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Abstract

Nowadays, so many services – including critical ones – rely on the Internet
to work that even a few minutes of connectivity disruption make customers
unhappy and cause sizeable financial loss for companies. Ensuring that
customers are always connected to the Internet is thus a top priority for Internet
service providers. However, this is harder than one may think because the
Internet is often subject to network outages.

Network outages are a headache for network operators because they are
unpredictable, can occur in any of the 70,000 independently operated networks
composing the Internet, and can a�ect users’ connectivity network-wide. Far
too often, the only way to restore connectivity upon an outage is to wait that
(i) BGP, the glue of the Internet, converges; and (ii) the routers update their
forwarding decisions accordingly. Unfortunately, these two processes work on a
per-destination basis and are thus inherently slow given the always-increasing
number of destinations in the Internet. It is therefore not a surprise that network
operators still experience minutes of downtime upon outages.

In this dissertation, we tackle the problem of fast connectivity recovery upon
outages occurring in remote networks, without requiring network operators to
change the standards, manufacture new devices, or cooperate with each other.
The final result of our work is Snap, a framework that network operators can
deploy on their routers and allows them to quickly detect outages and reroute
tra�c to working alternative paths that comply with the configured routing
policies. Snap’s design follows a two-step recipe. First, it uses an outage
inference algorithm based on new fundamental results and which, instead of
waiting for the slow control-plane (BGP) notifications, analyzes the fast data-
plane signals. Second, it uses a rerouting scheme that allows routers to quickly
reroute all the a�ected tra�c to alternative paths circumventing the outage.

Snap’s design takes advantage of the recent advances in network programma-
bility and relies on a hardware-software codesign. To be fast, Snap collects
data-plane signals at line-rate using programmable switches (e.g., Tofino). The
switches then mirror the signals to a controller, which accurately infers remote
outages and triggers tra�c rerouting. We implemented Snap in P416 and
Python and show its e�ectiveness in many real-world situations. Our results
indicate that Snap can restore connectivity within a few seconds only, which is
much faster than the few minutes often needed by traditional routers.
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Résumé

De nos jours, il y a tellement de services – dont certains essentiels – qui
dépendent d’Internet que quelques minutes seulement de pertubation sur la
connexion su�sent à rendre les utilisateurs mécontents et peuvent causer de
lourdes pertes financières aux entreprises. S’assurer que les clients soient
toujours connectés à l’Internet est donc une priorité absolue pour les opérateurs
réseaux. Cependant, cela est plus di�cile qu’il n’y paraît, parce que l’Internet
est souvent sujet à des pannes réseaux.

Les pannes réseaux sont un casse-tête pour les opérateurs réseaux parce qu’elles
sont imprévisibles, peuvent arriver dans chacun des 70000 réseaux autonomes
formant l’Internet, et peuvent a�ecter la connectivité sur l’ensemble du réseau.
Bien trop souvent, la seule façon de rétablir la connectivité lors d’une panne est
d’attendre que (i) BGP, le protocole de routage qui fait fonctionner l’Internet,
converge et que (ii) les routeurs mettent à jour leurs décisions pour envoyer les
paquets vers un nouveau chemin. Malheureusement, ces deux tâches exigent
la réalisation d’actions pour chacune des destinations a�ectées par la panne
et sont par conséquent intrinséquement lentes étant donné que le nombre de
destinations dans l’Internet ne fait qu’augmenter avec le temps.

Dans cette thèse, on s’attaque au problème de rétablissement rapide de la
connectivité lors de pannes arrivant dans des réseaux distants, sans exiger
des opérateurs réseaux de modifier les normes, de produire de nouveaux
équipements, ou de coopérer entre eux. Le résultat final de cette thèse
est Snap, un système que les opérateurs réseaux peuvent déployer sur leurs
routeurs, leur permettant de rapidement détecter les pannes et rerouter le trafic
vers des routes alternatives qui fonctionnent et qui respectent les politiques
de routages configurées. Le design de Snap s’appuie sur deux ingrédients
clés. Premièrement, il utilise un algorithme d’inférence de pannes basé sur
de nouveaux résultats fondamentaux et qui, au lieu d’attendre les lentes
notifications du plan de contrôle (BGP), analyse les signaux rapides du plan
de données. Deuxièmement, il utilise un procédé de reroutage permettant aux
routeurs de rapidement rerouter tout le trafic a�ecté vers des chemins alternatifs
qui contournent la panne.

Le design de Snap tire profit des récents progrès qui rendent les réseaux plus
programmables et utilise intelligement leurs capacités au niveau hardware et
software. Pour être rapide, les signaux du plan de données sont collectés par des
switches programmables à la même vitesse que le débit du trafic. Les switches
envoient ensuite les signaux vers un controller, qui infère précisement les pannes
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distantes et déclanche le reroutage du trafic. Nous avons implémenté Snap en
P416 et Python et nous montrons son e�cacité dans beaucoup de scénarios que
l’on peut trouver dans la vraie vie. Nos résultats indiquent que Snap est capable
de rétablir la connectivité en quelques secondes seulement, ce qui est bien plus
rapide que les minutes souvent requises par les routeurs traditionnels.



Preamble

When I tell people that I research how to improve the Internet, they often wonder
what I do and have no clue that there is still research in this area possible and
needed. This reaction is likely a good sign, as it means that the Internet works
just fine for the ordinary man.

Because people are relatively happy with it, the Internet is taking a more and
more important part in our daily lives. Now, even people that used to be
unfamiliar with computer science use it to buy, learn, work, play or drive, among
others. We also see more and more critical services such as remote surgeries or
banking systems relying on the Internet. It is not a surprise that half of the ten
companies with the highest market capitalization are IT companies providing
Internet services [6].

The problem is that by making all our services Internet-driven, it is not enough
for the Internet to work just fine. Nowadays, even a few minutes of downtime
can have serious e�ects. Imagine, for instance, how angry you would be if
once in a while your virtual call with your clients failed or if you could not load
the directions while driving in LA for the first time. And it can be far worse
than that: no later than in June 2021, an outage in Orange’s network made
the emergency numbers in France unavailable for a few hours [29]. Of course,
it goes without saying that Internet outages also cause large financial loss for
companies [4].

To work better and keep up with the more and more demanding applications
and the growing number of users, the Internet is constantly improved over time
thanks to the e�ort provided by the community. With this thesis, we hope to
contribute to that e�ort. Our contributions, which we describe in the following
paragraphs, focus on improving the quality of the Internet upon outages.

Focus on the Internet reaction to failures. The Internet is a set
of around 70,000 independently operated networks, also called Autonomous
Systems (ASes), which are interconnected together. What makes end-to-end
connectivity possible in this large network of networks is routing automation,
using distributed protocols, along with dedicated devices to quickly forward
packets. While this process is transparent for end-users, it involves a number
of challenges which come from the distributed nature of the Internet and its
business-driven decisions, among others.

This thesis focuses on improving the Internet convergence upon failures, which
is a problem that has occupied the mind of researchers for decades. The Internet
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convergence is the process during which the Internet automatically adjusts itself
upon a change. We illustrate the Internet convergence by making an analogy
with the road network. When the road map changes (e.g., a road is closed
because it needs to be fixed), the road network sta� updates the signs on the
streets to divert cars on new paths. In the Internet, packets (cars) are routed
on links (roads) that are interconnected via routers (intersections). The routers
rely on distributed routing protocols during the convergence to automatically
learn the new routes and update their forwarding entries (signs).

Now, think about all the time you spent in a tra�c jam while driving a car
because of an accident. Unfortunately, the same issues arise in the Internet
upon failures, except that instead of being delayed, packets are often dropped.
Despite the e�ort of the road network sta� trying to react swiftly, car accidents
often result in tra�c jams because they are unpredictable. Be it in the road
network or in the Internet, unpredictable events trigger an inevitably long
convergence process, which includes: reporting the incident, computing the
new routes for all the destinations, and finally installing the new forwarding
decisions.

Why is the Internet convergence so much of a problem? There is
a fundamental di�erence between the road network and the Internet, which
makes the Internet convergence process everything but easy. In the road
network, as drivers are intelligent, only a few signs (e.g., for a few of the nearby
cities) are enough at every intersection to guide them to their final destination.
Unfortunately, this is not the case in the Internet, where routers must perform
routing and packets forwarding for every destination.

Take, for instance, the Border Gateway Protocol (BGP), which is the routing
protocol used in the Internet to exchange reachability information between the
di�erent ASes. Upon a change, BGP works on a per-destination basis: it
propagates routing information for every destination concerned by the change.
The same goes in the forwarding plane of a router, where a flat forwarding table
requires the router to maintain one forwarding entry for every destination.

In the Internet, we currently observe around 865k destinations, also known as IP
prefixes, and this number continuously increases over time. As a result, a local
change in an AS can trigger complex network-wide operations at the routing
and forwarding level. In this thesis, we show that this process, i.e., the Internet
convergence, can easily take minutes, a time during which tra�c can be lost.
It is thus not a surprise that a survey which we conducted among 73 network
operators indicates that they are concerned about the slow Internet convergence
and looking for solutions to prevent the resulting downtime.

Why are the existing solutions not su�cient? The good news is that there
are solutions to prevent connectivity loss upon failures. A widespread approach,
which does not require modifying the standards, is fast rerouting the tra�c
towards working backup paths while the network is converging.
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At the control-plane level, this involves pre-computing backup paths for every
possible failure and destination. The backup paths must restore connectivity
and thus avoid the failure and do not result in forwarding inconsistencies such
as forwarding loops, which are the typical negative side e�ects when rerouting
tra�c without notifying the other routers in the network.

At the data-plane level, this involves (i) pre-populating the backup routes in
the forwarding table of the routers; and (ii) using a tailored rerouting scheme
to ensure fast activation of the backup routes, regardless of the number of
IP prefixes concerned by the failure. In practice, this is often achieved with a
hierarchical forwarding table, which allows grouping prefixes sharing the same
primary and backup paths to reroute all of them with a single data-plane update.

Unfortunately, the currently deployed fast reroute solutions, e.g., IP Fast
Reroute for intra-domain routing and BGP Prefix Independent Convergence
for inter-domain routing, only work upon local outages, not the remote ones,
i.e., those which occur in other networks. This limited scope is worrisome, as
because of the architectural design of the Internet, a packet often traverses many
networks before it reaches its destination. A failure in any of these networks
can result in tra�c loss, even if the sender deploys the latest failure protection
mechanisms.

Our measurements, as well as our discussions with network operators, revealed
that remote outages do indeed cause tra�c loss in the Internet. Yet, this
problem remains unsolved because fast rerouting upon remote outages is
fundamentally harder than upon local failures, and this for two reasons. First,
from sender’s perspective, a remote network is not controllable, and cooperation
is hard, often just impossible. Second, as a path-vector protocol, BGP does not
advertise the status of the links but instead propagates per-prefix information.
As a result, upon a remote failure, a router has no other option than to wait
for the slow control-plane notifications and updating the forwarding entries for
every a�ected prefix, one by one.

A local fast reroute framework for remote outages

Our main contribution is a framework that enables routers to fast reroute tra�c
on working and policy-compliant backup paths upon remote outages, without
requiring network operators to change the standards, manufacture new devices,
or cooperate.

Designing a fast reroute framework for remote outages requires (i) detecting
the remote outage; (ii) assessing the a�ected tra�c; and (iii) fast rerouting
the a�ected tra�c on backup paths avoiding the failure. Designing such a
framework is challenging because there are two conflicting objectives. On the
one hand, we need accurate heuristics to infer remote outages. On the other
hand, the tra�c rerouting must be fast to prevent packet loss.
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To address both of these objectives, we propose new inference algorithms which
analyze signals from the control and the data plane to detect and locate the
remote outages. Our algorithms are fast and accurate, even with the partial
and noisy signals often observed in practical cases. To quickly reroute the data
tra�c, we then propose a new rerouting scheme tailored for fast inter-domain
tra�c rerouting. More precisely, instead of rerouting packets based on their
destination IP address, we propose to reroute packets based on pre-computed
data-plane tags which contain information about the backup next-hop to use.

We always design our solutions with practicality in mind. First, the proposed
framework is deployable on existing hardware, and does not require any
modification to BGP. To do that, we rely on the new programmable switches
and design algorithms that leverage their line-rate speed, scale to thousands of
prefixes and are compilable to existing hardware targets. Second, we design
algorithms that comply with the BGP policies and are provably safe and
beneficial within reasonable assumptions. Those guarantees imply that the
tra�c is always rerouted on valid BGP paths without causing forwarding issues,
regardless of where the framework is deployed, enabling network operators to
deploy the framework incrementally.

Outline. We divide this thesis into six parts.

In §1, we first provide the necessary background information.

In §2, we introduce the problem of convergence in the Internet, and show with
our own measurement study the negative e�ects caused by the slow Internet
convergence on the end-to-end connectivity. We show that our results align
with the feedback we received from the 73 operators participating in our survey.

In §3, we zoom in on the problem of local fast reroute upon remote Internet
outages. We show why the existing fast reroute solutions do not work upon
remote outages and why the state-of-the-art solutions on inter-domain outages
detection, localization, or remediation are not suited for fast tra�c rerouting.
At the conceptual and practical levels, we then explain the challenges and
requirements when designing a fast reroute framework for remote outages.

In §4, we present SWIFT, a fast reroute framework which looks at the control-
plane BGP messages to infer and localize remote Internet outages. To achieve
fast and safe tra�c rerouting, SWIFT reroutes packets based on their pre-
computed data-plane tags using the SDN and Openflow capabilities.

In §5, we present Blink, a fast reroute framework which leverages the
programmable switches and works entirely in the data-plane. To work at line-
rate, Blink relies on new probabilistic algorithms to detect TCP retransmissions,
infer remote outages and reroute tra�c.

In §6, we finally present Snap, a fast reroute framework which uses a hardware-
software codesign to implement the best of SWIFT and Blink. More precisely,
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Snap can run the complex SWIFT inference algorithms in a software controller
using as input the fast data-plane signals used by Blink and which are carefully
collected from the data tra�c by the programmable switches. We conclude
this section with discussions on possible improvements that this new hardware-
software codesign makes possible.
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1
Background

Several large-scale transport and communication services have been designed
in our history. In 1464, the King of France Louis IX designed the royal postal
service and arranged stations or "relays" on the roads where couriers could
change horses. In the 19th century, with the emergence of the automobile,
highways were built to connect major cities. More recently, optical fiber cables
have been installed between the main cities to provide Internet connectivity.

Although these services were designed at very di�erent epochs and for di�erent
purposes, they share some principles and often have similar requirements.
Besides, their infrastructures are somewhat comparable: it is a network
composed of links that interconnect nodes. The links aim at providing a high
capacity and being reliable. For instance, in the royal postal service, the couriers
could take a new horse ready to gallop at every station to arrive faster to the
destination. Highways are often high-speed roads with multiple lanes to prevent
congestion. Similarly, the links in the Internet are often full-duplex fiber optical
cables that can send more than 100Gbit/s at the speed of light.

Given the large-scale nature of all these services, they all opted for a shared
infrastructure where nodes connect other nodes, and the couriers, cars, or
Internet tra�c move node by node until they finally reach the destination.
Be it the road network or the Internet, a node receives tra�c and forwards it to
the best exit. In the road network, intersections such as interchanges allow cars
coming from one road to reach another road quickly. In the Internet, routers
forward packets coming from one interface to another interface at line-rate.
The biggest interchanges can accommodate hundreds of thousands of vehicles
daily, whereas the latest IP routers can forward several terabits per second.



2 Chapter 1. Background

This chapter explains how end-to-end connectivity is made possible in the
Internet and shows the key design choices that allow the Internet to support
more and more users and applications. We start in §1.1 with the routing
basics, which are principles not only used in the Internet but also in many
other communication services. We then explain in §1.2 how computer networks
perform packets routing and introduce the latest forwarding technologies.
Finally, we describe in §1.3 how the Internet has been designed at the logical
and architectural levels.

1.1 Routing basics

Routing is the process of selecting the best paths in a network along which
data can be forwarded to one or more destinations. Di�erent types of networks,
such as the postal service or the public transportation network, rely on routing
to select the best paths. Consider the network in Figure 1.1, which is used
to forward packets between di�erent companies and within each company. A
route must be determined to forward a packet from a node to another. For
instance, a possible route from 5 to 18 is 5 11 15 16 18. Network
topologies are often redundant to avoid a single point of a failure and enable
tra�c engineering. In Figure 1.1, there is another route from 5 to 18 via the
company B. The best path selection depends on multiple criteria such as the
capacity of the links, routing policies, and the current load of the network.

It is possible to perform routing either statically or dynamically. Static routing
consists in manually selecting the paths to use within the network. Static
routing is easy to design and implement but quickly becomes a hassle for
larger networks interconnecting dozens or hundreds of nodes via multiple paths
and undergoing frequent topological changes. Dynamic routing consists in
automatically selecting the best paths based on the underlying topology and
the available resources. It is responsive to network changes: the selected paths
are automatically updated when the topology or the available resources change.
Dynamic routing is suited for large networks and helps prevent forwarding issues
such as dead ends or loops.

1.1.1 Routing algorithms

At its heart, dynamic routing relies on graph algorithms to select the best routes.
The network topology is often modeled as a Directed Acyclic Graph (DAG) with
a set of N nodes and L links. A weight function w : L æ R>0 can also associate
a weight to every link in the graph. The weight of a link typically represents
a metric such as the geographical distance or the link’s capacity. The Dijkstra
[56] and the Bellman-Ford [30] algorithms both aim to find the shortest path
from an initial node to every other reachable node in a weighted DAG.
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Figure 1.1 Example of a network topology modeled as a graph with nodes and
links. The network is divided into regions allowing hierarchical routing, simplifying
routing, and packet forwarding.

The Dijkstra algorithm resembles the breadth-first graph traversal algorithm.
The main di�erence is that the order in which the algorithm visits the nodes
depends on the link weights. More precisely, consider a graph G with positive
weights, an initial node s, and a tree T initialized with s. At a given iteration,
the candidate nodes to be visited are not in T but connected to a node in T .
Among them, the Dijkstra algorithm selects the node with the minimal total
distance from s, attaches it to T on the shortest path, and proceeds to the next
iteration until T contains all the nodes in G. When the algorithm finishes, T

is the shortest path tree. The shortest path from the initial node to another
node in the graph is thus simply the path in T . The complexity of the Dijkstra
algorithm resides in the selection of the next node to visit among the candidate
nodes at each iteration. When the candidate nodes are stored in a standard list,
the algorithm runs in O(|N |2). However, with a Fibonacci heap instead, the
algorithm runs asymptotically in O(|L| + |N |log|N |), the fastest known time
complexity for this problem.

The Bellman-Ford algorithm relies on the principle of relaxation. Thus, more
precise approximations gradually replace an approximation of the shortest
distance until the algorithm reaches the optimal solution. More concretely,
the algorithm first sets to infinity the approximations of the shortest distance
between the source node s and the other nodes in the graph. The algorithm
then iterates over the links and updates the approximations according to their
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weight. For instance, the first shortest distance approximations to be updated
are for the nodes adjacent to s. Then, the algorithm iterates over the links
and refines the shortest distance approximations. The number of iterations
required to reach the optimum solution depends on the order in which the links
are processed during each iteration. In the worst-case scenario, the algorithm
guarantees to return the optimal shortest distances after iterating |N |≠1 times
over all the links, which results in a theoretical complexity of O(|N ||L|).

1.1.2 Hierarchical routing

Routing in a large and shared infrastructure often poses two problems. First,
even optimized versions of the Dijkstra or the Bellman-Ford algorithms would
not scale well on graphs with hundreds of thousands of nodes. Second, routing
policies might di�er between di�erent regions in the network. For instance,
the tra�c may follow the path with the least number of hops in a region.
In contrast, in another, it may follow the path with the shortest geographical
distance.

Hierarchical routing is a principle used in many transport and communication
services to solve these problems. With hierarchical routing, nodes are
aggregated into regions. The nodes within a region can be further aggregated
into subregions. Hierarchical routing simplifies routing, as it is now performed
within a region or between the regions (in which case a single "node" can
represent an entire region), but not between all the nodes in the network. To
illustrate hierarchical routing with a practical example, consider the swiss postal
service. The postal code of an address indicates the destination regions to reach,
for every level of aggregation, before it arrives at the post o�ce responsible for
delivering the package to the final destination. For instance, in Switzerland, a
typical address looks like Gloriastrasse 35, 8092 Zurich. The first digit
of the postcode indicates that the package must be sent to the "Zurich" district.
The second digit indicates that the package must then be sent to the "Zurich
city" area. Finally, the last two digits indicate the post o�ce number that can
deliver the package to Gloriastrasse 35.

With hierarchical routing, nodes can forward packets based on their destination
region instead of their actual destination address. Consequently, a node
only has to know the paths to reach few regions instead of each distinct
destination. Because there are fewer destinations and shorter paths to consider,
the best paths calculation (e.g., using Dijkstra or Bellman-Ford) and the packet
forwarding are greatly simplified. To showcase hierarchical routing, consider
again Figure 1.1. Instead of calculating the best paths among all the existing
paths and for every distinct destination in the network, 5 only stores the paths
in its routing table (bottom right) to reach some of the regions in the network.
More precisely, 5 only needs to know six paths: one for the local destinations
(in the production department of company A), two for the destinations in the
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R&D department of company A, two for the destinations in company B (which
are simplified by aggregating the nodes in the R&D department into one single
hop), and one for the destinations in company C. Similarly, 12 knows six paths
only (top left), enough to calculate a route for every destination in the network.

Besides reducing the routing complexity, hierarchical routing allows each
department to use its own routing strategy, regardless of how other companies
and departments perform routing.

1.2 Routing in a computer network

A computer network is a set of connected systems that exchange data with
each other. Two types of systems exist within a computer network. End-
systems are devices such as a computer that generate tra�c and send it to
other end-systems. Intermediate systems are network devices such as a switch
or a router that receive tra�c and forward it onward towards the recipient.
Each end-system has a unique 48-bit physical address called the Media Access
Control (MAC) address. MAC addresses allow end-systems to send datagrams
to each other directly or via network switches, which are intermediate systems
that forward tra�c based on the destination MAC address in each datagram.

To continue the analogy with the postal service we started in §1.1.2, a
destination MAC address corresponds to the unique identifier of the recipient,
i.e., her name. MAC-based forwarding thus has limited scalability and is only
used in small networks that are also named Local Area Networks (LAN). As
with postal services, computer networks also use the principle of hierarchical
routing to interconnect more users.

1.2.1 The Internet Protocol

Large computer networks that interconnect multiple networks use the Internet
Protocol (IP) to transmit data in a scalable fashion. IP is a connectionless and
unreliable protocol that end-systems use to exchange datagrams or packets. In
an IP network, each end-system is assigned an IP address: a 32-bit number in
IPv4 or a 128-bit number in IPv6. An end-system transmits data to another end-
system by generating packets and labeling them with its IP address (the source
IP address) and the IP address of the destination end-system (the destination IP
address). End-systems in the same network share the same IP prefix, denoted
as IP/n where n indicates the prefix length. The use of IP prefixes allows
performing a more scalable hierarchical routing using prefix-based routing.

An IP address is thus assigned to an end-system based on the network in which
it is directly connected. It can be assigned statically or dynamically using e.g.,
the Dynamic Host Configuration Protocol (DHCP). When an end-system moves
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to another network, it gets another IP address (but keeps its MAC address).
Again, it is comparable to the postal service: when someone moves to another
location, it keeps her name (MAC address) but changes his address (IP address).

When an end-system sends a packet to another end-system in the same network
(be it the final destination or just a gateway to reach another network), it must
learn the MAC address of the other end-system. This is possible with the
Address Resolution Protocol (ARP), which enables an end-system to translate
an IP address into the MAC address of the end-system assigned with that
IP address. Network gateways, more commonly known as IP routers, are the
intermediate systems that interconnect di�erent networks together and forward
packets between them along the best paths.

1.2.2 IP routers

A router has several interfaces from where packets can come in and out. Each
interface of an IP router is connected to a di�erent network. Thus a router
interconnects di�erent networks together. The goal of an IP router is to forward
packets from one network to another such that they can eventually reach their
final destination. A router must achieve two missions to accomplish its goal
correctly and e�ciently: (i) it must learn where to route packets according to
their destination IP address; and (ii) it must forward them as fast as possible.
Figure 1.2 depicts the high-level and simplified architecture of a traditional IP
router, which includes two planes: the control and the forwarding plane (also
known as data plane).

The control plane performs the routing operations and takes the forwarding
decisions. For instance, network operators can configure routing protocols and
static routes using a Command Line Interface (CLI) in the control plane. The
router builds and maintains a Routing Information Base (RIB) in the control
plane that stores all the static routes and the routes learned by the routing
protocols for the di�erent IP prefixes. The control plane also includes an ARP
Table, built manually by the network operator or automatically with ARP.

The forwarding plane is responsible for forwarding packets. While the network
functions in the control plane run on general-purpose Central Processing
Units (CPUs), the forwarding plane has Application-Specific Integrated Circuits
(ASICs) to forward packets at line rate. A router has one or more line cards,
each providing multiple network interfaces along with a Forwarding Information
Based (FIB) and an ARP Table. The FIB is derived from the RIB and only
contains the best routes for each IP prefix. It is implemented with Ternary
Content-Addressable Memory (TCAM) to enable fast lookups. When a packet
arrives in an input interface, a lookup is performed in the FIB to find the
next-hop IP address and determine the output interface. The packet is then
switched to the output interface by the switch fabric. Finally, the destination
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Figure 1.2 Simplified sketch of the architecture of an IP router. Traditional IP
routers are divided into two planes. The control plan is in charge of the routing,
whereas the data plane is in charge of forwarding the packets at line rate.

MAC address is derived from the ARP Table, and the output interface sends
out the packet.

We only depict in Figure 1.2 the forwarding components of an IP router.
However, the forwarding plane of a router is also capable of bu�ering,
scheduling, and filtering packets according to rules and policies configured by
the network operator in the control plane. Observe that as the memory used
by the routers to bu�er packets is finite, a router may drop packets if the rate
at which they arrive exceeds the rate at which the router forwards them. Yet,
modern routers are capable of forwarding terabits per second.

1.2.3 Distributed routing

In traditional IP routers, the control and forwarding plane are coupled in the
same device. As a result, today’s IP networks use distributed routing protocols
for dynamic routing. A routing protocol specifies how routers communicate
and which information they exchange for learning and agreeing on the routes
used to reach the di�erent destinations in the network. In practice, there are
many distributed protocols, and traditional IP routers implement many of them.
We observe two classes of routing protocols. With link-state routing protocols,
topological information is exchanged between the routers such that each router
can construct a map of the network and run the Dijkstra algorithm on it to
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find the best paths. With vector-based protocols, routers exchange distance or
path vectors and rely on the principle of relaxation as used in the Bellman-Ford
algorithm to derive the best baths.

Routing protocols automatically allow the computing of new routes when the
network topology changes. When a router is added, shut down, or fails, the
neighboring routers detect the change, and all the routers in the network
will automatically update their routing table. As long as the graph remains
connected, the routers will always find a route to reach every destination.
Unfortunately, when the network topology changes, it often takes time for the
routers to exchange topological information or vectors and agree on the new
routes to use. This time is known as the convergence time, which is a critical
time during which routers may not update their routing and forwarding table
at the same speed, resulting in inconsistent network-wide routing decisions.
Inconsistent routing decisions result in routers dropping packets (blackhole) or,
worse, routing loops. We elaborate on the convergence time in §2.

1.2.4 Software-defined Networks

Recently, new networking technologies have emerged with the goal to make
networks more programmable and flexible. Software-defined Networks (SDN)
[104] is the first attempt to make the control plane more programmable. SDN
relies on new switches, which (i) enable users to bypass built-in control plane
functions and introduce their own, and (ii) provide a set of more advanced –
but fixed – forwarding functions leveraging a pipeline of match-action tables
of arbitrary width and depth. In SDN, the data plane and the control plane
are decoupled, and forwarding rules can be installed remotely through an
Application Programming Interface (API) such as OpenFlow [125]. Besides
the control plane being programmable, SDN also enables users to implement
network-wide control plane functions in a centralized controller.

The centralized routing paradigm is both conceptually and operationally simpler
than the traditional distributed control plane. The central controller knows the
entire topology, computes routing decisions, and pushes the forwarding rules
into the switches with e.g., OpenFlow. SDNs are more manageable for network
operators and mitigate some of the inherent problems of distributed routing,
such as the inconsistent forwarding states during network convergence. The
concept of SDN is used in many existing networks, for example, at Google [92].
However, one of the main drawbacks of centralized routing is that it is not
adapted for routing between networks of di�erent entities. For instance in
Figure 1.1, centralized routing can be used within each company, but must be
performed in a distributed fashion between them.
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1.2.5 Programmable data planes

Traditional network hardware cannot be programmed as a general-purpose CPU
because they rely on custom ASICs (see Section 1.2.2), which are tailored
for fast packet processing. Yet, the very recent advances in switching ASIC
design made it possible to program the data plane while keeping its line-
rate packet processing [103, 35]. An example that illustrates this progress
is the Reconfigurable Match Tables (RMT) model [35], which allows match-
action tables to be defined using arbitrary header fields and provides a larger
collection of packet processing actions. The Intel Tofino switch and its
programmable Ethernet switch ASIC [5] implements the Protocol Independent
Switch Architecture (PISA) architecture (a generalization of the MRT model)
and allows for data plane programmability with maximum port bandwidth of
6.4 Tbit/s.

The PISA architecture consists of a programmable parser, a programmable
match-action pipeline (which, besides the match-action tables, enables
arithmetic operations and provide stateful objects), a tra�c manager (e.g.,
for packet scheduling) and finally a programmable deparser. The way the PISA
architecture processes packets depends on (i) how the operator has programmed
it i.e., how she defines the match-action tables, performs arithmetic operations,
or uses stateful objects (ii) the content of the match-action tables, which can
be modified at runtime, and (iii) the state in which are the stateful objects.

Domain-specific ASICs are programmed with domain-specific programming
languages. For instance, FPGAs are programmed with e.g., VHDL, whereas
GPUs are programmed with e.g., OpenCL. In the case of PISA, the most
widely used domain-specific programming language is P416 [34]. P416 is an
open-sourced and high-level language that is protocol and target-independent.
Alongside P416, the community has developed P4Runtime [135], an interface
for controlling the data plane elements at runtime. We note that there exist
other data plane programming languages, such as NPL [131], which is used to
program the Broadcom Trident 4 [38], another programmable switch o�ering
a di�erent data-plane model than PISA. Although very recent, researchers and
operators have already designed many P416 programs to improve computer
networks’ performance, resiliency, and security [82].

1.3 Internet routing

The Internet is a computer network where routing is anything but easy, and this
for at least three reasons.

n The Internet is large. As of December 2020, we count more than 5 billion
Internet users [90] and tens of billions of connected devices [91]. The Internet
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is also large by the volume of tra�c exchanged. Cisco estimated the global
Internet tra�c to be 1.1 Zettabytes per year [48]. To put this tra�c volume
in perspective, if each Gigabyte in a Zettabyte was a brick, we could build 258
Great Walls of China.

n The Internet is heterogeneous. It is heterogeneous at di�erent levels. First,
the Internet comprises many di�erent network devices, which can run many
di�erent network protocols. These devices and protocols often evolve over time.
Second, the Internet is composed of many networks, and a single autonomous
entity administrates each. These networks have di�erent goals. Some are data-
center networks; some others are transit or edge networks. Finally, there is also
various sort of communication over the Internet. For instance, Internet users
stream videos, trade cryptocurrencies, or play video games. These di�erent
services require di�erent Quality of Service (QoS).

n The Internet is a business. Among the most prominent companies, many are
IT companies providing Internet services such as Amazon, Google, or Facebook.
Where Internet tra�c flows, money flows. Thus, network operators often have
to deal with stringent Service Level Agreements (SLAs), as the cost of one
minute of downtime for those companies can easily reach a 6-digit number [170].

1.3.1 Internet architecture

The Internet comprises Autonomous Systems (ASes), which are networks
administrated by a single entity. Each AS has its own IP prefixes and is
responsible for the routing within its network, also called intra-domain routing
(see §1.3.2). ASes are interconnected to other ASes via inter-AS links and
advertise their IP prefixes to be reachable from outside. This architecture is
comparable to the one shown in Figure 1.1, where the companies are ASes, and
the link between e.g., 2 and 7 is an inter-AS link. As of February 2020, there
are around 70,000 ASes in the Internet advertising a total of 875,000 prefixes [1].

