
ETH Library

MPC-Based Force Control for a
Dynamically Stable Robot

Master Thesis

Author(s):
Fäh, Kevin

Publication date:
2020-09-09

Permanent link:
https://doi.org/10.3929/ethz-b-000521579

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000521579
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Prof. Dr. Marco Hutter

Master Thesis

Supervised by: Author:
Maria Vittoria Minniti Kevin Fäh
Ruben Grandia

MPC-Based Force Control
for a Dynamically Stable

Robot

Spring Term 2020

i

ii

Contents

Acknowledgment v

Abstract vii

Symbols ix

1 Introduction 1
1.1 Thesis Introduction and Overview 1
1.2 Research in Robot-Environment Interaction Control 3

2 System 5
2.1 System Description . 5
2.2 Optimal Control for Switched Systems (OCS2) 6
2.3 System Model and MPC OCS2 Formulation 6
2.4 System Summary . 9

3 Control 11
3.1 Control Task . 11
3.2 Assumptions . 11

3.2.1 Environment Model Along the Trajectory 12
3.3 Trajectory Generation . 13

3.3.1 Time-Optimal Trajectory Algorithm 13
3.4 Impedance Control . 15

3.4.1 Stability Analysis . 16
3.5 Model Identification Adaptive Control (MIAC) 18

3.5.1 Gazebo Force Sensor . 18
3.5.2 Disturbance Observer (DOB) 18
3.5.3 Recursive Least Squares (RLS) 19
3.5.4 MIAC and MPC Control . 21

3.6 Model Reference Adaptive Control (MRAC) 23
3.6.1 MRAC Controller Synthesis 23
3.6.2 MRAC and MPC Control . 25

3.7 Combining MIAC and MRAC . 26
3.7.1 Combined Control with MIAC and MRAC 26
3.7.2 Combined Adaption with MIAC and MRAC 27

3.8 Control Summary . 28

4 Object Lifting Task 29
4.1 Linear Task Space Trajectory . 29
4.2 Simulation Results . 29
4.3 Hardware Results . 35
4.4 Object Lifting Task Conclusion . 39

iii

5 Door Opening Task 43
5.1 Door Opening Trajectory . 43

5.1.1 Stiffness and Damping Matrix Trajectory 44
5.2 Online Circle Estimation . 44
5.3 Door Model . 46
5.4 MPC Cost for the Door Opening . 48
5.5 Simulation Results . 49
5.6 Hardware Results . 56
5.7 Door Opening Task Conclusion . 62

6 Conclusion and Outlook 65
6.1 Summary and Conclusion . 65
6.2 Outlook . 67

Bibliography 70

Acknowledgment

I want to thank Prof. Dr. Marco Hutter, head of the Robotics Systems Lab at ETH
Zurich, for the possibility to write this master thesis about the ballbot with the
innovative 4-DOF DynaArm and a Robotiq gripper. The possibility to developed
and test control and estimation algorithms on a real system of this complexity is
a great experience. I highly enjoyed the collaboration with my supervisors Maria
Vittoria Minniti and Ruben Grandia. Our weekly meetings and their good input
helped me to quickly find the missing aspects in our chosen methods. At the same
time, they guided me with the integration of our methods into the complex code
basis. I also want to thank Maria Vittoria for taking time to conduct the hardware
experiments with me.

v

Abstract

In this thesis, control methods are investigated that enable a stable and precise
robot-environment interaction. Robot-environment interaction control is an impor-
tant aspect of mobile robotics, since these systems should assist humans during tasks
or handle their navigation through unknown environments autonomously. Modern
robotics systems use optimal torque control to achieve energy efficient control so-
lutions but also to define and command interaction forces between the robot and
the environment. Model Predictive Control (MPC) is the state of the art method
to solve such a control problem in an optimal way including constraints on the
state and the input. However, a precise model of the robot is needed to have a
good performance and as soon as unmodelled dynamics are acting on the robot,
the MPC may fail or perform undesirably. We present different interaction con-
trol approaches to deal with the unknown environment dynamics while having an
MPC-based force controller as the core component. These methods are simulated
and tested on a dynamically stable ballbot with a 4-DOF robot arm and a Robotiq
gripper attached. We test the interaction controllers on the application cases of the
door opening and the lifting of objects of unknown mass which are both navigated
precisely by following a target trajectory.

vii

Symbols

Symbols

q joint position

τ torque

x position

ẋ velocity

ẍ acceleration

λee end effector force

Jee end effector jacobian in world frame

m mass

d damping

k spring stiffness

fs static force

vn unit vector along the task trajectory

Acronyms and Abbreviations

COM Center of Mass

DOB Disturbance Observer

EKF Extended Kalman Filter

ETH Eidgenössische Technische Hochschule

LTI Linear Time-Invariant

MIAC Model Identification Adaptive Control

MPC Model Predictive Control

MRAC Model Reference Adaptive Control

OCS2 Optimal Control for Switched Systems

PVT Position Velocity Time

RLS Recursive Least Squares

RMSE Root Mean Square Error

TCP Tool Center Point

ix

Chapter 1

Introduction

1.1 Thesis Introduction and Overview

This thesis deals with Model Predictive Control (MPC)-based force control meth-
ods to achieve stable and precise robot-environment interaction tasks. Research
in this field is of current interest as modern mobile robots should take over tasks
while being in interaction with unknown environments such as the turning of valves
and pushing of buttons in industrial applications or the assisted lifting of unknown
objects and the autonomous opening of doors in service and inspection tasks. The
necessity of direct or indirect force control schemes as described by Siciliano et al.
[1], Natale [2] and Vukobratovic et al. [3] for such tasks is well known to limit and
define the interaction forces to avoid damage on the environment or the robot. In
direct force control, a reference force trajectory is tracked using force feedback from
an estimator or sensor, while in indirect force control an impedance model is used
that defines the relation between the commanded force and the position, velocity
and acceleration tracking errors. These methods can be combined and extended
with motion controllers, leading to hybrid controller as presented by Bodie et al.
[4].
A state of the art control method for the locomotion and navigation of mobile
robots such as the legged robot ANYmal and the ballbot is MPC since it allows
to deal with constraints such as the robot dynamics or joint limits and actuator
torque constraints by minimizing the cost function of an optimal control problem in
a receding horizon fashion. Also the inverse kinematics problem is solved implicitly
by adding task space position and orientation cost terms to the control formulation.
An important aspect of an MPC solver used for mobile robotics is its capability to
allow the online switching between subsystems, such as the change between cost
functions, equality and inequality constraints without losing feasibility. This allows
the robot to adapt the optimal control problem formulation dependent on the cur-
rent task (e.g. force vs position control). Farshidian et al. [5], [6] and [7] developed
the optimal control for switched systems (OCS2) toolbox which allows to solve an
optimal control problem in a receding horizon fashion while switching the subsys-
tem based on a sequential linear quadratic algorithm. We will use this toolbox in
our work and discuss it in more detail in section 2.2.
A key point that guarantees stability and high performance of the MPC is to have
a very good model of the real system. In the constraint optimal control formulation
this affects the robot dynamics equation which is an equality constraint. A good
approximation of the robot model is generally easy to acquire through CAD data.
However, during contact with an unknown environment there will be a large model
mismatch since additional forces will act on the robot.

1

2

In this work we are looking for general control strategies to enhance the MPC frame-
work to deal with these unmodelled interaction dynamics. To compare and test the
general applicability of the interaction controllers that are presented in this thesis,
we apply them on the door opening and object lifting tasks where our goal is to
open a door and lift objects of unknown mass. The interaction controller should
make it possible to follow a desired trajectories stably and precisely while being in
contact with an unknown environment.
We work with the ballbot visible in figure 1.1 which is a robot balancing on a ball
with three actuators. The robot was enhanced with an additional 4-DOF robot
arm, the DynaArm, on top. We use a Robotiq 2F-85 gripper at the end of the
DynaArm for the interaction tasks. In [8] Minniti et al. have already implemented
the OCS2 framework for the ballbot with a different arm and demonstrated that
this dynamically stable robot can only remain stable with a whole-body controller
that optimizes the ball and arm actuator torques at the same time, considering the
full robot model.

Figure 1.1: The ballbot with the 4-DOF DynaArm and a Robotiq-2F-85 gripper

Our work consists of the following parts: In section 1.2 we review related literature
in robot-environment interaction control. In chapter 2 we explain the motivation of
using a ballbot and give more insights to its hardware composition in section 2.1.
In section 2.2 we explain how we use the OCS2 toolbox for our control problem. In
chapter 3 we first present the assumptions in section 3.2 based on which we derived
the impedance control approach in 3.4, model identification adaptive control method
in 3.5, the model reference adaptive control method in 3.6 and combinations of the

3

adaptive controllers in 3.7. These controllers are tested in simulation and on the
real system on the application cases of the object lifting task in chapter 4 and the
opening of a door in chapter 5. In chapter 6 we summarize our results and give an
outlook for further research and improvements.

1.2 Research in Robot-Environment Interaction Con-
trol

This section refers to current research results in robot-environment interaction con-
trol methods applied on mobile robots such as humanoids, quadrupeds and drones.
Some of the following papers demonstrate their controller also on the door opening
application task. We will summarize their methods and point out their advantages
and disadvantages at the end of the section and also evaluate their usability for a
whole-body MPC controller and our system.

The opening of a hinged door using MPC was addressed by Lee et al. [9] using a
unmanned aerial vehicle with an attached 4-DOF robotics arm. In their approach
they enhanced the state space of the system to include the model of the door into
the system dynamics of the MPC controller. Therefore, they estimated the angle of
the door based on the current end effector position which is valid if the end effector
is in contact with the door at the expected point. The optimized position, velocity
and force policy of the solver are then used as a reference trajectory for a distur-
bance observer based controller. The advantage of including the door model into
the MPC solver is that collision avoidance constraints can be included and that the
solution is optimal for the coupled dynamics between the door and the robot. The
main disadvantage of this approach is that including the door dynamics demands
a good estimate of the door mass and inertia and possibly static friction, damping
and spring stiffness behavior which is further described in section 5.3 of the door
opening task. In the work of Lee et al [9], the door was premodeled using a weight
measurement and the known door dimensions. Therefore, effects like static friction
and damping were not considered in the door model and a strong premodelling was
demanded.

The door opening application case using indirect force control on a mobile plat-
form was also described by Lee et al. [10] who opened a door with the compliant
humanoid robot (CoMan) in a semi autonomous way. They used a decentralized
impedance control approach on joint level with a stiffness matrix that can be com-
puted from a task space stiffness matrix designed in the door frame. This allows to
formulate a higher stiffness in the direction of the door path and more compliance
in radial direction of the door to avoid high contact forces. The mapping of the task
space stiffness to the joint space stiffness is described by the Jacobian from the door
hinge frame to the door handle frame. Since the mapping leads to a non-diagonal
stiffness matrix on joint level, they use an optimization approach to hold the control
of the individual joints independently. For their approach the control of the upper
body is separated from the control of the legs and thus not using the full potential
of a whole-body controller.

In the paper of Bellicoso et al. [11], the door opening task is addressed with the four-
legged mobile robot ANYmal. The locomotion planning is based on a whole-body
center of mass optimization to guarantee stability of the platform. The individual
control tasks are optimized using a hierarchical optimization based on quadratic
programming. This approach allows for prioritising certain tasks over others and to

4

include constraints dependent on e.g. contact which is important for the stance of
the quadruped. The door opening was done using direct force control by tracking
desired forces at the end effector. The forces are calculated depending on the current
door angle and the difference between desired and actual velocity of the end effec-
tor. To compute the current door angle the Taubin circle fit method was applied.
Bellicoso et al. regard direct force control as a safe method to interact with environ-
ments since it omits controller dynamics (e.g. from an impedance controller) that
have to be taken care of for the stability of the coupled system. However, the gener-
ation of suitable force trajectories is not trivial without a model of the environment.

Bodie et al. [12] describe two control approaches using active interaction force con-
trol for a drone for contact-based inspection tasks. One method referred to as axis
selective impedance control solves the inverse dynamics equation for a desired sys-
tem mechanical impedance based on an estimate of the interaction wrench. This
controller allows to move into collision in a stable manner. Since they observed lim-
itations regarding the exact location and precision of the interaction force estimated
by the external wrench estimator, they derived a second approach the intentional
interaction controller, which uses a force sensor. This approach uses direct force
control if the confidence close to the surface is high enough and is combined with
the impedance controller. The force applied to the surface is chosen by the user
depending on the task.

At the Hannover Fair 2013, Leidner et al. [13] presented the window cleaning task
with the mobile robot Justin. The task was addressed from a higher-level point
of view, including reasoning about how the robot should locate itself to lift up the
cleaning tool as well as planning how to move to the window and locate itself for the
cleaning task. Action libraries were used that stored all information about a task
depending on the tool that is in application. In this case the cleaning tool contains
information about its dimensions, the weight for the lifting and dynamic motion as
well as the usage. To clean the window a cartesian force controller with contact
stiffness was used that was derived from an attractive potential. Target force and
contact stiffness also belong to the action library of the cleaning tool.

All these papers inspired us in finding a control approach that can deal with follow-
ing trajectories while being in contact with an unknown environment. Regarding
that the core controller in our approach will be an MPC, the setups of Lee et al.
[9] and Bellicoso et al. [11] which are mostly related to our system. We want to
avoid to include overly specific dynamic models, e.g. the door, into the constraint
optimization formulation as it was done by Lee et al. [9]. We see the impedance
control approach by Lee et al. [10] as an intuitive way to follow a planned trajectory,
but kinematic uncertainties demand an estimation of the environment state as used
by Bellicoso et al. [11] with the circle fit to update the trajectories, and dynamic
uncertainties demand some sort of force feedback as used by Bodie et al. [12]. This
would also allow us to estimate the mass of an object online to manipulate it pre-
cisely in space without the need of having the mass parameter in an action library
as proposed by Leidner et al. [13].
Before we present our controllers to solve the robot-environment interaction prob-
lem in a general way in chapter 3, we first define the system we are working with
and present the MPC OCS2 formulation in the next chapter.

Chapter 2

System

In this chapter we describe the ballbot and its components that we are working with
in section 2.1 and point out the motivation of using a ballbot as a service robot as
well as its challenges. We also give a brief overview of how the optimal control for
switched systems (OCS2) framework is used in our case in section 2.2. In section
2.3 we state the constraint optimal control formulation which we are using for the
robot-environment interaction tasks.

