
ETH Library

External validation of the PAR-
Risk Score to assess potentially
avoidable hospital readmission risk
in internal medicine patients

Journal Article

Author(s):
Higi, Lukas; Lisibach, Angela; Beeler, Patrick E.; Lutters, Monika; Blanc, Anne-Laure; Burden, Andrea ; Stämpfli, Dominik 

Publication date:
2021

Permanent link:
https://doi.org/10.3929/ethz-b-000518918

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
PLoS ONE 16(11), https://doi.org/10.1371/journal.pone.0259864

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0001-7082-8530
https://orcid.org/0000-0001-5293-134X
https://doi.org/10.3929/ethz-b-000518918
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1371/journal.pone.0259864
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


RESEARCH ARTICLE

External validation of the PAR-Risk Score to

assess potentially avoidable hospital

readmission risk in internal medicine patients

Lukas HigiID
1,2☯, Angela LisibachID

3,4,5☯, Patrick E. BeelerID
6, Monika LuttersID

3, Anne-

Laure BlancID
7, Andrea M. Burden8, Dominik StämpfliID
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Abstract

Background

Readmission prediction models have been developed and validated for targeted in-hospital

preventive interventions. We aimed to externally validate the Potentially Avoidable Read-

mission-Risk Score (PAR-Risk Score), a 12-items prediction model for internal medicine

patients with a convenient scoring system, for our local patient cohort.

Methods

A cohort study using electronic health record data from the internal medicine ward of a

Swiss tertiary teaching hospital was conducted. The individual PAR-Risk Score values were

calculated for each patient. Univariable logistic regression was used to predict potentially

avoidable readmissions (PARs), as identified by the SQLape algorithm. For additional anal-

yses, patients were stratified into low, medium, and high risk according to tertiles based on

the PAR-Risk Score. Statistical associations between predictor variables and PAR as out-

come were assessed using both univariable and multivariable logistic regression.

Results

The final dataset consisted of 5,985 patients. Of these, 340 patients (5.7%) experienced a

PAR. The overall PAR-Risk Score showed rather poor discriminatory power (C statistic

0.605, 95%-CI 0.575–0.635). When using stratified groups (low, medium, high), patients in

the high-risk group were at statistically significant higher odds (OR 2.63, 95%-CI 1.33–5.18)

of being readmitted within 30 days compared to low risk patients. Multivariable logistic

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0259864 November 23, 2021 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Higi L, Lisibach A, Beeler PE, Lutters M,

Blanc A-L, Burden AM, et al. (2021) External

validation of the PAR-Risk Score to assess

potentially avoidable hospital readmission risk in

internal medicine patients. PLoS ONE 16(11):

e0259864. https://doi.org/10.1371/journal.

pone.0259864

Editor: Gianluigi Savarese, Karolinska Institutet,

SWEDEN

Received: July 20, 2021

Accepted: October 27, 2021

Published: November 23, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0259864

Copyright: © 2021 Higi et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

https://orcid.org/0000-0002-9093-4178
https://orcid.org/0000-0001-8697-492X
https://orcid.org/0000-0002-6097-2480
https://orcid.org/0000-0001-7063-578X
https://orcid.org/0000-0002-2295-8290
https://orcid.org/0000-0001-5293-134X
https://doi.org/10.1371/journal.pone.0259864
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259864&domain=pdf&date_stamp=2021-11-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259864&domain=pdf&date_stamp=2021-11-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259864&domain=pdf&date_stamp=2021-11-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259864&domain=pdf&date_stamp=2021-11-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259864&domain=pdf&date_stamp=2021-11-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0259864&domain=pdf&date_stamp=2021-11-23
https://doi.org/10.1371/journal.pone.0259864
https://doi.org/10.1371/journal.pone.0259864
https://doi.org/10.1371/journal.pone.0259864
http://creativecommons.org/licenses/by/4.0/


regression identified previous admission within six months, anaemia, heart failure, and opi-

oids to be significantly associated with PAR in this patient cohort.

Conclusion

This external validation showed a limited overall performance of the PAR-Risk Score,

although higher scores were associated with an increased risk for PAR and patients in the

high-risk group were at significantly higher odds of being readmitted within 30 days. This

study highlights the importance of externally validating prediction models.