ASes composing the Internet have di�erent purposes. Some are Internet Service
Providers (ISPs) and aim at providing Internet connectivity to their customers
(which can be end-users or other ASes). Some others are Content Delivery
Networks (CDNs) and aim to provide high availability and performance by
distributing the content spatially relative to end-users. Finally, some others
are Internet Exchange Points (IXPs), which are physical infrastructures where
ISPs or CDNs can interconnect directly, rather than through third-party ASes.

At the AS level, we thus observe complex relationships. An AS maintains
connections with other ASes, with which it has business and Service-Level
Agreements (SLAs) that align with the type of relationship (customer, provider
or peer). Network operators use the Border Gateway Protocol (BGP) to ensure
that the tra�c exchanged between the ASes follows the agreements. In a
sense, BGP is like the "glue" of the Internet. It allows border routers, i.e., the
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ones directly connected to other ASes, to exchange routing and reachability
information to the neighboring ASes and allows operators to express complex
routing policies (see §1.3.3).

Over time the Internet architecture has evolved to adapt and provide better
performance. However, it still relies on BGP and its routing principles. Although
the community sometimes advocates for a new architecture [166] and proposes
alternatives [28], changing the fundamental principles and protocols of the
Internet is complicated and often takes time. A good illustration is IPv6, which
started to be deployed in the mid-2000s and is only used by a relatively small
fraction of the tra�c several years after [89]. We can thus expect the current
Internet architecture to remain for several years, even decades.

1.3.2 Intra-domain routing

Interior Gateway Protocols (IGPs) are the routing protocols used to calculate
routes within an AS. We observe two types of IGPs: distance-vector and link-
state protocols. Distance-vector protocols implement a distributed variant of the
Bellman-Ford algorithm. More precisely, each router in the network maintains
a vector containing the distance to every destination and periodically sends
it to its neighboring routers. Upon reception of a distance-vector, a router
increments all its values by the cost configured on the interface from where the
vector was received, updates its routing table if it finds a path with a shortest
distance, and transmits the updated distance vector to inform the other routers
about the new distances.

The main drawback of distance-vector protocols is their convergence time. The
routers take time to exchange and update distance vectors until they converge
to the optimal solution, transiently hindering connectivity for some destinations
in the network. As a result, distance vector protocols are only adapted for
small or medium IP networks. Distance vector protocols include the Routing
Information Protocol (RIP), Cisco’s Internet Gateway Routing Protocol (IGRP),
and others. For larger IP networks, link-state protocols are preferred.

With link-state protocols, each router advertises the state of its links to all
the other routers in the network. From the link-state advertisements that it
receives, a router then derives a connectivity map in the form of a graph, and on
which it applies the Dijkstra algorithm to find the shortest paths to every other
router in the network. Although every topological change requires the routers to
recompute the shortest paths on the new topology, link-state protocols converge
faster than distance-vector protocols. The Open Shortest Path First (OSPF)
and Intermediate System to Intermediate System (IS-IS) algorithms are the
link-state protocols often used in practice to configure intra-domain routing.
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1.3.3 Inter-domain routing

Distance-vector and link-state routing protocols are not suited for inter-domain
routing for two main reasons. First, because the AS-level topology includes
around 70,000 ASes, far more than the number of routers in an AS. On such
a large topology, those routing protocols would be impractical: distance-vector
protocols would have issues to converge and link-state protocols would require a
lot of resources in each router to compute the new paths upon every topological
change. Second, ASes are individual entities that want control over the route
selection process and may implement complex routing policies, which are not
only based on the distance but also various other attributes.

BGP is the protocol used for inter-domain routing. It is a path-vector protocol
and is policy-based. Path-vector protocols rely on the principles used by the
Bellman-Ford algorithm as BGP routers advertise routes to their neighboring
BGP routers. However, a BGP route contains not only the destination IP prefix
but also the AS path (i.e., the list of ASes that the route has traversed), a
next-hop IP address, and a set of attributes that network operators can use
to configure routing policies. We distinguish two types of routing information
exchanged between BGP routers: advertisement and withdrawal. A BGP router
advertises a route either when it learns a new best route for a destination or
when a policy decision leads the router to prefer a new route. A router withdraws
a route when the destination is no longer reachable. Observe that a router can
implicitly withdraw a route for a destination by advertising another route for
that destination, which takes precedence over the previously advertised route.

Figure 1.3 gives an overview of how BGP works in a traditional router and
illustrates how network operators can use it to configure routing policies. In
a nutshell, a BGP router receives the locally originated or redistributed routes
as well as the routes advertised by its neighboring BGP routers with which it
maintains BGP sessions. The BGP router then independently selects one best
route for each IP prefix following the BGP Decision Process, updates its RIB
accordingly and finally advertises the best routes to its neighboring BGP routers
with their updated AS path. The BGP Decision Process is the algorithm used
to select the best route for a prefix across all the received routes for that prefix
and as a function of the attributes attached to each route.

While the organization of the BGP process and the algorithm used in the
BGP Decision Process is fixed in a BGP router, the attributes attached to the
routes and the input and output filters allow network operators to change the
outcome of the process. More precisely, by manipulating the route attributes and
defining route filters in the Input and Output Policy Engine, network operators
can tune the route preference to modify the outcome of the BGP Decision
Process, or decide to filter a route out and not advertise it to another BGP
neighbor. Besides, some BGP route attributes also propagate network-wide,
enabling network operators to implement network-wide routing policies. Putting
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Figure 1.3 Overview of the BGP process in an IP router.

everything together, BGP enables operators to enforce business agreements
(e.g., the typical customer/provider business relationships [71]) and perform
tra�c engineering (e.g., hot-potato routing).

In practice, we observe two types of BGP sessions. First, two border routers
belonging to di�erent ASes can establish an External BGP session (eBGP),
allowing them to exchange BGP routes between ASes. Second, routers in
the same AS can establish Internal BGP (iBGP) sessions, allowing them to
exchange BGP routes between routers located within the same AS. While two
eBGP peers are generally in the same LAN and thus directly reachable, two
iBGP peers can be in di�erent LANs (within the same AS) and thus rely on the
IGP to communicate and send the tra�c for external destinations towards the
egress router in the AS.

A BGP router exhibits a slightly di�erent behavior with eBGP and iBGP sessions.
In particular, a router does not append its AS number to the AS path when
it advertises a route over an iBGP session. Also, routes learned from iBGP
neighbors are not propagated to other iBGP neighbors to prevent routing loops.
Consequently, BGP routers within an AS must establish fully meshed iBGP
sessions to redistribute external routes to all other routers within that AS. An
alternative to iBGP full mesh is BGP Route Reflection [44]. We refer the reader
to [85] to get hands-on experience on how to configure BGP in practice.
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2
Internet (slow) convergence

Convergence in an IP network denotes the transition from a routing and
forwarding state to another. A configuration change or a topology change
typically triggers convergence. We define convergence time as the time between
the change and the moment when the network has converged, i.e., all the routers
forward the tra�c on the new best paths. The convergence process involves the
following actions: (i) the routers on which a routing configuration change has
been applied, or the ones adjacent to the topological change, detect the change;
(ii) upon detection of the change, the routing protocol converges to a final and
stable state, and the routers recompute their Routing Information Base (RIB);
and (iii) the routers update their Forwarding Information Base (FIB) and send
the tra�c on the new best paths.

Except for the change detection, which is done locally, convergence is a network-
wide and asynchronous process. Indeed, the distributed nature of routing
protocols results in routers recomputing their RIB and updating their FIB at
di�erent times and speeds. Hence, during the convergence time, routers may
have inconsistent states which cause issues such as a delayed convergence,
routing loops, forwarding loops, or dead ends. These issues result in packet
loss, which is detrimental for end-users, as many applications require continuous
Internet connectivity, and for Internet service providers, as even the slightest
downtime can cause large financial loss. For example, the cost of one minute
of downtime for Amazon or Google easily reaches a 6-digit number [170] and
almost any outage that they experience makes the news (e.g., [123]). Smaller
Internet players are not better o�. Across the networking industry, the average
cost of downtime is estimated to be about $8,000 per minute [54].

A 72-operators survey on the Internet convergence. To substantiate
the e�ect of convergence issues on operational practices, we performed an
anonymous survey among 72 operators. Figure 2.1 gives information about our
respondents. Our respondents come from a wide variety of networks providing
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Figure 2.1 General information about the 72 operators participating in our survey

one or more services to a large customer base. The majority of the respondents
(67%) provides Internet connectivity to wired end-users. 45% of them provide
transit services. 19% of them work for Content Distribution Networks (CDN),
while 15% of them work for an Internet Exchange Points (IXP). In terms of
customer base, 33% of our respondents connect 1 million or more users to the
Internet, 48% connect 100,000 users or more, while 67% connect at least 10k
users. 77% of our respondents work with full Internet routing tables, meaning
that their routers carry more than 865k prefixes in their forwarding tables [1].

Operators care about slow convergence. Among our respondents, 78%
care about slow BGP convergence. The remaining 22% do not care because
they: receive a single default route from their provider (3 of them); do not
have stringent Service Level Agreements to meet (6 of them); or because they
have never experienced a slow convergence before (4 of them). Because it is a
problem for network operators, Internet convergence is an important research
topic since the 90s [75, 52]. Researchers devoted much e�ort to measuring the
convergence time, highlighting its e�ect on users’ connectivity, and proposing
mechanisms to make it more e�cient. Among our respondents, 77% use at
least one of these mechanisms.

In the following sections, we describe more precisely each action that is part of
the convergence time and introduce the mechanisms proposed by the community
to speed up convergence and mitigate the typical issues that arise during the
convergence time. In §2.1, we focus on the topological change detection. In
§2.2, we then focus on the Internet routing convergence. Finally, in §2.3, we
focus on the FIB update.
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2.1 Topological change detection

Two types of events can result in a topological change: the notified and silent
changes. The notified changes can be manual reconfigurations (e.g., via the
router’s CLI) that happen during planned maintenance operations. For instance,
an operator can shutdown some interfaces or reconfigure some routing protocols
(e.g., change the OSPF weights) on a router before shutting it down for a
software or hardware upgrade. The silent changes can be a link or a router failure
or happen when a cable is plugged into a network interface card. Unlike notified
changes, silent changes are not immediately detected and require detection
techniques. In the rest of this section, we will focus on the silent changes, and
more precisely, on changes caused by failures because these events likely result
in packet loss during the detection time.

2.1.1 Basic failure detection

The first way to detect a link or a node failure is to look at the status of
the interfaces. For example, today’s network interface cards detect whether
there is a signal on the wire or not. When the signal disappears, the router
detects the failure. Looking at the signal on the wire works well when two
routers are directly connected, without devices in-between. In practice, though,
we often see network devices (e.g., switches) between two logically connected
routers rendering the failure detection based on the signal seen on the wire
often ine�cient. As a result, routing protocols include mechanisms to check
whether two logically connected routers can still reach each other. For instance,
OSPF relies on Hello packets that are sent at every Hello Interval, which is set
to 10 seconds by default [129]. An OSPF router declares a neighbor dead
when it does not receive a Hello packet within the Router Dead Interval, which
is set to four times the Hello Interval, i.e., 40 seconds. Similarly, BGP uses
Keepalive messages, that a router sends every 60 seconds to its BGP neighbors,
by default [11]. A router declares a BGP neighbor as down when it does not
receive a Keepalive message during the Hold time, which is set to 180 seconds
by default.

2.1.2 Fast failure detection

Upon a failure and with the default timers, it takes several seconds for a protocol
to detect dead neighbors. During this time, routers may send tra�c to the
failed link or node, resulting in the tra�c being lost without any notification.
Fortunately, network operators can lower these timers to speed up the failure
detection time. However, network operators need to be cautious when tuning
these timers, as lower timers trigger more signalization tra�c and increase the
chances of peer flapping.
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An alternative for fast failure detection is Bidirectional Forwarding Detection
(BFD) [98], which aims to provide a sub-second failure detection. BFD
establishes point-to-point sessions and relies on simple Hello and Echo packets.
Yet, unlike the probing mechanisms used by the routing protocols, BFD runs
directly on the line cards and thus avoids over-taxing the CPU of the router.
Besides, multiple protocols (e.g., OSPF and BGP) can simultaneously use a
single point-to-point BFD session. Routing protocols need to register and use
the BFD session as a service to be alerted upon a link or node failure.

Most of our 73 respondents do use fast failure detection mechanisms.
Among the 73 network operators who answered our survey, 27 (37%) use non-
default BGP timers, and 41 (56%) use a fast failure detection mechanism such
as BFD.

2.1.3 Gray failure detection

A fundamental limitation with BFD is that it only detects hard failures that
a�ect all the tra�c. In practice, networks are also subject to "gray" failures,
which a�ect only a fraction of the tra�c and are typically caused by hardware
bugs [87]. Gray failures are challenging to detect because both the basic
Hello mechanism used by the routing protocols and the packet sampling
techniques used for tra�c monitoring are not fine-grained enough to detect gray
failure [50, 137]. Recently, researchers designed several techniques levering data-
plane programmability to accurately pinpoint gray failures in ISP environments.
For instance, LossRadar allows capturing individual packet lost in the entire
network and at fine time scale [116]. LossRadar places meters in programmable
switches, which count the number of packets traversing each interface. The
switches then regularly generate small digests with the content of the meters
and send them to a controller, which decodes the digests to detect and locate
individual packet lost. Similarly, NetSeer works entirely in the data plane and
aims to detect and report data-plane events such as packet loss [181]. To do
that, NetSeer implements a negative-acknowledgment-based protocol between
the di�erent switches.
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2.2 The Internet routing convergence

Upon detection of a change, routers start to exchange information about the
new topology or the new paths to use in a distributed fashion. In the Internet,
end-to-end connectivity involves several routing protocols at di�erent levels.
Overall, the Internet routing convergence is a complex process during which
forwarding issues can arise, such as forwarding loops or black holes.

We now show the typical routing convergence problems as well as the existing
solutions to mitigate them. We naturally decompose the Internet routing
convergence in two sub-problems: the routing convergence within an AS
(§2.2.1) and between ASes (§2.2.2).

2.2.1 Convergence within an AS

This section mainly focuses on link-state protocols as they are often preferred
in current ISP networks. However, we note that vector-based protocols exhibit
similar routing inconsistencies during convergence.

2.2.1.1 Typical problems

A typical OSPF or IS-IS convergence includes the following phases: (i) a router
detects the link-state change; (ii) the router signals the change to other routers
by flooding link-state packets within the network; (iii) routers recompute the
shortest-path tree; (iv) routers then recalculate their RIB; and (v) routers finally
update their FIB. Putting everything together, the IGP convergence typically
lasts for hundreds of milliseconds [69], a time during which routers may have
inconsistent states resulting in packet loss.

Consider, for instance, the example in Figure 2.2, which depicts the forwarding
state of four routers before and after the failure of the link 1 4 and for
the tra�c destined to an end-system connected to 1 . During convergence,
4 may update its FIB before 3 , in which case tra�c will loop between 3

and 4 until both routers have updated their FIB (Figure 2.2b). Such transient
loops have been observed and measured in existing IP networks [83, 127].

2.2.1.2 Solutions to improve the routing convergence

We divide the solutions into two categories: those tailored for non-urgent
changes (e.g., a change due to maintenance) and those tailored for urgent
changes (e.g., a failure).
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For non-urgent changes: order the FIB updates. A solution to enable
loop-free convergence upon a non-urgent change is to order the FIB updates
between the di�erent routers. For instance, in the scenario depicted in
Figure 2.2, updating the FIB of 3 before the FIB of 4 prevents the
forwarding loop between 3 and 4 (visible in Figure 2.2b). Ordering the
FIB updates is possible using timers, dedicated control-plane messages, or by
incrementally increasing the cost of the link to shut down until it can be safely
removed [68, 49]. For instance, increasing the cost of the link 3 4 to
3 forces 3 to update its FIB and use the path 3 2 1 to reach the
destination while 4 still uses its direct connection with 1 . When 3 has
updated its FIB, the link can be removed without creating any transient loop.

Ordering the FIB updates is also possible with vector-based protocols. For
instance, the Enhanced Interior Gateway Routing Protocol (EIGRP) [151] relies
on the DUAL algorithm to order the route updates between the routers [72].
The DUAL algorithm uses a di�usion algorithm that recursively allows a router
to update its route only when its new next-hop has already updated its route.
In the context of iBGP, the LOUP protocol disseminates route updates (or
withdrawals) learned via eBGP in an order which provably never causes transient
forwarding loops [81].

For urgent changes: fast-reroute tra�c to loop-free alternates or
tunnel the tra�c. Ordering the FIB updates takes time because the network
has to converge between each update. This strategy thus works for non-urgent
changes but is not adapted for urgent changes, which may immediately result
in packet loss. For urgent changes, a solution is to fast reroute the tra�c
towards a pre-computed backup path. Fast reroute techniques, however, break
the congruence between the data and the control plane. When a router R fast
reroutes the tra�c to a backup path for a destination d, the new next-hop N is
unaware of this path deflection. A forwarding loop is thus created if N forwards
tra�c destined to d on a path that includes R. For instance, in Figure 2.2,
if 4 fast reroutes the tra�c to 3 (the shortest path according to the link
costs), a forwarding loop is created until 3 updates its FIB.

IP Fast Reroute (IPFRR) is a fast reroute framework for link-state IGP that
prevents forwarding loops [158]. With IPFRR, each router knows the topology
and thus can calculate Loop-Free Alternates (LFA) in anticipation of each failure
of an adjacent link and can make them available for invocation with minimal
delay [27]. LFAs are backup next-hops guaranteeing that when a failure of a
particular link occurs, forwarding tra�c through them will not result in a loop.
Figure 2.2c illustrates the behavior of 4 when it uses IPFRR. Instead of using
the shortest path, 4 fast reroutes the tra�c to 2 , immediately restoring
connectivity. When all the routers have converged, 4 can safely fall back to
the best backup path, via 3 (Figure 2.2d). Distance-vector protocols also use
the concept of loop-free alternates. EIGRP, for instance, implements Loop-Free
Alternate Fast Reroute.
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Figure 2.2 An illustration of routing inconsistencies during convergence when using
a link-state IGP. Figure 2.2b (resp. 2.2c) shows the forwarding state when fast
rerouting the tra�c without (resp. with) an LFA. Each link is labeled with its cost.
The arrows indicate the path used by the tra�c to reach the destination.

An alternative to IPFRR is MPLS Fast Reroute, which creates backup tunnels
using MPLS labels and activates them upon detection of the change [136].
Tunneling the tra�c prevents transient loops but requires an additional control-
plane mechanism to pre-compute the tunnels as well as data-plane tags (MPLS
labels) that must be installed in the forwarding table of the routers. An
AS can also tunnel the transit tra�c to avoid problems during IGP or BGP
convergence [33].

2.2.2 Convergence between ASes

Researchers measured that the BGP convergence time, defined as the time
di�erence between the injection of a fault in an AS and the routing table of other
ASes reaching a steady state, can last tens of seconds, even minutes [109, 108,
120]. In this section, we first explain in §2.2.2.1 what are the fundamental issues
that make BGP converge so slowly. We then show in §2.2.2.2 the attempts to
mitigate the issues caused by the slow BGP convergence.
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2.2.2.1 The reasons why BGP converges so slowly

BGP can exhibit routing instabilities during convergence. While some
routing protocols, such as OSPF, are proven to converge upon a topological or
a configuration change, it is not the case with BGP, where conflicting policies
may result in routing instabilities and persistent route oscillations [169, 110].
Whether the network finally converges after a period of routing instabilities
depends on the order in which the routers exchange the BGP messages.
Fortunately, in the early 2000s, Gao and Rexford have defined a set of guidelines
that operators can follow when defining the routing policies to impose a partial
order between the routes to each destination and ensure route convergence upon
topology or policy changes [71]. These guidelines do not require coordination
between ASes and follow the conventional tra�c-engineering practices of ISPs.
They are thus widely adopted by the community.

BGP is subject to path exploration. Path exploration is a phenomenon
inherent to vector-based protocols. It occurs during routing convergence and
consists of some routers trying several transient paths before selecting a new
best path or declaring unreachability for a prefix [133]. In the worst-case scenario
and with a complete graph, Labovitz et al. demonstrated that upon a failure, the
number of route updates processed by a router for a destination is approximately
(n ≠ 1)!, with n the total number of routers [109].

BGP works on a per-prefix basis. With BGP, routing information propagates
on a per-prefix basis, allowing network operators to apply distinct routing policies
and thus use di�erent paths on a per-prefix basis. Besides, routing messages
cannot specify network resources that failed because AS topologies and policies
are hidden at the inter-domain level (mainly for scalability and AS-level privacy).

BGP design choices. Because routing oscillations add load on the routers and
delay the convergence, BGP route flap damping techniques have been proposed
and are deployed in actual routers to mitigate routing instabilities. These
techniques consist in limiting the frequency of the route advertisements e.g.,
using fixed timers associated with the Minimum Route Advertisement Interval
(MRAI) [171, 11]. While beneficial to limit routing instabilities, these timers
exacerbate the Internet routing convergence [121, 76]. Other design choices
delay the routing convergence, such as the rate-limiting mechanism for BGP
table transfer [31] or the TCP stack implementation [40].

2.2.2.2 Attempts to speed up the BGP convergence

Generally speaking, improving the BGP convergence is more complicated than
with IGP because (i) unlike with IGP, there is no central entity: each AS
performs routing on its own; (ii) BGP is a policy-based protocol and routing
must always comply with the defined policies; and (iii) there are many more
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destinations and routers in the Internet than within an AS. We classify the
attempts to improve the Internet routing convergence in the following five
categories.

Shrinking the BGP convergence time. The first option to shrink the BGP
convergence time is to limit path exploration. Similarly to EIGRP, this can
be achieved with a di�usion algorithm such as DUAL [72]. Routers can also
leverage the BGP attributes (e.g., the AS path) to check the consistency of the
received routes (using the previous route updates received from the neighboring
routers) and reject the ones assessed as infeasible [140]. Afek et al. propose
to inject withdrawals for the prefixes for which transient and inconsistent route
updates have been observed [20].

Reducing the number of messages disseminated during convergence is another
solution to shrink the BGP convergence time. It can be achieved with BGP
update packing [146], which consists of aggregating route updates sharing the
same attributes into the same BGP update, or with route aggregation [161],
which consists of filtering out routes for more specific prefixes while respecting
the routing policies for data packets forwarding.

Finally, the BGP convergence can be improved by adding attributes in the BGP
messages to indicate the source/origin of the route change event [96, 139], or
simply by tuning its parameters [141].

Rerouting tra�c to failover paths. Bonaventure et al. propose an extension
to BGP that allows each router to automatically pre-compute an alternative
next-hop for each of its BGP peering link and for each prefix [33]. Upon the
failure of one of its peering link, a router can fast reroute the tra�c through IP
tunnels to the pre-computed alternative next-hops. Instead of using IP tunnels
to reroute tra�c to an alternative next-hop, Lakshminarayanan et al. propose
to add in the header of the data packets the list of the encountered failed links,
so that routers can use this information along with the network map (e.g., learnt
with the IGP) to reroute tra�c to a working BGP next-hop [111].

R-BGP [107] allows the routers to advertise not only the best path to their
neighbors, but also a failover path (ideally, with the most disjoint AS path
compared to the primary path). Upon a BGP peering link failure, the routers
can quickly reroute tra�c on the failover paths learnt with R-BGP.

Using overlay networks. An overlay network runs on top of another network.
For instance, Resilient Overlay Networks (RON) [25] include nodes deployed
at various locations in the Internet and which cooperatively, using a custom
routing protocol, route packets between each other. Overlay networks allow
bypassing the routing decisions calculated by the underlying routing process and
thus allow bypassing the slow Internet convergence. More precisely, each RON
node monitors the quality of its virtual links using active probing and passive
observations. It then reroutes tra�c on another virtual path upon detection
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of a connectivity disruption. In the same line of thinking, Gummadi et al. [78]
show that a simple overlay routing technique consisting of the source node
attempting to recover from path failures by routing indirectly through a small
set of randomly chosen intermediaries is beneficial and requires low overhead
(no background path monitoring and custom routing protocol).

Finally, ARROW [142] also relies on an overlay network. With ARROW, ISPs
can provide remote transit for a fee. Remote transit is achieved by provisioning
tunnels, using a custom protocol, between end-points and the ISP providing
the service. ARROWS tunnels include active probing mechanisms to detect and
locate failures on the ARROW circuits quickly. An end-point can simultaneously
establish multiple ARROW paths to the destination and use them in conjunction
with the original path for fast failover. The authors show that an ARROW
deployment can recover connectivity within a few hundred milliseconds by
rerouting tra�c to a backup tunnel upon an Internet outage.

Using new protocols and architectures. Consensus routing prevents the
typical convergence issues by augmenting BGP with Paxos agreement to ensure
route consistency, i.e., a router forwards packets on a path only when the
upstream routers have adopted the route [97]. Besides, consensus routing
allows routers to be in a transient mode during which they can use backup
routes (e.g., learned with R-BGP).

Subramanian et al. propose to replace BGP with a Hybrid Link-state Path-
vector protocol called HLP [163]. HLP relies on an additional level of hierarchy
to divide the routing process and make it simpler. More precisely, multiple ASes
can be grouped in one isolated region. Link-state routing is used within a region,
whereas path-vector routing is used between the di�erent regions. SCION shares
similar principles: ASes are divided into independent trusted domains, and only
a few trusted core ASes within each domain are connected to other core ASes
in other domains [28]. SCION comes with new control-plane mechanisms for
routing, which leverage the trusted domains to improve scalability, path selection
(both on the sender and the receiver side) and make routing more secure.

O�oading routing tasks. Routing tasks can be o�oaded to the data
plane so that routers can converge without waiting for the slow control-plane
notifications. For instance, DDC allows automatically finding an alternative
working path upon a link failure using data-plane mechanisms only [117]. More
precisely, upon detection of a failure, a router sends back a packet on the
incoming link. When the downstream router receives this packet, it deactivates
the failed path and forwards the packet to an alternative path instead. Costa
Molero et al. show that it is possible to implement some of the routing tasks in
the data plane using programmable switches [128]. They implemented a simple
version of BGP in P416 and show that it speeds up inter-domain convergence.
Routing can also be o�oaded to the cloud, where more resources and less
propagation delay help speeding up the routing convergence [143].
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Figure 2.3 Number, size and duration of bursts captured from 213 BGP vantage
points in November 2016.

2.2.3 The Internet still takes minutes to converge

Unfortunately, despite network operators deploying some of the solutions listed
above, the Internet still converges slowly. Indeed, the widely deployed solutions
(e.g., route flap damping [51]) only partially solve the convergence issues [121].
The other solutions require modifying the current standards (at the software
or hardware level) or cooperation between ASes, making a network-wide
deployment hard. For instance, SCION is only partially deployed in the Swisscom
network [164]. In this section, we thus report evidence of the still slow Internet
convergence with a measurement study.

We counted and measured the duration of bursts of BGP withdrawals extracted
from 213 RouteViews [132] and RIPE RIS [16] peering sessions during November
2016. We look at bursts of BGP withdrawals because they typically coincide
with path failures [61, 176]. We extracted the bursts using a 10 s sliding window:
a burst starts (resp. stops) when the number of withdrawals contained in the
window is above (resp. below) a given threshold. We choose 1,500 and 9
withdrawals for the start and stop threshold, respectively, which correspond to
the 99.99th and the 90th percentile of the number of withdrawals received over
any 10 s period. Overall, we found a total of 3,335 bursts; 16% of them (525)
contained more than 10,000 withdrawals and 1.5% of them (49) contained more
than 100,000 withdrawals. Our measurements expose the following four major
observations.

BGP routers often see bursts of withdrawals. We computed the number
of bursts observed by a router maintaining a growing number of peering sessions
randomly selected amongst the 213 RouteViews and RIPE RIS peering sessions.
Figure 2.3a shows our results. The line in the box represents the median value,
while the whiskers map to the 5th and the 95th percentile. In the median case,
a router maintaining 30 peering sessions would see 104 (resp. 33) bursts of at
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least 5k (resp. 25k) withdrawals over a month. Even if a router maintains a
single session, it would likely see a few large bursts each month. Indeed, 62%
of the individual BGP sessions we considered saw between 1 and 10 bursts of
withdrawals, 24% saw more than 10 bursts. Only 14% of the sessions did not
see any. As a comparison, single routers in transit networks routinely maintain
tens to hundreds of sessions [70] – even if not all those sessions might carry the
same number of prefixes as the ones in our dataset.

Learning the full extent of an outage is slow. While most of the bursts
arrived within 10 s, 37% (1,239) of them lasted more than 10 s, and 9.7% (314)
lasted more than 30 s (see Figure 2.3b). This also means that withdrawals
within bursts tend to take a long time to be received. In the median case (resp.
75th percentile), BGP takes 13 s (resp. 32 s) to receive a withdrawal.

Large bursts take more time to be learned. Unsurprisingly, large bursts
take more time to propagate than smaller ones (see Figure 2.3b). Overall, we
found that 98 bursts took more than 1 min to arrive, with an average size of
¥81k withdrawals.

A significant portion of the withdrawals arrives at the end of the bursts.
We took the bursts lasting 10 s or more and divided each of them into three
periods of equal duration: the head, the middle, and the tail. We found that
although most of the withdrawals tend to be in the head, 50% of the bursts
have at least 26% (resp. 10%) of their withdrawals in the middle (resp. in the
tail). For 25% of the bursts, at least 32% of the withdrawals are in the tail.

84% of the bursts include withdrawals of prefixes announced by
“popular” ASes. We examined the Cisco “Umbrella 1 Million” dataset [15],
listing the top 1 million most popular DNS domains. From there, we extracted
the organizations (15 in total) responsible for the top 100 domains, such as
Google, Akamai, Amazon, Apple, Microsoft, Facebook. 84% of the bursts
we observed included at least one withdrawal of a prefix announced by these
organizations. This demonstrates that slow Internet convergence can a�ect a
significant fraction of the data tra�c.

2.2.4 Slow routing convergence leads to significant tra�c losses

Bursts of withdrawals result in downtime. While countless studies have
shown that slow Internet routing convergence can cause long downtime on data-
plane connectivity [106, 138, 162, 175, 167, 41], we confirmed the data-plane
impact of a few bursts of withdrawals propagated by a national ISP (with more
than 50 routers). Specifically, we analyzed the bursts sent by the ISP to its BGP
neighbors over a period of three months. Among them, we selected three bursts
that included more than 10k withdrawals and matched with an event logged by
the ISP. By checking their logs, the operators identified the root causes of the
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Figure 2.4 The downtime induced by the slow BGP convergence and measured by
18 network operators upon remote outages.

bursts: two maintenance operations and a peering failure at one of their IXPs.
At least two of these three bursts induced downtime for transit tra�c towards
up to 68k prefixes, including popular destinations.

Network operators observe minutes of downtime during routing
convergence. To emphasize the e�ect of the slow Internet routing convergence
on users’ connectivity, we also ask the 73 respondents of our survey
about the actual downtime typically observed in their network during the
BGP convergence. Among them, 17 (23.6%) collect statistics about BGP
convergence and induced downtime (9 of which are transit ISPs), and 18
answered our questions about the average and worse case measured BGP
convergence time upon remote outages. Here, we ask about remote outages
because, from the perspective of the responding network operators, they
require BGP to converge to restore connectivity (as opposed to local outages).
Figure 2.4 shows the BGP convergence time measured by the 18 respondents.
Half of them observe an average BGP convergence time upon remote outages
above 30 s. Only 4 (22%) experience an average convergence time below 10 s
(Figure 2.4a). In addition, 14 (78%) of the respondents observe a worst-case
convergence time above 1 min, and 6 (33%) above 5 min (Figure 2.4b).

2.3 The FIB update

Once a router has learned the new paths, thanks to the routing protocols, and
has recomputed its RIB, it must update its FIB to forward the tra�c on the new
paths. The FIB maps an IP destination to the MAC address of the calculated IP
next-hop (in conjunction with the ARP table, see §1.2.2) as well as the output
interface. This mapping is executed at line rate when the FIB is implemented
in hardware.
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In many routers, the FIB is flat, meaning it has one individual forwarding entry
for each destination prefix, even though many of them share the same content
and thus forward tra�c to the same next-hop. We illustrate the e�ect of a
flat forwarding table in Figure 2.5, which depicts a simple network where R1 is
an edge router connected to R2 and R3, two routers in two di�erent providers.
Each of these provider routers advertises 512,000 IPv4 prefixes, which was the
size of the Internet routing table in 2015 [1]. As R2 is cheaper than R3, R1 is
configured to prefer R2 for all destinations. In such a case, each of the 512k
FIB entries in R1 is associated with a distinct next-hop entry which all contain
the MAC address of R2 as well as the outport 1. Upon the failure of a R2, every
single entry of R1’s FIB has to be updated, creating a significant downtime.

