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Abstract

The increased focus on evidence-based practice in the health sciences led to a plethora of
(un)organised and digitised data. In conjunction with the availability of technological ad-
vances in the life sciences, this resulted in extraordinary access to biomedical data. Due to
efficient measurement devices, the frequency at which data can be obtained is at an unprece-
dented high, leading to the adage that data, indeed, could be the new gold. Examples of such
high-resolution time series data are the continuous monitoring of patient vital parameters
or a single electrocardiogram (ECG) itself. The temporal component introduced by time se-
ries data is both a chance and a challenge, necessitating the development of appropriate data
analysis techniques. A chance, as it allows us to utilise a measurement’s temporal evolution
to characterise or classify the object of interest (e.g. patients, cells, or other organisms). A
challenge because local and global correlation structures exacerbate obtaining a complete
picture of a time-evolving phenomenon. Moreover, many dynamically changing systems
exhibit alterations that occur at multiple scales and in multiple channels.

This thesis presents a set of novel methods to help characterise and classify time-varying
data with the express purpose of answering questions at the intersection of machine learning
and healthcare. Recognising that time series arise from different categories, we first separate
them into real-valued and object-valued time series and investigate both types separately.

For the analysis of the first type, we propose a novel method to mine time series patterns
efficiently. Driven by a statistical approach, we will introduce a way to identify temporal
biomarkers and illustrate their utility in a data set of intensive care unit patients. For this,
we leverage the expressive power of subsequences to obtain a high-dimensional time series
representation. This feature representation is subsequently used to develop a kernel method
based on optimal transport theory. The developed algorithm is of general applicability for
medium-sized data sets and has proven particularly effective in the classification setting. The
first part of this thesis ends with the presentation of a collaborative machine learning system
to predict myocardial ischaemia from stress test ECGs. We develop a deep learning-based ap-
proach to significantly reduce the number of patients that unnecessarily undergo myocardial
perfusion imaging. A subsequent interpretability analysis presents a potential path towards
explainable and trustworthy artificial intelligence in cardiology.

The second part of this thesis describes an effort to improve our understanding of arti-
ficial neural networks. By treating the network as a composition of time-varying graphs,
we develop a method that characterises the change of its structural complexity over time.
Our method captures the benefit of deep-learning best practices and can be used as an early-
stopping criterion without the need for a validation data set. We thus manage to improve our
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understanding of artificial neural networks and shed light on the properties linked to their
generalisation capabilities.

Throughout this thesis, we demonstrate and highlight that in the analysis of (biomedical)
time series, it is crucial to take the end-user into account. Interpretability and statistical
analyses are of utter importance to make the otherwise opaque field of machine learning
transparent to clinicians, physicians, and biologists. Moreover, we also hold up the mirror
to ourselves as machine learning researchers: Comprehending the underlying mechanisms
of our algorithms is at least as important as their empirical successes. The present thesis
paves the path towards a better understanding of artificial neural networks and sheds light
on complex phenotypes such as sepsis and myocardial ischaemia in clinically relevant ways.
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Zusammenfassung

Die zunehmende Konzentration auf die evidenzbasierte Praxis in der Medizin führt zu ei-
ner Fülle von (un)organisierten und digitalen Daten. In Verbindung mit technischen Fort-
schritten in der Biologie resultiert dies in einer außerordentlichen Flut an biomedizinischen
Daten. Dank neuer und effizienter Messgeräte können Forscher und Kliniker in nie dage-
wesener Geschwindigkeit Daten gewinnen, was uns anregt, zu hinterfragen, ob Daten in der
Tat das neue Gold sein könnten. Beispiele für solche hochauflösenden Zeitreihendaten sind
die kontinuierliche Überwachung der Vitalparameter von Patient:innen auf der Intensivsta-
tion oder ihre Elektrokardiogramme (EKG). Die zeitliche Komponente, die Zeitreihendaten
innewohnt, ist Chance und Herausforderung zugleich, erfordert sie doch die Entwicklung
geeigneter Datenanalysetechniken. Sie stellt eine Chance dar, denn sie ermöglicht es uns,
die zeitliche Entwicklung einer Messung zu untersuchen und zu nutzen, um das betreffende
Objekt zu charakterisieren oder zu klassifizieren (z. B. Patienten, Zellen oder andere Orga-
nismen). Gleichzeitig ist sie auch eine Herausforderung, denn lokale und globale Korrela-
tionsstrukturen erschweren es, ein vollständiges Bild von sich zeitlich entwickelnden Phä-
nomenen zu erhalten. Darüberhinaus weisen viele sich dynamisch verändernden Systeme
Veränderungen auf, die auf mehreren Skalen und in mehreren Kanälen stattfinden.

In dieser Dissertation stellen wir neuartige Methoden zur Charakterisierung und Klassi-
fizierung von Zeitreihen vor, mit dem ausdrücklichen Ziel, Fragen an der Schnittstelle des
maschinellen Lernens und Gesundheitswesens zu beantworten. Unserem Verständnis nach
gehören Zeitreihen unterschiedlichen Kategorien an. Aus diesem Grund werden wir im Fol-
genden zwischen reellwertigen und abstrakten Zeitreihen unterscheiden und diese getrennt
voneinander untersuchen.

Für die Analyse von Zeitreihen des ersten Typs untersuchen wir Aspekte der Charakte-
risierung und Klassifizierung von biomedizinischen Zeitreihen. Dafür stellen wir eine neue
Methode zur effizienten Suche von Zeitreihenmotiven vor. Auf der Grundlage eines statisti-
schen Ansatzes werden wir eine neuartige Methode zur Identifizierung temporaler Biomar-
ker vorstellen und ihren Nutzen anhand eines Datensatzes von Intensivpflegepatient:innen
veranschaulichen. Zu diesem Zweck werden wir die Ausdruckskraft von Teilsequenzen nut-
zen, die als hochdimensionale Repräsentation der Zeitreihe dienen werden. Diese Darstel-
lung wird anschließend zur Entwicklung einer neuen Kernel-Methode genutzt, die ihre theo-
retischen Grundlagen aus der Transporttheorie gewinnt. Der von uns entwickelte Algorith-
mus ist allgemein nutzbar, besonders für mittelgroße Datensätze geeignet und hat sich vor
allem in der Zeitreihenklassifizierung bewährt. Der erste Teil dieser Dissertation endet mit
der Vorstellung eines Systems des kollaborativen maschinellen Lernens zur Vorhersage von
Myokardischämie anhand von Daten, die während eines Belastungs-EKGs erhoben wurden.
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Wir entwickeln einen auf Deep Learning basierenden Ansatz, um die Zahl der Behandel-
ten, die sich unnötigerweise der kostspieligen und invasiven Myokardperfusionsbildgebung
unterziehen, signifikant zu reduzieren. Durch die Analyse von Interpretierbarkeit heben wir
den Nutzen von Deep Learning für die medizinische Zeitreihenanalyse hervor und zeigen
einen möglichen Weg zu erklärbarer und vertrauenswürdiger künstlicher Intelligenz in der
Kardiologie auf.

Der zweite Teil dieser Dissertation zielt darauf ab, ein besseres Verständnis von künstli-
chen neuronalen Netzen zu gewinnen; ein Anliegen, dessen Behandlung in gewisser Weise
noch in den Kinderschuhen steckt. Wir untersuchen, wie sich künstliche neuronale Net-
ze während des Trainings verändern. Indem wir das Netzwerk als eine Zusammensetzung
von Graphen betrachten, entwickeln wir eine Methode, welche die Veränderung der struk-
turellen Komplexität über die Zeit hinweg charakterisiert. Auf diese Weise können wir unser
Verständnis von künstlichen neuronalen Netzen verbessern und beginnen, ihre Generalisie-
rungseigenschaften besser zu erläutern.

Insgesamt, wird in dieser Dissertation aufgezeigt und hervorgehoben, dass es bei der Ana-
lyse von (biomedizinischen) Zeitreihen entscheidend ist, den Benutzer zu berücksichtigen.
Interpretierbarkeit und statistische Analysen sind von größtmöglicher Bedeutung, um an-
sonsten undurchsichtige Verfahren des maschinellen Lernens für Kliniker:innen und Bio-
log:innen transparenter zu machen. Des Weiteren halten wir uns als Forscher im Bereich des
maschinellen Lernens selbst den Spiegel vor: Das Verständnis der Mechanismen, die unseren
Algorithmen zugrunde liegen, ist mindestens genauso wichtig wie ihre empirischen Erfol-
ge. Die vorliegende Dissertation ebnet nicht nur den Weg zu einem besseren Verständnis
künstlicher neuronaler Netze, sondern beleuchtet auf klinisch relevante Weise auch komple-
xe Pathologien wie beispielsweise Sepsis und Myokardischämie.
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� Introduction

In which foundation and raison d’être of this thesis

are laid out.

Neither we [160] nor the data we generate can escape the all-encompassing influence of time.
Any observation we make or measurement we take is unique in terms of its position on
the time line. In contrast to static cross-sectional data, this temporal order characterises
and defines a time series: it is a sequence of data points ordered by their creation time. In
its most common instantiation, a time series either consists of scalar values (see Figure 1.1
for an example) or higher-dimensional vectors. Commonly, we refer to these data types as
univariate and multivariate time series, respectively. However, time series can also consist
of structured and complex objects such as images (i.e. videos) or graphs whose edge weights
change over time.

Formally, let P be a space of time points, where P ⊆ R or P ⊆ N. A time series is given
by a map T : P → Qwhose codomainQ determines its complexity. This allows us to define,
increasingly ordered by their complexity, three important classes of time series.

Definition 1.1 (Class I: Univariate Time Series). A univariate time series is given by a map

T : P → Q, withQ = R.

Definition 1.2 (Class II: Multivariate Time Series). An n-dimensional multivariate time se-
ries is given by a map

T : P → Q, withQ = Rn.

Definition 1.3 (Class III: Object-valued Time Series). An object-valued time series is given
by a map

T : P → Q, withQ = {O1, O2, . . .},

whereQ can be finite or countably infinite. Oi may be any structured object such as a graph,
an image, or a cell.

Univariate time series exhibit the lowest complexity and the main challenge when analysing
them is to infer temporal dependencies between individual observations. The second rung
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1 Introduction

of complexity subsumes the first and adds the problem of interaction between observations
from different dimensions of the time series. Lastly, object-valued time series represent the
most complex class adding questions about the structure of the object at hand. This may
necessitate a certain set of analysis tools tailored specifically to the spaceQ of the objects. It
is possible to reduce the complexity of class II time series to the one of univariate time series
by neglecting any intra-dimensional interactions. For the remainder of this thesis, we will
therefore refer to the first two classes as real-valued time series.

�.� Real-Valued Time Series

In the life sciences, real-valued time series data is ubiquitous and a central data type in fields
such as genomics [15] (as sequences of gene expression levels), neuroscience [39] (as spiking
activity of neurons), and medicine [178] (as vital parameters of patients in the intensive care
unit (ICU)), to name a few. In particular, biomedical databases such as the Medical Infor-
mation Mart for Intensive Care (MIMIC) [122, 124] or the UK Biobank [251] are a sign of
the unparalleled growth and importance of temporal data in biology and medicine. While
from a reductionist’s point of view, the data type itself may be defined as nothing more than
an ordered sequence of values (or vectors), time series can exhibit temporal dependencies as
complex as the underlying data generating process itself. This process defines the nature of
the times series and its dynamics, however, many time series are composed of a symphony
of more simple patterns. More specifically, we take the view that any sufficiently long time
series may be decomposed into four simple patterns as illustrated in Figure 1.1:

• Trends

• Seasonality

• Cyclic variations

• Random fluctuations

Trends are the long-term mean tendencies of a time series that is independent of cyclic/ir-
regular effects or the calendar. The long-term decrease in measles-related mortality among
children as a result of vaccinations is an example of a healthcare-related long-term trend [269].

Seasonal patterns are calendar-related and systematic fluctuations occurring once or several
times per year. For example, the amount of brown adipose fat tissue is higher in the win-
ter months compared to the summer [290]. Cyclic variations refer to repeating patterns that
are unrelated to the calendar. The duration of a cycle or its amplitude depends on the data
source being analysed. Changes in hormone levels during a woman’s menstrual cycle are

2



1.1 Real-Valued Time Series
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Figure 1.1: An observed time series may be composed of more simple individual patterns. In this
case, the observed time series is the sum of a linear trend, seasonal and cyclic variations,
as well as Gaussian noise.

an example of calendar-independent fluctuations [202]. Finally, random and uncontrollable
behaviour such as noise induced by the measurement device or patient movements in the
recording of electrocardiograms [183] are present in almost all biomedical time series and
exacerbate their analysis.

While this view provides an intuitive description of the composition of a time series, for-
mal properties unique to time series data exist. In the following paragraphs we will present
important foundational concepts and outline our motivation to take a diverging path when
analysing time series in this thesis.

�.�.� Foundational Time Series Properties and Models

Many basic time series properties were developed in an econometric context [77] with the
aim to predict future stock returns [267]. While financial time series differ from biomedical
time series in many ways, most share the same fundamental properties and can, in theory,
be analysed with the same methods. The key assumption of these approaches is that their
central objects of interest are so-called linear time series.

Definition 1.4 (Linear Time Series). Letµ be the mean of all observations vt, where t indexes
the time point at which an observation was made. Furthermore, let all at be independent and

3



1 Introduction

identically distributed continuous random variables with zero mean and variance σ2. Lastly,
let Ψt be time-dependent coefficients. If vt can be written as

vt = µ+

∞∑
i=0

Ψiat−i, (1.1)

we say the time series is linear [267, Equation 2.4].

For the modelling approaches we introduce in this section, we require the time series to
be weakly stationary. In the context of a linear time series, this means that we have

E[vt] = µ and Cov(vt, vt−l) = γl. (1.2)

In other words, the mean of the time series is constant and the covariance between two ob-
servations is only a function of their temporal distance l. The latter is also referred to as the
lag-l autocovariance of vt [267], which brings us to one of the most fundamental properties of
time series: serial dependence. Serial dependence means that an observation at time point t
is statistically dependent on another observation from a different time point. This also means
that altering the order of a time series will at least change the data’s meaning (as it destroys
the dependence structure) if not entirely prevent the inference of any actionable information.
The degree of this temporal dependence can be quantified by the so-called autocorrelation
function [36].

Definition 1.5 (Lag-l sample autocorrelation). Given a time series of length m with mean
v̄, its sample lag-l autocorrelation is

ρl =

∑m
t=l+1(vt − v̄)(vt−l − v̄)∑m

t=1(vt − v̄)2
, (1.3)

where 0 ≤ l ≤ m− 1 [267, Equation 2.2].

A biomedical example of autocorrelated time series can be found in the measurement of
blood sugar. We expect the blood sugar concentration at 7am to be closer to the concentra-
tion measured at 8am than to the one evaluated at 1pm (high lag-1 autocorrelation). While
many methods for the detection and quantification of autocorrelation exist [18, 72, 194], they
are beyond the scope of this thesis.

Assuming the time series of interest is weakly stationary, linear, and autocorrelated, we
can set up one of the most simple parametric time series models, the autoregressive model.
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1.1 Real-Valued Time Series

Definition 1.6 (Autoregressive Model (AR(p))). The time series vt is modelled as

vt = φ0 + φ1vt−1 + · · ·+ φpvt−p + at, (1.4)

where at refers to a white noise process as in Definition 1.4, φ to the parameters of the model,
and p ∈ N>0 [267, Equation 2.9].

Note that we make use of the serial dependence/autocorrelation assumption by expressing
the current observation vt as a linear combination of its preceding values. An extension of the
AR model where p → ∞ results in another popular time series model, the moving-average
model [267].

Definition 1.7 (Moving-Average Model (MA(q))). The time series vt is modelled as

vt = c0 + at − φ1at−1 − · · · − φqat−q, (1.5)

where c0 is a constant, at refers to a white noise process as in Definition 1.4, and q ∈ N>0 [267,

Equation 2.22].

A related field of methods for analysing time series is signal processing [188], which brought
about popular techniques such as the Fourier transform [86] or the Wavelet-transform [190].

The expressive power of these approaches stems from representing and analysing signals in
their frequency domain. The Fourier transform is a fundamental function transform that
decomposes the input into its frequency components. Intuitively, it represents a signal as a
weighted combination of sine and cosine waves of different frequencies. The set of result-
ing weights can be seen as a fingerprint of the signal in the frequency domain, which makes
Fourier coefficients a powerful feature representation. A drawback of representing a time
series by its frequency components is that all temporal information is lost. We know which
frequencies are prevalent in a signal, but we do not know when they occur (i.e. frequency
analysis is local in time). The so-called Wavelet-transform reintroduces the temporal compo-
nent by performing multiple frequency analyses on different scales. The resulting scalogram
is a faithful representation of the signal in both time- and frequency domain and has been
used extensively in many biomedical applications [2, 83, 250]. While frequency-analyses such
as the Wavelet-transform are informative representations, they do not align with the way a
human may interpret and think about signals.

�.�.� Subsequence View

A fundamental drawback of the “classical” models mentioned above is that most real-world
time series are highly non-stationary (i.e. they exhibit a trend as shown in Figure 1.1) and,
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Figure 1.2: Subsequences as descriptive features of time series. The logical concatenation of two pat-
terns might be indicative to which class a time series belongs. Similarly, the temporal order
of pattern occurrences may indicate class membership.

more importantly, identifying the model order (p or q) is non-trivial but a prerequisite for
model fitting. Moreover, while extensions of these models exist (e.g. the ARMA(p, q) model
or the ARIMA(p, d, q) model [36]) there is no guarantee that a given time series can be mod-
elled by such approaches at all. In the specific case of biomedical data, it is also challenging to
know what measurement features lead to a particular diagnosis. This requires an exploration
of different time series features to determine which ones make comparisons and classifica-
tions meaningful.

In the context of this thesis, we are interested in flexible methods that make little assump-
tions about the nature of the time series and can learn interpretable and data set specific
feature representations that are helpful for the task at hand (e.g. association mapping or clas-
sification). More specifically, in the chapters that follow, we will focus on analysing time
series in terms of subsequences, dismissing any assumptions on the data-generating process.
From a machine learning perspective, this allows us to derive interpretable and actionable
time series features to discover temporal biomarkers (Chapter 2) and to classify time series
of various kinds (Chapter 3, Section 3.2.3). Subsequences can be particularly meaningful
features for time series in which complex patterns around specific values hold the majority
of the information about the class label. Many vital parameters such as heart rate, blood pres-
sure, or respiratory rate fall in this category of time series, where concrete values (e.g. systolic
blood pressure above 120) define the health state of a patient. Subsequence-based methods
can capture these complex patterns by explicitly taking this inductive bias into account. Fig-
ure 1.2 illustrates how using subsequences enables us to capture both logical and temporal
dependencies, patterns that often characterise a specific subpopulation of interest. The upper
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plot depicts classes of time series in which the combination or the individual appearance of a
subsequence may be indicative of a class label. Below, we show that the “subsequence view”
also allows us to define temporal dependencies between patterns over a certain time horizon
∆t. A formal and comprehensive introduction of using subsequences as feature descriptors
is provided in Section 2.1.

�.�.� Time Series Representation Learning

Representing time series by their subsequences is advantageous as they are interpretable fea-
ture descriptors that guarantee (compared to the models from Section 1.1.1) to faithfully
represent the input data. That being said, there are non-trivial modelling decisions to be
made, including the subsequence selection procedure (e.g. subsequence length(s) and slid-
ing window stride) and the precise feature computation, as we will see in Section 2.1. More-
over, subsequences are intrinsically inflexible representations as the data set predefines them.
A priori, it is not clear whether they are the appropriate representation to solve the task at
hand. By contrast, artificial neural networks (ANNs) (see Goodfellow et al. [93] are a success-
ful machine learning concept that provides a flexible way of learning input representations
that are task-dependent. ANNs for a thorough introduction) can be trained in ways that
make them solve many real-world tasks with unprecedented effectiveness [228]. Two pop-
ular neural network-based approaches for time series analysis are illustrated in Figure 1.3.
The first method, which takes the temporal order of sequential data explicitly into account,
is the recurrent neural network (RNN) [108, 217], which is illustrated in Figure 1.3a. Tem-
porally ordered “hidden” representations (ht) are connected to their immediate neighbours,
allowing them to utilise and propagate information from the past. The RNN is a flexible
network architecture that allows generating multiple outputs (y0 through ym−1) that may
be of interest in settings in which repeated predictions are required. In the context of time
series classification (see Section 3.1 for an introduction), we would direct our focus on the
final output ym−1 that aggregates information of the complete time series. An approach that
was primarily developed for computer vision applications [139] is the convolutional neural
network (CNN) [144]. Being rooted in the field of signal processing, the CNN’s potential
to analyse time series was recognised early on [143]. The main idea of CNNs is to distil lo-
cal features by sliding a window (also called filter) over the input and learn a mapping into
an intermediate representation. In the context of time series, it is crucial to mention that
at each time point t, the filter aggregates information from past, present, and future. What
makes these approaches particularly powerful is the fact that all parameters φ• in Figure 1.3
are learnt by optimising the generated output (e.g. by viewing ym−1 as predicted class label)
using the backpropagation algorithm [217] and its variants [281]. As touched upon before,
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(a) An “unrolled” illustration of a recurrent neural net-
work (RNN). Each observation vt is mapped into a hid-
den state ht by a parameterised function of the form f• =
f(x, φ•) for an input neuron x ∈ {v0, . . . , h0, . . .}. In the
same way, fh connects adjacent hidden states. Lastly, an
output yt can be learnt for each hidden state with a func-
tion fy whose inputs are the learnable parameters φy and
hidden state h.

v−1 v0 v1 v2 · · · vm−1 vm

h0 h1 h2 · · · hm−1

φ0 φ1 φ2

(b) Illustration of a convolutional neural network (CNN). Filters (shown in green)
slide over the input time series and aggregate multiple observations at once.
In this example, the filter width is 3. The filter’s parameters φ1, φ2, and φ3

are learnt and weight individual observations. Dashed neurons imply that the
input might require padding.

Figure 1.3: Two neural network paradigms to model time series data and learn flexible representa-
tions.

it is this training procedure that makes neural networks versatile learners of task-specific
representations. The effectiveness of using neural networks in a biomedical context will be
demonstrated in Section 3.3 by using a convolutional neural network to predict myocardial
ischaemia from electrocardiograms (ECGs). Moreover, we will end this thesis by detailing a
framework for analysing object-valued time series that benefit from neural networks’ versa-
tility.

�.�.� Tasks & Challenges

General Time Series Tasks The most common, we might even say “classical” machine
learning (ML) tasks in the analysis of real-valued time series include: 1. forecasting, i.e. pre-
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dicting future values from historical ones [68, 78, 151], 2. anomaly detection, i.e. determin-
ing whether a new observation is normal or not [24], 3. change point detection, i.e. detect-
ing (possibly transient) state changes in the data-generating process [7], 4. clustering, i.e.
grouping time series of similar characteristics [3, 149], and 5. time series classification (TSC).
However, the field of time series mining comprises additional tasks that evolve around the
perspective illustrated in Figure 1.2, namely that time series are characterised by their sub-
sequences. Before laying out the challenges that are addressed in this thesis, we will provide
an overview of complementary time series mining tasks.

Time Series Mining Tasks As we will see in the chapter on TSC, obtaining a notion of
(dis)similarity between two time series is the foundation of many classification algorithms.
In addition, clustering methods or distance-based dimensionality reduction approaches such
as multi-dimensional scaling [263] also necessitate the employment of an expressive dis-
tance measure. This renders the search for an appropriate time series distance measure an
important foundational task in time series mining. The most commonly-used distance is
the so-called Dynamic Time Warping (DTW) [220] distance, an alignment and dynamic
programming-based approach. While being successfully used in many distance-based algo-
rithms, it has the (theoretical and practical) drawback that it is not a metric in the mathe-
matical sense, as it does not fulfil the triangle inequality [48]. However, there is also evidence
that this non-metricity may be an advantage in practical applications [90]. More recent ap-
proaches include a differentiable version of DTW [61] or the matrix profile distance [91].

The identification of subsequences that are descriptive of a time series class (illustrated in
Figure 1.2) turns our attention to another task: motif discovery. Motif discovery is the basis
on which many downstream tasks such as clustering, rule discovery, and classification build
upon. We therefore consider it to be the most important task in time series mining [5]. This
notion is confirmed by a large body of literature [5, 67, 141, 173, 179, 236, 255, 265, 298, 299], and
the fact that motifs lead to interpretable representations that convey semantically important
local behaviour, a key property when working with medical time series.

Challenges Due to its general importance, motif discovery will play a central role in this
thesis. We will focus on the intersection of motif discovery and time series classification and
the challenges that arise when searching for motifs in a biomedical context. More specifically,
we will develop solutions to the following challenges. First, while TSC approaches based on
the extraction of motifs yield interpretable results and good predictive performance, the sta-
tistical association between detected motifs and class labels are neglected. This limits the
descriptive power and interpretability of the results as the only statement we can make about
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any detected subsequence pertains to its impact on classification accuracy. In the life sci-
ences, however, we may be interested in finding temporal biomarkers that are statistically
associated with a phenotype, a notion that goes beyond mere “predictability”. In Chapter 2,
we will therefore develop a motif discovery algorithm that is of inherently statistical nature.
Second, many subsequence-based TSC algorithms only capture local characteristics of time
series, preventing the algorithm to “get a full picture” of the data. Instead, it is common to
use ensembles of algorithms, each of which with a different “view” of the data, to capture
a time series comprehensively. Such ensemble methods, however, are computationally in-
efficient, as each model has to be trained and tuned individually. This will motivate us to
develop a subsequence-based classification algorithm that considers local and global time
series characteristics in Section 3.2. The third challenge we will address lies in the classifi-
cation of complex phenotypes. In medicine, it can be expensive both in terms of cost and
time, to obtain a reliable diagnosis. This is mainly due to the fact that the diagnostic process
requires experience and elaborate examinations that may even put a burden on the patients.
In the field of cardiology, the exercise stress test protocol is used to determine cardiovascular
health in general, and ischaemic heart disease in particular. The practical utility of current
screening techniques, however, is limited by either unfavourable diagnostic accuracy or by its
obtrusive nature and high costs. In Section 3.3, we will investigate how we can use machine
learning to increase diagnostic accuracy while reducing costs.

�.� Object-Valued Time Series

Following the notion introduced in the beginning, an object-valued time series is composed
of multiple “snapshots” of the same structured object that changes over time. The structured
nature of the object determines the analysis methods we can use to investigate the object’s tra-
jectory in time. A prototypical example of an object-valued time series could be the sequence
of a (Riemannian) manifold that is changing its intrinsic shape over time. Correspondingly,
we may consider the object to move along a manifold. We therefore see this thesis as an
“endemic part’’ of the field of manifold learning, which has started to provide an exciting
perspective for biomedical research [8, 25, 176].

In the life sciences, object-valued time series are increasingly prevalent and frequently ap-
pear as sequences of structured static data, measured at different points in time. Biomed-
ical examples include the cellular dynamics of single-cell RNA [261], time-varying func-
tional magnetic resonance imaging (fMRI) data [209], dynamic protein-protein interaction
networks [150], or dynamic electronic health record (EHR) graphs [146]. In general, time-
varying graphs (biomedical or not) have recently gained tremendous attention from the ma-
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chine learning community [239]. Being a universal data structure [33], this resurfacing inter-
est in machine learning on graphs comes as no surprise and is subject of this thesis.

�.�.� Tasks & Challenges

Many tasks from the analysis of real-valued time series are also important problems in object-
valued time series. Examples of such tasks are anomaly detection in video data [241] or iter-
ative graph “forecasting” as done by You et al. [291] for molecular graph generation. Despite
the existence of these one-to-one correspondences, most tasks in the analysis of object-valued
time series are specific to the object under investigation. One such object of particular in-
terest to the machine learning community are artificial neural networks. Their empirical
successes in many fields still surpass our theoretical understanding of their inner workings.
One of the most fundamental challenges in deep learning is to understand the difference
between neural networks that generalise well and those that do not [294]. While generalisa-
tion capabilities are measured in terms of out-of-sample error, the ability to generalise must
be an inherent property of the network’s configuration since once trained, the network no
longer changes. Techniques such as network pruning [23] or applications of the lottery ticket
hypothesis [87] support the notion that a trained neural network is composed of elements
that are more important than others when it comes to generalising to unseen data. An es-
sential question arising from this observation pertains to the possibility of deriving a formal
measure that captures a neural network’s generalisation capabilities by merely considering
its structure. If such a measure exists, we expect it to be sensitive to common regularisation
techniques that increase generalisation performance and it will allow us to develop an early
stopping criterion without requiring a validation set. In the final chapter of this thesis, we
present such a measure by viewing deep neural networks as time-varying graphs that can
be investigated by means of persistent homology a technique from topological data analy-
sis (TDA).

�.� Contributions

In the first part of this section, we list and briefly summarise all contributions on which
this thesis is based on. The second part of this section lists additional relevant scientific
contributions by the author. If two or more authors equally contributed to a manuscript,
their names are followed by a dagger symbol.

Real-Valued Time Series The computational and statistical problems of finding statisti-
cally validated temporal biomarkers are approached in the first contribution:
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• C. Bock, T. Gumbsch, M. Moor, B. Rieck, D. Roqueiro, and K. Borgwardt. “Association map-

ping in biomedical time series via statistically significant shapelet mining”. Bioinformatics

34:13, 2018, pp. i438–i446. doi: 10.1093/bioinformatics/bty246.

In this paper, we develop Statistically Significant Shapelet Mining (S3M), a method to effi-
ciently mine subsequences from univariate time series that are statistically associated with a
binary class label. We build on the framework of significant pattern mining (SPM) to verify
the statistical significance of such “shapelets” by utilising the idea of testability to reduce the
number of hypotheses to correct for. Furthermore, we develop a contingency table prun-
ing criterion to increase the algorithm’s efficiency without sacrificing its effectiveness. To
illustrate the merits of S3M, we apply it to three vital parameters from the MIMIC-III data
set [124] identifying physiological signatures associated with sepsis. S3M eases the multiple
testing burden when searching for temporal biomarkers, detects interpretable subsequences
that are not only statistically validated but also good predictors of clinical endpoints in a
classification setting.

Karsten Borgwardt proposed using Tarone’s method to perform association mapping
on time series subsequences. Christian Bock, Thomas Gumbsch, Michael Moor, Damian
Roqueiro, and Karsten Borgwardt designed the study. Christian Bock and Thomas Gumbsch
developed the prototype algorithm. Christian Bock, Bastian Rieck, and Michael Moor
performed the experiments. Thomas Gumbsch developed the contingency table pruning
procedure. Bastian Rieck contributed the proof and implemented an optimised variant of
the algorithm. Christian Bock, Bastian Rieck, Thomas Gumbsch, and Karsten Borgwardt
wrote the manuscript with contributions from all other authors.