2.1 System Description

We work with the ballbot, a robot that balances on a ball with a 4-DOF arm at-
tached to the base. Such a system can be simply seen as an inverted pendulum in
three dimensions. The early research by Fankhauser and Gwerder [14] that only
worked with the base of the system resulted in an accurate model for the ballbot
and the derivation of a LQR controller to stabilize the robot. Most recently, the
system was enhanced with an arm in the work of Minniti et al. [8] where a whole-
body MPC controller is used to navigate the system to the desired base and end
effector positions in a stable manner.
Many service robots have a base on wheels such as the service robot LIO by F&P
Robotics [15] or the humanoid Justin by DLR. Such a base simplifies the controller
because the base can be controlled separately from the upper body or the robot’s
arm without any stability issues. On the other hand, the base area is quite large
in order to avoid the overturning of the system, and in case the overturn could
happen, the robot does not have the dynamic capabilities to stabilize itself again.
Also, navigation through crowded ares is difficult because of the large base area.
These drawbacks are a big motivation to use a ballbot since its base area is very
small and the robot has the dynamic capabilities to stabilize itself which is also
pointed out by Shomin et al. [16] who used a ballbot for a sit-to-stand assistance
task with humans. The motivation behind a whole-body controller is not only the
stabilization of the system but also that an optimal control solution, considering
the full body, results in human-like motions which include the shifting of the center
of mass out of the statically stable area to apply high forces to the environment,
e.g. the pushing of a heavy locker. Therefore, the system is sometimes also called
the bionic ballbot.
On the other hand, a minimal failure of the controller can lead to a critical damage
for the robot or its environment. This risk makes the ballbot a rarely seen mobile
platform for commercially oriented applications. Another disadvantage is that the
ballbot needs to keep staying in motion to balance itself which makes applications
that include visual servoing a bit more challenging. These points motivate us to

5

6

strive new limits in the research on the ballbot by investigating new techniques for
robot-environment interaction control.

Compared to the paper by Minniti et al. [8], which also worked with the ballbot,
the system has now the 4-DOF DynaArm instead of the 3-DOF arm from the
paper. The speciality of the DynaArm is that the elbow joint is driven by a belt
and the corresponding actuator is located on top of the base of the ballbot. This
belt transmission system allows that torques which act on the third joint of the arm
do not need to be compensated by the second joint compared to a serial system,
but act directly on the base. This allows for a higher payload. Since the URDF
conventions, the Gazebo simulation and the OCS2 MPC controller use the serial
convention, a mapping for the joint torque, position and velocity was derived in the
work of Preisig et al. [17]. This mapping is used whenever actuator data of the
real system is used by the MPC controller or MPC controller commands are sent
to the actuators. The actuators that are now used on the robot are DynaDrives,
developed at the Robotics Systems Lab at ETH, instead of series elastic actuators
that were used before. These new drives allow a high nominal torque thanks to an
integrated fan.

2.2 Optimal Control for Switched Systems (OCS2)

The OCS2 toolbox developed by Farshidian et al. [5], [6] and [7] enables to solve
a constrained optimal control problem of a general robot in a receding horizon
fashion. The toolbox allows to switch the constraints, the dynamics and the cost
function of a constrained optimal control problem online and is also capable of
optimizing over the switching times. The algorithm works by forward integrating
the system dynamics around the last optimal control solution, linearizing the system
dynamics and computing a second-order approximation of the cost function around
the forward integrated state and input. Finally, the constrained optimization is
solved with a Lagrange multiplier method leading to an input control law. This
controller can be used for any robot that has an URDF representation file by using
the automatic differentiation version of the robotics code generator RobCoGen.

2.3 System Model and MPC OCS2 Formulation

The model of the ballbot that is used for the OCS2 MPC controller has 8 degrees
of freedom, 2 from the ball x- and y-position, 3 from the base yaw, pitch and roll
orientation and additional 3 from the arm’s joints positions, where only 3 of the
4 joints are controlled by the MPC. The robot has 6 actuators controlled by the
MPC, 3 that act on the ball and 3 on the arm. The model of the ballbot with arm
used by the MPC is shown in figure 2.1 which is adapted from Minniti et al. [8].

State and Input

The state vector xss = (q, v) of the system used in the MPC formulation consists
of the robot’s generalized coordinates q and generalized velocities v as described by
Minniti et al. [8]

q =

pISθ
qa

 , v =

 ṗISωIB
q̇a

 (2.1)

where q consists of the ballbot’s ball / sphere {S} position pIS in the world frame
{I}, the orientation θ of the base {B} in Euler angles in the world frame and the

7

Figure 2.1: The MPC ballbot model adapted from Minniti et al. [8]

angle of the actuators qa of the arm. The velocity v consists of the ball velocity ṗIS ,
the angular velocity ωIB of the base and the derivative of arm joint coordinates q̇a.
The input vector u = (τ) consists in our formulation of the actuator torques only,
compared to the formulation of Minniti et al. [8] which used the formulation u =
(τ, λee) where the end effector wrench applied by the robot to the environment λee
is also part of the input. We do not consider λee as an input in this work but use
it as a parameter in the constraints which is described in the following.

Cost Function

The cost function J that is minimized in the constrained optimal control problem
over the horizon T is

J = min
τ

∫ T

0

||xdss � xss||2Qss
+ ||τd − τ ||2R + ||xdee � xee||2Qee

dt, (2.2)

where xee is the end effector state consisting of orientation and position. The box
minus � indicates the special formulation for the orientation error as described in
the paper of Minniti et al. [8, p. 3] in equation 3. State errors and end effector
state errors are penalized with the positive semi-definite matrices Qss and Qee. The
actuator torque error is penalized with the positive definite matrix R.
For this thesis we will work with the following cost values if not stated differently.
The cost matrices that we use are diagonal and therefore only the trace of the
matrix is written. The end effector state xee consists of end effector roll, pitch and
yaw as well as x, y, and z position. The end effector cost is

Trace(Qee) =
[
0 0 100 200 200 200

]
. (2.3)

No cost is in the end effector roll and pitch since the system has not enough degrees
of freedom to also control these two coordinates in all configurations.
The state cost is

Trace(Qss q) =
[
0 0 600 0 0 0 0 0

]
, (2.4)

Trace(Qss v) =
[
20 20 20 10 10 20 3 10

]
,

8

where the cost on the state position coordinates is zero so that the desired end
effector state can be optimally tracked. Only the yaw coordinate of the base is
given a high cost to avoid oscillations which only occur on the hardware, but not
in simulation.
The input cost is

Trace(R) =
[
2 2 2 0.5 0.1 0.1

]
. (2.5)

By testing different cost values in simulation, we found that the cost entry for joint
2 of the arm is of major importance for the door opening and lifting tasks since it
shapes how much the optimizer will use the base or the arm respectively for the
task. The value of 0.1 is a good trade-off.

Constraints

The inequality constraints of the optimization problem are the actuator’s position
qact limits (2.6) and torque τ limits (2.7)

qact min ≤ qact ≤ qact max, (2.6)

τmin ≤ τ ≤ τmax, (2.7)

to avoid self-collision and to respect the physical limits and the saturation of the
actuators.
For these values the mapping from the DynaArm to the serial convention that was
mentioned in section 1.1 has to be considered since the OCS2 MCP controller uses
the serial convention. The equality constraints of the optimization problem are the
initial condition (2.8) and the system dynamics (2.9)

xss(0) = x0 (2.8)

ẋss = f(xss, u). (2.9)

The system dynamics ẋss = f(xss, u) can be stated as follows

q̇ = T (q)v (2.10)

v̇ = M(q)−1(−N(q, v) + ST (q)τ − JTeeλee), (2.11)

where T (q) in equation (2.10) is the mapping from the generalized velocities to the
derivatives of the generalized coordinates. The second equation (2.11) describes
the robot dynamics with joint space inertia matrix M(q) and N(q, v) = C(q, v)v +
G(q) with Coriolis and centrifugal terms C(q, v)v and the gravity term G(q). The
matrix ST is the mapping from actuator torques to generalized torques as derived
by Fankhauser et al. [14]. Finally, JTee is the end effector Jacobian that maps the
end effector wrench λee to generalized torques.
The OCS2 toolbox uses the automatic differentiation library CppAD for the differ-
entiation of the cost and constraints. The parameters xee and λee do not belong
to the state xss and input u of the MPC control problem formulation, but are fed
into the cost and constraints as parameters that can be manipulated online. Since
we do not treat the end effector wrench λee as an optimization variable in this
thesis, we will use this parameter interface to command the desired end effector
forces by setting them directly in the system dynamics constraint. In section 3.5 an
online system identification method is presented where the robot’s system dynamics
in equation 2.11 will be enhanced by the dynamics of the estimated environment
online. For this purpose the parameter interface and the synchronization module
provided by OCS2 are used to set the new dynamics parameters at the beginning
of an optimization cycle.

9

Control

This constraint optimization problem will be solved up to 200 times a second where
in each cycle the time horizon T of the cost function is around 1 second. For
control the first element of the resulting optimal state and input sequence is used at
each cycle. The optimal state and input are mapped to actuator position, velocity
and torque in the DynaArm convention. To compute the torque command for the
actuators, the optimal torque is used as a feed forward term and the optimal position
and velocity are used as references for a PID feedback controller in the drives. This
is explained in more detail in the next chapter.

2.4 System Summary

In this chapter we described the ballbot with which we are working in this thesis
in section 2.1. We stated the OCS2 MPC formulation in 2.3 which is the core
controller based on which we will add additional control structures for interaction
tasks with unknown environments in the next chapter.

10

Chapter 3

Control

In this chapter we describe the control methods, estimation and trajectory gen-
eration algorithms that we use for the MPC-based robot-environment interaction
control and apply in the door opening and object lifting tasks. The goal is to for-
mulate our method as general and simple as possible so that the same method can
also be used for other manipulation and interaction tasks. Therefore, we present
the assumptions in section 3.2 that our methods are based on regarding the task
formulation, the environment model and the stability of the coupled system. Based
on these, we first describe the online trajectory generation method we use in sec-
tion 3.3. Then, we present the motivation, formulation and stability conditions of
our control strategies that use impedance control in 3.4, the model identification
adaptive control (MIAC) in 3.5, the model reference adaptive control (MRAC) in
3.6 as well as combinations of MIAC and MRAC in section 3.7.

3.1 Control Task

The control task consists of following a trajectory with the end effector while having
contact with an unknown environment at the end effector. The trajectory that we
consider is a position velocity time (PVT) trajectory. The trajectory is generated
based on prior knowledge about the task or information acquired through a vision
system. During the task the trajectory can be updated by using estimation algo-
rithms to better deal with kinematic constraints (e.g. for the door opening). The
controller that we want to design should track the desired trajectory adequately by
handling the model error in the MPC. For some controllers we also want to esti-
mate a dynamic model of the environment along the trajectory, that could allow to
achieve a better performance in a second attempt. In the following, we state the
assumptions based on which we design and analyze our controllers.

3.2 Assumptions

The controllers that will be presented in the following sections are derived based on
assumptions about the environment model, the MPC and the robot which we state
in this section. Since we deal with a ballbot, a robot that is only dynamically stable,
the MPC controller has to handle the stability of the robot itself beside the coupled
stability of the robot-environment interaction. For the controller architecture that
we choose, the whole-body MPC controller will therefore be the core component.
The actuator torques τ , which are the optimizers of the constrained optimization
problem from section 2.2, will be commanded to the actuators as a feedforward
term. Since the MPC only runs up to frequencies of 200 Hz, the actuators are

11

12

controlled individually with a PID controller and the feedforward term at a much
higher rate of 1500 Hz. The commanded actuator torque τact is

τact(t) = τMPC+KP (qMPC−qact(t))+KD(q̇MPC−q̇act(t))+KI

∫ T

0

(qMPC−qact(t))dt,

(3.1)
where the optimal actuator position qMPC and velocity q̇MPC follow from the op-
timized state policy xss of the MPC formulation in 2.2. In the results of Minniti et
al. [8], figure 7, it was shown that the contribution of the feedforward terms τMPC

in equation (3.1) dominates the commanded actuator torque τact compared to the
feedback terms. We use this result as foundation that the URDF robot model used
for the system dynamics in section 2.3 can be very accurate so that the dynamics of
the robot are almost perfectly compensated by the MPC controller. Therefore, we
will neglect the dynamics of the robot when we analyze the stability of the coupled
system when the robot is in interaction with the environment.
Another assumption is that the contact and the interaction is happening only at
the end effector of the robot, not far from the tool center point (TCP) of the end
effector and the corresponding Jacobian Jee. This allows us to only consider a
controller that is a function of the end effector’s position, velocity and force and
a dynamic model of the environment that is acting at the end effector to analyze
their stability.
We will also not consider a contact model and thus any contact dynamics between
the robot’s TCP and the environment’s contact surface since we assume a rigid
connection between the two, established by the Robotiq gripper. Although contact
dynamics may occur, we assume them to be of minor order, especially for the door
opening and object lifting tasks that we tackle in this thesis. This assumption is, of
course, not valid for applications that highly depend on a contact model such as the
cleaning of a window with a soft sponge. In such an application, pure force control
could be used in normal direction of the cleaning plane to push the sponge on the
window and to handle the contact dynamics. Our controllers could then be used to
move the sponge in the normal plane to deal with static friction and damping from
the sponge-window interaction.

3.2.1 Environment Model Along the Trajectory

This section states the reflected environment dynamics at the end effector when the
TCP follows the desired trajectory. We assume that the dynamics of the environ-
ment projected along the trajectory can be characterized by a linear relationship
between force (input u) and the TCP position, velocity and acceleration (state x).
Therefore, an adequate and commonly used model is the mass m, damper d and
spring k impedance model with spring resting position x0,

mẍ+ dẋ+ k(x− x0) + fstatic = u. (3.2)

In this model x and u are the projected end effector position and force along the
desired PVT trajectory with projection vector vn

x = vTnxee (3.3)

u = vTnλee.

Besides the mass, damper and spring components, we also consider a static force
component fstatic that could come from e.g. static friction effects or gravity. This
model may be oversimplified for environments that are characterized by highly
non-linear dynamics, but this model assumption allows us to use tools from the

13

well established linear control theory and lets us design a general control solution.
We also assume that the dynamics of the environment are constant over an inter-
action interval, making the environment a linear time-invariant (LTI) system. This
assumption is needed for the convergence of the estimated parameters using recur-
sive least squares in the model identification adaptive controller in section 3.5 and
the convergence of the tracking error for the model reference adaptive controller
presented in section 3.6.
In the following we describe how we generate the PVT trajectories that should be
followed by our controllers.

3.3 Trajectory Generation

Since the higher level control task is to follow a desired trajectory as described in
section 3.1, we need to generate those online with the possibility to update them
efficiently. To generate position velocity time (PVT) trajectories with bounded
acceleration and velocity online, we use the method derived by Ramos et al. [18].
In the following we summarized their result.

3.3.1 Time-Optimal Trajectory Algorithm

The trajectory generated by the algorithm of Ramos et al. [18] is time-optimal and
handles the initial and final constraints which are the initial position and velocity
and the final position and velocity as well as the position, velocity and acceleration
bounds over the trajectory horizon.
The input of the algorithm is the initial position pi and velocity vi and final position
pf and velocity vf as well as the velocity and acceleration bounds vmax and amax.
The direction of the trajectory is determined with the sign parameter s̃

∆p = pf − pi (3.4)

∆v = vf − vi

∆pcrit =
sign(∆v)(v2f − v2i)

2amax
s̃ = sign(∆p−∆pcrit).

For the brevity of space, we state their result only for the trapezoidal velocity profile
case which is the most common profile for longer trajectories where the maximal
velocity is reached and held over a certain time phase compared to the triangular
profile where the maximal velocity is not reached. In this case the trajectory can be
divided into three parts. The acceleration phase till time T1, the constant velocity
phase till time T2 and deceleration phase till time Tf

T1 =
s̃vmax − vi
s̃amax

(3.5)

T2 =
1

vmax
(
v2f + v2i − 2s̃vmaxvi

2amax
+ s̃∆p)

Tf = T2 +
vf − s̃vmax
s̃amax

.