2.3.1 We measure the FIB update time on current routers

We measure the FIB update time of the recent Cisco Nexus 7k C7018 routers
(running NX-OS v6.2, with no hierarchical FIB) that were interconnected via
an HP E3800 J9575A Openflow-enabled switch. Our setup is depicted in
Figure 2.6. Using this setup, we measure the FIB update time of R1 upon
the failure of the link between R1 and R2. Note that we unplugged the cable
directly from the router interface. Thus the failure detection is instantaneous
(see §2.1), and the measured downtime corresponds to the FIB update. We
rely on a hardware-based measurement using FPGA boards to measure the
downtime induced by the failure with a precision of 70 µs. Such precision would
be impossible to achieve using software-based measurements. We measured
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Figure 2.6 The setup we used to measure the FIB update time of a recent Cisco
Nexus 7k. Our custom hierarchical FIB spans the router and the Openflow-enabled
switch directly connected to the router.

the downtime by monitoring the maximum inter-packet delays each flow saw
between two FPGA boards: a source that continuously sends a stream of 64-byte
UDP packets towards 100 di�erent destination IPs randomly selected, and a sink
that receives the packets and reports the per-destination inter-packet delays. We
implemented both the source and the sink on Xilinx ML605 evaluation boards
featuring a Virtex-6 XC6VLX240T-1FFG1156 FPGA.

A flat FIB takes 2.5 minutes to reroute tra�c in the worse case. Using
the methodology above, we measured the FIB update time for an increasing
number of prefixes (from 1k to 500k). We repeated the experiment 3 times per
number of advertised prefixes. Since we measured the downtime of 100 prefixes
for each experiment, we ended up with 300 statistically representative data
points per measurement. Figure 2.7 depicts, in blue, the distribution of the
measured downtime time using box plots. Each box shows the inter-quartile
range of the FIB update time; the line in the box depicts the median value;
and the whiskers show 5th and 95th percentiles. The numbers on top are the
maximal FIB update time recorded.

We can see that the FIB update time is roughly linear in the number of
entries to update in the FIB (not directly perceived in the figure because of
the non-uniform scaling of the x-axis). This linear increase occurs because
FIB entries are updated one by one; while the first FIB entry is updated
immediately, regardless of the total number of prefixes, the last entry must
wait for all the preceding FIB entries to be updated. This worse case highlights
the undesirability of a flat FIB: as the FIB grows, so does its update time.
Here, we see that R1 takes close to 2.5min to converge when loaded with 512k
prefixes. This result aligns with previous works, which also pointed out and
measured the slow FIB update time [66, 69, 174].
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Figure 2.7 With a flat FIB, the FIB update time increases linearly with the number
of entries to update. However, with our hierarchical FIB, the tra�c is always rerouted
within 150ms, regardless of the number of FIB entries to update.

2.3.2 Hierarchical FIB comes to the rescue

The solution to prevent downtime because of the slow FIB update is a
hierarchical FIB. In its simple form, a hierarchical FIB adds a level of indirection:
a first table maps a destination IP prefix to a pointer, which then resolves itself
into the actual next-hop in a second table. Upon failure of a next-hop, only
pointer values in the second table need to be updated to reroute all the a�ected
tra�c to a backup path. In a hierarchical FIB, the destination IP prefixes which
share the same primary and backup next-hops are grouped using the same
pointer. Since the number of destinations is by far greater than the number of
primary and backup next-hop pairs, many destination IP prefixes will share the
same pointer, enabling fast tra�c rerouting.

Figure 2.5 (right-bottom) illustrates a hierarchical FIB. Because R1 selects R2
as primary and R3 as backup next-hop for the 512k destination prefixes, each
entry maps to the pointer 0, which resolves itself into R2’s MAC address 01 : aa

and outport 1. Upon the failure of R2, a single update in the second table is
required to resolve the pointer 0 into R3’s MAC address 02 : bb and outport 2,
which will immediately reroute all the tra�c R3.

Hierarchical FIB in practice. Hierarchical FIBs have been successfully
implemented in actual hardware routers with BGP PIC [66, 64]. Besides working
in the simple case described in Figure 2.5, where the failure of a direct eBGP
neighbor requires the tra�c to be fast rerouted to another directly connected
BGP next-hop, PIC also enables fast rerouting upon internal failures. In this
case, the BGP next-hop does not change, but the IGP next-hop does. With PIC,
we thus observe two levels of indirection: each prefix points to a BGP next-hop,
and each BGP next-hop points to an IGP next-hop. Note that in practice, there
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exist other mechanisms to quickly reroute the tra�c upon internal failures, such
as MPLS Fast Reroute [136]. Among the 73 network operators who participated
in our survey, 17 (23%) use BGP PIC in their network, and 12 (16%) use MPLS
Fast Reroute.

To illustrate the benefit of a hierarchical FIB, we implemented one which spans
across two devices, the router and an SDN switch directly connected to it [22].
The router performs the first lookup, whereas the switch performs the second
lookup. To provision forwarding entries in this hierarchical FIB, we built a
custom controller. While the controller can rely on (typically) OpenFlow to
provision forwarding entries in an SDN switch, dynamically provisioning custom
forwarding entries in a router is trickier. The key insight is that our controller
can use any routing protocol spoken by the router as a provisioning interface.
Indeed, FIB entries in a router forward tra�c to the MAC address and the
outport associated with the IP next-hop learned via the routing protocol. To
provision custom forwarding entries in the router, our controller first interposes
itself between the router and its peers. Then, it computes primary and backup
next-hops for all IP destinations. Finally, it provisions “pointers” by setting the
IP next-hop field to a virtual IP next-hop that gets resolved by the router into
a fake next-hop MAC address (the pointer) using ARP. Upon failure of R2 in
Figure 2.6, all the controller has to do to converge is to modify the pointer
value by adding a table entry in the switch with Openflow, which matches on
the fake destination MAC address (the pointer) and set the outport to 2, in
order to reroute all tra�c to R3.

With a hierarchical FIB, R1 systematically converges within 150ms. We
measured the update time of our hierarchical FIB spanning two devices using
the same methodology as in §2.3.1, and report the results in Figure 2.7 (green
dots). The time to update our hierarchical FIB is constant irrespective of the
number of prefixes. This constitutes a 900◊ improvement factor compared to
the worst-case measured with a flat FIB.

2.3.3 Recent advances on fast forwarding updates

One limitation with a simple hierarchical table is that it only allows installing one
backup route for every destination prefix. Depending on the failure, the backup
routes can thus be suboptimal or worse, can be a�ected by the failure too.
Therefore, A fast reroute framework should pre-compute several backup routes
for di�erent potential failures and install all of them in the switch so that the best
backup route for a given failure can quickly be activated. However, handling
more backup routes for each prefix requires more complex data structures than
e.g., BGP PIC, at the control and the forwarding levels.
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At the switch level, Openflow supports fast-failovers to alternative links without
control-plane consultation and with minimal packet loss [134]. However, the
decision about which alternative path to use for a packet is limited to a sequence
of ports such that the packet is forwarded to the first active (i.e., non-failed)
port in the sequence. PURR shows how to implement such a fast failover
mechanism in P4 switches, using ternary matches to avoid packet recirculation
and maximize the switch throughput [45].

At the ISP level, OPTIC aims to fast reroute transit tra�c towards the optimal
BGP route after an internal event [118]. Hence, several backup routes need
to be pre-computed and installed in the FIB of the routers for each prefix to
protect them against any possible IGP event optimally.



3
Local fast reroute upon remote outages

In Chapter 2, we detailed the Internet convergence process and showed evidence
that it can still take minutes. We showed solutions to quickly recover
connectivity upon a silent change such as a link or router failure. Among others,
network operators can configure BFD on the routers to detect an outage and
configure BGP PIC to quickly reroute tra�c on working backup paths.

Unfortunately, we also showed that these solutions only work locally, and
speeding up the Internet convergence network-wide remains an open problem.
From the perspective of a network operator, the lack of solutions that work
network-wide means that upon a remote outage, there is currently no other way
for its routers to wait for the slow control-plane notifications (BGP messages)
before they can update their FIB, prefix by prefix, to reroute the tra�c to
alternative working paths.

In this dissertation, our goal is to implement a framework to locally fast reroute
tra�c upon remote transit outages. In this chapter, we start by introducing the
problem of local fast reroute upon remote outages (§3.1). We then show why
a fast reroute framework targeting remote Internet outages is useful (§3.2).
Finally, we highlight the key conceptual challenges (§3.3) as well as the key
operational requirements (§3.4).

3.1 Definition and illustration of a remote outage

From the perspective of a particular AS, we define a remote outage as an outage
occurring in another AS that a�ects one or multiple BGP peering links. The
AS on which we focus thus has no control over the remote AS undergoing the
outage and on the a�ected BGP peering links.
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Figure 3.1 Example of slow convergence upon a remote outage. Routing policies
and the absence of information about physical connectivity force AS1 to wait for 11k
BGP withdrawals, one per prefix owned by AS6 or AS8.

We illustrate a remote outage and its e�ect using the network depicted in
Figure 3.1. For the sake of exposition, we use an AS as the basic routing
element. Each AS i originates a distinct set of prefixes Si. We focus on the
21k prefixes of S6, S7, and S8, before and after the failure of the link (5, 6).
Figure 3.1a and Figure 3.1b respectively show pre- and post-failure AS paths.
AS5 knows an alternate path for S7 (via AS3) before the failure. However,
because of inter-domain policies (e.g., partial transit [147]), it does not know
any backup path for S6 and S8. For those prefixes, AS 5 recovers connectivity
after the failure via AS2.

After the failure of (5, 6), AS5 restores connectivity for S7 almost immediately
by rerouting tra�c to its alternate path (through AS3). However, since AS5
does not have backup paths for S6 and S8, a black hole is created for flows
directed to the corresponding 11k prefixes. In the control plane, the failure
causes AS5 to send 10k path updates to notify that it now uses new paths to
reach S7, along with 11k path withdrawals to communicate the unavailability
of path (5, 6, 8). For AS1 and AS2, the failure of (5, 6) is a remote outage,
which comes with a loss of tra�c towards S6 and S8. These two ASes have
no other option than waiting for the 11k BGP withdrawals and updating the
corresponding 11k FIB entries to reroute the tra�c for S6 and S8 to a working
backup path.

In practice, BGP peering link failures are everyday events [33]. Besides, an
outage can a�ect multiple BGP peering links when they share the same physical
infrastructure (e.g., the same layer-2 switch). The links sharing the same
physical infrastructure can be grouped in a Shared Risk Link Group (SRLG). A
study showed that 30% of the unplanned failures a�ect multiple links [122].
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3.2 Motivation to fast reroute upon remote outages

The problem with the outage illustrated in Figure 3.1 is that there is currently
no way for AS1 and AS2 to restore connectivity quickly. Indeed, the current
deployed BGP fast reroute techniques (e.g., BGP PIC [66]) only work for local
failures, not the remote ones.

In principle, though, if all ASes can locally fast reroute tra�c to a working
backup path upon any local failure (including SRLG failures), fast rerouting
upon a remote outage is unnecessary. Unfortunately, fast tra�c rerouting upon
a local failure is not always possible in practice, motivating the deployment of
a fast reroute framework targeting the remote outages. We explain why the
deployment of such a framework is beneficial in the following paragraphs.

There is not always a working backup path when the failure occurs. One
key challenge of any fast reroute technique is to find a working backup path. For
instance, IPFRR [158] reroutes the tra�c to LFAs to prevent forwarding loops.
As a vector-based routing protocol, BGP inherently hides some of the backup
paths that would result in forwarding loops in case of tra�c rerouting. Take,
for instance, the case depicted in Figure 3.1. AS5 only learns the backup path
via AS2 for prefixes in S6 and S8 after it sends withdrawals for these prefixes
and AS1 and AS2 converge and use the path via AS3 to reach these prefixes.

The problem is that depending on the topology, there might not exist working
backup paths. In the case of IPFRR, the per-link LFA coverage on actual core
ISP topologies ranges from 16% to 98% [65]. This number can be improved
using Remote LFAs, which consists in using IP tunnels to have additional logical
links and increase the LFA coverage [39, 58]. In the case of BGP, AS5 in
Figure 3.1 does not have a LFA for prefixes in S6 and S8. Using remote LFAs
with BGP is di�cult, as it would require cooperation between ASes. Hence, in
this example, AS5 cannot fast reroute tra�c for prefixes in S6 and S8.

Naively rerouting tra�c can result in forwarding loops. Forwarding loops
can happen upon an SRLG failure because multiple ASes may fast reroute
tra�c independently, thus possibly resulting in inconsistent forwarding states.
Consider the example depicted in Figure 3.2. There are 5 ASes, and we focus
on the paths towards the 1,000 prefixes advertised by AS5, a multi-homed stub
AS. Here again, for the sake of exposition, we use an AS as the basic routing
element. We indicate next to each AS the possible paths to reach the 1,000
prefixes and order them based on their preference. For instance, AS1 prefers
path 1 ≠ 5 over path 1 ≠ 2 ≠ 5, which is preferred over path 1 ≠ 3 ≠ 5.

Consider now that the two links between 1 ≠ 5 and 2 ≠ 5 fail, for instance,
because a line card of the router in AS5 is broken or because the tra�c between
the two pairs of ASes traverses a broken layer-2 switch. If both AS1 and AS2
fast reroute the tra�c for the 1,000 prefixes towards their best backup path,
i.e., the path 1 ≠ 2 ≠ 5 for AS1 and the path 2 ≠ 1 ≠ 5 for AS2, then the tra�c
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Figure 3.2 Naively fast rerouting tra�c at the inter-domain level can cause
forwarding loops. Blue arrows indicate forwarding paths towards the 1,000 prefixes.

would loop between AS1 and AS2 until BGP converges and AS1 (resp. AS2)
reroutes tra�c to AS3 (resp. AS4). In this example, AS1 should instead use AS3
as backup and AS2 should use AS4 as backup to quickly restore connectivity.
To prevent the cure from being worse than the disease, operators might stay
cautious and wait for BGP to converge.

Fast tra�c rerouting upon BGP peering link failures is tricky. There
are BGP fast reroute techniques that prevent forwarding issues. For instance,
Bonaventure et al. propose a set of techniques to enable fast tra�c rerouting
upon BGP peering links failures and without forwarding anomalies [33]. They
consider SRLG failures and propose solutions to protect the outgoing and
incoming tra�c of an AS. Consider again the stub AS5 in Figure 3.2. The
goal for AS5 is to protect both the outgoing tra�c as well as the the incoming
tra�c. For the outgoing tra�c, the solution is rather simple: the primary egress
router in AS5 can fast reroute tra�c to a backup egress router not in the same
SRLG using IP tunnels and a hierarchical FIB. For the incoming tra�c, the
problem is trickier as the provider’s network must reroute tra�c. In this case,
naively rerouting to the best backup path could result in forwarding loops or
black holes, as we show in Figure 3.2b.

Now, consider the scenario in Figure 3.2 again and imagine there is one distinct
router at each end of the BGP peering links. Assume that network operators
follow the standard practices and configure their routers to maintain iBGP
sessions fully mesh. Following the idea in [33], upon the failure of the link
(1, 5) and (2, 5), the primary egress router in AS1 should fast reroute the tra�c
to a secondary ingress router in AS5 that is not in the same SRLG than the
primary ingress router in AS5. In other (and simpler) words, AS1 should fast
reroute the tra�c to AS3, which will then send the tra�c to AS5, bypassing the
failure and restoring connectivity.
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The problem is that setting up these backup paths at the inter-domain level
requires cooperation between ASes. First, the provider (here, AS1) needs to
learn which secondary ingress router to use in AS5 and use it. A possible
solution for AS5 is to announce the secondary ingress router over the eBGP
session with the provider. Second, the primary egress router in the provider’s
network should reach the secondary ingress router without using the failed link.
For instance, in Figure 3.1, the primary egress router in AS1 should reach the
secondary ingress router in AS5 via AS3. This backup path can be used by
configuring on the secondary ingress router in AS5 an IP address that belongs
to an IP prefix owned and advertised by the provider directly connected to that
router (here AS3).

Many networks are not designed for fast tra�c rerouting upon BGP
peering link failures. To simplify the solution, AS5 could install multiple
parallel peering links ending at di�erent locations with its providers. In this
case, each provider would know a backup path that it can directly use instead of
rerouting tra�c to a remote secondary ingress router reachable via other ASes.
However, installing peering links is expensive and not always possible for small
stub ASes. Among the 73 operators who participated in our survey, 18 (24.7%)
do not have redundant peering links, 9 (12,3%) do establish parallel physical
connections with their peers, but which end on the same router on their end,
and 5 (7%) said that it depends. The remaining 41 operators (56%) establish
parallel physical connections with their peers, which necessarily end on di�erent
routers on their end. Those results highlight that an important fraction of the
ASes is not prepared for fast tra�c rerouting upon BGP peering link failures.
To reinforce this statement, we note that only 17 of our respondents (23%)
uses BGP PIC [66], one of the main existing solutions to fast reroute tra�c on
e.g., IP tunnels to recover connectivity upon BGP peering link failures quickly.

The vast majority of the operators would be interested in a fast reroute
solution for remote outages. Namely, 95% of our respondents indicated that
they would consider adopting a fast reroute solution to speed up convergence
upon remote outages.

3.3 Key conceptual challenges

There are three main conceptual challenges when building a fast reroute
framework targeting remote transit outages: (i) detecting the outage; (ii)
assessing the a�ected tra�c; and (iii) rerouting the a�ected tra�c towards
working backup paths. This section shows the state-of-the-art solutions that
try to solve these challenges and explains why a fast reroute framework targeting
remote outages need new tailored mechanisms to solve these challenges.



38 Chapter 3. Local fast reroute upon remote outages

3.3.1 Detection of the remote outage

As a path-vector protocol, BGP does not explicitly notify the status of the AS
links but instead (slowly) propagates announcements or withdrawals on a per-
prefix basis. Besides, the currently deployed fast failure detection mechanisms
such as BFD [98] rely on a point-to-point connection and thus only work upon
local failures, not the remote ones. Consequently, remote Internet outages must
be heuristically detected.

State-of-the-art solutions. Remote outages can be detected from the control
plane because BGP instabilities and, more particularly, bursts of BGP updates
and withdrawals coincide with Internet failures [61, 176].

They can also be detected from the data tra�c. For instance, FACT looks at
NetFlow [50] data and analyzes on a per-flow basis the cases where hosts in
possible remote ASes are unresponsive [152]. Chocolatine looks at the Internet
background radiation [53] and uses a statistical model to infer outages from
the number of di�erent IP addresses observed for each AS and over time [77].
Remote outages can also be detected from the state of the TCP connections.
For instance, Disco looks at the long-running TCP connections between the
RIPE Atlas probes and the RIPE Atlas infrastructure [16] and identifies bursts
of disconnections, which are signs of a severe outage [156].

Finally, active probing can detect remote outages. Active probing purposely
injects tra�c (typically ICMP probes) into the network to infer whether two
end-points can communicate and through which IP path. A good example is
Trinocular, which performs ping measurements at regular intervals and towards
each IP block in the Internet to infer outages [144]. Similarly, ThunderPing
sends ICMP probes towards residential Internet hosts to measure the correlation
between bad weather conditions and Internet outages [154].

As injecting packets adds load on the network, active probing solutions often
include a mechanism to adapt the probing rate depending on the likelihood of
detecting an outage. For instance, Trinocular minimizes the probing tra�c by
adapting the probing rate based on a Bayesian inference model. Odd behaviors
reported from passive measurements can also trigger active measurements. For
instance, PlanetSeer monitors tra�c between PlanetLab nodes [47] and its
users [180]. Upon detection of anomalous behavior, PlanetSeer triggers active
probing from PlanetLab nodes to further investigate the issue. Hubble triggers
ping and traceroute measurements when it detects changes in the BGP
control-plane [100]. With this approach, Hubble reduces the probing tra�c by
94.5% compared to a naive probing strategy while still detecting most outages.

What a fast reroute framework targeting remote outages needs. The
detection mechanism must be fast, ideally within few seconds only. This is far
from the detection speed of existing solutions, which need minutes to detect
remote outages. For instance, Trinocular probes in rounds of 11 minutes whereas
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Hubble monitors at a 15 minutes granularity. Chocolatine and FACT both detect
outages within with a 5 minutes timescale.

The detection mechanism must also detect many of the remote outages. From
the perspective of a particular AS, many remote outages that may a�ect its
connectivity should be detected, with a higher priority given to the outages that
would a�ect a significant part of the tra�c. This requirement hinders the use
of public measurement platforms, such as RIPE Atlas or PlanetLab, which only
cover a subset of the paths in the Internet.

3.3.2 Assessment of the a�ected tra�c

As BGP works on a per-prefix basis, our goal is to infer the a�ected tra�c on
a per-prefix basis too. The first obvious solution is to monitor each prefix
individually using passive measurements and active probing. However, this
can be very resource-hungry, especially given the always-increasing number of
prefixes advertised within the Internet [1]. An alternative solution is to locate
each outage and use this information to assess the a�ected tra�c, e.g., using
the AS paths learned from BGP.

State-of-the-art solutions. Because Internet outages correlate with BGP
routing instability [61] and BGP routes contain useful information such as the
AS path, many existing techniques use BGP data (e.g., obtained from the BGP
route collectors [16, 132]) to localize Internet outages. For instance, Caesar
et al. look at BGP routes observed at multiple vantage points to pinpoint
the location of the issues [43]. They observe that if a large number of BGP
updates, for many prefixes, exhibit the same AS link in the AS path, then this
link is a potential candidate for the location of the issue. Feldmann et al.
propose to locate the ASes responsible for a routing change by correlating
BGP information received from multiple vantage points across time, views,
and prefixes [63]. PoiRoot improves the performance of the localization by
using a set of measurement techniques to (i) estimate the set of ASes to
monitor to perform the route cause analysis and (ii) collect the actual AS-
level paths used towards the targeted ASes [93]. Besides active probing with
traceroute and passive BGP monitoring with data collected from multiple
vantage points, PoiRoot uses BGP poisoning (on dedicated IP prefixes) to learn
which alternative paths the monitored ASes use towards the poisoned prefixes
(which are otherwise invisible). With the collected data, PoiRoot then uses a
recursive algorithm to isolate the root cause of the path changes accurately.

NetDiagnoser relies on the principle of binary network tomography to identify the
location of network failures [55]. More precisely, NetDiagnoser infers the IP-level
topology of the network using traceroute measurements performed by sensors
located in multiple ASes and uses it to pinpoint the set of links a�ected by an
outage. To mitigate typical issues with traceroute measurements (such as
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non-responding hops), NetDiagnoser also uses information collected from BGP
Looking Glasses. Finally, Fontugne et al. propose a statistical model to pinpoint
in near real-time Internet outages using the RTTs and packet loss extracted from
the publicly available traceroute data of the RIPE Atlas platform [67]. For
instance, they detected the Amsterdam Internet Exchange (AMS-IX) outage
in 2015 and were able to determine the peers that could not exchange tra�c
during the outage [13].

What a fast reroute framework targeting remote outages needs.
Unfortunately, the current outage localization techniques focus on the quality
and precision and not on the speed of the localization. They thus benefit from
more flexibility in terms of inference algorithms and input sources (e.g., active
probing from multiple vantage points) but need minutes to localize an outage.

As speed is one of the key requirements for fast rerouting, we thus envision
a di�erent approach which "trades" accuracy to gain speed. Should the
assessment not be perfectly accurate, some of the a�ected tra�c will not
be rerouted and will keep using the non-working primary routes until BGP
converges, whereas some of the non-a�ected tra�c might be unnecessarily
rerouted, resulting in short-lived path suboptimality.

3.3.3 Remediation

When an outage is detected and the a�ected tra�c assessed, the goal is to
restore connectivity by quickly rerouting the a�ected tra�c towards working
backup paths. Rerouting tra�c on working backup paths is challenging because
multiple prefixes can be a�ected by an outage, and for each of them, the set
of working backup paths depends on the location of the outage. An obvious
solution is to monitor, for each prefix, each backup path individually and use
the ones that are still working. However, monitoring all the backup paths
takes resources. We thus prefer to leverage both path diversity and failure
localization to reroute the tra�c on backup paths bypassing the failure and
restoring connectivity.

State-of-the-art solutions. A simple approach is to look at the AS path of the
BGP routes and use the backup paths that avoid the outage. As an illustration,
Bremler-Barr et al. [36] look at the Round Trip Time (RTT) deviation from logs
of HTTP requests collected from di�erent servers to detect degradations and
combine these measurements with BGP data to locate the degradations. The
authors then show that predicting degradations enables "intelligent routing,"
which consists in leveraging path diversity by selecting the best path for each
destination according to the predictions.

LIFEGUARD [101] is an example of a system that automatically localizes
Internet outages and restores connectivity dynamically by rerouting tra�c
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around the outages. Unlike the other remediation techniques, LIFEGUARD
shows how an AS can restore connectivity for reverse paths, i.e., for the inbound
tra�c. The case of reverse paths is more challenging than for the forward paths
as there is no explicit mechanism to influence the routing decisions made by
remote networks (the MED attribute is only helpful with the neighboring ASes).
After inferring potential candidates for failure locations using traceroute and
reverse traceroute [99] and isolating the direction of the failure using spoofed
pings, LIFEGUARD restores connectivity on the reverse path by poisoning the
BGP advertisements [160] so that the inbound tra�c circumvents the outage.

What a fast reroute framework targeting remote outages needs. The
existing outage remediation techniques such as LIFEGUARD are not tailored
for fast tra�c rerouting but aim to address the long-lasting outages, i.e., the
ones that are often not accompanied by routing updates and take hours to
be fixed manually. LIFEGUARD aims to repair these outages within minutes
automatically. On the contrary, our goal is to prevent connectivity issues
caused by the slow Internet convergence by rerouting tra�c within few seconds.
Thus, besides rerouting on working backup paths, our solution must include a
mechanism to quickly update the FIB of the routers for all the a�ected prefixes.

3.4 Key operational requirements

In this section, we list the key operational requirements required for practical
deployment. To draw this list, we take into account the feedback from the
73 network operators who participated in our survey. Specifically, we asked
them about the most relevant characteristics of a fast reroute framework for
remote outages. Sixty-nine operators responded and results are summarized in
Figure 3.3.

Easily deployable. Deployability is one of the main requirements expressed by
network operators. More precisely, 43 (62.3%) of the participants care about
the ease of deployment, 27 (39.1%) about the cost, and 16 (23.2%) about the
ease of maintainability. Two respondents specifically said the solution should be
compatible with the BGP standards. Deployability matters because changing
the Internet standards is impracticable in the short term. Ease of deployment
and cost also means that the framework should only require a software update
or the reconfiguration of a device but should not require the manufacturing and
installation of new expensive hardware.

Incrementally Deployable. A single, partial or complete deployment of the
framework should be possible. The rerouting should not cause forwarding loops,
irrespective of the number of networks deploying the framework. A complete
deployment precludes intensive active probing techniques, which would likely add
too much load to the network. Ideally, deploying the framework should always
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Figure 3.3 The most relevant characteristics a fast reroute framework for remote
outages should have according to network operators.

be beneficial: the higher is the number of networks deploying the framework,
the better is the protection against Internet outages.

Performant and precise. Unsurprisingly, network operators care about the
performance and precision of the system. More specifically, 32 (46.4%) care
about minimizing downtime, and 30 (43.5%) care about potential performance
degradation. Unfortunately, as our heuristics rely on partial and noisy signals,
they cannot be perfectly accurate. As a result, we must find a tradeo� between
minimizing downtime (i.e., rerouting as much of the a�ected tra�c as possible)
and avoiding potential performance degradation (i.e., avoiding rerouting non-
a�ected tra�c).

We thus asked network operators whether they would mind if a fast reroute
solution for remote outages would temporarily reroute tra�c on a suboptimal
(but working) backup path for prefixes not a�ected by the outage. Sixty-eight
network operators responded. Among them, 33 (48.5%) operators answered
they would not mind, 27 (39.7%) answered they would mind, and 8 (11.7%)
said that it depends. We see that the plurality of the network operators is
willing to trade path suboptimality for less downtime. Yet an important fraction
of the operators does mind about path suboptimality. We thus tolerate path
suboptimality only if there is a significant reduction of downtime.

Secure. As the framework controls the selection of the forwarding paths,
malicious Internet players may have high interests in manipulating the system.
The main threat is that malicious users could manipulate the framework and
reroute the tra�c destined to the victim prefixes to their network. In addition,
there are other possible threats, such as manipulating the framework to prevent
fast rerouting upon failures or deliberately adding load on the routers to impact
its routing and forwarding performance. Ideally, the framework should detect,
report and thwart these attacks.
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SWIFT: Predictive Fast Reroute

In this chapter, we describe SWIFT, a locally-deployable framework which
enables existing routers to restore connectivity in few seconds upon remote
Internet outages.

SWIFT is based on two main ingredients. Immediately after receiving the first
few BGP withdrawals of a burst, which correspond to the first signs of a remote
outage, a SWIFT router runs an inference algorithm (§4.2) to localize the
outage and predict which prefixes will be a�ected—a sort of time-bound Root
Cause Analysis (RCA). Based on this inference, the SWIFTED router reroutes
the potentially a�ected prefixes on paths una�ected by the inferred failure. As
many prefixes may have to be rerouted at once, SWIFT also includes a data-
plane encoding scheme (§4.3) that enables the router to flexibly match and
reroute all prefixes a�ected by a remote failure with few data-plane updates.

Balancing inference accuracy & speed, with correctness & performance
in mind. The key insight of the SWIFT inference algorithm compared to the
prior (slow) RCA studies is that some accuracy can be traded for a significant
gain in speed. Identifying the topological region where an outage is happening
is indeed much faster than precisely locating the outage within that region. By
rerouting tra�c around the region, a SWIFTED router immediately restores
connectivity for the a�ected prefixes at the cost of temporarily forwarding a few
(according to our results) una�ected prefixes on alternate working paths.

SWIFT makes sure that the e�ect of diverting non-a�ected tra�c does not
trump the benefit of saving tra�c towards the a�ected prefixes. First of all,
we prove that rerouting non-a�ected tra�c is safe: SWIFT does not lead to
forwarding anomalies, even if multiple routers and ASes deploy it. Second,
SWIFT selects the alternate paths taking into account the operator’s policies
(e.g., type of peers, cost model) and performance criteria (e.g., by preventing
to reroute a large amount of tra�c to low-bandwidth paths).
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Deployment. SWIFT is deployable on a per-router basis and does not require
cooperation between ASes, nor changes to BGP. SWIFT can be deployed with
a simple software update since the only hardware requirement, a two-stage
forwarding table, is readily available in recent router platforms [66].

Whenever a SWIFTED router fast-reroutes upon an outage, it guarantees
connectivity to all the tra�c sources passing through it. Hence, deploying
SWIFT in a few central ASes would benefit the entire Internet, since these
ASes would also protect their (non-SWIFTED) customers. The same applies
within a network: deploying a few SWIFTED routers at the edge boosts
convergence network-wide. A full Internet SWIFT deployment would achieve
the utmost advantages of our scheme, as it guarantees ASes to reroute quickly,
independently, and consistently with their policies.

Performance. We implemented SWIFT and used our implementation to
perform extensive experiments using both real and synthetic BGP traces. Across
all our experiments, SWIFT correctly identified 90% of the a�ected prefixes
within 2 seconds. Moreover, a SWIFTED router can fast reroute 99% of
the predicted prefixes with few data-plane rule updates, i.e., in milliseconds.
Finally, we show that our implementation is practical by using it to reduce the
convergence time of a recent Cisco router by more than 98%.

Our implementation of SWIFT is open-source and available at
www.swift.ethz.ch.

4.1 Overview

Figure 4.1 shows the workflow implemented by a SWIFTED router. We now
describe the result of implementing such workflow on a BGP border router of
AS1 in Figure 3.1. Here, for simplicity and without loss of generality, we assume
that a single router in AS1 maintains all the BGP sessions with AS2, AS3 and
AS4.