Section 3.2 is based on the following contribution:

• C. Bock†, M. Togninalli†, E. Ghisu, T. Gumbsch, B. Rieck, and K. Borgwardt. “A Wasserstein

Subsequence Kernel for Time Series”. In: 2019 IEEE International Conference on Data Mining

(ICDM). 2019, pp. 964–969. doi: 10.1109/ICDM.2019.00108

In this work, we continue to leverage the expressiveness of time series subsequences to de-
velop a novel time series classification method. We introduce the Wasserstein Time series
Kernel (WTK), a method for the classification of univariate time series which utilises ideas
from optimal transport (OT) theory and Reproducing Kernel Kreĭn Spaces (RKKS). The
work is motivated by the observation that the straightforward application of Haussler’s R-
convolution framework [104] to time series can become meaningless. When comparing two
time series, WTK captures local and global characteristics resulting in a powerful representa-
tion leading to competitive classification accuracy across a wide variety of data sets.
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For this work, the meaninglessness of the naïve application of theR-convolution frame-
work to subsequence-based time series kernels was brought forward by Karsten Borgwardt.
Christian Bock, Bastian Rieck, Matteo Togninalli, and Karsten Borgwardt designed exper-
iments and the study. Christian Bock, Elisabetta Ghisu, Thomas Gumbsch, Bastian Rieck,
and Matteo Togninalli performed the experiments. All authors participated in the writing of
the manuscript.

We conclude the time series classification chapter with a clinically motivated contribu-
tion developing a collaborative machine learning system for the classification of myocardial
ischaemia:

• C. Bock, B. Rieck, J. Walter, I. Strebel, K. Borgwardt, and C. Müller. “Cardiologist-level pre-

diction of stress-induced myocardial ischemia using multi-task learning.” In preparation

We propose a deep learning approach for the classification of exercise-induced myocardial
ischaemia (EIMI). EIMI is the pathophysiological hallmark of ischaemic heart or coro-
nary artery disease (IHD/CAD), the leading cause of years of life lost (YLL) in Europe,
the Americas, and Asia [120]. We leverage multi-task learning to predict this complex
phenotype, whose determination is not only expensive but also burdensome for patients,
by requiring only easy to obtain electrocardiograms and static patient data. Our system
reaches cardiologist-level predictive performance decreasing the false positive rate while
keeping high sensitivity. This way, we can lower the number of patients that undergo
unnecessary radiation exposure. Incorporating the judgement of the treating physician
increases predictive performance even more, leading to a reliable and collaborative decision
support system for cardiologists.

Christian Bock, Bastian Rieck, Joan Walter, Karsten Borgwardt, and Christian Müller de-
signed and evaluated the study. Ivo Strebel, Joan Walter, and Christian Müller collected the
data. Ivo Strebel and Joan Walter prepared the data and data splits. Christian Bock prepro-
cessed the data and performed the experiments with Bastian Rieck.

Object-Valued Time Series In the last chapter of this thesis, we go beyond real-valued
time series and analyse time series of graph-structured data as done in

• B. Rieck†, M. Togninalli†, C. Bock†, M. Moor, M. Horn, T. Gumbsch, and K. Borgwardt. “Neu-

ral Persistence: A Complexity Measure for Deep Neural Networks Using Algebraic Topology”.

In: International Conference on Learning Representations (ICLR). 2019. doi: 10.3929/ethz-

b-000327207

More specifically, we propose neural persistence (NP), a complexity measure for artificial
neural network architectures rooted in the field of topological data analysis (TDA). We view
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feedforward neural networks as a collection of stratified graphs whose edge weights change
during the training process. At each step of the training process, NP summarises the struc-
tural complexity of the network in a scalar value leading to a time series that describes the
state of the network from a topological perspective. We show that neural persistence does
not only reflect best practices developed in the deep learning community (e.g. dropout and
batch normalisation) but can also be used as an effective early-stopping criterion that does
not rely on a validation data set.

Christian Bock, Matteo Togninalli conveyed the original study idea, which Bastian Rieck
refined and conceptualised. Christian Bock, Bastian Rieck, Matteo Togninalli, Michael
Moor, and Max Horn designed the study. Bastian Rieck contributed theorems and their
proofs together with Michael Moor. Christian Bock, Bastian Rieck, Matteo Togninalli,
Michael Moor, Max Horn, and Thomas Gumbsch performed the experiments. All authors
contributed to the writing of the manuscript.

In addition to the works listed above, the author also contributed to the following publi-
cations:

• B. Rieck†, C. Bock†, and K. Borgwardt. “A Persistent Weisfeiler-Lehman Procedure for Graph

Classification”. In: Proceedings of the 36th International Conference on Machine Learning. Ed.

by K. Chaudhuri and R. Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research.

PMLR, 2019, pp. 5448–5458. url: https://proceedings.mlr.press/v97/rieck19a.

html

• B. Rieck†, T. Yates†, C. Bock, K. Borgwardt, G. Wolf, N. Turk-Browne, and S. Krishnaswamy.

“Uncovering the Topology of Time-Varying fMRI Data using Cubical Persistence”. In: Ad-

vances in Neural Information Processing Systems. Ed. by H. Larochelle, M. Ranzato, R. Had-

sell, M. F. Balcan, and H. Lin. Vol. 33. Curran Associates, Inc., 2020, pp. 6900–6912. arXiv:

2006.07882 [q-bio.NC]

• M. Horn, M. Moor, C. Bock, B. Rieck, and K. Borgwardt. “Set Functions for Time Series”. In:

Proceedings of the 37th International Conference on Machine Learning. Ed. by H. D. III and A.

Singh. Vol. 119. Proceedings of Machine Learning Research. PMLR, 2020, pp. 4353–4363.

arXiv: 1909.12064 [cs.LG]

• S. L. Hyland†, M. Faltys†, M. Hüser†, X. Lyu†, T. Gumbsch†, C. Esteban, C. Bock, M. Horn,

M. Moor, B. Rieck, et al. “Early prediction of circulatory failure in the intensive care unit using

machine learning”. Nature medicine 26:3, 2020, pp. 364–373. doi: 10.1038/s41591-020-

0789-4
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• T. Gumbsch, C. Bock, M. Moor, B. Rieck, and K. Borgwardt. “Enhancing statistical power

in temporal biomarker discovery through representative shapelet mining”. Bioinformatics

36:Supplement_2, 2020, pp. i840–i848. doi: 10.1093/bioinformatics/btaa815

• C. Bock†, M. Moor†, C. R. Jutzeler, and K. Borgwardt. “Machine learning for biomedical time

series classification: from shapelets to deep learning”. In: Artificial Neural Networks. Springer,

2021, pp. 33–71. doi: 10.1007/978-1-0716-0826-5_2
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Part I

Real-Valued Time Series
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� PatternMining for Time Series

In which we extend the significant pattern min-

ing framework to time series and extract sepsis-

associated subsequences from physiological sig-

nals of ICU patients.

We begin the analysis of real-valued time series by framing the search for informative time
series motifs as a significant pattern mining (SPM) problem [157]. First, we present the idea
of “shapelets” [288], the foundation for this and the following chapter in Section 2.1. Then,
a brief, yet self-contained introduction into the field of significant pattern mining is pro-
vided. This includes a description of the general problem that SPM is concerned with, and
is followed by laying out one of the most relevant problems in SPM: the multiple hypothesis
testing problem. We conclude Section 2.2 by introducing the concepts of minimum p-value
and testability. We will then present a new method that extends the SPM framework to uni-
variate time series data in Section 2.3. This chapter is based on the following publication:

• C. Bock, T. Gumbsch, M. Moor, B. Rieck, D. Roqueiro, and K. Borgwardt. “Association map-

ping in biomedical time series via statistically significant shapelet mining”. Bioinformatics

34:13, 2018, pp. i438–i446. doi: 10.1093/bioinformatics/bty246

�.� Shapelets

Shapelets, first introduced by Ye and Keogh [288], are short time series subsequences de-
veloped to maximise predictive power in time series classification tasks. Due to their in-
terpretability and good classification performance, shapelet-based classifiers were developed
for a wide range of medical (and non-medical applications) [89, 94, 191, 254, 285]. Figure 2.1
visualises the main idea of a shapelet: The red subsequence in the centre appears in all three
time series from the positive class (y = 1), and never in the negative class (y = 0). This
subsequence is therefore characteristic for the positive class and an algorithm that detects it
in a time series will classify the time series as belonging to class 1. We refer to a subsequence
that maximises the prediction performance of such a classifier as shapelet. Constructing a
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2 Pattern Mining for Time Series

Figure 2.1: A shapelet (red) is a time series motif or pattern that is enriched in certain class. Here, the
shapelet appears in all time series belonging to class y = 1. Reproduced from [26] with
permission from Oxford University Press.

shapelet-based classifier therefore requires 1. a collection of candidate shapeletsM, 2. a pat-
tern indicator function g that determines whether a given subsequence occurs in a time series,
and 3. a measure of classification performance. In the following sections, we will introduce
the fundamental concepts of shapelet mining, starting with the extraction of shapelet candi-
dates, followed by a notion of distance between shapelets and time series and the construction
of a simple shapelet-based classifier.

�.�.� Notation & Shapelet Candidate Extraction

Before we embark on the journey of finding the most characteristic subsequences for a given
class label, it is necessary to define a set of subsequences that we want to investigate. For the
remainder of this section, we will restrictM to originate from the data set under investiga-
tion (in contrast to generating random length-w sequences). Let us denote the univariate
time series T of length m as the sequence of m > 0 tuples T = ((t1, v1), . . . , (tm, vm)).
In other words, each observation is represented by its observed value vi ∈ R and respective
observation time ti ∈ R (or ti ∈ N). We denote a time series data set with k samples and
binary class label y ∈ {0, 1} as the set of tuples T = {(T1, y1), . . . , (Tk, yk)}. Furthermore,
we denote a length-w subsequence extracted from the kth time series beginning at time point
tb as the sequence of its observed values S[k]

b,w = (v
[k]
b , . . . , v

[k]
b+w−1).

To extract shapelet candidates, we will use a sliding window approach with window size
w and stride s = 1. This means that, starting from t1, we extract the set of w-length subse-
quencesMw as defined below

Mw := {S[j]
1,w, S

[j]
1+s,w, . . . , S

[j]

m[j]−w+1,w
}kj=1, (2.1)
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2.1 Shapelets

where m[k] denotes the length of time series k. Note, to prevent the extraction of largely
overlapping subsequences, it can be sensible to choose s > 1, however, to maximise the
search space, we will enumerate all length-w subsequences. In general, this leads to

d(m
[k] − w + 1

s
e (2.2)

subsequences per time series. A complete set of shapelet candidates may contain
subsequences of multiple lengths w1, …, wu and will be constructed by the union
M =

⋃u
i=1Mwi .

�.�.� Subsequence Pseudo-Distance

After establishing a set of candidate shapelets, a pattern indicator function must be defined
to determine in a binary fashion whether a candidate ζ ∈ M occurs in time series T [k]. A
simple approach is to apply an “exact match” requirement:

gζ(T
[k]) =

1, if there exists a b ∈ N1 s.t. S[k]
b,|ζ| = ζ

0, else
(2.3)

However, this is an extremely strict criterion as it does not allow for the smallest deviation.
On real world data sets, however, the general shape of a subsequence (e.g. the increase, de-
crease, or fluctuation of observations) are more interesting than exact matches. In order to
derive a more lenient pattern indicator function, we define the function d(ζ, T ) to be the
smallest Euclidean distance between ζ and all length-w subsequences of T . If d(ζ, T ) is
smaller than a threshold θ, we say ζ appears in T . Formally, we have the Euclidean distance

between two equally long sequences dEuc(S[a], S[b]) =

√∑m
i=1

(
v
[a]
i − v

[b]
i

)2
, from which

we define the following pseudo-distance:

Definition 2.1 (Subsequence Pseudo-Distance). Given a length-w shapelet candidate ζ and
a longer time series T , their distance is

d(ζ, T ) = min
j

dEuc(ζ, Sj,w). (2.4)

Now, a threshold-based pattern indicator function can be written as

gζ(T
[k], θ) =

1, if d(ζ, T ) < θ

0, else
(2.5)
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2 Pattern Mining for Time Series

The pattern is no longer a single shapelet candidate but the combination of subsequence and
threshold θ.

It is of interest to note that d(·, ·) is not a metric in the mathematical sense (hence, pseudo-
distance), as it is only defined if the cardinality of the second argument is greater then or
equal to the cardinality of the first argument. Per construction of ζ (w will be much smaller
than the length of most time series in the data set), the equality |ζ| = |T | will almost never
hold, which prevents us from even checking the symmetry (d(a, b) = d(b, a)) and triangle
inequality property (d(a, c) ≤ d(a, b)+d(b, c)). Furthermore, we can show that the identity
of indiscernibles (d(a, b) = 0⇔ a = b) is not guaranteed, as in most cases ζ and T are not
even of the same cardinality (and we did not define a notion of identity for such sequences).

�.�.� A Simple, Shapelet-Based Classifier

To conclude the introduction of shapelets, we will now detail how Ye and Keogh [288] put them
to use in a classification context using entropy-based decision rules. The pattern indicator
function in Equation 2.5 allows us to split T into two sets: One which contains all time series
whose distance to ζ is less than θ (Tζ<θ), and one with the remaining time series (Tζ≥θ). The
quality of this split can be measured in terms of information gain (or mutual information),
i.e. the difference between the entropy of the data set before and after the split. It measures the
reduction in uncertainty about the class label resulting from learning about the occurrence
of the pattern [165]. Let PT (y) be the fraction of samples in T whose class label is y, then
the class label’s (binary) entropy is

HT (Y ) = −PT (y0)ldPT (y0)− PT (y1)ldPT (y1), (2.6)

where ld refers to the logarithmus dualis. From this we see, that PT (y) reaches its maximum
of 1 if PT (y0) = PT (y1) =

1
2 and its minimum of 0 if the data set consists of samples from

one class only.

When we apply the aforementioned split on the data set, the conditional entropy measures
the average uncertainty about the class label that remains when we know about the pattern’s
occurrence:

HT (Y |ζ, θ) =
|Tζ<θ|
|T |

HTζ<θ
(Y ) +

|Tζ≥θ|
|T |

HTζ≥θ
(Y ). (2.7)
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2.2 Significant Pattern Mining

In other words, it is the sum of two entropy values weighted by the relative size of each split.
Now, we can measure how well a given subsequence/threshold pair splits a data set in terms
of its information gain:

Igain(T , ζ, θ) =

Entropy before split︷ ︸︸ ︷
HT (Y ) −

Entropy after split︷ ︸︸ ︷
HT (Y |ζ, θ) . (2.8)

With a well-defined performance measure at hand, we can now formulate the search for
the best shapelet (i.e. subsequence/treshold pair) as the following optimisation problem:

(ζbest, θbest) = argmax
ζ∈M,θ∈Θ

Igain(T , ζ, θ) (2.9)

Note that up to this point, we did not introduce a procedure to derive the threshold set Θ.
This was a deliberate choice and we will detail the standard approach when introducing our
method in Section 2.3. Lastly, we should mention that Equation 2.9 yields a very simple
“classifier” of limited expressivity as it consists of only one shapelet. In their original work,
Ye and Keogh [288] proposed a decision tree classifier incorporating multiple shapelets, and
by now, shapelet-based methods are considered a distinct class of algorithms for times series
classification [12].

While shapelet-based approaches have the advantage of being interpretable in the sense
that they are actual subsequences from the data set, they are not statistically validated. In
this context, statistical validation refers to the computation of a p-value quantifying the as-
sociation of a shapelet with a binary class label. In biomedicine and the life sciences, where
the class label can indicate the presence/absence of a phenotype of interest, such statistical
tests yield a notion of interpretability that clinicians are familiar with. To mine temporal
biomarkers that exhibit both levels of interpretability (due to their shape and due to their
statistical association), we must combine the shapelet mining procedure with statistical test-
ing. To do so, we will make use of the significant pattern mining framework as introduced
in the following section.

�.� Significant PatternMining

Significant pattern mining is a branch of machine learning that tackles the computational
and statistical challenges arising from searching for statistical associations of interacting fea-
tures with a binary class label. Applied to biomedical time series, SPM can help identify
subsequences of physiological measurements that are statistically associated with a pheno-
type of interest (e.g. sepsis). Until recently, SPM algorithms were predominantly used for the
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analysis of static feature datasets such as itemsets and graph-structured data. In the following
sections we lay out the conceptual and mathematical foundations for a novel SPM approach
for time series data which we will develop in Section 2.3. While this introduction is com-
plete and self-contained, we refer to Llinares- López [157] and Gumpinger [98], who provide
a thorough presentation of the field of SPM.

�.�.� Problem Statement

Consider the datasetD = {(x1, y1), . . . , (xn, yn)}, where each of n independent and iden-
tically distributed (i.i.d.) samples is represented by a feature indicator set x and a binary class
label y ∈ {0, 1}. The set J = {1, . . . , d} indexes all d features that may exist in a given data
set. Each sample can contain its own subset of features: xi ⊆ J . For example, the feature set
xi = {2, 3, 5} indicates that sample i exhibits features 2, 3, and 5. A pattern S is any discrete
substructure of J (S ⊆ J ). To indicate the presence of a pattern in a sample, we introduce
the pattern indicator function gs(x) as follows:

Definition 2.2 (Pattern indicator function). Given a pattern S and the feature vector of the
ith sample xi, we have the indicator function

gS(xi) =

1, if S ⊆ xi

0, else
. (2.10)

As mentioned before, SPM aims to find patterns (or higher-order features interactions) for
which a statistically significant association with the binary class label y exists. We will use
the pattern indicator function for constructing a contingency table, which can be analysed
using (discrete) test statistics such as the Fisher’s exact test [84] or the χ2 test [193]. These
statistical tests allow us to quantify the association of S and y in terms of a p-value.

�.�.� Hypothesis Testing

The goal of statistical hypothesis testing is to shed light on the (in)dependence of two or
more random variables. In our case, we model the binary class indicator and the pattern
indicator as random variables Y and GS . Informally, we want to know if information about
the existence of pattern S in sample i entails any information about its class label yi. If this
was not the case, the joint probability distribution factorises into the product P (Y,GS) =

P (Y )P (GS). For the time being, we hypothesise that this factorisation holds until we are
convinced otherwise. We call this hypothesis (i.e. pattern and class label are independent)
the null hypothesis (H0).
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2.2 Significant Pattern Mining

In any machine learning problem, we only have access to a finite number of samples and
the true, data-generating probability distributions are unknown. Hence, it is not possible to
assess their independence. Taking a frequentist view, however, allows us to approximate the
joint distribution of Y and GS using the counts of the following four events:

1. (yi = 1, gS(xi) = 1)

2. (yi = 1, gS(xi) = 0)

3. (yi = 0, gS(xi) = 1)

4. (yi = 0, gS(xi) = 0),

where i = {1, . . . , n}. A more compact representation of these counts is the 2 × 2 contin-
gency table as shown in Table 2.1.

Table 2.1: Contingency table with counts of four events in a data set of size n.

gS = 1 gS = 0

y = 1 aS bS n1 = aS + bS

y = 0 cS dS n0 = cS + dS

rS qS n = n1 + n0 = rS + qS

The cells aS through dS can be computed from the data set as follows:

aS =
n∑

i=1

gS(xi)yi

cS =

n∑
i=1

gS(xi)(1− yi)

bS =
n∑

i=1

(1− gS(xi))yi

dS =

n∑
i=1

(1− gS(xi))(1− yi).

The core idea of association tests, such as Fisher’s exact test [84] or Pearson’s χ2 test [193] ,
is to derive a test statistic T : {(xi, yi)}ni=1 → R and establish its null distribution.

Definition 2.3 (Null Distribution). The distribution of the scalar test statistic under the as-
sumption that the null hypothesis is true: P (T = t|H0).

In both tests, T is derived from the contingency table of the data while modelling aS as
a realisation of a random variable AS . An informative test statistic is chosen in a way that
T (aS) of a data set with associated Y and GS is sufficiently different from T (aS) of a data
set with independent Y and GS . If this gap is large enough, we claim we are convinced that
the hypothesis of independence does not hold. In the following paragraphs we will detail
Pearson’s χ2 test as it is the procedure on which our method in Section 2.3 will rely on.
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�.�.�.� Pearson’s χ2 Test

The test statistic in Pearson’s χ2 test builds upon the insight that with fixed marginal counts
rS , n, and n1, aS follows a hypergeometric distribution [157]

P (aS |n1, rS ,H0) = hypergeom(aS |n, n1, rS)

=

(
n1
aS

)(
n−n1
rS−aS

)(
n
rS

) (2.11)

with mean and variance [276]

E[aS |n, n1, rS ] =
rSn1

n
(2.12)

Var(aS |n, n1, rS) = n1
rS
n

(
1− rS

n

)(n− n1

n− 1

)
(2.13)

= n1
rS(n− rS)(n− n1)

n2(n− 1)
. (2.14)

Both moments can be used to derive the t-statistic by converting aS into a scalar Z :

Z =
aS − E[aS |n, n1, rS ]√

Var(aS |n, n1, rS)
(2.15)

=
aS − rSn1

n√
n1

rS(n−rS)(n−n1)
n2(n−1)

. (2.16)

This transformation is similar to the process of score standardisation. Under the null hy-
pothesis, this quantity converges to a standard normal distribution (i.e. a normal distribution
with zero mean and unit variance) N (0, 1) if the data are i.i.d. and n is large (central limit
theorem). It will be small when the observed pattern count aS aligns with the null hypothe-
sis (i.e. aS is close to what we would expect given n, n1, and rS) and large when expectation
and observation diverge. Due to the convergence of Z to N (0, 1), its square Z2 follows a
χ2 distribution with one degree of freedom (a χ2

k distribution has k degrees of freedom and
represents the distribution of the sum of squares of k independent random variables each of
which follow a standard normal distribution).

Equipped with a test statistic, the p-value of Pearson’s χ2 test can be computed using the
cumulative density function (CDF) of the χ2

1-distribution Fχ2
1
:

pS(aS |n, n1, rS) = 1− Fχ2
1
(aS |n, n1, rS). (2.17)
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The p-value represents the probability of obtaining a test statistic at least as extreme as the
one we observe, assuming the pattern and class label are independent (null hypothesis). If
this probability is low enough (i.e lower than a pre-defined significance level α), we reject the
independence assumption. When rejecting independence, we commonly infer a dependency
between pattern and label. It is important, however, to stress that the convergence of Z to a
standard normal depends on a large sample size n and the fact that all samples are identically
and independently distributed. When dealing with small data sets or data that violate the
i.i.d. condition, the χ2-test will yield less reliable results.

�.�.�.� Multiple Hypothesis Testing

In the introduction of this chapter, we set out to find statistical associations between class
membership and higher-order feature interactions (i.e. feature combinations). At this point,
we only know how to assess the statistical association of a single pattern: 1. We define a test
statistic, 2. we derive a null distribution, 3. we compute a p-value, and 4. we reject the null
hypothesis, or we do not. If we model the p-value as a random variable X with F as its
CDF, we can show that under the null hypothesis, X is uniformly distributed, which means
P (F (X) ≤ f) = f . The uniform distribution of p-values under H0 is crucial to define a
significance threshold α that is equivalent to the probability of rejecting a true null hypoth-
esis (making a type I error). Rejecting a hypothesis whose p-value is p ≤ α is equivalent
to setting α as an upper limit on how “likely” we allow the hypothesis to be in order to be
rejected. Only if p-values follow a uniform distribution under the null hypothesis, can α

be used to control the false positive (FP) rate (i.e. the number of falsely rejected true null
hypotheses) this way. As an example, if we set α = 0.05, as done in many applications, we
accept a 5 % chance that we falsely reject a true null hypothesis.

When we test multiple hypotheses simultaneously, and correct each of them at the same
significance threshold, the chance of a false positive grows beyond α. This scenario is re-
ferred to as the multiple hypothesis testing problem in which the sheer amount of tested hy-
potheses (think “for each pattern a hypothesis test”), leads to a large number of incorrect
associations. The probability of making at least one such wrong association (given a signifi-
cant threshold δ) is also called family-wise error rate (FWER) and formalised as

FWER(δ) := P (number of FPs ≥ 1|δ). (2.18)

To counteract the multiple hypothesis problem, we need to adjust the significance thresh-
old we apply to each individual hypothesis, such that the overall FWER meets α. Formally,
we are interested in finding a corrected threshold δ ≤ α such that FWER(δ) ≤ α. An ap-
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proach commonly employed in practice is Bonferroni’s correction procedure [31]. LetH be
the set of all hypotheses to test, then the Bonferroni corrected significance threshold is

δBon = α/|H|. (2.19)

It can be shown (e.g. by Gumpinger [98]) that this correction guarantees the control of FWER
but can be extremely conservative when correcting for thousands or millions of hypotheses.
As mentioned before, in SPM we are concerned with higher-order feature interactions which
can lead to a massive amount of pattern combinations for which a hypothesis test is needed.
A correction factor that is too stringent can lead to a high number of “missed” true associ-
ations (i.e. most p-values exceed δBon) and therefore to a loss of statistical power. To find a
balance between such type II errors and the number of type I errors, it is imperative to find
less conservative correction procedures.

�.�.� Minimum p-value and Testability

The corrected threshold we are interested in maximises statistical power while controlling
the FWER. We denote this “ideal” threshold as δ∗ and embark on a journey to find a δ for
which δBon � δ ≤ δ∗. Such a threshold can be found following Tarone’s approach [257],

which we will detail in this section.
Tarone’s procedure builds upon the idea of testable hypotheses and the insight that non-

testable hypotheses can never become significant and will therefore not contribute to the
FWER. This, in turn, implies that a correction for non-testable hypotheses is not necessary,
as detailed below.

Minimal Attainable p-value Recall the contingency table from Section 2.2.2, where n
is the data set size, n1 the number of positively labelled samples therein, and rS the number
of all samples that contain the pattern S . Together with aS (the number of positively labelled
samples that contain S), these variables uniquely define the contingency table. Additionally,
for any given S , rS will be fixed and the only degree of freedom lies in aS . In other words,
we can get a finite number of table configurations with the same table margins, n, n1, and
rS , by varying aS . We can see how the margins bound the values of aS by considering the
extremal cases: Either the pattern is observed in all samples from the negative class (amin

S ),
or in all samples from the positive class (amax

S ):

amin
S := max (n1 + rS − n, 0) (2.20)

amax
S := min (rS , n1) (2.21)
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2.3 Statistically Significant Subsequence Mining (S3M)

The set of all possible values for aS can then be expressed as as all natural numbers in these
bounds:

AS := {aS |amin
S ≤ aS ≤ amax

S }, with aS ∈ N. (2.22)

Finding the smallest p-value among these table configurations (see Equation 2.23) is equiv-
alent to finding the pattern that exhibits the strongest association with the class label:

pmin
S := min {pS(aS |n, n1, rS)|aS ∈ AS} (2.23)

Luckily, it is not necessary to iterate over all table configuration and evaluate their p-values. In
fact, there is a closed-form solution to compute the minimal attainable p-value for Pearson’s
χ2 test [157] which is shown in Equation 2.24.

pmin
S (rS) :=



1− Fχ2
1

(
(n− 1) nb

na

rS
n−rS

)
if 0 ≤ tS ≤ na

1− Fχ2
1

(
(n− 1)na

nb

n−rS
rS

)
if na ≤ rS ≤ n

2

1− Fχ2
1

(
(n− 1)na

nb

rS
n−rS

)
if n

2 ≤ rS ≤ nb

1− Fχ2
1

(
(n− 1) nb

na

n−rS
rS

)
if nb ≤ rS ≤ n

, (2.24)

where na := min (n1, n− n1) and nb := max (n1, n− n1). Tarone [257] used the notion
of minimum p-value to derive a less stringent significant threshold δTar, which is defined
as follows: Let Htestable(δ) be the set of all patterns whose minimum p-value is less than a
predefined threshold δ, then δTar = α/|Htestable(δ)|, with

Htestable(δ) = {S|pmin
S (rS) ≤ δ}. (2.25)

In the context of SPM, Tarone’s method has been investigated and used in multiple applica-
tions such as graph mining [98, 252] or gene regulation [259]. In Section 2.3, we will use and
extend Tarone’s method to enable efficient mining of temporal patterns in time series data.

�.� Statistically Significant SubsequenceMining (S3M)

In this section, we describe a novel method that combines the ideas from SPM and shapelets
to discover temporal patterns in time series data. Throughout the description of our method,
we will abbreviate “statistically significant” with the term “significant”.

Let W be the set of all integer-valued subsequence lengths of interest, i.e. W :=

{wmin, wmin+1, . . . , wmax}. Moreover, note that the number of w-length subsequences
was given in Equation 2.2 on page 21. As we set the stride of the window to s = 1, we
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perform an exhaustive search over all possible candidates according toW1. Furthermore,
D := (d0, . . . , dk−1) is the ordered sequence of distances (following Definition 2.1) between
shapelet candidate S ∈ M and k time series. In the classification setting as introduced by
Ye and Keogh [288], we use distances of the form (di+di+1)/2 as threshold θ for indicator
function gζ(·, θ) (see Equation 2.5). This way, each threshold maximises the separation
margin between the two classes, which is necessary to optimise predictive performance on
unseen data. We also consider a threshold slightly lower than d0 and slightly higher than
dk=1. This leads to k + 1 thresholds per shapelet candidate (all “midway” distances and a
leading and trailing threshold on both ends of the list)2. Combining this with the number of
candidates each w ∈ W “generates”, the naïve Bonferroni-corrected significance threshold
for a data set with k time series of length m is:

δBon =
α

k (k + 1)︸ ︷︷ ︸
no. thresholds

(
wmax∑

w=wmin

(m− w + 1)

)
︸ ︷︷ ︸

no. candidates

(2.26)

This means, that even for a small data set containing 100 time series of length 100, wmin = 5,
and wmax = 10, the correction factor will be in the order of 5× 106, which will lead to a
significant loss of statistical power. Similarly, the exhaustive extraction of all subsequences
of length w = 1, . . . ,m results in a space complexity of

O
(
(k + 1)km2

)
, (2.27)

where km2 refers to the total number of subsequences to be held in memory, for each of
which k + 1 contingency tables are required. The factor m2 in Equation 2.27 comes from
the fact that

m∑
w=1

(m− w + 1) =
1

2
m(m+ 1).

Possible solutions to the high memory footprint are discussed at the end of this chapter.

To remedy the problem of reduced statistical power, we will now describe an iterative prun-
ing algorithm that makes the usage of Tarone’s method [257] (as described in Section 2.2.3)
more efficient and feasible for the application in medium-sized data sets. A detail about

1The size of the search space constitutes the computational bottleneck of our method which is further discussed
in Section 2.5.