This results in the following position profile p(t) and velocity profile v(t) and accel-
eration profile a(t)

14

For 0 ≤ t ≤ T1 : (3.6)

a(t) = s̃amax

v(t) = s̃amaxt+ vi

p(t) =
1

2
s̃amaxt

2 + vit+ pi

For T1 < t ≤ T2 :

a(t) = 0

v(t) = s̃vmax

p(t) = s̃vmax(t− T1) + p(T1)

For T2 < t ≤ Tf :

a(t) = −s̃amax
v(t) = −s̃amax(t− T2) + s̃vmax

p(t) = −1

2
s̃amax(t− T2)2 + s̃vmax(t− T2) + p(T2).

The algorithm described above is used to generate the linear trajectories to move
the ballbot to certain positions, e.g. to lift up an object, or to generate the circular
trajectories for the door opening task. Its simple implementation allows a fast
recomputation which is important for the door opening task where the door hinge
position and current angle are estimated online and the trajectory thus needs to be
recomputed. The parameters that have to be selected with care are the maximal
velocity vmax and maximal acceleration amax since these have an influence on the
control performance and stability. A disadvantage of the algorithm above is that
the acceleration behaves like a step response and can therefore not be tracked by a
physical system with saturation limits.
In the next section we state the impedance control approach to deal with robot-
environment interaction control.

15

3.4 Impedance Control

One of the most used control approaches for robot-environment interaction control
is impedance control. The mechanical impedance is the relation between velocity
and force and thus characterizes the behavior of a mechanical system. Task space
impedance control for robot-environment interaction applications is described ex-
tensively by Natale [2] and Vukobratovic et al. [3]. Recently, impedance control
was also used by Angelini et al. [19] to characterize the behavior of the base of
the quadruped ANYmal by optimizing the impedance parameters online to create
a critically damped behavior of the COM of ANYmal to a disturbance.
We use impedance control to help the MPC controller described in section 2.2 track-
ing the desired end effector position xd and velocity ẋd trajectory generated by the
algorithm from section 3.3. The impedance controller is

fZ = KP (xd − x) +KD(ẋd − ẋ), (3.7)

where KP is the impedance controller’s stiffness matrix with units [Nm] and Kd

is the damping matrix with units [Nsm]. The impedance controller will compensate
unmodeled environment dynamics by generating a force proportional to the position
and velocity tracking error. The stiffness and damping matrices therefore allow to
intuitively shape their gains dependent on the task and the desired compliance, for
example high stiffness and damping along the trajectory to be tracked and small
gains in the orthogonal direction.

xd

ẋd

x

ẋ

KP

KD

λee

τ

minτ J(q, q̇, τ)

s.t. qmin ≤ q ≤ qmax
τmin ≤ τ ≤ τmax

f̂

M(q)q̈ +N(q, q̇) = ST τ − JTeeλee

mẍ+ dẋ+ kx+ fs = vTnλee

MPC

Robot

Environment

+

Impedance Controller

+

+

-

-

+

M̂(q)q̈ + N̂(q, q̇) = ST τ − JTeeλee

λee = f̂

xd

ẋd

Figure 3.1: Impedance control scheme

The control scheme with the impedance controller together with the MPC is visu-
alized in figure 3.1. The desired end effector position xd and velocity ẋd are com-
manded to the MPC and the desired end effector force f̂ = fZ from the impedance
controller is set in the system dynamics to solve the constrained optimization prob-
lem from section 2.3 with the additional constraint

λee = fZ . (3.8)

16

In the next section, we analyze the stability of the coupled system under the as-
sumption stated in section 3.2 that the robot model in the MPC is very accurate

M̂ ≈ M (3.9)

N̂ ≈ N

and that, therefore, primarily the impedance controller stabilizes the tracking of
the desired trajectory.

3.4.1 Stability Analysis

When we project the impedance controller from equation (3.7) along the direction
of the trajectory vn, we can analyze the stability of the resulting SISO system

mẍ+ dẋ+ kx = kp(xd − x) + kd(ẋd − ẋ), . (3.10)

where kp and kd are the projected stiffness and damping gains. In equation 3.10 we
set the static force component to zero fstatic = 0 for simplification and because the
impedance controller could not achieve a zero tracking error for a static force. Since
the impedance controller is implemented in discrete time running at 400 Hz, a zero
order hold (ZOH) element is used to represent the resulting time delay. The delay
term is simplified with a Padé approximation to receive a linear transfer function,

ZOH =
800

s+ 800
. (3.11)

To analyze the stability, the closed loop transfer function T = x
xd

needs to be stable
where

T =
800(kds+ kp)

ms3 + (d+ 800m)s2 + (d+ k + kd)800s+ (k + kp)800
. (3.12)

A way to formally analyze the stability of the parametric system is to use the Routh
Hurwitz determinants criterion. This theorem states that all determinants of the
Routh Hurwitz Array need to be larger than zero. Since we know that m ≥ 0, d ≥ 0
and k ≥ 0, the only term that is not greater than zero in any case is the following
one which gives an upper bound on the impedance stiffness

kdA+B

m
≥ kp, (3.13)

with

A = d+ 800m (3.14)

B = d(d+
k

800
+ 800m).

This analysis raises the motivation to select the impedance damping kd very high,
but one has to be careful since the velocity estimation of the end effector can be
noisy or not continuous due to contact dynamics which then get amplified by kd
and could destabilize the coupled system. Therefore, we try to choose kp as low as
allowable regarding the tracking error and kd as high as possible while considering
the influence of noise.

17

Although the design of the impedance controller appears intuitive with the stiffness
and damping matrices tuned depending on the desired compliance for the task,
simulation results reveal that finding stable stiffness and damping matrices with
higher gains for good tracking is difficult. Therefore, this method would require a
prior tuning for each task, making it not suitable for general applicability. Also the
fact that a zero tracking error is not possible in the case of a static force component
in the environment’s dynamics in equation (3.10) reveals that additional control
action is needed. Nevertheless, we consider the impedance controller very useful as
a robust control method for the initial contact phase to gain information for the
estimators and the adaptive controllers. These methods will be presented in the
following sections.

18

3.5 Model Identification Adaptive Control (MIAC)

In this section we want to improve the impedance controller which fails to deal with
environments that have a static force component and which also has a large tracking
error if the stiffness and damping matrices are chosen to be more compliant and
robust.
One method to improve the tracking and the coupled stability is to gain informa-
tion about the environment model online. The general idea of model identification
adaptive control is described by Öreg et al. [20]. Information about the dynamic
parameters of the environment are acquired online. This information can be used
to shape a controller, or in our case, to enhance the system dynamics constraint of
the MPC controller shown in 2.2. A simpler version of this method would be to use
force feedback, but estimating the parameters allows for a more accurate prediction
by the MPC. In section 3.5.1 we describe how we used a force sensor in Gazebo
which helped us to tune a disturbance observer presented in 3.5.2 that estimates
the external wrench at the end effector. Then we describe the recursive least square
algorithm in section 3.5.3 that we use to estimate the dynamic parameters based on
the end effector’s position, velocity and force in discrete time. Finally, the control
scheme of MIAC is presented in section 3.5.4.

3.5.1 Gazebo Force Sensor

The simplest way to get an estimate of the forces that the robot raises towards the
environment is to use a force torque sensor. In simulation, we use a Gazebo force
torque sensor at position ps, behind the Robotiq gripper with its center of mass at
pg and mass m. The measured wrench ŵS in the sensor frame is first compensated
by the weight of the gripper as described by Erdogan et al. [21]

wS = ŵS +

(
I3x3 03x3

[pg − ps]x I3x3

)
RSI

(
0 0 −mg 0 0 0

)T
, (3.15)

where RSI is the transform from the world frame to the sensor frame. Then the
wrench is transformed to the tool center point (TCP) of the end effector at position
ptcp and, finally, rotated to the world frame

wI = RIS

(
I3x3 03x3

[ptcp − ps]x I3x3

)
wS . (3.16)

The measurements of the force torque sensor in Gazebo are very noisy and the force
measurements are varying between ±5 N at a high frequency. We use a second order
Butterworth filter with a cut-off frequency at 10 rad

s to remove the high frequency
oscillation without having too much delay. This force sensor is used in simulation
to tune the disturbance observer presented in the next section.

3.5.2 Disturbance Observer (DOB)

Since the real ballbot equipped with a Robotiq gripper does not have a force sensor,
an estimator is needed. We use the disturbance observer (DOB) method described
by Bodie et al. [12] which has the advantage that no acceleration of the generalized
coordinates q̈ needs to be used which are in general very noisy. The update equation
of the estimator in discrete time is

τ̂ext[k+1] = Ko(Mq̇[k]−
k∑
i=0

(ST τact[i]−C(q[i], q̇[i])q̇[i]−G(q[i])+τ̂ext[i])Ts). (3.17)

19

Bodie et al. show that the equation above (3.17) in continuous time represents a
first-order low pass filtered estimate of the true generalized external torque τext.

τ̂ext =
Ko

s+ 1
τext (3.18)

Therefore, Ko can be tuned according to the noise in the state (q, q̇ and the actuator
torque τact). We will assume that the estimated generalized external torque is
coming from a force acting only at the end effector, as stated in section 3.2. Under
this assumption we can compute the external wrench with

wext = J (−T)
ee τ̂ext, (3.19)

where the pseudo inverse is used for the inversion of the end effector Jacobian in the
world frame. We discovered that the estimation of forces in x- and y-direction works
well in this case, but forces in z-direction are estimated badly. The reason is that
z-direction forces are underrepresented in the Jacobian since the base cannot move
in this direction. Therefore, the least square optimal solution will result in high z-
direction errors. To circumvent this issue we use the method presented by Grandia
et al. [22] which has also the advantage that forces acting on the end effector and
the base can be estimated at the same time. For that purpose a Jacobian J0 is
introduced, relating the floating base and the generalized coordinates. Combining
J0 with the end effector position Jacobian Jpee results in an augmented Jacobian
Jaug that has full rank and relates generalized torques to forces in x- and y-direction
acting on the base, moments around x-, y- and z-axis acting on the base and forces
in x-, y- and z-direction acting on the end effector at the same time in the inertial
frame.

J0 = [I5x5 05x3] (3.20)

Jaug = [J0; Jpee]

waug = J (−T)
aug τ̂ext

Commanded Actuator Torque

For the disturbance observer, the measured actuator torque is needed. Hardware
tests have revealed that these values are very inaccurate due to a wrong torque
constant and that the measured torque also has drift. Therefore, we use the com-
manded actuator torque instead of the measured one. The actuator commands in
the drives are computed with equation (3.1) at 1500 Hz, whereas the estimator
is running at 400 Hz. Because of this frequency difference we compute only the
PD-feedback terms manually at 400 Hz and neglect the integral term contribution,

τact = τMPC +KD(q̇MPC − q̇act) +KP (qMPC − qact). (3.21)

Equation (3.21) is thus used as actuator torques τact in the estimator (3.17).
The estimated interaction wrench described in this section is used as input for the
dynamics parameter estimation algorithm using recursive least squares as shown in
the next section.

3.5.3 Recursive Least Squares (RLS)

In this section we describe how we use a Bayesian approach to find an estimate of
the environment’s impedance and static force along the trajectory at each time step
by using recursive least squares. This method is equal to the measurement update

20

step (A Posteriori Update) in the Kalman filter. The algorithm minimizes the mean
square error between the measured and estimated state for a linear system. We can
bring the system from equation (3.2) into the state-space form with the following
substitution,

x1 = x− x0 (3.22)

x2 = ẋ1 = ẋ

û = u− fstatic,

where x is the position along the trajectory, x0 is the spring initial position and ẋ
is the velocity along the trajectory because x0 is constant. The variable u is the
force along the trajectory applied by the robot to the environment. The system
from equation (3.2) therefore results in the following continuous time state-space
equation,

˙(
x1
x2

)
=

(
0 1
− k
m − d

m

)(
x1
x2

)
+

(
0
1
m

)
û. (3.23)

We discretize the system at 400 Hz, which is our estimation frequency, and use the
Euler discretization method (first order) since the sampling frequency is high. This
yields the difference equation(

x1[k + 1]
x2[k + 1]

)
=

(
1 Ts

− k
mTs 1− d

mTs

)(
x1[k]
x2[k]

)
+

(
0

1
mTs

)
û[k] +

(
w1[k]
w2[k]

)
, (3.24)

where w accounts for the measurement noise that is assuemed to be Gaussian. If
we look at the second row of equation (3.24) only and re-substitute û, the following
measurement update equation can be extracted,

x2[k + 1] =
[
x1[k] x2[k] u[k] 1

]
− k
mTs

1− d
mTs

1
mTs

− fstatic

m Ts

+ w2[k]. (3.25)

We can write the equation above in a simplified way as

zk = Hkθk + wk. (3.26)

The random variable w is the measurement noise with zero mean and variance R.
The random variable θ at the time step zero, θ0, can be initialized with a prior
estimate of the environment dynamics’ parameters and the known sampling time
Ts. Also the initial variance of θ0, P0, can be initialized from the variance in the
prior estimate of the environment. Finally, the following update equations are used
to compute an estimate of the environment dynamics’ parameters at each iteration,

Kk = Pk−1H
T
k [HkPk−1H

T
k +Rk]−1 (3.27)

θk = θk−1 +Kk[zk −Hkθk−1]

Pk = [I −KkHk]Pk−1[I −KkHk]T +KkRkK
T
k .

The implementation of this filter has a delay of one time step since the velocity
x2 is used as the measurement z but also appears in the observations H. At each

21

iteration an estimate of the environment’s dynamics can be computed from θk with

m̂ =
Ts
θk(2)

(3.28)

k̂ =
−m̂θk(0)

Ts

d̂ =
m̂

Ts
(1− θk(1))

f̂static =
−m̂θk(3)

Ts

Estimator Performance Evaluation

For the object lifting task, the performance of the dynamics’ parameters estimator
is easy to quantify since the true mass can be simply measured and compared
to the estimate. But in the door opening case, the true parameters of the door
are not available. In simulation we can set the door characteristics, and with the
presented door model and relations in section 5.3, we can evaluate how the estimated
parameters along the trajectory relate to the door dynamics.
In the next section, we describe how the parameters of the dynamics of the envi-
ronment that we estimate online are used for control with the MPC controller.