Introduction

Potentially avoidable readmissions (PAR) are unforeseen readmissions related to a previously

known affliction occurring within a specified time interval [1]. PAR-rates vary between 5 to

79% and are increasingly being used as benchmarks for quality of care, hospital outcomes, and

cost reduction measures [2,3]. For Switzerland, the rates vary between 3.8% to 5.6% and gener-

ally depend on the level of care the hospital provides [4]. Of the many reasons for hospital

readmissions investigated, adverse drug events have been shown to account for 13% of 30-day

readmissions to an academic hospital in the US. Of these, 93% were classified as preventable

and 49% were caused by inappropriate prescribing [5,6]. Interventions to reduce readmission

rates have been explored by focussing on improved discharge planning and reducing adverse

drug events, including patient education, telephone follow-up, home visits, and transition

coaching [5]. However, no multicomponent intervention program has yet brought consistent

evidence to sufficiently reduce readmission rates [5]. Furthermore, they are reported to be

time consuming and expensive [7].

To address these issues, readmission prediction models have been developed and validated

[7]. These models stratify patients according to their risk of readmission using readily available

electronic health care information to calculate a risk score early in the hospitalisation in order

to target interventions [8,9]. A recent systematic review on prediction models by Mahmoudi

et al. identified 41 studies reporting on prediction models. Of these, 17 predict the risk of read-

mission on all inpatients while the rest of the models focus on a specific patient group [7].

Only eight studies reported sensitivity and specificity, implementation in the electronic medi-

cal record system seemed rare, and no model had been externally validated [10].

In Switzerland, the national Striving for Quality Level and Analyzing of Patient Expenses

(SQLape) software [11] is being used to identify PAR within 30 days after discharge. The

underlying screening algorithm identifies unplanned readmissions to the same hospital that

are related to the initial diagnosis and occur within 30 days of hospital discharge with a speci-

ficity and sensitivity of 96% [1]. However, the screening algorithm of SQLape only works in

retrospect and, hence, cannot be used for targeted preventive interventions. In 2019, Blanc

et al. [12] published the internally validated Potentially Avoidable Readmissions Risk Score

(PAR-Risk Score), developed with a dataset of one tertiary university teaching hospital and

one regional hospital. The PAR-Risk Score is a 12-items prediction model, where the weights

of the regression coefficients were transposed to a simpler scoring system. The internal valida-

tion showed a C-statistic of 0.688 (95% CI 0.655 to 0.72), which is close to the models reviewed

by Mahmoudi et al. [7] and the already externally validated Swiss HOSPITAL score [13,14].

In this study, we aimed to provide the first external validation of the PAR-Risk Score using

data from an older internal medicine patient cohort of a Swiss tertiary teaching hospital.
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Methods

Study design and participants

This cohort study used data from hospitalisations of a 360-bed tertiary teaching hospital in

Baden, Switzerland [15] between December 2016 and November 2018. As in the development

study, we focused on internal medicine patients. The data were derived from routinely collected

electronic health records (EHR). The study included patients hospitalised for at least 48 hours and

aged 65 years and older, as selected for another study [16]. These dataset characteristics had not

been applied to the patient sample in the development study. We applied the exclusion criteria

according to the development phase of the model [12], namely: death before discharge, transfer to

another hospital, and non-Swiss residents. The study design is visualised in Fig 1.

We report this study in concordance with the Transparent Reporting of a multivariable pre-

diction model for Individual Prognosis Or Diagnosis (TRIPOD) statement [17].

Outcome

The outcome of interest was a 30-day potentially avoidable hospital readmission (PAR), as

identified by the SQLape algorithm.

Predictors

The PAR Risk Score assigns points to the following predictors: length of stay longer than

four days, admission in previous six months, anaemia, hypertension, hyperkalaemia, opi-

oid prescription during hospital stay, comorbidities such as heart failure, acute myocardial

infarction, chronic ischemic heart disease, diabetes with organ damage, cancer, and meta-

static carcinoma. The exact scoring system with the individual weights is presented in S1

Table. Comorbidities were defined using International Classification of Disease 10 (ICD-

Fig 1. Cohort design of the external validation of the PAR Risk Score.

https://doi.org/10.1371/journal.pone.0259864.g001
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10) codes, as extracted from the EHR, and categorised according to the supplement infor-

mation of the original publication [12]. For the comorbidity predictor anaemia only ICD-

10 codes were used, because haemoglobin values were not available in this dataset. Opioid

intake was defined as opioid drugs dispensed during the period of hospitalisation, as iden-

tified by the ATC-code N02A and its sub-levels. Medication prescription data was mapped

in a semi-automated process to identify non-standardized free-text entries as well. Hyper-

kalaemia was defined as serum potassium level of >5.5 mmol/L within the last seven days

of the hospitalisation.