2For the construction of contingency tables, there is no need to use midway distances since it is not our objective
to find thresholds that maximise predictive performance. In the association testing framework, the number
of thresholds in Equation 2.26 is therefore reduced by 1.
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Tarone’s adjustment procedure we did not mention yet, is its iterative character requiring con-
tinuous updates of the testability threshold to guarantee control of the FWER: We start with
a significance threshold δ̂ := α, where α is the target FWER. Then, each shapelet/threshold
pair S = (ζ, θ) will be processed individually. If its minimum p-value pmin

S ≤ δ̂, the pattern
is added to a list of testable patterns Htestable. As this addition will change the the current
FWER = δ̂|Htestable|, it is necessary to decrease δ̂ as long as the target FWER is not yet met.
Once, the condition δ̂|Htestable| ≤ α is fulfilled, some patterns that are now untestable under
δ̂ must be removed fromHtestable.

This necessitates computing the minimal p-value for shapelets at all thresholds. To miti-
gate this computational burden, we propose a pruning algorithm that allows us to terminate
processing a shapelet candidate early. More precisely, the following procedure is based on
the insight that we can fill the contingency table of a given candidate/threshold pair step-by-
step and abandon future computations once we are certain a p-value lower than or equal to
the current δ̂ cannot be reached. Assume we have a partially filled contingency table (i.e. we
computed the occurrence of ζ in u� k time series). We can bound the p-values of all future
table configurations by analysing the two most extreme scenarios:

1. All remaining time series from the positive class have d(ζ, T ) ≤ θ and all remaining
time series from the negative class have d(ζ, T ) > θ.

2. All remaining time series from the positive class have d(ζ, T ) > θ and all remaining
time series from the negative class have d(ζ, T ) ≤ θ.

From a partially filled contingency table, we can compute the number of unprocessed time
series in the following way: the number of yet to process time series from the positive class
is ∆1 = n1 − aS − bS , and ∆0 = n0 − cS − dS for the negative class. For both cases,
we have aS + bS + cS + dS < n. If the the minimum p-value of both scenarios exceeds
the current significance threshold δ̂, we can stop filling the contingency table and deem the
current pattern (subsequence/threshold pair) not significant. We can now express theχ2 test
statistic as a function of aS and dS from a partially-filled contingency table:

fχ2(aS , dS) =
n(aSdS − (n1 − aS)(n0 − dS))

2

n1n0(aS − dS + n0)(dS − aS + n1)
. (2.28)

Our contingency table pruning strategy is based on the following theorem:
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Theorem 2.1. The maximum of fχ2(aS , dS) is reached at the boundary of its domain:

max fχ2(aS , dS) = max
a′S∈[aS ,aS+∆1],d′S∈[dS ,dS+∆0]

fχ2(a′S , d
′
S) (2.29)

= max (fχ2(aS +∆1, dS +∆0), fχ2(aS , dS)) (2.30)

Proof. Both arguments of f2
χ are defined on a compact domain, from which follows that

under the multivariate generalisation of the extreme value theorem, its extrema lie within
the domain or on its boundary. By calculating the partial derivates and setting them to zero,
we get solutions of the form aS = t, dS = −(tn0 − n0n1)/(n1), for aS ∈ [0, n1]. By
analysing the determinant of the Hessian, we find that the trivial solutions aS = 0, dS = n0

and aS = n1, dS = 0 are (local) minima. Thus, the function’s maxima lie on the boundary.
From all four boundary cases, it is sufficient to consider the ones that are equivalent to the
two scenarios described earlier:

1. a′S := aS +∆1, d′S = dS +∆0

2. a′S := aS , d′S = dS

Both other cases can be neglected, as their test statistic can be increased by decreasing bS or
cS . �

From this follows that the minimum p-value that can be obtained from a partially filled
contingency table is

p′min
S := 1− Fχ2(max (fχ2(aS , dS))) (2.31)

and we can derive the following rule: We stop filling a partially filled contingency table if
p′min
S > δ̂. This allows us to save distance computations and prune a candidate/threshold

pair if the condition is fulfilled. Furthermore, if for all thresholds of a given candidate, the
respective contingency tables were pruned, we can ignore this candidate altogether, as it will
never be testable. Algorithm 1 embeds this procedure into the shapelet mining process and
provides a description of the overall S3M algorithm. In the next paragraph, we will detail the
individual steps of our proposed algorithm.

Once δ̂ and α̂ are initialised to 1, a list of all minimum attainable p-values for the data
set is calculated. As shown by Llinares- López and Borgwardt [157], pmin

S (rS) is symmetric
around k/2 which makes it sufficient to compute all minimum p-values up to rS = bk2c+ 1.
Then, we iterate over all shapelet candidates and create an empty list of contingency tables
for each of them (Line 6). The UPDATE routine takes the initial set of contingency tables and
the distance between current candidate ζ and time series T as input. For each new distance
value (or decision threshold), a new contingency table is added to C, and all other tables are
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updated (Line 32). Subsequently, the minimum p-value of the partially filled contingency
table p′min

S is computed according to Theorem 2.1. This is done in the BOUNDARY routine,
which also computes the p-value of both extreme scenarios described earlier. If the minimum
of both scenarios exceeds the current significance threshold δ̂, the respective contingency
table is rejected. If there are no contingency tables left after processing a given time series,
the current candidate will never become significant, no matter how many time series there are
left to process, and it can be discarded (break in Line 9). As the number of currently testable
patterns has been updated after finishing the loop in Line 7, Tarone’s update procedure is
called and both the set of testable shapelets G and significance threshold δ̂ are updated. Once
all candidates are processed and the final number of testable patterns is determined, a last
mining run is necessary to return the significant shapelets (Line 17). To do so, a single pass
over the list of testable patterns is necessary in which shapelets whose actual (not minimal)
p-value exceeds δTar are discarded.
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Algorithm 1 S3M (Statistically Significant Shapelet Mining)
Input: DataD, target FWER α

Output: Significant shapelets G, corrected significance threshold δTar

1: procedure S3M(D, α)
2: Initialize global δ̂ = 1, global α̂← 1, and G to be empty.
3: P ←GENERATE_ALL_MIN_P_VALUES(|D|)
4: for shapelet candidate ζ ∈M do
5: // 1. Contingency table pruning
6: C = ∅ // Initialise empty list of contingency tables for current candidate
7: for Time series T ∈ D do
8: UPDATE(C, d(ζ, T ), ζ)
9: break if C is empty

10: end for
11: // 2. Tarone’s correction procedure [257]

12: G, δ̂ ← TARONE(P,G, ζ)
13: end for
14: // Set final significance threshold
15: δTar ← δ̂

16: // Evaluate actual p-value for all patterns in G
17: Remove non-significant patterns from G
18: return G, δTar
19: end procedure
20:

21: procedure GENERATE_ALL_MIN_P_VALUES(k)
22: P = ∅
23: // All minimum attainable p-values for a data set of size k are symmetric around k/2

24: for rS ∈ [0, ..., bk2c+ 1] do
25: P ← P∪ pmin

S (rS) following Equation 2.24
26: end for
27: Sort P in descending order
28: return P
29: end procedure
30:

31: procedure UPDATE(C, d, ζ)
32: Update all contingency tables C that belong to candidate ζ with d

33: for C ∈ C do
34: // Compute minimum attainable p-value for partially-filled C (Equation 2.31)
35: pmin ← BOUNDARY(C)
36: // If current candidate/threshold pair is not testable, prune C
37: if pmin > δ̂ then
38: Remove C from C
39: end if
40: end for
41: end procedure
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Algorithm 2 Tarone’s update routine and table pruning
1: procedure TARONE(P , G, ζ)
2: // Add candidate to list of testable patterns
3: G ← G ∪ {ζ}
4: // Update FWER estimate
5: α̂ = δ̂ · |G|
6: if α̂ > α then
7: repeat
8: // Decrease significance threshold
9: δ̂ ← next value from P

10: // After updating δ̂, some patterns in G are no longer testable
11: Remove untestable patterns from G
12: // Update FWER estimate
13: α̂ = δ̂ · |G|
14: until α̂ ≤ α

15: end if
16: return G, δ̂
17: end procedure
18:

19: procedure BOUNDARY(C)
20: // Create contingency tables for scenarios described in Theorem 2.1
21: Fill Copt with remaining T ∈ D in aS and dS

22: Fill Cōpt with remaining T ∈ D in bS and cS

23: // Compute p-value for both scenarios
24: return min{p(Copt), p(Cōpt)}
25: end procedure

�.� S3M for Sepsis Detection

Sepsis is a dysregulated host response to an infection that can lead to life-threatening organ
dysfunction [237]. While being one of the most common causes of in-hospital death, the
early recognition of sepsis and timely treatment interventions remain unsolved challenges in
the biomedical domain. As pointed out in a recent review by Moor et al. [178], data-driven
biomarker discovery remains an open challenge, which may improve our understanding of
sepsis. In this section we will use S3M to extract and analyse temporal biomarkers that are

35



2 Pattern Mining for Time Series
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Figure 2.2: Adapted Sepsis-3 definition [237] as used in our study. A sepsis case shows a Sequential
Organ Failure Assessment (SOFA) score [274] increase of at least two when comparing a
baseline window to a window around a suspected infection (SI).

statistically associated with sepsis from the MIMIC-III database [124]. In the following sec-
tions, we will use the term “significant” to express statistical significance.

�.�.� Data Set & Preprocessing

The MIMIC-III data set [124] contains data from over 50 000 intensive care unit (ICU)
stays arising from the continuous monitoring of over 45 000 critically ill patients. The
database queries described in the following paragraphs are based on the MIMIC Code
Repository [123].

Cases To extract septic patients from MIMIC-III, we apply an adapted form of the Sepsis-3
definition by Singer et al. [237] as visualised in Figure 2.2: if both of the following two criteria
are met, we identify a patient as a case:

1. An antibiotic was administered and a sample of body fluid cultures was taken. These
actions by a doctor indicate a suspected infection (SI).

2. The Sequential Organ Failure Assessment (SOFA) score increases by two points when
comparing two maxima: one from a window five to two days before SI; one from a
window between two day before to one day after the suspected infection.

Additionally, we require that the SI occurred at least four hours into the ICU stay.

Controls Any patient without a septic period is part of the control cohort. This definition
allows that one of the aforementioned conditions may be met and the patient would still be
considered a control. Furthermore, even patients with a septic period before or immediately
after the ICU stay may be included in the control group. This more inclusive control defi-
nition was a deliberate choice to find biomarkers that distinguish sepsis cases not only from
comparably “healthy” individuals but from a heterogeneous control cohort.
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2.4 S3M for Sepsis Detection

We excluded patients whose vitals were logged with the CareVue system as it was
shown [70] that it under-reports crucial negative microbiology lab values. Furthermore, we
excluded young patients who are below the age of 15 as physiological responses in paediatric
sepsis are vastly different from adult sepsis cases [170].

With these criteria, we identified 355 cases (0.58 %) and 21 079 controls. To receive a bal-
anced data set, the control cohort was downsampled to be of the same size as the case cohort.
We extracted three vital signs that are routinely monitored in ICU patients and are important
indicators of patient stability: Heart rate, respiratory rate, and systolic blood pressure. Ape-
riodically measured parameters were forward and backward filled to achieve an harmonised
sampling rate of 30 minutes. Lastly, we used only the first 75 hours of a patient stay for time
series extraction to generate shapelet candidates from a diverse set of patients (instead of
extracting the majority of candidates from few very long stays).

�.�.� Experimental Setup

Each set of vitals is divided into 66 % training, and 33 % test set. S3M is used to extract
shapelets on the training set, on which we also extract their p-values. In all analyses per-
taining to classification performance, assessments are made on the test set. Before running
our method, we remove duplicate candidates (i.e. identical subsequences) fromM as we do
not want to test the same hypothesis multiple times.

Parameters We mined statistically significant subsequences of lengths w0 = 4, w1 =

5, w2 = 6 which results in sequences of 2, 2.5, and 3 hours of length, respectively. While
longer periods are possible, domain experts deemed these shorter lengths more useful in a
diagnostic setting. The target FWER was set to 0.01, a significance threshold commonly used
in the literature. We also reduced the number of cases and controls for the systolic blood
pressure data to 75 each. This was due to the observation that many blood pressure time
series are not sufficiently different from each other leading to many virtually interchangeable
shapelet candidates.

Comparison Partner S3M is virtually the first shapelet-based approach which makes use
of a statistical selection criterion. This allows us to first mine shapelets that are statistically
associated with sepsis (i.e. subsequences of high descriptive power w.r.t. the phenotype), and
second, assess their classification performance using the threshold rule described at the end
of Section 2.1.1. We therefore select a shapelet-based baseline method that has been par-
ticularly successful in the classification setting and compare p-values and predictive per-
formance of both methods. Karlsson et al. [127] introduced Generalized Random Shapelet
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Forests (gRSF), an efficient random forest based algorithm for time series classification. It
constructs decision trees based on randomly selected shapelets extracted from a randomly
selected subset of training time series. Trained in the same way as a classical random for-
est [38], it yields a set of selected shapelets that maximise predictive performance. This allows
us to compute their p-values and determine whether the algorithm selects any statistically
significantly associated shapelets.

�.�.� Results

In the following sections, we report two types of results. First, we perform a statistical analysis
contrasting statistical association of the shapelets that our method identified with the ones
form a competing method. We also illustrate, that S3M can be used to find subsequences that
provide competitive classification performance. Second, we provide a medical analysis and
interpretation of detected shapelets.

�.�.�.� Statistical Analysis

In a first analysis, we take a look at the number of significant shapelets detected by S3M
and its significance threshold on the training data set. We contrast our counts with the
shapelets used by gRSF for classification under the respective threshold δgRSF, and show the
naïve Bonferroni-corrected threshold δBon. The latter differs between identically-sized data
sets (heart rate and respiratory rate) because we employ a duplicate-removal-step prior to
running S3M. This decreases the number of tested hypotheses (see Equation 2.19 on page 28)
and leads to a data-set-dependent correction factor. Table 2.2 shows that compared to gRSF,
using Tarone’s adjustment procedure [257] leads to a much higher (less conservative) signifi-
cance threshold (δTar) and a high number of significant shapelets. This is due to the fact that
during the creation of each decision tree in the random forest, a random shapelet is selected
for each node in the tree leading to many implicitly tested hypotheses for which a correction
is required. This search-space inflation results in the observation that no shapelet used by
gRSF is significant, emphasising that high predictive performance does not imply statistical
association. When comparing to the naïve Bonferroni correction δBon, we see that Tarone’s
procedure results in a slightly less conservative significance threshold. More precisely, for
the vital signs heart rate, respiratory rate, and systolic blood pressure, our method deter-
mines that 34.69 %, 72.03 %, and 39.77 %, of all hypothesis are untestable. In Table 2.3, we
empirically observe that utilising significant shapelets for classification leads to competitive
prediction performance. However, more generally, it is neither guaranteed that statistical
association implies high predictive performance nor that high accuracy implies a statistical
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2.4 S3M for Sepsis Detection

Table 2.2: Number of significant shapelets detected by S3M and gRSF as well as significance thresholds.
The significance threshold reached by our method is denoted as δTar, the Bonferroni correc-
tion factor by δBon. Note that despite identical data set sizes (heart rate and respiratory rate),
δBon differs due to the removal of duplicate shapelet candidates before the mining process.
Note also that for the computation of δgRSF, all possible candidates must be considered, even
if some have been pruned, as they are still tested implicitly.

Vital Sign S3M gRSF δTar δgRSF δBon

Heart Rate 200 0 2.51× 10−10 1.28× 10−15 1.87× 10−10

Respiratory Rate 514 0 4.47× 10−10 1.33× 10−15 2.10× 10−10

Systolic Blood Pressure 58 0 2.55× 10−9 4.35× 10−14 1.97× 10−9

association. In this context it is important to note that association mapping and classification
are related supervised tasks, which differ, however, in their objectives. The aim of finding
shapelets that maximise predictive performance is to build a reliable predictor for unseen
data, whereas association mapping is a hypothesis generation tool. A statistically associated
shapelet may be of limited predictive but high scientific value as it facilitates a better under-
standing of the mechanisms behind an outcome. Here, we evaluate significant shapelets on
the test set and report the highest accuracy score to show the potential of a statistics-driven
shapelet selection. For gRSF, we average its results from ten runs and observe that a single
shapelet from S3M may lead to a classification performance on a level that is comparable to
the combination of over 3000 in a random forest.

An in-depth analysis of all contingency tables of the heart rate and blood pressure data
sets is depicted in Figure 2.3. Each axis represents the degree to which a shapelet is present
in the cases (x1) and absent in the controls (x0). More precisely, expressed in terms of the
contingency table counts (see Table 2.1), we have

x1 =
aS − bS
aS + bS

and x0 =
dS − cS
dS + cS

.

Table 2.3: Classification accuracy of S3M versus gRSF on the test set. Reproduced from [26] with
permission from Oxford University Press.

Vital Sign S3M # shapelets gRSF # shapelets

Heart Rate 0.70 1 0.74 3030
Respiratory Rate 0.71 1 0.76 3406
Systolic Blood Pressure 0.75 1 0.74 971

39



2 Pattern Mining for Time Series

−1 −0.5 0.5 1

−1

−0.5

0.5

1

x1

x0

(a) Contingency table visualisation of shapelets from
the heart rate data set. Blue dots are only visu-
alised to show a “null distribution” of contingency
tables with randomly permuted class labels.
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(b) Contingency table visualisation of shapelets from
the blood pressure data set.
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(c) Contingency table visualisation of shapelets from the respiratory rate data set.

Figure 2.3: Contingency table plots summarising the distribution of shapelets in cases and controls.
Red dots show statistically significant shapelets. Non-significant shapelets are marked in
grey. The distribution of candidate shapelets under label permutation are shown in blue.
Reproduced from [26] with permission from Oxford University Press.
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2.4 S3M for Sepsis Detection

Intuitively, a shapelet that perfectly distinguishes both classes (e.g. it occurs in all cases
and never in any control) will have coordinate (x1 = 1, x0 = 1). As each dot represents
a contingency table configuration, we mark significant shapelets whose p-value falls under
the significance threshold δTar in red and all others in grey. As a “visual null distribution”,
we also plot contingency tables from the heart rate data set when randomly permuting the
class labels (only shown in Figure 2.3a). In all data sets significant shapelets are distinctly
scattered in the first quadrant. Showing that statistically significant shapelets are predom-
inantly present in cases which implies that we found subsequence that may help identify a
septic patient (rather than a signal that identifies a healthy one).
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Figure 2.4: Most significant shapelets (on the training set) in their time series of origin. Reproduced
from [26] with permission from Oxford University Press.

�.�.�.� Medical Interpretation

While the following observations highlight overlaps between shapelets and established and
well known manifestation of sepsis, their interpretations need to be substantiated by further
research. Our method should be seen as a hypothesis generation or confirmation tool that
can support researchers with the analysis of biomedical time series data sets.

Shapelet-based methods are by construction interpretable, a property that makes them
particularly interesting for hypothesis generation. Paired with a statistical interpretation,
S3M can support the generation of deeper domain-specific insights. Figure 2.1 visualises the
most significant shapelets detected on the training set by S3M and the respective time series
of origin.
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In the upper plot, we detected a shapelet showing a transient instability of the heart rate.
While this seems to contradict the observation that low heart rate variability (HRV) correlates
with higher sepsis severity [4, 49], it is important to point out the following details: In the
context of biomedical research, HRV refers to the variance of the temporal distance between
individual heart beats. This definition provides a very high sampling resolution and is not
comparable to our setting in which we consider the number of heart beats per minute on a
grid of 30 minute intervals. The signal captured in Figure 2.4a is therefore different from the
common notion of HRV and highlights the possible importance of low-frequency HRV for
sepsis (e.g. due to haemodynamic instability).

A well established link between the pulmonary system and sepsis manifests itself in an
increased respiratory rate (RR) [115]. This may be due to pulmonary oedema, lactate aci-
dosis, or other pathomechanisms. More precisely, an RR of 20 breaths per minute or more
constitutes one of four factors of the systemic inflammatory response syndrome (SIRS), a list
of criteria relevant for an earlier definition of sepsis [30]. It is therefore interesting to ob-
serve that the shapelet in Figure 2.4b contains two abnormal measurements (at both ends)
drawing attention to a particularly high rate of 31 breaths per minute. Lastly, the shapelet
detected in systolic blood pressure is visualised in Figure 2.4c. It contains a distinct spike
into an abnormally high regime indicating an overall poor state of health.

�.� Conclusion

In this section, we addressed the problem of identifying statistically significant time series
patterns in a scalable manner. Our method utilises short subsequences (shapelets) and as-
sesses their statistical significance by association testing. To mitigate the multiple hypoth-
esis testing problem, Tarone’s method [257] is employed to improve run-time by pruning
untestable shapelets. Moreover, we exemplified the merit of our method on a data set con-
taining vital signs of patients that suffer from sepsis. Detected shapelets are biomedically rel-
evant as they can serve as data-driven medical hypotheses whose importance can be further
investigated by clinical researchers. In addition, we demonstrated that statistically associated
shapelets may also be used in a classification setting with promising results on predictive
performance. This direction was explored in a follow-up work that uses S3M in an early-
detection system of circulatory failure in the ICU [117]. In combination with additional time
series features, we were able to predict 90 % of circulatory-failure events identifying 82 %
more than 2 h in advance.

A challenge that arises from our exhaustive search is twofold. First, redundant and over-
lapping shapelets may be discovered. Second, enumerating all candidates leads to high mem-
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ory consumption. The first issue can lead to an unbounded number of structurally mean-
ingless shapelets which impacts the practically of S3M. In a second follow-up work [97], we
introduced Statistically Significant Submodular Subset Shapelet Mining (S5M), a method that
maintains structural diversity of shapelets during the mining process using submodular op-
timisation. This way, detected shapelets are 1. representative of the data set 2. minimally re-
dundant, and 3. more manageable in cardinality, increasing S5M’s practicality and statistical
power. Regarding the problem of space complexity, symbolic encodings such as the Symbolic
Aggregate approXimation (SAX) [153] of shapelet candidates could dramatically reduce the
size of the search space. Simultaneously, SAX would prevent the extraction of candidates
that are morphologically similar as their approximations would be identical. Lastly, learn-
ing shapelets without resorting to enumeration (e.g. through dictionary [295] or gradient-
based [95] learning) may be used to mine shapelets in a generative manner to further reduce
the computational burden.
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In which we develop a novel classification algo-

rithm using shapelets, followed by the develop-

ment of a deep learning system to predict myocar-

dial ischaemia.

In Chapter 2, we used shapelets to find subsequences that are statistically associated with a
class or phenotype of interest. We also highlighted the differences and commonalities of sig-
nificantly associated subsequences and subsequences that maximise predictive performance.
In this chapter, we consider the problem of time series classification (TSC), a task that is com-
plementary to association mapping. This chapter is organised as follows: First, we will use
the same subsequence extraction method as in Chapter 2 to develop a new general-purpose
TSC algorithm. We will do so by using concepts from optimal transport theory to define a
similarity measure based on the subsequence representation of a time series. For this, we will
first provide a brief introduction to kernel methods and optimal transport, followed by the
description of our proposed method. Section 3.2 is based on the following publication:

• C. Bock†, M. Togninalli†, E. Ghisu, T. Gumbsch, B. Rieck, and K. Borgwardt. “A Wasserstein

Subsequence Kernel for Time Series”. In: 2019 IEEE International Conference on Data Mining

(ICDM). 2019, pp. 964–969. doi: 10.1109/ICDM.2019.00108

From the general-purpose approach, we then move to a more specific classification problem
in healthcare. Section 3.3 is based on work in progress in which a deep learning based system
for the identification of exercise-induced myocardial ischaemia is developed. It first intro-
duces the data type (electrocardiogram) and problem we are concerned with before giving
a brief overview of recent advances in deep learning for cardiology. Subsequently, we detail
the data set, experimental setup, and the employed neural network architecture. In the re-
sult section, we report predictive performance on an internal held-out test set and its clinical
relevance as well as aspects of trust and interpretability.
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3 Time Series Classification

�.� Introduction

Time series classification is the task of predicting the class membership of a given time series.
It is an active research topic applicable to various fields such as clinical event prediction [178,

199, 248] and human activity [185] or gesture recognition [172]. Over the last years, hundreds
of general-purpose classification algorithms have been introduced and were evaluated on
the central repository for time series classification benchmark data: The “UCR Time Series
Archive” [66]. These methods were systematised by Bagnall et al. [12, 216] who defined the
following taxonomy to differentiate between six types of TSC approaches:

1. Whole series approaches use a measure of similarity over the complete time series (e.g.
Dynamic Time Warping (DTW) [20]) that can subsequently be used in a distance-
based classification algorithm.

2. Interval-based methods select one or more phase dependent intervals for comparison.

3. Shapelet-based algorithms aim to find phase-independent patterns whose occurrence
in a time series is indicative of a specific class label.

4. Dictionary-based approaches use frequency counts of recurring patterns in forms of
histograms as feature representation.

5. Combinations of two or more procedures from above.

6. Model-based algorithms use the similarity of generative models fit to each time series
individually as a proxy of time series similarity.

Furthermore, deep learning methods have been increasingly popular in the TSC commu-
nity [80] due to their revolutionising impact in fields such as computer vision and natural
language processing. Successful deep learning approaches for time series classification make
use of convolutional neural networks (CNN) [145], residual networks [105], long short-term
memory (LSTM) [108] recurrent neural networks (RNN) [217], and the more recently devel-
oped attention mechanism [270].

In the next sections, we will first introduce a novel general-purpose TSC algorithm that
belongs to the shapelet-based class of algorithms. Subsequently, we will conclude the first
part of this thesis by developing a classification system based on deep learning for the iden-
tification of myocardial ischaemia.
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�.� Subsequence Kernels for Time Series Classification

In Section 2.1, we highlighted the importance of time series subsequences as general fea-
ture descriptors for time series classification. Subsequences that maximise predictive perfor-
mance are referred to as “shapelets”. In the sections that followed, we repurposed shapelets
and developed a method that allows to efficiently assign p-values to subsequences enabling
the discovery of interpretable and descriptive temporal biomarkers. In what follows, we will
utilise subsequences and their distributions to develop a novel method for time series classifi-
cation. The method’s core is a kernel function defined over the Wasserstein metric, a distance
measure rooted in optimal transport (OT) theory.

�.�.� Kernel Methods

The most prominent representative of kernel methods is the Support Vector Ma-
chine (SVM) [34]. One of the powerful properties of SVMs is the fact that any binary
classification task can be expressed as a constrained convex minimisation problem ([227,

Corollary 6.6]). In this context, either all solutions to the minimisation problem are equally
good, or there is one unique solution to the problem [227, Chapter 6.1]. An integral part of
the SVM and kernel methods as a whole is that they require an inner product that measures
the similarity of two objects. This inner product arises in the shape of a symmetric positive
semi-definite (PSD) kernel function k defined over the input space: k : X × X → R. For
every ci ∈ R and xi, xj ∈ X , we have

n∑
i,j=1

cicjk(xi, xj) ≥ 0, (3.1)

where n is the number of samples of the input space. Note that Schölkopf and Smola [227,

Remark 2.6] point out that k as presented here may also be referred to as positive definite (PD),
although in matrix theory, the term definite is reserved for cases in which Equation 3.1 holds
only if c1 = · · · = cn = 0.

Given the non-empty set X , positive semi-definite k, and a function f : X → R, we can
show that there is a spaceH in which the output of k can be expressed as an inner product.
We say thatH is a Hilbert space on X if the following two properties are fulfilled.

1. k(·, x) ∈ H for all x ∈ X , and mutatis mutandis k(x, ·) ∈ H for all x ∈ X

2. f(x) = 〈f, k(·, x)〉H for all f ∈ H and x ∈ X
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If this is the case, k is the unique reproducing kernel ofH, and we can write

k(xi, xj) = 〈k(·, xi), k(xj , ·)〉H. (3.2)

Moreover, the Moore–Aronszajn theorem [10] states that every PSD function is the repro-
ducing kernel (according to Equation 3.2) of some unique Hilbert spaceH. In other words,
for all PSD functions k, there exists a Hilbert spaceH such that Equation 3.2 holds and k is
reproduced in that space. Due to this property we refer to H as reproducing kernel Hilbert
space (RKHS). As another consequence of the theorem from above, we may consider the
following concepts to be equivalent:

• Kernel functions

• Reproducing kernels

• Positive semi-definite functions

R-convolution Kernels To extend the construction of kernels to discrete structures
such as strings or graphs, Haussler [104] introduced the R-convolution kernel framework.
Given an object x ∈ X , we assume it can be decomposed into a set of D structures
{x1, . . . , xD} each of which has a “is part of ” relationship to x. We denote this relationship
as the relation R(x1, . . . , xD, x) that is true iff each xd is a part of x. Conversely, R−1(x) is
the set of all elements that are “part of ” x: R−1(x) = {xd|R(xd, x)}. An intuitive example
of viewing an object as a composite structure is the decomposition of a time series into its
subsequences as introduced in Section 2.1.1.

More generally, we assume xd to be in the set Xd for each 1 ≤ d ≤ D, where X1, . . . ,XD

are a non-empty, separable metric spaces. Let us now collect all decompositions of x, y ∈ X
in ~x = x1, . . . , xD and ~y = y1, . . . , yD. Furthermore, let kd(x, y) be a kernel on Xd which
measures the similarity of part xd and yd and define the generalised convolution as

k(x, y) =
∑

~x∈R−1(x)

∑
~y∈R−1(y)

D∏
d=1

kd(xd, yd). (3.3)

The R-convolution of k1, . . . , kD is defined to be the zero extension of k to X × X , and
denoted as k1 ? · · · ? kD(x, y). Haussler proved in [104] that if k1, . . . , kD are kernels on
X1 ×X1, . . . ,XD ×XD, and if R is a finite relation on X1 × · · · × XD ×X , then k1 ? · · · ?
kD(x, y) is a kernel on X × X .
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In its most simple instantiation, theR-convolution kernel can be expressed as the sum of
a base kernel evaluated for all combinations of all parts of two objects x and y, i.e.

k(x, y) =
∑

a∈R−1(x)

∑
b∈R−1(y)

kbase(a, b), (3.4)

where the base kernel kbase is any valid kernel function defined over the parts of the objects
at hand. In Section 3.2.3, we will show that for a subsequence decomposition of time series
and a linear base kernel this framework is downright meaningless and develop a new kernel
based on OT.

Kernel Methods for Time Series Classification One of the first kernel methods for
time series classification does not make use of the R-convolutional framework. Instead,
Rüping [218] uses “standard” SVM kernels (such as linear and radial basis function (RBF)
kernels) as a way to compare whole time series. The classification of time series that ex-
press periodic patterns was investigated using several cross-correlation kernels by Wachman
et al. [275]. In addition, Lorincz et al. [161] introduced a set of methods that use DTW, an
alignment-based similarity measure for time series to classify emotional expressions from fa-
cial landmark positions. However, in general, DTW-based kernels do not fulfil the condition
of Equation 3.1 which started an investigation into the impact of such “indefinite” kernels.
This culminated in the recursive edit distance kernel presented by Marteau and Gibet [169].