Before the outage. The SWIFTED router in AS1 continuously pre-computes
backup next-hops (consistently with BGP routes) to use upon remote outages.
This computation is done for each prefix and considering any possible inter-AS
link failure on the corresponding AS path. For example, the AS1 router chooses
AS3 or AS4 as backup next-hop for rerouting the 20k prefixes advertised by AS7
and AS8 upon the failure of link (1, 2). In contrast, it can only use AS3 as
backup to protect against the failure of link (5, 6) for the same set of prefixes,
since AS 4 also uses (5, 6) prior to the failure. SWIFT then embeds a data-plane
tag into each incoming packet. Each SWIFT tag contains the list of AS links
to be traversed by the packet, along with the backup next-hop to use in the
case of any link failure.
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Upon the outage. After receiving a few BGP withdrawals caused by the failure
of (5, 6), the SWIFTED router in AS1 runs an inference algorithm that quickly
identifies a set of possibly disrupted AS links and a�ected prefixes. The router
then redirects the tra�c for all the a�ected prefixes to the pre-computed backup
next-hops. To do so, it uses a single forwarding rule matching the data-plane
tags installed on the packets. As a result, AS1 reroutes the a�ected tra�c in less
than 2 s (independently from the number of a�ected prefixes), a small fraction
of the time needed by a router (see Figure 2.7). When rerouting, SWIFT does
not propagate any message in BGP. We proved that this is safe provided that the
SWIFT inference is su�ciently accurate (§4.1.3). When BGP has converged,
i.e., the burst of withdrawals has been fully received and BGP routes have
been installed in the forwarding table, the router removes the forwarding rules
installed by SWIFT and falls back to the BGP ones.

In the following, we provide more details about the main components of SWIFT.
In §4.1.1, we overview the inference algorithm that we then fully describe in
§4.2. In §4.1.2, we illustrate how SWIFT quickly reroutes data-plane packets
on the basis of tags pre-computed by the encoding algorithm detailed in §4.3.
We finally report about SWIFT guarantees in §4.1.3.

4.1.1 Inferring outages from few BGP messages

The SWIFT inference algorithm looks for peaks of activity in the incoming
stream of BGP messages. Each detected burst triggers an analysis of its root
cause. To identify the set of links with the highest probability of being a�ected
by an outage, the algorithm combines the implicit and explicit information
carried by BGP messages about active and inactive paths. For example,
the failure of (5, 6) in Figure 3.1 may cause BGP withdrawals indicating the
unavailability of paths (1, 2, 5, 6) and (1, 2, 5, 6, 8) for all the prefixes originated
by AS 6 and 8. Receiving these withdrawals makes the algorithm assign a
progressively higher failure probability to links in {(1, 2), (2, 5), (5, 6), (6, 8)}.
Over time, the algorithm decreases the probability of links (1, 2) and (2, 5),
because prefixes originated by AS2 and AS5 are not a�ected, and the probability
of link (6, 8), because not all the withdrawn paths traverse (6, 8).

SWIFT aims at inferring failures quickly, yet keeping an eye on
accuracy. Inference accuracy and speed are conflicting objectives. Indeed,
precisely inferring the set of a�ected AS links might be impossible with few BGP
messages, as they might not carry enough information. For instance, SWIFT
cannot reduce the set of likely failed links any further than the entire path
(1, 2, 5, 6, 8) until it receives other messages than withdrawals for that path.
Rerouting based on partial information can unnecessarily shift non-a�ected
tra�c, e.g., all the prefixes originated by AS2 and AS5. In contrast, waiting for
BGP messages takes precious time (§2.2) during which tra�c towards actually-
a�ected prefixes can be dropped.
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To avoid unnecessary tra�c shifts, SWIFT evaluates the likelihood that its
inferences are realistic (e.g., using historical data). For instance, SWIFT
evaluates the probability that a burst including withdrawals for all the prefixes
originated by AS6, AS7 and AS8 happens. If a burst of similar size is unlikely,
SWIFT waits for the reception of more messages to confirm its inference. Given
that withdrawals for prefixes from AS7 and AS8 will likely be interleaved with
path updates for AS6, this strategy quickly converges to an accurate inference,
as we show in §4.4.

SWIFT uses a conservative approach to translate inferences into
predictions of a�ected prefixes. Remote failures are often partial, that
is, an outage can cause tra�c loss for a subset of the prefixes traversing the
a�ected link(s). For instance, a subset of the prefixes traversing the failed
link (5, 6) in Figure 3.1 can remain active because of physical link redundancy
between AS5 and AS6, or be rerouted by intermediate ASes (e.g., AS5) to a
known backup path (like the prefixes originated by AS7). As BGP messages do
not contain enough information to pinpoint the set of prefixes a�ected by an
outage, SWIFT reroutes all the prefixes traversing the inferred links. Doing so
minimizes downtime at the potential cost of short-lived path sub-optimality (for
a few minutes at most).

SWIFT inference works well in practice. Our experiments on real BGP
traces (see §4.4) show that SWIFT enables to reroute 90% (median) of the
a�ected prefixes after having received a small fraction of the burst, and less
than 0.60% of the non-a�ected prefixes.

4.1.2 Fast data-plane updates independently of the number of
a�ected destinations

Upon an inference, a SWIFTED router might need to update its FIB for
thousands of prefixes. As we show in Section 2.3, routers are slow to perform
such large rerouting operations as they update their data-plane rules on a
per-prefix basis. Besides, as the outage a�ects remote AS links, local fast-
rerouting techniques [66] cannot be applied. According to our measurements
(Section 2.3.1) and the previous studies, the median update time per-prefix is
between 128 and 282 µs. Hence, current routers would take between 2.7 and
5.9 seconds to reroute 21k prefixes and more than 1 minute for the full Internet
table (650k prefixes) – even if BGP could converge instantaneously.

SWIFT speeds up data-plane updates by rerouting according to packet
tags instead of prefixes. A SWIFTED router relies on a two-stage forwarding
table to speed up data-plane updates. The first stage contains rules for tagging
traversing packets. SWIFT tags carry two pieces of information: (i) the AS
paths along which they are currently forwarded; and (ii) the next-hops to use in
the absence (primary next-hops) or presence (backup next-hops) of any AS-link
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failure. The second stage contains rules for forwarding the packets according
to these tags. By matching on portions of the tags, a SWIFTED router can
quickly select packets passing through any given AS link(s), and reroute them
to a pre-computed next-hop. Since tags are only used within the SWIFTED
router, they have local meaning and are not propagated in the Internet (they
are removed at the egress of the SWIFTED router).

Using again Figure 3.1, we now describe the rules in the forwarding table of the
SWIFTED router in AS1. Figure 4.1 shows the tags returned by the SWIFT
encoding algorithm. The first stage of the forwarding table contains rules to add
tags consistently with the used BGP paths. Since prefixes in AS8 are forwarded
on path (2, 5, 6, 8), it contains the following rule.

match(dst_prefix:in AS8) >> set(tag:00111 10011)

The first part of the tag identifies the AS path. It maps specific subsets of bits
to AS links in a given position of the AS path. The first two bits represent the
first link in the AS path, which is link (2, 5). Consistently with Figure 4.1, those
bits are therefore set to 00. Similarly the second and third bits represent link
(5, 6) when it is the second link in the AS path, etc.

The second part of the tag (in green) encodes the primary and backup next-
hops. Namely, the first bit identifies the primary next-hop, the second bit
indicates the backup next-hop to use if link (1, 2) fails, etc. This part of the tag
enables SWIFT to match on tra�c that may have to be redirected to potentially
di�erent next-hops depending on the link that fails and the destination prefix.

Before the failure of (5, 6), the second stage only contains the forwarding rules
consistent with BGP. Specifically,

match(tag:***** 1****) >> fwd(2)

Upon the failure of (5, 6), SWIFT adds a single high-priority rule to the second
stage – while not modifying at all the first stage.

match(tag:*01** ***1*) >> fwd(3)

The added rule exploits the structure of SWIFT tags to reroute tra�c for all
the a�ected 21k prefixes, at once.

The regular expression in it matches all the packets such that: (5, 6) appears
as the second link in their AS path (i.e., the tag starts with *01**); and the
backup next-hop is 3 (i.e., the tag ends with ***1*). This includes tra�c for
prefixes in AS6, AS7 and AS8. Note that one rule is su�cient in our example,
because the SWIFTED router does not use any AS path where (5, 6) appears
in other positions before the failure (otherwise, one rule per position is needed).
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SWIFT compresses tags e�ciently. Assigning subsets of bits for any AS
link and possible position in the AS path does not scale for the Internet AS
graph that currently includes >220,000 AS links. SWIFT encoding algorithm
squeezes such graph in few bits by leveraging two insights. First, many links
in the AS graph are crossed by few prefixes, and their failure does not lead
to bursts large enough to even require SWIFT fast-rerouting. SWIFT therefore
does not encode those links at all. Second, the AS paths used by a single router
at any given time tend to exhibit a limited number of AS links per position.
SWIFT therefore only encodes AS links and positions that are present in the
used BGP paths.

SWIFT supports rerouting policies. SWIFT complies with rerouting policies
specified by the operators when computing backup next-hops. Indeed, rerouting
to a safe path might not always be desirable in practice (e.g., because
economically disadvantageous). Rerouting policies express the preferences
between backup next-hops or forbid the usage of specific ones (e.g., to mimic
business and peering agreements). For example, operators can prevent SWIFT
from: (i) using an expensive link with a provider rather than a more convenient
one with a customer; (ii) rerouting to a link where free tra�c is close to depletion
(e.g., according to the 95th percentile rule [130]); or (iii) moving high volumes
of tra�c to geographically distant regions (e.g., by sending to a remote egress
point).

SWIFT supports both local and remote backup next-hops. In addition to
reroute locally to a directly connected next-hop announcing an alternate route,
a SWIFTED router can also fast-reroute to remote next-hops, potentially at the
other side of the network, by using tunnels (e.g., IP or MPLS ones). Remote
backup next-hops are learned via plain iBGP sessions.

SWIFT is easy to deploy. Only a software update is required to deploy SWIFT
since recent router platforms readily support a two-stage forwarding table [66].
In §4.5 we show that SWIFT can also be deployed on any existing router by
interposing a SWIFT controller and an SDN switch between the SWIFTED
router and its peers. The two-stage forwarding table in that case spans two
devices, similarly to an SDX platform [80, 79].

4.1.3 Guarantees and limitations

We now show that SWIFT is beneficial and safe. More particularly, we
prove that SWIFT rerouting strictly improves Internet-wide connectivity,
proportionally to the number of SWIFTED routers, and despite not notifying
path changes in the control plane. This translates into incentives for both partial
and long-term Internet-scale deployment (e.g., on all AS border routers).
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Theorem 4.1. The number of disrupted paths is decreased by every SWIFTED
router which is on a path a�ected by an outage.

Theorem 4.2. SWIFT rerouting causes no forwarding loop, irrespective of the
set of SWIFTED routers.

Both theorems are based on the following lemma.

Lemma 4.1. When any SWIFTED router fast-reroutes, it sends packets over
paths with no blackhole and loops.

Safety conditions for predictive fast rerouting are formalized by the following
two assumptions.

Routing stability assumption. During an outage, BGP paths do not
arbitrarily change during rerouting. This assumption means that (i) routers
only change inter-domain forwarding paths that are a�ected by the outage; and
(ii) only one single outage happens at a time.

If this assumption is violated, then inter-domain loops can be generated. Let
s be a SWIFTED router and n the next-hop to which s fast reroutes to avoid
a certain outage. If n switches path for some fast-rerouted prefixes (e.g., to
reflect a policy change uncorrelated with the outage), it may choose the BGP
path used by s before the outage (not updated by SWIFT): this would lead to
a loop between n and s.

Nevertheless, SWIFT can quickly detect and mitigate such a loop: s can monitor
whether n stops o�ering the BGP path to which it has fast-rerouted, and select
another backup next-hop.

Reasonable inference assumption. SWIFT inferences enable the SWIFTED
routers to avoid paths a�ected by an outage. The SWIFT inference algorithm
implements a conservative approach for inferring links and selecting backup
paths. Still, we cannot guarantee the validity of such assumption, since SWIFT
inferences are based on the partial and potentially noisy information provided by
BGP (and withdrawals that reach di�erent ASes at di�erent times). Inferences
that cause SWIFT not to rule out all paths a�ected by an outage might
induce packet loss: in these cases, a SWIFTED router could reroute tra�c
to a disrupted backup, and multiple SWIFTED routers could create an inter-
domain loop (if the selected backup next-hop actually uses exactly one of
the disrupted paths missed by the inference). In both cases, packets will be
dropped, as it would have happened for the a�ected prefixes without SWIFT
(i.e., using vanilla BGP). However, our evaluation with both real BGP traces
and controlled simulations (§4.4), suggests that very few SWIFT inferences lead
to the selection of disrupted backup next-hops.
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Under the reasonable inference assumption, we now show that lemma
Lemma 4.1 holds.

Proof of Lemma 4.1. Consider any SWIFTED router s that fast reroutes at a
given time t, to avoid an inferred outage. Let n be the router to which s fast
reroutes. By definition of SWIFT (and any existing fast rerouting technique
that s can apply if next to a disrupted link), the following properties hold at t:

n n must o�er a BGP path Pn to s, otherwise s would have not fast rerouted
to n. By definition of BGP, Pn does not contain loops.

n Pn must not include any of the links a�ected by the outage, i.e., it does not
include blackholes. This is a direct consequence of the reasonable inference
assumption.

n n and all routers in Pn keep forwarding packets over Pn. This is always true
for routers that do not fast reroute (using SWIFT or any other fast rerouting
technique), by definition of BGP. Also, since Pn does not include any link
a�ected by the outage (see previous property), routers in Pn that can fast
reroute do not receive any withdrawal for path Pn (nor any path update, since
SWIFT and other fast rerouting techniques do not generate BGP messages).
As a consequence, they all also maintain Pn as forwarding path.

Combining these properties together, the packets fast rerouted by s at time
t are forwarded over the path (s n) fi Pn, which does not contain loops nor
blackholes – which proves the statement.

We now use Lemma 4.1 to prove the theorems.

Proof of Theorem 4.1. The statement follows by observing that every
SWIFTED router on a disrupted path (i) will fast reroute, if the reasonable
inference assumption holds, and (ii) will redirect tra�c over a non-disrupted
path by Lemma 4.1.

Proof of Theorem 4.2. Assume by contradiction that upon an outage (a�ecting
one or more inter-domain links) a forwarding path for a certain prefix contains a
loop L at a given time during the BGP convergence. Since BGP is guaranteed
to compute non-loopy paths, at least one router s in L must fast reroute.
However, s cannot fast reroute to a path including a loop, by Lemma 4.1.

This contradicts the hypothesis, and yields the statement.
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4.2 SWIFT Inference Algorithm

We now detail the SWIFT outage inference algorithm, its basics along with
a proof of its correctness (§4.2.1) and how it accounts for real-world factors
(§4.2.3).

4.2.1 Sound inference

In the following, we consider the stream of messages received on a single BGP
session since the algorithm run on a per-session basis (enabling parallelism). We
also initially assume that the algorithm aims at inferring an outage produced by
a single inter-AS failed link.

Burst detection. SWIFT monitors the received input stream of BGP messages,
looking for significant increases in the frequency of withdrawals. It classifies a
set of messages as the beginning of a burst when such frequency (say, number
of withdrawals per 10 seconds) in the input stream is higher than the 99.99th

percentile recorded in the recent history (e.g., during the previous month).

Failure localization. When detecting a burst, SWIFT infers the corresponding
failed link as the one maximizing a metric called Fit Score (FS). Let t be the
time at which this inference is done. For any link l, the value of FS for l is the
weighted geometric mean of the Withdrawal Share (WS) and Path Share (PS):

FS(l, t) = (WS(l, t)wW S ú PS(l, t)wP S )1/(wW S+wP S)

WS is the fraction of prefixes forwarded over l that have been withdrawn at t

over all the received withdrawals. PS is the fraction of withdrawn prefixes with
a path via l at t over the prefixes with a path via l at t. More precisely,

WS(l, t) = W (l, t)
W (t) PS(l, t) = W (l, t)

W (l, t) + P (l, t)

where W (l, t) is the number of prefixes whose paths include l and have been
withdrawn at t; W (t) is the total number of withdrawals received as of t; P (l, t)
is the number of prefixes whose paths still traverse l at t. wW S and wP S are the
weights we assign to WS and PS. By relying on WS and PS, the fit score aims
at quantifying the relative probability that a link is responsible for the received
withdrawals while being robust to real-world factors such as BGP noise (§4.2.3).

Example. Figure 4.2 reports the WS and PS values at the end of the burst of
withdrawals generated by the failure of (5, 6) in Figure 3.1. Link (5, 6) is the
only one with both WS and PS equal to 1, since all the AS paths traversing it
have been either withdrawn or changed with another path not crossing (5, 6).
In contrast, the PS values for links (1, 2) and (2, 5) are smaller than 1 (11k/13k
and 11k/12k), because paths for the prefixes of AS 2 and AS 5 have not been
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Figure 4.2 WS and PS metrics at the end of the burst of withdrawals caused by
the failure of (5,6).

modified by the burst. The WS of (6, 8) is smaller than 1 because not all the
withdrawals pertain to that link. At the end, (5, 6) is therefore correctly inferred
as failed.

Correctness. SWIFT inference algorithm is always correct under ideal
conditions. The following theorem holds.

Theorem 4.3. If all ASes inject at least one prefix on every adjacent link,
SWIFT inference returns a set of links including the failed link if run at the end
of the stream of BGP messages triggered by the failure.

Proof of Theorem 4.3. Assume that a single link f fails and that the inference
algorithm makes a prediction at time t when fed with all and only the BGP
messages generated by f .

We now show that the inference algorithm assigns the highest possible values
of both WS and PS to f .

Indeed, all the paths traversing f before the burst are either explicitly withdrawn
or updated (to avoid f): This implies that the number P (f, t) of paths
traversing f at t is 0. Moreover, since only BGP messages generated by f ’s
failure are in the inference input by hypothesis, all the received withdrawals
must have crossed f , that is, W (f, t) = W (t). As a consequence, PS(f, t) =
W (l, t)/(W (l, t) + 0) and WS(f, t) = W (l, t)/W (l, t) are equal to their
maximum value 1.

This implies that the fit score of f is the highest possible one, hence the SWIFT
inference algorithm will return it in the set of failed links.
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(a) Ratio of links inferred. (b) Di�erence of distance from the
SWIFTED router.

Figure 4.3 Behavior of the SWIFT inference algorithm as a function of when it is
triggered during the burst and the ratio between the weight of WS and PS.

4.2.2 Tailored for fast inference

SWIFT makes inference during the bursts to be fast. However, the downside of
being fast is that only partial information is available to make the inference. In
this section, we show how we designed the SWIFT outage inference algorithm
to be accurate with partial information.

SWIFT makes accurate inferences during the burst. Contrary to the
assumptions of Theorem 4.3, SWIFT runs its inference algorithm at the
beginning of a burst. Lack of information (i.e., carried by not yet received
withdrawals) can therefore a�ect its accuracy. Being aware of this lack of
information, we adapt two parameters of SWIFT: (i) the triggering threshold
which indicates the number of withdrawals after which SWIFT inference is
triggered; and (ii) the di�erence between the weight assigned to WS and PS in
the geometric mean computation. We pick the values for those two parameters
based on observations we made on 375 bursts greater than 20k withdrawals
and collected on 10 RouteViews collectors during the last two weeks of July
2016 (which is another dataset that we use to evaluate SWIFT in §4.4, so
as to ensure that our results are not dataset-driven). Figure 4.3a shows the
median inference score as a function of the triggering threshold and the weight
assigned to WS (wW S). The inference score is the ratio of links inferred at a
given triggering threshold and which are the same than the ones inferred at the
end of the burst.

SWIFT adapts the triggering threshold based on the likelihood of
inferring the correct outage. Intuitively, the higher is the number of
withdrawals received, the better is the inference. We can see in Figure 4.3a
that with wW S Ø 3, the median inference score is between 0.3 and 0.4 after
2.5k withdrawals, and between 0.7 and 0.8 after 15k withdrawals. These
results reveal that after 2.5k withdrawals, SWIFT already localizes (sometimes
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partially) many outages. As a result, we configure SWIFT to run the inference
algorithm after only 2.5k withdrawals. However, we configure SWIFT to wait
for more information if the number of withdrawals received is too low compared
to the number prefixes that would be rerouted, as this would more likely result in
an inaccurate inference. Specifically, we reject an inference that would reroute
more than 10k, 20k, 50k, and 100k prefixes, if respectively inferred after 2.5k,
5k, 7.5k, and 10k withdrawals. After having received 20k withdrawals, SWIFT
returns the inferred link regardless of the number of predicted prefixes.

SWIFT increases the weight of WS for better inference early on during
the burst. The key intuition is that early on during the burst, a large number of
prefixes are not yet withdrawn and are still using the failed link. As a result, the
PS for that link may not be the highest one. The PS for the failed link actually
increases when SWIFT runs the inference later in the burst. However, the WS
for the failed link will always be greater or equal than the WS of any other
link, provided that SWIFT does not receive unrelated withdrawals and that the
outage is produced by a single link failure. SWIFT thus performs better when
wW S > wP S.

The results in Figure 4.3a confirm this intuition. We can see that increasing the
weight of WS (while keeping the weight of PS equal to 1) improves the inference.
Figure 4.3b helps to understand this behavior by showing the di�erence, in the
distance from the SWIFTED router, between the links inferred before and at
the end of each burst. With equal weights for WS and PS, the algorithm tends
to infer links further than the one inferred at the end of the burst. This is likely
because at the beginning of the burst, the PS of the failed link is lower than
1, and thus further links may have a higher PS, since fewer prefixes are using
them. To bring the distance di�erence closer to 0 (ideal case, if we assume
that the inference at the end of the burst is the correct one), we can increase
the weight of WS. Figure 4.3b shows that when choosing 3, 5, or 10 for the
WS weight, the average distance di�erence is very close to 0, and can even be
negative for 5 and 10. As a result, we set the ratio between the weights of WS
and PS to 3.

4.2.3 Robust to real-world factors

In practice, actual streams of BGP messages do not always match the ideal
conditions assumed in Theorem 4.3. In this section, we show how we designed
the SWIFT inference algorithm to make it robust against real-world factors.

SWIFT quantitative metrics mitigate the e�ect of BGP noise. Some
received BGP messages may be unrelated to the outage causing a burst but due
to contingent factors (e.g., misconfiguration, router bugs). They constitute
noise that can negatively a�ect the accuracy of any inference algorithm. In
SWIFT, noise can distort FS values. In Figure 4.2, for instance, withdrawals
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for prefixes originated by AS5 can be received by AS1 during the depicted burst.
This would increase the likelihood that the FS of (2, 5) is higher than the one
of (5, 6), especially at the beginning of the burst.

In practice, SWIFT is robust to realistic noise as the level of BGP noise is usually
much lower than a burst. Hence, its e�ect on quantitative metrics such FS,
WS, and PS, tends to rapidly drop. This feature distinguishes our inference
algorithm from simpler approaches, e.g., based on AS-path intersection, which
are much more sensible to single unrelated withdrawals.

SWIFT applies a conservative strategy if failed links cannot be
univocally determined. It may happen that SWIFT cannot distinguish
precisely which link has failed. For example, in Figure 4.2, assuming that the 1k
prefixes from AS6 are updated and not withdrawn, SWIFT cannot distinguish if
(5, 6) or (6, 8) failed. Whenever a failed link cannot be univocally determined,
SWIFT inference returns all the links with maximum FS, i.e., both (5, 6) and
(6, 8) in the previous example.

SWIFT can infer concurrent link failures. To cover cases like router failures
that a�ect multiple inter-AS links at the same time, the inference algorithm
computes the FS value for sets of links sharing one endpoint. More precisely,
the algorithm aggregates greedily links with a common endpoint (from links
with the highest FS to those with the lowest one), until the FS for all the
aggregated links does not increase anymore. The fit score FS for any set S of
links is computed by extending the definition of WS and PS as follows.

WS(S, t) =

q

lœS
W (l, t)

W (t) PS(S, t) =

q

lœS
W (l, t)

q

lœS
W (l, t) + P (l, t)

The set of links (potentially, with a single element) with the highest FS is
returned. To ensure safety (see §4.1.3), for each link inferred, SWIFT must
choose a backup route that does not traverse the common endpoint of the
links.

To put that into practice, SWIFT chooses a backup path for a prefix and a link
in the AS path which avoids both endpoints of the link. This is required as
SWIFT computes the backup next-hops in advance, i.e., before the failure (see
§4.1.2), and thus SWIFT does not know which endpoint of a link will be the
common endpoint. This prevents SWIFT to reroute a prefix to a backup next-
hop that uses another inferred link (because all the inferred links have a common
endpoint). By choosing backup paths bypassing a superset of the inferred links,
SWIFT also ensures safety in case the inference algorithm correctly localizes
the ASes involved in the outage instead of the precise links.
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Figure 4.4 A SWIFTED router embeds a tag into incoming packets. The tag
encodes the links traversed by the packet (Part 1) along with backup next-hops for
each of the encoded links (Part 2).

4.3 SWIFT Encoding Algorithm

In this section, we describe how SWIFT tags are computed. Recall that these
tags are embedded onto the incoming packets in the first stage of the forwarding
table and are split in two parts: one which encodes the AS links used by the
packet, and another which encodes the next-hops to reroute to should any of
these links fail. Thanks to these embedded tags, a SWIFT router can quickly
reroute tra�c on working backup paths upon an inference, independently on
the number of prefixes a�ected.

In Section 4.5, and similarly to [79, 80], we show how SWIFT can leverage
the destination MAC to tag incoming tra�c. The destination MAC is indeed
a good “tag carrier” as it provides a significant number of bits (48), and can
easily be removed in the second stage of the forwarding table by rewriting it to
the MAC address of the actual next-hop, as any IP router would do.

Encoding AS links. The first part of the tag (right side of Figure 4.4) encodes
the AS path along which each packet will flow. For each prefix, we consider
the AS path associated with the best route for it, and we store the position
of ASes in that path. Namely, we define m sets, with m being the length of
the longest AS path, and we call the i-th set position i. For any AS path
(u0 u1 . . . uk), with k Æ m, we then add the AS identifier of ui to position i,
for every i = 1, . . . , k. Note that we do not model position 1 because the first
hop in any AS path is already represented as the primary next hop (see Part 2
of Figure 4.4). This AS-path encoding is computed for every SWIFT’s neighbor
and allows AS paths to be encoded using AS identifiers for every position.
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Encoding all used AS paths may not be possible. Not only can thousands of
distinct ASes be seen for each position, but also the AS paths may be very
long (>10 hops). Fortunately, two observations enable SWIFT to considerably
reduce the required number of bits. First, from the perspective of one router,
many AS links carry few prefixes. A failure of these links will therefore produce
small bursts (if any), which allows for per-prefix update. Thus, we ignore any
link that carries less than 1,500 prefixes in our SWIFT encoding. Second, links
that are far away from the SWIFTED node are less likely to produce bursts of
withdrawals than closer ones. Indeed, for distant links, it is more likely that
intermediate nodes know a backup path. Our measurements (§4.4) confirm
this. Consequently, SWIFT only encodes the first few hops of the AS paths (up
to position 5).

For the remaining AS links, SWIFT encodes first the links with the highest
number of prefixes traversing them. To do that, SWIFT uses an adaptive
number of bits for each AS position: each position is implemented by a di�erent
bit group, whose length depends on the number of ASes in this position. For
each position P , we map all the ASes in P to a specific value (the AS identifier)
of the corresponding bit group. Hence, the size of this group is equal to the
number of bits needed to represent all the values in P .

Encoding backup next-hops. The second part of the tag (left side of Fig. 4.4)
identifies the primary next-hop as well as backup next-hops for each encoded
AS link. For each prefix p, the primary next-hop is directly extracted as the
first hop in the AS path for p. For instance, the primary next-hop for prefix p1
in Figure 4.2 is 2. Backup next-hops are explicitly represented to both reflect
rerouting policies and prevent rerouting to disrupted backup paths. Consider
again p1. The primary path is (2, 5, 6). To protect against a failure of the first
AS link (2, 5), we can select AS3 or AS4, since neither of the two uses (2, 5) to
reach p1. In contrast, for (5, 6), only AS3 can be used as a backup next-hop,
since the AS paths received from AS4 also uses (5, 6).

Partitioning bits across the two parts of the tag. A fundamental tradeo�
exists between the amount of paths and the number of backup next-hops that
any SWIFT router can encode. On the one hand, allocating more bits to
represent AS links (first part of the tag) allows a SWIFTED router to cover more
remote failures. On the other hand, allocating more bits to represent (backup)
next-hops (second part of the tag) allows a SWIFTED router to reroute tra�c
to a higher number of backup paths.

In §4.4.4, we show that allocating 18 bits to AS paths encoding is su�cient to
reroute more than 98% of the prefixes. Assuming 48-bits tags (i.e.,, using the
destination MAC), 30 bits are left to encode backup next-hops. If we configure
SWIFT to support remote failures up to depth 4, the bits allocated for the
backup next-hops needs to be divided by 5 (1 primary + 4 backup next-hops).
As a result, 30/5 = 6 bits are reserved for each depth, which translates into
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26 = 64 possible next-hops. If one wants to consider remote failures only up
to depth 3, then the number of next-hops is 27 = 128 and two more bits can
be allocated to the AS links encoding. Operators can fine-tune such decision,
e.g., based on the (expected) number of backup next-hops reachable by each
SWIFTED router.

4.4 Evaluation

We now evaluate our Python-based implementation (¥ 3,000 lines of code)
of the SWIFT inference algorithm (§4.2) and the encoding scheme (§4.3).
We first describe our datasets (§4.4.1). We then evaluate the accuracy of
the inference algorithm, both in terms of failure localization (§4.4.2) and
withdrawals prediction (§4.4.3).

We also evaluate the e�ciency of SWIFT data-plane encoding (§4.4.4). Finally,
we show that the combination of the inference algorithm and the encoding
scheme leads to much faster convergence than BGP (§4.4.5).

4.4.1 Datasets

We evaluate SWIFT using two sources of bursts of BGP withdrawals.

Bursts from real BGP data, without outage ground truth. To evaluate
how SWIFT would work in the wild, we use sets of actual bursts extracted
from the same dataset used in §2.2.3. It consists of BGP messages dumped by
10 RouteViews [132] and 5 RIPE RIS [16] collectors during the full month of
November 2016. These collectors received BGP messages from 213 peers. Note
that, we found 5 routers peering with these collectors that exhibit a flapping
behavior, with an anomalous large number of bursts of similar pattern; when
including them, we obtain a minimal change in overall results (¥2%), but since
SWIFT performs uniformly on similar bursts, their large number (¥500 bursts)
causes a significant skew in the population of bursts. We therefore omit these
peers from our analysis.

Our evaluation is based on 1,802 bursts with more than 1,500 withdrawals.
Amongst them, 942 (resp. 339) have more than 2,500 (resp. 15,000)
withdrawals.

Bursts from simulations, with outage ground truth. To validate the
accuracy and the robustness of our inference algorithm, we use bursts extracted
from control-plane simulations conducted with C-BGP [145]. We created a
topology composed of 1,000 ASes using the Hyperbolic Graph Generator [23].
We set the average node degree to 8.4, which is the value observed in the
CAIDA AS-level topology [14] in October 2016, and use as degree distribution
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a power law with exponent 2.1 [105]. We defined the AS relationships as follows.
The three ASes with highest degree are Tier1 ASes and are fully-meshed. ASes
directly connected to a Tier1 are Tier2s. ASes directly connected to a Tier2
but not to a Tier1 are Tier3s, etc. Two connected ASes have a peer-to-peer
relationship if they are on the same level, otherwise they have a customer-
provider relationship. We configured each AS to originate 20 prefixes, for a
total of 20k prefixes. Using C-BGP, we simulated random link failures, and
recorded the BGP messages seen on each BGP session in the network. We
collected a total of 2,183 bursts of at least 1k withdrawals. The median (resp.
max) size of the bursts is 2,184 (resp. 19,215) withdrawals.

4.4.2 Failure localization accuracy

In the following, we evaluate the accuracy of the SWIFT inference algorithm
on both datasets.

4.4.2.1 Validation on real BGP data

Since real BGP traces do not provide the ground truth on burst root causes,
we estimate the accuracy of the inference algorithm indirectly: we evaluate the
match between the prefixes withdrawn in the entire burst W and the prefixes
W

Õ whose path traversed the links inferred by SWIFT as failed. This can be
formalized as a binary classification problem, in which the true and false positives
are the prefixes in W

Õ fl W and W
Õ ≠ W , respectively. We therefore evaluate

the accuracy of SWIFT inference in terms of True Positive Rate (TPR) and
False Positive Rate (FPR). More precisely, we have TPR = TP/(TP + FN),
FPR = FP/(FP + TN). The negatives are all the prefixes announced in the
session before the burst starts and not withdrawn during the burst.