Missing data

Within individual patients, the most recent serum potassium levels were carried forward.

When there was no value available at all, we assumed that those were not missing at random

(i.e., the patient had normal serum potassium levels). A sensitivity analysis was performed by

setting the hyperkalaemia variable for all patients with missing values to 1. We excluded

patients with missing information on dispensed drugs after having performed a sensitivity

analysis, as knowledge of opioid intake is needed for the PAR Risk Score. The sensitivity analy-

sis on the 94 excluded patients was performed by setting the opioid variable for all these

patients to either 0 or 1.

Statistical analyses

Patient characteristics of the cohort were reported as number and frequencies. We calculated

the raw PAR-Risk Score values for each patient as the sum of the predictor variables present at

time of discharge (S1 Table). The raw PAR-Risk Score values were used in a univariable logis-

tic regression to predict PARs within 30 days, as labelled as PAR case by the SQLape algorithm.

We calculated C statistics, Brier score, and the ‘le Cessie—van Houwelingen—Copas—Hosmer

unweighted sum of squares test for global goodness of fit’ as performance statistics of the uni-

variable logistic regression. Additionally, we visualised the calibration by plotting the observed

proportion at risk per PAR Risk Score point versus the predicted risk for each point weighted

by the respective number of participants.

To compare the influence of a single predictor variable on the outcome to those of the origi-

nal study, we analysed the unadjusted association between the single predictor variable and the

outcome PAR using univariable logistic regression. Analogously, a multivariable logistic

regression was performed to assess the independent association between individual predictors

and the outcome [18].

We additionally categorised the patients into the three risk groups: low, medium, and

high risk based on the raw PAR-Risk Score values using the original threshold levels of <3,

3–10, and >10, respectively. This grouping was redone with adapted threshold levels,

which were re-calculated by grouping the patients into tertiles based on the raw PAR-Risk

Score values of our patients, analogously to the development phase. Using the original as

well as the adapted threshold levels, we calculated the observed proportion at risk, the pre-

dicted risk (S4 Table), and odds ratios (ORs) for PAR. We calculated sensitivity, specific-

ity, positive predictive values, and negative predictive values with which the model

classifies patients into the different risk groups by comparing each group to the low risk

group.

All analyses were performed in R 3.6.1 [19] with the additional packages: tidyverse [20],

lubridate [21], rms [22], pROC [23], and caret [24]. The p-values calculated in this report

assume a significance level of .05.
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Ethics approval

The Swiss ethics committee approved the protocol for the study for which the data were origi-

nally extracted (EKNZ Project ID: 2018–01000). The committee also approved the amendment

for the study presented here. The data were extracted anonymously, informed patient consent

was not required.

Results

Out of 8,252 patients hospitalised between December 2016 to November 2018, we included

5,985 patients in our study by applying the defined exclusion criteria (Fig 2). Of the eligible

patients, 340 patients (5.7%) were identified as having experienced a PAR by the SQLape soft-

ware, whereas it was 562 (7.7%) in the derivation patient cohort [12]. Patient characteristics

are depicted in Table 1. The mean age of the patients was 79.7 (± 7.7) years with a mean of 16.9

(± 7.8) number of drugs of and a mean length of stay of 8.8 (± 6.5) days. The frequency of each

predictor of PAR and non-PAR patients is shown in S1 Fig. Due to missing data, we set the

PAR-Risk Score variable hyperkalaemia to 0 for 432 patients (7.2%). The 94 (1.5%) patients

who were excluded due to missing data on dispensed drugs showed an underrepresentation of

PAR cases with just one PAR case.