3.5.4 MIAC and MPC Control

In this section we use the estimated parameters of the environment’s impedance m̂,
d̂ and k̂ and static force f̂static along the task trajectory vector vn for control. Since
our core controller is an MPC we can use the estimated environment parameters
in the system dynamics constraint presented in section 2.3. The commanded end
effector force in the system dynamics is then

λee = fZ + vn(m̂ẍ+ d̂ẋ+ k̂(x− x0) + f̂static), (3.29)

where the estimated parameters are used for the prediction over the horizon and
thus for optimization. We still use the impedance controller fZ from section 3.4
since we need to excite the environment to create data that covers information for
the RLS estimator and also for the tracking of the desired trajectory.
The control scheme with the estimator, the impedance controller and the MPC is
shown in figure 3.2. The estimated force along the trajectory from the disturbance
observer and the position and velocity along the trajectory from forward kinematics
are the inputs to the RLS estimator. The estimated dynamic parameters at each
time step θk are then used in the MPC system dynamics constraint for optimization,
making the MPC adaptive to an unknown environment.
Simulation results have shown that the estimated parameters need to be low pass
filtered when they are fed back to the MPC to avoid that too much force is applied
too fast by the robot. This could lead to a full extension of the DynaArm which
makes the re-computation of the end effector force in the DOB (3.21) ill-conditioned
and therefore causes a burst of the parameter estimates.
The MIAC control approach offers a great potential for its combination with the
MPC since the estimated parameters can be used for prediction. Simulation results
revealed that the tracking error is much smaller compared to when only impedance
control is used. Thanks to the online identification a broader range of environments
can be stably controlled than with the impedance controller only because static force

22

xd

ẋd

x

ẋ

KP

KD

λee

τ

minτ J(q, q̇, τ)

s.t. qmin ≤ q ≤ qmax
τmin ≤ τ ≤ τmax

f̂

M(q)q̈ +N(q, q̇) = ST τ − JTeeλee

mẍ+ dẋ+ kx+ fs = vTnλee

Adaptive MPC

Robot

Environment

Impedance Controller

+

+

-

-

M̂(q)q̈ + N̂(q, q̇) = ST τ − JTeeλee

λee = f̂ + vn(m̂ẍ+ d̂ẋ+ k̂x+ f̂s)

RLS Estimator

θ = [m̂, d̂, k̂, f̂s]

minθ
1
2
‖z −Hθ‖2

vn, m̂, d̂, k̂, f̂s

+
+

ẋd
xd

DOB

q̇qτ

λ̂ee

Figure 3.2: MIAC and MPC control scheme

components are compensated. This method also allows the impedance controller
design to be very compliant. Nevertheless, in some cases the tracking error could
not converge to zero although the estimated parameters converge. This can happen
because the linear dynamic model along the trajectory (3.2) may not be correct
for certain environments. In the next section, we present model reference adaptive
control which will asymptotically minimize the reference tracking error to overcome
this issue.

23

3.6 Model Reference Adaptive Control (MRAC)

The MIAC method from the last section focuses on minimizing the estimation or
prediction error of the recursive least squares dynamics estimator. The estimated
values are then used to adapt the system dynamics of the MPC controller online. In
this section we use a different control method that does not consider the prediction
error but the reference tracking errors regarding the desired position and velocity.
In the case of model reference adaptive control (MRAC) described by Nguyen [23],
a controller can be designed to asymptotically minimize the tracking error to zero
while the control law is adapted at each time step with an adaption law. Using
MRAC allows to define a reference model of the plant, e.g. a second-order system
with desired damping ratio and natural frequency to fulfill a specified rise time and
overshoot. The MRAC controller includes adaptive terms which will change depen-
dent on the reference tracking error to make that the closed-loop system follows the
reference model. Siciliano et al. [1] demonstrate the use of an MRAC for the control
of a full robot, where the adaptive parameters are the joint space generalized mass,
non-linear terms and gravity. Inspired by this approach, we formulate an MRAC
controller to deal with an unknown environment along the end effector trajectory
that can be modeled as a mass-damper-spring model with a static force.

3.6.1 MRAC Controller Synthesis

The general procedure of the design of an MRAC controller as described by Nguyen
[23] is to define a control law that is dependent on the reference tracking error
and includes adaptive parameters. Then, a Lyapunov function is formulated to
derive the adaptive law and that also serves as stability proof. We consider the
environment as a structured uncertain second order system

mẍ+ dẋ+ kx+ fs = u, (3.30)

where x is again the position along the trajectory transformed by the initial position
of the spring x0 as done in section 3.5.3. [m, d, k, fs]

T = π is assumed to be
constant over a robot-environment interaction interval. The proposed control law
is

u = m̂ẍr + d̂ẋr + k̂xr + f̂s + ksσ̇, (3.31)

with adaptive control parameters [m̂, d̂, k̂, f̂s]
T = π̂ , a positive definite control gain

ks and the following definitions

er = xd − x (3.32)

xr = xd + η

∫
erdt

ẋr = ẋd + ηer

ẍr = ẍd + ηėr

σ = xr − x = er + η

∫
erdt

σ̇ = ėr + ηer

σ̈ = ër + ηėr,

where xd, ẋd, ẍd are the reference position, velocity and acceleration and er is the
reference tracking error and η is a positive definite tuning parameter.
Setting the controller (3.31) into the system (3.30), we receive the following system

with m̃ = m̂−m, d̃ = d̂−d, k̃ = k̂−k, f̃s = f̂s−fs and [m̃, d̃, k̃, f̃s]
T = π̃ = π̂−π,

mσ̈ + dσ̇ + kσ = −Y (xr, ẋr, ẍr)
T π̃ − ksσ̇, (3.33)

24

where Y (xr, ẋr, ẍr)
T = [ẍr, ẋr, xr, 1]. This structure is very similar to the method

presented by Siciliano et al. [1, p. 338]. To prove stability of the control system and
derive the adaption law of the parameters π̃, the following Lyapunov function V is
used which depends on the tracking error, the adaptive parameters and a positive
definite matrix Kπ,

V (er, π̃) =
1

2
σ̇2m+

1

2
σ2k + e2rηks +

1

2
π̃TKππ̃. (3.34)

The derivative of the Lyapunov function is

V̇ (er, π̃) = σ̇σ̈m+ σ̇σk + 2ėrerηks + π̃TKπ
˙̃π. (3.35)

Equation (3.33) can be solved for σ̈m + σk and substituted into the derivative of
the Lyapunov (3.35) function

V̇ (er, π̃) = −σ̇2d− ė2rKs − 2e2rη
2ks + π̃T (˙̃πKπ − Y (xr, ẋr, ẍr)σ̇). (3.36)

To prove that the system is stable under the control law (3.31), the Lyapunov
function needs to be positive definite which is given. The Lyapunov function V also
needs to have a finite limit as t −→∞,

V (er(t −→∞), π̃(−→∞)) <∞. (3.37)

And the Lyapunov function derivative V̇ needs to be uniformly continuous so that
from Barbalat’s lemma, as described by Nguyen [23], it can be followed that the
tracking error er is asymptotically stable

V̇ (er, π̃) −→ 0⇒ er(t) −→ 0 as t −→∞. (3.38)

These conditions imply that V̇ (er, π̃) ≤ 0 and therefore the adaption law

˙̃π = ˙̂π = K−1
π Y (xr, ẋr, ẍr)σ̇, (3.39)

because π is assumed to be constant along the trajectory as stated in section 3.2.
Since this is a direct adaptive control method which only aims to minimize the
tracking error, the adaptive parameters π̂ will not converge to the true values π as
t −→∞.
Nevertheless, the controller in equation (3.31) can be seen as a reference feedforward
controller which compensates the dynamics of the environment with an additional
PD term ksσ̇. If we project the task space impedance controller from equation (3.7)
along the normal vector of the environment interaction trajectory vn, the controller
gain ks is equal to the damping of the task space impedance controller ks = vn

TKD

and the relation to the task space stiffness is ksη = vn
TKp. This result shows that

the impedance controller is part of the MRAC stability analysis since it is part of
the controller together with the adaptive term fA = Y (xr, ẋr, ẍr)

T π̂. Therefore,
the MRAC controller can be written as

λee = fZ + vnfA, (3.40)

with impedance controller fZ . In the next section, we present the control scheme
using MRAC and MPC together.

25

3.6.2 MRAC and MPC Control

The control scheme that combines the MRAC controller with the MPC is shown
in figure 3.3. The commanded end effector force in the system dynamics is now
given by equation (3.40). This controller will asymptotically converge to a zero
reference tracking error. The tuning parameters of the adaptive controller beside the
impedance controller are the initial values of the adaptive terms π̂0, the parameter
η and the adaption rate Kπ.

xd

ẋd

x

ẋ

KP

KD

λee

τ

minτ J(q, q̇, τ)

s.t. qmin ≤ q ≤ qmax
τmin ≤ τ ≤ τmax

f̂

M(q)q̈ +N(q, q̇) = ST τ − JTeeλee

mẍ+ dẋ+ kx+ fs = vTnλee

MPC

Robot

Environment

Impedance Controller

+

+

-

-

M̂(q)q̈ + N̂(q, q̇) = ST τ − JTeeλee

λee = f̂

+
+

x

xd

ẋd

ẋ

+

MRAC

fA = m̂ẍr + d̂ẋr + k̂xr + f̂s

= Y (xr, ẋr, ẍr)T π̂

˙̂π = K−1
π Y (xr, ẋr, ẍr)σ̇

vnfA

xd

ẋd

Figure 3.3: MRAC and MPC control scheme

Simulation results have shown that the integral terms in equation (3.32) for xr and
σ can lead to instabilities since it is too aggressive for higher gains of η and leads
to a blow-up of k̂ if the tracking error does not converge fast enough. We could
resolve this problem by limiting the size of the integral error.

26

3.7 Combining MIAC and MRAC

In the sections 3.5 and 3.6, we have presented the MIAC and MRAC controllers
that can follow a trajectory with an MPC while having contact with an unknown
environment. An impedance controller is part of both approaches and either used to
create innovation on the environment interaction in case of the MIAC controller or
for the convergence of the adaptive terms in the MRAC controller. In this section
we present two approaches to combine both of the previous methods. One way
of doing this is to run both controllers together at the same time where feedback
control will be created from both side, the reference tracking error minimization
and the estimation of the environment dynamics’ parameters. Another method
is described by Espinoza and Roascio [24] which suggests to linearly combine the
estimated parameters of the MIAC controller θ with the adaptive parameters of
MRAC controller π̂. The scheme of these two combination methods is presented in
the following.

3.7.1 Combined Control with MIAC and MRAC

A straightforward combination of the MIAC and MRAC control approaches is to
simply run them together which leads to the desired end effector force that is set
in the system dynamics as

λee = fZ + vnfA + vn(m̂ẍ+ d̂ẋ+ k̂(x− x0) + f̂static). (3.41)

The idea is that the combination should lead to a faster convergence of the refer-
ence tracking error since additional feedback through the environment’s dynamics’
parameter estimator is provided. Therefore, the control input from the MRAC con-
troller will be smaller. But simulation results have shown that the adaptive gain
Kπ has to be chosen with care to avoid oscillations around the reference position
during the tracking of a trajectory. The control scheme for this approach is shown
in figure 3.4.

27

xd

ẋd

x

ẋ

KP

KD τ

minτ J(q, q̇, τ)

s.t. qmin ≤ q ≤ qmax
τmin ≤ τ ≤ τmax

f̂

M(q)q̈ +N(q, q̇) = ST τ − JTeeλee

mẍ+ dẋ+ kx+ fs = vTnλee

Robot

Environment

Impedance Controller

+

+

-

-

M̂(q)q̈ + N̂(q, q̇) = ST τ − JTeeλee

λee = f̂ + vn(m̂ẍ+ d̂ẋ+ k̂x+ f̂s)

RLS Estimator

θ = [m̂, d̂, k̂, f̂s]

minθ
1
2
‖z −Hθ‖2

+
+

x

ẋd

ẋ

fA = m̂ẍr + d̂ẋr + k̂xr + f̂s

= Y (xr, ẋr, ẍr)T π̂

˙̂π = K−1
π Y (xr, ẋr, ẍr)σ̇

MRAC
xd

vn, m̂, d̂, k̂, f̂s

Adaptive MPCxd
ẋd

λeeDOB

q̇qτ

λ̂ee

vnfA

Figure 3.4: Combined MIAC and MRAC control scheme

3.7.2 Combined Adaption with MIAC and MRAC

The method described by Espinoza and Roascio [24] is a combined adaption of the
estimated parameters of MIAC θ with the adaptive parameters of MRAC π̂

γ̇ = Ka
˙̂π +Kθ

ˆ̇
θ, (3.42)

with adaptive gains Ka and Kθ which are tuning parameters. According to Es-
pinoza and Roascio, this should avoid bursting events in the adaptive controller
and the estimator caused by unfulfilled persistence of excitation. However, in this
case parameters that represent a physical system θ̂ are combined with adaptive
parameters π̂ which do not need to represent the real physical environment. The
control scheme is shown in figure 3.5. We state this method since it is based on the
controllers and estimators presented so far, but we will not apply the linear com-
bined adaption method on the real system for the lifting and door opening tasks.
We leave the derivation of proper adaptive gains Ka and Kθ for future research in
this field. In the next section, we summarize all the presented interaction control
methods.

28

xd

ẋd

x

ẋ

KP

KD τ

minτ J(q, q̇, τ)

s.t. qmin ≤ q ≤ qmax
τmin ≤ τ ≤ τmax

f̂

M(q)q̈ +N(q, q̇) = ST τ − JTeeλee

mẍ+ dẋ+ kx+ fs = vTnλee

Robot

Environment

Impedance Controller

+

+

-

-

M̂(q)q̈ + N̂(q, q̇) = ST τ − JTeeλee

λee = f̂ + vn(m̂ẍ+ d̂ẋ+ k̂x+ f̂s)

RLS Estimator

θ = [m̂, d̂, k̂, f̂s]

minθ
1
2
‖z −Hθ‖2

+
+

x

ẋd

ẋ

fA = m̂ẍr + d̂ẋr + k̂xr + f̂s

= Y (xr, ẋr, ẍr)T π̂

˙̂π = K−1
π Y (xr, ẋr, ẍr)σ̇

MRAC
xd

combined adaption

γ̇ = Ka ˙̂π +Kθ θ̇

vn, m̂, d̂, k̂, f̂s

˙̂π θ̇

Adaptive MPCxd
ẋd

λeeDOB

q̇qτ

λ̂ee

Figure 3.5: Combined MIAC and MRAC adaption scheme

3.8 Control Summary

In this chapter, we have presented the assumptions in section 3.2 based on which
we design the controllers to complete the control task named in section 3.1. The
trajectory generation algorithm is presented in section 3.3 which trajectories are
the target to track under robot-environment interaction. The impedance controller
from section 3.4 is part of all the presented controllers since it allows a compliant
and robust interaction with the environment and thus creates innovation. This
is used in model identification adaptive control (MIAC) presented in section 3.5,
where the impedance controller is combined with the recursive least squares algo-
rithm using online system identification to estimate the environment’s dynamics’
parameters along the task trajectory. These estimates are then used in the MPC
controller for prediction and optimization.
In model reference adaptive control (MRAC) presented in section 3.6, the impedance
controller is combined with an adaptive controller which adapts its parameters de-
pendent on the reference tracking error. This controller converges to a zero track-
ing error over time. Finally, two methods are presented to combine the MIAC and
MRAC control approaches in section 3.7 which promise either faster convergence
or more robustness, while the strength of both controllers is used, the environment’
dynamics’ parameters estimation of MIAC and the tracking error minimization of
MRAC.
In the next chapters, these controllers are applied to the door opening and object
lifting tasks in simulation and on the hardware.

Chapter 4

Object Lifting Task

In this chapter we use the derived interaction control approaches from chapter 3 to
lift up an object of unknown mass with the ballbot. In section 4.1 we describe how
the linear trajectory is generated to move the end effector from a starting to an end
point with velocity and acceleration limits. Then the performance of the presented
controllers from chapter 3 are compared in simulation in section 4.2. Finally, the
hardware test results are presented in section 4.3 and concluded in section 4.4.