Figure 4.5 shows the TPR and FPR on a per-burst basis. It is divided into
quadrants. The top left quadrant corresponds to very good inferences, i.e.,
for each burst, the links that SWIFT infers as failed are traversed by most
of the withdrawn prefixes (high TPR) and few of the non-a�ected prefixes
(low FPR). The top right quadrant contains inferences that overestimate the
extent of a failure (high TPR and FPR): rerouting upon such inferences is still
beneficial as the TPR is high (i.e., connectivity is restored for many prefixes
actually disrupted). The bottom left quadrant corresponds to inferences that
underestimate the extent of a burst. Finally, the bottom right quadrant includes
bad inferences (with low TPR and high FPR).

We evaluate two scenarios for SWIFT. In the first one (Figure 4.5a), the
inference algorithm runs only once, after 2.5k withdrawals—without adapting
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Figure 4.5 Despite having little information, SWIFT inference is accurate. The vast
majority of prefixes are correctly inferred as failed (top half quadrants). While some
a�ected prefixes are missed (bottom left), no prediction is significantly inaccurate
(bottom right).

the triggering threshold. In the second scenario (Fig. 4.5b), the inference
algorithm runs every 2.5k withdrawals while following the simple model we
described in §4.2.3 to decide when to reroute tra�c. In this case, SWIFT waits
for more withdrawals to arrive before rerouting large numbers of prefixes early
on in the burst.

SWIFT makes accurate inferences in the majority of the cases, and
never makes bad inferences. Even when using only 2.5k withdrawals
(Figure 4.5a), SWIFT makes accurate inferences in the vast majority of the
cases: TPR is more than 60% for more than 81% of the bursts. However, it
also overestimates the extent of the burst (FPR is higher than 50%) for about
12% of the bursts. SWIFT inference algorithm performs sensibly better with an
adaptive triggering threshold (Figure 4.5b). Better performance comes at the
price of missing some bursts because of the extra delay. Specifically, it missed
a total of 256 bursts (53% of them smaller than 5k) compared to the static
triggering threshold version. Despite this, the adaptive triggering threshold
version of the inference algorithm still completes the inference at the lowest
threshold (2.5k) for the majority of the bursts (65%). The increased density of
the top left quadrant in Figure 4.5b is a clear indication of the gain obtained
by trading a bit of speed for better accuracy. Finally, we stress that SWIFT
never falls into the bottom right quadrant, irrespective of whether an adaptive
triggering threshold is used or not.
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4.4.2.2 Validation through simulation

We now describe the results obtained by SWIFT inference algorithm when run
on the bursts generated in C-BGP (see §4.4.1).

Under ideal conditions, SWIFT inference is always correct. We ran our
inference algorithm at the end of each burst and found that the inference is
always correct, consistently with Theorem 4.3.

SWIFT inference is accurate enough to ensure safety, even early on
during the bursts. When we ran the inference algorithm after only 200
withdrawals (1% of the total number of prefixes advertised, see §4.4.1), SWIFT
identified a superset of the failed link for 9% of the bursts. For the remaining
91%, it returned a set of links adjacent to the failed one. Nevertheless, for
all the 2,183 bursts but one, SWIFT selected a backup path that bypasses the
actual failed link. This is because SWIFT chooses a backup route that does
not traverse the common endpoint of the inferred links (see §4.2.3).

SWIFT inference is robust to noise. We simulated BGP noise by adding,
in each burst, 1,000 withdrawals of prefixes that are not a�ected by the failure.
This number is much greater than what we observe in real BGP data, both
in absolute terms (9 withdrawals only during 10 second periods in the 90th
percentile, see §2.2.3) and as a percentage (since we only advertise 20k prefixes
in C-BGP, whereas there are more than 865k prefixes advertised in the real
world [1]). When we triggered the inference at the end of the burst, SWIFT
identified the failed link for 91% of the bursts (1991), a superset for 9% bursts
(188), a set of links adjacent to the failed one for 1 burst and did a wrong
inference for 3 bursts. When we triggered the inference after 200 withdrawals,
SWIFT still selected backup paths that bypass the actual failed link for all the
bursts but one. More precisely, SWIFT identified a superset of the failed link
for 12% of the bursts, while for the remaining 88%, it returned a set of links
adjacent to the failed one.

4.4.3 Withdrawals prediction accuracy

In the previous section (§4.4.2), we showed that SWIFT inference algorithm is
indeed able to identify the failed link, even with limited information. In this
section, we evaluate the ability of SWIFT to predict withdrawals and we also
give the absolute number of prefixes fast rerouted upon such inference, enabling
us to quantify the benefit of SWIFT as well as the possible under/overshooting
induced.
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percentile of bursts
10th 20th 30th 50th 70th 80th 90th

Burst size between 2.5k and 15k
CPR 24.6% 48.9% 72.6% 89.5% 98.5% 99.7% 99.9%

FPR 0% 0.03% 0.07% 0.22% 0.50% 0.81% 1.8%

CP 47 178 349 901 2.1k 3.0k 4.3k
FP 24 125 301 802 2.2k 3.1k 5.0k

Burst size greater than 15k
CPR 5.6% 39.3% 80.4% 93.0% 98.1% 99.7% 99.9%

FPR 0% 0% 0.04% 0.60% 5.42% 13.9% 74.9%

CP 1.7k 5.7k 11.0k 19.6k 53.2k 78.1k 193k
FP 0 6 110 2.4k 19.8k 50k 402k

Table 4.1 Inference algorithm with history model: performance of the prediction
of future withdrawals.

Di�erently from the previous section, in order to evaluate specifically the
prediction, we consider as “positives” only the prefixes withdrawn after the
inference was made. This change a�ects the definition of TP (and TPR) but
leaves FP (FPR) unaltered. Since we already used TPR in §4.4.2, we denote
with CPR (for Correctly Predicted Rate) the true positive rate of the prediction.
We also denote with CP and FP, the total numbers of prefixes correctly predicted
or not, respectively.

4.4.3.1 Validation on real BGP data

Table 4.1 shows results obtained by running the SWIFT inference algorithm
with the history model. Results for small (Æ15k) and large (>15k) bursts are
shown separately.

SWIFT correctly fast-reroutes a large number of a�ected prefixes. For
half (resp. 80%) of the small bursts, SWIFT correctly predicts at least 89.5%
(resp. 48.9%) of the future prefix withdrawals. For half (resp. 80%) of the
large bursts, SWIFT correctly predicts at least 93% (resp. 39.3%) of the future
prefix withdrawals. In terms of absolute numbers, SWIFT correctly fast-reroutes
a significant amount of prefixes, especially for larger (>15k) bursts, where the
number of prefixes predicted is in the order of tens of thousands for 60% of the
bursts and in the order of hundreds of thousands for more than 10%.
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SWIFT only reroutes a small number of non-a�ected prefixes. Both
for small and large bursts, the fraction of fast-rerouted prefixes that were not
a�ected by the failure is small in most of the cases. In few cases (e.g., 90-th
percentile of the large bursts) however, the algorithm significantly overestimates
the number of prefixes to be rerouted (FP). This is because we deliberately
designed and tuned the algorithm to not minimize incorrectly rerouted prefixes
in order to avoid missing prefixes that should be rerouted and have significant
gain in network uptime. Incorrectly rerouted prefixes are indeed forwarded to a
backup path which is sub-optimal but not disrupted, just for the few minutes
needed for BGP to reconverge. This is in line with the key requirements we list
in §3.4. Consistently, we note that less aggressive weights do reduce the FPR
(see §4.2.2).

4.4.3.2 Validation through simulation

We now evaluate the accuracy of the prefixes prediction on the bursts generated
by C-BGP.

SWIFT accurately predicts prefix withdrawals, even when considering
noise. When inferring the a�ected prefixes after only 200 withdrawals, the FPR
is equal to 0% for 98% of the bursts. The highest FPR observed is only 13%.
In the median case (resp. 25th percentile), the CPR is equal to 88% (resp.
84%). The lowest CPR observed is 37%.

To consider the impact of BGP noise on these numbers, we added to each burst
1,000 withdrawals unrelated to the failure (as in §4.4.2.2). We found that, for
53% of the bursts, the FPR is still 0%. The FPR is greater than 9% for only
1% of the bursts. In the median case (resp. 25th percentile), the CPR is 53%
(resp. 50%). The CPR is far from 100% because the withdrawals unrelated
to the failure count as positives. In practice, we observe that the CPR is less
a�ected by BGP noise, as the level of noise is usually much lower (see §2.2.3).

4.4.4 Encoding e�ectiveness

We now experimentally evaluate SWIFT encoding scheme (§4.3) by quantifying
how many prefixes can e�ectively be rerouted in the data plane by matching on
the pre-provisioned tags. For each burst, we define the encoding performance, as
the fraction of predicted prefixes that can be rerouted by the encoding scheme.
The performance depends on the number of bits allocated to the AS path
part of the tag (see §4.3). For this part of the evaluation, we rely on the
inference algorithm with the adaptive triggering threshold and consider the
bursts obtained from the real BGP data.
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about remote outages. In 2 (resp.
9) seconds, SWIFT learns more than
50% (resp. 75%) of the withdrawals,
BGP needs 13 seconds (resp. 32
seconds).

Allocating 18 bits to the AS-path part of the tag enables to
reroute 98.7% of the predicted prefixes.. Figure 4.6 shows the encoding
performance (over all bursts) as a function of the number of bits reserved for the
AS-path part of the tag. Each box shows the inter-quartile range of the encoding
performance: the line in the box depicts the median value; the dot depicts the
mean; and the whiskers show the 5th and 95th percentiles. As the number
of bits allocated to the AS paths encoded increases, so does the encoding
performance. We see that 18 bits are already su�cient to reroute 98.7% of the
predicted prefixes in the median case (73.9% in average). These results illustrate
that the compression done by the encoding algorithm is e�cient and manages to
encode the vast majority of the relevant AS links. In addition, Figure 4.6 shows
that for the large bursts of at least 10k withdrawals, the encoding performance
is better (84.0% on average with 18 bits). This is explained by the design of our
encoding algorithm, which encodes with highest priority the AS links with the
largest number of prefixes traversing them (and which may cause large bursts
in case of a failure).

Assuming a tag of 48 bits (e.g., using the destination MAC), the remaining 30
bits can be used to encode the backup next-hops. If SWIFT encodes up to
depth 4 (i.e., position 5 in the AS path), 64 di�erent next-hops can therefore
be used. This suggests that SWIFT encoding can work well even if the SWIFT
device is connected to a large number of external neighbors, like in IXPs §4.5.2.
The number of backup next-hops can even be increased by reducing the number
of AS hops encoded (e.g., up to depth 3 instead of 4).
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4.4.5 Rerouting speed

In this section, we show that the combination of the SWIFT inference algorithm
and the encoding scheme enables fast convergence in practice (within 2 s) by
quantifying: (i) the learning time required for a prediction; and (ii) the number
of rules updates to perform in the data plane. Our results are computed on the
bursts in the real BGP data.

SWIFT learns enough information to converge within 2 seconds
(median). Compared to vanilla BGP, SWIFT converges much faster than
a BGP router working at the per-prefix level. Figure 4.7 shows the CDF of the
time elapsed between the beginning of the burst and the actual time at which
every withdrawal in the burst is learned. For BGP, the learning time corresponds
to the withdrawal timestamp. For SWIFT, it corresponds to the prediction time
if the withdrawal is predicted, otherwise the withdrawal timestamp. The plot
highlights that, in the median case, SWIFT learns a withdrawal within 2 s, while
BGP needs 13 s. We can observe a shift at 41 s in the SWIFT curve. After
investigation, we found that this is due to a very large burst of 570k withdrawals
which took a total of 105 s to arrive. The first 20k withdrawals (needed for
SWIFT to launch the prediction) took 41 s to arrive. Observe that, even in
such a case, SWIFT was still able to shave o� more than 1 min of potential
downtime.

SWIFT requires few data-plane updates to reroute all the predicted
prefixes. The number of data-plane updates required to reroute all the
predicted prefixes depends on the number of failed AS links reported by
the inference algorithm. When executing the inference algorithm after 2.5k
withdrawals, in 29% of the cases, the number of links predicted is 1 and the
median number (resp. 90th percentile) is 4 (resp. 29). For each reported link,
one data-plane update is required for each backup next-hop (§4.3). As a result,
in the median case (resp. 90-th percentile) and with 16 backup next-hops,
64 (resp. 464) data-plane updates are required. Considering a median update
time per-prefix between 128 and 282 µs [173, 64], SWIFT can update all the
forwarding entries within 130 ms.

4.5 Case Study

In this section, we showcase the benefits of SWIFT when deployed in two
di�erent scenarios. In §4.5.1 we deploy SWIFT on recent Cisco router to boost
it convergence time. In §4.5.2, we then deploy SWIFT in a Software-defined
Internet Exchange Points (SDX) [80, 79] to boost the convergence time of its
participants.
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(a) A SWIFTED Cisco router
converge 98% faster.

SWIFT controller

SDN  
switch

BGP 
controller

…

eBGP  
sessions

REST API

peern

peer1

peer2

SDN & ARP 
controller

SWIFT 
engine

SWIFTED  
IP router

SDN APIARP

(b) Alternative SWIFTED imple-
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Figure 4.8 While a recent router takes 110 seconds to converge upon a large remote
outage (left), the corresponding SWIFTED router (using the alternative deployment
scheme depicted on the right) converges within 2 seconds.

4.5.1 SWIFT on a recent Cisco router

As mentioned in §4.1.2, SWIFT can be implemented directly on existing routers
via a simple software update, since the only hardware requirement, a two-stage
forwarding table, is readily available in recent platforms [66] (we confirmed
this implementation through discussion with a major router vendor). Yet, to
evaluate SWIFT without waiting for vendors to implement it, we developed an
alternative deployment scheme that we describe in Figure 4.8b.

How to SWIFT any existing router. In our alternative deployment scheme,
we interpose a SWIFT controller and an SDN switch between the SWIFTED
router and its peers, respectively at the control- and data-plane level (as in
§2.3.2). The setup is akin to the SDX platform [80, 79]. It enables to deploy
SWIFT on any router that supports BGP and ARP, that is, virtually any router.

Upon reception of the BGP updates coming from the peers of the SWIFTED
router, the controller assigns 48-bit tags according to the SWIFT encoding
scheme (see §4.3). The controller programs the SWIFTED router to embed
the data-plane tags in the destination MAC field in the header of incoming
packets, using the same technique as in a SDX [80] (i.e., with BGP and ARP).
It also programs the SDN switch to route the tra�c based on the tags, and
rewrites the destination MAC address with the one of the actual next-hop.
The two-stage forwarding table used by SWIFT then spans two devices: the
SWIFTED router (first stage) and the SDN switch (second stage).

Upon the detection of a burst coming from a peer, the SWIFT controller runs the
inference algorithm (§4.2), and provisions data-plane rules to the SDN switch
for rerouting the tra�c. Our SWIFT controller uses ExaBGP [3] to maintain
BGP sessions.
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Figure 4.10 SWIFT greatly
speeds up the BGP convergence in
SDXes.

Methodology. We reproduced the topology in Figure 3.1a with a recent
router (Cisco Nexus 7k C7018, running NX-OS v6.2) acting as AS1, which
we connected to its peers via a laptop running a (software-based) OpenFlow
switch (OpenVSwitch 2.1.3). We configured AS6 to announce 290k prefixes.
Then, we failed the link (5, 6), and we measured the downtime using the same
technique as in §2.3.1 (sending tra�c to 100 randomly selected IP addresses).

A 98% speed-up. Figure 4.8a reports the downtime observed by the
SWIFTED and non-SWIFTED Cisco router. While the vanilla Cisco router
takes 109 s to converge, the SWIFTED Cisco router systematically converges
within 2 s—a 98% speed-up.

4.5.2 SWIFT in an SDX

We now show that the deployment of SWIFT is not limited to single routers
and that its architecture naturally fits in SDXes as well.

Minimal changes, maximal impact. An SDX controller essentially acts as
BGP Route Server (RS) receiving, processing and propagating BGP messages
between potentially hundreds of participants. Few other locations besides
Internet eXchange Points interconnect so many networks in a single point. As
large outages occur in the Internet, these RSes can be hit with huge bursts
of BGP route updates that they have to process. SDXes are thus a good
place to deploy SWIFT: with just a simple software update in the RS, all the
SDX participants can benefit from protection against remote outages without
requiring any changes on their side.

To demonstrate the benefit of deploying SWIFT in a SDX, we show the number
of bursts a RS would see depending on the number of participants. Figure 4.9
shows the number of bursts of BGP withdrawals detected in November 2016
for groups of BGP sessions of di�erent sizes and computed randomly from the
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Figure 4.11 Embedding SWIFT within the SDX platform requires the two to share
the 48-bits tag. Yet, we found this does not significantly impact their performance.

pool of 213 BGP sessions we used in §4.4.1. In the median case and with 30
peering sessions, we detected, in a month, 104 (resp. 33) bursts of at least 5k
(resp. 25k) withdrawals.

Integrating SWIFT and SDX. SWIFT is a natural fit for the SDX as they
both rely on a 2-stage forwarding table. For both projects, the first stage
groups packets using a tag; the second stage then forwards packets according
to their tag’s values. The main di�erence is how SWIFT and SDX group
packets. SWIFT groups packets based on the common Internet resources they
are using (e.g. AS path) whereas SDX groups packets based on their forwarding
equivalence class (which depends on the SDX policies). Both systems also rely
on the 48-bits destination MAC address as a tag which is provisioned using BGP
and ARP (as in §4.5.1).

As both the SDX and SWIFT use the destination MAC as data-plane tag,
integrating the two projects require them to share this tag space. While this
means that each project has fewer bits to work with, we show that we can still
maintain SWIFT convergence properties and the ability of SDX to express many
policies.

Sharing the 48-bits tag between SDX and SWIFT. As both SWIFT and
SDX rely on the same data plane tag, the partitioning of the 48-bits between
them has an impact on the performance of SWIFT and determines the number
of participants the SDX may support. The operator is free to partition the tag
according to her requirements. Figure 4.11 shows how we partition the 48-bits
between SWIFT and SDX for this case study. 16 bits are reserved for the SDX,
and 24 for SWIFT. 8 bits are used to encode the primary next-hop, which is
used by both the SDX and SWIFT. The current partitioning supports up to 256
participants, which is su�cient for most IXPs. We configured SWIFT to only
reroute tra�c for outages happening in the first four ASes on the AS path, own
AS excluded (i.e., on the first three remote AS links). With this configuration,
SWIFT computes three backup next-hops for each prefix, one for each of the
first three remote AS links on the AS path. Hence, 12/3 = 4 bits are available
to encode each backup next-hop, which makes a total of 24 = 16 possible
backup next-hops for each participant.
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Figure 4.12 Our Quagga-based demonstration in which we showcase SWIFT
running in the SDX controller. Blue (resp. green) arrows indicate the path used
before (resp. after) we simulate a failure on the link (2, 4).

Setup and experiment. We built the network depicted in Figure 4.12 with
Mininet [114] and used Quagga for the routing software [7]. Each router is in a
di�erent AS, and AS1, AS2 and AS3 are connected to the SDX. We modified the
iSDX [79] implementation to support SWIFT. We configured AS4 to advertise
5k, 10k, 25k, 50k, 100k, 250k and 500k prefixes, and made sure the primary
path between AS1 and AS4 traverses AS2 and the backup path traverses AS3.

We then simulated a link failure on the link between AS2 and AS4, and measured
the time AS1 takes to reroute the tra�c for all the prefixes on the backup path.
The failure generated a burst of BGP withdrawals that SWIFT processed in the
SDX controller to trigger the fast reroute. We repeated this experiment with
di�erent number of prefixes.

Results. Figure 4.10 shows the convergence time of AS1. The convergence
time without SWIFT increases linearly with the number of prefixes, and can be
close to 90 second for 500k prefixes. When SWIFT is deployed, the convergence
time is nearly constant and always within 1.4 second, as only few data plane rule
updates are required to converge, irrespective of the number of prefixes a�ected
by the outage. In practice, we expect the di�erence to be even higher as bursts
take time to arrive and hardware-based routers update their forwarding table
more slowly than software-based router §2.3.1.



5
Blink: Fast Connectivity Recovery

Entirely in the Data Plane

In this chapter, we present Blink, a data-driven system that uses programmable
data planes (see §1.2.5) to detect failures directly in the data plane by leveraging
TCP-induced signals. By looking at data-plane signals, Blink is inherently faster
than control-plane-driven solutions such as SWIFT.

Indeed, the fundamental problem with control-plane-driven solutions is that
it can take O(minutes) for the first BGP update to propagate after the
corresponding data-plane failure. We illustrate this problem through a case
study, by measuring the time the first BGP updates took to propagate after the
Time Warner Cable (TWC) networks were a�ected by an outage on August 27
2014 [12]. We consider as outage time t0, the time at which tra�c originated by
TWC ASes and observed at a large darknet [10] suddenly dropped to zero. We
then collect, for each of the routers peering with RouteViews [132] and RIPE
RIS [16], the timestamp t1 of the first BGP withdrawal they received from the
same TWC ASes. Figure 5.1 depicts the CDFs of (t1 ≠ t0) over all the BGP
peers (100+ routers, in most cases) that received withdrawals for 7 TWC ASes:
more than half of the peers took more than a minute to receive the first update
(continuous lines). In addition, the CDFs of the time di�erence between the
outage and the last prefix withdrawal for each AS, show that BGP convergence
can be as slow as several minutes (dashed lines).

In short, a fundamental question is still open: Is it possible to build a fast-
reroute framework for ISPs that can converge in O(seconds) for both local and
remote failures?

Blink: fast, data-driven convergence upon remote failures. We answer
this question a�rmatively by developing Blink, a data-driven fast-reroute
framework built on top of programmable data planes. The key intuition behind
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Figure 5.1 It can take minutes to receive the first BGP update following data-plane
failures during which tra�c is lost.

Blink is that a TCP flow exhibits a predictable behavior upon disruption:
retransmitting the same packet over and over, at epochs exponentially spaced in
time. When compounded over multiple flows, this behavior creates a strong and
characteristic failure signal. Blink e�ciently analyzes TCP flows to: (i) select
which ones to track; (ii) reliably and quickly detect major tra�c disruptions;
and (iii) recover connectivity—all this, completely in the data plane.

In this chapter, we present an implementation of Blink in P4 together with an
extensive evaluation on real and synthetic tra�c traces. Our results indicate
that Blink: (i) achieves sub-second rerouting for large fractions of Internet
tra�c; and (ii) prevents unnecessary tra�c shifts even in the presence of noise.
We further show the feasibility of Blink by running it on an actual Tofino switch.

5.1 Key Principles and Challenges

In this section, we first show that TCP tra�c exhibits a characteristic pattern
upon failures (§5.1.1). We then discuss the key challenges and requirements
to detect such a pattern, and recover connectivity by rerouting the a�ected
prefixes, while operating entirely in the data plane, at line rate (§5.1.2).

5.1.1 Data-plane signals upon failures

Consider an Internet path (A, B, C, D) carrying tens of thousands of TCP flows,
destined to thousand prefixes, in which the link (B, C) suddenly fails. We are
interested in monitoring the data-plane “failure signal” perceived at A, with the
goal of enabling A to detect it and to also recover connectivity by rerouting
tra�c through a di�erent path (if any). Observe that A is not adjacent to the
failure, i.e., the failure is remote.
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Figure 5.2 After the failure, a TCP flow keeps retransmitting the last
unacknowledged segment according to an exponential backo�. The exact timing of
the retransmissions depends on the estimated RTO before the failure (here 200ms).

As the link (B, C) fails, the TCP endpoints stop receiving acknowledgements
(ACKs), and each of them will timeout after its retransmission timeout (RTO)
expires, which will cause it to reset its congestion window to one segment
and start retransmitting the first unacknowledged segment. Since the RTO is
computed according to the RTT observed, each TCP endpoint will retransmit
at a di�erent time. Specifically, each TCP endpoint adjusts its RTO using
the following relation: RTO = sRTT + 4*RTTVAR (see [149]), where sRTT
corresponds to the smoothed RTT, and RTTVAR corresponds to the RTT
variation. After each retransmission, each TCP endpoint further doubles its
RTO (exponential backo�).

We illustrate the behavior of a TCP flow experiencing a failure in Figure 5.2.
We assume that the TCP endpoint has an estimated RTO of 200 ms and that
its congestion window can hold 4 packets. We denote by t the time at which
the TCP endpoint transmits the first packet following the failure. The TCP
endpoint experiences consecutive RTO expirations and retransmits the packet
with sequence number 1000 at time t + 200ms, t + 600ms, t + 1400ms, etc.
We experimentally verified that this behavior is similar across all TCP flavors
implemented in the latest Linux kernel.

When multiple flows experience the same failure, the signal obtained by counting
the overall retransmissions consists of “retransmission waves”. Since this
behavior is systematic, pronounced, and quick, we leverage it in Blink to perform
failure detection in the data plane. This suggests Blink does not depend on
specific TCP implementation details and would keep working e�ectively with
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(a) Failure Signal (RTT 1◊) (b) Failure Signal (RTT 1.5◊)

Figure 5.3 The signal generated by TCP flows experiencing a connectivity problem
is characteristic and composed of subsequent waves of retransmissions (in di�erent
colors). The waves have decreasing amplitude and increasing width.

future congestion control algorithms as long as they exhibit a similar behavior
upon failures.

Note however the shape of these retransmission waves, i.e., their amplitude and
width, depends on the distribution of the estimated RTTs. As an illustration,
Figure 5.3 shows the retransmission count for a trace that we generated with the
ns-3 simulator [17] after simulating a link failure (according to the methodology
in §5.5.1). In the left diagram, we used the distribution of the average RTTs
of the TCP flows from an actual tra�c trace (#8 in Table 5.1). In the right
diagram, we increased the RTTs of this distribution by 1.5 to obtain a larger
standard deviation.

We can clearly see the waves of retransmissions appearing within a second
after each failure. RTT distributions with small variance make the flows more
synchronized they will be when retransmitting. This translates into narrow
peaks of retransmissions with a high amplitude. Conversely, if the flows have
very di�erent RTTs (i.e., the variance is high), the peaks will have a smaller
amplitude and will spread over a longer time. We elaborate on the challenges
deriving from these observations hereafter.

5.1.2 Key challenges and requirements when fast rerouting using
data-plane signals

We now highlight four key challenges and requirements that must be addressed
to: (i) e�ciently capture the failure signal we just described; and (ii) recover
connectivity. We describe in §5.2 how does Blink address them entirely in the
data plane.
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Dealing with noisy signal. To discover its fair share of bandwidth, a TCP
endpoint keeps increasing its transmission rate until a packet loss is detected,
triggering a retransmission. TCP retransmissions therefore occur naturally, even
without network failures. Likewise, minor temporary congestion events can
also lead to bursts of packet drops, which will trigger subsequent bursts of
retransmissions, again, without necessarily implying a failure.

Requirement 1: A data-plane-driven fast-reroute system should only react
to major disruptive events while being immune to noise and ordinary protocol
behavior.

Dealing with fading signals. As shown in Figure 5.3, the amplitude of the
signal (i.e., the count of TCP retransmissions) quickly fades with the backo�
round as the compounded signal spreads over longer and longer periods.

Requirement 2: A data-plane-driven fast-reroute system should catch the
failure signal within the first retransmission rounds.

Mitigating the e�ect of sampling. As tracking retransmissions in real-time
requires state, monitoring all flows is not possible. As such, a fast-reroute
system will necessarily have to track and detect failures using a subset of the
flows. Yet, not all flows are equally useful when it comes to failure reaction:
intuitively, highly active flows will retransmit almost immediately, while long-
lived flows might not retransmit at all (if no packet was sent recently). From a
fast-reroute viewpoint, tracking non-active flows is useless.

Requirement 3: A data-plane-driven fast-reroute system should select the
flows it tracks according to their activity.

Ensuring forwarding correctness without control plane. While data-plane
signals are faster to propagate than control-plane ones, they carry no information
about the cause of the failure and how to avoid it. As such, simply rerouting to
a backup next-hop upon detecting a problem might not work, as it might also
be a�ected by the failure. Worse, the problem can even be at the destination
itself, in which case no alternative next-hop will actually work. Given this lack of
precise information, a fully data-plane-driven fast-reroute system has no other
choice but trying and observing.

Requirement 4: A fully data-plane-driven fast-reroute system should select
its backup next-hops in a data-driven manner, verifying that tra�c resumes.
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5.2 Overview

In this section, we provide a high-level description of Blink. We first focus on
its data-plane implementation at the node level (§5.2.1). We then describe how
Blink can be deployed at the network level (§5.2.2).

5.2.1 Blink, at the node level

Figure 5.4 describes the overall workflow of a Blink data-plane pipeline. The
pipeline is essentially composed of three consecutive stages: (i) a selection stage
that e�ciently identifies active flows to monitor; (ii) a detection stage that
analyzes RTO-induced retransmissions across the monitored flows and looks
for any significant increase; and (iii) a rerouting stage that aims to retrieve
connectivity by probing alternative next-hops upon failure. We now briefly
describe the key ingredients behind each stage and provide details in §5.3.

Selecting flows to track. For e�ciency and scalability, a Blink node cannot
track all possible 865k+ IP prefixes or even all the flows destined to some
prefixes. An initial design choice thus concerns which prefixes to track, and
which specific flows to track for the selected prefixes.

Any approach based on data-plane signals is able to e�ectively monitor only
the prefixes carrying a certain amount of packets. Blink is no exception, and
therefore focuses on the most popular destination prefixes. While this might
seem a limitation, it is actually a feature: the Internet tra�c is typically skewed
and a very limited fraction of prefixes carry most of the tra�c, while the rest
of the prefixes see little to none [150]. Blink can thus reroute the vast majority
of the tra�c by tracking a limited number of prefixes. We designed Blink to
accommodate at least 10k prefixes in current programmable switches (§5.4).

Regarding which flows to track for a prefix, Blink adopts a simple but e�ective
strategy. For each monitored prefix, the Flow Selector tracks a very small subset
(64, by default) of active flows—i.e., flows that send at least one packet within a
moving time window (2 s by default). Tracked flows are replaced as soon as they
become inactive, or after a given timeout (8.5 min by default) even if they remain
active. We did not reuse heavy hitter detection algorithms such as [159], since
they are designed to o�er a higher accuracy than we need (heaviest flows instead
of just active ones) at the expense of additional complexity and resources.

Detecting failures. A central idea of Blink is to infer a remote failure a�ecting
a destination prefix from the loss of connectivity for a statistically significant
number of previously active flows towards that destination. While possible in
principle, Blink does not look at the flows progression (i.e., if the flows continue
to send new data packets) to detect a failure, as only a subset of the flows may
be a�ected, e.g., because of load-balancing.
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Figure 5.4 Blink data-plane workflow and key ingredients.

The detection stage looks for evidence of connectivity disruption across the
flows identified by the Flow Selector. It stores key information on the last seen
packet for each flow and determines if a new packet traversing the data-plane
pipeline is a duplicate of the last seen one – an hallmark of RTO-induced TCP
retransmissions (see Figure 5.2). Based on this check, for each destination
prefix, it monitors the number of flows with at least one recent retransmission
over a sliding time window of limited size (800 ms, by default). When the
majority of the monitored flows experience at least one retransmission in the
same time window, Blink infers a failure.

Rerouting quickly. When Blink detects a failure, the Rerouting Module quickly
reroutes tra�c by modifying the next-hop to which packets are forwarded, at line
rate. In Blink’s current implementation, the decisions of both when to reroute
and to which backup next-hop to reroute are configurable by the operator based
on their policies, as we believe that operators want to be in charge of this critical,
network-specific operation.

When rerouting, the Rerouting Module sends few flows to each backup path
to check which one is able to restore connectivity. It then uses the best and
working one for all the tra�c. The next-hops are configured at runtime by the
operator to re-align the data-plane forwarding to the control-plane (e.g., BGP)
routes when the control plane has converged.

5.2.2 Blink, at the network level

The “textbook” deployment of Blink consists in deploying it on all the border
routers of the ISP to track all the transit tra�c. In this deployment, border
routers either reroute tra�c locally (if possible) or direct it to another border
router (e.g., through an MPLS tunnel). Of course, nothing prevents the
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deployment of Blink inside the ISP as well. In fact, Blink also works for intra-
ISP failures, e.g., local to the Blink node or on the path from the Blink switch
and an ISP egress point.

Blink is partially deployable. Deploying Blink on a single node already enables
to speed up connectivity recovery for all tra�c traversing that particular
node. Also, Blink requires no coordination with other devices: each Blink
node autonomously extracts data-plane signals from the traversing packets,
infers major connectivity disruptions, and fast reroutes accordingly. To avoid
forwarding issues, Blink verifies the recovery of connectivity for the rerouted
packets by monitoring the data plane (see §5.3.4.2).