Model specification

The distribution of the raw PAR-Risk Score values across SQLape-defined PAR versus non-

PAR patients is presented in the supplement (S2 Fig). Unadjusted and adjusted associations

Fig 2. Dataset generation with applied exclusion criteria.

https://doi.org/10.1371/journal.pone.0259864.g002
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Table 1. Patient characteristics of the cohort.

Patient characteristics at hospital discharge n % Blanc et al. n (%)

Total number of patients 5,985 - 7,317 (-)

SQLape defined PAR cases 340 5.7 562 (7.7)

Age

65–75 years 4,071 68.0 1,555 (21.3)

�76 years 1,914 32.0 2,896 (39.6)

Male sex 2,808 46.9 3,993 (54.6)

Length of hospital stay:

�4 days 1,570 26.2 2,259 (30.9)

>4 days 4,415 73.8 5,058 (69.1)

Admission in previous 6 months 1,360 22.7 2,041 (27.9)

Opioids� 1,589 26.5 1,795 (24.5)

Number of drugs dispensed

<5 115 1.9 1,671 (22.8)

6 to 10 4,687 78.3 2,469 (33.7)

>10 1,183 19.8 3,177 (43.3)

Hyperkalaemia (K+ >5.5 mmol/L)� 16 0.3 685 (9)

Comorbidity

Acute myocardial infarction 275 4.6 1,048 (14.3)

Acute respiratory disease 981 16.4 1,260 (17.2)

AIDS 0 0.0 25 (0.3)

Anaemia 1,235 20.6 2,138 (29.2)

Arrhythmia 2,131 35.6 1,342 (18.3)

Cancer 629 10.5 762 (10.4)

Metastatic carcinoma 408 6.8 280 (3.8)

Cerebrovascular disease 917 15.3 268 (3.7)

COPD/asthma 776 13.0 1,043 (14.3)

Chronic ischemic heart disease 1,512 25.3 497 (6.8)

Cognitive troubles/dementia 741 12.4 201 (2.8)

Connective tissue disease 90 1.5 64 (0.9)

Diabetes with organ damage 467 7.8 152 (2.1)

Gastrointestinal ulcer 137 2.3 100 (1.4)

Hepatic cirrhosis 69 1.2 276 (3.8)

Heart failure 1,361 22.7 1,314 (18.0)

Hypertension 4,165 69.6 1,723 (23.6)

Infectious disease (except pneumonia and sepsis) 1,733 29.0 1,655 (22.6)

Intoxication or adverse drug reactions 87 1.5 918 (12.6)

Mental and behavioural disorders due to alcohol 238 4.0 639 (8.7)

Paraplegia/hemiplegia 197 3.3 84 (1.2)

Peripheral vascular disease 543 9.1 186 (2–5)

Pneumonia 619 10.3 1,353 (18.5)

Renal failure 1,461 24.4 1,678 (22.9)

Sepsis 189 3.2 542 (7.4)

Notes: SQLape = Striving for Quality Level and Analyzing of Patient Expenses software [11]; PAR = Potentially

avoidable readmissions; AIDS = Acquired immune deficiency syndrome; COPD = Chronic obstructive pulmonary

disease.

� = variables with missing values.

https://doi.org/10.1371/journal.pone.0259864.t001
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between each predictor variable and the outcome are provided in Table 2. Out of the 12 pre-

dictor variables only five were found to be significantly associated with PAR, as identified by

SQLape: previous admission within six months, length of hospital stay, anaemia, heart failure,

and opioids. Multivariable logistic regression identified the four predictor variables previous

admission within six months, anaemia, heart failure, and opioids to be significantly associated

with the outcome. Based on the tertiles of our patients, the adapted threshold levels for the

three risk categories low, medium, and high risk were PAR-Risk Score values of<12, 12 to 25,

and>25, respectively.

Model performance

The results of the univariable logistic regression of the raw PAR-Risk Score value on 30-days

PAR is presented in the supplement (S2 Table). The univariable regression analysis yielded a C

statistic of 0.605 (95% CI 0.575–0.635). The graph of the receiver-operating curve is provided

in the supplement (S3 Fig). The Brier score was 0.053, indicating decent accuracy. The calibra-

tion plot indicated a lack of fit (Fig 3), which was also supported by the goodness-of-fit test

with a p-value of<0.01. A summary of the goodness-of-fit test statistic is provided in the sup-

plement (S3 Table).

