FO solution methods are computationally less expensive
and model-free, since z = h(w) is evaluated by the physical system. However, some information
on the physical system (3.1) is needed, as will be described in the following section.

3.1.1 Projected Gradient Descent Flow

In this thesis, the discrete time integral feedback control law proposed in [24] is used to solve the
optimization problem (3.2). The control input at iteration k + 1 of the controller is given by

wk+1 = wk + α∆w?
α(wk, z) (3.5)

for k ∈ N0, where α > 0 is a positive step size, and ∆w? ∈ Rl is the minimizing argument of the
following quadratic program (QP)

∆w?
α(w, z) = arg min

∆w∈Rl

∥∥∆w +G−1(w)H(w)T∇Φ(w, z)T
∥∥2

G(w)
(3.6a)

s.t. w + α∆w ∈ W (3.6b)
z + α∇h(w)∆w ∈ Z, (3.6c)

where G(w) is a continuous metric, and H(w)T =
[
Il ∇h(w)T

]
with the Jacobian matrix ∇h

of the steady state map h. The metric G can be a fixed matrix in the set of symmetric positive
definite of shape l× l, Sl+, or be dependent on the input w by mapping to this set G :W → Sl+.
It does not change the optimal points of (3.2), but the trajectory in which these points are
reached [12]. The norm ‖b‖G(w) for some b ∈ Rl evaluates as

‖b‖G(w) =
√
bTG(w)b. (3.7)

The system output z is given by measurements of the physical system, and thus no exact
model of the steady state map h is needed. To solve the QP (3.6), it is enough to know the
sensitivities of the output variables z in steady state with respect to a change of the input
variables w given by ∇h.

The above control law (3.5) is based on the idea of gradient flows, while enforcing the con-
straints of the optimization problem (3.2) by projecting the points w − αG−1(w)∇Φ(w,h(w))
to a linearization of the original constraints of (3.2) around w (see constraints of (3.6)). It hence
represents a projected gradient flow [12]. Due to the linearization of the constraints in the QP
(3.6), the original constraints can be violated temporarily. However, the constraints are satisfied
asymptotically, and the violations can be reduced by reducing the step size α [24]. The asymp-
totic constraint fulfilment and in general solving of the problem (3.2) using the above control
law has been shown in [24] using the following mild assumptions.

Assumption 1. The feasible set of the optimization problem (3.2) is non-empty and the set of
admissible inputs W is compact.

This assumption is necessary for the optimization problem (3.2) to have any solution. Fur-
thermore, the set of feasible control inputs W is assumed to be compact in order to apply the
extreme value theorem, which is used to find the optimal point within the constraints [24]. The
second assumption targets the control law (3.5).
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Assumption 2. The feasible set of the QP (3.6) is non-empty for all w ∈ W and satisfies the
linear independence constraint qualification (LICQ) for all ∆w in the feasible set of the QP.

Again, the feasible set is required to be non-empty for the QP (3.6) to have any solution.
Additionally, the LICQ are assumed to be satisfied by all ∆w in the feasible set of the QP (3.6)
in order for it to be well-defined [24].

With these two assumptions, the control law given in equation (3.5) converges to the first-
order optimal points of the optimization problem (3.2):

Theorem 1. Assume that ∇Φ and ∇h are globally Lipschitz onW and that assumptions 1 and 2
hold. There exists a step size limit αmax > 0 such that for every α < αmax:

1. the trajectory of the control law (3.5) converges to the set of first-order optimal points of
the optimization problem (3.2) for any initial input w0 ∈ W and z = h(w),

2. an asymptotic stable equilibrium of the control law (3.5) is a strict local minimum of
Φ(w,h(w)).

A proof of the above theorem and a theoretical definition of αmax are given in [24]. The step
size limit αmax is, in general, unknown or hard to compute. Two approaches on estimating it are
presented in section 3.3.1 as part of the tuning of the FO controller. Before focusing on that, a
FO controller to control power systems is presented in the next section.

Remark 2. Clearly, an optimization problem needs to be feasible in order to find a solution
to it using FO or any other solution method. This requirement is captured in assumption 1.
Although feasibility and infeasibility are generally linked to optimization and are discussed in
relevant literature like [25], a possible method to handle infeasibility is sketched due to its risk
to happen during emergency operation, as we will see in section 4.2.2.

The optimization software Ipopt [26] used in this project converges in case of infeasibility
to a point minimizing the constraint violation [27]. This point allows detecting the constraints
causing the infeasibility by their Lagrange multipliers: Since the constraint violation is mini-
mized, the Lagrange multipliers with the highest values correspond to the constraints causing
the infeasibility. In case that part of these constraints correspond to engineering constraints, that
can be violated temporarily, these constraints can be relaxed and added to the objective function
via a penalty function and a high cost M > 0. This method is known as Big-M method [25].
In the application of controlling a power system with FO, the output constraints summarized in
the set Z can usually be violated temporarily.

Let’s consider an example, where the lower limits of the ith and jth output constraints cause
the optimization problem (3.2) to be infeasible. The relaxed problem would result to

min
w

Φ(w, z) +M
[
(ez,min,i −Dz,iz)2 + (ez,min,j −Dz,jz)2

]
(3.8a)

s.t. z = h(w) (3.8b)
w ∈ W (3.8c)

z ∈ Z̃, (3.8d)

where ez,min,i is the lower limit of the corresponding ith output constraint, Dz,i is the ith
row vector of the constraint matrix Dz (see following section), and Z̃ is the relaxed set of
output constraints. Although the variable M has to be chosen high enough in order to minimize
constraint violations, in the FO set-up choosing a high quadratic cost on an output variable leads
to a reduction of the step size limit as we will see in section 3.3.1. This relation needs to be
taken into account in order to not destabilize the system by fixing the infeasibility.
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3.2 Controlling a Power System with Feedback Optimization

In this section, a FO controller as described above is applied to control a power system. As
the notation suggests, the function f in equation (3.1) is given by the dynamics of the power
system described in equation (2.21). The control inputs w represent the set point of the active
power production and the voltage set points of the generators in the power system, pset ∈ Rg

and vset ∈ Rg, respectively. This yields w =
[
pTset vTset

]T ∈ R2g. With that, the controllable
input variables correspond to the same variables as in static power system models. The output
is chosen to be the complex bus voltages u split up in their voltage magnitudes v and angles
θ: z =

[
vT θT

]T ∈ R2b. Although no voltage angle reference is enforced in the dynamic
simulation, these measured bus voltage angles are referenced to the same angle reference bus as
in the static power flow equations. Since this shifts all voltage angles by the same amount, the
power flow is not changed.

The steady state map h of the dynamic power system is given by the static power flow
equations F defined in equation (2.14)

h(w) =
{
z =

[
vT θT

]T ∈ R2b
∣∣∣ F (u(w),p(w), q, 0) = 0

}
, (3.9)

where the steady state system voltages u(w) are represented by their magnitude v and angle θ
as in identity (2.6a), and the total system imbalance is set to be ψ = 0, since in steady state no
imbalance is allowed. Therefore, the sensitivities ∇h can be computed using the static power
system equations as will be shown in the next section.