When rerouting, Blink also notifies the control plane, and possibly the ISP
operator. This enables coordination with the control plane (e.g., future SDN
controllers), such as imposing the next-hop upon control-plane convergence, or
discarding routes that are not working in the data plane.

5.3 Data-plane design

In this section, we describe the data-plane pipeline that runs on a Blink node,
its internal algorithms, design choices and parameter values. Figure 5.5 depicts
the four main components of the Blink data-plane pipeline: the Prefix Filter
(§5.3.1), the Flow Selector (§5.3.2), the Failure Inference (§5.3.3), and the
Rerouting Module (§5.3.4).

5.3.1 Monitoring the most important prefixes

To limit the resources used by Blink, the operator should activate Blink only for
a set of important prefixes. A sensible approach would be to activate it for the
most popular destination prefixes, as they carry most tra�c, although nothing
prevents the operator to select other prefixes – as long as there is enough TCP
tra�c destined to each of them (§5.5.1.1). To activate Blink for a prefix, the
control plane adds an entry in the metadata table at runtime which matches the
tra�c destined to this prefix using a longest prefix match. Tra�c destined to a
prefix for which Blink is not active goes directly to the last stage of the data-
plane pipeline and is forwarded normally (i.e., find the next-hop and replace the
layer 2 header).

The metadata table attaches to the matched packets a distinct ID according
to their destination prefix. As memory (e.g., register arrays) is often shared
between the prefixes, this ID is used as an index to the memory. Observe that
Blink could combine prefixes with common attributes (e.g., origin AS or AS
path) and which are likely to fail at the same time by mapping them to the
same ID. This would increase the intensity of the signal, and would allow Blink
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to cover more tra�c. Additionally, packets that do not carry useful information,
i.e., non-TCP tra�c, and certain signaling-only packets such as SYN and ACK
packets with no payload are not considered by Blink and are directly sent to the
final stage.

5.3.2 Selecting active flows to monitor

Packets destined to a monitored prefix go to the Flow Selector, which will select
a limited number of active flows (64 per prefix), and keep information about
each of them.

Limiting the number of selected flows. Each flow for a given prefix is
mapped to one of the 64 cells of a per-prefix flow array using a 6-bit hash of
the 4-tuple (which includes source and destination IP and the port numbers).
While we expect many flows to collide in the same cell, only one occupies a cell.
This is enforced by storing the flow_key, namely a 32-bit hash of the 4-tuple in
each cell of the flow array.

Flows colliding in the same cell are possible candidates to substitute the flow
currently occupying that cell when it becomes inactive. It can happen that two
flows mapped to the same cell have the same flow_key, in which case both would
end up occupying the same cell, causing Blink to mix packets from two distinct
flows and thus preventing it to correctly detect retransmissions for either flows.
However, since we use a total of 38 bits (6 bits to identify the cell and 32 bits
for the flow_key) to identify each flow, such collisions will rarely happen. The
probability of collision can be computed from a generalization of the birthday
problem: given n flows, what is the probability that none of them returns the
same 38 bit hash value? This probability is equal to 238!

(238≠n)! ú 1
238n ¥ e

≠ n(n≠1)
2ú238 .

With n = 10, 000 flows for a given prefix, the probability to have a collision is
only 0.02%.

Replacing inactive flows. The challenge behind selecting active flows is that
flows have di�erent packet rates, which also change over time, e.g., an active
flow at time t may not be active anymore at time t+1s. A naive first-seen, first-
selected strategy would clearly not work, because the selected flows might send
packets at such a low rate that they would not provide any timely information
upon a connectivity disruption – simply because there is no packet to retransmit.
Our experimental evaluation in §5.5 confirms this intuition.

The Flow Selector monitors the activity of each selected flow by tracking the
timestamp of the last packet seen in the register last_pkt_ts. As soon as
the di�erence between the current timestamp and last_pkt_ts is greater than
an eviction timeout, the flow is evicted and immediately replaced by another
flow colliding in the same cell. A TCP FIN packet also causes immediate
eviction. Intuitively, flow eviction makes the Flow Selector work very well for
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prefixes which have many high-rate flows at any moment in time, or a decent
fraction of long-living ones – which we expect to be often the case for tra�c
towards popular destinations. Our evaluation on real tra�c patterns (see §5.5)
confirms that this simple strategy is su�cient to quickly infer major connectivity
disruptions.

Calibrating the eviction timeout. A remaining question for this component
of the pipeline is how to dimension the eviction timeout. On one hand, we
would like to evict flows as soon as their current packet rate is not amongst the
highest for that prefix. On the other hand though, Blink needs to keep track of
the flows long enough to see the first few packet retransmissions induced by a
RTO expiration upon connectivity interruptions. Indeed, an eviction timeout of
few hundred milliseconds is likely to be too low in many cases, since a flow takes
at least 200ms to issue the first pair of duplicate packets. Note that 200ms only
happens if there is no new packet between the first unacknowledged packet and
the first retransmission. Also, remember that Blink considers only consecutive
duplicates as packet retransmissions (see §5.1). By default, the eviction timeout
is set to 2 s, which ensures to detect up to two pairs of consecutive duplicates
for typical TCP implementations.

5.3.3 Detecting failures

We now describe how Blink detects RTO-induced retransmissions on the set of
selected flows, and uses this information to accurately infer failures.

Detecting RTO-induced retransmissions. A partial or full retransmission
of payload of the TCP packet can be detected by comparing the sum of its
sequence number and payload length to the corresponding sum of the previous
packet of the same flow. For example, in Figure 5.2 when the packet S:1000
(packet with sequence number 1000) arrives Blink will store 2100 (sum of
sequence number and payload). If the next arriving packet triggers storing
2100 as well, a retransmission is detected. Observe that we store the expected
sequence number per flow instead of the current one to account for cases where
a packet is only partially acked.

Our design targets consecutive retransmissions for two reasons. First, RTO-
induced retransmissions are consecutive (see Figure 5.2), whereas congestion-
induced retransmissions (i.e., noise) are likely to be interleaved by non-
retransmissions, and hence will (correctly) not be detected. Second, this
detection mechanism requires a fixed number of memory per flow, regardless
the flow’s packet rate.

Counting the number of flows experiencing retransmissions over time.
Figure 5.3 shows that the TCP signal upon a failure is short and fading over
time. To quickly and accurately detect the compounded signal across multiple
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flows, we use a per-prefix sliding window. To implement a sliding window of size
k seconds in P4, we divide it in 10 consecutive bins of 6-bit each, each storing the
number of selected flows experiencing retransmissions during k/10 seconds. As
a result, instead of sliding for every packet received, the sliding window moves
every k/10 seconds period. More bins can improve the precision but would
require more memory. This design enables us to implement the sliding window
in P4 using only three information per prefix: (i) current_index, the index of
the bin focusing on the current period of time, (ii) sum, the sum of all the
10 bins, and (iii) last_ts_sliding, the timestamp in millisecond precision of the
last time the window slid. The additional 19-bit and 4-bit per-flow information
last_ret_ts and last_ret_bin are also required to ensure that a flow is counted
maximum one time during a time window. We provide more details about the
implementation in §5.4.

Calibrating the sliding window. The duration of the sliding window a�ects
the failure detection mechanism. A long time window (e.g., spanning several
seconds) has more chance to include unrelated retransmissions (e.g., caused by
congestions), whereas a short time window (e.g., 100ms) may miss a large
portion of the retransmissions induced by the same failure because of the
di�erent RTO timers. We set the duration of the sliding window to 800ms, with
10 bins of 80ms. First, because the minimum RTO is 200ms, a 800ms sliding
window ensures to include all the retransmissions induced by the failure within
the first second after the failure. Second, because under realistic conditions (in
terms of RTT [84, 21, 157] and RTT variation [21]), flows would often send
their first two retransmissions within the first second after the failure.

Inferring failures. A naive strategy consisting in inferring a failure when all
the selected flows experience retransmissions would result in a high number of
false negatives due to the fact that some flows may not send tra�c during the
failure, or simply because some flows have a very high RTT (e.g., >1s). On the
other hand, inferring a failure when only few flows experience retransmissions
may result in many false positives because of the noise. As a result, by default
Blink infers a failure for a prefix if the majority of the monitored flows (i.e., 32)
destined to that prefix experience retransmissions.

5.3.4 Rerouting at line rate

As soon as Blink detects a failure for a prefix, it immediately reroutes the tra�c
destined to it, at line rate. We first show in §5.3.4.1 how Blink maintains the
per-prefix next-hops list used for (re)routing tra�c. Then, we show in §5.3.4.2
how Blink avoids forwarding issues when it reroutes tra�c.
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5.3.4.1 Maintaining the per-prefix next-hops list

To reroute at line rate, Blink relies on pre-computed per-prefix backup next-
hops. The control plane computes the next-hops consistently with BGP routes
and specific policies defined by the operator. For each prefix, Blink maintains a
list of next-hops, which are sorted according to their preference (see Figure 5.2).
Each next-hop has a status bit. To reroute at line rate, Blink deactivates
the primary next-hop by setting its status bit to 1 (i.e., not working). Per-
prefix next-hops are stored in register arrays and are updated at runtime by the
controller, e.g., when a new BGP route is learned or withdrawn. If a next-hop is
not directly connected to the Blink node, Blink can translate it into a forwarding
next-hop using IGP (or MPLS) information, as a normal router would do.

Falling back to the primary next-hop after rerouting.

After an outage, BGP eventually converges and Blink updates the primary next-
hop and use it for routing tra�c. However, Blink cannot know when BGP has
fully converged. Our current implementation waits for a fixed time (e.g., few
minutes, so that BGP is likely to have converged) after rerouting before falling
back to the new primary next-hop. We acknowledge that this approach might
not be optimal (e.g., it potentially sacrifices path optimality), but it guarantees
packet delivery by using policy-compatible routes and avoids possible disruptions
caused by BGP path exploration [133]. Investigating a better interaction with
the control plane is left for future work.

5.3.4.2 Avoiding forwarding issues

Since Blink runs entirely in the data plane, it likely reroutes tra�c before
receiving any control-plane information possibly triggered by the disruption.
In addition, even when carefully selecting backup next-hops (e.g., by taking the
most disjoint AS path with respect to the primary path), we fundamentally
cannot have a-priori information about where the root cause of a future
disruption is, or where the backup next-hop sends the rerouted tra�c after
the disruption. As a result, Blink fundamentally cannot prevent forwarding
issues such as blackholes (i.e., when the next-hop is not able to deliver tra�c
to the destination) or forwarding loops to happen. The good news, though, is
that Blink includes mechanisms to quickly react to forwarding issues that may
inevitably occur upon rerouting.

Probing the backup next-hops to detect anomalies. When rerouting,
Blink reacts to forwarding anomalies by probing each backup next-hop with a
fraction of the selected flows in order to assess whether they are working or not.
For example, with 2 backup next-hops, one half of the selected flows is rerouted
to each of them. The non-selected flows destined to this prefix are rerouted to
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the preferred and working backup next-hop. Blink does this in the data plane
using the per-prefix next-hops list.

When a backup next-hop is assessed as not working, Blink updates its status
bit. After a fixed period of time since rerouting (1s, by default), Blink stops
probing the backup paths and uses the preferred and working one for all the
tra�c, including the selected flows. If all the backup next-hops are assessed as
not working, Blink reroutes to the primary next-hop and falls back to waiting
for the control plane to converge.

Avoiding blackholes. Blink detects blackholes by looking at the proportion
of restarted flows. After rerouting, Blink tags a flow as restarted by switching
its blackhole bit to 1 as soon as it sees a packet for this flow which is not
a retransmission. When the probing period is over, Blink assesses a backup
next-hop as not working if less than half of the flows routed to that next-hop
have restarted. The duration of the probing period (1s) is motivated by our
goal of restoring connectivity at a second-level time scale, while also providing
retransmissions with a reasonable time for reaching the destination through the
backup next-hop and triggering the restart of the flows. For example, if Blink
reroutes 778 ms after a failure (the median case, see §5.5.1.1) and assuming
a reasonable RTT (e.g., the median case in [84, 21, 157]), it is likely that the
rerouted flows will send a retransmission and receive the acknowledgment (if
the next-hop is working) within the following 1 s period.

Breaking forwarding loops. Blink detects forwarding loops by counting the
number of duplicate packets for each flow. The key intuition is that forwarding
loops have a quite strong signature: the same packets are seen over and over
again by the same devices. This signature is very similar to the TCP signature
upon a failure, where TCP tra�c sources start resending duplicate copies of
the same packets for every a�ected flow, at increasingly spaced epochs. As
a result, the algorithm used by Blink to detect retransmissions also detects
looping packets. To di�erentiate between normal retransmissions and looping
packets, Blink relies on the delay between each duplicate packet. TCP can send
for a flow up to 2 retransmissions in 1 s because of the exponential backo� (see
§5.1.1), whereas a packet trapped in a forwarding loop can be seen many more
times by the Blink node. Hence, Blink counts the number of duplicate packets it
detects for each flow after the rerouting using the information fw_loops stored
in each cell of the flow array, and tags a backup next-hop as not working by
switching its status bit as soon as it detects more than 3 duplicate packets for
a flow rerouted to this backup next-hop.

Observe that this mechanism reacts very quickly to the most dangerous loops,
i.e., the ones that recirculate packets very fast and hence are most likely to
overload network links and devices. Longer and slower loops are mitigated in
at most 1 s as Blink assumes the respective next-hop cannot deliver packets to
the destination (i.e., there is a blackhole).



5.4. Implementation 85

5.4 Implementation

We have fully implemented the data-plane pipeline of Blink as described in
§5.3 in ¥900 lines of P416 [165] code and in Python. We have also developed
a P4Tofino implementation of Blink that runs on a Barefoot Tofino switch [5].
However, our P4Tofino implementation currently only supports two next-hops,
one primary and one backup. Unlike our P416 implementation, our P4Tofino
implementation uses the resubmission primitive in two cases: whenever the Flow
Selector evicts a flow, or if two retransmissions from the same flow are reported
within 800ms, i.e., the duration of the sliding window. When resubmitting a
packet, it is processed twice by the ingress pipeline of the switch and thus
triggers more actions while being forwarded by the switch. The drawback is
that the switch has to process more packets, reducing its overall bandwidth.
However, the two cases for which packets are resubmitted only occur for the
set of selected flows (i.e., only 64 flows per prefix, see §5.3.2), and not for all
the flows, thus limiting the impact on the bandwidth of the switch.

We now describe in more detail how we implemented the sliding window in P416
(§5.4.1) and then show how much hardware resources Blink needs in a Tofino
switch (§5.4.2).

5.4.1 Implementation of a sliding window in P416

Blink uses one sliding window per prefix to count the number of flows
experiencing retransmissions over time among the selected flows (§5.3.3).
Besides the ten bins, Blink needs three meta information for each sliding window:
(i) current_index, the index of the bin focusing on the current period of time,
(ii) sum, the sum of all the 10 bins and (iii) last_ts_sliding, the timestamp in
millisecond precision indicating when Blink has incremented the current_index
to slide the window. When Blink detects retransmissions, it increments both the
value associated with the bin at the index current_index and the sum. Upon
reception of a packet at timestamp t, and assuming the window covers a period
of k millisecond, if t≠ last_ts_sliding > k/10, Blink slides the window with the
following operations. First, Blink finds the index of the expired bin by computing
(current_index + 1) mod 10. Note that because the modulo operator is not
available in P416, we implement this calculation with if-else conditions. Second,
it subtracts the value stored in the expired bin to sum. Third, it resets the value
in the expired bin. Fourth, Blink makes current_index point to the expired bin.
Finally, Blink updates last_ts_sliding to last_ts_sliding + k. As a result, the
counter sum always returns the number of flows experiencing retransmissions
during the last 9/10k to k seconds.

A flow may send several retransmissions within a time window. Thus, Blink uses
two additional per-flow metadata to avoid summing several retransmissions from
the same flow in the same time window. The metadata last_ret_ts stores the



86 Chapter 5. Blink: Fast Connectivity Recovery Entirely in the Data Plane

timestamp of the last retransmission reported for the corresponding flow. The
metadata last_ret_bin stores the bin index corresponding to this timestamp.
Consider that a retransmission for a flow is reported at time t, then if t ≠
last_ret_ts < k, Blink decrements the value in the bin at the index last_ret_bin
and increments the value associated with the current bin. The sum remains the
same, and last_ret_ts is set to the current timestamp and last_ret_bin is set
to the current bin index.

5.4.2 Hardware resources usage

Blink is intended to run on programmable switches with limited resources. As a
result, we designed Blink to scale based on the number prefixes it monitors and
not on the actual amount of tra�c destined to those prefixes. In this section,
we derive the resources required by Blink to work for one prefix and show that
it can easily scale to thousands of prefixes.

First, for every prefix, Blink needs one entry in the metadata table. Then, for
each selected flow, the Flow Selector needs 99 bits (see Figure 5.5). As Blink
monitors 64 flows per prefix, it needs a total of 64ú99 = 6336 bits to monitor a
prefix. Blink does not store the timestamps (e.g., last_pkt_ts and last_ret_ts)
in 48 bits (the original size of the metadata) but instead approximates them
using only 9 bits for a second precision and 19 bits for a millisecond precision to
save memory. Blink shifts the original 48-bit timestamp to the right to obtain
the second (resp. millisecond) approximation of the current timestamp. To fit
in 9 (resp. 19) bits, Blink also resets the timestamps every 512 s (¥ 8.5min)
by subtracting to the original 48-bit timestamp a reference_timestamp. The
reference_timestamp is simply a copy of the original 48-bit timestamp (stored
in a register shared by all the prefixes) that is updated only every 512 s. Note
that the Flow Selector evicts a flow if the current timestamp is lower than the
timestamp of the last packet seen for that flow, which happens whenever Blink
resets the timestamps (i.e., every ¥ 8.5min).

The sliding window requires ten bins of 6 bits each, as well as 4 + 9 + 6 = 19
bits to store additional information (see Figure 5.5), making a total of 79 bits.
For the rerouting, Blink only requires one status bit per next-hop. With three
next-hops, three extra bits are thus required. In total, for one prefix, Blink
requires 6336 + 79 + 3 = 6418 bits. As current programmable switches have
few megabytes of memory, we expect Blink to support up to 10k prefixes,
possibly even more.
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5.5 Evaluation

We evaluate Blink’s accuracy, speed, and e�ectiveness in selecting a working
next-hop based on simulations and synthetic data (§5.5.1, §5.5.2). We then
evaluate Blink using real traces and actual hardware (§5.5.3).

5.5.1 Blink’s failure detection algorithm

Packet traces of real Internet tra�c are hard to gather, and for the few traces
publicly available [9, 46], there is no ground truth about possible remote failures
on which Blink should reroute. Still, it makes little sense to evaluate Blink on
tra�c with non-realistic characteristics, or without knowing if Blink is correctly
or incorrectly rerouting packets. We therefore adopt the following evaluation
methodology.

Methodology. We consider 15 publicly available traces [9, 46] listed in
Table 5.1, accounting for a total of 15.8 h of tra�c and 1.5 TB of data.

For each prefix, we extract the distributions of flow size, duration, average
packet size, and RTT. To measure the RTT of the flows from the traces, we
use the time di�erence between the SYN and ACK packets sent by the initiator
of a connection as described in [94, 157]. We then run simulations with ns-3 [17]
on a dumbbell topology similar to [172], where tra�c sources generate flows
exhibiting the same distribution of parameters than the one extracted from the
real traces.

In some of our simulations, we introduce a failure after 10 s on the single link
connecting the sources with the destinations, thus a�ecting all flows. In other
experiments, we introduce random packet drops and no failure. We collect
tra�c traces for all simulations, feed them to our Python-based implementation
of Blink one by one, and check if and when our system would fast reroute tra�c.

Baselines. Since we are not aware of any previous work on real-time failures
detection on the basis of TCP-generated signals, we compare Blink against two
baseline strategies. The first strategy, All flows, consists in monitoring up to
10k flows for each prefix, and rerouting if any 32 of them sees retransmissions
within the same time window. This strategy provides an upper bound on Blink’s
ability to reroute upon actual failures while ignoring memory constraints. The
second strategy, Œ Timeout, is a variant of Blink where flows are only evicted
when they terminate (with a FIN packet), and never because of the eviction
timeout. This strategy assesses the e�ectiveness of Blink’s flow eviction policy.
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(a) Di�erent tra�c patterns (b) Di�erent number of flows

Figure 5.6 Blink has high TPR when relatively few flows (e.g., more than 350) are
active upon the failure.

5.5.1.1 Blink often detects actual failures, quickly

We first evaluate Blink’s ability to detect connectivity disruptions. For each
real trace in our dataset, we randomly consider 30 prefixes which see a large
number of flows (> 1000 flows in the trace), and we generate 5 synthetic traces
per prefix, each with a di�erent number of flows starting every second (from
100 to 500 flows generated per second) and each containing a failure at a
preconfigured moment in time.

We then compute the True Positive Rate (TPR) of Blink on these traces. For
each synthetic trace, we check whether Blink detects the failure (True Positive
or TP) or not (False Negative or FN). The TPR is computed over all the tested
synthetic traces, and is equal to TP/(TP + FN).

Figure 5.6a shows the TPR of Blink and our baseline strategies as a function of
the real trace used to generate the synthetic ones. As expected, the All flows
strategy exhibits the best TPR among the three considered strategies at the
cost of impractical memory usage. We see that Blink has a TPR which is very
close to (i.e., less than 10% lower than) the All flows strategy—while tracking
only 64 flows. Overall, Blink correctly reroutes more than 80% of the times for
13 traces out of 15, with a minimum at 65% and a peak at 94%.

At the other extreme, the TPR of the Œ Timeout strategy is much lower than
Blink, below 50% for most traces, highlighting the importance of Blink’s flow
eviction policy.

As the RTT of the flows a�ects the failure signal used by Blink to detect failures
(see §5.1.1), we also look at the TPR as a function of the RTT. On the synthetic
traces with a median RTT below 50 ms (resp. above 300 millisecond), Blink
has a TPR of 90.6% (resp. 76.0%). This shows that Blink is useful even when
flows have a high RTT.
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Figure 5.7 Blink is fast, for all tra�c patterns.

As a follow-up, we then analyzed how much Blink’s TPR varies with the number
of flows active upon the failure (an important factor for Blink’s performance).
Figure 5.6b shows that Blink’s TPR unsurprisingly increases if there are more
flows active during the failure. With very few active flows, Blink cannot perform
well, since the data-plane signal is too weak. However, Blink’s TPR is already
around 74% when about 350 flows are active, and reaches high values (more
than 90%) with about 750 active flows. Again, Blink is much closer to the
All flows strategy than to the Œ Timeout one, although the All flows strategy
reaches higher levels of TPR for lower number of active flows. These results
suggest that Blink is likely to have a high TPR in a real deployment since we
expect to see ∫750 active flows for popular destinations.

Not only does Blink detect failures in most cases, but it also recovers
connectivity quickly upon failure detection. Figure 5.7 shows the time needed
for Blink to restore connectivity for each of the real traces used to generate the
synthetic ones, restricting on the cases where Blink detects the failure. Each
box shows the inter-quartile range of Blink’s reaction time. The line in each
box depicts the median value; the whiskers show the 5th and 95th percentile.

Blink retrieves connectivity in less than 778 ms for 50% of the traces, and within
1 s for 69% of the traces. The All flows strategy restores connectivity within
365 millisecond in the median case, whereas the Œ Timeout strategy needs
1.07 s (median). Naturally, Blink is faster when the RTT of the flows is low.
On the synthetic traces with a median RTT below 50 ms, Blink reroutes within
625 ms in the median case. Yet, when the median RTT is above 300 ms, Blink
is still fast and reroutes within 1.2 s in the median case.

5.5.1.2 Blink distinguishes failures from noise

One may wonder if Blink’s ability to detect failures may not be due to it
overestimating disruptions. By design, Blink cannot detect a failure without



5.5. Evaluation 91

packet loss % 1 2 3 4 5 6 7 8 9

False Positive Rate (%)
Blink 0 0 0 0.67 0.67 0.67 0.67 1.3 2.0
All flows 59 85 93 94 95 96 97 97 98
Œ timeout 0 0 0 0 0.67 0.67 0.67 0.67 0.67

Table 5.2 Blink avoids incorrectly inferring failures when packet loss is below 4%.

TCP retransmissions. Hence, the question is if Blink tends to overreact to
relatively few, unrelated retransmissions, e.g., induced by random packet loss.

To verify this, we generate synthetic traces with no failure but with an increasing
level of random packet loss (from 1% to 9%) for all tra�c. The trace synthesis
follows our methodology of mimicking characteristics of real tra�c for one
prefix. For each real trace and loss percentage, we repeat the trace generation
for 10 randomly extracted prefixes which see a large number of flows. For this
experiment, we generate traces from 1-minute simulations where many (i.e.,
500) new flows start every second to ensure that Blink’s Flow Selector is filled
with flows, all potentially sending retransmissions.

For all these synthetic traces, we check whether Blink detects a failure (FP)
or not (TN) and compute the False Positive Rate (FPR) as FP/(FP + TN).
Contrary to what happens for the TPR in §5.5.1.1, we expect All flows to be
a worst case scenario as it sees all the retransmissions across all flows. On
the other hand, Œ Timeout should perform better than Blink because inactive
flows (which are not evicted) do not contribute to the number of observed
retransmissions.

Table 5.2 shows the FPR as a function of packet loss. Below 4% packet loss,
Blink never detects failures. Between 4% and 7%, Blink incorrectly detected
a failure for one synthetic trace out of the 150 generated. This indicates that
Blink would work well under realistic tra�c (we confirm this in §5.5.3.1), where
the packet loss is often below these values. As a reference, the All flows strategy
has an extremely high FPR, around 60% (resp. 85%) for traces with 1% (resp.
2%) packet loss. The Œ Timeout strategy has only one false positive when the
packet loss is between 5% and 10%, which, rather than a feature, is an artifact
of tracking non-active flows.

Summary. Our results show that Blink strikes a good balance between
detection of actual failures and robustness to noise (i.e., TCP retransmissions
not originated from a prefix-wide connectivity disruption). Blink’s tradeo� is
much better than the naive strategies: not evicting flows would significantly
lower Blink’s ability to correctly reroute upon failures, while monitoring all
crossing flows comes with high sensitivity to noise (in addition to a likely
impractical memory cost). Blink also recovers connectivity quickly (often within
1 s in our experiments) when it detects a disruption.
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Figure 5.8 The network used to evaluate Blink’s rerouting. Arrows indicate
forwarding next-hops (R2 uses di�erent next-hops depending on the experiment).

5.5.2 Blink’s rerouting algorithm

We now focus on the Blink’s Rerouting Module. Our design ensures that
rerouting is done entirely in the data plane, at line rate —we confirm this by
experimenting with a Tofino switch, as described in §5.5.3. In this section, we
therefore evaluate whether Blink is e�ective in rerouting to a working next-hop.

Methodology. We emulate the network shown in Figure 5.8 in a virtual
machine attached to 12 cores (2.2 GHz). The P4 switch has three possible
next-hops to reach the destination, R1 being the primary next-hop, R2 the
most preferred backup next-hop and R3 the less preferred backup one. R1 and
R3 use R5 as next-hop to reach the destination. R2 uses a di�erent next-hop
to reach the destination depending on the experiment, thus we do not depict it
in the figure.

We emulate the P4 switch by running our P416 implementation of Blink in
the P4 behavioral model software switch [18]. The P4 switch running Blink is
linked to a Mininet network emulating the other switches. The source and the
destination are Mininet hosts running TCP cubic.

We start 1000 TCP flows from the source towards the destination. To show
the e�ectiveness of the Flow Selector, 900 flows have a low packet rate (chosen
uniformly at random between 0.2 and 1 packet/s) while only 100 have a high
packet rate (chosen uniformly at random between 2.5 and 20 packet/s). We use
tc to control the per-flow RTT (chosen uniformly at random between 10 ms
and 300 ms), and to drop 1% of the packets on the link between R5 and the
destination in order to add a moderate level of noise. We first start the 900
flows with a low packet rate, so that the Flow Selector first selects them. Right
after, we start the 100 remaining flows. Finally, after 20 s to 30 s, we fail the
link between R1 and R5.

Blink quickly detects and breaks loops. We configure R2 to use the P4
switch as next-hop to reach the destination so that it creates a forwarding
loop (by sending tra�c back to the source) when Blink reroutes tra�c to R2.
Figure 5.9a shows the tra�c captured at R1, R2 and R3 (top) and at the
destination (bottom). Prior the failure, the tra�c goes through R1, the primary
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(a) Blink quickly breaks loops (b) Blink reacts to blackholes

Figure 5.9 Tra�c measurements quantifying Blink’s speed in reacting to forwarding
anomalies upon rerouting.

next-hop. Upon the failure, Blink probes if any of the available next-hops can
recover connectivity: it sends half of the flows in the Flow Selector to R2 and
the other half to R3. All the remaining flows go to R2 (preferred over R3).
Blink detects the forwarding loop induced by R2 very quickly (only 8 packets
were captured on R2) and immediately deactivates this next-hop to reroute all
the tra�c to R3, restoring connectivity within a total of 800 ms.

Blink quickly detects and routes around blackholes. In a separate
experiment, we configure R2 to use R5 as next-hop, and we fail the link between
R2 and R5 in addition to the one between R1 and R5. Figure 5.9b shows the
tra�c captured at R1, R2 and R3 (top) and at the destination (bottom). Upon
the failure, Blink reroutes to R3 half of the selected flows, and to R2 the other
half of the selected flows plus all the non-selected ones (since R2 is preferred
over R3). However, because the link between R2 and R5 is down, the packets
sent to R2 are just dropped by R2. After 1 s, Blink detects the blackhole and
reroutes all the tra�c to R3, restoring connectivity. The total downtime induced
by the failure is 1.7 s.

5.5.3 Blink in the real world

So far, we have evaluated Blink with simulations and emulations. We now
report on experiments that we run on real tra�c traces and on a Barefoot
Tofino switch.

5.5.3.1 Running Blink on real traces

In §5.5.1, we use simulated (but realistic) tra�c traces to gain some confidence
on Blink’s accuracy in detecting connectivity disruptions. An objection might
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be that our synthetic traces are not fully realistic. We therefore run Blink on the
original real traces listed in §5.1 and tracked when it detects a failure. Note that
we omitted failures detected for 73 prefixes (out of 2.28M) which constantly
showed high-level of retransmissions (>20% of the flows retransmitting >50%
of the time). In practice, Blink could detect such outliers at runtime and exclude
those prefixes.

Here, unlike in §5.5.1 where simulate failures, we use real traces, for which we
do not have ground truth. To measure Blink’s correctness at detecting failures,
we thus manually checked each case for which Blink detected a failure so as to
confirm the connectivity disruption.

Over the 15.8 h of real traces, Blink detected 6 failures. In these 6 cases,
the retransmitting flows represent 42%, 57%, 71%, 82%, 82% and 85% of
all the flows active at that time and destined to the a�ected prefix. These
numbers confirms that Blink is not sensitive to normal congestion events, and
only reroutes in cases where a large fraction of flows experience retransmissions
at the same time.

5.5.3.2 Deploying Blink on Barefoot Tofino switches

We finally evaluate our P4Tofino implementation of Blink on a Barefoot Tofino
Wedge 100BF-32X. To do so, we generate TCP tra�c between two servers
connected via our Tofino switch running Blink. The server receiving the tra�c
has a primary and a backup physical link with the Tofino switch. We generate
1000 flows, 900 of which have a low packet rate and 100 a high one (similarly to
§5.5.2). To show the influence of the RTTs on Blink when running on Tofino,
we run two experiments, one with sub-1ms RTT, and another one in which we
use tc to simulate for each flow an RTT chosen uniformly at random between
10 ms and 300 ms. After 30 s, we simulate a failure on the primary path, and
measure the time Blink takes to retrieve connectivity via the backup link.

Blink-Tofino managed to restore connectivity in <1s. Blink retrieves
connectivity in only 460 ms with sub-1ms RTT, and in about 1.1 s when the
RTT of the flows is between 10 ms and 300 ms. We obtain comparable results
(470 ms of downtime with sub-1 ms RTT) when running the same experiments
with 3,000 flows among which 300 has a high packet rate.

5.6 Deployment considerations

We now discuss two possible operational concerns when deploying Blink in a
real ISP network: adaptability and interaction with deployments of Blink in
other ISPs.
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Figure 5.10 A Tofino switch running Blink retrieves connectivity within 460 ms
if the RTT of the a�ected flows is below 1 ms (top figure); or within 1.1 s if the
per-flow RTT ranges between 10 ms and 300 ms (bottom figure).