4.1 Linear Task Space Trajectory

To move the end effector from an initial task space position x to a target position
x, starting with zero initial velocity, a task space trajectory can be parameterized
with a control variable s(t) as,

x(s) = x0 + s(t)
(x − x)

‖x − x‖
(4.1)

ẋ(s) = ṡ(t)
(x − x)

‖x − x‖
,

for s(t) ∈ [0, ‖x − x‖]. Given a maximal velocity vmax = ṡmax and maximal
acceleration amax = s̈max, the parameter s(t) can be computed with the trajectory
generator described in section 3.3. The resulting position velocity time trajectory
is then used as end effector reference for the control task.

4.2 Simulation Results

In this section our goal is to track the linear task space trajectory from section
4.1 as accurately as possible in the Gazebo simulation. The following plots and
tables show the results of a simulation experiment where the ballbot should follow
a trajectory in z-direction while an unknown mass is attached to the end effector
which is unmodelled in the MPC controller. The task is to follow this trajectory
as accurately as possible while estimating the object’s mass. Afterwards, the robot
should follow other trajectories in the Cartesian space as accurately as possible
while holding the object and using the estimated mass in the MPC controller.
The table 4.1 compares the controller performance w.r.t. the reference tracking error
during the lifting task and the accuracy of the estimated mass. The controllers that
are compared are the impedance controller from section 3.4, the model identification
adaptive controller that estimates parameters with recursive least squares and sends
them to the MPC from section 3.5, the model reference adaptive controller which

29

30

adapts the parameters dependent on the tracking error described in section 3.6, and
the combined MIAC MRAC controller where both methods are running together
as stated in section 3.7.1. The true mass of the object that is lifted up is 2 kg. The
impedance controller stiffness and damping are

KP = 40 ∗ I3x3 (4.2)

KD = 10 ∗ I3x3.

The RLS estimator is initialized with initial mean and variance

m0 = 0.1 (4.3)

σ2
m = 10

d0 = 0.0

σ2
d = 0.001

k0 = 0.0

σ2
k = 0.001

fs0 = 1

σ2
f = 10

which means that we have the prior knowledge that we lift a mass (no damping and
spring characteristics) but no prior knowledge about the object’s mass (very small
initial mass of 0.1 kg and corresponding static force). For the measurement noise
variance we choose

R = 10. (4.4)

For the PD impedance term of the MRAC controller, the same gains are used as
in equation (4.2). The update-gain matrix of the adaptive term in the MRAC
controller (3.39) is

K−1
π =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 25

 (4.5)

and the adaptive parameters are initialized with

m̂ = 0.1 (4.6)

d̂ = 0

k̂ = 0

f̂s = 10.

To compare the results of the robot-environment interaction controllers, the exper-
iment was also made with the MPC controller alone (MPC only) where no mass
was attached. This lead to a root mean square tracking error (RMSE) of 0.014
which indicates a very good tracking. For the experiment with the attached mass,
an RMSE of 0.224 was measured with the MPC only which needs to be improved
by our interaction controllers.
The results in table 4.1 show that the impedance controller alone improves the
tracking but is still much worse than the other controllers since it cannot adapt its
gains or use the estimated parameters during the task. The RMSE is thus much
larger than for the other controllers, whereas the errors of the other controllers, the

31

MPC
Only

Impedance
Control

MIAC MRAC
Combined
MIAC
MRAC

RMSE
Tracking Error [m]

0.224 0.149 0.038 0.036 0.036

Estimated
Mass [kg]

- 1.66 1.83 1.81 1.87

Table 4.1: The controller performance comparison in simulation for a mass of 2 kg

MIAC, MRAC and combined MIAC MRAC controller, are comparable and much
smaller.
A similar distribution is visible for the estimated mass of the recursive least squares
estimator. There, the combined MIAC MRAC controller has the closest estimate
to the true mass.
The difference between the estimated mass and the true one is dependent on the
estimated force from the DOB presented in section 3.5.2 and its rate of convergence
and delay but also on the initial values of the environment’s dynamics parameters in
the RLS estimator. Since the RLS algorithm is minimizing the square error between
the measured and predicted values over the whole time interval, it will underesti-
mate the dynamics if the DOB and, therefore, the force along the lifting trajectory
is only slowly converging. The convergence of the DOB is shown in figure 4.1 where
it is visible that the lifting experiment starts at second 7 and that the convergence
needs some time (ca. 7-8 seconds). The observer gain Ko from equation 3.17 is set
to identity for our experiments. This gain introduces a substantial delay, but it also
reduces noise and high force peaks during the transient that could destabilize the
RLS estimator.

32

6 8 10 12 14 16 18 20 22 24 26
0

2

4

6

8

10

12

14

16

18

20
Estimated Force z-Direction

Fo
rc

e
 [

N
]

Time [s]

Figure 4.1: The estimated interaction force in z-direction for a mass of 2 kg

The other mentioned influence on the estimated mass comes from the initial values
of the RLS estimator. Figure 4.2 shows the convergence of the static force and
the mass that is estimated dependent on different initial states of the estimator.
For this experiment the MRAC controller is lifting a mass of 2 kg while the RLS
estimator is running with initial mass parameters m0 of 0.1, 0.5, 1 and 2 kg and
initial static force parameters fs0 of 1, 5, 10, and 20 N. The damping and the spring
stiffness are set to zero with a very small variance and will thus remain zero. The
lifting starts at second 7. We can see that prior knowledge can improve the rate
of convergence and that the estimated parameters are closer to the correct ones.
But since the force estimator has a very slow convergence rate due to its low pass
characteristics, initializing the estimator with the correct value (2 kg) also leads to
a long transient phase.

33

6 8 10 12 14 16 18 20 22 24 26
0

5

10

15

20

6 8 10 12 14 16 18 20 22 24 26
0

0.5

1

1.5

2

Static Force Estimation

Time [s]

S
ta

ti
c

Fo
rc

e
 [

N
]

Mass Estimation

Time [s]

M
a
ss

 [
kg

]
20

10

5

1

2

1

0.5

0.1

Figure 4.2: Estimated mass and static force convergence for different initial values

In figure 4.3 we show the reference tracking performance of the MRAC controller
compared to the pure MPC controller without any feedback about the environment.
A mass of 2 kg is pushing the end effector down at second 7 and compared to the
pure MPC controller, the MRAC controller makes it possible to follow the desired
lifting trajectory (from second 7 to second 24). After second 24, the estimated mass
is used by the MPC and an accurate tracking of the reference position in x-, y- and
z-direction is possible which is much better than using the MPC alone.

Figure 4.4 shows the commanded force of the MRAC controller that is set in the
MPC for this experiment where we see that the impedance controller term vTn fZ
converges to zero and the adaptive controller term fA from equation 3.40 gets static
as the tracking error is converging which is also visible in figure 4.3 in the z-position
plot after second 16.

As shown in equation (3.1), a PID-controller in the drives regulates the actuator
position and velocity to the MPC optimal position and velocity in addition to the
feedforward torque of the MPC. Figure 4.5 shows the contribution of the PID-
torque in the shoulder flexion extension (SH FLE) and the elbow flexion extension
(EL FLE) joint. We can see that when the MRAC controller is in charge, the
contribution of the PID-torque is converging close to zero as the tracking error is
converging after second 16. On the other hand, when only the MPC controller is in
charge, the PID-torque contribution is around 2 Nm for the SH FLE and 4 Nm for

34

0 10 20 30 40 50 60
0.9

1

1.1

1.2

1.3

1.4

1.5

0 10 20 30 40 50 60
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 10 20 30 40 50 60

0.6

0.8

1

1.2

1.4

1.6

Z-Position

Y-Position

X-Position

Time [s]

Time [s]

Time [s]

Z
 [

m
]

Y
 [

m
]

X
 [

m
]

reference

MRAC measured position

MPC only measured position

Figure 4.3: The reference tracking during the lifting of the mass (sec 7-24) and with
its estimate (sec 24-60) compared between the MRAC controller and the MPC only

the EL FLE actuator on average where the behavior of the controller is very noisy.
This additional PID-torque does not make it possible to converge to the reference
position, but it prevents that the arm is falling down even more due to the unknown
mass.

35

5 10 15 20 25
-5

0

5

10

15

20

Time [s]

In
p
u
t

[N
]

MPC Force Input

MRAC Adaptive Term

MRAC PD Term (=Impedance Controller)

Figure 4.4: The force command of the MRAC sent to the MPC controller during
the lifting of the object in simulation

4.3 Hardware Results

On the hardware, we want to track a trajectory in z-direction while the ballbot lifts
a unknown mass at the end effector as done in the simulation. During the tests we
observed oscillations due to the impedance controller. Therefore, we set the gains
of the stiffness and damping matrix of the impedance controller to zero,

KP = 03x3 (4.7)

KD = 03x3.

All other gains and parameters of the adaptive controller and the RLS estimator
have the same values as described in the simulation section 4.2. As done in the sim-
ulation, we lift up a mass of 2 kg along a 30 cm trajectory with all controllers. The
tracking error results and the estimated mass are shown in table 4.2. The MRAC
controller and combined MIAC MRAC controller show the best trajectory track-
ing performance while the estimated mass of the MIAC and the combined MIAC
MRAC controller is the closest to the real mass of 2 kg. The tracking errors of the
lifting in the hardware tests are much smaller than in simulation which is due to
the fact that the weight is continuously increased in the hardware tests since the
weight is lifted from a table, whereas in simulation the weight of the end effector is
changed through a Gezebo plugin with a step function causing the larger error. But

36

0 10 20 30 40 50 60 70
0

2

4

6

8

10

0 10 20 30 40 50 60 70
0

2

4

6

8

10

SH FLE PID-Torques

Time [s]

To
rq

u
e
 [

N
m

]

EL FLE PID-Torques

Time [s]

To
rq

u
e
 [

N
m

]

MPC only MRAC

Figure 4.5: The contribution of the PID-torques in the actuators compared between
the MRAC and MPC only methods in simulation

also since the PID-controller in the actuator does contribute more on the hardware
than in simulation since it runs at higher rates.
We also observe that the mass of the object is underestimated even more on the
hardware than in simulation. This is caused by the commanded actuator torque
which is used in the DOB equation in section (3.17) instead of the measured ac-
tuator torque due to the reasons mentioned in section 3.5.2. The influence of the
commanded actuator torque and the PID-controller in the drives will be discussed
later in more detail.
Table 4.3 shows the tracking error and the estimated mass for the MRAC controller
for weights of 1, 2 and 2.5 kg. We see that the tracking error increases almost in a
linear way as the weight increases. Also the estimated mass increases in the same
range but it is still far off from the true mass.

Since the MRAC controller has the best performance regarding the tracking error,
we want to show the tracking w.r.t. the desired x-, y-, and z-position for this task.
In figure 4.6 we see the tracking performance of the MRAC controller compared
to the MPC only where no interaction controller is used. The lifting of the object

37

MPC
Only

Impedance
Control

MIAC MRAC
Combined
MIAC
MRAC

RMSE
Tracking Error [m]

0.075 0.068 0.045 0.024 0.025

Estimated
Mass [kg]

0.32 0.57 1.66 1.11 1.51

Table 4.2: The controller performance comparison on the hardware for a 2 kg object

1 kg 2 kg 2.5 kg
RMSE
Tracking Error [m]

0.012 0.024 0.027

Estimated
Mass [kg]

0.68 1.11 1.29

Table 4.3: The MRAC controller performance for an object of 1, 2, and 2.5 kg

of 2 kg is finished at second 12. From then on, the estimated mass is set in the
MPC system dynamics and the MPC controller should follow additional reference
trajectories in the Cartesian space. The z-position plot in figure 4.6 shows that the
tracking with the MRAC controller is much better for the lifting of the unknown
mass. However, compared to the tracking in the simulation case, the reference
tracking after the lifting of the MRAC controller is much worse while the one of
the MPC only is much better. In the simulation, the MPC controller running alone
without an interaction controller is not able to lift the mass, but on the hardware
this works.

The reason why this works on the hardware is shown by figure 4.7 where the absolute
values of the PID-torques in the drives from equation 3.1 are shown. These values
have to be considered with caution since the measured actuator torque is used to
compute them and since the measured torque has drift and a wrong torque constant
as mentioned in section 3.5.2. Comparing the PID-torque contribution of the MRAC
controller and the MPC only in the shoulder and elbow flexion extension joints (SH
FLE, EL FLE), we see that a lot of work is done by the PID-controller if the MPC
only is used. Therefore, we have less force control but more position control in the
drives. In figure 4.5 we can also see that more work is done by the PID-controller
when the MPC only is used. However, in the simulation experiment the mass could
not be lifted up compared to the hardware tests. The reason for this could be the
high frequency of 1500 Hz with which the PID-controller is running on the hardware
which is not the case in the simulation where it runs at around 400 Hz. This high
frequency on the hardware increases the influence of the PID-controller, especially
of the integral term, which makes it possible to compensate the model inaccuracies
in the feedforward torque that come from the MPC controller.

The bigger contribution of the actuator PID-controller on the hardware is also
visible for the MRAC controller in figure 4.7 compared to the simulation in figure 4.5.
This explains why the mass estimates are worse on the hardware than in simulation.
When we compute the commanded actuator torque manually as described in section
3.5.2, we neglect the integral term because of the frequency differences and therefore
do not cover its high contribution when we estimate the forces at the end effector.

38

0 10 20 30 40 50
1

1.1

1.2

1.3

1.4

0 10 20 30 40 50
-0.5

0

0.5

0 10 20 30 40 50

-0.5

0

0.5

Z-Position

Y-Position

X-Position

Time [s]

Time [s]

Time [s]

X
 [

m
]

Y
 [

m
]

Z
 [

m
]

reference

MRAC measured position
MPC only measured position

Figure 4.6: The reference tracking during the lifting of the object (sec 0-12) and
with its estimated mass (sec 12-50) compared between the MRAC controller and
the MPC only

This is visible for the estimation of the force in z-direction in figure 4.8 when the
MRAC controller is used. In this figure we see that the estimated force does not
reach the correct interaction force of around 20 N in z-direction which corresponds
to the mass of 2 kg attached to the end effector, but only estimates around 13 N
with a slow rate of convergence. Compared to figure 4.1 where the estimated force in
simulation is shown, we see how much more we underestimate the interaction force

39

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60
0

1

2

3

4

5

6

SH FLE PID-Torques

EL FLE PID-Torques

Time [s]

Time [s]

To
rq

u
e
 [

N
m

]
To

rq
u
e
 [

N
m

]

MPC only

MRAC

Figure 4.7: The contribution of the PID-torques in the actuators compared between
the MRAC and MPC only methods

on the hardware than in simulation. Figure 4.9 shows the force input of the MRAC
controller that is sent to the MPC which is also much smaller than in the simulation
shown in figure 4.4 because of the higher contribution of the PID-controller in the
drives. Since the impedance controller stiffness and damping matrix is zero, only
the adaptive term of the MRAC is contributing. In the next section, we want to
summarize and conclude our results.