The objective function Φ can basically be defined arbitrarily, as long as it satisfies the as-
sumption of being continuously differentiable. In this thesis, quadratic objective functions of the
form

Φ(w, z) = wTQww + rTww + zTQzz + rTz z + c (3.10)

are considered. The input and output weight matrices and vectors Qw ∈ R2g×2g, Qz ∈ R2n×2n,
rw ∈ R2g, and rz ∈ R2n, respectively, can be defined to minimize the quadratic cost on input
or output variables, but also to minimize the difference from one variable to the other or from
one variable to a fixed value. The constant term c ∈ R in the above equation does not influence
the outcome of the optimization problem. It is, however, still included to obtain the cost of the
current state by evaluating the objective function.

Finally, the sets W and Z in the application of the power system are introduced. The input
variables w are constrained to stay within their operating limits ew,min, ew,max ∈ Rnw

W =
{
w ∈ R2g

∣∣∣ ew,min ≤Dww ≤ ew,max
}
, (3.11)

where Dw ∈ Rnw×2g, and nw is the number of input constraints. Similarly, the output variables
z are restricted to stay within their operating limits ez,min, ez,max defined by the matrix Dz ∈
Rnz×2b. Additionally, operating limits on the absolute value of branch currents |i(z)|, which
are a nonlinear function of the output variables (see equation (2.11) for the computation of the
branch current), are added to the set of admissible outputs Z:

Z =
{
z ∈ R2b

∣∣∣ ez,min ≤Dzz ≤ ez,max, imin ≤ |i(z)| ≤ imax
}
. (3.12)

The QP displayed in equations (3.6) for a general optimization problem is extended by one
additional constraint before applying it to the optimization of a power system. Because during
the iterations of the FO controller no imbalance of active power generation should be created,
the QP is restricted to redispatch active power between the generators∑

wi corresponding to pset,i

wi = 0. (3.13)
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Since the AGC of the power system would re-balance the system, not adding this additional
constraint to the QP would assumably still let the FO controller converge to the optimal solution.
However, it would slow down convergence, because the AGC needs to compensate for the created
imbalance. Therefore, by restricting the controller to redispatch active power by the constraint
(3.13), only the change in system losses needs to be balanced by the AGC and convergence can
easily be improved.

The interconnection of the dynamic power system model and the FO controller is depicted
in figure 3.1. The block-diagram shows how the FO controller controls the power system via vset
and pFO. Since there are different controllers acting on the active power generation (governor,
AGC and FO controller), pset computed by the FO controller can not directly be fed to the power
system. Instead, an auxiliary input, pFO, is introduced and controlled such that the mechanical
power input to the synchronous machines, pm, equals pset at each iteration of the FO controller

pFO = pset − pGOV − pAGC . (3.14)

3.2.1 Computation of Sensitivities

Although the FO approach presented in section 3.1 does not require knowledge of the full power
system model, some information on the model, namely the steady state sensitivities∇h ∈ R2b×2g,
is needed. The sensitivities represent the change of the output variables z when changing the
input variables w. With the above input and output variables, the steady state sensitivities are
the following

∇h =
∂h

∂w
=

[
∂v
∂pset

∂θ
∂pset

∂v
∂vset

∂θ
∂vset

]
. (3.15)

While the static power flow equations (2.14) can be solved for the output variables v and
θ, given the input variables pset and vset, there is no explicit form of the steady state map h,
that could be differentiated to yield the above derivatives. Since the input variables pset and
vset equal the variables p and v, respectively, of the static power flow equations for buses with a
generator, all the variables in the above definition of the sensitivities are variables of the static
power flow equations F (2.14). Therefore, the explicit function theorem can be applied to the
static power flow equations F to find the partial derivatives in the sensitivities [28].

The input and output variables of the static power flow equation F , wPF and zPF , respec-
tively, needed to apply the implicit function theorem to compute the partial derivatives, are
described in section 2.2. Fixed variables are considered as input variables and free variables
as output variables. The partial derivatives of interest are included in the following matrix of
partial derivatives and can be extracted to construct the sensitivities ∇h [28]

∂zPF
∂wPF

= −
[
∂F

∂zPF

]−1 ∂F

∂wPF
. (3.16)

The derivative of the power flow equations F (2.14) with respect to its variables u, p, q, and
ψ at an operating point u? is given by expanding the result from [29] by the distributed slack
approach as follows

∂F

∂(v,θ,p, q, ψ)
=

[(〈
diag

(
YPFu?

)〉
+ 〈diag (u?)〉N 〈YPF 〉

)
R(u?)

−Ib
0b

0b
−Ib

−π
0b×1

]
.

(3.17)
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In the above equation the following expressions have been used to simplify the notation

N =

[
Ib 0b
0b −Ib

]
, (3.18a)

〈A〉 =

[
Re (A) − Im (A)
Im (A) Re (A)

]
, (3.18b)

R(u) =

[
diag(cosθ) −diag(v)diag(sinθ)
diag(sinθ) diag(v)diag(cosθ)

]
. (3.18c)

Since the feedback of the controller brings some robustness against errors in the sensitivities
∇h, approximations thereof can be used. The presented computation of the sensitivities does
not consider any information of the dynamic system models, only the static admittance matrix
YPF is used. This may introduce some deviations from the real sensitivities. However, the FO
controller is robust enough against these discrepancies and does still converge, as will be shown
in chapter 4.

3.3 Tuning of the Feedback Optimization Controller

The presented FO controller can be tuned by the step size α and the metric G. Together they
determine by how much the controller is allowed to change the input signal from the current input
and thus how fast the controller is supposed to change the input signal from the current input
to the optimal input determined with the QP (3.6) in every direction. If the current state of the
system is not within the feasible area defined by the setsW and Z, the change of the input signal
towards a feasible one is not limited by the step size α. As described, the constraint fulfilment
of the output variables z, given the new input signal w, is checked by linearizing the expected
system response of applying w. This approximation can lead to temporary constraint violations
if the step size α allows for big enough steps to operating points, in which the linearization of
the system response is not accurate anymore.

Since the FO controller presented in the preceding sections is a discrete time controller, it
comes with an additional tuning factor in form of the sampling time τFO. The step size α and
metric G should be chosen in a way, that allows the underlying system to change from one
steady state to the next steady state within the duration of one sampling period τFO, before
the next control input is applied. Formally speaking, this requires the dynamics of the physical
system and the dynamics of the FO controller to act on sufficiently different timescales [13]. This
concept allows estimating the step size limit and is presented in the following subsection.

3.3.1 Timescale Separation through Step Size Limit

To estimate the step size limit αmax, the results of [13], where the step size limit of a continuous
time FO controller is derived, are applied to the FO setting used in this project. Although a dis-
crete time controller is used, the continuous time theory can be used to estimate a (conservative)
bound of the step size limit. For the sake of simplicity we fix the metric G to equal identity,
G(w) = Il. To determine the step size limit, it is necessary to find parameters that describe the
steepness of the objective function Φ and the convergence of the physical system.

We assume that there exists a parameter L > 0 such that∥∥H(w)T
(
∇Φ(w, g(x′))−∇Φ(w, g(x))

)∥∥ ≤ L∥∥x′ − x∥∥ (3.19)

for all x′,x ∈ Rn, and for all w ∈ Rm. The parameter L describes the steepness of the objective
function in the direction of z. Note, that the objective function Φ needs to have compact level
sets in the z dimension in order to find a L > 0 and therefore to apply the results of [13].
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To quantify the convergence of the physical system to a steady state, the concept of Lyapunov
functions is used. Since the physical system is assumed to be stable and there exists a steady
state map h, there exists a Lyapunov function W : Rn × Rl → R such that for the parameters
α, β, γ, and ζ > 0

α‖x− h(w)|2≤W (x,w) ≤ β‖x− h(w)‖2 (3.20a)

Ẇ (x,w) ≤ −γ‖x− h(w)‖2 (3.20b)
‖∇wW (x,w)‖≤ ζ‖x− h(w)‖. (3.20c)

Remark 3. The function f describing the dynamics of the power system used in this project
(2.21) is not continuous (see (2.31) or (2.34)). This contradicts [13, assumption II.1], which
requires f to be continuous. The assumption of f being continuous in [13] is used to ensure the
existence of a steady state map h via the implicit function theorem. Despite this assumption
not being satisfied, the results of [13] can be applied to this project, because f describes the
dynamics of a power system and the steady state map of a power system is given implicitly by
the power flow equations (2.14).