Furthermore, Cuturi at al. [58, 63] showed that an alignment-based PSD kernel can be de-
rived by taking the softmax over all possible alignments. For variable-length multivariate
time series, the same author [62] followed the idea of vector autoregressive (VAR) models to
define autoregressive kernels as an instance of covariance kernels.

Closest to the approach we will introduce in the following sections is the kernel earth
mover’s distance (KEMD) [65]. While the authors also build on optimal transport theory (the
earth mover’s distance [214] is equivalent to a certain instance of the Wasserstein metric),
the ground distance matrix is constructed using histograms of time series observations. This
histogram intersection kernel [186] treats each time series as a one-dimensional distribution
of scalars, whereas our approach uses the distance between high-dimensional distributions
of subsequences to construct the ground distance matrix. We empirically show that by using
subsequences, our approach captures long-distance similarities in time series better.

�.�.� Optimal Transport (OT)

Optimal transport theory is a field of mathematics which investigates problems in resource
allocation and transportation as illustrated in the the following example (inspired by the
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famous Hitchcock problem [107]): Suppose there are n cheeseries (sources) distributed all
over the Swiss alps, each of which with a different production capacity. Furthermore, let
there be m huts (sinks) that have a certain demand of cheese that needs to be satisfied. Lastly,
we define a cost function describing the cost of transportation of a wheel of cheese from a
cheesery to a hut (e.g. the spatial distance between cheesery and hut). Informally, the aim
of OT is to find a transportation plan that minimises the overall transportation cost while
fulfilling the hut’s demands and considering the production capacity of all cheeseries. In
other words, we would like to know how many wheels a cheesery should delivery to any
given hut such that the travelled distance of all wheels is minimal.

In this scenario, we dealt with discrete quantities but in order to formalise the problem in a
more general manner, we will make use of probability distributions as source and sink quan-
tities, before coming back to the discrete case. A concept intrinsically linked to the search
for the optimal transport plan is the so-called p-Wasserstein distance. Given two probability
distributions σ and µ defined on a metric spaceM and a ground distance function dist(·, ·),
we have:

Definition 3.1. p-Wasserstein distance. For some p ≥ 1 and the set of all possible trans-
portation plansΓ(σ, µ) overM×M that have marginalsσ andµ, the p-Wasserstein distance
is

Wp(σ, µ) =

(
inf

γ∈Γ(σ,µ)

∫
M×M

dist(x, y)pdγ(x, y)
) 1

p

. (3.5)

In essence, the Wasserstein distance defined as above measures the minimum cost it takes
to transform or morph one probability distribution into another.

In its discrete formulation, and to circle back to the cheese and hut example, we can express
the 1-Wasserstein distance also as a minimisation problem over the Frobenius inner product
of two matrices. Given two sets of k-dimensional features X ∈ Rn×k and Y ∈ Rm×k, let
D be the n×m matrix of pairwise distances such that Di,j = dist(xi, yj), where x ∈ X and
y ∈ Y . Then, we have

W1(X,Y ) = min
P∈Γ(X,Y )

〈D,P 〉F , (3.6)

where the Frobenius product is defined as 〈D,P 〉F =
∑

i,j Di,jPi,j . The argument of the
solution (the best transportation plan P ∈ Rn×m) consists of fractions that indicate how to
transport values from X to Y . We assume that the total transported mass is equal to 1 and
that across all elements of X and Y this mass is evenly distributed. This constrains the rows
of P to sum up to 1/n and its columns to 1/m .
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�.�.� Time Series Kernels and Optimal Transport

In this section, we will develop a new method for time series classification combining R-
convolution framework with the Wasserstein distance and the shapelet representation from
Section 2.1. Before describing and evaluating the method we refer to as Wasserstein Subse-
quence Kernel (WTK), we show that in its most simple application to time series subsequences,
theR-convolution framework is de facto meaningless and more expressive representations
are needed.

�.�.�.� Motivation

Consider two time series T and T ′, and their length-w subsequence setsM andM′, respec-
tively. Extending slightly on Equation 3.4, we define the following kernel function:

k(T, T ′) =
1

|T | · |T ′|
∑
S∈M

∑
S′∈M′

kbase(S, S′), (3.7)

where the bold notation of a subsequence indicates its representation as a vector. When
choosing kbase as a linear kernel (i.e. k(x, y) = x>y), we have

k(T, T ′) =
1

|T | · |T ′|
∑
S∈M

∑
S′∈M′

S>S′ (3.8)

≈ 1

|T | · |T ′|

(∑
S∈M

S>
)(∑

S′∈M
S′
)

(3.9)

≈ T
>
T ′, (3.10)

where the bar notation refers to the time series mean. The last approximation follows from
observation that in the sums over subsequences, all length-w observations (except the lead-
ing/trailing w− 1 observations) appear at all dimensions in the sum. From this follows that
for many choices of w, theR-convolution kernel with linear base kernel degenerates to the
comparison of time series means. In particular for z-normalised data (zero mean and unit
variance), a recommended preprocessing step [66, 201], this observation renders the straight-
forward application of theR-convolution framework for time series classification practically
meaningless. Figure 3.1 depicts this observation for 4 data sets from the “UCR Time Series
Archive” [66] containing only z-normalised data. We show the mean of the kernel matrix on
the y-axis and the subsequence length w on the x-axis. As expected, for short subsequences,
the mean has a tendency of staying close to zero. However, in Section 3.2.3.3, we demon-
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Figure 3.1: The mean value of the kernel matrices of 4 time series classification data sets and varying
subsequence lengths w. The kernel is constructed as described in Equation 3.8.

strate that the naïve application of R-convolution framework does not lead to competitive
accuracies even for longer subsequences.

�.�.�.� A Wasserstein Subsequence Kernel (WTK)

Following the notation in Section 2.1.1, we are given a time series data set T with k sam-
ples for each of which we extract a set length-w subsequences {M1, . . . ,Mk}. Our novel
Wasserstein distance based kernel is defined as follows:

Definition 3.2. Wasserstein time series kernel. Given two time series Ti and Tj , letMi =

{Si,1, . . . Si,U} andMj = {Sj,1, . . . Sj,U} be the the set of their respective subsequences.
Furthermore, let D ∈ RU×V be the distance matrix containing the pairwise Euclidean dis-
tances of all subsequences. According to Equation 3.6, we obtain the 1-Wasserstein distance
between Ti and Tj by transforming one time series into the other using their subsequence
representations by solving the following optimisation problem:

W1(Ti, Tj) = min
P∈Γ(Ti,Tj)

〈D,P 〉F . (3.11)

Given the constant factor λ ∈ R>0, our Wasserstein subsequence kernel is defined as

WTK(Ti, Tj) = exp (−λW1(Ti, Tj)). (3.12)

For notational simplicity, we will write WTK(Mi,Mj) := WTK(Ti, Tj) and
W1(Mi,Mj) := W1(Ti, Tj). Lastly, Villani [273] showed that W1(Ti, Tj) is a met-
ric and could therefore be used in the k-nearest neighbour (k-NN) algorithm.

Intuition WTK belongs to the family of shapelet-based methods that use subsequences as
the representation of a time series. Subsequence features are intrinsically interpretable, and
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(a) Extraction of subsequences

(b) Subsequence distance matrix (c) Optimal transport plan

Figure 3.2: Given two time series, we compute their subsequence-based Wasserstein distance in mul-
tiple steps. (a) illustrates the first step in which subsequences are extracted using a sliding
window. Note that we do not show all subsequences because of overlapping windows. We
then, use the Euclidean distance to compute distance matrix D (b). Blue indicates small
distances, while yellow indicates large distances. Lastly, we compute the optimal transport
plan (c). Colours indicate the amount of mass being transported. High (yellow) values
can be interpreted as subsequences that are “matched”. I.e. the highlighted subsequences
are assigned to each other. The transport plan contains fractional matchings as both time
series are of different lengths. This enables us to make use of subtle differences in subse-
quence distributions when computing our distance. ©2019 IEEE

we can therefore visualise each step of our distance computation as depicted in Figures 3.2
and 3.3. This includes the extraction of length-w subsequences (Figure 3.2a), followed by the
computation of pairwise distances (Figure 3.2b) and calculations of the final optimal trans-
port plan (Figure 3.2c). From solving the optimisation problem in Equation 3.11, we obtain
the transport plan P . As shown in Figure 3.2c, this transport plan assigns each subsequence
from time series Ti to one or more subsequences from time series Tj . Figure 3.3 depicts the
transport plan mapping of subsequences in more detail. The way the optimisation problem
is formulated (i.e. the fact that it is not necessary that D in Equation 3.11 is a square ma-
trix) accounts for subsequence sets of different cardinalities. Time series of varying lengths
can therefore be processed by our method without any modifications. If both time series are
of the same length (as is the case for all data sets of the “UCR Time Series Archive” [66]),
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Figure 3.3: An illustration of the optimal transport plan from Figure 3.2c. Each line connects the
beginning of two matched subsequences. The transported mass is encoded in the line’s
thickness. We only show large transport values to avoid cluttering. © 2019 IEEE

the mapping a one-to-one correspondence. To obtain the Wasserstein distance, a sum over
the values obtained by element-wise multiplication of both matrices shown in Figures 3.2b
and 3.2c is computed. The distance value captures the difference between the time series in
terms of their subsequence distributions and is more expressive than merely summing the
values of the transport plan alone. In our example, we observe that the optimisation proce-
dure “selects” the lowest subsequence distances and correctly aligns the peaks of both time
series.

To summarise, there are three components that define our similarity measure: 1. the way
we extract subsequences, 2. the way we define similarity between them, and 3. computing
an alignment based on these similarities. By extracting only subsequences of one length and
choosing the Euclidean distance to compute the ground distance matrix (as proposed), we
assume that no time warping occurs in our data set. We could relax this assumption by us-
ing DTW as subsequence distance function and set up the extraction process in a way that
sequences of multiple lengths are considered. Our choice of subsequence distance also im-
plies that we consider the order in which patterns occur as not relevant. While in problems
such as arrhythmia detection, this is a reasonable assumption, we could take the position of
a pattern in the time series of origin into account when setting up the ground distance ma-
trix. Lastly, computing a distance based on the optimal transport plan (i.e. the 1-Wasserstein
distance) implies that our application is such that actual pattern matches are essential. While
both other components allow us to determine the nature of a pattern, this last component is
immutable and the core component of WTK.

Theoretical Properties To use our similarity measure from Equation 3.12, we must
show that it yields a proper kernel. More specifically, if our kernel should belong to an RKHS,
it is necessary to show that it is PSD, i.e. it satisfies Equation 3.1 for all ci ∈ R. Feragen et
al. [82, Theorem 5] show that the above condition is fulfilled if one can show (conditionally)
negative definiteness of the symmetric distance matrix Dij = W1(Ti, Tj) for any given data
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set. This means that D must not have more than one positive eigenvalue [14, Lemma 4.1.4, p.

163]. If this was the case, a metric space is induced by Equation 3.11 for which an isometric
embedding into a Hilbert space exists.

During the evaluation of our empirical results, some configurations yielded at least two
positive eigenvalues in D. From this follows that the kernel matrix Kij = WTK(Ti, Tj) :=

exp(−λW1(Ti, Tj)) is not PSD. This leads to the conjecture that the metric may be influenced
by characteristics of the time series. To address this issue, we may take several routes:

(a) We may compute the empirical kernel and thereby enforce the eigenvalue constraint. To
do so, we calculate the kernel matrix K′ := K · K>, where K is a matrix of dimension
k × k whose entries follow Equation 3.12. To show that K′ is PSD, let y := K>x for
x ∈ Rn. We have x>KK>x = x>Ky = y>y =

∑n
i=1 yi ≥ 0, henceK′ is PSD.

(b) We may regularise K by subtracting all negative eigenvalues, leading to K′ := K −∑
i λiviv>i , where i indexes the negative eigenvalues and vi denotes their correspond-

ing unit eigenvectors. This will set negative eigenvalues to zero, resulting in a positive
definite matrix by construction.

(c) Following [283], we may generalise the Wasserstein distance to a “softmin” of all possible
transportation plans. This guarantees that we get a PSD kernel.

(d) We may sidestep the eigenvalue constraint altogether by making use of algorithms capa-
ble of dealing with indefinite matrices [187].

In the following paragraphs, we will briefly explore and discuss these options.

Enforce Option (a) is computationally cheap, requiring only an additional matrix multi-
plication. However, the distance values between individual time series are changed, and we
observed empirically that, compared to the other options, the predictive performance suffers
to some extent.

Regularise Option (b) is computationally somewhat more expensive, as it necessitates
a complete eigendecomposition of K. Wu et al. [282] describe several transformations and
illustrate that at least one of them, the spectrum shift, has minimal computational require-
ments and impacts classification performance only marginally.

Generalise Option (c) follows the “softmin” approach by Cuturi et al. [63], i.e.

SoftWTK(Mi,Mj) :=
∑

γ∈Γ(σ,µ)

exp−λ
(∫

dist(x, y)pdγ(x, y)
) 1

p

. (3.13)
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This is a kernel if dist/1+dist is PSD. However, it involves the computation of Dkl’s perma-
nent [59], which results in a computational bottleneck due to its super-exponentially scaling
behaviour. This renders using SoftWTK infeasible; we therefore exclude it from our classifi-
cation experiments.

Sidestep Option (d) is the option of our choice as we can use algorithms that can han-
dle indefinite kernels directly without having to adjust K. Such methods are a valuable ap-
proach for kernels that exhibit good predictive performance but do not satisfy positive def-
initeness (e.g. as shown by Vert [272]). These approaches utilise the so-called Reproducing
Kernel Kreĭn Space (RKKS). In an RKKS, the kernel function does not have to be positive
definite which leads to an indefinite kernel, i.e. they are neither negative definite nor positive
definite. Previous research [100, 152, 164, 289] showed that it is possible to modify SVM clas-
sifiers so that they can work with indefinite kernels without resulting in decreased predictive
performance.

Moreover, almost all data sets used in our experiments led to a PSD kernel matrix. There-
fore, we call WTK a kernel and add that some data sets (for which a corresponding Kreĭn space
exists) lack a corresponding Hilbert space. To ensure that our calculations are sound, we em-
ploy a Kreĭn SVM [158], which can handle both indefinite and positive definite matrices. In
addition, we also explored Options (a) and (b). However, both did not lead to a significant
performance gain with respect to WTK; in fact, the final test accuracies are virtually identical
in all cases.

Complexity and Implementation Computationally, WTK can be be split into the follow-
ing steps: 1. Subsequence extraction, 2. Subsequence distance calculation, and 3. Wasserstein
metric calculation. Letting k refer to the data set size, as introduced in Section 2.1.1, we have
not more than s := m−w+1 subsequences for each time series. Therefore, the time series
length m dominates the extraction process, which takes the computational complexity of
Step 1. toO(km). We share this preprocessing step with other subsequence-based methods,
such as the original shapelet approach [287] or more recent approaches such as MPdist [90].

Subsequently, we perform the following operations for each time series pair. For each time
series pair, s2 distance calculations are required. To compute the distance between two sub-
sequences, w computations must be performed. Thus, the worst case complexity for Step 2
is O

(
s2w

)
. Finally, to evaluate Equation 3.11 for a time series pair takes a complexity of

O
(
s3 log s

)
for an s× s input matrix [6]. Asymptotically, the runtime of WTK can thus be ex-

pressed asO
(
k2m3 logm

)
, as m is an upper bound on the number of subsequences of fixed

length. Notably, this is only a worst-case approximation and several efforts (mostly based
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Algorithm 3 Wasserstein Time Series Kernel
Input: Time series for training and testing Ttrain, Ttest; subsequence length w; kernel weight
factor λ
Output: K train,K test

1: // Extract subsequences
2: Mtrain ← Subsequences(Ttrain, w)
3: Mtest ← Subsequences(Ttest, w)
4: for Ti ∈ Ttrain do
5: for Tj ∈ Ttrain do
6: // Wasserstein distance calculation (train)
7: Dtrain

ij ←W1

(
Mtrain

i ,Mtrain
j

)
8: end for
9: for Tk ∈ Ttest do

10: // Wasserstein distance calculation (test)
11: Dtest

ik ←W1

(
Mtrain

i ,Mtest
k

)
12: end for
13: end for
14: // Kernel matrix calculation
15: K train ← exp

(
−λDtrain)

16: K test ← exp(−λDtest)

17: returnK train,K test

on a Sinkhorn approximation) for obtaining near linear-time approximate solutions for the
Wasserstein distance exist [17, 60]. In our experimental setup, however, the increased speed
obtained using the Sinkhorn approximation was accompanied by a drop of predictive per-
formance. Nevertheless, we did not extensively explore the hyperparameter space and only
relied on a basic entropic regularisation scheme.

Algorithm 3 shows a pseudocode description of WTK. We require specifying a subsequence
length w ∈ N>0 and a weight factor λ ∈ R for the similarity measure calculation in Equa-
tion 3.12. After extracting all subsequences, Equation 3.11 and 3.12 are used to create ma-
trices K train and K test, which can be used in classification algorithms such as SVMs. Our
implementation used Python 3.7 and POT, the Python Optimal Transport library [85]. Our
code is publicly available1.

1https://github.com/BorgwardtLab/WTK
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�.�.�.� Experimental Setup

In the following, we will investigate several aspects of our new kernel. First, we compare
WTK to kernel approaches that are also subsequence-based to demonstrate that the naïve ap-
plication of the R-convolution framework can be meaningless. Moreover, we empirically
show that using the 1-Wasserstein distance for comparing time series by means of their sub-
sequences is well suited for TSC. This is followed by a comparison to DTW-�-NN in terms
of a “Texas Sharpshooter” plot [16] to contrast expected and actual predictive performance
measured on the training and test set, respectively. Such a plots enables us to demonstrate
that WTK leads to consistently good predictions. Finally, we conclude our experiments with a
large-scale performance assessment by comparing WTK to the state of the art of each data set.

All experiments are performed on the original 85 data sets from the “UCR Time
Series Archive” [66]. Each data set consists of predefined train/test splits of vary-
ing sizes and time series of multiple lengths; however, per data set, the length of
all time series is always fixed. More details about the data sets can be found at
https://www.timeseriesclassification.com. To evaluate the performance of
WTK, different experiments are conducted. We are specifically interested in assessing accu-
racies obtained using WTK and contrast them with (a) other subsequence-based approaches,
(b) baselines such as DTW, and (c) the state of the art in TSC.

Comparison partners We compare WTK to a residual network [105] architec-
ture (ResNet), a fully convolutional network (FCN), and shapelet-based classifiers such as
Learned Shapelets (LS) [95] and the Shapelet Transform (ST) [35]. Furthermore, we include
established ensemble methods such as FLAT-COTE [11], Elastic Ensemble (EE) [154], and
HIVE-COTE [155] in our comparison. Other algorithms include methods based on a sym-
bolic aggregate approximation (SAX) of the time series [153] including DTW_F [128] and
the SAX Vector Space Model (SAXVSM) [229] as well as classifiers that are dictionary-based
such as the Bag of Symbolic Fourier Approximation Symbols (BOSS) [223] method. This
approach combines DTW distances with SAX histograms. Furthermore, we consider a
rotation forest (RotF) [211] containing 50 trees and a random forest [38] with 500 trees.
Finally, other baselines include a Bayesian network (BN) and a 1-nearest neighbour classifier
based on Euclidean distance (E-1NN).

Training and evaluation We evaluate classification accuracy on the predefined test sets
and all parameters are determined using 5-fold cross validation on the training set. Parame-
ters for the Kreĭn SVM classifier [158] are determined by evaluating validation performance
on a parameter grid as follows:
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• γ ∈ {10−5, 10−4, . . . , 103} (for the RBF kernel)

• λ ∈ {10−4, 10−3, . . . , 10} (for WTK)

• C ∈ {10−3, 10−2, . . . , 103} (for the SVM classifier)

Additionally, for methods that use subsequences, we vary their respective length w by assess-
ing values of 10 %, 30 %, and 50 % of m. At first, we also investigated the classification per-
formance of k-NN classifiers as they can use the distance matrix generated by Equation 3.11
directly. However, on average, these classifiers perform more than 3 % worse, so we neither
discuss nor include them in the subsequent analysis.
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Figure 3.4: Comparison of WTK in terms of predictive accuracy and empirical runtime. © 2019 IEEE

�.�.�.� Results

Other Kernels As a first experiment, we contrast our method with other kernels based
on subsequences. For that, we train a standard linear kernel as well as an RBF kernel on
subsequences of the same length. We showed in Section 3.2.3.1 that using a linear kernel
simplifies into the comparison of time series means; hence, we expect to observe low accura-
cies in this scenario. In contrast, previous research showed [218] that the RBF kernel can lead
to good predictive performance, but it has not been included in a large-scale study to the best
of our knowledge. Due to its capability of capturing nonlinearities, we expect this approach
to outperform the linear kernel. That being said, the RBF kernel only compares subsequences
independently, while our method can compare whole distributions of subsequences, leading
to a more expressive similarity measure. Figure 3.4 shows the results for all 85 UCR data
sets. As expected, the linear kernel is outperformed by WTK in all cases. This empirically
demonstrates the issues identified in the beginning: the R-convolution framework can be
meaningless if naïvely applied to time series subsequences. Contrasting our method with
the RBF kernel, we observe that WTK outperforms it on 73 out of 85 data sets. Even so, as
illustrated in the plot, the accuracy deviation for the points below the diagonal is insignifi-
cant, and the mean accuracy difference for these data sets is only≈2.2 %. This shows that our
method’s competitive predictive performance is not due to the consideration of subsequences
in itself, but by taking into consideration the distribution of their similarities.
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Figure 3.5: “Texas Sharpshooter” plot, comparing expected gains to actual gains, relative to
DTW-�-NN. © 2019 IEEE

To conclude this experiment, a brief empirical runtime analysis is performed. Figure 3.4b
confirms that computing the Wasserstein distance is not the decisive factor when it comes
to runtime performance. The linear and RBF kernel, as well as WTK, all use subsequence
differences and show the same asymptotic runtime behaviour. Moreover, we can observe
SoftWTK’s super-exponentially scaling behaviour, which is due to the aforementioned com-
putation of the permanent.

Comparison with DTW-�-NN Dau et al. [66] pointed out that a 1-nearest neighbour clas-
sifier trained on DTW distances constitutes a strong baseline in time series classification. We
compare WTK to DTW-�-NN, in terms of a “Texas Sharpshooter” plot [16]. It visualises the
“expected” gain as measured on the training set on thex-axis and the actual gain as measured
on the test set on the y-axis. For both methods, we used 5-fold cross-validation to identify
the best parameters and expected gains.

The results of this analysis for all data sets are depicted in Figure 3.5. Almost all points
are in the TN or TP quadrants, suggesting our method is either consistently outperformed
by DTW-�-NN (TN) or consistently outperforms DTW-�-NN (TP). Some points are in the
remaining two quadrants. False negative (FN) points are a “happy surprise” because we ex-
pected our method to perform worse than it does. The most problematic quadrant is the
false positive (FP) region; however, it only contains a few points and the differences in accu-
racy are comparatively minor. Overall, the sharpshooter plot yields evidence that, in terms
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of predictive performance, WTK is superior to DTW-�-NN, as the TP quadrant contains the
majority of points.

Comparison with the state of the art In our final analysis, we compare WTK
with the SOTA in TSC. For this, we compiled the accuracies of all methods that were
published in the “UCR Time Series Classification Repository” [66] at the time of this
study. Additionally, we collected classification performances of two high-performing
neural network approaches [278] whose classification performances are provided in a
review by Fawaz et al. [79]. Overall, we collected results from 40 methods; however, the
results of the neural network approaches were incomplete. For each data set, we selected
the method that performed best on the published test set. We therefore compare WTK
to the 40 top-performing methods, which ensures the most comprehensive and honest
testing scenario. WTK exceeds prediction performance of all state-of-the-art methods
on the following six data sets DistalPhalanxTW, DistalPhalanxOutlineAgeGroup,
MiddlePhalanxOutlineAgeGroup, ECG5000, Earthquakes, and FordB. Furthermore,
our method reaches the same accuracy as the state of the art on BeetleFly, ECGFiveDays,
Coffee, Plane, Trace, and ShapeletSim, leading to a total of 12 data sets for which WTK
is at least as good as the respective SOTA method. That being said, the TSC community
considers some of these data sets to be solved.

Performance Details There are numerous other data sets on which our method’s per-
formance is close to the state of the art. Table 3.1 provides a more detailed analysis of these
accuracy differences. We contrast WTK with HIVE-COTE, the best-performing approach, and
KEMD, a competitor that is conceptually similar as it is also OT-based. Each row in the first
column defines a range of accuracy differences (with respect to the SOTA performance) on
which the remaining three columns are conditioned. Thus, these columns show the per-
centage of data sets for which the respective method fulfils the condition of the first column.
While overall, HIVE-COTE (an ensemble method) outperforms our approach, for almost 45 %
of all data sets, WTK’s performance difference does not exceed 5 %. In contrast, KEMD’s per-
formance seems to be relatively erratic with favourable performances on a small number of
data sets, while being more decisively outperformed on most of them.

Statistical Analysis To underline the effectiveness of our proposed method, we show
a critical difference (CD) plot [69] in Figure 3.6 that contrasts WTK with a variety of compet-
ing methods (due to typographical reasons, we refrain from displaying a comparison with
all 40 methods, but the relative ranking remains the same). If a bold horizontal line con-
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Table 3.1: The first column defines a condition over the absolute difference (∆) in mean accuracy
compared to the best performing method (per data set). The remaining columns show
the fraction of data sets for which the respective condition is fulfilled. Due to rounding,
columns do not sum to 100 %. © 2019 IEEE

∆ WTK HIVE-COTE KEMD

∆ ≥ 0 14.1 % 36.5 % 4.7 %
0% >∆ ≥ −5% 44.7 % 34.1 % 15.3 %
−5% >∆ ≥ −10% 24.7 % 18.8 % 7.1 %
−10% >∆ ≥ −15% 8.2 % 1.2 % 16.5 %
−15% >∆ ≥ −20% 4.7 % 7.1 % 9.4 %
−20% >∆ 3.5 % 2.4 % 47.1 %
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Figure 3.6: Comparison of WTK (in bold) with top-performing competitor methods by means of a
critical difference (CD) plot. We observe that the performance of our method is not sta-
tistically significantly different to the state of the art. © 2019 IEEE

nects two methods, their performances are not statistically significantly different from each
other. At a significance threshold of α = 0.05, we observe that there is no statistically sig-
nificant difference between our method and the best-performing classifiers. Since the top-
performing methods are either heavily-parametrised (e.g. deep neural networks) or ensem-
bles constructed from more than 30 other methods, the plot underlines good generalisation
performance of WTK.

Comparison with selected methods Figure 3.7 illustrates accuracy differences for se-
lected methods in more detail. For this juxtaposition, we chose the best method (HIVE-
COTE), the best neural network (ResNet), and KEMD, which is conceptually similar. Each
scatter plot shows the respective accuracies obtained on a given data set. Our method’s per-
formance follows ResNet’s accuracy values closely, as most points are situated near the diag-
onal. By contrast, we clearly outperform KEMD on almost all data sets.
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Figure 3.7: Comparison of WTK with two well-performing methods. Each dot represents the perfor-
mance values (accuracy) of two approaches (axes) on one data set. Axes only show accu-
racies between 0.4 and 1.0 since all values are within this range. © 2019 IEEE

�.�.� Conclusion

In this section of the thesis, we showed theoretically and experimentally thatR-convolution
kernels cannot be naïvely adapted to time series, as they can degenerate to a simple compar-
ison time series means. This motivated the development of WTK, a new subsequence-based
kernel that utilises concepts from optimal transport theory. More precisely, it leverages the
Wasserstein distance to compare distributions of subsequences that serve as time series rep-
resentations. We investigated the expressiveness of this similarity measure in the time series
classification setup by performing an extensive evaluation on the “UCR Time Series Archive”
data sets. Our performance analyses indicate that the proposed method can outperform the
state of the art in time series classification and exhibits good generalisation properties. This
shapelet-based method broadens the scope of this thesis by shifting from a pattern mining
perspective that is mainly concerned with statistical associations of shapelets to the time se-
ries classification task utilising shapelets.
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3.3 Predicting Stress-Induced Myocardial Ischaemia from ECG-Recordings

�.� Predicting Stress-InducedMyocardial Ischaemia from
ECG-Recordings

In the preceding sections, we developed a domain-independent TSC method of general ap-
plicability by identifying methodological shortcomings in other approaches. In this section,
we will focus on a time series classification problem that arises in a clinical environment. In
general, time series classification plays a vital role in healthcare settings in which data is fre-
quently measured. This includes the continuous monitoring of vital parameters as detailed
before and extends to electrocardiograms (ECGs), one of the central data types in cardiol-
ogy [92]. The ECG provides a cardiologist with detailed information about the heart’s electri-
cal activity from which many cardiac pathologies can be inferred. The potential diagnostic
and prognostic value of machine learning in cardiology range from aiding clinical decision
making (e.g. determining whether a specific test should be performed or not) to workflow op-
timisation to the enhancement of diagnosis and risk stratification [159]. This part of the thesis
is based on a manuscript that is in preparation and assesses the clinical value of a collaborative
deep learning system for the detection of exercise-induced myocardial ischaemia (EIMI). It
is structured as follows: First, we will highlight the relevance of predicting exercise-induced
myocardial ischaemia and the clinical protocol to determine this pathology. Second, a de-
scription of the development of our prediction system is provided including details of the
data set, the machine learning approach, and the evaluation scenarios. We then present re-
sults on a held-out test set focusing on clinically relevant performance metrics, followed by
an interpretability analysis.

9.

�.�.� Introduction

Ischaemic heart disease, i.e. the undersupply of oxygen to the heart, is the leading cause of
years of life lost (YLL) worldwide [120]. This means that over 10 % of all lives that were lost
due to premature death are linked to cardiovascular complications. High mortality and mor-
bidity rates paired with the availability of cost-efficient prevention measures underline the
importance of early risk-stratification of patients with suspected myocardial ischaemia. The
practical utility of current screening techniques, however, is limited by either unfavourable
diagnostic accuracy, as in the case of exercise electrocardiography stress testing, or by its in-
vasive nature and high costs, as in the case of myocardial perfusion imaging (MPI) [196].