4.4 Object Lifting Task Conclusion

In this chapter our goal was to follow a linear task space trajectory as presented in
section 4.1 while an unknown mass is lifted. This mass should be estimated during
the lift and used afterwards in the MPC controller to track additional trajectories.
We observe a difference between the simulation and the hardware tests w.r.t. the
contribution of the PID-controller in the actuators which originates from the much
higher sampling frequency on the hardware than in simulation and the influence of

40

0 2 4 6 8 10 12
-2

0

2

4

6

8

10

12

14

Time [s]

Estimated Force z-Direction

Fo
rc

e
 [

N
]

Figure 4.8: The estimated interaction force in z-direction for a mass of 2 kg

the integral term. Regarding the tracking performance of the lifting, the MRAC
and the combined MIAC MRAC controller have the best performance of all control
approaches. All interaction controllers presented in chapter 3 performed better
than the MPC alone. Nevertheless, the bad end effector force estimation on the
hardware diminishes the comparability between the control methods since the MIAC
controller depends on an accurate estimate. This is also visible in the overall worse
mass estimation on the hardware than in simulation. In summary, we can conclude
that the MRAC controller is favourable for the lifting if no or only inaccurate end
effector force estimation is possible. An improvement of the force estimation or
the use of a force sensor would improve the mass estimate and therefore also the
tracking after the lifting. This could also further improve the behavior of the MIAC
and the combined MIAC MRAC controllers and is therefore a promising attempt
for further research.

41

0 2 4 6 8 10 12
-2

0

2

4

6

8

10

12

14

MPC Force Input

Time [s]

In
p

u
t

[N
]

MRAC Adaptive Term

Figure 4.9: The force command of the MRAC sent to the MPC controller during
the lifting of the 2 kg mass

42

Chapter 5

Door Opening Task

In this chapter we use the derived control approaches from chapter 3 to open a
door with the ballbot. First, we describe in section 5.1 how we use the trajectory
generator from section 3.3 to generate the circular task trajectory which is updated
online based on an extended Kalman filter that tracks the door state. This online
circle estimator is presented in section 5.2. In section 5.3 we state the assumed
door model w.r.t. the door angle coordinates and how the dynamics of the door
model relate to the estimated dynamics along the task trajectory. In section 5.5 we
compare the different controllers in simulation, and in section 5.6 we present the
hardware test results. The results are concluded in section 5.7.

5.1 Door Opening Trajectory

To generate the circular door opening trajectory we assume that a good estimation
of the normal vector of the door surface, the door handle position and a rough
estimate of the door width can be acquired via a vision system. Based on these
the homogeneous transform HID from the handle frame (D) to the world frame (I)
can be computed as well as the homogeneous transform HIH from the door hinge
frame (H) to the world frame. From these the position vector from hinge to handle
in the hinge frame pHD can be computed. The rotation matrix of the handle around
the hinge frame is simply a rotation around the z-axis,

Rz(φ) =

cos(φ) −sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

 (5.1)

where φ is the door angle. The position of the handle at a certain angle is therefore

pHD(φ) = Rz(φ)pHD . (5.2)

The velocity of the handle at a certain angle is

ṗHD(φ, φ̇) = JHHDφ̇, (5.3)

with

JHHD =

−sin(φ) −cos(φ) 0
cos(φ) −sin(φ) 0

0 0 1

pHD . (5.4)

To use the time optimal trajectory generation algorithm from section 3.3, a desired
door opening angle φdes can be chosen as well as a maximal velocity of the door

43

44

angle φ̇max and a maximal acceleration φ̈max. This will generate a triangular or
trapezoidal velocity profile trajectory (φ(t), φ̇(t), t) w.r.t the door angle coordinates.
The reference task space position trajectory xd(t) can then be computed with

xd(t) = pIH +RIHp
H
D(φ(t)) (5.5)

with hinge position in world frame pIH and the task space velocity trajectory ẋd(t)
as

ẋd(t) = RIH ṗ
H
D(φ(t), φ̇(t)). (5.6)

The reference orientation RID(t) of the end effector can be written as

RID(t) = RIHRz(φ(t)) (5.7)

where RIH can be extracted from the homogeneous transform HIH .

5.1.1 Stiffness and Damping Matrix Trajectory

Since our main reason for using force control is to prevent high contact forces during
the interaction with the environment, we need to design the stiffness matrix Kp and
the damping matrix Kd of the impedance controller presented in section 3.4 in that
way. The design of the matrices is intuitive in the frame of the handle D (door
frame) since we want to achieve very high compliance in radial direction of the
door and lower compliance in the direction of the door opening trajectory. The
stiffness matrix should thus have a higher gain in tangential and a lower gain in
radial direction of the door opening path. Therefore, the stiffness and damping
matrices can be designed as diagonal matrices in the door frame KD

p , KD
d , but then

they need to be rotated to the world frame dependent on the angle φ(t), similar to
as it was done by Lee et al. [10] with

Kp(t) = RID(t)KD
p RID(t)T (5.8)

Kd(t) = RID(t)KD
d RID(t)T

where RID(t) is given by equation (5.7).
Since the desired trajectories (xd(t), ẋd(t), t) are based on prior estimates of the door
width, the normal vector of the door and the handle position under uncertainties,
we use an extended Kalman filter presented in the next section to observe the state
of the door and to recompute the trajectories to prevent high interaction forces due
to kinematic constraints.

5.2 Online Circle Estimation

To generate the door opening trajectory as presented in the last section, the position
of the door hinge and the initial position of the handle have to be known or acquired
via a vision system. Since such a system can be imprecise, we want to estimate the
door hinge position, radius and door angle online. In the work of Bellicoso et al.
[11], the Taubin method is used which is a fitting method to fit a circle to a data
set that is able to achieve good results for data points coming from a small angle
only. In this work we use an extended Kalman filter (EKF) to estimate the circle
since this allows us to include prior knowledge about the initial hinge and handle
position and the normal vector of the door surface.
We use the following coordinate system for the EKF. The state of the EKF x is
the circle radius r, the current angle φ, and the circle center in x-direction hx and

45

y-direction hy. The process model of the filter uses the end effector velocities vx
and vy

vx = rcos(φ)φ̇ (5.9)

vy = rsin(φ)φ̇.

The process model for the radius r and the circle center hx and hy are trivial since
they should not change. For the angle the process model is

φ̇ = s̃

√
v2x + v2y
r2

(5.10)

where s̃ ∈ {−1, 1} is determined depending on the halfplane we are located on and
on the choice if we close or open the door.
If we discretize with sampling time Ts, the discrete process model with process state
xp is received

xpk = qk−1(xmk−1, E(vk−1)) (5.11)

φ[k] = φ[k − 1] + s̃

√
v2x + v2y
r[k − 1]2

Ts + v̄[k − 1],

where v[k] is the process noise and v̄ is its mean value.
Using the nonlinear process model (5.11), the derivative w.r.t the state around
the current measurement state xm, the expectation of the process noise v̄ which is
assumed to be zero and the process noise variance Q is used to compute the process
state variance P pk .

Ak−1 =
∂qk−1

∂xk−1
(xmk−1, v̄k−1) (5.12)

Lk−1 =
∂qk−1

∂vk−1
(xmk−1, v̄k−1)

P pk = Ak−1P
m
k−1A

T
k−1 + Lk−1Qk−1L

T
k−1

The nonlinear measurement model zk = hk(xpk, wk) of the EKF with end effector

position px and py as measurement zk =
[
px py

]T
and measurement noise w =[

w1 w2

]T
is

px = r[k]sin(φ[k]) + hx[k] + w1[k] (5.13)

py = −r[k]cos(φ[k]) + hy[k] + w2[k].

To compute the update gain matrix Kk, the measurement update state xmk and the
measurement variance Pmk , the measurement model is linearized around the current
process state and measurement noise with expectation w̄k = 0 and variance Qk with

Hk =
∂hk
∂xk

(xpk, w̄k) (5.14)

Mk =
∂hk
∂wk

(xpk, w̄k).

(5.15)

46

Given a new measurement zk, the measurement update is computed with

Kk = P pkH
T
k [HkP

p
k−1H

T
k +MkRkM

T
k]−1 (5.16)

xmk = xpk +Kk[zk − hk(xpk, w̄k)]

Pmk = [I −KkHk]P pk .

The estimated door angle, radius and hinge position allows us to recompute the
trajectory from section 5.1 at a desired rate.

5.3 Door Model

In this section we describe the linear door model that we assume to encounter
during the door opening task and explain what this model implies on the estimated
parameters. For a door of mass md, with width w and thickness t, the linear
dynamic equations of the door with door angle φ can be written as

Mφ̈+Dφ̇+K(φ− φ0) + τstatic = τext. (5.17)

The door inertia M [Nms
2

rad] is

M = md(
w

2
)2 + Izz (5.18)

Izz =
1

12
md(w

2 + t2)

and the door has potentially some damping D [Nmsrad], a spring K [Nmrad] and static
friction τstatic [Nm]. If we assume that the force is applied by the robot only in
door surface normal direction at a distance r from the hinge, the environment model
along the trajectory from section 3.2.1 leads to the following equation in the hinge
frame H

(JHHD)TλHee = ru = τext (5.19)

r(mẍ+ dẋ+ k(x− x0) + fstatic) = Mφ̈+Dφ̇+K(φ− φ0) + τstatic.

With ẍ = rφ̈ and ẋ = rφ̇ the following relations are obtained,

m =
M

r2
(5.20)

d =
D

r2

fstatic =
τstatic
r

.

These relations imply that the estimation of the mass, the damping and the static
force along the trajectory shown in section 3.2.1 should lead to by r or r2 scaled
values of the door model parameters. More importantly, it also shows that the
parameters’ relation are constant along the trajectory as assumed in section 3.2
which makes the estimated model also correct in this circular motion.
Only for the spring stiffness, the linear stiffness value k will not have a constant

47

relation to circular stiffness value K since x − x0 = vT (x − x0) = rsin(φ) and for
φ0 = 0 therefore

k =
1

r2
Kφ

sin(φ)
. (5.21)

Since the estimated parameter is now also dependent on the current angle φ(t), our
assumption is violated and the estimated stiffness is not a constant scale of the true
one.
In equation (5.21) the projection of the Cartesian position error along the trajectory
vector v is used. If, on the other hand, the L2 norm is used, the relation between
k and K for φ0 = 0 would be

x− x0 = ||x− x0|| (5.22)

x− x0 = r
√

2(1− cos(φ))

k =
1

r2
Kφ√

2(1− cos(φ))
.

This formulation would be a better choice for a circular trajectory as long as φ < π
2 .

The relations (5.21) and (5.22) are visualized in figure 5.1. This figure shows the
arc lengths for r = 1 where 1) is the correct arc length l = rφ, 2) is the L2
norm approximation from equation (5.22) where l = r

√
2(1− cos(φ)) and 3) is the

projected approximation from equation (5.21) where l = rsin(φ).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Arc Length Approximation

Angle [rad]

A
rc

 L
e
n
g
th

 [
m

]

1)

2)

3)

Figure 5.1: Arc length approximation for radius r = 1

48

Because we want to be consistent regarding the choice of our model, which is a more
general formulation, we use the projection approach that results in equation (5.21),
and we are therefore aware that this should introduce an error in the dynamic
parameter estimates for a circular trajectory regarding the stiffness parameter.

5.4 MPC Cost for the Door Opening

In this section we describe a main challenge of using force control on the ballbot
for the door opening task and how we try to solve it.
When the ballbot should apply a high force in the transverse plane, the optimizer
will re-orientate the ball and base position so that the robot can shift its whole
body center of mass towards the direction of the applied force. This is a natural
and optimal behavior to apply high forces. In case of the door opening, the main
problem with this is that the base or the ball could crash with the door frame. Since
the distance between the end effector and the ball will increase if higher forces need
to be applied and because the force is applied on a circular trajectory, it is difficult
to avoid such a collision.
One solution would be to introduce a constraint on the base position in the optimal
control formulation. This approach did not yield good simulation results because it
influences all the cost parameters which are not trivial to tune.
Another approach that worked better in simulation was to keep the desired end
effector yaw straight, up to a certain angle, where we are safe to turn the ballbot so
that from then on forces can be applied in an optimal way. This method introduces
high torques around the yaw and roll direction when the yaw is held straight. To
avoid that the ballbot tilts too much and looses stability, the cost on the base roll
derivative term is increased from 10 to 100 which changes the MPC state cost from
equation (2.4) to

Trace(Qss v) =
[
20 20 20 10 100 20 3 10

]
. (5.23)

This approach works well in simulation, but it also reaches its limit when the door
demands very high forces to be applied. In the next section, we present the simu-
lation results of the derived controllers on the door opening task.

49

5.5 Simulation Results

To simulate a door in Gazebo and compare the controllers derived in chapter 3,
a door model is created in Gazebo with inertia M as shown in equation (5.18).
The damping D and static friction τs of the door are set with the joint dynamics
tag in the URDF file of the door model. To simulate a spring behavior, the door
hinge joint is proportionally controlled with a stiffness gain K. To compare the
performance of the environment interaction controllers, two different door models
are selected. The goal is to follow the desired door angle trajectory as accurately as
possible but also to open to door precisely to the desired final angle. We also want
to see if the controllers that use the estimated environment dynamics at the end
effector perform better in a second attempt when they are initialized with already
estimated parameters.
The diagonal stiffness and damping matrix gains of the impedance controller from
section 3.4 are

Trace(KD
p) =

[
40 10 40

]
(5.24)

Trace(KD
d) =

[
10 3 10

]
,

since for the door opening the matrix KD
p and KD

d are defined in the door frame
as described in section 5.1.1 and we want high compliance in the radial direction of
the door. The RLS estimator to estimate the environment’s dynamics’ parameters
is initialized with initial mean and variance

m0 = 0.1 (5.25)

σ2
m = 0.1

d0 = 0.1

σ2
d = 0.1

k0 = 0.1

σ2
k = 0.1

fs0 = 1

σ2
f = 0.1

and the measurement noise variance is set to R = 0.1. This initialization means
that we have no prior knowledge about any parameter, but that we assume that all
of them can occur in the dynamics of the environment. The adaptive controller has
the same parameters as used for the lifting task in equation (4.5) and (4.6).

In the following we present the simulation results conducted on two different doors
which we refer to as the light and heavy door due to their different dynamics’ char-
acteristics.

Light Door

The door model used for the first experiment has the parameters M = 9.6Nms
2

rad ,

D = 3Nmsrad , K = 0Nmrad and τs = 5Nm and the goal is to open the door by 70
degrees.
The results of the simulation experiment for the light door are visualized in table
5.1. The root mean square error (RMSE) of the tracking of the angle trajectory

50

MPC
Only

Impedance
Control

MIAC MRAC
Combined
MIAC
MRAC

RMSE Tracking
Error [deg]

12.79 4.36 1.31 1.81 2.10

Final Angle
Error [deg]

-12.15 -4.07 0.58 1.55 1.36

Estimated
Mass [kg]

- - 0.39 0.39 0.40

Estimated
Damping [Ns/m]

- - 3.65 3.87 3.63

Estimated Spring
Stiffness [N/m]

- - 0.66 0.63 0.70

Estimated Static
Force [N]

- - 4.40 4.41 4.50

Table 5.1: Controller performance comparison for the light door

shows an improvement by using the impedance controller from section 3.4 over the
MPC only method where no interaction controller is used. Also the final angle
error becomes much smaller. The MIAC controller from section 3.5, the MRAC
controller from section 3.6 and the combined MIAC MRAC controller presented in
section 3.7.1 provide a major improvement compared to the impedance controller.
The final angle error is below 2 degrees for all three controllers. In this experiment
the MIAC controller performed best.
The estimated dynamic parameters of the door (mass, damping, spring stiffness and
static force) are consistent between the controllers. Since the door radius r is in
this case 1 m, the relations from section 5.3 would imply that the mass, damping
and static force can be compared without any scaling to the simulation parameters
of the door. We can observe that the damping, spring stiffness and static force are
close to the correct one. Only the mass is highly underestimated.
To reinforce our motivation that MIAC and the combined MIAC MRAC controller
can use the estimated parameters to perform better in a second attempt, the sim-
ulation is run again while the RLS estimator is initialized with the values from the
first run. The results are visualized in table 5.2. We see that the RMSE tracking
error is smaller than in the first attempt, but the final angle error is slightly larger
in both cases. While the mass, spring stiffness and static force converged again close
to the estimates from the first run, the damping increased. This will be discussed
after the results of the heavier door experiment in the next section.