With the necessary knowledge about the continuity of the objective function Φ through L
and the convergence of the physical system through γ and ζ, the following theorem derived in [13]
quantifies the step size limit αmax:

Theorem 2. Given the parameters L, γ and ζ from the above equations, the step size limit αmax
of a FO controller of the form (3.5) with G = Il is given by

αmax =
γ

ζL
. (3.21)

Although the above theorem presents an easy way to compute the step size limit αmax, the
therefore needed parameters are hard to compute. The analytic computation of L is impeded
by the analytical computation of the Lipschitz constant Lg of g and the computation of γ and ζ
requires the knowledge of a Lyapunov function W , which is unknown for general power systems.
The needed parameters can, however, be estimated by either fitting the parameters using an
approximation of the Lyapunov function or by linearizing the nonlinear system (3.1). These two
approaches are presented in the following paragraphs.

Parameter Fitting

The parameter L of the objective function Φ can be estimated using a set of random states{
x(1), ... , x(ν)

}
and a set of random inputs

{
w(1), ... , w(ν)

}
to approximate the condition,

that the relation (3.19) needs to hold for all x′,x ∈ Rn, and for all w ∈ Rm. The estimate of L
is given by the most conservative option, that satisfies (3.19) for the set of random states and
inputs

L̂ = max
{
L(1,1,1), ... , L(ν,ν,ν)

}
, (3.22)

where the parameters L(i,j,k) for (i, j, k) ∈
{

[1, ν]3, i 6= j
}
are given by

L(i,j,k) =

∥∥H(w(k))
T
(
∇Φ(w(k), g(x(i)))−∇Φ(w(k), g(x(j)))

)∥∥∥∥x(i) − x(j)

∥∥ . (3.23)

Similarly, using an approximation of the Lyapunov function W̃ , the parameters γ and ζ can
be estimated

γ̂ = max
{
γ(1), ... , γ(ν)

}
(3.24a)

ζ̂ = max
{
ζ(1), ... , ζ(ν)

}
, (3.24b)
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where the parameters γ(i) and ζ(i) for i ∈ [1, ν] are given by

γ(i) = −
˙̃W (x(i),w(i))

‖x(i) − h(w(i))‖2
(3.25a)

ζ(i) =
‖∇wW̃ (x(i),w(i))‖
‖x(i) − h(w(i))‖

. (3.25b)

As approximation of the Lyapunov function W̃ , the distance between the current states x
and the steady states of that input w given by the steady state map ĥ is proposed

W̃ (x,w) =
∥∥∥x− ĥ(w)

∥∥∥ . (3.26)

The quality of this approximation of the real Lyapunov function W will be discussed in sec-
tion 4.2.3 together with the results of the step size limit estimate α̂max based on the methodology
presented in this paragraph.

Linearization

The second approach to estimate the parameters used to compute the step size limit, is to
approximate the nonlinear system (3.1) by a linearization thereof around an operating point
(x(i),w(i)) of the form

ẋ ≈ A(i)x+B(i)w (3.27a)

z ≈ C(i)x, (3.27b)

where the system matrices A(i) ∈ Rn×n, B(i) ∈ Rn×l and C(i) ∈ Rm×n are defined as follows

A(i) = ∇xf |x=x(i)
(3.28a)

B(i) = ∇wf |w=w(i)
(3.28b)

C(i) = ∇g|x=x(i)
. (3.28c)

By using the objective function shown in equation (3.10), the equation in (3.19) simplifies in
the case of the linearized system to

2‖∇hTQzC(i)‖·‖x′ − x‖≤ L(i)‖x′ − x‖. (3.29)

This yields the parameter L(i) = 2‖∇hTQzC(i)‖.
For a linear system as in equations (3.27),W (x,w) = ‖x− h(w)‖2P(i)

is a Lyapunov function,
where P(i) ∈ Sn+ satisfies the Lyapunov equation

AT
(i)P(i) + P(i)A(i) = −Q(i), (3.30)

for any Q(i) ∈ Sn+. The parameters γ(i) and ζ(i) for the operating point (x(i),w(i)) can be
computed analytically in the case of the linearized system and result to

γ(i) = λminQ(i)
(3.31a)

ζ(i) =
∥∥∥P(i)A

−1
(i)B(i)

∥∥∥ , (3.31b)

where λminQ(i)
is the smallest eigenvalue of Q(i).
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The estimate of the step size limit α̂max in the linearization method is given by the most con-
servative step size limit αmax,(i) of all considered operating points

{
(x(1),w(1)), ... , (x(ν),w(ν))

}
α̂max = min

{
αmax,(1), ... , αmax,(ν)

}
, (3.32)

where the step size limits of the operating points αmax,(i) are evaluated by plugging the param-
eters L(i), γ(i) and ζ(i) into equation (3.21).

Remark 4. This method of estimating the step size limit via a linearization of the nonlinear sys-
tem requires a solution of the Lyapunov equation (3.30). According to Lyapunov’s theorem [30],
there exists a unique P(i) ∈ Sn+ satisfying equation (3.30) for any Q(i) ∈ Sn+ if the linearized sys-
tem defined by the matrix A(i) is asymptotically stable. Further, the operating point (x(i),w(i))
is asymptotically stable, if the linearization A(i) of the nonlinear system (3.1) at that point is
asymptotically stable.

The used power system turns out to have a marginally stable mode corresponding to a
reference point for the rotor angles δ of the synchronous machines in the system, and therefore
there does not exist a unique P(i) ∈ Sn+ according to equation (3.30). Since the angle reference
for the rotor angles does not influence the system dynamics, this marginally stable mode can be
isolated and removed from A(i) by choosing an appropriate transform of coordinates.

Let’s define an angle reference corresponding to the average rotor angle δ̄. The new state
coordinates x̃ are then given by

x̃ = UTx, (3.33)

where U ∈ Rn×n is a unitary matrix given by the singular value decomposition of the positive
definite matrix Ω ∈ Rn×n+ , Ω = UΣUT . The matrix Ω is chosen such that the average rotor
angle δ̄ is subtracted from every rotor angle and all other states stay untouched when multiplying
Ω with the state vector x

Ω = In −UδUT
δ , (3.34)

where Uδ ∈ Rn is a vector containing 1/g at each entry corresponding to a state being a rotor
angle and 0 otherwise, with g being the number of synchronous machines in the power system
and thus rotor angles in the state vector.