Adaptability. Clearly, a challenge in a real deployment of Blink is how to
set its parameters correctly. This is hard because operators have di�erent
requirements, and tra�c can exhibit varying characteristics. In §5.5, we show
that it is definitely possible to set the parameter values so that Blink works well
in real situations. Yet, in a real deployment, we envision that Blink could first
be run in “learning mode”, where it sends notifications to the controller instead
of rerouting tra�c. The controller then evaluates the accuracy of the system,
for instance using control-plane data, and turns Blink on if the accuracy is good,
or tune some parameters otherwise.

To guide operators, we list in Table 5.3 the main parameters used by Blink, and
show how each of them can a�ect the performance of the system. We denote
as TPR the True Positive Rate over all the synthetic traces generated from the
15 real traces listed in Table 5.1 and used in §5.5.1.1. The TPR with Blink’s
default values over all the synthetic traces is 83.9%. FPR denotes the False
Positive Rate and is computed similarly as in §5.5.1.2.

Internet scale deployment. So far, we have described Blink’s deployment in a
single network (see §5.2). Of course, all ISPs have the same incentives to deploy
Blink (i.e., for fast connectivity recovery), so we envision that multiple, possibly
all, ISPs might deploy Blink. Multi-AS deployment of Blink makes rerouting
trickier. For example, if an Internet path traverses multiple Blink switches, it
is not clear which ones will reroute, and whether the resulting backup path will
be optimal. Blink switches can also interfere with each other. For example, if a
Blink switch reroutes tra�c to a backup path, a downstream Blink switch in the
original path may lose part of the data-plane signal, preventing it to detect the
failure. Finally, Blink’s rerouting also increase the likelihood of creating inter-
domain loops, since Blink selects backup next-hops based on BGP information,
which might not be truthful if the downstream switches also run Blink.



96 Chapter 5. Blink: Fast Connectivity Recovery Entirely in the Data Plane

Co
m

po
ne

nt
N

am
e

D
ef

au
lt

va
lu

e
Tr

ad
eo

�

Fl
ow

Se
le

ct
or

§5
.3

.2

Ev
ict

io
n

tim
eo

ut
2s

W
ith

a
sh

or
te

vic
tio

n
tim

e
(e

.g
.,

0.
5s

)
flo

ws
ca

n
be

ev
ict

ed
wh

ile
th

ey
ar

e
re

tra
ns

m
itt

in
g,

re
du

cin
g

th
e

TP
R

to
66

.3
%

.
W

ith
a

lo
ng

er
ev

ict
io

n
tim

e
(e

.g
.,

3s
)

in
ac

tiv
e

flo
ws

ta
ke

m
or

e
tim

e
to

be
su

bs
tit

ut
ed

by
ac

tiv
e

on
es

,r
ed

uc
in

g
th

e
TP

R
to

77
.7

%
.

N
um

be
ro

fc
ell

s
pe

rp
re

fix
64

M
on

ito
rin

g
a

sm
al

lf
ra

ct
io

n
of

flo
ws

m
ay

re
su

lt
in

a
FP

R
in

cr
ea

se
.

Fo
re

xa
m

pl
e,

wi
th

on
ly

16
ce

lls
,t

he
FP

R
is

2%
fo

ro
nl

y
a

3%
of

pa
ck

et
lo

ss
.

H
ow

ev
er

,t
he

bi
gg

er
th

e
nu

m
be

ro
fc

ell
s

th
e

sm
al

ler
th

e
am

ou
nt

of
pr

efi
xe

s
we

ca
n

m
on

ito
rd

ue
to

m
em

or
y

co
ns

tra
in

s.
W

ith
64

ce
lls

(=
64

flo
ws

m
on

ito
re

d
pe

rp
re

fix
)

Bl
in

k
ca

n
su

pp
or

ta
tl

ea
st

10
k

pr
efi

xe
s.

Fa
ilu

re
In

fe
re

nc
e

§5
.3

.3

Sl
id

in
g

wi
nd

ow
du

ra
tio

n
80

0m
s

A
lo

ng
tim

e
wi

nd
ow

(e
.g

.,
1.

6s
)

is
m

or
e

lik
ely

to
re

po
rt

al
lt

he
re

tra
ns

m
itt

in
g

flo
ws

,i
nc

re
as

in
g

th
e

TP
R

to
89

.8
%

,b
ut

al
so

re
po

rts
m

or
e

un
re

la
te

d
re

tra
ns

m
iss

io
ns

,i
nc

re
as

in
g

th
e

FP
R

(0
.6

7%
fo

r3
%

of
pa

ck
et

lo
ss

).
A

sh
or

te
rt

im
e

wi
nd

ow
(e

.g
.,

40
0m

s)
lim

its
th

e
FP

R
(0

%
fo

r9
%

of
pa

ck
et

lo
ss

)
bu

td
ec

re
as

es
th

e
TP

R
to

49
.4

%
.

Sl
id

in
g

wi
nd

ow
nu

m
be

ro
fb

in
s

10
M

or
e

bi
ns

in
cr

ea
se

s
th

e
pr

ec
isi

on
,a

tt
he

pr
ice

of
us

in
g

sli
gh

tly
m

or
e

of
m

em
or

y.
10

bi
ns

gi
ve

a
pr

ec
isi

on
>

90
%

.

In
fe

re
nc

e
th

re
sh

ol
d

50
%

A
lo

we
rt

hr
es

ho
ld

,s
uc

h
as

25
%

(i.
e.

,1
6

flo
ws

re
tra

ns
m

itt
in

g
wh

en
us

in
g

64
ce

lls
)

gi
ve

s
a

be
tt

er
TP

R
(9

4.
8%

),
bu

ti
nc

re
as

es
th

e
FP

R
to

7.
3%

fo
r4

%
of

pa
ck

et
lo

ss
.

Re
ro

ut
in

g
M

od
ul

e
§5

.3
.4

Ba
ck

up
ne

xt
-h

op
pr

ob
in

g
tim

e
1s

A
lo

ng
er

pr
ob

in
g

pe
rio

d
be

tt
er

pr
ev

en
ts

wr
on

gl
y

as
se

ss
in

g
a

ne
xt

-h
op

as
no

tw
or

ki
ng

,a
tt

he
pr

ice
of

wa
iti

ng
m

or
e

tim
e

to
re

ro
ut

e.

Ta
bl

e
5.

3
Pa

ra
m

et
er

s
us

ed
by

Bl
in

k,
wi

th
th

eir
de

fa
ul

tv
al

ue
s,

an
d

ho
w

th
ey

ca
n

a�
ec

tt
he

pe
rfo

rm
an

ce
of

th
e

sy
st

em
.



5.7. Related Work 97

While a full characterization of Blink’s behavior in an Internet-scale deployment
is outside the scope of this paper, Blink’s design already guarantees some basic
correctness properties. Blink already monitors for possible forwarding loops,
and quickly breaks them by using additional backup next-hops (see §5.3.4.2).
After having explored all possible backup next-hops, Blink also falls back to
the primary next-hop indicated by the control-plane, even if not working: this
would prevent oscillations where two or more Blink switches keep changing
their respective next-hops in the attempt to restore connectivity. Finally, Blink
switches do use BGP next-hops after BGP convergence.

Path optimality is much harder to guarantee within a system like Blink,
where network nodes independently reroute tra�c, without any coordination.
However, we believe that path optimality can be transiently sacrificed in the
interest of restoring Internet connectivity as quickly as possible. Besides, even
with an Internet-wide deployment of Blink, path optimality will be restored
when the control plane converges to post-failure paths.

5.7 Related Work

We now discuss related work beyond the Internet routing convergence studies
and works focusing on Internet outages, which we already discuss in §2 and §3.

Tra�c monitoring in the data plane. Few approaches monitor tra�c using
a programmable data plane. DAPPER is an in-network solution using TCP-
based signals to identify the cause of misbehaving flows (whether the problem
is in the network or not) [73]. Blink does not aim at identifying the cause of
a particular flow failing but rather that many flows (for the same prefix) fail at
the same time. In addition, unlike Blink, DAPPER requires symmetric routing
for its analysis, which is often not the case in ISP environments. Sivaraman
et al. [159] propose a heavy-hitter detection mechanism running entirely in the
data plane. As Blink, it stores flows in an array and relies on flow eviction to
keep track of the heaviest ones. However, unlike [159], Blink looks for active
flows instead of the heaviest ones, on a per-prefix basis.

Data-driven networks. Motivated by the emergence of programmable data
planes, many researchers have been arguing that network control should be made
tra�c-aware, as with Blink. Among others, such data-driven networks [62, 95]
have been proposed for: optimizing routing strategies [168, 179, 153]; improving
tra�c engineering [178], streaming quality [119], or throughput in general [57].
Like with Blink, many of these data-driven solutions leverage programmable
hardware and run directly in the data plane. For instance, Contra enables
performance-aware routing within a network and entirely in the data plane [86].
With Contra, each node in the network runs a distance-vector protocol which
propagates link metrics (e.g., latency) via periodic probes. The nodes then
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update their forwarding behavior based on the gathered metrics as well as the
specified routing policies. RouteScout is a hybrid hardware/software system
which enables performance-aware routing at the BGP level [26]. RouteScout
calculates in the data plane and for each policy-compliant path metrics such
as delay and loss and use them to synthetize a performance aware forwarding
policy.

Outage inference from data tra�c. Data-plane tra�c has also been widely
used in the past for ex-post measurement analyses. For example, WIND [88]
infers network performance problems, including outages, from tra�c traces by
leveraging (among others) structural characteristics of TCP flows. In Blink, we
perform online packet analysis, at line rate, but only to infer major connectivity
disruptions – with simple yet e�ective algorithms that fit the limited resources
of real switches.

Connection Path Reselection (CPR) is a system that identifies outages based on
transport layer performance (TCP flows) in a timely manner and reroutes tra�c
on a per-flow basis and on healthy paths upon detection of an outage [112]. Its
scope di�ers from Blink because it is a software-based approach tailored to run
on edge networks such as CDNs. Blink is designed to run at line rate and on
any programable switch, being at the edge or in the core of the network.
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Snap: Taking the best of both worlds

Blink, as a fast reroute mechanism working entirely in the data-plane, is
inherently fast but has to rely on simple algorithms because of the programmable
hardware constraints. These algorithms work well under ideal conditions.
However, they are often too simplistic for real scenarios, which exhibit complex
patterns, weaker signals, or adversarial inputs. For instance, Blink simply
triggers the rerouting for a prefix when half of the monitored flows experience
retransmissions for that prefix. Besides, as being entirely in the data plane, Blink
relies on a simple but naive and expensive (resource-wise) monitoring strategy:
it monitors the prefixes individually and does not combine the information it
receives from multiple of them, like SWIFT with its failure inference algorithm.

In this section, we present a hybrid hardware-software design for fast tra�c
rerouting upon remote outages. This hybrid design leverages the line-rate speed
of the programmable data planes and the flexibility and resources provided by a
controller running on a commodity server. We illustrate the benefits of a hybrid
design with Snap, a fast reroute framework which combines the best of SWIFT
and Blink.

Snap: the speed of Blink along with the smartness of SWIFT. Snap
takes his inspiration from the hardware-software codesign problem, which is at
the origin of a new design paradigm for networking applications and which has
recently triggered discussions [124, 128] and resulted in many new frameworks
[24, 37, 115]. Like Blink, Snap enables tracking the fast data-plane signals,
such as the TCP retransmissions. However, as opposed to Blink, Snap takes
the rerouting decision in software, allowing it to use much more advanced
algorithms, such as the ones used by SWIFT. At its heart, Snap relies on a
"smart" mirroring, which consists in mirroring to the controller only a fraction
of the flows, the most useful ones according to the objectives. For instance,
Snap focuses on mirroring active flows that are useful to detect remote outages.
The fact that the rerouting decisions are now made in software enables using
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more complex, thus precise, algorithms to detect Internet outages, finding the
best alternatives paths, thwarting potential attacks, etc.

The benefits of the hardware-software codesign go beyond Snap. This
chapter aims not just to present Snap but to highlight the benefits of its
hardware-software codesign, which allows the rerouting process to be based
on complex and custom decision algorithms that take as input the fast and
carefully selected data-plane signals. In this chapter, we thus also discuss the
potential algorithms that this hardware-software codesign allows implementing,
and how they would improve the fast reroute process.

Yet, Snap already exhibits clear benefits compared to Blink and SWIFT in
its current state. By combining the SWIFT logic for failure detection and
localization with the data-plane signals used by Blink, Snap illustrates the
capabilities o�ered by this hardware-software codesign. This combination of
algorithms and inputs allows Snap to locate an outage quickly (¥ 1 second);
a capability that neither SWIFT nor Blink has. Localizing the outage enables
using the SWIFT proactive rerouting strategy, i.e., rerouting all the a�ected
tra�c towards backup paths bypassing the outage; a better strategy than the
reactive one used by Blink (probing the backup paths to assess the working
ones, for each prefix).

Outline. In this chapter, we first motivate in §6.1 our proposed hardware-
software codesign by showing the limitations of Blink. We then show in §6.2
the key ingredients behind our proposed hardware-software codesign, with a
focus on Snap. In §6.3, we focus on the design of Snap with its internal
algorithms. In §6.4, we explain how we implemented Snap in P416 (data plane)
and Python (controller), and show that it can run on current hardware and
with existing tra�c patterns. In §6.5, we evaluate Snap. Finally, we discuss
the future work in §6.6 and show how we could leverage the hardware-software
codesign to include more e�cient algorithms and improve Snap.

6.1 Motivation

By looking at data-plane signals and running entirely in the data plane, Blink is
fast. The downside, however, is that Blink has to trade precision and accuracy
to gain simplicity so that its algorithms can run at line rate on the programmable
switches. Unsurprisingly, by being too simple, Blink only works on the simple
cases, missing many of the real (and not so simple) cases. We now show three
concrete examples to illustrate why Blink is too simple to work in real life.
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(a) Accuracy (b) Speed

Figure 6.1 The performance of the outage detection algorithm used by Blink
decreases when the proportion of the flows a�ected by the outage decreases.

6.1.1 Blink misses many partial outages

The outage detection algorithm used by Blink is only based on one sort of input
(TCP retransmissions) and uses a single conditional statement with only one
threshold: if more than half of the monitored flows experience retransmissions,
Blink reports an outage. As a comparison, SWIFT detects and locates an outage
by running more complex algorithms which require iterating over the AS graph.

The problem with the simple detection algorithm used by Blink is that it may
miss or needs more time to detect partial outages, i.e., the ones that only
a�ect a subset of the tra�c destined to a prefix (e.g., due to load-balancing).
To illustrate this problem, we evaluate the performance of Blink upon partial
failures and compare it to the two baselines we used to evaluate Blink: the All
flows and Œ Timeout strategies (see §5.5.1).

Methodology. For this evaluation, we randomly picked ten prefixes from each
real trace listed in Table 5.1, and generated one synthetic trace for each of them,
following the guidelines described in §5.5.1. For each trace, we simulated partial
failures with nine di�erent intensities (from 10% to 90% of the flows being
a�ected). For these synthetic traces, 1223 flows (resp. 264) were active upon
the failures in the median case (resp. 10th percentile).

Blink accuracy drops as the proportion of a�ected flows decreases.
Figure 6.1a shows the TPR of Blink as a function of the percentage of flows
a�ected by the failure. Unsurprisingly, because Blink needs to detect at least
32 flows experiencing retransmissions to detect the failure, the TPR is close to
0% if the failure a�ects less than 50% of the flows. For failures a�ecting 70%
of the flows (resp. 90%), Blink works for 53% (resp. 77%) of the failures.

To improve Blink accuracy upon partial failures, one could lower the triggering
threshold (initially set to 50%, see Table 5.3). Unfortunately, while this does
increase the TPR, it also increases the FPR. For instance, this e�ect is visible



102 Chapter 6. Snap: Taking the best of both worlds

with the All flows strategy, with which only a small proportion of the flows needs
to experience retransmissions to trigger the rerouting. The All flows strategy
does exhibit a high TPR even for partial failures (Figure 6.1a), but also exhibits
a very high FPR (see Table 5.2).

Blink speed decreases as the proportion of a�ected flows decreases.
Figure 6.1b shows the time needed for Blink to restore connectivity upon a
partial failure. Logically, as we decrease the number of a�ected flows, the
detection speed of Blink decreases. For instance, it takes more than 1 second
to detect most failures when less than 60% of the flows are a�ected.

6.1.2 Blink rerouting strategy cannot leverage path diversity

Blink’s strategy to find a working backup path relies on a rather basic probing
mechanism. Upon detecting a failure, Blink sends a fraction of the selected
flows to each possible backup path to check which one can restore connectivity.
While applicable, this reactive approach requires Blink to probe each backup
path with a su�ciently large set of flows to assess whether they are working
or not. Unfortunately, this requires precious hardware resources, especially
when there are many di�erent backup paths. Thus, the only option to prevent
Blink from spending an unreasonably high amount of resources just for probing
many backup paths, is to ignore some of them. For instance, the default
implementation of Blink only considers two backup paths (§5.4).

Through a measurement study based on actual BGP data collected from BGP
looking glasses, we now show that BGP routers often learn many di�erent routes
(e.g., more than four) to reach a destination prefix. These results highlight that
Blink would often have to ignore (potentially working) backup paths and thus
cannot leverage path diversity.

Methodoloy. We used the Periscope API [74] to access BGP looking glasses
and collect information about the routes learned by real routers to reach the
prefixes advertised in the Internet. More precisely, we first took 100 random
prefixes advertised in the Internet. Then, for each prefix, we collected the BGP
routes from 30 routers, randomly picked from the set of 251 routers available
from the Periscope API. Finally, we removed the cases for which only one route
was available to reach the destination prefix and ending up with 2060 cases.

A router may learn many (> 10) backup routes to reach a prefix. In
the medium case, a router knows three routes to reach a destination prefix. In
the 75th percentile, a router knows five routes to reach a prefix, whereas, in
the 90th percentile, it knows ten routes. The maximum is 92. Clearly, probing
e.g., ten or more di�erent routes, each with a su�ciently large set of flows,
requires monitoring more than just 64 flows per prefix, the default number of
flows selected by Blink per prefix. Besides, due to the limitations imposed by
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Figure 6.2 For a significant proportion of the simulated failures, only a subset of
the available backup routes bypass the failure.

the hardware, the number of backup paths that can be used for each prefix in
the Blink implementation is hardcoded and identical for all prefixes. Hence, to
monitor e.g., ten backup routes for a prefix, Blink would have to reserve enough
resources to monitor ten backup routes for all the prefixes.

Blink is likely to miss working backup paths. We now show why a fast
reroute framework targeting remote outages should consider all the available
backup routes when rerouting tra�c. Here, we first removed the cases for
which only two routes are available to reach a prefix (e.g., one primary and
one backup) and focused on the cases for which multiple backup routes exist.
Then, we randomly took one route for each router and prefix and assumed it is
the primary one. Finally, for each case, we simulated a remote failure between
two ASes in the AS path of the primary route and computed the proportion of
backup routes that circumvent the failure, i.e., for which the failure is not in
the AS path. Note that we obviously omitted the cases where the AS path of
the primary route has only one AS, and we also removed the prepended AS in
the AS paths. We ended up with a total of 928 cases.

Figure 6.2 shows a CDF of the proportion of the backup routes that bypass
the simulated failures. We omit the cases for which none of the backup routes
bypass the failure (592 cases, i.e., 64%). These cases represent most of the
cases likely because we take each router individually and do not consider the
routes learned by the other border routers and that are not advertised in iBGP.
Among the remaining cases (336, i.e., 36%), we can see in Figure 6.2 that for
62% of them, only a subset of the backup paths circumvent the failure. In
some cases, only a small fraction of the backup routes circumvent the failure.
This result highlights the need for a careful selection of the backup route to use
across all the available ones, and not just a few of them, as is the case in the
current Blink implementation.
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6.1.3 Blink is prone to attacks

By eschewing the control plane’s careful but slow decision-making in favor
of the data plane’s speed, Blink is fast. However, this is a significant risk
because the data plane’s inputs are not tightly controlled like the control plane’s:
packets drive the data plane. The promise of a fast and automatic reaction to
data thus comes with new risks: malicious inputs designed towards negative
outcomes [126, 177].

In this section, we illustrate the vulnerabilities of Blink with a case study in
which an adversary sends crafted packets from a single host to fake link failures
and hijack tra�c. Note that this is not the only possible attack against Blink:
one could also send crafted packets that are not retransmissions, preventing
Blink from rerouting upon actual failures.

Attack. Manipulating Blink may seem trivial since generating TCP
retransmissions is easy. While this is an essential ingredient, Blink’s sampling
strategy necessitates more care. The attacker needs to generate flows that
always remain active so that once Blink samples a malicious flow, it keeps
monitoring it. Thus, the number of sampled malicious flows increases over time
until the sample is reset. Below, we show that an attacker can often ensure that
her flows are the majority of the sampled flows for a prefix. Once this is the case,
the attacker can easily trick Blink into rerouting tra�c, possibly onto a path
that she controls. In practice, one can perform this attack by sending the fake
TCP retransmissions from a set of hosts that reach the victim prefix via Blink.
Observe that the attacker does not need to establish TCP connections with the
victim network, making the attack easier to set up and harder to prevent.

Theoretical analysis. Let tR be the average time a legitimate flow remains
sampled. We assume a malicious flow is always active, and thus once being
sampled, it is never evicted unless the sample is entirely reset. We define tB

as the frequency at which Blink resets the sample (tB = 8.5 min, by default).
Thus, tB is the attacker’s time budget until all the sampled flows are evicted.
We define qm as the fraction of tra�c that is malicious. For a particular cell of
the array used for sampling, the probability p that it is occupied by a malicious
flow at the end of the time budget tB is p = 1≠(1≠qm)(tB/tR). Now, consider X

as a random variable corresponding to the number of malicious flows monitored
across all cells at the end of the time budget, tB. As each of the n cells acts
independently, X is binomially distributed with parameters n and p. We use
this distribution to calculate the practicality of the attack.

Figure 6.3 shows the number of monitored malicious flows over time. We
consider tR = 8.37 s, the value computed for one prefix of a CAIDA trace [9]
used in Blink’s analysis, and qm = 0.0525 (i.e., 5.25% of the flows are
malicious). After 200 s, there is a high chance that at least 32 monitored
flows (i.e., half) are malicious (red lines), enabling a successful attack. With
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Figure 6.3 Malicious flows sampled by Blink over time (tR = 8.37s, qm = 0.0525).
On average, it takes 172 s until the sample contains enough (i.e., 32) malicious flows
to allow the attacker to trick the system.

longer tR, the attack is harder, i.e., requires higher qm. We analyzed the top-20
prefixes of each CAIDA trace used to evaluate Blink (see Table 5.1) and found
that for half of them, the average time a flow remains sampled is 10 s (the
median is ≥5 s). The example in Figure 6.3 is therefore representative. While
5% of tra�c to a destination is substantial, it is within reach, even for the most
popular destinations, using a small botnet.

Experimental results. To confirm our theoretical results, we simulated a
network with mininet [114] and the P416 implementation of Blink. We generated
2000 legitimate and 105 malicious flows (qm = 0.0525), and used the same
tR = 8.37 s. The thin blue lines in Figure 6.3 show the results of each
experiment. As expected from the theoretical results, half of the sampled flows
are malicious after ≥200 s. We did experiments with many values for tR, and
the results always match the theoretical analysis. It confirms that an attacker
can manipulate Blink quickly and with a small amount of tra�c.

6.2 Key Ingredients

This section gives an overview of the key components and principles behind
Snap and its hardware-software codesign. We show that this codesign avoids
Snap being as constrained by the programmable switches limitations as Blink.
This will help Snap to address the Blink problems we identify in §6.1.
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6.2.1 Involving the controller smartly

By involving the controller, Snap is less limited by the constraints imposed by
the programmable switches and can use more advanced, thus more e�cient,
algorithms. Besides, running tasks on the controller enables saving data-
plane resources, which can then be used to monitor more prefixes to improve
scalability, monitor more AS links to improve coverage, or run other applications
in the switches. However, the drawback of involving the controller is that a
round trip between the Snap router and the Snap controller is needed to detect
a failure and trigger the rerouting.

Trading a little bit of speed for a significant performance improvement.
We illustrate this round trip time by showing a typical deployment of Snap
within an AS (Figure 6.4). In this example, a single central controller runs
the Snap control-plane functions for all the border routers, which we assume
are P416 programmable routers that run Snap. The round trip consists in: (i)
the Snap routers mirror tra�c to the Snap controller, for failure detection (see
Section 6.2.2); and (ii) when the Snap controller detects a remote failure, it
updates one of the Snap router which reroutes tra�c to a working backup path
restoring connectivity

Fortunately, we expect this round trip time to be low. Indeed, in practice,
the controller can be either directly in the switch CPU, in which case we
expect only a few microseconds delay, or in a controller nearby the switch
(as in Figure 6.4), in which case we expect only a few milliseconds delay. By
involving the control plane, Snap is thus obviously (slightly) slower than Blink,
but performs significantly better than Blink and is still an order of magnitude
faster than the full control-plane-based solutions such as SWIFT.

Smart mirroring. Of course, if all the Snap routers naively mirror all the tra�c
towards a central controller, it may (i) generate an unreasonably high amount
of tra�c which may overload the network; and (ii) overload the Snap controller,
which has a lower packet processing rate than the hardware-based routers. Snap
solves these issues by mirroring only a fraction of the flows, focusing on the most
useful ones, i.e., the active ones. The Snap router performs this flow selection
using Blink’s Flow Selector, which aims to select a set of active flows and mirror
them to the controller (see Figure 6.4). As a result, the amount of mirrored
tra�c does not depend on the actual volume of tra�c forwarded by the Snap
router but instead relies on the number of monitored AS links, on the number
of flows mirrored per AS link, and on the actual amount of tra�c sent by the
mirrored flows.

Snap can also limit the total volume of mirrored tra�c by performing distributed
mirroring over multiple Snap routers in the same AS. Indeed, the tra�c going to
a destination prefix and traversing two Snap routers within the same AS (e.g.,
R1 and R2 in Figure 6.4) may follow the same AS path, in which case it makes
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Figure 6.4 Overview of Snap when deployed within in AS. In this example, the
Snap controller runs on a server. Snap quickly reroutes the tra�c on a working
backup path upon the remote failure a�ecting the tra�c to the 10k prefixes.

no di�erence for the failure detection algorithm to process flows coming from
one of the Snap routers or the other. Because the controller thus aggregates
the mirrored flows coming from the di�erent Snap routers, each Snap router
has to mirror fewer flows, reducing the load on the network and the resources
needed by the Snap routers and the Snap controller.

6.2.2 SWIFT failure inference with data-plane signals

The Snap controller uses the mirrored flows to run a failure inference algorithm
akin to SWIFT. The key di�erence is that Snap uses fast data-plane signals
(TCP retransmissions) as input, whereas SWIFT uses the slow control-plane
signals (BGP updates and withdrawals). Despite this di�erence, the algorithm
is essentially the same. The Snap controller collects BGP information from
the Snap routers using, for instance, the BGP Monitoring Protocol [155], and
maintains the AS-level graph. In the meantime, the Snap controller monitors
TCP flows from the mirrored tra�c and computes the proportion of them
experiencing retransmissions over time and on a per AS-link basis.

6.2.2.1 Flow selection

To accurately pinpoint a failed AS link, Snap must monitor flows traversing that
AS link, i.e., for which the AS path of the routes to the destination prefixes
of the flows include this AS link. Besides, and similarly to Blink, Snap needs
to monitor active flows, i.e., the ones constantly sending packets. As a result,
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Figure 6.5 Illustration of the flow selection strategy and the failure inference
algorithm used by Snap upon the failure of (5, 6).

the Snap flow selection strategy ensures to select at least a certain number of
active flows traversing each monitored AS link. This flow selection strategy is
made possible by the Snap routers, which use a distinct Flow Selector for every
monitored AS link, each selecting and mirroring 64 flows (by default) to the
Snap controller.

Example. To illustrate this flow selection strategy, consider the scenario
depicted in Figure 6.5. AS2, AS5 and AS6 advertise 1k prefixes each, whereas
AS7 and AS8 advertise 10k prefixes each. AS3 and AS4 are only used as backup
and are not in the primary paths. Each AS (but the backup ones) advertises
a set of prefixes, denoted as Px for ASX. On this example, Snap thus selects:
64 flows among the flows traversing (1, 2) and that are destined to prefixes in
P2 fi P5 fi P6 fi P7 fi P8; 64 flows among the flows traversing (2, 5) and that are
destined to prefixes in P5 fi P6 fi P7 fi P8; 64 flows among the flows traversing
(5, 6) and that are destined to prefixes in P6 fi P7 fi P8; 64 flows among the
flows traversing (6, 7) and that are destined to prefixes in P7; and finally 64
flows among the flows traversing (6, 8) and that are destined to prefixes in P8.
In total, 320 flows are selected and monitored in this example.
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6.2.2.2 Sound inference

For each AS link, Snap computes the proportion of flows experiencing
retransmissions over time among the ones traversing the AS link. Snap infers a
failure and triggers an analysis of its root cause when it detects a peak of TCP
retransmissions for the flows traversing an AS link.

Failure localization. Upon detection of a failure, Snap infers the corresponding
failed AS link as the one maximizing the Fit Score (FS), a metric that we also
use in SWIFT (see 4.2.1). Let t be the time at which this inference is done. For
any link l, the value of FS for l is the geometric mean of the Retransmission
Share (RS) and Path Share (PS):

FS(l, t) =
Ò

RS(l, t) ú PS(l, t)

RS is the fraction of the flows forwarded over l that experience retransmissions
at t over the total number of flows experiencing retransmissions. PS is the
fraction of flows experiencing retransmissions and traversing l at t over the
total number of flows traversing l at t. More precisely,

RS(l, t) = R(l, t)
R(t) PS(l, t) = R(l, t)

R(l, t) + F (l, t)

where R(l, t) is the number of flows traversing l and that are experiencing
retransmissions at t; R(t) is the total number of flows experiencing
retransmissions at t; F (l, t) is the number of monitored flows traversing l at t

and that are still working fine. Note that for the RS to be useful, Snap considers
all the monitored flows traversing the AS link l when computing R(l, t), and
not just the 64 flows selected for that link. If only the 64 flows were considered,
then the failed AS link and all the downstream AS links would all have the same
RS value.

Example. Figure 6.5 reports possible RS and PS values upon detection of
the retransmissions caused by the failure of (5, 6). Link (5, 6) is the only one
with both RS and PS equal to one since all the flows traversing this link, and
only those are experiencing retransmissions. In contrast, the PS values for
links (1, 2) and (2, 5) are smaller than 1 (192/320 and 192/256) because some
flows traversing these AS links are still working fine. The WS of (6, 7) and
(6, 8) are smaller than one because not all the monitored flows experiencing
retransmissions pertain to that link. In the end, (5, 6) is therefore correctly
inferred as failed.

Correctness. The Snap inference algorithm is always correct under ideal
conditions. The following theorem holds.

Theorem 6.1. Snap inference returns a set of links including the failed link, if
it runs when all the flows traversing the failed AS link exhibit retransmissions.
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Proof of Theorem 4.3. Assume that a single link f fails and that the
inference algorithm makes a prediction at time t after detecting RTO-induced
retransmissions.

We now show that the inference algorithm assigns the highest possible values
of both RS and PS to f .

Indeed, all the flows traversing f are a�ected by the failure and will thus start
to retransmit packets: This implies that the number F (f, t) of flows traversing
f and still working (i.e., sending packets) at t is 0. Moreover, since the
detected retransmissions are all caused by f ’s failure by hypothesis, all the flows
experiencing retransmissions must have crossed f , that is, R(f, t) = R(t). As
a consequence, PS(f, t) = R(l, t)/(R(l, t) + 0) and RS(f, t) = R(l, t)/R(l, t)
are equal to their maximum value 1.

This implies that the fit score of f is the highest possible one. Hence the Snap
inference algorithm will return it in the set of failed links.

6.2.2.3 Robust to real-world factors

In practice, the ideal conditions assumed in Theorem 6.1 do not always hold.
This section shows that the Snap inference algorithm includes mechanisms to
make it robust against real-world factors.

Snap quantitative metrics mitigate the e�ect of noise. Some of the
detected retransmissions may be unrelated to the outage but caused by other
factors such as congestions. They constitute noise that can negatively a�ect the
accuracy of any inference algorithm. In Figure 6.5, for instance, flows destined
to prefixes advertise by AS2 or AS5 may also experience retransmissions which
distort the FS value. In this example, these unrelated retransmissions would
increase the likelihood that the FS of (1, 2) and (2, 5) is higher than the one of
(5, 6).