Ideally, a risk-stratification tool should be 1) non-invasive, 2) easily accessible to patients at
risk, 3) cost-efficient, and 4) of high clinical value (which can take several forms).
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Traditionally, the automated prediction of cardiac events employed methods that rely on
the quantification of ECG changes such as ST-segment changes, T-wave abnormalities, or
other anomalies in the ECG (see Figure 3.8a for a schematic illustration of an ECG). Meth-
ods based on the manual extraction of wave-specific features necessitate not only involved
and error-prone preprocessing steps such as ECG delineation, but are also limited in clinical
accuracy. Furthermore, when it comes to very long time series and larger sample sizes, the
straightforward application of the methods we introduced in Chapter 2 and Section 3.2 fail
due to scalability issues. Circumventing the problem of scalability and the elaborate defi-
nition and computation of ECG-specific features while increasing clinical accuracy was re-
cently achieved by employing deep learning. Successes can be found in tasks such as diagno-
sis prediction, rhythm and form recognition, and cardiovascular death prediction [42, 101,

181, 203, 248].

The system we will develop in the course of this and the following sections predicts EIMI,
an early indicator of future cardiac complications, from easy-to-access static and ECG data
only. We systematically assess the value of data preprocessing, lead-selection, and the rele-
vance of multi-task learning for predictive performance. The clinical utility of the developed
system, which we refer to as Neural Ischaemia Prediction (NIP), lies in its ability to reduce
the false positive rate (FPR) of a physician from 0.90 to 0.75 while maintaining high sensitiv-
ity (0.95). This has the implication that if we relied on our system to decide whether a patient
should receive an MPI, the number of patients that unnecessarily undergo this procedure
would drop by 15 percentage points. In a subgroup of patients with a previous history of
CAD that were able to complete the exercise stress test without pharmacological support, a
combination of NIP and the physician’s judgement (NIP+) reduced FPR and false negative
rate (FNR) by 0.21 and 0.11 percentage points, respectively. Moreover, we provide an inter-
pretability study that sheds light on the inner workings of the model, helping the cardiologist
to understand how different clinical features and ECG segments contribute to NIP’s predicted
risk score.

�.�.�.� The ECG and Exercise Stress Testing

The electrocardiogram (ECG) is the main tool to retrieve information about the electrical
activity of the heart. Twelve (sometimes up to 18) electrodes, applied to different parts of the
body, measure electrical changes of the skin that arise from depolarisation and repolarisation
of the cardiac muscle. The different electrodes or leads are, depending on their position,
labelled as I, II, III, aVL, aVR, and aVF (advanced Vector Left/Right/Foot) for the limb
leads, and V1 through V6 for chest leads. Figure 3.8a sketches a “typical” QRS complex as it
is visible in heart beats recorded at lead II. The P-wave reflects atrial depolarisation, resulting
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(b) The upper plot shows 160 seconds of a raw ECG sig-
nal from lead II. Starting after approx. 50 s, the signal
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respective signal. The orange curve depicts the results of
a preprocessing pipeline. The original signal is visible in
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Figure 3.8: Schematic illustration of a lead II ECG of a single heart beat (left) and an example of a
lead II ECG signal (right).

in atrial activation and is followed by the “QRS complex”. This complex represents how an
electric stimulus spreads through the ventricles of the heart [92]. In the ECG, this is visible as
the characteristic Q (first negative deflection), R (first positive deflection), and S wave (first
negative deflection after R wave). Ventricular recovery is represented by ST-segment and T
wave (repolarisation). The junction or J-point is where QRS complex and ST-T wave meet
and the point at which the amplitude (A) of the ST-segment is measured. In exercise stress
testing, ST-amplitude is often measured at 40 ms, 60 ms, or 80 ms after the J-point. Finally,
the U wave is a low-amplitude wave whose electrophysiologic basis is not certain [174] and
which is sometimes referred to as “the enigmatic sixth wave of the ECG” [210]. Figure 3.8b
depicts a real lead-II ECG from exercise stress testing. Several sources of noise such as
baseline wander, powerline interference, electrode motion artefacts, and electromyographic
noise are prevalent in almost all stress test ECGs. This necessitates an appropriate signal
preprocessing pipeline preceding any automated analysis [9].

Exercise Stress Testing In order to diagnose EIMI, an experimental setup with bicy-
cle ergometry is employed. In an initial pre-stress phase, the patient exercises on the bicycle
with zero resistance. The resistance is then increased iteratively aiming to make the patient
reaching a predefined, patient-specific heart rate. Once this heart rate is reached, the resis-
tance is reduced and the patient enters a recovery phase. During all three phases (pre, stress,
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and recovery), the cardiologists monitors the 12 leads of the ECG, including summary heart
beats of lead II, heart rate, and blood pressure. The physician is also in constant exchange
with the patient about their well-being. Once a patient reaches their peak heart rate, a my-
ocardial perfusion scan (MPS) is performed by injecting a radioactive tracer intravenously
to record how the tracer perfuses through the ventricles of the heart via single-photon emis-
sion computerized tomography (SPECT) imaging. Based on a second MPS, taken at rest,
the cardiologist will determine to which extent the ejection rate has changed and whether
myocardial ischaemia was induced. Not all patients are able to reach their target heart rate
or to exercise at all. These patients are switched to a pharmacological stress testing proto-
col. In both cases, the subjects will receive a pharmacological substance that either mediates
coronary artery vasodilation (adenosine) or increases cardiac output and heart rate (dobu-
tamine). Therefore, each stress test falls into one of four categories:

• Regular exercise stress test

• Fully pharmacologically-induced stress test using adenosine

• Fully pharmacologically-induced stress test using dobutamine

• Combined exercise and pharmacological stress test

The last situation describes a scenario in which a patient starts with exercising but requires
pharmacological support to reach their target heart rate. For subsequent subcohort analyses,
we combined patients for which a full pharmacological protocol was followed into a single
group.

�.�.�.� Machine Learning for Cardiology

The automated detection of myocardial ischaemia and infarction has a long history and was
recently reviewed by Ansari et al. [9]. In the following paragraphs, we focus on recent promis-
ing contributions that make use of deep learning to increase classification performance in
several tasks relevant for the field of cardiology.

Risk Stratification Myers et al. [181] developed a risk-stratification tool for patients that
suffered from acute coronary syndrome (ACS). Their proposed recurrent neural network re-
ceived transformed descriptors of ST-segment slope and amplitude as well as static patient
features as input signal. This way, the authors increase the prediction performance of car-
diovascular death (CVD) within one year after ACS in patients without ST-segment eleva-
tion. Shanmugam et al. [231] study the impact of including the whole ECG signal on risk
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stratification performance on the same prediction task. More specifically, the authors utilise
the multiple instance learning framework [168] and single-lead ECG signals to predict CVD
within 30, 60, 90, and 365 days of hospital admission. Over all time horizons, their two-
layered convolutional neural network (CNN) outperforms other approaches in terms of area
under the receiver operating characteristic (AUROC) and odds ratio.

Diagnosis and Arrhythmia Prediction In addition to risk stratification, deep learn-
ing has been successfully utilised for diagnosis prediction, and form and rhythm detection
of ECG signals. The latter was approached by Hannun et al. [101], where a deep learning
system was trained to detect different rhythm classes (e.g. atrial fibrillation, atrioventricular
block, or ventricular tachycardia). Trained on only a single-lead ECG, the system performed
better than the average cardiologist. In a similar experimental setup but with access to 12
leads, the neural network by Ribeiro et al. [203] predicted ECG abnormalities in addition to
diagnostic statements such as right bundle branch blocks. Their approach performed bet-
ter than 4th year cardiology residents and has significantly fewer parameters than the first
hallmark study by Hannun et al. More recently, Strodthoff et al. [248] extracted a hierar-
chical set of 44 diagnoses from over 15 000 ECG records (12-lead, 10 s) and assessed the
performance of a variety of deep learning architectures in several multi-label classification
tasks. Diagnoses include myocardial infarction, conduction disturbances, and ST-T changes.
In the same work, the authors predicted 19 form statements (e.g. non-specific ST changes,
low amplitude T-waves, or abnormal QRS complexes) and 12 ECG rhythm labels (e.g. sinus
bradycardia or atrial flutter).

Many of these studies were possible due to the automatic extraction of labels (e.g. from
ECG reports), which makes data generation very efficient. Furthermore, many rhythm and
form classes manifest themselves in permanent changes of the ECG. Determining the pres-
ence of exercise-induced myocardial ischaemia, however, requires an elaborate stress test
during which a potential ECG signal may develop transiently. Additionally, to determine
the ground truth label, SPECT images need to be interpreted and a resulting diagnosis may
be refined using fractional flow reserve measurements and coronary angiography. This is
what differentiates EIMI prediction from earlier work on cardiovascular event detection; the
physiological signal of this complex phenotype develops throughout the experiment and it
may even vary between different subcohorts.

�.�.� Cardiologist-Level Ischaemia Prediction with Deep Learning

In this section we detail the development of our system for EIMI prediction, which we refer
to as Neural Ischaemia Prediction (NIP). We structured the section as as follows. First, we
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Table 3.2: Static clinical features used for EIMI prediction.

Name Type Description

Age Numerical Age of patient in years
Sex Binary Biological sex of patient2

Height Numerical Height of patient in cm
Weight Numerical Weight of patient in kg

Resting HR Numerical Heart rate at rest. Measured in beats per minute (BPM)
Resting Sys. BP Numerical Systolic blood pressure at rest. Measured in millimetre

of mercury (mmHg).
Resting Dias. BP Numerical Diastolic blood pressure at rest. Measured in millimetre

of mercury (mmHg).
Known CAD Binary Absence/presence of previous coronary artery disease

describe the process of acquiring training data and labels during the exercise stress test. We
will also establish a “human baseline” that will serve as point of reference when assessing
the performance of our system. This is followed by a more detailed description of the em-
ployed multi-task learning approach that we take. Before detailing other feasible approaches
for ischaemia prediction (i.e. our experimental comparison partners), a detailed overview
of the experimental setup is provided. This includes an overview of different signal prepro-
cessing steps, a description of NIP’s architecture, and elucidations on the process of lead and
(hyper)parameter selection.

�.�.�.� Data Set

We conducted our experiments on 12-lead ECGs from 3522 patients from the BASEL-VIII
study (ClinicalTrials.gov registry, number NCT01838148). Around one third of all ECGs
were downsampled from 1000 Hz to 500 Hz, leading to time series with a median length
of 476 589 measurements, or 15 min, respectively. In addition to ECG signals, we further
included static clinical features such as age, sex, height, blood pressure, heart rate, and the
presence/absence of previous CAD in our assessment (see Table 3.2 for a complete list).

Data Acquisition Figure 3.9 illustrates the data acquisition process as part of the ECG
stress test. All 3522 patients underwent a standard [271] rest/stress MPI-SPECT/CT protocol
2We use the term “biological sex” as used in many epidemiological studies. We understand, however, that

sex involves multiple social and biological factors [126] and can be different from the sex assigned at birth.
Moreover, from a clinical perspective it is important to differentiate this way as the prevalences between both
groups vary significantly.
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using either one (99mTc sestamibi for both rest and stress) or two (201TI for rest, 99mTc ses-
tamibi for stress) radioagents. As shown in the figure, only eight ECG leads were measured
directly, the others (III, aVL, aVR, and aVF) were computed according to Einthoven’s trian-
gle and Goldberger’s equations [174]. If a patient was not able to reach their target heart rate
(28.5 %), a pharmacological protocol with either adenosine or dobutamine was initiated. In-
dividuals for which stress test by bicycle ergometry was not an option (17.9 %), either due to
left bundle branch block (LBBB), presence of a pacemaker, or the inability to exercise, were
put on the pharmacological protocol from the start. To compare the algorithmic approach
to expert judgment, the treating cardiologist overlooking the stress test performed a clin-
ical assessment before (pre-stress) and after (post-stress) the examination. Considering all
available medical information such as cardiac history, relevant symptoms, baseline ECG, and
more, the cardiologist indicated the probability of CAD/EIMI on a visual analog scale (VAS)
from 0 % to 100 % [147, 243, 256, 277]. An expert team composed of a nuclear medicine physi-
cian and a cardiologist, assessed myocardial perfusion scans (MPS) on a semi-quantitative
score using a 17 segment bull’s eye scheme with a 5-point scale. For each segment, a score
between 0 (normal tracer uptake) and 4 (no tracer uptake) is assigned and the sum over all
segments summarises myocardial perfusion at rest (MPSSRS) and during stress (MPSSSS).

�.�.�.� Multi-Task Learning & Auxiliary Tasks

Multi-task Learning (MTL) [47] is a technique to introduce inductive biases into neural net-
works to increase generalisation performance and decrease the risk of overfitting [215]. Its
effectiveness has been demonstrated in the field of arrhythmia detection [121, 264] and pre-
diction of other clinical phenotypes [46, 103, 213]. Given a primary task, related auxiliary
tasks are introduced that will serve as mutual sources of inductive bias for each other. In
other words, learning to solve multiple related tasks simultaneously “nudges” the network to
learn representations that are useful across all tasks and hence across the domain at hand.
In contrast to self-supervised learning, where tasks are derived from the input signal itself,
MTL is inherently supervised in the classical way: label acquisition is a manual and elaborate
process, typically involving domain experts, such as cardiologists in our case.

Formally, let gτα(fθ(X)) be a classifier for the primary taskα, where fθ is a neural network
consisting of shared layers parametrised by θ and gτα represents the task-specific layers with
parameters τα. Furthermore, X denotes the input data and Yα the labels of task α. We can
introduce an auxiliary task β by re-using the latent representation fθ(X) to predict the task-
specific label Yβ using another set of task-specific layers: gτβ (fθ(X)). For each task γ ∈ Γ,
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Figure 3.9: Overview of the data acquisition workflow. The three main subgroups of the exercise stress
test are highlighted: (1) patients that complete the exercise stress test on the bicycle, (2) pa-
tients that are not able to exercise on the bicycle and for whom a pharmaceutical protocol is
used, and (3) patients who start on the bicycle but need pharmacological support to reach
their target heart rate. Both at rest and at the point where the patient reaches their target
heart rate, a myocardial perfusion scan is performed. Both scans enable the derivation of
two relevant scores, namely MPSSRS and MPSSSS. The treating cardiologist estimates the
probability of a functionally relevant CAD before and after the stress test (Pre/Post-Test
CAD Probability). The final binary label of presence of functionally relevant CAD is ad-
judicated by taking the stress test results and additional relevant clinical parameters into
account.
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we define a task-specific loss function L that measures the prediction error of g to arrive at
the overall loss term to be minimised:

L =
∑
γ∈Γ

(
λγLγ(gτγ (fθ(X)), Yγ)

)
+ Lα(gτα(fθ(X)), Yα) (3.14)

In the preceding equation the magnitude of each auxiliary loss is regularised by λ. This in-
stance of MTL is called hard parameter sharing, as exactly one set of parameters (θ) is shared
between all tasks. We considered the following three auxiliary tasks whose respective reg-
ularisation parameters are denoted as, λStress, λMPSSRS, and λMPSSSS. We used binary cross
entropy (LBCE) as loss function to learn the main task.

Stress Type The “Stress Type” variable refers to the way stress was induced in the patient.
More specifically, the network is challenged to predict whether they were able to exercise
throughout the whole examination, whether adenosine or dobutamine was used to induce
stress pharmacologically, or if a hybrid approach was taken. 1417 patients (53.5 %) in the
development data set (see Section 3.3.2.3) underwent complete exercise stress testing, 416
patients (15.7 %) adenosine-induced testing, 59 patients (2.2 %) dobutamine-induced test-
ing, and 756 (28.5 %) combined stress testing. We used a cross-entropy loss (LCE) to learn
this task.

MPS Summed Rest/Stress Score As touched upon in Section 3.3.2.1, a commonly used
semi-quantitative way of judging the effectiveness of the heart is to determine the uptake
of the radioactive tracer in the left ventricle by assessing the MPS images [182]. Using a
scale from 0 to 4, a cardiologist and a nuclear medicine physician provided scores for 17

segments of the muscle and the cavity of the left ventricle. Each segment gets assigned a
score of normal (0), mildly reduced (1), moderately reduced (2), severely reduced (3), or
no tracer uptake (4). The overall myocardial perfusion scan (MPS) score is computed by
summing the individual scores of each segment. This evaluation is done at rest (MPSSRS)
and under maximal stress (MPSSSS). To learn these tasks, we utilised the root mean squared
error (LRMSE).

�.�.�.� Experimental Setup

We split the data set 3:1 into development and held-out test set containing 2648 and 874
patients, respectively. During the development of the model, we had no access to the held-
out test set. Access was provided, once we fixed all model parameters. The development set
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Figure 3.10: Illustration of data preprocessing and sampling steps. Time series that serve as input to
the neural network are constructed by concatenating short subsequences from different
phases of the stress test.

was further divided into 5 stratified splits of training, validation, and test set, where the latter
makes up 10 % of the development set. The ratio of training to validation set size is 4:1.

ECG Input Generation After applying a set of signal preprocessing steps (see below), we
construct the input time series by concatenating subsequences from different phases of the
examination as illustrated in Figure 3.10. For this, we sample two seconds from the beginning
of the examination, six seconds from the last two minutes of the stress phase, and two seconds
from the last three minutes of the recovery phase, and merge them into a single time series.
This sequence, which we refer to as “2-6-2”, was constructed up to twenty times per patient
using a tumbling window for each experimental phase (indicated by differently coloured
windows in Figure 3.10). This way the neural network receives an input that represents the
complete examination in one sample with a focus on the stress phase.

Signal Preprocessing Schemes As visualised in Figure 3.8b, ECG signals from exercise
stress testing are subject to high levels of noise from various sources. To assess the influence of
noise on classification performance, we consider the following preprocessing schemes: 1. no
preprocessing, 2. minimal preprocessing with a high-pass Butterworth filter of order five, and
a cutoff frequency of 0.5 Hz followed by moving average smoothing, and 3. a thorough pre-
processing pipeline consisting of a wider bandpass filter (0.05 Hz to 150 Hz), moving-median
subtraction to remove baseline wandering, a Savitzky–Golay [221] filter for smoothing, and
winsorising to deal with spurious outliers.

Architecture Figure 3.11a provides a high level overview of the multi-task learning
setup. For each patient, up to 20 “2-6-2” sequences are constructed (three are shown in
green, orange, and purple). Each sequence represents one training sample and is combined
with the static features of the respective patient. This means, that the number of EIMI
predictions per patient is the same as the number of “2-6-2” sequences that were generated
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works.
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Table 3.3: Architectural details of the used neural network. Convolutional layers are written as [input
dimension, output dimension, kernel size, stride]Conv, linear layers as [input dimension,
output dimension]Lin. BN: Batch norm, ReLU: Rectified Linear Unit, DO: Dropout. Max
pooling is written as MP(kernel size, stride). “add” denotes the addition of the output of
the MP1 × 1 layer and the preceding convolutional layer as shown in Figure 3.11c.

Task Layer Name Parameters

N/A MP1 × 1 [MP(4, 4), [64, 128, 1, 1]Conv]
N/A BR [BN,ReLU]
N/A BRD [BR,DO(0.8)]

N/A Convinit [[1, 64, 20, 1]Conv,BR]
N/A Res1 [[64, 128, 20, 1]Conv,BRD, [128, 128, 20, 4]Conv, add,BRD]
N/A Res2 [[128, 196, 20, 1]Conv,BRD, [196, 196, 20, 4]Conv, add,BRD]
N/A Res3 [[196, 256, 20, 1]Conv,BRD, [256, 256, 20, 4]Conv, add,BRD]
N/A Res4 [[320, 320, 20, 1]Conv,BRD, [320, 320, 20, 5]Conv, add,BRD]
N/A Res5 [[320, 160, 20, 1]Conv,BRD, [160, 160, 20, 4]Conv, add,BRD]

Embedding ECG hres [Convinit,Res1,Res2,Res3,Res4,Res5,BR]
EIMI Prediction glin [[672, 32]Lin,ReLU,DO(0.5), [32, 1]Lin]

MPSSRS Prediction glin [[672, 32]Lin,ReLU,DO(0.4), [32, 1]Lin]

MPSSSS Prediction glin [[672, 32]Lin,ReLU,DO(0.4), [32, 1]Lin]

Stress Type Prediction glin [[672, 32]Lin,ReLU,DO(0.4), [32, 5]Lin]

Embedding Clinical Features hlin [[8, 16]Lin,ReLU,BN, [16, 32]Lin,ReLU,BN,DO(0.5)]

for that specific patient. In parallel, the patient’s static data is embedded by a neural
network whose output is concatenated to the residual network’s output. The resulting
representation serves as input to four subnetworks, each of which is responsible for the
prediction of one of the four tasks, respectively, as described in Section 3.3.2.2. All EIMI
predictions of a patient are aggregated to obtain the NIP risk score by taking their mean.
To make use of the cardiologist’s expertise if/when available, we combine their post-stress
VAS score with NIP’s prediction by training a logistic regression on the EIMI task. We
refer to the output of this logistic regression as NIP+. Figure 3.11 details the individual
components of our neural network architecture. Following the notation in Section 3.3.2.2,
all tasks share the representation generated by concatenating the outputs of hres and hlin,
i.e. fθ(X) = [hres(Xecg), hlin(Xclin)], where θ represents the parameters of both hres and
hlin. Here, hres is a residual neural network [105] with five residual blocks, similar to the
one used by Ribeiro et al. [203], whereas hlin is a simple two layer feedforward network. The
kernel size of the convolutional layers of hres was adjusted to reflect the higher sample rate
of 500 Hz. We chose this residual architecture to process the ECG data as Ribeiro et al. [203]

demonstrated its efficacy in related cardiological prediction tasks. Table 3.3 provides a
detailed overview of the sizes of all layers and used dropout rates.
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Table 3.4: Parameter grid to determine multi-task regularisation parameters. ηbest refers to the best
learning rate from the first selection step.

Parameter Values

λMPSSRS {0.0, 0.25, 0.5, 0.75, 1.0}
λMPSSSS {0.0, 0.25, 0.5, 0.75, 1.0}
λStress {0.0, 0.25, 0.5, 0.75, 1.0}

η {2ηbest, ηbest, ηbest/2}

Lead and Parameter Selection To evaluate the impact that individual ECG leads, pre-
processing, and auxiliary tasks have on predictive performance, we proceeded as follows:
First, we used the first development split to determine the most promising leads (in terms
of area under the precision-recall curve (AUPRC) on the validation set) by performing a
grid search over a) three preprocessing schemes described above, and b) learning rate pa-
rameters η ∈ {0.01, 0.001, 0.0001} for all twelve leads individually and in combination.
Subsequently, we picked the three best-performing leads and their respective preprocess-
ing/learning rate combination to assess the impact of all auxiliary tasks. In order to do so,
the performance on the validation set was averaged over all splits on a 5×5×5×3 parame-
ter grid as shown in Table 3.4. Finally, the best-performing model was enriched with clinical
data to receive the final model, which we evaluated on the held-out test set.

�.�.�.� Performance Assessment & Comparison Partners

When assessing a decision support system, coarse-grained metrics such as AUROC or
AUPRC may not be sufficient to draw a full picture of its clinical value. While the area under
the ROC curve provides the probability of ranking a randomly-selected positive sample (i.e.
a patient with EIMI) higher than a negative one (i.e. a patient without EIMI) [81], in practice
it is relevant to ensure a high baseline sensitivity and/or specificity. We therefore analyse the
performance of our system in terms of false positive/negative rates (FPR/FNR) at sensitiv-
ity (fraction of correctly predicted positives) and specificity (fraction of correctly predicted
negatives) values between 0.90 and 1.0. The FPR is the proportion of all negatives (patients
without EIMI) that are predicted to suffer from EIMI. Equivalently, FNR is the fraction of
all positives (patients with EIMI) that are predicted to not suffer from EIMI.

Human Baseline During the exercise stress test, we recorded the treating physician’s
judgement concerning the presence of myocardial ischaemia after the stress test on a visual
analogue scale (see Figure 3.9). This score provides an important human baseline since it is
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an indicator as to whether the cardiologist would recommend a follow-up examination with
myocardial perfusion SPECT. Suppose a system can reach the predictive performance of a
cardiologist in interpreting a stress test. In that case, it will be particularly useful in settings
in which specialists are not available. These environments are of tremendous importance
because, in general, a stress test does not necessitate the presence of a cardiologist and can
be performed by general practitioners. We will refer to this judgement as “Post-Test VAS”.

ST-Segment Depression ST-segment depression is a morphological feature that is com-
monly linked to ischaemia [195, 246]. However, the exact time points in the ECG at which
ST-amplitude is measured varies [196]. We compute ST-segment depression as follows. First,
we perform a QRS-delineation using the “neurokit2” software package [167] on the com-
plete stress test ECG. Then, we determine the mean isoelectric line for each stress phase of
a given “2-6-2” sequence. For this, we take the mean of the last lPR milliseconds preced-
ing the Q-wave over all heartbeats in a specific stress phase. Similarly, we determine the
mean ST-amplitude for each “2-6-2” stress phase by using the ECG measurement 60 ms af-
ter the J-point. The mean ST-segment depression (difference between mean isoelectric line
and ST-amplitude) is determined for each stress phase (STPre, STStress, STRec). The differ-
ences between STStress/STRec and baseline ST-depression (STPre) are then aggregated over all
“2-6-2” sequences of a patient by using either their mean, median, minimum, or maximum.
Importantly, the physiological response to stress may differ among the three subcohorts (see
Section 3.3.1.1). Therefore, the parameter grid shown in Table 3.5a is evaluated separately
for all three cohorts (see list of relevant subcohorts and their description on page 68) and all
leads.

Static Variable Baseline To evaluate the classification performance of a machine learn-
ing model only trained on static clinical features, we use a random forest (RF) [38] classifier. It
is a powerful non-parametric algorithm able to handle measurements of different scales such
as nominal scales (e.g. previous CAD or sex) or ratio scales (e.g. weight or height) without
the need of any preprocessing. It has been successfully used in a variety of healthcare-related
classification tasks such as disease risk prediction [129] or the identification of high-need and
high-cost patients [189]. A grid search is performed over the parameters shown in Table 3.5b.
To make use of the fact that random forests are effective learners of tabular data, we also com-
bine its scores with the predictions from NIP to evaluate whether the RF learns from clinical
data in a way that complements the neural network. For this, we use both scores (NIP and
RF) and train a logistic regression on the training data set.
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Table 3.5: Parameters grids for ST-segment depression and random forest baselines.

(a) Parameter grid for ST-segment depression baseline.

Parameter Values

Difference computation {STStress − STPre, STRec − STPre}
Difference aggregation {mean, median, min, max}

lPR {20 ms, 40 ms, 100 ms}
(b) Parameter grid for random forest baseline. Full maximum depth means nodes are

expanded until all leaves are pure.

Parameter Values

Num. Trees {25, 50, 100}
Max. num. features {2, 5, 8}

Max. depth {full, 5, 10}
Min. impurity increase {1× 10−5, 1× 10−4, 1× 10−3}

�.�.� Results

First, we report results of the lead and parameter selection experiment to determine prepro-
cessing, input data, and the parameters of the final model. As we will show in Section 3.3.3.1,
the best performing lead for the task is lead V6 when we preprocess the signal with the most
thorough preprocessing scheme. Furthermore, we show that a combination of all auxiliary
tasks improves predictive performance over non-regularised training. In Section 3.3.3.2,
predictive performance and clinical relevance on the held-out test set is presented and fol-
lowed by an investigation into trustworthiness and interpretability of the proposed model.
Throughout this section, we refer to the “Post-Test VAS” score as the human baseline, as it
reflects the cardiologist’s assessment as to whether a patient is at risk for EIMI before any
imaging is ordered. We use this score to augment NIP’s purely algorithmic predictions with
expert experience by combining both as features for a logistic regression.

�.�.�.� Lead & Parameter Selection

We trained 13 × 3 × 3 = 117 neural networks to determine the three best performing
leads on the first split of the development data set. The first number accounts for the 12
individual ECG leads plus one configuration that combines all leads. The second number
represents three preprocessing schemes and is followed by the number of learning rates that
were analysed. For the top three leads, we then performed a grid search as described in Sec-
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Table 3.6: Impact of regularisation strength on mean AUPRC (%) over all splits and learning rates.
Uncertainty is shown as standard deviation. “None” refers to training without any regular-
isation, “Best” to the configuration with highest mean AUPRC. Highest AUPRC is reached
on lead V6 with λMPSSRS = λMPSSSS = 0.5, and λStress = 0.75.

Lead
Regularisation aVR V1 V6

λMPSSRS

0.0 54.71± 1.73 52.47± 1.01 55.94± 1.26
0.25 55.55± 0.87 52.99± 0.45 56.57± 0.60
0.5 55.59± 0.86 52.93± 0.46 56.70± 0.50
0.75 55.56± 0.86 52.93± 0.48 56.81± 0.45
1.0 55.26± 1.07 52.85± 0.48 56.80± 0.47

λMPSSSS

0.0 53.91± 1.36 52.07± 0.83 55.86± 1.18
0.25 55.56± 0.88 53.03± 0.40 56.82± 0.53
0.5 55.82± 0.75 53.10± 0.39 56.90± 0.48
0.75 55.71± 0.77 53.04± 0.38 56.68± 0.48
1.0 55.66± 0.77 52.93± 0.40 56.54± 0.54

λStress

0.0 54.82± 1.05 52.64± 0.64 56.10± 0.76
0.25 55.37± 1.12 52.77± 0.61 56.45± 0.73
0.5 55.36± 1.16 52.88± 0.63 56.70± 0.62
0.75 55.54± 1.17 52.89± 0.62 56.74± 0.85
1.0 55.57± 1.23 52.98± 0.67 56.82± 0.75

None 51.21± 0.17 50.73± 0.58 53.80± 0.21
Best 57.23± 0.68
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Figure 3.12: Performance heatmaps for lead, preprocessing, and regularisation parameter selection.
Prevalence: 34 %. Left: Best AUPRC among three learning rates per lead and prepro-
cessing pipeline. The best three leads are marked with a black asterisk. Right: Results of
the grid search to find the best regularisation parameters. Large rows (separated by white
lines) represent the three best performing leads (aVR, V1, V6). Large columns represent
five settings for λStress (upper x-axis), small columns and rows respective regularisation
values for λMPSSRS and λMPSSSS. The best regularisation combination is marked with a
white asterisk.

tion 3.3.2.3 over all splits leading to a total of 5625 trained networks. The results of both grid
searches are visualised in Figure 3.12. The best performing leads are aVR, V1, and V6 under
the medium, raw, and full preprocessing scheme, respectively. Averaged over all ECG leads,
the full preprocessing pipeline results in a slight performance increase of 0.81/1.19 percent-
age points (AUPRC/AUROC) compared to no preprocessing. The moderate preprocessing
scheme, however, even leads to a small performance drop of 0.28 in AUPRC and 0.58 in AU-
ROC over all leads. The effect of preprocessing is more pronounced in individual leads. The
highest improvements in AUPRC (our selection criterion to determine the model’s parame-
ters) can be observed in leads I (+3.89) and V6 (+2.10) for the medium and full preprocessing
scheme, respectively. Using all ECG signals as input to the residual network slightly increases
predictive performance, but in the spirit of Occam’s Razor (and given the magnitude of the
increase), we decided to excluded the evaluation of this setting in the following steps.