This coordinate transform leads to the following transformed linearized system

˙̃x ≈ UTA(i)U︸ ︷︷ ︸
Ã(i)

x̃+UTB(i)︸ ︷︷ ︸
B̃(i)

w (3.35a)

z ≈ C(i)U︸ ︷︷ ︸
C̃(i)

x̃. (3.35b)

Due to the choice of coordinate transform, the new state vector x̃ will include a state corre-
sponding to the rotor angle reference with zero dynamics as shown in the following equation

Ã(i) =

[
0n×1

ã(i)

Â(i)

]
, (3.36)

where Â(i) ∈ Rn−1×n−1 and ã(i) ∈ R1×n−1.
To estimate the step size limit αmax with the linearization of the nonlinear system, this state

is omitted and thus the matrices Â(i), B̂(i), and Ĉ(i), where the rows and columns corresponding
to this state have been removed, are used in the computation of α̂max with the linearization
method.
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Chapter 4

Simulation Environment & Results

After elaborating the theoretical framework of controlling a power system including its dynamics
with a FO controller in the previous chapters, this chapter presents the simulation results. The
first section introduces the simulation set-up and the optimal power flow (OPF) controller used to
benchmark the FO controller. Section 4.2 then presents and discusses the main simulation results
by first showing the working principle of the FO controller at an economic dispatch example in
section 4.2.1, and then moving to emergency operation in section 4.2.2. Finally, the stability and
robustness of the FO controller is discussed in sections 4.2.3 and 4.2.4, respectively.

4.1 Simulation Environment

Before moving to the simulation results, the environment, in which the FO controller is tested, is
presented. The simulations are performed with the dynamic power system simulatorDynPSSimPy
introduced in chapter 2 on the IEEE 39 bus system. Therefore, the ODE (2.21) are integrated
with a temporal resolution of τI = 0.01 s. The IEEE 39 bus system is used commonly to im-
plement and test new concepts and was introduced in [31]. The test network comprises 34 lines,
12 transformers and 10 generators. Generator 1 at bus 39 thereof represents an aggregation
of a bigger power system with multiple generators, however this only changes the parameters
of the synchronous machine model. The system is operated at a voltage level of 345 kV and
a frequency of 60 Hz. The topology is shown in the single line diagram in figure 4.1 and the
technical data of the network is based on [17] and shown in appendix A. During the simulations,
power withdrawals of loads and power injections of uncontrolled generation are kept constant.

4.1.1 Feedback Optimization Controller

A FO controller as described in chapter 3 is used to control the test system. To prevent generators
from overloading, the active power generation set points pset are limited to be within 0 and 1 p.u.
The voltage set points of the synchronous machines vset are limited to values between 0.9 and
1.1 p.u. This leads to the following matrix Dw and operating limits ew,min and ew,max for the
input variables w, which define the set of admissible inputs W according to equation (3.11)

Dw = I2g, ew,min =

[
0g×1

0.9 · 1g×1

]
, ew,max =

[
1g×1

1.1 · 1g×1

]
. (4.1)

The output variables z are constrained to prevent the voltage from collapsing and transmis-
sion lines and transformers from overloading. Therefore the bus voltage magnitude v is limited
to the range of [0.9, 1.1] p.u. Instead of putting a limit on the current magnitudes of the branches
|iij |, the absolute value of the voltage magnitude and angle differences across transmission lines
and transformers are limited to |∆v| ≤ 0.08 and |∆θ| ≤ 0.3, respectively. This will bound the
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Figure 4.1: Single line diagram of IEEE 39 bus system [32]. Generator 1, located at bus 39 at
the very left of the diagram (this bus and generator are not labelled in the figure), represents an
aggregation of a bigger power system with multiple generators.
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currents on these elements. Furthermore, it reduces the nonlinear current limits to linear con-
straints and will ensure that the voltage angle and magnitude difference and thus also the current
limit on branches won’t be exceeded in case of the disconnection of a branch and the subsequent
re-closure thereof. The constraint matrix Dz and the bounds ez,min, ez,max are given as follows

Dz =

 Ig
∆b

∆b

 , ez,min =

0.9 · 1b×1

02nb×1

02nb×1

 , ez,max =

 1.1 · 1b×1

0.08 · 12nb×1

0.3 · 12nb×1

 , (4.2)

where ∆b =
[
∆′Tb −∆′Tb

]T is given by the matrix ∆′b ∈ {−1, 0, 1}nb×b and nb is the number of
branches. The entry of ∆′b in the ith column and jth row is 1 if the branch corresponding to the
ith column departs from bus j, −1 if it goes to bus j and 0 otherwise.

The FO controller is tuned with a step size of α = 3× 10−5, and the identity matrix as
metric G: G(w) = I2g. This allows to apply theorem 2 when looking at the stability of the FO
controller in section 4.2.3. The used cost function Φ is dependent of the application and will
therefore be introduced in the sections below. The FO controller is run with a sampling time of
τFO = 5 s. Unless stated other, the sensitivities ∇h are updated each time the control signal is
updated by using the current system voltages u as operating point u? (see section 3.2.1) and the
actual system topology. The optimization problem (3.6) is solved using the symbolic framework
CasADi [33] and the optimization software package Ipopt [26].

4.1.2 Optimal Power Flow Controller as a Benchmark

To compare the performance of the FO controller, an OPF controller is implemented as a bench-
mark. The control input of the OPF is obtained by solving the following optimization problem [4]

min
w,z

Φ(w, z) (4.3a)

s.t. F (u,p, q, 0) = 0 (4.3b)
w ∈ W (4.3c)
z ∈ Z. (4.3d)

Note, that the power flow equations F are enforced explicitly by adding them as constraints
to the above optimization problem (4.3b) and not using feedback of the physical system. The
variables u,p and q are given according to section 2.2.1 and the mismatch ψ is set to zero, since
the AGC should not need to act after the optimal control inputs w? are applied. Enforcing
the power flow equations explicitly makes the OPF less robust to model uncertainty and adds
computational complexity to the above optimization problem compared to the QP (3.6), that
needs to be solved in the FO process. To make the simulation results of the OPF controller
comparable to the ones of the FO controller, the same cost function Φ and sets W and Z are
used.

The input variables solving the optimization problem (4.3), w?, are computed using the
already introduced software packages CasADi [33] and Ipopt [26]. After computing them, the
input variables are applied to the dynamic power system model by ramping the active power
and voltage set points of the generators in nOPF steps from their current value to the computed
input values w?, where every τOPF seconds a step is taken. In this benchmark set-up, a ramp
with 10 steps nOPF = 10, and the same time step as for the FO controller τOPF = τFO is used
to keep the system stable. Recomputing the input values w? is necessary only when parameters
of the controller (cost function or the constraints), or the power system (topology, consumption,
or uncontrolled generation) are changed. Since the OPF described in equations (4.3) does not
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take into account any power system dynamics, the optimal control inputs w? will not consider
any dynamics. Consequently, there is no guarantee, that the constraints are satisfied during the
transients states when applying the control inputs w?, and no certificate for stability.

Remark 5. To ensure the N-1 criteria and that the operating limits are satisfied in each contin-
gency case, the OPF optimization problem (4.3) can be extended. For each contingency case
(i.e., each branch tripping), an additional set of power flow constraints, resulting from a power
system model without the branch considered as tripped in this contingency case, and output
constraints, for the output variables valid in this contingency case, can be added. The resulting
optimization problem is called security constrained OPF [4]. Since the additional security con-
straints are based on a power system model, the robustness against model inaccuracies would be
lost when implementing the same approach on a FO controller. Furthermore, the computational
effort would increase substantially. The result of a security constrained OPF can, however, be
approximated by adding security margins to the operating limits.