Fortunately, Snap follows Blink’s strategy (§5.3.3) to detect retransmissions
and only reports consecutive retransmissions, i.e., the ones that are likely
induced by the TCP retransmission timeout (RTO). The congestion-induced
retransmissions are likely to be interleaved by non-retransmissions and are thus
(correctly) not detected and not counted in the computation of the FS score.
In practice, Snap is thus robust to real-world noise as the level of RTO-induced
retransmissions is usually low. Hence, its e�ect on quantitative metrics such as
FS, RS, and PS tends to drop rapidly.

Snap per-AS-link flows mirroring mitigates the e�ect of skewed tra�c
distribution. By following Blink’s flow selection strategy, the probability that
a flow is mirrored and monitored only depends on its packet rate: flows with a
high packet rate are more likely to be selected than the others. This is intended
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as Snap needs active flows to detect failures. However, to detect many remote
outages, Snap not only needs active flows but also needs flows that traverse
many of the AS links, thus destined to di�erent destination prefixes advertised
by di�erent ASes.

The problem is that Internet tra�c is typically skewed and a small portion of
the Internet prefixes carry the most tra�c [150]. Hence, if the probability of
a flow to be monitored only depends on its packet rate, Snap performance
would be skewed too: it would work very well on the path towards the top
prefixes and not so well on the others. For example, consider the scenario in
Figure 6.5 again, and assume that among the 320 selected flows, none of them
are destined to the 10k prefixes advertised by AS7, because those destinations
are not as popular as the others. In this case, a failure on the link (6, 7) would
be o� the radar.

To increase Snap coverage, Snap runs Blink’s flow selection on a per-AS-link
basis. More precisely, for each monitored AS link, Snap mirrors 64 flows (by
default) traversing it, regardless of the total number of flows traversing it. In
Figure 6.5, it means that Snap mirrors 64 flows for every AS link, including
(6, 7), enabling it to detect any possible remote outages in this example.

Snap applies a conservative strategy if failed links cannot be univocally
determined. It may happen that Snap cannot precisely distinguish which link
has failed. For example, consider the scenario in Figure 6.5 again, and assume
that among the 320 selected flows, none of them are destined to prefixes
advertised by AS5, which can happen if not many flows (or no flows at all)
are destined to prefixes advertised by AS5. In this case, both links (2, 5) and
(5, 6) have the same FS score, and Snap cannot precisely determine which link
has failed.

Whenever a failed link cannot be univocally determined, Snap inference returns
all the links with maximum FS, i.e., both (5, 6) and (6, 8) in the previous
example.

Snap can infer concurrent link failures. To cover cases like router failures
that a�ect multiple inter-AS links simultaneously, the inference algorithm used
by Snap follows the same strategy as in SWIFT and computes the FS value
for sets of links sharing one endpoint. To do that, Snap follows the same
algorithm as the one used by SWIFT (see §4.2.3). More precisely, the algorithm
aggregates greedily links with a common endpoint (from links with the highest
FS to those with the lowest one) until the FS for all the aggregated links does
not increase anymore. The fit score FS for any set S of links is computed by
extending the definition of RS and PS as follows.

RS(S, t) =

q

lœS
R(l, t)

R(t) PS(S, t) =

q

lœS
R(l, t)

q

lœS
R(l, t) + F (l, t)
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The algorithm returns the set of links (potentially, with a single element) with
the highest FS value.

To ensure safety (see §6.2.3), for each link inferred, Snap must choose a backup
route that does not traverse the common endpoint of the links. This prevents
Snap to reroute tra�c destined to a prefix towards a backup next-hop that uses
another inferred link (because all the inferred links have a common endpoint).
Furthermore, by choosing backup paths bypassing a superset of the inferred
links, Snap also ensures safety in case the inference algorithm correctly localizes
the ASes involved in the outage instead of the precise links.

6.2.3 SWIFT rerouting with P416 variable-length metadata

Snap follows the same rerouting strategy as SWIFT: after localizing the outage,
it reroutes tra�c on backup paths that circumvent the outage. This section
explains how Snap achieves this rerouting.

Data-plane tags with P416 variable-length metadata. Snap encodes in
data-plane tags the AS links traversed by each packet as well as the backup
next-hop to use should any of them fails (see §4.3). Unlike SWIFT, Snap does
not have to compress the data-plane tags in the 48-bit destination MAC address
but instead can use the P416 variable-length metadata. P416 metadata greatly
simplifies the process of tagging each packet (e.g., Snap does not need to use
ARP to tag the packets) and enables Snap to use more bits per prefix to tag
packets with more next-hops and AS links, as long as it does not exceed the
capacity of the switch.

Besides, the variable-length metadata allows Snap to leverage a tradeo�
between the number of monitored prefixes and the system’s performance. More
precisely, Snap can filter out the less essential prefixes to use more bits for
the most important ones and perform better for them. The tra�c destined
to a non-monitored prefix simply goes to the last stage of the pipeline and is
forwarded normally.

Snap is beneficial and safe. As soon as a failure is detected, Snap matches
on the data-plane tags (i.e., the metadata) to reroute tra�c around the failure.
Given that Snap uses the same rerouting strategy as SWIFT, Theorem 4.1
and Theorem 4.2 also hold for Snap, assuming routing stability and reasonable
inference (see §4.1.3).

Despite not notifying path changes in the control plane, Snap is thus beneficial
and safe. More precisely, Snap causes no forwarding loops and strictly improves
Internet-wide connectivity, proportionally to the number of Snap routers.
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6.3 Design

This section describes Snap’s pipeline and its internal algorithms, design choices,
and parameter values. Figure 6.6 gives an overview of the pipeline running in
a Snap router, at the control- and the data-plane level. We will use it as an
illustration throughout this section.

We divide the pipeline in four parts: the metadata installation (§6.3.1), the
smart tra�c mirroring (§6.3.2), the failure inference (§6.3.3) and the fast tra�c
rerouting around the failure (§6.3.4).

6.3.1 Per-packet metadata installation

The first step of the Snap data-plane pipeline consists of the metadata_table
attaching a set of metadata to each packet based on their destination IP address.

The SWIFT tags in P416. First, the metadata use_snap allows activating
Snap for some particular destination IP prefixes only. Packets destined to a
prefix for which Snap is not active (i.e., use_snap is equal to 0) go directly to
the last stage of the pipeline and are forwarded normally.

If Snap is activated, the rest of the metadata attached to each packet is similar
to the information carried in the data-plane tags used by SWIFT (§4.3). More
precisely, the metadata_table sets the primary_next-hop metadata, a value that
uniquely identifies the primary next-hop to use. Then, the metadata_table sets,
for each AS link traversed by the packet, the link_ID metadata, a value that
uniquely identifies he AS link, as well as the backup_next-hop metadata, a value
that uniquely identifies the backup next-hop to use if the AS link fails.

The metadata_table is updated by the Snap controller at runtime. The
controller maintains a RIB with the BGP routes to compute the primary and
backup next-hops. The controller learns the BGP routes either from the BGP
peers should it maintain BGP sessions with them or from the information
collected with e.g., BMP. The controller also maintains the AS graph, derived
from the AS path of the BGP routes, and from which it computes a unique
link_ID for every AS link.

Size of the metadata. By default, we follow the SWIFT parameters and
consider AS links up to depth four in the AS graph (i.e., position five in the AS
path). An analysis on ten full BGP routing tables (> 800k prefixes) collected
from RIPE RIS [16] indicates that the highest number of distinct AS links up
to depth four is 35,793. We thus reserve 16 bits for the link_ID, allowing Snap
to encode 216 = 65536 AS links. As in SWIFT, Snap reserves 6 bits to encode
a next-hop to work with up to 26 = 64 distinct next-hops.
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6.3.2 Smart mirroring

A fraction of the packets destined to prefixes for which Snap is activated are then
mirrored to the Snap controller. The controller runs either directly on the switch
control plane, in which case the implementation relies on the copy_to_cpu
primitive, or in a remote server, in which case Snap encapsulates each mirrored
packet in a new IP header with the IP destination of the server.

Mirroring a distinct set of active flows for every monitored AS link.
To decide which flows to mirror, Snap uses the same flow selection strategy as
the one used in Blink: it relies on a Flow Selector to detect active flows, i.e.,
the ones that are sending packets (see §5.3.2). However, Snap selects a set of
flows per AS link instead of per destination prefix as in Blink. Snap thus uses a
flow_array for each AS link that it monitors. Snap ensures that a flow is only
mapped to a single flow_array to select disjoint sets of flows for each AS link.
Snap randomly maps a flow to a flow_array, using a hash of the 5-tuple.

Following the Blink implementation, Snap uses 64 cells in each flow_array.
Each cell in a flow_array contains a 32-bit flow_key that Snap uses to enforce
that only one flow occupies a cell at a given time, as well as a 9-bit timestamp,
to detect inactive flows. The eviction timeout, i.e., the time after which a flow
is considered inactive if it does not send any packet, is set to two seconds, the
default value also used in Blink. We refer the reader to §5.3.2 for a detailed
description of our P416-based Flow Selector.

Limiting the volume of tra�c mirrored. To limit the volume of tra�c
mirrored, Snap uses a custom header that only contains the required information
to track RTO-induced retransmissions. The custom header includes the
destination IP, the flow_id, the timestamp, the TCP sequence number, the
TCP payload size, and the previous flow_id (in case the packet triggered the
eviction of the flow that occupied its cell in the flow_array).

6.3.3 Detecting and locating failures

The Snap controller uses the mirrored tra�c to detect and locate remote
outages using the following three steps.

Detecting RTO-induced retransmissions. As in Blink, Snap focuses on
consecutive retransmissions because they are likely triggered by the RTO
timeout (non-retransmissions more likely interleave the congestion-induced
retransmissions). Snap reports a packet as RTO-induced retransmission if it
retransmits a part of the full content of the directly preceding packet of the
same flow. As in Blink (see §5.3.3), Snap detects RTO-induced retransmissions
by comparing the sum of the packet sequence number and payload length to
the corresponding sum of the directly preceding packet of the same flow.
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Computing the proportion of flows experiencing retransmissions per
AS-link and over time. To do that, Snap uses a sliding window for
every AS link. Each sliding window reports the number of flows experiencing
retransmissions per AS link and within the last 800 milliseconds (same value
as in Blink, see §5.3.3). However, unlike Blink, which uses a probabilistic
implementation of the sliding window because of the hardware constraints,
Snap leverages the resources and flexibility o�ered by the controller and uses
a deterministic – thus more accurate – sliding window, which slides every time
Snap detects a RTO-induced retransmission.

Inferring the outage. Finally, Snap runs its outage inference algorithm,
inherited from SWIFT (see §6.2.2). When half of the flows experience
retransmissions for an AS link, Snap computes the Fit Score FS for every
monitored AS link, and reports as failed the one with the highest score.

6.3.4 Fast tra�c rerouting around the failure

When the Snap controller detects a failure, it quickly updates the data-plane
decisions to reroute all the a�ected tra�c on working backup paths.

Triggering tra�c rerouting to working backup paths with a single data-
plane update. Snap uses the AS_link_status_array to reroute tra�c. This
array stores the status of each of the monitored AS links. Each cell only contains
a status bit that indicates whether the corresponding AS link is functional
(1) or not (0). When the controller detects a remote outage, it updates the
AS_link_status_array for the a�ected AS links and sets their status bit to 0,
automatically activating the backup paths for the a�ected tra�c.

Snap looks at the status of every AS link that a packet traverses (attached to
the packet as metadata, see §6.3.1) to decide which next-hop to use. If all
the traversed AS links are marked as functional, Snap sends the packet to the
primary next-hop. On the contrary, if one of them is marked as not working,
then the backup next-hop providing a path circumventing the faulty AS link
(also attached to the packet as metadata) is used.

Sending the packets out. Within the Snap pipeline, the available next-
hops are uniquely identified by a 6-bit integer value (see §6.3.1). The last
operation to perform in the pipeline is thus to translate the next-hop identifier
into the corresponding outport and destination MAC address. Snap achieves
this operation using the next-hop_array, which is updated by the controller at
runtime and stores the outport and destination MAC to use for every next-hop.

In addition to rerouting locally to a directly connected next-hop announcing
an alternate route, a Snap router could fast-reroute to remote next-hops,
potentially at the other side of the network, by using tunnels (e.g., IP or MPLS
ones). In this case, the next-hop_array must store the next-hop IP address.
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6.4 Implementation

We have implemented the data-plane pipeline of Snap as described in §6.3 in
459 lines of P416 code. Our current implementation detects remote outages up
to depth four in the AS graph. For now, we implemented the control plane in
¥ 1100 lines of Python code, and use Scapy [8] to sni� the mirrored packets.
We also only focus on IPv4, although Snap would work with IPv6 too.

This control-plane implementation is enough for testing Snap on simple
scenarios. However, for an actual deployment, we envision implementing a
control plane capable of processing higher packet throughput, using C along
with frameworks dedicated for fast packet processing such as DPDK [2].

The rest of this section shows that Snap is implementable on real hardware and
practicable on real-world scenarios.

6.4.1 Memory usage in a Snap switch

In the metadata_table, for each prefix, Snap uses 8 bits to store the primary
next-hop, 4 ú 6 = 24 bits to store the four backup next-hops, and 4 ú 16 = 64
bits to store the first four AS links. In total, activating Snap for a prefix requires
88 bits. Besides that, Snap also uses one flow_array for every monitored AS
link. By default, each flow_array requires (32+9)ú64 = 2464 bits. Finally, the
AS_link_status_array needs one bit per monitored AS and the next-hop_array
needs 8 + 48 bits for each next-hop.

Snap memory usage thus depends on two main factors: the number of monitored
prefixes and AS links. Given that current programmable switches such as
Tofino [5] have tens of megabytes of memory available, we expect Snap switches
to work with 100,000 prefixes (¥ 1.1 MB) – an order of magnitude more than
Blink– and tens of thousands of AS links (e.g., 10,000 AS links would require
¥ 3MB).

6.4.2 The Snap control plane can run in commodity servers

In its current state, the per-packet computations performed by the Snap control-
plane are rather basic. Upon reception of a packet, the controller (i) uses a
radix tree to insert or retrieve information about the corresponding IP prefix; (ii)
checks if the packet is a retransmission (performed in O(1)); and (iii) updates
the number of flows experiencing retransmissions on the AS links traversed by
the packet. When a failure is detected, the controller just iterates over all the
AS links, updates the Fit Score for each of them, and returns the one with the
highest value.
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The challenge for the controller is doing this process in real-time, on general-
purpose CPUs. The smart mirroring performed by Snap helps to address this
problem because only a few flows are mirrored per AS-link (maximum 64, by
default), limiting the volume of tra�c that has to be processed by the Snap
controller. The following paragraphs show the number of AS links we expect a
Snap controller to be able to monitor.

Methodoly. For every tra�c trace used in the Blink evaluation (Table 5.1), we
computed the packet rate of each flow using SilK [19], filtered out flows sending
less than one packet every two seconds on average (as they are unlikely to be
selected by Snap) and computed the average packet rate over all the remaining
flows. The highest average packet rate measured for a flow is 91 pkts/s and
appears on trace one. Assuming a worse-case scenario where each flow sends
91 pkts/s on average, we can compute the expected volume of tra�c received
by the controller as a function of the number of monitored AS links.

The Snap controller can monitor thousands of AS links. In our
implementation, the custom Snap header used by the mirrored packets contains
the original source and destination IP of the packet, the current flow_key as well
as the old one (to inform the Snap controller that a flow has been evicted), the
TCP payload length and the TCP sequence number (to detect retransmissions).
Altogether, this corresponds to 28 bytes, which means that a mirrored packet
has a total size of 64 bytes (including the Ethernet and IP header).

For a given AS link, the Snap controller thus receives 64 ú 91 = 5824 pkts/s,
which corresponds to 372KB/s. As the current commodity servers are now able
to process >100Mpps and >100Gbit/s of tra�c using fast packet processing
frameworks such as DPDK (e.g., [60]), we expect the Snap controller to be able
to monitor thousands of AS links.

We note that the mirroring scheme can be adjusted to mirror less tra�c at the
cost of more calculations in the Snap switch. For instance, the RTO-induced
retransmissions can be tracked in the Snap switch (like in Blink) and only the
detected retransmissions are then mirrored to the Snap controller.

6.5 Evaluation

In this section, we first evaluate the Snap outage inference in §6.5.1 and show
that it is accurate in many scenarios exhibiting real-world characteristics. We
then show Snap in action in §6.5.2.
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6.5.1 Snap failure inference is accurate

The results in the Blink evaluation (§5.5.1.1) suggest that Snap can detect
outages with good accuracy and quickly, despite the noise. We now supplement
these results with simulations in a controlled environment and with outage
ground truth to show that Snap is not only able to detect outages but can
also locate them with high accuracy, despite the Internet tra�c often being
skewed [150].

Methodology. We implement a Python-based discrete-event simulator that
(i) builds an AS-level topology and assumes one AS runs Snap; (ii) simulates a
flow selection on every AS link assuming either a uniform tra�c distribution or
a skewed one, where a large proportion of the flows target a small proportion
of the ASes; (iii) simulates a failure of an AS link l by failing flows traversing l

one by one until Snap detects a failure; and (iv) runs the Snap failure inference
to verify whether Snap correctly identifies l as the failed link.

We measured the performance of Snap over many di�erent scenarios that
correspond to real-life situations. More precisely, we used di�erent AS-level
topologies that are built from the BGP data collected by RouteViews BGP
peers [132] (we only consider peers receiving more than 800k prefixes). For
each peer, we first build the AS-level topology as seen from the BGP updates
collected at a precise time in December 2020, and assume that the BGP peer
runs Snap. We then rank the AS links based on the number of prefixes traversing
them and assign 64 flows to each of the top-1000 AS links among the ones that
do not exceed depth four in the AS graph, following the settings used in §6.4.
Finally, we run 1000 distinct simulations for each peer wherein each of them we
simulate a failure of a di�erent AS link among the top-1000 AS links. Overall,
we end up with a total of 100,000 simulations. Note that even though we only
assign flows to the top-1000 AS links, Snap can detect an outage on any AS
link in the AS graph.

We made each simulation twice. First assuming a uniform tra�c distribution,
where the destination AS of a flow is picked randomly and uniformly. Second,
to simulate the e�ect of the skewed tra�c distribution on the flow selection
strategy used by Snap, we ensure that the destination ASes of the selected
flows follows a Zipf distribution with a distribution parameter set to 1.8, which
aligns with previous observations [150].

Snap failure inference is precise enough in 98.5% of the cases. We divide
the inferences into three categories. Correct inferences return a set of links
including the failed link. Satisfactory inferences return a set of links adjacent
to the failed one. While not correct, these inferences ensure that Snap reroutes
tra�c to backup routes that do not traverse any of the failed links, as Snap
picks a backup route that does not traverse both endpoints of the inferred failed
link (see §6.2.2.3). We label these inferences as satisfactory as they enable Snap
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Tra�c distribution
Uniform Skewed

In
fe

re
nc

e Correct 55.0% 55.8%

Satisfactory 43.7% 42.7%

Wrong 1.4% 1.5%

Table 6.1 Accuracy of the Snap outage inference with a uniform and skewed tra�c
distribution.

to restore connectivity. Finally, wrong inferences return a set of links that are
remote from the failed link and thus do not enable Snap to safely reroute tra�c.

Table 6.1 shows the accuracy of the Snap outage inference. With a uniform
or a skewed tra�c distribution, Snap outage inference returns the correct link
in the majority of the cases. Among the correct inferences and with a uniform
(resp. skewed) tra�c distribution, 98% (resp. 93%) returned a single link –
the correct one. With a uniform tra�c distribution, only 1.4% of the inferences
are wrong. The accuracy of the inferences with a skewed tra�c distribution
is only slightly lower (1.5% of wrong inferences). Besides, our results indicate
that the accuracy of the inferences is high for every BGP peer. In the worst-
case scenario and with a skewed tra�c distribution, a BGP peer running the
Snap outage inference makes wrong inferences in 2.4% of the cases only. These
results highlight that the Snap outage inference enables fast and safe tra�c
rerouting in the majority of the cases.

6.5.2 Snap in action

We illustrate Snap on a virtual network built with p4-utils [59] and following
the example used in Figure 6.5. AS1 runs our Snap implementation described
in §6.4. We start 100 TCP flows from AS1 towards each AS in the topology
(except AS3 and AS4), making a total of 500 flows. Each flow sends packets at
a regular interval, randomly selected between 1 s and 3 s, so as to have active
and inactive flows according to the Snap settings. After a few seconds, we fail
the link (5, 6), a remote link for AS1, and report in Figure 6.7 the volume of
tra�c received by the destination ASes over time.

Upon the outage, the Snap router in AS1 detects the outage and correctly
localizes the event on the link (5, 6). Despite AS3 being the preferred backup
path, Snap reroutes the tra�c destined to AS6, AS7 and AS8 to AS4, which
uses a path circumventing the outage and thus restores connectivity. In our
experiment, the measured downtime is thus only 1.05 s. The tra�c towards
AS2 and AS5 is not a�ected by the outage, and thus not rerouted by Snap.
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Figure 6.7 Illustration of Snap on the example depicted in Figure 6.5. Upon the
failure of the link (5, 6), the measured downtime is only 1.05 s for the tra�c destined
to AS6, AS7 or AS8.

6.6 Future work and open problems

Snap combines the best of SWIFT and Blink. Yet, we believe that its hardware-
software codesign makes possible further improvements. In this section, we
present several ideas on how to improve various aspects of Snap. We believe
these ideas are a good starting point to solve the problem of partial outages
and the security issues pointed out in §6.1, among others.

6.6.1 Better inference algorithms

In its current form, Snap follows the Blink approach and infers an outage when
the proportion of flows experiencing retransmissions exceeds a certain threshold
(50%, by default). We showed in §6.1 that this simple algorithm misses many
outages, especially the partial ones, i.e., those a�ecting only a subset of the
tra�c traversing the faulty AS link (e.g., due to load-balancing).

With the decisions being taken in the controller, we envision using more accurate
algorithms, e.g., capable of detecting these partial outages and inferring which
flows are a�ected by the outage and which flows are not. In the following
paragraphs, we present ideas to improve the inference algorithm.

Anomaly detection algorithms. Remote outages often coincide with a narrow
peak of retransmissions in the time series built from the reported RTO-induced
retransmissions (see §5.1.1). We believe such patterns can be detected with
anomaly detection algorithms. Looking at a particular pattern instead of using a
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single threshold allows Snap to detect more events, especially the ones exhibiting
a weaker signal, such as partial failures.

Because our framework aims to quickly reroute tra�c upon outages, the
anomaly detection algorithm must be fast and run in real time. The PELT
changepoint detection algorithm appears to be a possible candidate to detect
those peaks of retransmissions [102]. However, particular attention should be
given when configuring the sensitivity, a typical parameter used in many anomaly
detection algorithms. Indeed, a low sensitivity might result in many outages
being o� the radar whereas a high sensitivity might result in many false positives
(e.g., due to congestions or path changes).

Multiple inputs. Other signals can help to infer a remote outage. For instance,
a remote outage is likely to coincide with a drop in the total throughput, as all
the TCP flows quickly stop sending new packets. On the contrary, if most of
the TCP flows are still sending new packets, there is likely no outage.

Anomaly detection algorithms on multivariate time series are potential
candidates to detect outages from multiple inputs. Supervised learning
algorithms such as decision trees or neural networks could also be potential
candidates, but they require historical data of past failures for the learning
phase, which is not always easy to obtain. We could build a synthetic dataset
by generating tra�c following real-world patterns and simulating failures, as
we did to evaluate Blink (§5.5.1). However, this is challenging as tra�c may
exhibit di�erent patterns depending on the routers on which it is observed.

Besides improving the performance of the inference, using other signals such as
the throughput enables the inference to be less dependent on TCP, which can
be useful in the future as TCP appears to be less used with time and replaced
by other transport protocols, often encrypted, such as QUIC [113, 148].

Active probing. Active probing can also be used in conjunction with passive
observations, to validate the outage inference and assess the severity of the
failure, which is useful information to decide whether it is beneficial to reroute
the tra�c or not. For instance, upon the inference of an outage, the controller
can send ICMP probes to verify if the destination prefixes assessed as failed are
indeed not reachable anymore.

However, active probing has some drawbacks: (i) it may inject a lot of packets
in the network, especially if many prefixes are assessed as failed; (ii) it delays
the outage inference, as the controller needs to wait for the ICMP replies or
the expiration of a timer; and (iii) the controller needs to know destination
IP addresses in remote networks that respond to ICMP probes, which is not
something straightforward to learn. As a result, active probing must be used
with parsimony and must be accompanied by passive observations, as done in
previous works on Internet failure detection such as Hubble [100].
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6.6.2 Robust to adversarial inputs

There is clearly value in extracting actionable network control information from
data-plane signals, but for a system like Snap to be practical, we must guarantee
that this does not compromise security. We now show possible countermeasures
that could prevent malicious users to trick a data-driven system such as Snap.

Using independent signals. Most attacks against Snap are possible because
the system blindly trusts the inputs it receives, and the inputs are vulnerable to
manipulations. A possible countermeasure is to improve the input’s robustness
against manipulations using many independent signals. For instance, Snap could
monitor the RTT distribution over a large number of flows, approximate the
expected RTO distribution upon a failure, and use it to distinguish between
actual failures and malicious events. Manipulating Snap would then require an
attacker to know the RTT distribution of the legitimate flows forwarded by the
Snap router, information that is hard to obtain for an attacker.

The challenge when implementing these countermeasures is that it is di�cult
to assess whether two signals are truly independent and no adversary can
manipulate both of them. Besides, combining signals increases the decision
time and thus conflicts with immediate reactions to events required in the case
of Snap.

Obfuscating control logic. Successful attacks require a model of the control
logic used in a data-driven system. Obfuscating this logic, or varying it over
time, can thus hinder attacks. This security-by-obscurity method can form part
of a defense-in-depth approach.

In the Snap case, a simple approach is to use random and variable seeds when
mapping a flow into a cell of the Flow Selector, along with a flow eviction
strategy not only based on a fixed timer. Hence, it becomes harder for an
attacker to derive the volume of tra�c to send and the estimated time needed
to corrupt the system.

Detecting malicious behavior. The signals used for failure detection often
follow some patterns, such as the typical day and night or the weekday and
weekend cycles. By looking at historical data, these patterns can often be
learned and used to detect suspicious events.

Malicious behavior can also be detected using passive measurements or active
probing. For instance, a sudden peak of tra�c is likely to be malicious if it is
not accompanied by a path change at the control- or the data-plane level.

However, when designing such countermeasures, it is important to find the
sweet spot for maximizing the detection of malicious behavior given the cost of
modifying the application and its impact on the decision time.
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6.6.3 Higher-quality inputs

Unsurprisingly, the accuracy of the failure inference depends on the quality of
the inputs. Currently, the input of the failure inference is a set of 64 flows per
monitored AS links, selected based on their activity. In the following paragraphs,
we show possible ideas to improve the quality of the inputs.

Better in-network flow selection. The Snap switch follows the same
approach as in Blink to mirror active flows: a flow is evicted and replaced
by a new one if it does not send a packet during at least 2 seconds. While
useful, this flow selection strategy is far from being optimal. For instance, a
flow sending exactly two packets per second will remain selected, preventing
more active flows from being selected instead.

In the future, we thus envision improving the flow selection strategy and derive
the activity of a flow based on the last n observed packets for that flow, with
n > 1. For instance, selecting a flow based on its estimated average number
of packets sent per second would already be beneficial. Previous works on real-
time flow classification can also supplement our flow selection strategy [32].
For instance, flows belonging to certain types of tra�c can be taken out of the
selection process early on because they are likely to be inactive in the future.

However, the main challenge is that the flow selection is done in the
programmable switches, which have very limited resources. Yet, it is certainly
possible to implement more advanced algorithms than the simple eviction
strategy used by Blink and Snap. For instance, Busse-Grawitz et al.
implement random forests in P416 to perform real-time and in-network packet
classification [42]. Observe that the cost, in terms of resources, to select a
flow when using more advanced algorithms is likely to be higher than with our
current simple selection strategy. Hence, it is important to find a good balance
between the number and the quality of the selected flows.

Controller-driven flow selection. Constantly mirroring 64 (by default) flows
for each of the monitored AS links to detect and locate the rather infrequent (but
very damaging) remote outages can be too excessive and resource-hungry. We
thus envision exploring how the mirroring can be adapted over time, according
to the situation. In particular, as the inference algorithms are executed in the
controller, we envision letting the Snap controller adapt the flow selection by
updating some of the registers in the memory of the Snap switch.

A possible idea is to adapt the flow selection to quickly zoom in on a part of
the AS graph or on a particular AS link upon detection of a suspicious event.
Imagine, for instance, that the Snap controller has detected a high level of
retransmissions on a particular AS link. The controller could then adapt the
flow selection performed in the Snap switch to mirror more flows traversing the
potential faulty AS link to the controller, for further and more precise analysis.
However, one challenge with this reactive approach is to zoom in quickly, as
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tra�c can be lost during the extra time needed to zoom in and infer the outage.

Finally, we believe that letting the Snap controller evict flows in the Flow
Selector of the Snap switch can be beneficial. We see two motivations for
that. First, the controller can compute more per-flow features than the switch
(e.g., the distribution of the packets’ inter-arrival time) and thus can better infer
which flow is likely to help for detecting remote outages. If the controller detects
that a selected flow is not useful for failure inference, it could evict it directly
from the Flow Selector, instead of waiting for the switch to do so. Second, the
controller can evict flows that exhibit undesirable or suspicious behavior. For
instance, the controller can evict a flow that sends a particularly high number
of packets per second, a behavior that is more of a burden for the controller.
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7
Conclusions

In this dissertation, we shed light on the problem of connectivity disruptions
upon remote Internet outages, which is the consequence of the slow Internet
convergence. We show that it is possible to quickly restore connectivity upon
remote outages, although BGP, as a path-vector protocol, does not explicitly
notify the status of the links in the network but instead slowly propagates per-
prefix reachability information.

Our solution relies on (i) an inference algorithm that quickly and accurately
infers and locates remote outages from control- and data-plane signals; and (ii)
a rerouting scheme which relies on pre-computed data-plane tags to quickly
reroute all the a�ected tra�c towards backup paths avoiding the failure,
regardless of the number of IP prefixes for which tra�c must be rerouted.
The final result of our work is Snap, a fast reroute framework for remote
Internet outages that is deployable on existing devices, provides forwarding
guarantees, complies with routing policies configured by the network operators,
and is incrementally deployable without requiring any modification to BGP.
Snap reduces the time a router takes to restore connectivity from minutes (with
BGP) to a few seconds.

Snap, which we present in §6, is based on the key principles used by SWIFT and
Blink, which we describe in §4 and §5, respectively. Overall, the contribution
of this dissertation is fourfold.

We highlight the e�ects of remote outages on users’ connectivity.
We supplement the previous works focusing on Internet convergence with an
extensive measurement study highlighting the e�ects of remote outages on
users’ connectivity. More precisely, we measure the frequency of remote outages
and estimate their resulting downtime. We confirm our observations with an
anonymous survey that we conducted with 73 network operators and with
experiments that we performed on a recent Cisco router.
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We make fast rerouting upon remote Internet outages possible. We
show that it is possible to find a good balance between speed and accuracy
when inferring remote outages from control- and data-plane signals. More
precisely, our inference algorithm quickly infers the location of the failure at the
AS level – a level of precision su�cient to guarantee a safe, beneficial, and fast
tra�c rerouting within reasonable assumptions.

We develop a fast reroute framework for remote Internet outages. We
implement the key components of our fast reroute framework and manage to
deploy it on existing devices. To do that, we leverage network programmability
(i.e., SDN and P4) and rely on a hardware-software codesign, where the
controller runs the outage inference while the switches take care of carefully
mirroring active flows to the controller and fast rerouting the tra�c using our
pre-computed data-plane tags upon the inference of an outage.

We extensively evaluate our framework. We evaluate our framework on
actual devices (e.g., a Tofino switch) and with real and synthetic inputs to show
its practicality in many di�erent real-world situations. Our results indicate that
our framework can infer and locate a vast majority of the remote outages and
restore connectivity within a few seconds only.

Concluding remarks

Despite the problem of connectivity disruptions caused by the slow Internet
convergence being an extensively studied topic already, the design of a
framework that network operators can deploy locally without cooperation with
other networks and that enables routers to quickly restore connectivity upon
remote Internet outages was still an unsolved problem.

In this dissertation, we identify the key challenges for fast tra�c rerouting upon
remote Internet outages and present a set of key findings and fundamental
guidelines that help to solve this problem. Of course, as we discussed in §6.6,
there are still many problems that remain open. Yet, we hope that our work
will inspire future fast outage detection and fast tra�c rerouting solutions.
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