The impact of different regularisation settings is shown on the right hand side of Fig-
ure 3.12. For each configuration, we show the mean AUPRC (over all five splits) of the
best performing learning rate and use a white asterisk to highlight the best setting. The
most striking difference can be seen in the overall performance of lead V1 (large middle
row) yielding a mean AUPRC of 52.89 %. On average, both other leads perform better with
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Figure 3.13: Performance overview on a subcohort without previous coronary artery disease. All pa-
tients in this subcohort were able to complete the exercise stress test without the need for
any pharmacological intervention. The key contains the name of the method and its area
under the curve in percentage.

AUPRCs of 55.93 % (aVR) and 56.92 % (V6). Moreover, the importance of the MPS auxil-
iary tasks are underlined by the performance drop in configurations in which both tasks are
“muted” (λMPSSRS = λMPSSSS = 0). Table 3.6 provides a fine-grained overview of this abla-
tion study. While the differences between individual regularisation strengths are marginal,
we observe that each lead reaches its highest performance when being regularised. Lastly, the
best performance is obtained on lead V6, setting λMPSSRS = λMPSSSS = 0.5, λStress = 0.75,
and using a learning rate of 0.0005. This is the setting used for all subsequent experiments.

�.�.�.� Predictive Performance & Clinical Relevance

After determining the best model, we evaluated its performance on the internal held-out
test set containing 874 patients. We performed our analyses on different subcohorts to shed
light on the robustness of the model over different input distributions. Figure 3.13 depicts
predictive performance of all comparison partners on a subcohort of patients who have no
history of CAD and were able to complete the stress test without pharmacological support.
The odds of suffering from EIMI are significantly increased (p = 2.26× 10−40) for patients
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Table 3.7: Reduction (negative sign) and increase (positive sign) of mean FPR/FNR at high sensitiv-
ity/specificity values with respect to the human baseline. Asterisks indicate the significance
level (0.05 and 0.01) at which the difference is statistically significant. Statistical analy-
sis is based on a Kolmogorov-Smirnov [240] one-sample test and is corrected for multi-
ple hypotheses using Bonferroni correction. The sensitivity/specificity values at which any
method shows both significant decreases in FPR and FNR are marked in bold.

(a) FPR and FNR reduction for the subcohort that has no history of CAD and was able to perform the complete
exercise stress test without requiring pharmacological support.

NIP NIP+ RF RF + NIP
Sens./Spec. ∆ FPR ∆ FNR ∆ FPR ∆ FNR ∆ FPR ∆ FNR ∆ FPR ∆ FNR

0.91 −0.21* −0.05 −0.16 −0.12* −0.25** +0.06 −0.26* −0.06*

0.93 −0.26* −0.06 −0.20 −0.12 −0.26** +0.07* −0.28* −0.04
0.95 −0.31** 0.0 −0.25* −0.07 −0.28** +0.08* −0.30** −0.01
0.97 −0.27** +0.01 −0.20** −0.01 −0.27 +0.08* −0.27** +0.02
0.99 −0.23** +0.02 −0.09* +0.01 −0.15** +0.03** −0.19** +0.02

(b) FPR and FNR reduction for the complete internal held-out data set.

NIP NIP+ RF RF + NIP
Sens./Spec. ∆ FPR ∆ FNR ∆ FPR ∆ FNR ∆ FPR ∆ FNR ∆ FPR ∆ FNR

0.91 −0.13** +0.03 −0.16** +0.01 −0.17** +0.07** −0.17** +0.01
0.93 −0.14** −0.01 −0.17** −0.03 −0.15** +0.03 −0.16** −0.02
0.95 −0.15** 0.00 −0.18** −0.02 −0.15** +0.03 −0.17** −0.01
0.97 −0.15* 0.00 −0.13* −0.03 −0.1 ** +0.04 −0.14* 0.0
0.99 −0.13** +0.01 −0.10** +0.01 −0.07* +0.01 −0.10** 0.0

with previous CAD (odds ratio (OR): 2.64, 95 % confidence interval (CI): 2.28-3.05) over the
whole cohort (p-values were computed using Fisher’s exact test [84]). Moreover, as we will see
in Section 3.3.3.3, existence of previous CAD influences our method the most in predicting
a high EIMI score. Similarly, absence of known CAD tends to reduce the predicted EIMI
score. By reducing the evaluation cohort to patients without a history of CAD, we prevent
all algorithms and the cardiologist from relying on this correlated variable to predict the
presence of EIMI.

In Figure 3.13, we show receiver operating characteristic (ROC) and precision-recall (PR)
curves in the upper left and right plots, respectively. Each opaque line represents the mean
performance of the respective methods when trained on 5 different training splits. Envelopes
show standard deviations. In terms of mean predictive performance, we observe that our

83



3 Time Series Classification

proposed method (NIP) and its extension (NIP+), as well as the random forests (RF and RF
+ NIP) outperform the ST-depression algorithm and the human baseline. Furthermore, the
addition of the cardiologist’s judgement to the neural network approach slightly increases
the AUROC from 76.4 % to 77.3 %. This effect is even more pronounced in mean AUPRC
with an increase from 40.0 % to 43.8 %. We further observe that the random forest’s AUPRC
trained on static clinical variables is on par with the expert opinion (at least on average).
While showing promising overall predictive performance, the weakness of this simple base-
line is illustrated in the left lower plot where we investigate predictive performance in terms
of FNR at high specificity. This setting is of higher clinical relevance than summary met-
rics such as AUROC and AUPRC as it is necessary to maintain a high detection rate of both
classes. The lower plots of Figure 3.13 are augmented and quantified by Table 3.7a, showing

Table 3.8: Performance analysis on three relevant subcohorts: Patients that completed the stress test
on the bicycle, patients on a pharmacological protocol, and patients who needed pharmaco-
logical support during the exercise to reach their target heart rate. The first column contains
a short description of the subcohort, its size, and the prevalence of EIMI.

Subcohort Method AUPRC (%) AUROC (%)

Full Exercise Test
n=481, prev.: 24.5 %

Post-Test VAS 43.86± 0.00 67.4 ± 0.0
NIP 47.16± 1.51 74.84± 0.99
NIP+ 50.82 ± 1.80 76.92 ± 1.03
ST Depression (V4) 28.86± 0.00 59.38± 0.00
RF Clin. Data 41.79± 1.17 73.43± 0.53
RF Clin. Data + NIP 47.71± 1.50 75.44± 0.74

Full Pharma Stress
n=100, prev.: 33.0 %

Post-Test VAS 37.31± 0.00 57.15± 0.00
NIP 45.55± 2.46 69.80 ± 2.77
NIP+ 46.18 ± 2.72 68.84± 2.62
ST Depression (II) 36.04± 0.00 53.64± 0.00
RF Clin. Data 42.97± 3.04 66.03± 1.40
RF Clin. Data + NIP 45.32± 2.50 69.44± 1.65

Combined Stress
n=221, prev.: 34.4 %

Post-Test VAS 45.42± 0.00 57.26± 0.00
NIP 45.76± 0.82 63.38± 1.38
NIP+ 46.07± 1.21 64.24 ± 1.41
ST Depression (V4) 43.60± 0.00 59.71± 0.00
RF Clin. Data 40.93± 2.10 59.61± 0.71
RF Clin. Data + NIP 46.14 ± 0.52 63.48± 0.91
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the differences (∆) in mean FPR/FNR with respect to the human baseline (Post-Test VAS
score). Here, the random forest (purple) shows a statistically significant increase of FNR at
all specificity values over the human baseline (blue). This indicates that there are many pa-
tients suffering from EIMI that the cardiologist detects, but the algorithm does not, making
it a computational approach that does not add any value in the identification of patients at
risk (in contrast, NIP leads to an FNR reduction at 2/5, and NIP+ at 4/5 specificity thresholds).
The most significant benefit of our proposed methods can be observed in the reduction of
false positives (lower right plot in Figure 3.13). At a sensitivity of 0.95, NIP decreases the
FPR of the human baseline from 0.94 to 0.63. NIP can therefore be used as a risk stratifi-
cation tool and help making a decision as to whether a patient should receive a myocardial
perfusion SPECT or not. This way, NIP can identify up to 31 % of the patients without CAD
for which a cardiologist would recommend a myocardial perfusion scan, reducing costs and
the patient’s exposure to radioactive tracers. A similar, yet not as significant, trend can be
observed when we evaluate the performance over the full cohort. Table 3.7b shows results
of this analysis. At a sensitivity/specificity of 0.95, NIP+ continues to reduce the number of
false positives significantly, while showing a slight, non-significant drop in FNR.

�.�.�.� Trust and Interpretability

Schlesinger and Stultz [225] stressed the importance of trustworthiness and interpretability
of risk stratification models in cardiology. According to the authors, having trust in a model
means to understand whether it performs well on a physician’s specific patient. It is therefore
crucial to identify cohorts of the population for which the model performs particularly well
and especially poorly. Furthermore, for the cardiologist who interacts with the risk model,
it is critical to understand what precisely the model “has learnt” and whether its internal
representation is consistent with the physician’s knowledge about the phenotype. To address
the issue of trust, we evaluate the model’s performance on a variety of subcohorts that are
important in the context of exercise stress testing. Regarding interpretability, we perform an
analysis of SHAP values [163] on population level and a case study on a selected patient to
illustrate what our model “has learnt”.
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Table 3.9: Detailed performance analysis on patients who underwent full exercise test.

Subcohort Method AUPRC (%) AUROC (%)

Female
Full Exercise Test
No Prev. CAD
n=131, prev.: 6.1 %

Post-Test VAS 26.31 ± 0.00 49.60± 0.00
NIP 15.37± 3.10 71.88± 1.02
NIP+ 18.95± 5.01 64.74± 2.96
ST Depression (V4) 7.61± 0.00 52.26± 0.00
RF Clin. Data 16.23± 4.34 71.85± 4.09
RF Clin. Data + NIP 16.46± 4.44 72.34 ± 1.84

Male
Full Exercise Test
No Prev. CAD
n=177, prev.: 27.1 %

Post-Test VAS 42.55± 0.00 66.55± 0.00
NIP 45.54± 3.26 70.52± 1.74
NIP+ 49.47 ± 3.72 73.08 ± 1.72
ST Depression (V4) 29.65± 0.00 56.87± 0.00
RF Clin. Data 36.39± 1.57 66.99± 1.72
RF Clin. Data + NIP 44.76± 1.56 71.20± 1.13

Female
Full Exercise Test
Prev. CAD
n=32, prev.: 18.8 %

Post-Test VAS 59.18 ± 0.00 75.64 ± 0.00
NIP 23.34± 4.20 57.87± 6.33
NIP+ 28.06± 1.67 63.50± 3.89
ST Depression (V4) 17.84± 0.00 43.55± 0.00
RF Clin. Data 46.27± 7.19 72.96± 4.82
RF Clin. Data + NIP 27.61± 7.76 60.65± 6.44

Male
Full Exercise Test
Prev. CAD
n=141, prev.: 39.7 %

Post-Test VAS 58.07± 0.00 68.80± 0.00
NIP 56.34± 0.67 65.88± 0.76
NIP+ 60.27 ± 1.15 69.79 ± 0.70
ST Depression (V4) 47.19± 0.00 61.30± 0.00
RF Clin. Data 46.19± 1.77 56.14± 1.64
RF Clin. Data + NIP 56.63± 0.72 66.13± 0.65
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Table 3.10: Detailed performance analysis on patients who were not able to exercise and underwent
complete pharmacologically-induced stress.

Subcohort Method AUPRC (%) AUROC (%)

Female
Full Pharma Stress
No Prev. CAD
n=24, prev.: 8.3 %

Post-Test VAS 6.74± 0.00 40.91± 0.00
NIP 13.88± 2.82 71.71± 4.22
NIP+ 11.87± 5.90 59.95± 6.20
ST Depression (II) 16.51± 0.00 79.40 ± 0.00
RF Clin. Data 18.21 ± 17.99 58.14± 10.52
RF Clin. Data + NIP 13.17± 4.05 68.09± 7.87

Male
Full Pharma Stress
No Prev. CAD
n=19, prev.: 42.1 %

Post-Test VAS 44.17± 0.00 53.95± 0.00
NIP 62.58 ± 8.70 64.02± 6.80
NIP+ 62.03± 7.87 67.86 ± 7.98
ST Depression (II) 34.56± 0.00 39.82± 0.00
RF Clin. Data 43.09± 5.48 54.75± 8.76
RF Clin. Data + NIP 61.46± 7.43 63.57± 6.14

Female
Full Pharma Stress
Prev. CAD
n=13, prev.: 30.8 %

Post-Test VAS 29.19± 0.00 58.33± 0.00
NIP 82.82 ± 6.80 83.72 ± 8.13
NIP+ 78.68± 5.76 77.09± 5.39
ST Depression (II) 30.44± 0.00 52.76± 0.00
RF Clin. Data 39.65± 9.21 59.40± 7.16
RF Clin. Data + NIP 80.83± 7.31 83.17± 8.05

Male
Full Pharma Stress
Prev. CAD
n=44, prev.: 43.2 %

Post-Test VAS 48.03± 0.00 59.91 ± 0.00
NIP 42.33± 1.49 52.60± 2.79
NIP+ 42.72± 2.66 53.32± 2.17
ST Depression (II) 57.26 ± 0.00 56.35± 0.00
RF Clin. Data 43.97± 5.32 51.44± 4.03
RF Clin. Data + NIP 42.12± 1.74 51.71± 2.63
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Table 3.11: Detailed performance analysis on patients who started the stress test on the bicycle but
needed pharmacological support to reach their target heart rate.

Subcohort Method AUPRC (%) AUROC (%)

Female
Combined Stress
No Prev. CAD
n=50, prev.: 20.0 %

Post-Test VAS 20.07± 0.00 58.50 ± 0.00
NIP 18.92± 2.06 50.20± 3.69
NIP+ 19.33± 1.79 52.36± 2.99
ST Depression (V4) 22.23± 0.00 53.02± 0.00
RF Clin. Data 23.42 ± 5.31 47.97± 2.34
RF Clin. Data + NIP 18.97± 2.04 48.64± 3.32

Male
Combined Stress
No Prev. CAD
n=45, prev.: 35.6 %

Post-Test VAS 62.72 ± 0.00 60.16± 0.00
NIP 47.22± 3.63 63.61± 3.88
NIP+ 50.49± 1.82 64.53± 3.54
ST Depression (V4) 52.80± 0.00 58.83± 0.00
RF Clin. Data 39.99± 2.89 58.41± 2.52
RF Clin. Data + NIP 47.80± 2.45 64.69 ± 2.59

Female
Combined Stress
Prev. CAD
n=22, prev.: 22.7 %

Post-Test VAS 35.86 ± 0.00 48.86± 0.00
NIP 27.45± 5.22 58.38 ± 2.42
NIP+ 27.30± 5.13 56.45± 4.21
ST Depression (V4) 22.07± 0.00 54.12± 0.00
RF Clin. Data 18.95± 4.24 40.73± 7.68
RF Clin. Data + NIP 23.31± 1.53 54.16± 6.36

Male
Combined Stress
Prev. CAD
n=104, prev.: 43.3 %

Post-Test VAS 49.54± 0.00 56.44± 0.00
NIP 52.83± 2.15 61.07± 2.41
NIP+ 52.46± 1.91 62.71 ± 2.06
ST Depression (V4) 57.08 ± 0.00 62.54± 0.00
RF Clin. Data 43.59± 3.74 48.53± 3.16
RF Clin. Data + NIP 53.09± 1.71 60.91± 2.53

Subcohort Analysis The three main subcohorts in a stress test are 1. patients who under-
went pure exercise stress test, 2. patients who started exercising but needed pharmacological
support to reach their target heart rate, and 3. patients who were not able to exercise alto-
gether and for whom a full pharmacological protocol was executed. Table 3.8 shows that in
all three subcohorts, methods that include a “NIP component” always outperform the other
methods in terms of AUROC and AUPRC. We observe the largest increase over the human
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baseline (Post-Test VAS) in the cohort tested using the full pharmacological protocol. The
highest performance in terms of AUPRC was achieved in the full exercise cohort in which
the gain in AUPRC over the prevalence was also highest (a random classifier will achieve an
AUPRC that is equal to the prevalence). Schlesinger and Stultz [225] also pointed out the
importance of understanding for which patient population a risk model may underperform.
We therefore analysed the subcohorts from above in more detail as shown in Tables 3.9, 3.10,
and 3.11. However, as the first cohort (i.e. patients that underwent pure exercise testing)
represents the largest number of patients, this subgroup will be the focus of the following
discussion. Among the subcohort of patients that underwent full exercise stress testing (Ta-
ble 3.9), males are overrepresented, making up almost 90 % of the cases. As this was also
reflected in the training set, we observe higher performance gains in males than in female
patients. However, there is still a notable performance increase over the human baseline
in terms of AUROC in female patients who have no history of CAD. To further investigate
clinically relevant metrics in this subcohort, we performed the same FPR/FNR analysis as in
Table 3.7, where we showed the reduction/increase in mean FPR/FNR compared to the hu-
man baseline. The results are shown in Tables 3.12, 3.13, and 3.14. A method/threshold pair
is considered relevant if the method shows a decrease in either FNR or FPR and no increase
in the other metric. If this is the case, both values are highlighted in bold. If all entries of
a stratum are relevant, the subcohort description is shown in bold. To compute the delta at
the shown sensitivity and specificity levels, we performed a linear interpolation on all meth-
ods’ FPR/FNR values. From this follows that approaches for which no decision threshold
leads to a sensitivity/specificity value higher than 0.91, the linear imputation of FPR/FNR
may result in an inaccurate delta. If this was the case for the Post-Test VAS score, entries are
shown in grey. Focusing on black bold entries only, the largest decrease in FNR combined
with a significant reduction in FPR was achieved by NIP+ at a sensitivity/specificity thresh-
old of 0.91 for male patients with no history of CAD who were able to complete the exercise
test. Moreover, we observe that NIP+ shows the highest number of relevant pairs (23) over
all subcohorts, followed by NIP (18), underlining the relevance of a collaborative approach
where network scores are combined with a physician’s judgement.
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Table 3.12: Performance analysis on patients who underwent full exercise stress testing. A method
is considered relevant and marked in bold if for a given sensitivity/specificity one met-
ric (FPR or FNR) is decreased while to other is at least not increased. Grey values indi-
cate that the results may be inaccurate due to interpolation from sensitivities/specificities
smaller than 0.91 for Post-Test VAS.

NIP NIP+ RF RF + NIP
Subcohort Sens./Spec. ∆ FPR ∆ FNR ∆ FPR ∆ FNR ∆ FPR ∆ FNR ∆ FPR ∆ FNR

Female
Full Exercise Test
No Prev. CAD

0.91 −0.42** +0.12** −0.20** −0.03 −0.47** +0.12 −0.41** +0.10
0.93 −0.41** +0.14** −0.18** +0.01 −0.42** +0.18* −0.39** +0.11**

0.95 −0.41** +0.23** −0.17** +0.07 −0.36** +0.22 −0.37** +0.21**

0.97 −0.40** +0.12** −0.15* +0.07 −0.30** +0.11 −0.35** +0.11
0.99 −0.40* +0.02 −0.13 +0.02 −0.24 +0.02 −0.33 +0.02

Male
Full Exercise Test
No Prev. CAD

0.91 −0.10 −0.09 −0.16* −0.11 −0.13 +0.11* −0.15* −0.04
0.93 −0.12 0.0 −0.15 −0.07 −0.14 +0.11 −0.15 +0.02
0.95 −0.14 0.0 −0.14* −0.05 −0.13 +0.09* −0.17 +0.02
0.97 −0.12 +0.04 −0.14 0.00 −0.10 +0.08** −0.17 +0.03
0.99 −0.16 −0.01 −0.19 −0.01 −0.13* 0.00 −0.19 −0.01

Female
Full Exercise Test
Prev. CAD

0.91 +0.31 +0.38** +0.21** +0.33** 0.0 +0.12 +0.24 +0.33*

0.93 +0.22 +0.43** +0.15* +0.43** −0.04 +0.19** +0.15 +0.39**

0.95 +0.12 +0.48** +0.10 +0.48** −0.08 +0.31** +0.07 +0.44**

0.97 +0.03 +0.31** +0.04 +0.31** −0.13 +0.23** −0.01 +0.29**

0.99 −0.06 +0.06** −0.01 +0.06** −0.17 +0.05** −0.09 +0.06**

Male
Full Exercise Test
Prev. CAD

0.91 +0.03 +0.13** −0.10 +0.11** +0.11 +0.17** +0.04 +0.13**

0.93 +0.03 −0.04 −0.11 −0.06 +0.08 +0.03 +0.07 −0.04
0.95 +0.03 −0.07** −0.11 −0.09** +0.08 +0.01 +0.05 −0.07**

0.97 +0.01 −0.07 −0.07 −0.10** +0.07 +0.01 +0.03 −0.06
0.99 +0.01 −0.01 0.00 −0.02 +0.05 0.00 +0.03 −0.01
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Table 3.13: Performance analysis on patients who underwent full pharmacological stress testing. A
method is considered relevant and marked in bold if for a given sensitivity/specificity one
metric (FPR or FNR) is decreased while to other is at least not increased. The first column
is bold if this is the case for all methods of that subcohort. Grey values indicate that the
results may be inaccurate due to interpolation from sensitivities/specificities smaller than
0.91 for Post-Test VAS.

NIP NIP+ RF RF + NIP
Subcohort Sens./Spec. ∆ FPR ∆ FNR ∆ FPR ∆ FNR ∆ FPR ∆ FNR ∆ FPR ∆ FNR

Female
Full Pharma Stress
No Prev. CAD

0.91 −0.22** 0.0 −0.19* −0.09 −0.13 −0.10 −0.22** 0.0
0.93 −0.30** 0.0 −0.22** −0.05 −0.18 −0.10 −0.27* 0.0
0.95 −0.37** 0.0 −0.24** −0.01 −0.23 −0.10 −0.33** 0.0
0.97 −0.45** 0.0 −0.27* 0.0 −0.28 −0.06 −0.39** 0.0
0.99 −0.53** 0.0 −0.29 0.0 −0.33 −0.01 −0.45** 0.0

Male
Full Pharma Stress
No Prev. CAD

0.91 −0.07 −0.28 −0.16 −0.17 −0.10 −0.02 −0.06 −0.24
0.93 −0.14 −0.22 −0.19 −0.13 −0.14 −0.02 −0.13 −0.18
0.95 −0.21 −0.15 −0.22 −0.09 −0.17 −0.01 −0.19 −0.12
0.97 −0.28 −0.08 −0.24 −0.05* −0.21 −0.01 −0.25 −0.07
0.99 −0.35* −0.02 −0.27 −0.01 −0.25* 0.00 −0.31** −0.01

Female
Full Pharma Stress
Prev. CAD

0.91 −0.54** −0.60** −0.47 −0.55** −0.19 −0.08 −0.49* −0.55**

0.93 −0.46 −0.46** −0.35 −0.42** −0.18 −0.07 −0.43 −0.42**

0.95 −0.38 −0.31** −0.24 −0.29** −0.16 −0.04 −0.37 −0.29**

0.97 −0.30 −0.18** −0.12 −0.16** −0.15 −0.03 −0.32 −0.16**

0.99 −0.22 −0.03** −0.01 −0.03** −0.14 −0.01 −0.26 −0.03**

Male
Full Pharma Stress
Prev. CAD

0.91 +0.01 +0.15** +0.07 +0.13 +0.18* +0.11 +0.06 +0.15**

0.93 +0.02 +0.05 +0.07 +0.06 +0.17** +0.04 +0.08 +0.05
0.95 +0.02 +0.01 +0.06 +0.02 +0.17** 0.0 +0.10 +0.01
0.97 +0.01 −0.01 +0.05 0.0 +0.16** −0.01 +0.07 −0.01
0.99 −0.01 0.00 +0.04 0.00 +0.16** 0.00 +0.05 0.00
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Table 3.14: Performance analysis on patients who underwent combined stress testing. A method
is considered relevant and marked in bold if for a given sensitivity/specificity one met-
ric (FPR or FNR) is decreased while to other is at least not increased. Grey values indi-
cate that the results may be inaccurate due to interpolation from sensitivities/specificities
smaller than 0.91 for Post-Test VAS.

NIP NIP+ RF RF + NIP
Subcohort Sens./Spec. ∆ FPR ∆ FNR ∆ FPR ∆ FNR ∆ FPR ∆ FNR ∆ FPR ∆ FNR

Female
Combined Stress
No Prev. CAD

0.91 +0.18* −0.02 +0.09 −0.02 +0.29** −0.06 +0.23** −0.02
0.93 +0.16** −0.01 +0.06 0.0 +0.25** −0.04 +0.21** 0.0
0.95 +0.15* 0.0 +0.03 0.0 +0.21* −0.04 +0.18** 0.0
0.97 +0.13* 0.0 −0.01 0.0 +0.17 −0.04 +0.16** 0.0
0.99 +0.11 0.0 −0.04 0.0 +0.13 −0.01 +0.14* 0.0

Male
Combined Stress
No Prev. CAD

0.91 −0.18 +0.31** −0.19 +0.27** −0.16** +0.38** −0.19 +0.32**

0.93 −0.13 +0.31** −0.10 +0.28** −0.15** +0.38** −0.15 +0.32**

0.95 −0.09 +0.32** −0.05 +0.30** −0.11** +0.37** −0.12 +0.32**

0.97 −0.07 +0.23** −0.04 +0.22** −0.07 +0.26** −0.10 +0.23**

0.99 −0.05 +0.05** −0.03 +0.04** −0.04 +0.05** −0.08 +0.05**

Female
Combined Stress
Prev. CAD

0.91 −0.49** +0.13 −0.38* +0.13 −0.24* +0.17* −0.44** +0.15
0.93 −0.45** +0.15 −0.34** +0.15 −0.23 +0.19** −0.39* +0.18**

0.95 −0.41** +0.12 −0.30** +0.12 −0.21 +0.15** −0.34* +0.15**

0.97 −0.37** +0.07 −0.26* +0.07 −0.19 +0.08** −0.29* +0.08**

0.99 −0.33 +0.01 −0.22 +0.01 −0.17* +0.02** −0.25 +0.02**

Male
Combined Stress
Prev. CAD

0.91 −0.12 +0.04 −0.13 +0.09** −0.01 +0.10** −0.09 +0.05*

0.93 −0.12 +0.01 −0.13 +0.05 −0.02 +0.05* −0.09 +0.02
0.95 −0.11 0.00 −0.10 +0.03 −0.02 +0.01 −0.08 −0.01
0.97 −0.09 0.0 −0.08 +0.01 −0.02 0.0 −0.05 −0.01
0.99 −0.08 0.00 −0.06** 0.00 −0.03* 0.00 −0.05 0.00

Interpretability According to Biran and Cotton [22], a machine learning system is in-
terpretable if a human can understand its operations. This understanding may be developed
through introspection or through a produced explanation. Providing useful explanations
for predictions is crucial for user acceptance of a decision support system, particularly in a
healthcare context [258]. The reasons why interpretable machine learning models are desir-
able are manifold and Lipton provides a useful taxonomy [156]. In addition to building trust
in the model, desiderata of machine learning interpretability are the inference of causal rela-
tionships in the real world, transferability of a model to unfamiliar situations, the provision
of useful information to a human decision maker, and the assessment of fairness and ethics
in automated decision-making. Lipton not only answers the question as to why a machine
learning model should be interpretable but also provides two model properties that com-
prise or enable interpretations: Transparency and post-hoc interpretability. In this section,
we focus on post-hoc interpretability and provide the physician with visualisations that shed
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Figure 3.14: SHAP values for all clinical variables computed on the held-out test set.

light on the features that were the driving factors leading to a predicted outcome. This way,
the cardiologist can assess whether the way the model “sees” a patient is consistent with their
knowledge about the pathology.

To do so, we utilise SHapley Additive exPlanations (SHAP) [163], a game-theoretic ap-
proach to explain the outputs of machine learning models. SHAP values provide a score
that measures the contribution of each feature to the prediction. A positive SHAP value in-
dicates that a given feature contributes to the prediction of the positive class (presence of
EIMI). Conversely, a feature with negative SHAP value influences the model towards pre-
dicting the negative class (absence of EIMI). Figure 3.14a depicts the SHAP values of each
clinical variable from all patients of the held-out test set. Each dot represents the mean SHAP
value over all five splits. History of CAD and sex show a distinct separation, where the bi-
nary values both variables can take always lead to either increased or decrease SHAP values.
The individual contributions of both features range between comparatively high values of
−1.05/−0.80 (CAD history) and 0.66/0.68 (sex), respectively. More precisely, presence of
CAD or being male consistently contributes to a higher predicted risk score for suffering
from EIMI. A similar, yet less distinctive pattern can be observed for the age variable. In
some cases, the age of younger patients may even reduce the predicted risk for EIMI more
than a history of CAD. In addition to the “direction” a feature contributes to the predicted
score, Figure 3.14b shows a feature’s absolute impact. This analysis underlines the importance
of CAD history and sex as predictive features. Using Welch’s t-test for independent samples,
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(b) “2-6-2” sequence for the selected patient with SHAP values for each individual measurement (blue). Higher
SHAP values accumulate around R-peaks and ST-segments of the stress-phase. In the pre-stress phase, where
almost no ST-depression is visible, SHAP values around the ST-segment are close to zero.

Figure 3.15: SHAP value case study of a 83 year old patient with no history of CAD and a predicted
risk score of 0.77. The three clinical variables contributing the most to an increased score
are sex, age, and systolic blood pressure at rest.

both variables exhibit significantly higher SHAP values (p = 0.003 for gender, 0.0008 for
CAD history) compared to the age variable.

In addition to performing a population-wide feature relevance analysis, SHAP values also
allow for sample-specific analyses. In Figure 3.15, we show a case study of a 83 year old male
patient with no previous CAD. The first row of Figure 3.15a depicts the distributions of all
clinical features from the training population. In pink, we show where the patient lies with
respect to the training distribution (i.e. the distribution the network “knows”). The second
row shows the distribution of SHAP values over five iterations. Moreover, we show the influ-
ence of individual measurements of the input ECG in Figure 3.15b. We only show positive
SHAP values to get a better understanding which ECG patterns the network associates with
ischaemia. The mean risk-score NIP provides for this ischaemic patient is 0.77 (1.0 is the
maximum score that can be reached; 0.0 the minimum). Notwithstanding the “wrong” di-
rection, among the clinical variables, the absence of a previous CAD contributes the most to
the model’s prediction (mean SHAP value of −0.10). A signal in the same direction (mean
SHAP value of −0.07) is provided by the comparatively low resting heart rate of 67 BPM.
While weight, height and diastolic blood pressure influence the model only marginally (and
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in both directions), the fact that the patient is male contributes the most towards a higher risk
score (positive SHAP value). Similarly, the patient’s age, which lies above the upper quartile
of the training distribution, pushes the model towards a higher score. Lastly, the slightly el-
evated systolic blood pressure (129 mmHg) also contributes to the prediction of the positive
class. The largest contribution that increases the model’s output comes from the ECG. The
mean SHAP value for the whole signal is 2.31. Figure 3.15b highlights that some regions of
the ECG contribute more to a higher EIMI score than others. The highest SHAP values can
be observed in the part of the input signal that comes from the stress phase of the examina-
tion. Measurements around the R-peak and more strikingly around the ST-segment in the
stress and partially in the recovery phase result in higher SHAP values than other segments
of the ECG. The latter observation is a data-driven and a priori domain-agnostic confirma-
tion of the relevance of ST-segment depression in the diagnosis of ischaemia [195, 196, 246].