4.2 Simulation Results

4.2.1 Working Principles of Controllers

The above described FO and OPF controllers are first applied to an economic dispatch problem
to demonstrate their working principles. For that reason, the costs function Φ is chosen to put
a quadratic cost on the active power set point of each generator. The first half of the generators
(i.e., generators 1 - 5) are penalized with double the cost of the second half of the generators

Φ =
5∑
i=1

(
600 · p2

set,i + 200 · pset,i
)

+
10∑
i=6

(
300 · p2

set,i + 100 · pset,i
)
. (4.4)

No cost is put on the voltage set point and on the output variables z.
The active power generation set points of the generating units pset in the test system at the

starting point of the simulation are according to the starting point w0 as defined in table A.4.
The initial states x0 result from equation (2.22) based on w0. Both controllers are used to
minimize the objective function defined by the parameters in equation (4.4). The simulated
operating costs along with the theoretic steady state optimal operating cost computed by the
optimization problem (4.3) are shown in figure 4.2. The input and output variables of the FO and
OPF simulation can be seen in figure 4.4. The power system controlled by the OPF controller
is driven in the specified nOPF = 10 steps to the optimal operating point. Since assumptions 1
and 2 hold, and the step size α is chosen small enough (i.e., such that α < αmax is satisfied), the
power system controlled by the FO controller converges to a stable equilibrium, with a higher
operating cost. This difference in performance will be discussed in the following paragraphs.

The requirement of choosing a small enough step size α can be explained when looking at
figure 4.3. It shows the active power set points and generator speeds during the first seconds of the
economic dispatch simulation with the FO controller. The changes in active power generation set
point made by the FO controller at t = 10, 15, 20, ... s are clearly recognizable. In between these
steps, a slight change in the set points is visible. These smaller changes between the adjustments
of the FO controller are introduced by the governors and the AGC (primary and secondary
frequency control), which react to the small power imbalances and thus frequency deviations
created by the FO controller when redispatching the generation between the machines. The
steps at t = 10, 15, 20, ... s are taken after the transient triggered by the change in control signal
has diminished. Tuning the FO controller with a smaller sampling time or bigger step size, might
lead to a change in control signal before the system has settled and thus could turn the system
unstable.
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Figure 4.2: Objective function value of the economic dispatch simulation for the FO and OPF
controllers, the uncontrolled system and the steady state optimum. The vertical blue line marks
the starting point of the controllers.
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Figure 4.3: Upper panel: Active power generation set point during the first seconds of the
economic dispatch simulation with the FO controller. The vertical red line shows the operating
limit.
Lower panel: Generator speed during the first seconds of the economic dispatch simulation with
the FO controller. The orange line depicts the average system frequency ω̄.

The power system controlled by the OPF does violate certain constraints like the bus voltage
magnitude v and the bus voltage angle difference ∆θ during its transient, as can be seen in
figure 4.4b. Moreover, not only during transients but also at steady state, the voltage magnitude
constraint is violated. That results from the excitation system of type SEXS. This excitation
system does not have an integral part and therefore can give rise to a steady state error between
the voltage magnitude set points vset and the bus voltage magnitudes v at generator-buses.
This model imperfection is not considered in the power system model used to compute the OPF
control signal. Since the OPF controller has no feedback loop, the steady state error is not
recognized and therefore not corrected by the OPF controller. The FO controller, in contrast,
does correct for this model imperfection of the excitation system. If disturbances like a change
in load power or disconnecting a transmission line were introduced to the power system, the
constraint violation of the power system controlled by the OPF could even increase, whereas the
FO controller is expected to further on meet the operating constraints.

The constraint violations of the OPF controller is one reason for the power system controlled
by the OPF controller to result in a lower objective value than the power system controlled by
the FO controller. A further reason is the used sensitivities ∇h in the FO controller, which
are computed as described in section 3.2.1. As mentioned above, the excitation system of the
dynamic power system model does differ from an ideal excitation system as assumed in the
static power flow equations. Therefore the computed sensitivities have some inaccuracies. The
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mismatch between the used sensitivities and the real sensitivities leads the FO controller to
converge to a suboptimal operating point.

Compared to the FO controller, the OPF has the advantage of knowing the optimal operating
point a priori, which allows to reach (or get close to) this operating point faster (by taking the risk
of violating operation limits during the transient and the risk of destabilizing the power system
by applying a too big step-change in the control signal to the power system). In situations,
where an initialization of the controller is required (e.g., after activating the controller, changing
the objective function or constraints, or a big disturbance) like in this test case, this results in
a faster convergence of the OPF controller compared to the FO. This advantage of the OPF
controller could be exploited to speed up the convergence of the FO controller, if a model and
the corresponding data is available. A control input computed using the OPF controller could
be applied to the power system before controlling it with the FO controller. In doing so, the
initialization phase is speeded up, while ensuring that the operating constraints are satisfied
asymptotically. To reduce possible constraint violations before switching from OPF to FO,
which could occur due to model mismatch, security margins can be added to the operating limits
of the OPF controller.

When looking at the development of the variables of the power system controlled by the FO
controller in figure 4.4a, a discontinuity in their slope at t ≈ 300 s is visible (especially the voltage
set points vset). At this point, the controller has to change the direction, because the voltage
angle difference is hitting the limit. The control law of the FO controller given in equation (3.5)
chooses the next control signal by projecting the direction determined by G−1(w)∇Φ(w,h(w))
to a linearization of the feasible set. Therefore, the direction is adjusted when approaching
operating limits in order not to violate them.

4.2.2 Control in Emergency Operation

In this example, the controllers are applied to control the IEEE 39 bus system in an emergency
mode. Again, the same starting point (x0,w0) as in the previous example is used for this
simulation. At t = 10 s, the transmission line L23-24 connecting buses B23 and B24 trips. This
leads to increased current magnitudes on other branches. Depending on the thermal limits of the
remaining branches, they could trip as well, leading to cascading outages. We assume that no
branch trips due to overloading, but the increased currents put the power system in emergency
operation mode. This allows us to test the performance of the controllers. To reduce the currents
on the branches, the system operators aim to reconnect the tripped transmission line and turn
on the controller at t = 40 s, which allows reconnecting the line at t = 120 s. In order to enable
the reclosure of the transmission line and minimize transients after reclosure, the objective of
the controller is defined to reduce the voltage difference between buses B23 and B24 |u23−u24|2.
Therefore, a high cost is put on the voltage magnitude and voltage angle difference of these buses

Φ = 105 ·
[
(v23 − v24)2 + (θ23 − θ24)2

]
. (4.5)

No cost is put on the input variables w in this application.
The voltage difference between buses B23 and B24 over time is shown in figure 4.5 for both

controllers, the uncontrolled system, and the steady state optimum. The currents on the branches
for the controlled and uncontrolled systems are shown in figure 4.7, and the input and output
variables of the FO and OPF simulation can be seen in figure 4.6. During the simulation, the
power system model used to compute the sensitivities for the FO controller and the power flow
equations for the OPF controller is updated for both controllers after the line trips.