Heavy Door

The door model used for the second experiment has the parameters M = 24Nms
2

rad ,

D = 6Nmsrad , K = 3Nmrad and τs = 15Nm and the goal is to open the door by 70
degrees. The handle is again at a 1 m distance from the hinge. All controllers use
the same parameters as for the light door in section 5.5.

The results of the second experiment are shown in table 5.3. Since the door is
heavier, it demands a larger amount of force. Therefore, the MPC alone performs
poorly, but also the impedance controller does not yield the desired results without
reshaping the stiffness and damping matrices. On the other hand the MIAC, the

51

MIAC
Combined
MIAC
MRAC

RMSE Tracking
Error [deg]

0.68 2.90

Final Angle
Error [deg]

0.71 1.39

Estimated
Mass [kg]

0.43 0.43

Estimated
Damping [Ns/m]

4.41 4.26

Estimated Spring
Stiffness [N/m]

0.60 0.68

Estimated Static
Force [N]

4.73 4.76

Table 5.2: Controller performance comparison for the light door where controllers
are initialized with already estimated parameters

MPC
Only

Impedance
Control

MIAC MRAC
Combined
MIAC
MRAC

RMSE Tracking
Error [deg]

33.63 12.71 3.24 2.22 2.87

Final Angle
Error [deg]

-47.37 -15.47 0.83 2.29 1.82

Estimated
Mass [kg]

- - 1.45 1.41 1.50

Estimated
Damping [Ns/m]

- - 9.90 8.21 9.83

Estimated Spring
Stiffness [N/m]

- - 2.47 2.40 2.55

Estimated Static
Force [N]

- - 13.93 13.91 14.54

Table 5.3: Controller performance comparison for the heavy door

MRAC and the combined MIAC MRAC controllers again performed very well with
a small angle tracking error. They also ended with a reasonable small angle error
at the end of the task.
The estimated parameters of the spring stiffness and static force are close to the
real values which was also the case for the lighter door. However, the mass is highly
underestimated and the damping is overestimated. Using the estimated parameters
for a second run improved the angle tracking as shown in table 5.4. As for the light
door, all parameters but the damping remain close to the initial values, while the
estimated damping increased.
We think that the damping overestimation occurs because the mass is underesti-
mated. This could be related to the choice of our estimation model described in
section 3.5.3. Since we estimate the parameters in discrete time, we do not use

52

an acceleration measurement but only the velocity of the end effector. This could
impair the accuracy of the mass estimation if also the damping is estimated, and
it leads to an overestimation of the damping term. In case of the lifting task in
section 4.2, the mass estimation is accurate, but no damping is estimated there. To
overcome this issue, a lower variance could be chosen for the damping parameter in
the second run, when the estimator is initialized with already estimated parameters.

MIAC
Combined
MIAC
MRAC

RMSE Tracking
Error [deg]

1.67 2.22

Final Angle
Error [deg]

1.32 1.27

Estimated
Mass [kg]

1.53 1.50

Estimated
Damping [Ns/m]

13.06 12.83

Estimated Spring
Stiffness [N/m]

2.89 2.80

Estimated Static
Force [N]

14.10 13.98

Table 5.4: Controller performance comparison for the heavy door where controllers
are initialized with already estimated parameters

Since the MIAC controller performed best for both door models, we want to present
the door angle tracking for the heavier door model in figure 5.2. The EKF for the
angle estimation is initialized with a 5 cm offset in x- and y-direction. In simulation
the state of the measured door angle is available which is marked with “Measured”
in figure 5.2. However, the door angle state of the EKF is used as measured value
for the controller since when a real door is opened no measurement of the door an-
gle is available. The door opening starts at second 7 and the estimated door angle
converges to the desired one at second 22. The desired trajectory is recomputed
with a rate of 4 Hz given the current estimates of the door radius, hinge center
position and the current desired position.

53

5 10 15 20 25 30 35 40
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

Time [s]

D
o
o
r

A
n
g

le
 [

ra
d
]

Measured

EKF Estimated

Desired

Door Angle Tracking

Figure 5.2: Door angle tracking with the MIAC controller

In figure 5.3 the estimated dynamics parameters of the MIAC controller which are
fed back to the MPC system dynamics, are plotted over time. We see that all
parameters converged except the spring stiffness which was still increasing until the
end of the task. Figure 5.4 shows the corresponding input force of the impedance
controller which is initially large when the tracking error is large but converges to
zero as the estimated environment parameters converge. In the next section the
performance of the interaction controllers is presented on the hardware tests.

54

5 10 15 20 25 30 35
-2

0

2

4

6

8

10

12

5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

Environment Dynamics Estimation

Time [s]

Time [s]

D
a
m

p
in

g
 [

N
s/

m
],

 S
ta

ti
c
 F

o
rc

e
 [

N
]

M
a
ss

 [
k
g

],
 S

ti
ff

n
e
ss

 [
N

/m
]

14

Static Force

Damping

Spring Stiffness

Mass

Figure 5.3: Estimated parameters with the MIAC controller that are set in the
MPC system dynamics

55

5 10 15 20 25 30 35 40
-2

0

2

4

6

8

10

Time [s]

In
p
u
t

[N
]

MPC Input

Impedance Controller Input

Figure 5.4: The commanded force of the MIAC sent to the MPC controller during
the door opening

56

5.6 Hardware Results

The door opening with the ballbot hardware is performed on a wooden door shown
in figure 5.5 which has a width of 90 cm and a handle that is located at around 84
cm away from the door hinge position. This door does not have a door closer and
thus no spring behavior. As in simulation, the goal is to open the door by 70°. Since
the door alone is very light to open, it does not represent a challenging environment
and the robot-environment interaction controllers from chapter 3 behave all equally
good. Therefore, we place two boxes of different sizes and weights behind the door
which makes the task more challenging.

Figure 5.5: The door with the heavy box

57

The two boxes used with their weights and dimensions are described in table 5.5.
Since it is difficult to avoid a collision by the ball with the door frame due to
the robot’s limited DOF and the small distance between the handle and the door
frame, we extend the handle of the door with the setup shown in figure 5.6. In the
following, we present the results for the light and the heavy box. The controllers
and estimators are all initialized the same way as described in the simulation results
in section 5.5. These parameters were found to yield good results in simulation and,
therefore, we want to test their general applicability to the two different doors.

Light Box Heavy Box
Weight 1.5 kg 4.2 kg
Base Size 16.5 x 27 cm 27 x 37 cm

Table 5.5: The box weight and dimension

Figure 5.6: The handle extension

Light Box

For the light box, forces around 10 - 15 N need to be applied to move the door. This
is a force range that is applied well by the ballbot without the needing to incline a
lot. The table 5.6 summarizes the results.
The tracking error results show a similar distribution as in the simulation. For
the impedance controller, the tracking error is very large, whereas for the MIAC,
the MRAC and the combined MIAC MRAC controllers, it is comparably small.
Different from the simulation, the MRAC controller has the smallest tracking error
instead of the MIAC controller. Also, the final door angle error for these three
controllers is in an acceptable range below 5 degrees. The estimated dynamic pa-
rameters of the door are consistent between the controllers regarding the mass and
static force. The damping parameter is estimated much higher in the combined
MIAC MRAC controller than in the individual ones. Also, the spring stiffness esti-
mate becomes negative in the combined approach.

58

Impedance
Control

MIAC MRAC
Combined
MIAC
MRAC

RMSE Tracking
Error [deg]

13.81 2.98 1.81 2.56

Final Angle
Error [deg]

-16.21 1.07 1.60 3.90

Estimated
Mass [kg]

- 1.44 1.33 1.45

Estimated
Damping [Ns/m]

- 12.97 13.62 27.88

Estimated Spring
Stiffness [N/m]

- 1.02 1.51 -0.32

Estimated Static
Force [N]

- 10.71 11.00 10.04

Table 5.6: Controller performance comparison for the light box

To compare the behavior and characteristics of the different approaches, figure 5.7
shows the cumulative door angle tracking error of all controllers in %. We can
observe at second 12.5, which is approximately in the middle of the task, that the
cumulative tracking error of the impedance controller marked as “PD” is below 50%
which means that most of the error is yet to come and, thus, this controller does
not improve over time.
The cumulative tracking error of the MRAC and combined MIAC MRAC controllers
is around 50% and for the MIAC controller it is close to 90%. This result implies
that the estimated parameters that are used in the MIAC controller seem to be phys-
ically correct because the error curve is flattening as time evolves, and the tracking
becomes nearly perfect. Although the MRAC controller derivation promises the
tracking error to converge to zero, we observe small oscillations around the refer-
ence point. This can be related to the choice of the update gain matrix Kπ which
is either too high or too low, but also to the fact that the reference point is not
constant but advancing over time. The combined MIAC MRAC controller has a
very constant tracking error over the task that does not converge which implies
that the high damping that is estimated is incorrect and could be caused by the
interaction of the controllers due to the closed-loop system identification.

Heavy Box

For the heavier box, forces in the range of 20 − 30N need to be applied by the
robot. In simulation such a demanding door could not be simulated successfully
because of the contact between the gripper and the handle which was not rigid
enough for these forces. In some runs of the hardware tests, the door could not
be opened because the ball collided with the door frame and blocked which lead
to a controller failure. This happened sometimes for the MRAC and the combined
MIAC MRAC controller since the adaptive term can lead to an oscillation of the
commanded forces which peaks can reach 30N . At these peak forces the ballbot is
inclined so much that a door opening becomes impossible. Table 5.7 summarizes
the results in the cases where the door could be opened successfully.

59

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100
Cumulative Tracking Error

Time [s]

C
u
m

u
la

ti
v
e
 T

ra
ck

in
g

 E
rr

o
r

[%
]

MIAC + MRAC

PD

MRAC

MIAC

12.5

Figure 5.7: Cumulative tracking error comparison between all controllers for the
light box

Impedance
Control

MIAC MRAC
Combined
MIAC
MRAC

RMSE Tracking
Error [deg]

16.86 5.13 2.219 5.73

Final Angle
Error [deg]

-14.9 2.58 2.69 -8.59

Estimated
Mass [kg]

- 3.3 2.5 4.82

Estimated
Damping [Ns/m]

- 22.13 22.07 58.57

Estimated Spring
Stiffness [N/m]

- 6.2 0.6 -7.03

Estimated Static
Force [N]

- 21.28 16.06 19.4

Table 5.7: Controller performance comparison for the heavy box

60

For the heavier box, the tracking error and the final door angle error of the MIAC
and MRAC controllers increased only a bit which still resulted in a very good
performance. The combined MIAC MRAC controller has larger oscillations around
the reference point and similar to the light box, the damping is overestimated and
the spring stiffness becomes negative. The tracking of the MIAC controller and the
evolution of the estimated parameters for the two doors with different boxes shows
a very similar behavior to the simulation results in section 5.5. The sequence of the
door opening with the MIAC controller is shown in figure 5.8.

Figure 5.8: The door opening sequence using the MIAC controller with the heavy
box behind the door

61

Since the MRAC controller performed best for this task, we present the data of the
angle tracking in figure 5.9 and the commanded force of the MRAC controller that
is set in the MPC system dynamics figure 5.10. We can see that the tracking error is
not converging to zero and that the force from the adaptive controller is oscillating.
This could be caused by the update gains of the adaptive terms. Nevertheless, the
tracking error is very small and the door can be accurately opened.

0 5 10 15 20 25 30
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4
Door Angle Tracking

Time [s]

D
o
o
r

A
n
g
le

 [
ra

d
] Desired

EKF Estimated

Figure 5.9: Door angle tracking

In section 5.5 we stated the motivation that the MIAC and the combined MIAC
MRAC controller can be initialized with the estimated parameters for a second
attempt to perform better. This behavior could not be verified on the hardware
since the disturbance observer is too slow so that the estimated parameters decrease
before they increase again, similar to as it is described for figure 4.1 and figure 4.2
in section 4.2. In the next section, we summarize and conclude the door opening
task results.

62

0 5 10 15 20 25 30
-2

0

2

4

6

8

10

12

14

16

Time [s]

In
p
u
t

[N
] MRAC Adaptive Term

MRAC PD Term (=Impedance Controller)

MPC Force Input

Figure 5.10: The commanded force of the MRAC sent to the MPC controller during
the door opening

5.7 Door Opening Task Conclusion

In this chapter we presented how we use the trajectory generation algorithm from
section 3.3 to create the circular trajectory with a trapezoidal profile w.r.t. the
door angle in section 5.1. To update the trajectory depending on the current door
state and the inaccuracies in the prior estimate of the door dimensions, we use an
extended Kalman filter presented in section 5.2 to estimate the door radius, angle
and hinge position online to recompute the target trajectory.
In section 5.5 we applied the control algorithms from chapter 3 in simulation on two
different doors. We could observe that the estimated dynamic parameters along the
trajectory cannot be directly related to the dynamic parameters of the door model
in the simulation using the relations described in section 5.3. Nevertheless, the
estimated parameters along the trajectory that are used for control in the MIAC
controller have a positive effect and decrease the tracking error over time which
could be shown by the hardware tests and is visible in figure 5.7.
If we compare the hardware test results from section 5.6 with the simulation results,
we see that they are very consistent which indicates the accuracy of the Gazebo
simulation. On the hardware the MIAC controller did not perform as well as in
simulation. This is related to the influence of the PID-controller in the actuators

63

and its effect on the force estimation, similar to as it is written in the conclusion of
the lifting task in section 4.4.