The sensitivity analysis on patients with missing serum potassium levels showed only small

changes in the C statistic: 0.600 (95% CI: 0.570–0.633) by setting hyperkalaemia to one. The

sensitivity analysis on the 94 excluded patients with missing content on dispensed medication

showed only small changes in the C statistic as well: 0.608 (95% CI: 0.579–0.638) by setting opi-

oids to zero, and 0.607 (95% CI 0.577–0.637) by setting opioids to one.

Table 3 shows the frequency of PAR and non-PAR patients and the association between the

odds of having a PAR given the threshold categories. When comparing medium and high risk

groups to low risk groups, patients were at higher odds of being hospitalised for the adapted

threshold levels. For the original threshold levels, only the high risk group was significantly at

higher odds of being hositalised.

Performance measures for original and adapted thresholds are presented in Table 4. Using

the original thresholds, the model classified patients into the high risk group with a sensitivity

Table 2. Unadjusted and adjusted associations between predictor and potentially avoidable readmission (PAR).

Predictor Non-PAR (n = 5645) PAR (n = 340) Univariable analysis Multivariable analysis

n % n % OR (95%-CI)�

Admission in previous 6 months 1,254 22.2 106 31.2 1.59 (1.25–2.01) 1.39 (1.08–1.77)

Length of hospital stay 4,146 73.4 269 79.1 1.37 (1.05–1.8) 1.08 (0.82–1.44)

Anaemia 1,134 20.1 101 29.7 1.68 (1.32–2.13) 1.45 (1.12–1.85)

Heart failure 1,256 22.2 105 30.9 1.56 (1.23–1.98) 1.41 (1.09–1.81)

Hypertension 3,919 69.4 246 72.4 1.15 (0.91–1.48) 1.1 (0.86–1.42)

Acute myocardial infarction 259 4.6 16 4.7 1.03 (0.59–1.67) 0.95 (0.53–1.59)

Chronic ischemic heart disease 1,420 25.2 92 27.1 1.1 (0.86–1.41) 1.04 (0.8–1.35)

Diabetes with organ damage 432 7.7 35 10.3 1.38 (0.95–1.96) 1.18 (0.8–1.69)

Cancer 584 10.3 45 13.2 1.32 (0.94–1.81) 1.08 (0.71–1.59)

Metastatic carcinoma 376 6.7 32 9.4 1.46 (0.98–2.09) 1.23 (0.76–1.94)

Opioids 1,466 26.0 123 36.2 1.62 (1.28–2.03) 1.4 (1.1–1.78)

Hyperkalaemia 14 0.2 2 0.6 2.38 (0.37–8.56) 1.75 (0.27–6.44)

Notes

� = The low risk group was used as reference for comparison with the medium and high risk groups. OR = Odds ratio; CI = Confidence interval.

https://doi.org/10.1371/journal.pone.0259864.t002
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of 95.8% and a specificity of 10.4% when comparing to the low risk groups. Re-calculating the

thresholds generally improved specificity (high to low: 53.4%) whilst reducing sensitivity (high
to low: 67.9%). The predicted probabilities for each risk group using the original and the new

threshold levels are presented in Table 5. For comparison, the observed proportion at risk and

predicted probabilities in the derivation and validation cohort of the original publication are

Fig 3. Calibration plot of the PAR Risk Score weighted by number of participants.

https://doi.org/10.1371/journal.pone.0259864.g003

Table 3. Contingency table and odds ratios describing the association between risk group and potentially avoidable readmission (PAR).

Threshold category Thresholds PAR (n = 340) Non-PAR (n = 5645) OR (95%-CI)�

Original threshold

Low <3 9 293 1

Medium 3–10 127 2826 1.46 (0.74–2.91)

High >10 204 2526 2.63 (1.33–5.18)

Adapted threshold

Low <12 72 2044 1

Medium 12–25 116 1818 1.81 (1.34–2.45)

High >25 152 1783 2.42 (1.82–3.23)

Notes

�The low risk group was used as reference for comparison with the medium and high risk groups. OR = Odds ratio; CI = Confidence interval.

https://doi.org/10.1371/journal.pone.0259864.t003
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presented as well. The predicted patients at risk was overpredicted, yet comparable to the

observed values for the low and medium risk groups, but twice as high for the high risk group

(predicted: 15.9%, observed: 7.5%).