Both controllers succeed in reducing the voltage difference between buses B23 and B24, that
were connected by the tripped transmission line. With that also the loading on the highly loaded
equipment is reduced in reasonable time. Temporarily, the system controlled by the FO violates
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Figure 4.5: Voltage difference of buses B23 and B24 in the emergency operation simulation for
the FO and OPF controllers, the uncontrolled system and the steady state optimum. The vertical
blue lines mark the disconnection of line L23-24, the starting point of the controllers and the
reclosure of line L23-24, respectively.

the bus voltage magnitude constraints, as can be seen in figure 4.6a. Compared to the OPF
controller, the FO controller is able to reach a lower voltage difference. Due to the possible steady
state error of the bus voltage magnitude because of the excitation system SEXS, the excitation
system is again responsible for the performance difference of the controllers. Since the OPF
controller has no feedback loop, the steady state error of the bus voltage magnitudes hinders the
system to reach the operating point determined by the OPF by applying the computed optimal
set points to the generators. In contrast, the feedback and the integral part of the FO controller
allow correcting for this steady state error. In this example the FO controller is robust enough
to converge to the optimal solution, despite the inaccuracies in the sensitivities introduced by
the excitation system.

As can be seen in figure 4.6, the voltage angle difference constraint is violated the moment
the controllers are turned on at t = 40 s. Due to the definition of the control law of the FO
controller, it reacts to that by driving the system to a feasible operating point in one step. The
constraint violation allows the FO controller to take a step, that is not limited by the step size α.
Therefore, the voltage angle difference constraint reduces the duration, in which the system is
under high loading conditions. However, normal operating constraints might lead to infeasibility
during emergency operation and thus violate assumption 1. A possible reason for that could be
the loss of a highly loaded branch. After this element trips, the normal operating limits can not
be met anymore by any operating point, because the missing element leads to overloading of
other elements. A possible solution to infeasible problems is sketched in remark 2.

4.2.3 Stability of Feedback Optimization Controller

To ensure stability of the power system controlled by the FO controller, theorem 1, that ensures
convergence of the FO controller, together with the step size limit of theorem 2 are applied to
the emergency operation set-up described in the previous section. The step size limit αmax is
estimated using the parameter fitting and the linearization methods presented in section 3.3.1.

To estimate the step size limit αmax with the parameter fitting method, a set of random
states

{
x(1), ... , x(ν)

}
and random inputs

{
w(1), ... , w(ν)

}
is needed. This set is built by

sampling ν = 50 converging state-input-combinations from a multivariate normal distribution
with the initial state x0 and input w0 as mean vector, and a standard deviation of 0.01 for all
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Figure 4.7: Branch currents magnitudes in the emergency operation simulation. Line L23-24 is
highlighted in orange. The vertical blue lines mark the disconnection of line L23-24, the starting
point of the controllers and the reclosure of line L23-24, respectively.

states, 0.1 for the active power set points and 0.03 for the voltage set points

N

[x0

w0

]
,

0.012 · In
0.12 · Ig

0.032 · Ig

 . (4.6)

The set of operating points used for the linearization method is extracted by the above derived
sets of random states and inputs: (x(i),w(i)) for i = 1...50. Additionally to those random
operating points, the operating points during the simulation of the emergency operation example
are used to estimate the step size limit with the linearization method. The resulting step size
limit estimates α̂max are listed in table 4.1 and visualized in figure 4.8.

Method α̂max
Parameter fitting 4.894× 10−4

Linearization 4.013× 10−12

Linearization during operation 5.132× 10−13

Table 4.1: Step size limit estimates α̂max computed with the parameter fitting and linearization
method based on random operating points and with the linearization method based on the
operating points of the emergency operation example.

The step size limit estimate of the parameter fitting method is by multiple orders of magnitude
higher than the step size estimates of the linearization method. During the computation of the
estimates using the parameter fitting, only 24 out of the 50 random states and inputs could be
used to compute the Lyapunov coefficient estimates γ̂ and ζ̂. For the remaining 26 operating
points, the coefficient estimation returns invalid values, i.e., γ̂ ≤ 0 and/or ζ̂ ≤ 0, and therefore
these operating points can not be considered in the step size limit estimation. The Lyapunov
function approximation in equation (3.26) exhibits a success rate of 48% on the considered
sample. Due to this and the high step size limit estimate, there is evidence, that the used
approximation of the Lyapunov function does not capture all the necessary dynamics of the power
system. In particular, the slow dynamics do not seem to be captured in the used combination
of approximation of the Lyapunov function and random states and inputs. The step size limit
αmax is therefore estimated too high.
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Figure 4.8: Step size limit estimate α̂max in the emergency operation set-up. The straight black
and dark grey lines show the estimates based on the set of random states and inputs, while the
light grey line shows how the step size limit estimate changes based on the operating points
of the emergency operation simulation. The vertical blue lines mark the disconnection of line
L23-24, the starting point of the controller and the reclosure of line L23-24, respectively.

Estimating the step size limit with the linearization method results in much tighter bounds on
the step size. However, this methods comes with downsides as well. Besides the expected missing
rotor angle reference resulting in a marginal stable mode (see remark 4), at some operating points
additional marginal stable modes appear. They include the states of the internal voltages of the
synchronous machines, the excitation systems and the valve position of the governors. In general
these modes are stable, but due to numerical issues their real parts are close enough to zero to
impede the computation of a positive definite matrix P(i), which satisfies the Lyapunov equation
(3.30). Because these modes are marginally stable, they can be excluded from the Lyapunov
equation with the same method used to exclude the marginal stable mode corresponding to a
rotor angle reference. Besides that, the system matrix A(i) or rather the system matrix without
the marginally stable modes Â(i), which is used in the Lyapunov equation (3.30) and needs to be
inverted during the step size estimation (see equation (3.31b)), is ill-conditioned with a condition
number of up to 4.31× 1019. This could give rise to further numerical issues, which distort the
numerical value of the step size estimate.

Comparing the step size limit estimates of the linearization method based on the random
states and inputs with those computed during operation with real operating points leads to
additional insights. First, the random states and inputs apparently represent operating points
that allow for a bigger step size limit than the initial operating point (x0,w0). Therefore, the
estimated step size limit during operation is lower than the linearization with the random states
and inputs as long as the system is in the initial operating point (t < 10 s). Second, the
tripping transmission line leads to a significant reduction of the step size limit estimate. Part
of this reduction is due to the transient operating points, as can be seen in the time range of
10 ≤ t ≤ 50 s. As other part, the change in topology, presumably the reduced meshedness,
leads to a reduced step size limit estimate. This is underlined by the increase at the reclosure
of the transmission line at t = 120 s: Although the operating point changes only very little (see
figure 4.6a), the step size limit estimate increases. While the reduction due to the transients is
considered in theorem 2 through the Lyapunov parameters γ and ζ and therefore is supposed to
be considered in the estimates using the set of random states and inputs, the reduction due to
the change in topology is not considered in theorem 2.

To verify the estimated step size limits α̂max, they are tested on this simulation set-up. Since
we expect a dependence of the step size limit αmax on the sampling time of the controller τFO
and the theory used in the step size limit estimation is based on continuous time controllers,
the step sizes are tested with different sampling times τFO of the controller. The small sampling
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time τFO = 0.01 is added to represent fast sampling without big discretization steps. Conver-
gence of the simulation is summarized in table 4.2, where αlim is the maximum step size at the
corresponding sampling time for which the system converges in this set-up. For completeness,
besides the computed step size limit estimates, the so far used step size α = 3× 10−5 is listed
as well.

τFO
0.01 s 5 s

α

4.8× 10−4 – –
3.0× 10−5 – X
4.0× 10−12 X* X*

5.1× 10−13 X* X*

αlim 1.0× 10−8 7.0× 10−5

Table 4.2: Convergence test for the emergency operation simulation with different step sizes α
and sampling times of the FO controller τFO. αlim represents the maximum step size at the
given sampling time for which the system converges in this set-up.
* Theoretic convergence.