The main problem and challenge of opening a door with the ballbot is to avoid
a collision between the ball and the door frame since the ballbot inclines more to
apply higher forces. This limits the type of doors that can be opened. To avoid a
collision, an additional constraint could be introduced into the MPC problem which
limits the allowed ball position during the door opening. However, this could also
introduce additional problems regarding the tuning of the whole-body cost param-
eters described in section 2.3 and the stability of the control approaches derived in
chapter 3.
Comparing the tracking error results of the simulation and the hardware test, we
observe that the impedance controller derived in section 3.4 is insufficient for an
accurate tracking. Reshaping the stiffness and damping matrices to higher values
could improve the performance, but it could also diminish the stability for the inter-
action with other doors. This makes the impedance controller without any adaption
or online identification possibilities unusable as a general controller for such robot-
environment interaction tasks.
The best controller regarding the tracking error on the hardware for the opening of
a door to 70° was the MRAC controller. Although we could not observe a conver-
gence of the tracking error completely to zero over time, the MRAC could quickly
adapt and stay close to the reference point. The controller was stably oscillating
around the reference point.
Nevertheless, the MIAC controller is an interesting and promising approach in com-
bination with the MPC controller. Figure 5.7 shows that the MIAC controller has
a converging tracking error over time, and that parameters that are fed back to the
MPC make the MPC aware of the environment and enable a stable interaction. The
only drawback of the MIAC controller is that it needs more time for the parame-
ters to converge. If a door is opened only up to e.g. 40° with the same trajectory
velocity, the MIAC controller could perform as bad as the impedance controller
regarding the tracking because the DOB from section 3.5.2 is too slow, whereas the
MRAC controller would have performed well. On the other hand if the door should
be opened up to e.g. 120°, the MIAC controller could outperform the MRAC con-
troller because its tracking error is converging as the parameters converge, whereas
the MRAC is slightly oscillating around the reference point.
These results suggest to either improve the DOB by making it possible that the
measured actuator torque and not the commanded actuator torque can be used or
to derive a different formulation of the DOB itself which is not a strong low-pass
filtered estimate of the true value and thus does not have a large delay. Another
approach would be to use a force sensor behind the gripper which could immediately
measure the current robot-environment interaction force.

Regarding this analysis between the MIAC and the MRAC controller, the former
expectation of using the combined MIAC MRAC controller was to see a quick ini-
tial adaption of the MRAC controller to quickly decrease the tracking error and
then a convergence of the tracking error to zero due to the influence of the esti-
mated parameters as for the MIAC controller. However, a better performance of
the combined approach could not be observed. A reason for this could be that
the update rates of the MRAC controller were too aggressive regarding the slower
convergence of the MIAC controller. Another reason could be that since we used
the commanded actuator torque instead of the measured one and since we make
a closed-loop system identification, the MRAC controller influences the estimation
of the parameters. This could have caused the overestimated damping values and
thus an incorrect representation of the environment. Nevertheless, we think that

64

further research regarding a combination of an adaptive controller with online sys-
tem identification as it is done with the combined MIAC MRAC controller could
lead to promising results. We refer to a different combination approach in the next
chapter.

Chapter 6

Conclusion and Outlook

In this chapter we summarize and conclude our work and give an outlook for im-
provements and additional methods that can be used and applied to the ballbot
system.

6.1 Summary and Conclusion

In this thesis we successfully derived, implemented and tested control methods for
robot-environment interaction control based on an MPC controller using force con-
trol. We achieved our goal which was to keep the methods generally applicable
which is demonstrated by the fact that the same control methods can be used for
the door opening and the lifting task. Other application cases will be suggested in
the outlook in section 6.2. Also the premodelling regarding the controllers and the
model in the MPC was minimized compared to the work of e.g. Lee et al. [9] so
that no mass of the door needs to be known and the door itself is not a part of the
MPC controller. The derived controllers are able to adapt to the environment with
adaptive control or online system identification and are based on a very general
model along the task trajectory.
In section 2.3 we presented the MPC controller that we are working with in this
thesis. We set the desired end effector force or the estimated parameters of the
environment’s dynamics from the interaction controllers, presented in chapter 3, in
the system dynamics of the MPC controller. This makes the MPC adaptive to its
current environment.
In section 3.2 we state all assumptions based on which we derive and analyze the
interaction controllers. A major assumption is that we can describe the environ-
ment as a mass, damper, spring, static force LTI-system along the task trajectory.
The assumption that the environment can be characterized as a general mechanical
system with constant parameters over an interaction interval makes it possible to
derive controllers using the classical linear control theory, online system identifica-
tion and the adaptive control theory.
The simplest and most used control method in the literature about robot-environment
interaction is impedance control presented in section 3.4. Although the stability of
this controller can be analyzed by assuming that the environment’s dynamics’ pa-
rameters are limited to some upper and lower bounds, we observed that the stiffness
and damping gains of the impedance controller have to be chosen compliant to avoid
instabilities when it is combined with the MPC controller. But also with a com-
pliant impedance controller, better results regarding the trajectory tracking under
robot-environment interaction were achieved than in the cases where the MPC con-
troller was running alone. However, as soon as high static forces are demanded, the

65

66

impedance controller does not perform very well which became clear in the simula-
tion and hardware tests of the door opening task in section 5.5 and 5.6 where large
tracking errors occurred and the door could not be opened up to the desired angle.
A large improvement can be measured when the model identification adaptive
controller (MIAC) presented in section 3.5 is used. This controller also uses the
impedance controller but estimates at the same time the mass, damping, spring
stiffness and static force of the environment’s dynamics using recursive least squares.
The estimated parameters are fed to the MPC, making the MPC controller adap-
tive to the environment. The simulation and hardware tests have revealed that as
the estimated parameters start to converge, also the tracking error and the contri-
bution of the impedance controller are converging towards zero. Since we use the
disturbance observer presented in section 3.5.2 to estimate the interaction forces
at the end effector through the generalized torques, the convergence of the MIAC
controller is not as fast as the one of the MRAC controller. For both tasks, the door
opening and the lifting, a better performance of the MIAC controller could be ob-
served in the simulation than in the hardware tests. A major reason for this is that
the commanded actuator torques needed to be used instead of the measured actu-
ator torques because we observed a non-constant offset and drift in the measured
actuator torque. Since the actuator commands as presented in equation (3.1) are
computed at a very high frequency of 1500 Hz in the drives, while we only approx-
imate the command at 400 Hz, neglecting the integral term of the PID-controller,
we lose much of the feedback contribution of the PID-torques. This also explains
the worse mass estimation of the lifted object in the hardware tests from section
4.3 than in simulation presented in section 4.2.
The best performance in all hardware tests achieved the model reference adaptive
controller (MRAC) derived in section 3.6. The MRAC achieved the best refer-
ence tracking because of the fast adaption rate which minimizes the tracking error
quickly. We could not see a complete convergence of the tracking error to zero as
the derivation of the controller would promise, but measured a small oscillation
around the reference point. The reason for this could either be the adaption rate
which makes the controller behave differently depending on the environment, but
also the reference point which is advanced at each time step and thus does not allow
a complete tracking convergence. An advantage of the MRAC controller is that no
force estimation is needed.
The last control method that was tested is the combined MIAC MRAC controller
described in section 3.7.1. The intuition behind this controller was that the adap-
tive term should improve the tracking performance in the initial phase similar to
the fast adaption of the MRAC controller. This should also stabilize and improve
the parameter estimation of the MIAC approach due to the innovation of the force
input signal on the environment generated by the MRAC controller. However, a
better performance regarding the tracking error could not be observed in the sim-
ulation and hardware tests. The combination even had a negative influence on the
parameter estimation in the door opening task. While estimating the environment’s
dynamics’ parameters under the MRAC and MIAC controller gave consistent re-
sults, the damping was overestimated using the combined approach. It seems that
the adaptive controller has a negative influence on the parameter estimation. One
reason for this could be related to the adaption rates of the adaptive controller which
were chosen too large or too small. Another reason could be that the commanded
actuator torque was used for the force estimation and thus a stronger influence of
the adaptive controller on the parameter estimator happened since we have a closed-
loop system identification. Nevertheless, we believe that a proper combination of
the adaptive and the identification adaptive approach could lead to even better re-
sults. The simulation and hardware tests of the object lifting task have shown the
strength of the combined approach, which had a decent tracking performance with

67

a good estimate of the mass of the lifted object.
In the next section, we want to give an outlook about which other robot-environment
interaction tasks could be attempted with our controllers and what could be im-
proved in future research.

6.2 Outlook

The controller that can be improved the most regarding its performance is the
MIAC controller. As we described in the last section, the usage of the commanded
instead of the measured actuator torque lead to an underestimation of the object’s
mass in the lifting task. Improving the quality of the measured actuator torques
would make it possible to correctly include the contribution of the PID-terms for
the interaction force estimation at the end effector using the disturbance observer
(DOB). However, using the DOB introduces a delay in the estimation of the end
effector force and, therefore, also affects the performance of the MIAC controller
due to the rate of the parameter estimation using recursive least squares (RLS).
Therefore, a major improvement could be made by using a force sensor at the end
effector. If the filtering of the force sensor data can be done without a large delay
while still removing high force peaks that would destabilize the RLS algorithm, the
performance of the MIAC controller could be improved a lot.
Although running the combined MIAC MRAC controller as we describe it in section
3.7.1 did not improve the control performance in the expected way, there are other
ways on how to combine the adaptive with the identification adaptive method. One
promising approach that could not be investigated in more depth in this thesis is
the method described by Espinoza and Roascio [24] summarized in section 3.7.2.
Maybe it would be possible to formulate the combination of the two approaches as
one optimization problem, namely the minimization of the prediction or estimation
error of the online system identification method and the minimization of the track-
ing error as it is done for the adaptive controller to receive optimal values for the
adaption rates in the adaptive controller and update rates in the estimator which
are then optimally compatible.
To finalize our work, we want to give two additional application cases where our
controllers could be directly applied thanks to their general formulation and appli-
cability. The controllers presented in this thesis could be used for a cleaning task
similar to the application case described in the paper of Leidner et al. [13]. While
in the approach of Leidner et al., the mass of the lifted cleaning tool needed to be
known, the mass can be unknown with our approach since it is estimated online and
the interaction controllers allow to lift it precisely as it is done in chapter 4. Our
controllers could then also be used to track the cleaning trajectory in the window
plane, compensating the unknown interaction forces caused by friction and damping
between the cleaning tool and the window.
Another application case could be the steering of a service trolley along a trajectory.
Our interaction controllers would make it possible to precisely follow the desired
trajectory with the robot that grasps the service trolley while adapting to the un-
known mass of the trolley, the static force caused by the wheel friction and the
damping effects.
These tasks are ideas for further research in the derivation and application of meth-
ods for robot-environment interaction control.

68

Bibliography

[1] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modelling, Plan-
ning and Control. Springer, 2010.

[2] C. Natale, Interaction Control of Robot Manipulators: Six-Degrees-of-Freedom
Tasks. Springer, 2003.

[3] M. Vukobratovic, D. Surdilovic, Y. Ekalo, and D. Katic, Dynamics and Robust
Control of Robust Robot-Environment Interaction. World Scientific Publishing,
2009.

[4] K. Bodie, C. D. Bellicoso, and M. Hutter, ANYpulator: design and control of a
safe robotic arm, in IEEE International Conference on Intelligent Robots and
Systems, 2016, 1119–1125.

[5] F. Farshidian, M. Neunert, A. W. Winkler, G. Rey, and J. Buchli, An efficient
optimal planning and control framework for quadrupedal locomotion, in IEEE
International Conference on Robotics and Automation, 2017, 93–100.

[6] F. Farshidian, E. Jelavic, A. Satapathy, M. Giftthaler, and J. Buchli, Real-time
motion planning of legged robots: A model predictive control approach, IEEE-
RAS 17th International Conference on Humanoid Robots, 2017, 577–584.

[7] F. Farshidian, M. Kamgarpour, D. Pardo, and J. Buchli, Sequential linear
quadratic optimal control for nonlinear switched systems, IFAC-PapersOnLine,
50, 2017, 1463–1469.

[8] M. V. Minniti, F. Farshidian, R. Grandia, and M. Hutter, Whole-body MPC
for a dynamically stable mobile manipulator, IEEE Robotics and Automation
Letters, 4, 2019, 3687–3694.

[9] D. Lee, H. Seo, D. Kim, and H. Jin Kim, Aerial manipulation using model pre-
dictive control for opening a hinged door, in arXiv preprint arXiv:2003.08256,
2020.

[10] J. Lee, A. Ajoudani, E. M. Hoffman, A. Rocchi, A. Settimi, M. Ferrati, A. Bic-
chi, N. G. Tsagarakis, and D. G. Caldwell, Upper-body impedance control
with variable stiffness for a door opening task, in 14th IEEE-RAS Interna-
tional Conference on Humanoid Robots, 2014, 713–719.

[11] C. D. Bellicoso, K. Krämer, M. Stäuble, D. Sako, F. Jenelten, M. Bjelonic, and
M. Hutter, ALMA - Articulated locomotion and manipulation for a torque-
controllable robot, in IEEE International Conference on Robotics and Automa-
tion, 2019, 8477–8483.

[12] K. Bodie, M. Brunner, M. Pantic, S. Walser, P. Pfändler, U. Angst,
R. Siegwart, and J. Nieto, Active interaction force control for omnidirectional
aerial contact-based inspection, in arXiv preprint arXiv:2003.09516, 2020.

69

Bibliography 70

[13] D. Leidner, A. Dietrich, F. Schmidt, C. Borst, and A. Albu-Schäffer, Object-
centered hybrid reasoning for whole-body mobile manipulation, in IEEE In-
ternational Conference on Robotics and Automation, 2014, 1828–1835.

[14] P. Fankhauser, C. Gwerder, S. Leutenegger, F. Colas, and R. Siegwart,
Modeling and Control of a Ballbot, Bachelor Thesis, ETH Zurich, 2010.

[15] J. Mǐseikis, P. Caroni, P. Duchamp, A. Gasser, R. Marko, N. Mǐseikiene,
F. Zwilling, C. de Castelbajac, L. Eicher, M. Früh, and H. Früh, Lio
– A Personal Robot Assistant for Human-Robot Interaction and Care
Applications, IEEE Robotics and Automation Letters, 5, 2020, 5339–5346.

[16] M. Shomin, J. Forlizzi, and R. Hollis, Sit-to-stand assistance with a balancing
mobile robot, in IEEE International Conference on Robotics and Automation,
2015, 3795–3800.

[17] J. Preisig, D. Sako, J.-P. Sleiman, and M. Hutter, Development of the Con-
trol Structure for the DynaArm and Visual Servoing guided Apple Grasping,
Master Thesis, ETH Zurich, 2020.

[18] F. Ramos, M. Gajamohan, N. Huebel, and R. D’Andrea, Time-optimal online
trajectory generator for robotic manipulators, 2013.

[19] F. Angelini, G. Xin, W. J. Wolfslag, C. Tiseo, M. Mistry, M. Garabini,
A. Bicchi, and S. Vijayakumar, Online optimal impedance planning for legged
robots, in IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), 2019, 6028–6035.

[20] Z. Öreg, H. S. Shin, and A. Tsourdos, Model identification adaptive con-
trol - implementation case studies for a high manoeuvrability aircraft, in 27th
Mediterranean Conference on Control and Automation, 2019, 559–564.

[21] C. Erdogan, M. Zafar, and M. Stilman, Gravity and drift in force / torque
measurements, Tech. Rep., 2014.

[22] R. Grandia, D. Pardo, and J. Buchli, Contact invariant model learning for
legged robot locomotion, IEEE Robotics and Automation Letters, 3, 2018,
2291–2298.

[23] N. T. Nguyen, Model-Reference Adaptive Control. Springer, 2018.

[24] A. T. Espinoza and D. Roascio, Concurrent adaptive control and parameter
estimation through composite adaptation using model reference adaptive con-
trol/Kalman filter methods, in IEEE Conference on Control Technology and
Applications, 2017, 662–667.