Discussion

The aim of this study was to externally validate the PAR-Risk Score using retrospective data

from a Swiss tertiary teaching hospital. Within this dataset, 340 patients (5.7%) were labelled

as having experienced a PAR by the SQLape algorithm. For this dataset, we calculated the C

statistic of the PAR-Risk Score to be 0.605, which was reported to be higher for the internal val-

idation (0.687) [12]. The difference in the Brier score, indicating better accuracy in our dataset

(Brier score: 0.053 versus 0.064), may be biased by the low number of patients with the out-

come PAR [25]. The four predictor variables admission in previous 6 months, anaemia, heart

failure, and opioids, showed significant associations with PAR in the multivariable analysis. Of

these, anaemia, heart failure, and opioids showed a stronger association in our dataset than in

the one used for the internal validation. When using the PAR-Risk Score to categorise the

patients into three risk groups (low, medium, high) according to the original thresholds (<3,

Table 4. Performance measures with which the model classifies patients into the different risk groups.

Low vs medium Low vs high
Original threshold

Sensitivity (%) 93.4 95.8

Specificity (%) 9.4 10.4

Positive Predictive Value (%) 4.3 7.5

Negative Predictive Value (%) 97.0 97.0

Adapted threshold

Sensitivity (%) 61.7 67.9

Specificity (%) 52.9 53.4

Positive Predictive Value (%) 6.0 7.9

Negative Predictive Value (%) 96.6 96.6

https://doi.org/10.1371/journal.pone.0259864.t004

Table 5. Observed versus predicted risk for potentially avoidable readmission (PAR).

Risk group Observed proportion at risk (%) Mean predicted risk (%)

External validation

Original threshold Low 3.0 3.3

Medium 4.3 5.7

High 7.5 15.9

Adapted threshold Low 3.4 4.7

Medium 6.0 8.0

High 7.9 18.6

Original publication [12]

Derivation cohort Low 2.6 3.1

Medium 5.2 5.0

High 12.9 13.1

Validation cohort Low 2.4 3.5

Medium 5.7 5.7

High 13.1 13.9

https://doi.org/10.1371/journal.pone.0259864.t005
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3–10, and>10), patients in the high risk group were at statistically significant higher odds

(2.63, 95% CI 1.33–5.18) of being readmitted within 30 days compared to low risk patients.

We identified that having an admission in previous 6 months, anaemia, heart failure, and

opioids as predictor variables from the PAR-Risk Score that had a significant association with

PAR in our dataset. These variables are also part of other hospital readmission models [26–28].

Administrative variables such as previous admission to the hospital and length of stay were

found to be frequently associated with hospital readmission [7,8]. Length of stay was not sig-

nificantly associated with PAR in our study, but this result may have been influenced by

dichotomising the variable (i.e., length of stay longer than four days or not). Heart failure as

predictor variable has been extensively studied and is often reported as a risk factor for read-

mission [5,7,8,27], which was again confirmed for our cohort of patients. In contrary, anaemia

is less frequently reported as risk factor for readmission, but included as predictor in some

studies [7,29]. Anaemia has been shown to be associated with mortality in patients with

chronic heart failure [30]. Opioid use is associated with medication-related harm in elderly

patients, is a well-known cause for adverse drug events, and is linked to readmission

[26,31,32]. This was true for our cohort of patients as well.

Variables included in readmission risk prediction generally include some mix of medical

comorbidity data and prior use of medical services [8], with the final model depending on

local characteristics and dataset limitations. Illness severity, overall health and functioning,

and social determinants of health are frequently disregarded [8], with Herrin et al. showing

that readmissions occurring after seven days are associated with non-hospital factors such as

geodemographic characteristics and community-related factors [33]. Illness severity, overall

health and functioning, and social determinants may be poorly accessible from administrative

hospital data. Chin et al. were able to demonstrate that the reason for readmission due to hos-

pital-level quality rapidly declined within the first seven days after discharge, meaning that

readmissions after this time period are more susceptible to geodemographic characteristics

reflecting social and community-related factors. This puts the 30-day readmission rate as out-

come into question [34]. In Switzerland, a readmission of 18 days is important for the hospi-

tal’s economical management. Therefore, prediction models considering non-hospital factors

and reducing the readmission definition of 30 to 18 days might be more meaningful, and clini-

cally and economically useful.