Because of the non-converging simulations with a step size of α = 4.8 × 10−4, which corre-
sponds to the limit estimated with the parameter fitting method, the assumption of not capturing
the necessary dynamics with this method can be confirmed. Convergence of the very conservative
step size limits returned by the linearization method can not be verified in simulations due to
the low step size causing numerical problems. Since the step size is lower than the maximum
step size corresponding to the same sampling time, convergence is guaranteed theoretically by
theorem 1. These results are marked by a star (*). The linearization method seems to capture
very slow dynamics, that are (at least in this example) not excited by the FO controller and lead
to a very low step size limit, or is distorted by numerical issues. The results in table 4.2 further
let us verify a dependence of the step size limit αmax on the sampling time of the discrete time
controller τFO. Recent work like [34] has started exploring FO with discrete time controllers on
sampled data and elaborates on its stability.

4.2.4 Robustness of Feedback Optimization Controller

Due to the feedback used in the FO controller, it is robust against some model inaccuracies.
This robustness allows the FO controller to converge to a stable operating point, even if the used
model information in form of the sensitivities ∇h do not exactly correspond to the real steady
state sensitivities. As we’ve seen in the economic dispatch example in section 4.2.1, inaccurate
sensitivities can cause the FO controller to converge to a suboptimal operating point. This
behavior has been described also in [35]. Furthermore, inaccuracies in the used sensitivities can
cause increased temporary constraint violations, because the linearized expected system response
used to check the output constraints in the QP (3.6) is less accurate. If the controller converges to
an operating point, asymptotically all constraints will be fulfilled despite inaccurate sensitivities.
However, the inaccuracies in output constraint checking can threaten stability of the system. To
correct for that, the step size α can be reduced, which leads to a trade-off between designing
the controller to converge as fast a possible with a step size close to the step size limit αmax or
robust against model inaccuracies.

Besides of the mismatch in sensitivities due to model inaccuracies (like the described issue
of the excitation system SEXS ), during emergency operation a robustness against sensitivities
computed based on an inaccurate topology is of interest, because the topology can change quickly
and unpredictably when the power system is in emergency operation mode in case of tripping
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equipment. In [14] a framework is presented to quantify model uncertainty and test the conver-
gence of a FO controller under these uncertainties. Since in this thesis a different FO controller
set-up is used (output constraints enforced by projection, see QP (3.6), whereas [14] uses penalty
functions), this framework cannot be adapted to the used FO controller. To show the robustness
of the FO controller against topology inaccuracies, the emergency operation example controlled
by the FO controller is simulated for a set of different sensitivities. These sensitivities are based
on the network topology with one missing transmission line, where for every missing transmission
line a simulation is run. The resulting voltage differences between buses B23 and B24 are shown
in figure 4.9.

0 20 40 60 80 100 120
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0.0

0.1

0.2

0.3
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.]

Absolute value of voltage difference buses B23 and B24

Actual topology
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Figure 4.9: Voltage differences of buses B23 and B24 in the emergency operation simulations
for the FO controller with different sensitivities. The simulation with the actual sensitivities is
highlighted in orange. The vertical blue lines mark the disconnection of line L23-24, the starting
point of the controller and the reclosure of line L23-24, respectively.

All sensitivities lead to a stable behavior of the FO controller. The more accurate sensitivities
allow the FO controller to converge to a better operating point. This can be seen at the line
highlighted in orange, which corresponds to the simulation run with sensitivities based on the
actual topology. The voltage difference of one simulation shows lower results in the first 20 s of
the controller (40 ≤ t ≤ 60 s). This is because inaccurate sensitivities can lead to a temporary
operating point, that violates some constraints and thus reaches a lower objective value. However,
this is only temporary, because the violation will be corrected.

Although there is no formal robustness guarantee, these simulation results show evidence,
that the FO controller is robust against sensitivities based on a topology, which is wrong by at
least one transmission line.
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Chapter 5

Conclusion

A FO controller to control a power system in emergency operation mode has been implemented
and tested against an OPF controller. Although the OPF controller with perfect model infor-
mation should theoretically lead to optimal operating points, model inaccuracies can lead the
OPF controller to suboptimal operating points and constraint violations. The FO controller, on
the contrary, succeeds in controlling the power system in emergency operation mode and drives
it to optimal or close to optimal operating points, where all posed constraints are fulfilled. Un-
fortunately, no practically useful stability certificate for the FO controller on a dynamic system
could be made because of two reasons. First, the stability bound needs to be estimated, and the
presented estimation methods either do not capture the necessary system dynamics and lead to
too big step size limits, or capture dynamics, that are not excited by the controller, which leads
to a too conservative limit. Secondly, the available theory on timescale separation does not take
into account model uncertainties, which will be most likely present in a real application, espe-
cially during emergency operation of a power system. Despite the missing stability certificate,
there is strong evidence that the presented FO controller is capable of controlling a power system
during emergency operation and in the presence of model uncertainties. FO hence provides the
necessary characteristics to facilitate emergency power system operation.

Since operational security is very important in applications like power system operation,
future research is suggested in deriving certificates for stability and robustness of FO controller.
The current available theory on computing the step size limit could be extended to account only
for system dynamics that are excited by the controller, and thus tighten the stability limit. This
might lead to a step size, which is dependent on the direction of the taken step (adjusting a
voltage set point, for example, triggers different dynamics, than redispatching power). To speed
up convergence of the FO controller, the step size limit further could be dependent on the current
operating point. As long as the current operating point is not close to any operating limit, the
step size could be increased, since there is no risk of the controller leaving the feasible region.
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Appendix A

Technical Data IEEE 39 Bus System

The technical data of the IEEE 39 bus test system as used in the simulations is based on [17]
and slightly adjusted to work with the changed power system models (see chapter 2) and satisfy
the operating constraintsW defined in equation (4.1). A single line diagram of the power system
is shown in figure 4.1. The system is operated at 345 kV and a nominal frequency of 60 Hz.
An overview of the buses with the bus types is given in table A.2. The technical data of the
transmission lines and transformers is given in tables A.3 and A.1, respectively. The parameters
of the synchronous machines, the corresponding governors, excitation systems, and power system
stabilizers are shown in tables A.4 - A.7. The AGC is tuned with the following parameters:
λ = 200, Kp = 0.001, Ki = 0.5 and αi = 0.1 ∀ i ∈ [0, 10] (see table 2.5 for a description of these
parameters).

ID From bus To bus rij [Ω] xij [Ω] tij tji
T2-30 B2 B30 0.000 21.544 0.976 1.000
T6-31 B6 B31 0.000 29.756 0.935 1.000
T10-32 B10 B32 0.000 23.805 0.935 1.000
T11-12 B11 B12 1.904 51.776 1.000 0.994
T13-12 B13 B12 1.904 51.776 1.000 0.994
T19-20 B19 B20 0.833 16.425 0.943 1.000
T19-33 B19 B33 0.833 16.902 0.935 1.000
T20-34 B20 B34 0.952 19.044 0.991 1.000
T22-35 B22 B35 0.000 17.021 0.976 1.000
T23-36 B23 B36 0.595 32.382 1.000 1.000
T25-37 B25 B37 0.714 27.614 0.976 1.000
T29-38 B29 B38 0.952 18.568 0.976 1.000

Table A.1: Technical data of the transformers in the IEEE 39 bus system: transformer resistance
rij and reactance xij and the voltage ratios tij and tji.