This is underlined by the fact that in the pre-stress phase, where almost no ST-depression is
visible, SHAP values around the ST-segment are close to zero.

�.�.� Conclusion

In this section we introduced a deep-learning based system for the prediction of exercise-
induced myocardial ischaemia. First, we showed that a certain degree of signal preprocess-
ing was necessary to reach high predictive performance, even when using deep learning. We
also demonstrated that for the task at hand, the signal of a single lead (V6) could be almost
as informative as learning from all 12 leads simultaneously. Second, we evaluated the value
of multi-task learning through an ablation study that assessed three types of inductive bi-
ases related to ischaemia. The best combination yielded a performance increase of almost 5
percentage points in AUPRC. Finally, we showed that, in combination with the expert judge-
ment of a cardiologist, our method was able to reduce false positive and false negative rates
significantly while maintaining high sensitivity and specificity in a subcohort of patients with
no previous CAD. To increase transparency and interpretability of our model, we performed
a SHAP value analysis, which allows the treating cardiologist to understand the input and
output of the deep learning system better. This way, we exemplified in a case study, that ab-
normalities of the ST-segment contribute to an increased predicted outcome, an observation
that aligns with our current knowledge about the physiological manifestation of ischaemia.

We believe that this work shows how collaborative machine learning approaches can yield
significant performance improvements at clinical relevance in the classification of complex
cardiac pathologies. While the internal assessment is encouraging, to demonstrate the gen-
eralisation capabilities of our system, a validation on an externally acquired data set is nec-
essary. It will be particularly interesting to see how our model is transferable to a stress test
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setting that uses treadmill instead of bicycle exercise. For future work, we therefore envi-
sion to evaluate NIP on the telemetric and Holter ECG warehouse (THEW) [57] data set that
provides data from a similar study population. In addition to an external validation, it is
crucial to establish the clinical added value of our system in a prospective study. This would
entail not only the investigation of the realisation of “promised” reduction in false positives
and negatives but also the extent to which the physician’s judgement is influenced by a) be-
ing provided with a risk score altogether, and b) being provided with the SHAP values that
make the algorithm more transparent. Follow-up studies like this are crucial to sustainably
reshape the field of cardiology and increase the acceptance of “black-box” machine learning
as decision-support systems in healthcare in general.
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� Time-Varying Graphs

In which we analyse time series of graphs as a rep-

resentation of artificial neural networks using per-

sistent homology.

After focusing on real-valued time series of sensor measurements in the preceding chap-
ters, this last chapter revolves around time series of structured objects. As outlined in the in-
troduction, this view generalises the “classical” perspective on time series and aims to provide
a holistic approach to time series modelling. By considering a time-evolving object’s proper-
ties as a unit and treating them accordingly, we can develop expressive and domain-specific
time series analysis algorithms. In this regard, a framework for the principled analysis of
object-valued time series is developed at the end of Section 5. Graphs or networks repre-
sent a structured data type of particular interest in biomedicine and the life sciences. They
appear as protein-protein interaction networks [296], metabolic pathways [64, 171], repre-
sentations of molecules [247], biomedical knowledge graphs [116], or as representations of
neural connectivity in the brain [209]. In the following sections, we will develop a method
to investigate the learning behaviour of artificial neural networks. Our method is rooted in
persistent homology (PH), a technique from the field of topological data analysis that pro-
vides tools to describe the structure of manifolds. The relation to object-valued time series is
made by viewing the network as a stratified graph whose edges change during training. We
show that by measuring a network’s structural complexity, we are able to make statements
about its predictive performance and generalisation capabilities. The following publication
is the foundation of this chapter:

• B. Rieck†, M. Togninalli†, C. Bock†, M. Moor, M. Horn, T. Gumbsch, and K. Borgwardt. “Neu-

ral Persistence: A Complexity Measure for Deep Neural Networks Using Algebraic Topology”.

In: International Conference on Learning Representations (ICLR). 2019. doi: 10.3929/ethz-

b-000327207

The next sections are structured in the following way: We first provide a brief and self-
contained introduction into the problem setting and persistent homology. Subsequently, we
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present a novel complexity measure for artificial neural networks and detail its properties be-
fore illustrating its advantages over comparable graph-theoretical measures. In Section 4.3.3,
we illustrate a correlation between deep learning best practices and our measure, and eval-
uate an early stopping criterion that uses the network’s structural complexity alone. We end
this chapter by highlighting the importance of the field of topological machine learning that
emerged over the last years.

�.� Introduction

In the last chapter, we focused on time series in the “classical” sense: a low-dimensional
sequence of observations (e.g. measurements of vital signs). While many objects such as ar-
rowheads or leaves can be treated as time series [288], we continue to analyse objects that
change over time. More specifically, this chapter revolves around how the structure of deep
artificial neural networks changes during training. To investigate this behaviour, we inter-
pret individual layers of a neural network as stratified graphs whose edge weights are chang-
ing as part of the fitting process. Using methods from topological data analysis (TDA), we
measure changes of a network’s structural complexity while being fitted to shed light on the
relationship between generalisability and network structure. This is of specific interest to the
machine learning community as the practical and unprecedented successes of deep learning
in fields such as biomedicine [50, 125, 199, 200] or language translation [13, 40, 253] continue
to outpace our theoretical understanding. Particularly, formal measures that shed light on
the generalisation capabilities of neural networks are yet to be identified [294].

Hitherto, the focus of approaches for improving our practical and theoretical understand-
ing was on interrogating networks using input data. Such methods include

i) the analysis of sensitivity and relevance of features [175],

ii) the visualisation of feature importances in deep convolutional neural networks [163, 244,

292],

iii) information theory-based investigations of the training process [1, 222, 235, 260], and

iv) statistical analyses of weight interactions [266].

Furthermore, Raghu et al. [198] use their expressivity measure to explore the benefits of batch
normalisation and to define a novel regularisation method. However, the authors underline
that providing informative insights in combination with theoretical generality remains to
be an important challenge. In the following sections, we introduce a method that aims to
explain the inner workings of neural networks considering both these aspects.
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4.2 Topological Data Analysis and Persistent Homology

We propose neural persistence (NP), a novel measure for characterising a network’s struc-
tural complexity. Neural persistence adopts a novel perspective that integrates the network’s
connectivity and weights without interrogating it using input data. We build our method
using topological data analysis, a set of techniques from algebraic topology. In the context
of machine learning, TDA showed promising results in feature extraction [109, 110, 111, 112],

to learn hidden representations that respect topological properties of the input data [177], or
to characterise the decision boundary of neural networks [21, 99]. Lastly, Khrulkov and Os-
eledets [130] used TDA to describe the complexity of GAN sample spaces. In a broader scope,
this work complements existing graph signal processing approaches [132, 135, 197] by inves-
tigating network topology at multiple scales using persistent homology. More specifically,
in the following sections, we rephrase fully-connected neural networks into the language of
algebraic topology and assess the structural complexity of i) individual layers, and ii) the
entire network. Finally, we demonstrate the utility of neural persistence by developing an
NP-based early stopping criterion that does not necessitate a separate validation set, making
our method one of the few approaches [73, 166] that frees data to be used for training.

�.� Topological Data Analysis and Persistent Homology

Topological data analysis is a growing field that utilises the mathematical framework of alge-
braic topology to provide computational tools for analysing complex data. Over the past few
years, TDA has seen wide adaption in the machine learning community. More specifically,
TDA has been used in various ways along the machine learning pipeline ranging from fea-
ture extraction for subsequent use in ML models [205], to methods that use TDA to analyse
the model [297], to works that use TDA to influence model training itself [208]. For a thor-
ough review of the field of topological machine learning, please refer to the overview article
by Hensel et al. [106].

Similar to many works in topological machine learning, we use PH, a theory developed
to understand high-dimensional manifolds [74, 75] as the foundation of the method we de-
velop in the following sections. PH has been used to characterise graphs [206, 238], to find
relevant features in unstructured data data [162], and to analyse image manifolds [44]. In this
section, we will introduce the key concepts our method builds upon; we will follow the defi-
nitions provided by Rieck [204] and introduce abstract simplicial complexes and their build-
ing blocks. This view differs from the geometrical one (e.g. see Edelsbrunner and Harer [74,

Part III] or Bredon [37, pp. 245-250]) and will allow us to use them for our computational
purposes. A simplicial complex is a data structure used to represent topological spaces in
a manner that is amenable to computational efforts. The constituent building blocks of a
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4 Time-Varying Graphs

simplicial complex are called simplices and can take the form of points, edges, triangles, and
their higher-dimensional equivalents [204].

Definition 4.1 (Abstract Simplex). Any subset of cardinality k+1 of a family of sets is called
a k-simplex. In the context of this thesis, we can think of a 0-simplex as node, a 1-simplex as
edge, and a 2-simplex as triangular face [204, Definition 3.2]. A geometric representation of
three k-simplices is shown in Figure 4.1a.

Abstract Simplicial Complexes A simplicial complex K is a high-dimensional gener-
alisation of a graph commonly used for the description of objects such as manifolds and
defined as follows.

Definition 4.2 (Abstract Simplicial Complex [204, Definition 3.3]). Given a family of sets K
with a collection of subsets L, K is called an abstract simplicial complex if:

1. {v} ∈ L for all v ∈ K. The sets of the form {v} are the vertices of the simplicial
complex.

2. If σ ∈ L and τ ⊆ σ, then τ ∈ L. We will refer to τ as face of σ.

The first property requires that the complex contains all 0-simplices (i.e. vertices); the sec-
ond one ensures that the simplices only intersect along shared boundaries. In the following
sections, we will investigate the temporal behaviour of graphs, which, as it turns out, are
represented by the so-called 1-skeleton of a simplicial complex.

Definition 4.3 (k-skeleton of a simplicial complex). Given a simplicial complex K, the sub-
complex containing all simplices with dimension ≤ k is called the k-skeleton of K. The 1-
skeleton contains only vertices and edges and is thus a graph [204, Definition 3.4].

One notion to describe the connectivity of K is called simplicial homology. It uses matrix
reduction algorithms [180] to derive a description of the topology of K. More precisely, it de-
rives a set of such descriptors called homology groups. These features of dimension d include
connected components (d = 0), tunnels (d = 1), and voids (d = 2) and are colloquially re-
ferred to as holes. The so-called dth Betti number βd counts the number of d-dimensional
features (i.e. it summarises the information of the dth homology group). For instance, a cir-
cle has the Betti numbers (β0, β1) = (1, 1), i.e. a single connected component and a single
tunnel. In contrast, a filled circle has Betti numbers (1, 0), i.e. a single connected component
but no tunnel.
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4.2 Topological Data Analysis and Persistent Homology

(a) Examples of k-simplices: Vertex (k=0),
edge (k=1), and triangle (k=2).

τ1τ0

a = dist

(b) Snapshot from a filtration process. Vertices are connected if their distances
reach a specific threshold. In the left step, two connected components are
present (β0 = 2), one step later, only one is left (β0 = 1).

Figure 4.1: Example of k-simplices and two steps from a filtration process.

Persistent Homology When it comes to the analysis of real-world data (e.g. graph data
sets or neural networks), Betti numbers are limited in their use as they are too coarse and un-
stable to expressively describe an object. A more fine-grained method to trace the topology
of an object is persistent homology (PH). It provides descriptions of a given object in terms of
scales over which features in a homology group persist. More specifically, given a simplicial
complex whose simplices are endowed with m function values a1 < a2 < · · · < am, we can
build a nested sequence of simplicial complexes

∅ = K0 ⊆ K1 · · · ⊆ Km = K, (4.1)

where Ki = K(ai) is the sublevel set of K at ai, i.e. the set of simplices in K whose function
value is less than or equal to ai. This sequence is called filtration and it is common to think
of the function values ai as scale parameters that allow us to investigate topological proper-
ties of a single object at different scales. Due to the order of function values, Equation 4.1
describes the growth process of K. Figure 4.1b depicts two steps of this growth process. By
endowing each potential edge with the distance between the connected vertices, we include
all edges in the simplicial complex at step i if their function value is less than or equal to 2τi.
The balls drawn around each vertex help to build an intuition of how the filtration comes
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0

0

τc

τd

Figure 4.2: Illustration of the filtration process of a point-cloud and the resulting persistence dia-
gram (PD). All connected components (i.e. 0-dimensional topological features) are created
at τc = 0 (first panel). At the threshold shown in the second panel, both purple points are
merged with their closest neighbouring connected components. The thresholds at which
these merges occurred are visualised in the persistence diagram in purple. The last visu-
alised filtration step shows the appearance (τc > 0) of a 1-dimensional topological fea-
ture (i.e. a tunnel) highlighted in orange. As soon as all points are connected (not shown),
this tunnel vanishes and its destruction threshold is represented by the orange point in
the persistence diagram. Note that we use one PD to show both 0- and 1-dimensional
topological features.

into place: We start with τ0 = 0 and increase1 it until all vertices are connected. There are
two topological events that can occur during this growth of K. First, a new connected com-
ponent may be created when a vertex is added, and second, two connected components may
merge into one, thereby destroying one of them. These changes are tracked by persistent
homology, storing creation and destruction of a topological feature as a tuple of the form
(ai, aj) ∈ R2 for i ≤ j in a so-called persistence diagram (PD) as shown in Figure 4.2. We
denote the collection of all tuples that correspond to d-dimensional topological features (i.e.
the dth PD) byDd. Each point inDd can be summarised by a quantity called persistence: For
a given point (x, y), we have pers(x, y) = |x − y|. Persistence enables us to rank topolog-
ical features by how long they “live” during the filtration process and provides a measure of
feature relevance. A topological feature with small persistence is destroyed briefly after its
construction, a small scale event which is considered noise [75]. In contrast, a feature that
persists over multiple filtration thresholds is considered a topologically relevant feature. The
sum over all persistence values of a PD summarises the activity of topological features, where
high values correspond to a more structured input, whereas low values indicate a high level
of (topological) noise.

1In the development of our method, however, we will start with a fully connected graph and continuously
decrease the distance threshold.
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4.3 Persistent Homology and Neural Network Complexity

�.� Persistent Homology and Neural Network Complexity

The following sections are based on the hypothesis that artificial neural networks undergo-
ing training become increasingly structured. According to the notion that persistence, as
introduced above, is a measure of topological structure, we hypothesise that it can be used
to quantify the impact training has on the network’s topology. We propose neural persis-
tence (NP), a new measure that captures the structural complexity of fully-connected neural
networks. Our method uses persistent homology to derive a scalar value that describes the
expressiveness of a network making use of both weight information and network structure.
Figure 4.3 illustrates the filtration process a neural network undergoes when computing NP.

�.�.� Neural Persistence (NP)

Let W be the weights of a feedforward neural network whose neurons are connected by
edges E. Due to the fact thatW changes during training, a map ϕ : E →W is required that
maps an edge to a weight. If the activation function is fixed, all connections can be seen as a
stratified graph.

Definition 4.4 (Stratified graph and network layers). A multipartite graph G = (V,E) is
called stratified if its vertices are composed of the disjoint union of individual vertex sets
V = V0 t V1 t . . . , such that if u ∈ Vi, v ∈ Vj , and (u, v) ∈ E, we have j = i+ 1. Hence,
edges are exclusively allowed between vertex sets that are adjacent. For k ∈ N, we refer to
the unique subgraph Gk := (Vk t Vk+1, Ek := E ∩ {Vk × Vk+1}) as the kth layer of the
stratified graph.

This means that, once all weights are sorted, we can compute persistent homology of each
Gk and G using their filtration. Such an approach is reminiscent of topology-based net-
work analyses, in which weights commonly describe node similarity or closeness [45, 113].

In contrast to these network analyses, the weights of the neural networks we are interested
in are constantly changing and may result in unbounded values. This observation necessi-
tates a novel filtration procedure. It is common to base a filtration on the Euclidean distance
between samples when using PH [41]. As illustrated in Figure 4.1b, a filtration starts by con-
necting close points first and, with a growing threshold, continuously creates edges between
nodes that are increasingly distant from each other. In the following paragraph, we will de-
velop the filtration NP is based on.

Filtration LetW be the set of weights of an individual training step. Furthermore, we
have wmax := maxw∈W |w|. Before defining our filtration, we normalise these weights as
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Figure 4.3: Illustration of neural persistence computation given a network with layers l0 and l1.
Colours indicate individual connected components. Connected components are either
merged or created during the filtration process when their weights are greater than or
equal to the threshold w′

i. With decreasing w′
i, the connectivity of the network increases.

The thresholds at which a topological feature gets created or destroyed are summarised in a
persistence diagram. For each layer, one persistence diagram exists, which is subsequently
used to compute neural persistence according to Equation 4.2.

follows. We have W ′ := {|w|/wmax | w ∈ W} which is indexed in non-ascending or-
der, s.t. 1 = w′

0 ≥ w′
1 ≥ · · · ≥ 0. Furthermore, let ϕ′(u, v) ∈ W ′ be a function that

assigns the transformed weight to a given edge. We can now define the following filtra-
tion. Let Gk be the kth layer of the network, then G

(0)
k ⊆ G

(1)
k ⊆ . . . , where G

(i)
k :=

(Vk t Vk+1, {(u, v) | (u, v) ∈ Ek ∧ ϕ′(u, v) ≥ w′
i}). This filtration was modified in a way

such that it fits well into the framework of neural networks. In contrast to other graph-
structured data (e.g. social networks), it is crucial to appreciate the relevance of absolute edge
weights. In artificial neural networks, high absolute values go hand in hand with increased
impact on subsequent layers. In the proposed filtration, weak connections (|w| ≈ 0) remain
close to 0 and the overall strength of a connection is maintained. Moreover, due to the nor-
malisation, w′ ∈ [0, 1] holds, making the neural network scale-invariant making different
neural networks comparable.

Persistence Diagrams After defining our novel filtration, we can compute PH for each
layer Gk. For this, let us first emphasize that we capture “merely” zero-dimensional topo-
logical information. This is due to the fact that the filtration as defined above includes only
nodes and edges, i.e. 0-simplices and 1-simplices. Hence, we are able to measure creation and
destruction of connected components at different scales. We would like to stress that includ-
ing higher-dimensional information is possible [206], however the advantages of focusing on
zero-dimensional information are as follows:

i) it is possible to interpret resulting values since they allow to infer clustering information
about the network at different weight thresholds,
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4.3 Persistent Homology and Neural Network Complexity

ii) previous research [112, 207] indicates that large amounts of information are captured by
zero-dimensional topological information, and

iii) PH calculations are computationally highly efficient (see below).

The structure of the persistence diagrams generated by our filtration is particular: in the
beginning, all vertices exist, which means they are part of G(0)

k for each k. This is due to
the fact that we only sort edges. Consequently, their assignment of a weight of 1 results in
|Vk × Vk+1| connected components and persistence diagrams whose entries are of the form
(1, x), with x ∈ W ′. The latter implies that respective tuples are always below the diagonal, a
property that is reminiscent of so-called superlevel set filtrations [41, 53]. We are now in the
position to define neural persistence by using the p-norm of a persistence diagram (PD) as
introduced by Cohen-Steiner et al. [54]:

Definition 4.5 (Neural persistence). Given the kth layer of a neural network, its neural per-
sistence is denoted by NP(Gk). It is defined as the p-norm of Dk (its persistence diagram)
constructed in the same way as introduced above, i.e.

NP(Gk) := ‖Dk‖p :=
( ∑

(c,d)∈Dk

pers(c, d)p
) 1

p
, (4.2)

which (for p = 2) summarises the Euclidean distances of points inDk to the diagonal.

It has been shown [54] that the p-norm summarises topological features captured in a
persistence diagram in a stable manner. Under the assumption that NP is an expressive and
meaningful summary of a network’s structural complexity, we expect it to correlate (to a
certain degree) with the number of trained epochs. This requirement and other properties
will be evaluated Section 4.3.3.

Algorithm 4 outlines the calculation of NP2. As touched upon before, the filtration in
line 4 requires that all n network weights are sorted which has a computational complexity
of O(n logn). The persistent homology calculation in line 5 can be performed by utilising
a union–find data structure [75]. The computational complexity of the involved computa-
tions isO(n · α(n)), where α(·) is the slow-growing inverse of the Ackermann function [55,

Chapter 22].

2We published experiments and our implementation at https://github.com/BorgwardtLab/
Neural-Persistence.
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Algorithm 4 Neural persistence calculation
Input: Neural network with l layers and weightsW

1: wmax ← maxw∈W |w| // Determine largest absolute weight
2: W ′ ← {|w|/wmax | w ∈ W} // Normalise weights for filtration
3: for k ∈ {0, . . . , l − 1} do
4: Fk ← G

(0)
k ⊆ G

(1)
k ⊆ . . . // Compute filtration of kth layer

5: Dk ← PersistentHomology(Fk) // Calculate persistence diagram
6: end for
7: return {‖D0‖p, . . . , ‖Dl−1‖p} // Calculate neural persistence for each layer

�.�.� Properties of Neural Persistence

In this section, we describe properties of NP that allow us to use it as a measure to compare
networks with different architectures. We start by deriving lower and upper bounds for NP of
an individual layer.

Theorem 4.1. We follow Definition 4.4 and let Gk be the kth layer of a feedforward neural
network. Additionally, let ϕk : Ek → W ′ assign all individual edges of Gk a normalised
weight. When we use the filtration outlined in Section 4.3.1 for our persistent homology
computation, NP(Gk) satisfies

0 ≤ NP(Gk) ≤
(

max
e∈Ek

ϕk(e)− min
e∈Ek

ϕk(e)

)
(|Vk × Vk+1| − 1)

1
p , (4.3)

where the number of neurons of Gk is equivalent to the cardinality of the vertex set |Vk ×
Vk+1|.

Proof. We prove Theorem 4.1 in a constructive manner by laying out how these bounds
can be derived. Beginning with the lower bound, we denote a fully-connected layer with |Vk|
vertices as G−

k . Moreover, let ϕk(e) := θ be a function that assigns each edge e the constant
value of θ ∈ [0, 1]. In this case, our filtration degrades to a function that orders vertices and
edges lexicographically resulting in a PD exclusively consisting of tuples of the form (θ, θ). As
these entries lie on the diagram’s diagonal, we have NP(G−

k ) = 0. With respect to the upper
bound, we will define G+

k to be a layer containing at least 3 vertices (|Vk| ≥ 3). Additionally,
we have a, b ∈ [0, 1] with a < b. We will make a random selection of one edge e′ and define
its weight function to be ϕ(e′) := b. All other edges will be assigned the weights ϕ(e) := a.
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In the construction of the filtration, adding the edge e′ will lead to the tuple (b, b), the other
pairs, however, will result in the tuples (b, a). Therefore, we have

NP(G+
k ) =

(
pers(b, b)p + (|Vk| − 1) · pers(b, a)p

) 1
p
= (b− a) · (|Vk| − 1)

1
p (4.4)

=

(
max
e∈Ek

ϕ(e)− min
e∈Ek

ϕ(e)

)
(|Vk| − 1)

1
p , (4.5)

and illustrated the realisation of the upper bound. Let us now consider the following per-
turbed weight function to lay out why it is not possible for this term to be surpassed by
NP(G) for any G:

ϕ̃(e) := ϕ(e) + ε ∈ [0, 1] (4.6)

As the difference maxϕ(e) −minϕ(e) maximises b − a in Equation 4.4, this perturbation
cannot increase neural persistence. �

A normalising factor for a layer’s neural persistence can now be derived by using the upper
bound of Theorem 4.1. This allows us not only to use NP to compare individual layers but
also whole networks from different architectures of varying sizes:

Definition 4.6 (Normalised neural persistence). Given a layer Gk, we have

ÑP(Gk) :=
NP(Gk)

NP(G+
k )

. (4.7)

Using the normalised formulation of NP makes individual layers comparable and allows
us to compute a network’s overall neural persistence as shown in Definition 4.7. While it is
possible to apply a single filtration to the neural network as a whole, the approach outlined
above prevents that layers with weights of different scales skew the construction of its PD and
hence the computation of NP.

Definition 4.7 (Mean normalised neural persistence). Following Definition 4.4, we consider
a feedforward neural network as stratified graph G. Its mean normalised neural persistence
is defined as the sum of all normalised NP values per layer, i.e.

NP(G) :=
1

l
·
l−1∑
k=0

ÑP(Gk). (4.8)

While Theorem 4.1 gives a theoretical lower and upper bound in the general setting, we
can obtain empirical bounds considering the tuples that result from the computation of a
persistence diagram.
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In addition to the theoretical bounds derived in Theorem 4.1, we can compute empirical
bounds based on the tuples of a PD. The filtration introduced at the beginning of this section
results in PDs containing creation and destruction points of the form (1, wi), where each
wi ∈ [0, 1] represents a normalised weight. From this particular structure, we can derive
empirical bounds that do not necessitate the computation of NP itself. A theoretical insight
leading to a more efficient implementation of our measure.

Theorem4.2. Following Theorem 4.1, letGk be th kth layer of a feedforward neural network.
Moreover, let n be the number of its vertices and m the number of its edges for which we
have w0 ≤ w2 ≤ · · · ≤ wm−1. Then the following holds:

‖1− wmax‖p ≤ NP(Gk) ≤ ‖1− wmin‖p, (4.9)

where the vectors wmin = (w0, w2, . . . , wn−1)
T and wmax = (wm−1, wm−2, . . . , wm−n)

T

contain the n smallest and n largest weights, respectively.

Proof. The filtration introduced in Section 4.3.1 can be seen as a constrained subset se-
lection problem, where we are given m weights from which we select n. Hence, NP(Gk)

depends only on the weights that are being selected and appear in Dk as points of the form
(1, wi). Let us denote w̃ as a vector containing the selected weights and reformulate neural
persistence as NP(Gk) = ‖1− w̃‖p. Moreover, for w̃ it holds that ‖wmin‖p ≤ ‖w̃‖p ≤
‖wmax‖p. From the fact that our filtration only contains non-negative weights we thereby
have

‖1− wmax‖p ≤ NP(Gk) ≤ ‖1− wmin‖p, (4.10)

and the claim follows. �

Neural Persistence and Complexity Regimes In this section, we will investigate to
which degree NP can capture the structural complexity of converging and diverging percep-
trons. To do so, a perceptron is trained on the MNIST data set [145]. In this setting, our
measure only uses the weight matrix of a perceptron, which permits us to compare its NP
to the NP of random weight matrices, drawn from different distributions. Furthermore, we
can contrast neural persistence of trained networks with NP of their initial state. Different
settings of this experiment are depicted in Figure 4.4. We illustrate neural persistence val-
ues (dots) and its respective bounds (crosses) for different types of networks and matrices. In
the centre of the plot, we show neural persistence values of random Gaussian matrices in red
and NP values of perceptrons that diverged during training in yellow. We can observe that
in terms of their neural persistence, both matrix “types” cannot be distinguished. That being
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Figure 4.4: In green, we show NP values of perceptrons that are trained; in yellow diverging ones. Red
dots indicate neural persistence values of random Gaussian matrices and black NP val-
ues of random uniform matrices. For each category, we performed 100; the lower bound
from Theorem 4.2 is depicted as crosses while dots show actual neural persistence values.
Dashed lines illustrate the bounds derived in Theorem 4.1.

said, perceptrons that converge during training (shown in green) exhibit significantly higher
NP values. Black dots and crosses indicate lower bound and neural persistence of random
uniform matrices which display the lowest NP values. This observation confirms the intu-
ition that Gaussian matrices contain only few neurons with large (absolute) weights. Note
that the distribution of most weights are heavily right-tailed resulting in an empirical upper
bound not as tight as tight as the lower one. Hence, we do not show this upper bound.

Neural Persistence and Graph-Theoretical Measures Sizemore et al. [238] showed
that for the characterisation of small random networks, PH can outperform graph-theoretical
structure/complexity measures such as the shortest path length and clustering coefficient. As
the above and following experiments show, this also holds for deep feedforward neural net-
works. To elucidate this observation, we used the MNIST data set to train perceptrons in two
settings. First, a “successful” learning rate of η = 0.5 was chosen leading to trained networks
with test accuracies of≈ 0.91. Second, we intentionally “sabotaged” the training by selecting
a low learning rate of η = 1× 10−5, preventing the training process from converging. The
accuracies reached by these diverging networks range from 0.38 to 0.65. From a machine
learning perspective, these networks belong to two different classes, between which a use-
ful complexity measure should differentiate. Figure 4.5 (top) clearly indicates that clustering
coefficient is not able to quantify these differences. In contrast, our method (bottom) can dis-
tinguish both classes well. Not only do we observe two distinct neural persistence regimes
but also a notable smaller variance for trained networks.
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Figure 4.5: Distribution of network complexity measures computed for two types of feedforward net-
works. Properly trained networks are shown in green (η = 0.5), diverging ones in yel-
low (η = 1× 10−5). The clustering coefficient (top) is a traditional graph measure that
fails to detect the structural differences of both neural network classes. The plot on the
bottom shows that neural persistence (NP) for trained networks follows a different distri-
bution than NP for diverging networks.

�.�.� Experiments

In the following, we will demonstrate the relevance and utility of NP as a meaningful descrip-
tor of the structural complexity of deep artificial neural networks. We will first examine how
standard regularisation techniques such as dropout and batch normalisation affect our mea-
sure. This investigation is followed by the development of an early stopping criterion that uses
neural persistence to determine whether to stop training. As NP only measures network com-
plexity, it is different from the traditional approach where a validation data set is required.
Across experiments, we used a variety of architectures with rectified linear unit (ReLU) ac-
tivation functions. We follow a notation in which the size of a hidden layer (i.e. the number
of neurons) is denoted in brackets. Unless noted otherwise, all networks are fitted using the
Adam optimiser [133] and parameters are tuned via cross-validation. Table 4.1 provides a
complete list of hyperparameters and experimental details of all executed experiments.
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Table 4.1: Parameters and hyperparameters for the experiments on best practices. Batch normalisation and dropout were always applied after the first
hidden layer. We trained all networks with the ReLU activation function.