We assume that overall prediction accuracy would improve when accounting for the low

incidence of PARs in the dataset during the model development stage. With the original

thresholds, the model achieved a sensitivity of 95.8% and a specificity of just 10.4% to classify

patients into the high rather than the low risk group. Adapting the thresholds influenced this

ratio but did not markedly affect positive and negative predictive values. In regression-based

prediction models, an imbalanced dataset will bias the prediction, leading to high accuracy for

the majority group, while the minority group will show poor accuracy [35]. Possible tech-

niques to account for class imbalance are basic resampling techniques (e.g., random over-/

undersampling) or more sophisticated techniques such as the synthetic minority oversampling

technique (SMOTE) [36].

The HOSPITAL score is another risk prediction model distinguishing low, intermediate,
and high risk groups for 30-days PAR, which was derived from 10,731 discharges [13]. The

model includes the predictive variables haemoglobin (<12 g/dL), discharge from an oncology

service, sodium level (< 135 mEql/L), procedure during the index admission (�1), index type

of admission (emergency admission as opposed to elective), number of admissions during the

last 12 months (0–1, 2–5, >5), and length of stay (�5 days). In its external validation, compris-

ing 117,056 patients from 9 hospitals and 4 countries, the HOSPITAL score showed a discrimi-

natory power of 0.72 (C statistic, 95% CI 0.72–0.72) and a Brier score of 0.08 [14]. In the data
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subset of Switzerland, comprising 8,971 patients with 524 SQLape-identified PARs (5.8%), the

score showed a C statistic of 0.68.

Limitations

Our external validation was conducted in older patients than in the development study, and

had a required hospitalisation stay longer than 48 hours. This was a limitation of the available

data and could have potentially influenced the model’s performance. However, the main risk

group for rehospitalisation are older patients [37], and predictive models need to perform for

these patients. Based on clinical considerations, we decided against using imputation tech-

niques for missing potassium values and information on dispensed drugs. If irregularities of

potassium levels were to be expected, appropriate lab work would have been ordered. To inves-

tigate the impact of our considerations, we performed a sensitivity analysis, only showing

small changes in the C statistic. No documented medication dispensing is an unlikely scenario

for hospitalised patients over 65 years of age, suggesting incorrect data entry. We, hence,

decided on excluding these 94 patients. Sensitivity analyses again confirmed the low impact of

this decision on the model’s performance. Another necessary deviation from the development

phase was the unavailability of haemoglobin values in our dataset, which limited the definition

of anaemia to the concerned ICD-codes [38]. This may have resulted in an underestimation of

the prevalence of anaemia in our cohort as compared to the development phase (20.6% vs.

29.2%). Presence of anaemia, however, only assigns 2 points to the total PAR-Risk Score. We

believe that adaptations of published prediction models to the local characteristics are fre-

quently necessary. An additional limitation is that SQLape only identifies patients with

unplanned readmissions to the same hospital. Hence, there is a possibility for misclassifying

patients that went to another hospital for their readmission.

Strengths

The strengths of this study stem from the decision to attempt a replication of the development

for the model’s external validation whilst simultaneously investigating the individual predictor

variables rather than just the finished model. Staying as close to the development of the model

as possible enabled statements about its validity and generalisability. Investigating the individ-

ual and combined impact of the predictor variables allowed for insights into the robustness of

the predictors for future prediction models on PAR. This study additionally highlights the

importance of externally validating prediction models by using a dataset derived from the

cohort for which the model is intended to be applied to.

Conclusion

In this external validation of the PAR-Risk Score in an internal medicine patient cohort of a

360-bed hospital and a mean age of 79.7 years, the model’s overall performance was limited.

Whilst higher scores were associated with an increased risk for PAR and patients in the high-

risk group showed a statistically significant association with a 30-day readmission, the

achieved C statistic as measure of discriminatory power was poor. This study confirms previ-

ous admission, length of stay, heart failure, and opioid use as potentially generalisable predic-

tor variables of PAR. This study additionally displays the necessity of repeating the validation

of published models with a local dataset prior to their use.
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