41



ID vn,i [kV] Bus type pL,i [MW] qL,i [MVar]
B1 345.0 PQ
B2 345.0 PQ
B3 345.0 PQ 322.0 2.4
B4 345.0 PQ 500.0 184.0
B5 345.0 PQ
B6 345.0 PQ
B7 345.0 PQ 233.8 84.0
B8 345.0 PQ 522.0 176.0
B9 345.0 PQ
B10 345.0 PQ
B11 345.0 PQ
B12 138.0 PQ 7.5 88.0
B13 345.0 PQ
B14 345.0 PQ
B15 345.0 PQ 320.0 153.0
B16 345.0 PQ 329.0 32.3
B17 345.0 PQ
B18 345.0 PQ 158.0 30.0
B19 345.0 PQ
B20 230.0 PQ 628.0 103.0
B21 345.0 PQ 274.0 115.0
B22 345.0 PQ
B23 345.0 PQ 247.5 84.6
B24 345.0 PQ 308.6 −92.2
B25 345.0 PQ 224.0 47.2
B26 345.0 PQ 139.0 17.0
B27 345.0 PQ 281.0 75.5
B28 345.0 PQ 206.0 27.6
B29 345.0 PQ 283.5 26.9
B30 16.5 PV
B31 16.5 Angle reference 9.2 4.6
B32 16.5 PV
B33 16.5 PV
B34 16.5 PV
B35 16.5 PV
B36 16.5 PV
B37 16.5 PV
B38 16.5 PV
B39 345.0 PV 1104.0 250.0

Table A.2: Overview of the buses in the IEEE 39 bus system: Bus nominal voltage vn,i, bus
type, active and reactive load power withdrawal pL,i and qL,i, respectively.
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ID From bus To bus Length [km] rij [Ω/km] xij [Ω/km] bshij [µS/km]
L1-2 B1 B2 163.064 0.026 0.300 3.600
L1-39 B1 B39 99.188 0.012 0.300 6.353
L2-3 B2 B3 59.909 0.026 0.300 3.607
L2-25 B2 B25 34.121 0.244 0.300 3.595
L3-4 B3 B4 84.508 0.018 0.300 2.201
L3-18 B3 B18 52.768 0.025 0.300 3.404
L4-5 B4 B5 50.784 0.019 0.300 2.220
L4-14 B4 B14 51.181 0.019 0.300 2.269
L5-6 B5 B6 10.316 0.023 0.300 3.535
L5-8 B5 B8 44.436 0.021 0.300 2.791
L6-7 B6 B7 36.501 0.020 0.300 2.601
L6-11 B6 B11 32.534 0.026 0.300 3.587
L7-8 B7 B8 18.251 0.026 0.300 3.591
L8-9 B8 B9 144.020 0.019 0.300 2.219
L9-39 B9 B39 99.188 0.012 0.300 10.165
L10-11 B10 B11 17.060 0.028 0.300 3.590
L10-13 B10 B13 17.060 0.028 0.300 3.590
L13-14 B13 B14 40.072 0.027 0.300 3.613
L14-15 B14 B15 86.095 0.025 0.300 3.572
L15-16 B15 B16 37.295 0.029 0.300 3.852
L16-17 B16 B17 35.311 0.024 0.300 3.193
L16-19 B16 B19 77.366 0.025 0.300 3.301
L16-21 B16 B21 53.561 0.018 0.300 3.997
L16-24 B16 B24 23.408 0.015 0.300 2.441
L17-18 B17 B18 32.534 0.026 0.300 3.406
L17-27 B17 B27 68.638 0.023 0.300 3.937
L21-22 B21 B22 55.545 0.017 0.300 3.880
L22-23 B22 B23 38.088 0.019 0.300 4.072
L23-24 B23 B24 138.863 0.019 0.300 2.184
L25-26 B25 B26 128.150 0.030 0.300 3.363
L26-27 B26 B27 58.322 0.029 0.300 3.452
L26-28 B26 B28 188.060 0.027 0.300 3.486
L26-29 B26 B29 247.969 0.027 0.300 3.486
L28-29 B28 B29 59.909 0.028 0.300 3.492

Table A.3: Technical data of the lines in the IEEE 39 bus system: line resistance rij and reactance
xij and the shunt susceptance of the line bshij along with the line length.
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ID Unit R Dt Vmin Vmax T1 [s] T2 [s] T3 [s]
GOV1 G1 0.050 0 0 1.000 0.200 1.000 2.000
GOV2 G2 0.050 0 0 1.000 0.200 1.000 2.000
GOV3 G3 0.050 0 0 1.000 0.200 1.000 2.000
GOV4 G4 0.050 0 0 1.000 0.200 1.000 2.000
GOV5 G5 0.050 0 0 1.000 0.200 1.000 2.000
GOV6 G6 0.050 0 0 1.000 0.200 1.000 2.000
GOV7 G7 0.050 0 0 1.000 0.200 1.000 2.000
GOV8 G8 0.050 0 0 1.000 0.200 1.000 2.000
GOV9 G9 0.050 0 0 1.000 0.200 1.000 2.000
GOV10 G10 0.050 0 0 1.000 0.200 1.000 2.000

Table A.5: Technical data of the governors in the IEEE 39 bus system, as described in table 2.2.

ID Unit K Ta [s] Tb [s] Te[s] Emin [p.u.] Emax [p.u.]
AVR1 G1 100.000 2.000 10.000 0.500 −3.000 3.000
AVR2 G2 100.000 2.000 10.000 0.500 −3.000 3.000
AVR3 G3 100.000 2.000 10.000 0.500 −3.000 3.000
AVR4 G4 100.000 2.000 10.000 0.500 −3.000 3.000
AVR5 G5 100.000 2.000 10.000 0.500 −3.000 3.000
AVR6 G6 100.000 2.000 10.000 0.500 −3.000 3.000
AVR7 G7 100.000 2.000 10.000 0.500 −3.000 3.000
AVR8 G8 100.000 2.000 10.000 0.500 −3.000 3.000
AVR9 G9 100.000 2.000 10.000 0.500 −3.000 3.000
AVR10 G10 100.000 2.000 10.000 0.500 −3.000 3.000

Table A.6: Technical data of the excitation systems in the IEEE 39 bus system, as described in
table 2.3.

ID Unit K T [s] T1 [s] T2 [s] T3 [s] T4 [s] Hlim [p.u.]
PSS1 G1 50.000 10.000 0.500 0.500 0.050 0.050 0.030
PSS2 G2 50.000 10.000 0.500 0.500 0.050 0.050 0.030
PSS3 G3 50.000 10.000 0.500 0.500 0.050 0.050 0.030
PSS4 G4 50.000 10.000 0.500 0.500 0.050 0.050 0.030
PSS5 G5 50.000 10.000 0.500 0.500 0.050 0.050 0.030
PSS6 G6 50.000 10.000 0.500 0.500 0.050 0.050 0.030
PSS7 G7 50.000 10.000 0.500 0.500 0.050 0.050 0.030
PSS8 G8 50.000 10.000 0.500 0.500 0.050 0.050 0.030
PSS9 G9 50.000 10.000 0.500 0.500 0.050 0.050 0.030
PSS10 G10 50.000 10.000 0.500 0.500 0.050 0.050 0.030

Table A.7: Technical data of the power system stabilizers in the IEEE 39 bus system, as described
in table 2.4.
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