Data set # Runs # Epochs Architecture Optimiser Batch Size Hyperparameters

MNIST 50 40 [650, 650] Adam 32
η = 0.0003 β1 = 0.9, β2 = 0.999, ε = 1× 10−8

η = 0.0003 β1 = 0.9, β2 = 0.999, ε = 1× 10−8, Batch Normalisation
η = 0.0003 β1 = 0.9, β2 = 0.999, ε = 1× 10−8, Dropout 50%

Table 4.2: Parameters and hyperparameters for the experiment on early stopping. Throughout the networks, ReLU was the activation function of choice.

Data set # Runs # Epochs Architecture Optimiser Batch Size Hyperparameters

(Fashion-)MNIST 100
10 Perceptron Minibatch SGD 100 η = 0.5

40
[50, 50, 20]

Adam 32 η = 0.0003 β1 = 0.9, β2 = 0.999, ε = 1× 10−8[300, 100]

[20, 20, 20]

CIFAR-10 10 80 [800, 300, 800] Adam 128 η = 0.0003 β1 = 0.9, β2 = 0.999, ε = 1× 10−8

IMDB 5 25 [128, 64, 16] Adam 128 η = 1× 10−5 β1 = 0.9, β2 = 0.999, ε = 1× 10−8
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4 Time-Varying Graphs
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Figure 4.6: Mean normalised neural persistence for networks trained with batch normalisation (yel-
low) and dropout (red). We show unmodified networks in green. We trained each setting
50 times, and set the dropout rate to p = 0.5.

�.�.�.� Neural Persistence and Deep Learning Best Practices

We compare the mean normalised neural persistence of two-layer neural networks (with
[650, 650] architecture) for which either batch normalisation [118] or dropout [245] are ap-
plied. We use the MNIST data set for training and depict the results in Figure 4.6. Compared
to “off-the-shelf ” networks (green), neural nets trained using deep learning best practices re-
sult in higher NP values. Dropout, in particular, seems to affect normalised neural persistence
more than batch normalisation, a trend which is also observed in the test set accuracy. Con-
sidering dropout as ensemble learning as done by Hara et al. [102], these results line up with
our expectations. More specifically, dropout leads to the independent training of individual
network parts, which results in a higher level of per-layer redundancy, changing the network’s
structural complexity. Overall, these results indicate that at least for fixed architectures, tech-
niques that increase neural persistence throughout training may be of specific importance.

�.�.�.� Validation-Free Early Stopping Based on Neural Persistence

In this section, we will use NP as early stopping criterion that helps preventing overfitting by
considering neural network structure alone. To test whether our measure can be used this
way, we proceed as follows. We continuously monitor mean normalised neural persistence
during network training and stop the optimisation if NP plateaus. More specifically, if there is
no increase in NP of more than ∆min for g epochs, the training process is halted. Algorithm 5
outlines this patience-based procedure. When we exchange neural persistence for validation
loss, this algorithm is the most commonly used early stopping methods in the training of
neural networks [19, 51]. We investigate the efficacy of NP as early stopping criterion and
compare it to the standard validation loss approach. More concretely, in our experiments, we
train networks for no more thanG epochs and specify aG×G grid containing g, the patience
parameter, and b, the burn-in rate. We measure both parameters in number of epochs. The
burn-in rate defines the epoch at which a criterion (i.e. NP or validation loss) is started to be
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4.3 Persistent Homology and Neural Network Complexity

Algorithm 5 Using mean normalised neural persistence as stopping criterion
Input: Weighted neural networkN , patience g, ∆min

1: P ← 0, G← 0 // Initialize highest observed value and patience counter
2: procedure EarlyStopping(N , g, ∆min) // Callback that monitors training at every

epoch
3: P ′ ← NP(N )

4: if P ′ > P + ∆min then // Update mean normalised neural persistence and reset
counter

5: P ← P ′, G← 0

6: else// Update patience counter
7: G← G+ 1

8: end if
9: ifG ≥ g then // Patience criterion has been triggered

10: return P // Stop training and return highest observed value
11: end if
12: end procedure

used to monitor training. To keep the experiment comparable and scale-invariant, ∆min is
set to zero, preventing non-zero values to favour one method over the other. We perform
100 training runs per grid cell with identical architectures per data set for each of four data
sets. Both validation loss and mean normalised NP are computed every quarter epoch. We
simulate both measures’ stopping behaviour for every combination of g and b and summarise
their predictive performance by computing the median test accuracy over all runs. Similarly,
we record the median stopping epoch to assess how late/early a criterion is triggered. For
runs in which a criterion was never triggered, test accuracy and number of training epochs
were recorded as soon as training was finished.

In the resulting scatterplot, each point corresponds to a unique parameter configuration
and shows the absolute test accuracy difference (in percent) and the difference in epochs
after which training was stopped. To make the plot more accessible, we split it into four
quadrants: If a parameter combination results in a scenario in which NP-based early stopping
reaches a higher accuracy and stops earlier than the validation loss-based criterion, it appears
in quadrant Q2. We show configurations for which b or g are more than half the number of
total training epochs in grey as they represent uncommon parameter settings (i.e. typically,
both parameters are comparatively small). Finally, we summarise our measure’s performance
by computing the barycentre over all combinations (green square).
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Data set Barycentre Final test accuracy

Fashion-MNIST (−0.53,−0.08) 86.72 ± 0.43

MNIST (+0.17,−0.06) 96.16 ± 0.24

CIFAR-10 (−1.33,−1.13) 52.19 ± 3.40

IMDB (−1.68,+0.07) 87.35 ± 0.03
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Figure 4.7: Differences (validation loss v.s. neural persistence) in number of epochs trained and test
accuracy for all combinations of g and b on the Fashion-MNIST data set. Table 4.7b sum-
marises the results of all four data sets. To provide a holistic evaluation, final accuracy
values are considered even if no early stopping criterion was triggered.

We compare our approach with the validation loss-based criterion on the Fashion-
MNIST [284] data set in Figure 4.7a and observe that almost all configurations are in Q3

or in Q2, i.e those quadrants in which our criterion stops earlier. The barycentre is located
at (−0.53,−0.08), indicating that out of all 625 parameter combinations, on average, the
NP-based stopping leads essentially to the same accuracy (0.08%) as validation loss while
stopping half an epoch before. A more detailed depiction of epoch and accuracy differences
is visible in Figure 4.7c; each heatmap cell corresponds to a specific parameter combination
of g and b. Red, white, and blue represent configurations for which we get lower, equal,
or higher accuracy, respectively, than using validation loss with the same parameters.
Likewise, blue/red values in the heatmap that visualises epoch differences indicate that our
criterion triggered earlier/later than validation loss. With burn-in periods of b ≤ 8, our
criterion stops on average 0.62 epochs earlier suffering only a small decrease in predictive
accuracy (0.06%). Finally, Figure 4.7d shows the frequency at which each measure stopped
the training process. A consistent stopping criterion would lead to a (dark) green triangle.
To summarise Figure 4.7d, we see that on Fashion-MNIST, our approach stops not as
frequently overall, but for more parameter configuration than the validation loss-based early
stopping.

We performed the same analysis on the CIFAR-10 data set [138] and show its results in Fig-
ure 4.8. Overall, we make the observation that both criteria stop less consistently on this data
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Figure 4.8: Early stopping behaviour for the CIFAR-10 data set.

set compared to the results on Fashion-MNIST. More specifically, there are configurations for
which NP stops earlier and leads to an accuracy increase of almost 10% but also combina-
tions for which our approach does not stop earlier or has to train much longer. Concerning
reliability, however, we show in Figure 4.8c that our measure triggers for more combinations
compared to validation loss. In addition, from the scatterplot in Figure 4.8a, we can see that
most black dots (i.e. practical parameter combinations) are located in Q3 and Q2. Regarding
settings in which we reach higher accuracies and train longer (i.e. Q1), we notice that they
are characterised by a small burn-in rate (b) and high patience (e.g. g ≈ 40), or vice versa.

We hypothesise this may be due to the fact that for CIFAR-10, fully connected neural net-
works do not reliably converge. To demonstrate this, we show mean normalised persistence
and loss curves in Figure 4.9. With respect to validation and training loss, coloured curves il-
lustrate their mean over 5 training runs. Additionally, we show mean normalised neural per-
sistence values in colour for all individual runs. Grey envelopes depict standard deviations.
Note that we only show the first 50 epochs as they represent practical/useful early stopping
settings. For the Fashion-MNIST data set, we see obvious change points at which NP can be
used to halt the training process. In contrast, for the CIFAR-10 data set, it is harder to find
well-defined maxima in some training runs, which exacerbates deriving a general stopping
criterion without parameter fine tuning. Therefore, we hypothesise that it is not possible to
use our measure reliably in situations where the network is not capable of generalising to the
validation set.
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Figure 4.9: Comparing the training behaviour in terms of training/validation loss as well as mean
normalised NP on the CIFAR-10 and Fashion-MNIST data sets. Losses are averaged over
five runs for each which we show the neural persistence trajectory. Grey envelopes show
standard deviations.

�.� Conclusion

In this section, we introduced neural persistence (NP), a new complexity measure for deep
neural networks. Inspired by advances in the field of computational topology, neural per-
sistence is not only computationally efficient but also enjoys a strong theoretical foundation.
We demonstrated its general applicability and that it captures useful topological information
pertaining to a network’s generalisation performance. We also illustrated that our measure
can identify networks trained by using deep learning best practices like normalisation and
dropout. Additionally, we showed that when used as criterion for early stopping, NP results in
networks that reach competitive prediction performance without necessitating a distinct val-
idation set. Freeing data for training is particularly desirable to use deep learning in settings
in which limited data is available. That being said, neural persistence is a coarse-grained mea-
sure that quantifies large-scale changes in a network’s structure that are more pronounced at
the beginning of training. Smaller weight refinements that happen towards the end of the
training process may be too subtle to be captured by NP. This is underlined by the observa-
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4.4 Conclusion

tion that our early-stopping criterion leads to comparable predictive performance but not to
an increase.

As one of the pioneering works at the intersection of machine learning and TDA, NP
contributed to the emergence of the field of topological machine learning. In a follow-up
work [205], the author of this thesis underlined the versatility and importance of TDA by
developing a topological generalisation of the popular Weisfeiler-Lehman procedure [280]

for graph characterisation and classification [233, 234]. Over the last years, many works in
topological machine learning followed threads first touched upon by neural persistence. In
particular, the thread of characterising neural networks and their generalisation capabilities
using TDA was investigated extensively [52, 56, 88, 184, 279]. Other new paths pertain to the
problem of learning disentangled representations [297] or topological-inspired approaches
to autoencoders [177], to name a few.
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� Concluding Remarks &Outlook

In which we summarise our contributions and de-

scribe promising future research directions.

We began this thesis by defining two canonical classes of time series: real-valued time
series, containing what is commonly referred to as uni- and multivariate time series, and
object-valued time series, which encompass temporal changes of arbitrary objects. By
focusing primarily on the biomedical context, we then identified three challenges in the
analysis of real-valued time series. These include statistical obstacles arising from the
search for temporal biomarkers, weaknesses in the use of subsequence-based classifica-
tion algorithms, as well as a lack of accurate and non-invasive methods for cardiac risk
stratification. Other computational challenges that will drive the development of new and
effective time series analysis methods evolve around the utility of generative models for time
series and continuous inference of discrete signals. In the second part, we turned towards
object-valued time series by investigating the inner workings and learning behaviour of one
of the most successful objects in machine learning: artificial neural networks. Throughout
the thesis, we proposed solutions to these challenges by leveraging advances in pattern
mining, kernel methods, deep learning, and topological data analysis. In this chapter, we
will first summarise the solutions that were developed in this thesis to solve or mitigate
the aforementioned challenges. Each summary will be followed by elaborations on future
research directions that we consider to be promising. We then conclude by providing
general directions for the study of biomedical time series.

Pattern Mining for Time Series
Chapter 2 introduced S3M, an algorithm to identify discriminating patterns that are statisti-
cally associated with a binary class label. S3M extends the idea of time series shapelets [288],

originally developed for classification, to the realm of pattern mining. The problem of mul-
tiple hypothesis testing is mitigated by including Tarone’s method [257] in the subsequence
mining process. A novel contingency table pruning procedure makes S3M particularly ef-
ficient without losing statistical power. Applied to a sepsis data set, we demonstrated the
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5 Concluding Remarks & Outlook

utility of our method by identifying septic-specific temporal patterns in a patient’s heart rate,
respiratory rate, and blood pressure.

In a follow-up work [117], we showed how S3M could be used as a filtering method to select
a limited number of shapelets as time series feature descriptors. We demonstrated how our
method could not only be used in association mapping but also in classifying complex phe-
notypes from time series. Lastly, S3M was extended by Gumbsch et al. [97], who enhanced the
practical utility of the method by reducing the number of similar shapelets that are reported.

For future work, we envision S3M to be used for the data-driven definition of complex
phenotypes such as sepsis. The current definition of sepsis [237] was developed by clinical
trial experts, specialists in sepsis pathobiology, and epidemiology scholars. While clinical
expertise and diligent consensus-finding processes are crucial for the development of clinical
definitions, we foresee great potential in the use of computational approaches to augment
current practices. The benefit of S3M over other approaches is its interpretability and
statistical soundness, both valuable properties, which we think are critical for the acceptance
of data-driven derivations of clinical definitions. To reach this goal, the first step would be
to extend our method to multivariate time series, enabling it to detect interacting patterns
from different channels. The challenge of such an extension, however, is the combinatorial
explosion of possible interactions. A first way to mitigate this problem is to only consider
combinations of patterns that are in close temporal proximity. Second, we must not rely on
labels derived by physicians but proceed in an unsupervised fashion. This may be achieved
by an iterative label-assigning approached coupled with S3M. We could start from a data
set comprised of unlabelled time series and randomly assign labels in an iterative manner.
In each iteration, S3M is used to mine shapelets. If any statistically associated shapelet is
found, we keep the current label distribution and assign positive labels to samples from the
current negative class. This way, we construct two classes of time series for which statistically
associated shapelets exist. A subsequent medical interpretation of the results would be
necessary to confirm the validity of the assigned labels and identified shapelets.

Subsequence Kernels for Time Series
In the beginning of Chapter 3, we propose the Wasserstein Subsequence Kernel (WTK), a
kernel-based method for time series classification that makes use of concepts from optimal
transport theory. We show that a simple application of theR-convolution kernel framework
employing subsequences can be meaningless when assessing the similarity of two time series.
Motivated by this observation, we developed a meaningful kernel method that allows for
a less rigid notion of similarity. Specifically, we used the 1-Wasserstein distance between
subsequences to capture local and global time series characteristics concurrently. We provide
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empirical evidence of the effectiveness of our method across a wide range of data sets and in
a wide range of settings.

A first step in making our method widely applicable is scaling WTK to longer time series.
One of the current computational bottlenecks arises from the number of subsequences
under consideration as it defines the dimensionality of the ground distance matrix. As
longer time series lead to a higher number of subsequences, it may become critical to
drastically reduce the number of subsequences that represent a time series. S3M or its
extension [97] may prove to be a valuable, data-driven subsequence selection method for
this task. Another interesting research direction is to use time series representations that
differ from subsequences. A fruitful advancement may be found in the use of the signature
transform [131, 148], a universal nonlinearity that has been proven to be an effective feature
representation for time series. While this does not entail a gain in computational complexity,
it may result in increased expressive power. Moreover, to circumvent the challenge of deal-
ing with an indefinite kernel function, a feasible approach is to use the sliced Wasserstein
distance instead [136, 137, 142]. This distance is provably negative definite, which allows for
the derivation of a positive definite kernel as shown by Feragen et al. [82]. This brings us to
the last research direction we identified. Once provided with a positive definite kernel, we
can expand WTK’s application beyond classification and explore areas such as dimensionality
reduction using kernel principal component analysis [226] or two-sample tests using the
maximum mean discrepancy (MMD) [32, 96] framework.

Ischaemia Prediction with Deep Learning
In the second section of the time series classification chapter, we developed a system based
on deep learning for the identification of myocardial ischaemia from exercise stress test data.
Exercise-induced myocardial ischaemia is the hallmark of coronary artery disease (CAD),
the leading cause of years of life lost. The early identification of patients at risk for CAD is
therefore an important medical and epidemiological task that may lead to a more targeted
testing strategy. However, the gold standard to determine myocardial ischaemia, namely my-
ocardial perfusion imaging, comes with disadvantages. It is intrusive in nature and exposes
the patient to radioactive agents. A system that can predict the outcome of the imaging from
easy-to-access data is therefore particularly desirable. If this system were sufficiently accu-
rate, it could reduce the number of false positives (i.e. patients who unnecessarily received
imaging) and thus spare patients from the procedure. Our system not only reduces the num-
ber of false positives and false negatives but also exhibits interpretability properties that help
the cardiologist understand which parts of the input data contributed to the predicted risk
score.
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While we were able to internally validate the clinical value of our system, we envision
externally validating our system’s predictive performance on data from different institutions
providing a multi-site evaluation. In particular, it is of interest to investigate the system’s
generalisation capabilities to ECG data recorded via treadmill stress testing (as compared to
bicycle stress testing). In addition to bicycle testing, treadmill testing is another widespread
protocol that results in a slightly higher physical load due to the fact that it is not weight-
bearing. This will not change the physiological manifestation of ischaemia; however, it may
provide insights into the robustness of our system with respect to different sources of noise.
An available data set that can be used for this purpose was generated by Sharir et al. [232] and
made available as part of the Telemetric and Holter ECG Warehouse (THEW) initiative [57].

Moreover, there are many powerful neural network architectures well suited for sequential
data whose inductive biases may be beneficial for the classification task at hand. For
instance, attention-based models [270] are able to learn long-term dependencies and are
therefore particularly well-suited to our task (e.g. to learn long-term ST-segment changes).
While the original method suffers from a computational complexity quadratic in the length
of the time series, efficient approaches such as the “Reformer” [134] or “Perceiver” [119]

may be useful in our setting. Moreover, to sustainably improve the standard of care, it is
necessary to confirm the system’s added value in a clinical study. The system should be
evaluated in the following two scenarios. First, in a setting where no cardiologist is available
to interpret stress test results (e.g. at a general practitioner’s office), the system could help
identify patients at risk that are hard to identify for non-experts. In this setting, the primary
aim is to reduce the false negative rate. Second, in specialised clinics with access to an
expert’s judgement, we might be more interested in reducing the number of patients that are
unnecessarily exposed to radioactive agents. Not only would this lead to increased patient
safety but also to a reduced financial burden for the hospital. In addition to improvements
in risk stratification, future work could also shed light on the interplay between machine
learning systems and physicians. A prospective study investigating this may provide insights
about the influence that machine-generated scores have on the cardiologist’s judgement and
the degree to which model interpretability can increase the trust of healthcare professionals
in an algorithm.

Neural Networks as Time-Varying Graphs
Object-valued time series were the focus of Part II. We defined this class of time series as
sequences of structured objects whose nature determines the analysis methods that can be
utilised. The temporal change of weighted stratified graphs that represent neural networks
that change during training were investigated. We developed neural persistence (NP), a
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method rooted in topological data analysis, that makes neural networks more fathomable.
Our method defines a measure of neural network complexity that correlates with deep
learning best practices and the network’s generalisation capabilities. The latter observation
permits us to develop an early-stopping criterion that does not necessitate any validation
data set.

Being one of the pioneering works on the investigation of neural networks using persistent
homology, as illustrated in a recent survey by Hensel et al. [106], the field of topological
machine learning experienced substantial growth over the last years. We are convinced
that TDA will continue to play an important role in machine learning and outline several
directions that we consider to be of interest. First, neural persistence may be used as a
“self-regularisation” term to direct the updates of neural network parameters in such a
way that NP is increased. Given the observed correlation between NP and generalisability,
we hypothesise that such a regularisation term may lead to faster convergence. Similarly,
increased NP may be used as an objective in neural architecture search [76] to find new
neural network architectures. A prerequisite for this, however, is the extension of our
proposed method to more sophisticated architectures such as attention layers. Such an
enhancement requires a principled mapping of large-scale neural network architectures
to a topology-based framework, a highly non-trivial endeavour. One way of addressing
this is by adopting a “weight space” perspective, i.e. a perspective in which the complete
network is reduced to its weights. This view is limited by the fact that the inductive biases
from different architectures cannot be properly represented in the weight space alone.
Great potential lies therefore in the search for more fruitful representations that balance
expressivity and efficiency. A research direction that may serve as a link between real- and
object-valued time series is to leverage a graph-based time series representation such as the
visibility graph [140] for subsequent analysis. Visibility graphs capture important time series
characteristics such as periodicity, and TDA may prove itself a useful analysis tool for a
graph-based view on real-valued time series. Such a view may augment other recent works
that use TDA for the analysis of real-valued time series [71, 293].

Outlook
There is no denying the fact that the ease with which data in the life sciences can be acquired
will eventually lead to an accumulation of data sets of high temporal resolution. We hypoth-
esise that almost every biomedical entity that can be measured repeatedly will be analysed
in terms of its development over time. We will now briefly highlight some biomedical appli-
cations that may benefit from the development and deployment of novel time series analysis
methods.
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Single-Cell Analysis Over the last years, single-cell transcriptome sequencing (scRNA-
seq) revolutionised modern biology by providing a new way of studying dynamic cellular
processes [43]. Methods utilising scRNA-seq data enable researchers to discover new cell
subpopulations [230] or help elucidate cell differentiation and maturation processes [192].

Trajectory inference (TI) methods are the core of many single-cell analysis approaches [219]

that assign to each cell a so-called pseudotime, a numeric proxy for the cell’s position within
the dynamic process of interest. However, there is no guarantee that this proxy linearly cor-
relates with true chronological time [268]. This discrepancy can be remedied by using syn-
chronised cell populations in which each gene profile is annotated with a “real” time stamp.
Since a cell can only be measured at one time point, it is crucial to construct “pseudocells”
to prepare this data for time series analysis. We propose to use optimal transport (OT) (as
introduced in Section 3.2.2) to match a cell’s gene expression profile at time t with the closest
profile at t+ 1. As illustrated by Schiebinger et al. or Tong et al. [224, 262], one advantage of
using OT is that it can act on the high-dimensional expression space directly. This alignment
results in a multidimensional time series of gene expression profiles amenable to subsequence
analyses such as S3M for the identification of gene expression motifs or extensions of WTK for
time series-based cell clustering and the like. We may also view the resulting time series as an
example of an object-valued time series (see Section 1) in which each cell consists of multiple
gene expression “objects”. This allows for the application of a principled analysis framework
as laid out at the end of this chapter.

Organoids Another exciting field at the intersection of biology and medicine that may
benefit from the utilisation of time series analysis tools is the study of organoids. Organoids
are structures that exhibit functionalities and cellular architectures akin to in vivo organs.
They develop from organ-specific progenitors or stem cells by means of a self-organisation
process and serve as models that help improve our understanding of organ dysfunction and
recovery [212]. Successfully developed organoids include models of the colon, liver, pancreas,
or kidney, to name just a few (Rossi et al. [212] provide a thorough overview of the successes
and the potential of the field). What makes organoids relevant for the field of biomedicine is
that they can be derived from human stem cells and can simulate human pathologies at the
organ level. Methods such as the ones developed in this thesis will play an important role in
investigating an organoid’s development process. In particular, subsequence-based analysis
methods such as S3M are a promising way to detect novel gene expression motifs (i.e. tempo-
ral dependencies of up- and downregulation) associated with diseased or healthy organoids.
Moreover, combining genetic trajectories with structural and morphological changes could
generate insights into more fundamental biological questions concerning organ formation.
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Lastly, the fact that organoids are able to model human pathologies makes them a vehicle to
be used for drug screening studies. By tracking the temporal dynamics of a genome, methods
such as S3M would allow researchers to determine when (i.e. at which genetical configura-
tion) a drug might be most effective.

Complex Phenotypes Throughout this thesis, we analysed complex pathological condi-
tions such as sepsis or myocardial ischaemia. In the case of sepsis, its complexity arises from
the involvement of multiple organ systems that determine the presence of the condition,
exacerbating a satisfactory definition of sepsis itself [178]. Similarly, diagnosing exercise-
induced myocardial ischaemia requires performing a complex diagnostic procedure leading
to exceedingly long signals in which relevant patterns may develop transiently. While from
a medical perspective fairly different, the similarity of both conditions lies in the fact that
typically, exceptionally long time series are available for their detection. High sampling rates
result in long stress test ECGs; long ICU stays result in continuous monitoring data that
may cover months. Future time series classification algorithms should therefore be efficient
feature extractors that are able to find short signals and learn long-term dependencies
from sequences consisting of hundreds of thousands of measurements. In addition, it may
become critical to design algorithms that make no assumption about the length of the
input signal at all (i.e. infinite horizon approaches [242]). Especially with increased usage of
real-time monitoring, challenges arising from infinitely long data streams (e.g. distribution
changes and the need for continuous parameter updates) will become more prevalent.
While a steady pattern matching approach using shapelets could be a prudent first step, it
seems more promising to learn patient representations that can perpetually be updated. In
the case of patient representations derived from ECGs, we may learn representations from
a small number of heartbeats and clinical variables. For sepsis, a patient’s health status may
be summarised by a function of the most relevant vital parameters, medication, and static
clinical data. In both cases, we take a more patient-centric standpoint in which individual
time series measurements (class I and II) become a mere building block of a more integrated
and comprehensive representation (class III).

From this standpoint, it becomes crucial to shift from a perspective evolving around real-
valued time series to a focus on object-valued time series. Notice that the latter view encom-
passes and generalises the previous one. This encourages researchers to develop a holistic
view of the investigated objects, in which an object’s temporal trajectory summarises the
change of its individual characteristics in a representative manner. The meaning of “repre-
sentative” in this context will be highly domain-dependent. Neural persistence exemplifies
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5 Concluding Remarks & Outlook

an analysis tool for object-valued time series whose development followed a methodological
framework of general applicability to the life sciences and biomedicine. We believe that such
a framework may be of use as a guideline for the principled development of future analysis
tools. Based on the notation in Definition 1.3, this framework should consist of the following
steps:

1. Define a set of objects (e.g. O and ¬O) that are sufficiently different from each other.

2. Identify a metric space (Z, d), with distance function d : Z×Z → R, that may recover
these differences.

3. Use a well-defined map z : Q → Z to map all objects fromQ to Z .

4. Ensure that d(z(O), z(¬O)) is sufficiently large.

5. Use {d(z(O1), z(O2)), . . . , d(z(Om−1), z(Om))} as representative time series for
further analysis.

While these steps are reminiscent of general dimensionality reduction approaches, there is
no need to reduce an object’s dimensionality if Z is endowed with an appropriate distance
function. That being said, one of the challenges in the implementation of the proposed frame-
work is the identification of an appropriate metric space along with a suitable function for
embedding objects into said space. The flexibility of artificial neural networks allows us to
define the dimensionality of Z (often called the embedding space) and learn both the map
z and a distance function d simultaneously. In particular, the hidden representations of au-
toencoders provide a well-defined mapping into Z that can be learnt alongside the distance
function. When learning the map z, it should

a) satisfy the property of sequential continuity (i.e. limτ→0 z(Ox+τ ) = z(Ox) if
limτ→0Ox+τ = Ox), and

b) reflect the sparse labels acquired in Step 1.

The first property is important to ensure learning an embedding that will lead to a smooth
trajectory. One way to “nudge” the network to learn such trajectories is to impose a certain
structure on Z . For example, we could restrict z to map its input on a sphere or hyperbolic
geometries like the Poincaré disk. The label sparsity is due to the assumption that the differ-
ences in the objects from Step 1 are hard to determine and require deep domain knowledge.
Depending on the level of sparsity, an active learning approach [286] may be incorporated.
When there is no apparent choice for a distance function, which is the case when we rely on
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a neural network to learn z, a metric learning approach [249] will guide the network to learn
a useful distance function. This way, it is possible to learn Steps 1 through 4 in an end-to-
end fashion with minimal user involvement. Lastly, if the task in Step 5 is well-defined and
learnable by a neural network, it can also be incorporated into the pipeline.

As a motivating example for the utility of this framework, we want to briefly discuss
a biomedical application where an object-valued view might be beneficial. This is the
case in the analysis of electronic health records, where we may be interested in learning
a patient’s health status on any given day. What we consider healthy will depend on our
field of expertise or interest and lead to labels that are best acquired in an active learning
setting. An appropriate representation of the vast amounts of the per-day information in
combination with an expressive distance function will allow us to 1) assess an individual
patient’s trajectory, and 2) compare the health state of different patients. The latter can be
achieved in a per-day fashion or by comparing trajectories as a whole. More generally, this
framework will make all kinds of dynamic processes amenable to an improved description
that by construction aligns with the research question at hand.

To conclude, the increased availability of biological and biomedical time series data will
change how we characterise and analyse specimens and research subjects as a whole. Tak-
ing their temporal development into account will allow scholars to develop a more holistic
view of their field that may lead to novel biomedical insights. Machine learning methods —
specifically, interpretable and explainable ones — can help facilitate this switch in perspec-
tive by providing powerful machinery to help identify the hidden motifs and manifolds that
constitute life.
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Acronyms

NP Neural Persistence
S3M Statistically Significant Subsequence Mining
NIP Neural Ischaemia Prediction
WTK Wasserstein Subsequence Kernel
ACS Acute Coronary Syndrome
ANN Artificial Neural Network
AUPRC Area Under the Precision-Recall Curve
AUROC Area Under the Receiver Operating Characteristic
CAD Coronary Artery Disease
CD Critical Difference
CDF Cumulative Density Function
CI Confidence Interval
CNN Convolutional Neural Network
CVD Cardiovascular Death
DTW Dynamic Time Warping
ECG Electrocardiogram
EHR Electronic Health Record
EIMI Exercise-Induced Myocardial Ischaemia
fMRI Functional Magnetic Resonance Imaging
FNR False Negative Rate
FPR False Positive Rate
FWER Family-wise Error Rate
gRSF Generalized Random Shapelet Forests
HRV Heart Rate Variability
ICU Intensive Care Unit
MIMIC Medical Information Mart for Intensive Care
ML Machine Learning
MPS Myocardial Perfusion Scan
MTL Multi-Task Learning
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Acronyms

OR Odds Ratio
OT Optimal Transport
PD Persistence Diagram
PH Persistent Homology
PR Precision-Recall
PSD Positive Semi-Definite
RBF Radial Basis Function
ReLU Rectified Linear Unit
RKHS Reproducing Kernel Hilbert Space
RKKS Reproducing Kernel Kreĭn Space
RNN Recurrent Neural Network
ROC Receiver Operating Characteristic
RR Respiratory Rate
SHAP SHapley Additive exPlanations
SI Suspected Infection
SIRS Systemic Inflammatory Response Syndrome
SOFA Sequential Organ Failure Assessment
SOTA State-of-the-art
SPECT Single-Photon Emission Computerized Tomography
SPM Significant Pattern Mining
SVM Support Vector Machine
TDA Topological Data Analysis
TSC Time Series Classification
YLL Year of Life Lost
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